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Abstract—Internet of Things (IoT) and edge platforms
are very complex systems. They are heterogeneous in terms
of hardware and software. In these systems, being able to
document the energy consumed by the nodes is important.
To mitigate the impact of such systems on the energy
consumption and improve their energy efficiency, research
experiments involving power monitoring tools are required.

However, in the context of IoT and edge platforms,
having access to a power monitoring system to monitor
specific nodes can be challenging. Similarly, building a
power monitoring tool can be time consuming and complex.
Single-Board Computers (SBC) based monitoring systems
are flexible since they are accessible and provide full inte-
gration with existing computer systems, such as test-beds.
However, building and evaluating this type of monitoring
tool is challenging.

In this paper, we propose a SBC-based power monitoring
system that aims at being simple to reproduce and plug-
able into existing test-beds. In addition, a framework to
evaluate the performance of such systems is detailed. The
results show that, with this framework, accurate evaluation
of the sample read performance of I2C-based power
meters can be performed. Details about the advantages
and weaknesses of our setup are highlighted.

Index Terms—power monitoring, performance evalua-
tion, single-board computer, Linux

I. INTRODUCTION

In recent years, the proportion of Internet of Things
(IoT) and edge nodes is continuously increasing. By
2025, it is estimated that there will be around 40 billion
connected IoT devices [1]. In such context, studying the
energy consumption of these types of nodes is crucial.
It allows to document their energy consumption, and
evaluate the efficiency of energy saving strategies.

There are several approaches to perform such studies.
The first one, consists in using simulation. Several sim-
ulators from the literature are able to model the power
consumed by computer systems [2], [3]. This approach
is highly flexible as no physical hardware are involved in
the experiments. However, if finer-grained power mea-
surements are required, solely relying on simulation for
critical applications could be a problem, as theoretical
predictions can mismatch practical measurements.

The second approach, consists in using already es-
tablished test-beds that provides power monitoring tools

allocated to specific computing hardware [4], [5]. This
approach is convenient as the user does not need to
design, setup and calibrate computing nor monitoring
tools. However, it can be challenging to find a test-bed
that provides hardware that fits to the user requirements.
In specific cases, human intervention must be requested
for setting up such hardware [6].

Another approach, is to build a power monitoring
system that is able to measure the energy consumed by
specific hardware provided by the user. In the context of
IoT and edge platforms, where computer systems can be
heterogeneous, this approach allows the user to monitor
any types of hardware. However, building such moni-
toring system can be challenging [7] and expensive [8],
[9]. It is crucial to evaluate the performance of this
power monitoring system to ensure that the collected
measurements are accurate.

In this paper, we design and evaluate a Single-Board
Computer (SBC) based power monitoring system that is
accessible in terms of budget and components, and easy
to reproduce. This system combines existing computer
hardware to create a portable and flexible power moni-
toring node, that can be integrated into an IoT and Edge
test-bed. The evaluation proposed in this work focuses
on the capability of the monitoring node to read samples
that are generated at high frequencies by the power meter
hardware. The contributions of this paper are:

• An evaluation of an SBC-based power monitoring
node that uses I2C based power meters

• A Linux driver for the INA260 I2C interface
• A framework to evaluate the performance of SBC-

based power monitoring node
• A study of the impact of Pub/Sub-based samples

offloading to achieve continuous monitoring for
test-beds applications

This paper is organized as follow. Section II presents
the state of the art related to this work. The Section III
details the proposed hardware and software stack for
power monitoring. The Section IV details the experi-
mental protocol used to evaluate our experimental setup.
Then, Section V presents the results. Finally, Section VI
concludes the work.
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II. RELATED WORK

Prototypes measuring power consumption for IoT
edge nodes exist [10], [7], [4], [11]. The efficiency
of the power monitoring setup depends on the whole
system [11] including (i) the monitoring sensor (ii) the
observer node hardware and (iii) the power monitoring
software stack [11], [7], [10].

Several power monitoring setups have performance
bottlenecks, with regards to the maximum sampling
rate [4], [11]. Evaluating reading performance at an early
stage allows to build solutions supporting sampling rate
specifications, requested by IoT applications [10].

A. Precise I2C compliant power monitoring sensors

There are several methods for direct current sensing
such as Current Sense Amplifiers (CSAs) [12], [13]. The
CSA method provides better accuracy over other direct
current sensing methods. Texas Instruments (TI) is a
recognized manufacturer for CSA, with set of devices
widely used for energy consumption measurements [7],
[4], [14].

The TI INA219 is a heavily used digital-output
CSA [7], with a current measurement error of 0.50 %.
This error increases when measuring power [15], [16].
However, studies on IoT edge nodes cannot be per-
formed with around 0.50 % measurement error. It is the
case in [6], where measured power variability for the
idle state on a single node is 0.42 %. In the IoT edge
context, high precision and accuracy is important and
often crucial [6].

The INA226 has a maximum of 0.10 % shunt volt-
age gain error, and a maximum of 10 µV shunt offset
voltage [17]. An external shunt resistor is needed [17].
FIT IoT-LAB [4], a large scale open experimental IoT
testbed, uses it to monitor power consumption. The
overall accuracy in the setup depends on errors from the
CSA and the shunt resistor [16]. The overall accuracy
of the power monitoring setup is not reported.

In [14], an INA260 is used to build a power monitor-
ing setup for IoT edge nodes. It is a precise monitoring
chip with an I2C interface and an integrated shunt
resistor [18]. At normal temperature, INA260 has a
measured maximum system gain error of 0.15 %, and a
maximum current offset of 5mA. This chip simplifies
power monitoring setup, while providing high precision,
high sampling rate, and a wide range of measurements.

A breakout board can host the INA260 and provide a
physical interface between the controller node and the
measured load (e.g node under test). [19], [20]. In [21],
a Printed Circuit Board (PCB) is designed. The VCP
Monitor Click [20] is a board based on the INA260,
requiring no soldering. But a compatible bus interface
at the controller node is needed.

B. Reading performance from observer node

In the FIT IoT-LAB, each observer node reads power
from one INA226. The minimum valid period between
two consecutive measured samples is 664 µs, higher than
the minimum supported period between two samples
by INA226, 140 µs. The reason for not supporting the
minimum sampling rate is not explained [4].

In [22], BeagleBone Black is used to collect mea-
surements from a power monitoring sensor, via the SPI
interface. Events that needs to be measured require high
sampling frequency, that cannot be theoretically sup-
ported by the BeagleBone Black SPI interface. There-
fore, SPI protocol is implemented on the Programmable
Real-Time Unit (PRU). The evaluation shows that the
required sampling frequency can be achieved. The work
does not investigate the use of multiple sensors on the
serial interface.

In [11], a power monitoring unit is developed to
measure power of IoT nodes. The setup includes an
Arduino Uno and an INA226, configured for the shortest
supported conversion time, 140 µs. The time between
two consecutive sample averages is 4.35ms. The maxi-
mum speed of the I2C interface on the observer node has
been identified as a bottleneck for reading performance.
Thus, identifying the reading performance capabilities is
important to achieve the required sampling rate.

In [7], a power monitoring setup, EMPIOT, is devel-
oped using the INA219. Two different observer nodes
and I2C drivers are explored. Two methods to write
power monitoring data to file are evaluated: batched and
continuous. They are implemented using two buffering
mechanisms. Sampling rate is evaluated against I2C bus
speed. It is shown that different I2C drivers can have dif-
ferent overheads, affecting the sampling rate. The most
efficient buffering mechanism for two nodes (Raspberry
Pi 3, Raspberry Pi Zero) differs. They conclude that
the power monitoring performance depends on hardware
architecture, software stack and the number of available
cores. The performance when offloading monitoring data
to another node, are not investigated, nor using one
observer node with multiple sensors.

There is no driver for INA260 in the Linux kernel.
In [23], an open source framework is developed, to
monitor the power of two GPUs. The setup includes an
array of four INA260 on an Adafruit, and a Raspberry
Pi. A C library is developed for the Raspberry Pi to
read the power measurements via I2C. This library is
based on SMBusTM and measurements are stored on a
SD card. The shared setup allows a sampling rate up to
5000 samples per second, for each of the two GPU. The
impact of the Raspberry Pi reading performance when
varying the number of INA260 is not investigated.

In [24], a power measurement system based on the
INA260 is presented. The system consists of modules,
each with four INA260, connected to an I2C bus that
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can be shared across up to four modules. The analysis of
allowed sampling rate is based on theoretical computa-
tions that consider only INA260 specifications. However,
a power monitoring system contains other components
and factors that can affect reading performance (e.g.,
I2C speed of the observer node, software used to collect
measurements). In [7], results show that the actual time
needed to get a sample from INA219 is longer than the
data-sheet reported values. Experiments are needed to
evaluate the actual supported sampling rates in a power
measurement system, with multiple senors.

C. Summary

Power monitoring systems use observer nodes and
connected power sensors. Evaluations of power moni-
toring setups show bottlenecks in several works.

By sharing the communication buses, more than one
power sensor can be attached to an observer node.
Several existing works estimate reading performance of
multiple sensors by computation, based on system ar-
chitecture and data-sheet values. However, performance
evaluations using data-sheets values can be inaccurate.

To the best of our knowledge, there is no driver for the
Linux kernel supporting the INA260. In theory, the Bea-
gleBone Black I2C speed is fast enough to support the
INA260 maximum sampling rate when reading power
samples from a single power sensor [18]. But, no related
work measures experimentally the reading performance
of an observer node from several power sensors.

III. EXPERIMENTAL SETUP

This section details the SBC based power monitoring
hardware used in the work. The software approach used
to interact with this hardware is also presented.

A. Hardware description

This work proposes to use a SBC-based power mon-
itoring node. It consists of a BeagleBone Black board
that act as the observer node. It is equipped with up to
four INA260 chips.

The INA260 is a power monitoring sensor with a
precision integrated shunt. It allows to monitor current,
voltage and power of a given load from 0V to 36V and
up to 15A. The INA260 provides I2C and SMBusTM

compatible interfaces. It is compatible with Fast mode
(1 kHz to 400 kHz) and High-Speed mode (1 kHz to
2.94MHz). This work focuses on the I2C interface as it
provides greater communication performance compared
to SMBusTM. The INA260 is entirely controlled via the
I2C interface. Its eight internal registers are exposed, and
read/write operations can be performed to configure the
chip and collect samples (current, voltage or power).

To configure and collect samples from the INA260,
our setup uses a BeagleBone Black SBC. This board
is equipped with an I2C bus compatible with Standard
mode (up to 100 kHz) and Fast mode (up to 400 kHz).

For easing the connection between the INA260 chips and
the BeagleBone Black, a mikroBUS Cape extension is
used. This extension provides a standardized connection
to link Click boardTM based hardware with the Beagle-
Bone Black. Our setup used four VCP Monitor Click
that are equipped with INA260. This entire setup is
depicted on Figure 1. It shows the BeagleBone Black
(left), the mikroBUS Cape extension (middle) and one
VCP Monitor Click (right). Note that, only one VCP
Monitor Click is shown. Connections between the dif-
ferent components are represented with red labels. The
four VCP Monitor Click boards can be connected to
slots 1, 2, 3 and 4 of the mikroBUS Cape extension.
This extension is attached to the BeagleBone Black. All
the mentioned BeagleBone Black pins (GND, 3V3, SCL
and SDA) are shared across all mikroBUS Cape slots,
when four INA260 are connected to the same I2C bus
and powered with 3.3V DC. To prevent collisions, the
physical addresses of the INA260 on the I2C bus must
be adjusted. This is achieved, by rewiring the zero-ohms
resistors A1 and A0 (c.f Figure 1), according to the
INA260 and VCP Monitor Click datasheets.

To fully utilize this hardware setup in an efficient
manner, a software stack must be carefully designed.
The next section details this software stack.

B. Exposing INA260 registers to the user space
Reading INA260 samples from the BeagleBone Black

via I2C bus must be done efficiently, as it happens with
a delay. This delay, noted d, must be minimized since it
impacts the precision of the monitoring setup. If d is too
high, samples generated by the INA260 are going to be
missing (not read by the BeagleBone Black). To mini-
mize d, the software stack must be designed carefully,
and must aim at reducing any potential overhead.

The current Linux kernel release (v6.5.2) does not
provide support for the INA260. Only specific Texas
Instruments power monitoring chips, without integrated
shunts, are supported by the kernel via the ina2xx driver.
To mitigate the delay d that could be introduced by
I2C libraries, and to maximize the control over the
entire monitoring pipeline from the INA260 up to the
end user, a Linux driver is designed specifically for
the INA260 [25]. This driver is compatible with the
BeagleBone Black kernel v4.19.94-ti-r42.

This driver exposes all the registers and fields of the
INA260 through the sysfs Virtual File System. Read and
write operations on the INA260 registers are performed
through the exposed files from the registers directory of
the given INA260. Similarly, read and write operations
can be performed on specific register fields. The driver
provides access to the last samples (current, voltage
and power) generated by the INA260. To collect these
samples, the user can perform continuous read from the
current (in ampere), voltage (in volts) or power (in watts)
files, located at the root of the given INA260.
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Fig. 1: Power monitoring setup with 1 BeagleBone Black (left), 1 mikroBUS Cape (middle), 1 VCP Monitor Click
(right). All mentioned pins (GND, 3V3, SCL and SDA) are shared across all mikroBUS Cape slots (1, 2, 3 and
4).

With this approach, INA260 chips can be configured,
and measurements can be collected using regular system
calls. No additional libraries are required, and the over-
head (delay d) is reduced and under control. A second
version of the driver is also provided in [25]. This other
version uses the Linux Hardware Monitoring subsys-
tem to provide standardize access to sensors devices.
However, this paper uses the previously presented driver,
providing better support for INA260 (e.g: fields accesses
etc.). For more recent Linux kernel releases, an up to
date version of these two drivers are provided in [25].

IV. EXPERIMENTAL PROTOCOL

A. Sample read performance evaluation

To quantify the sample read performance achievable
with the experimental setup, a first set of experiments
are designed. A program, written in C, continuously
read power samples from INA260 using the previously
presented driver. It stops when a certain amount of
samples are collected. In this work, when a sample is
collected, it is always associated with a timestamp. Two
storing approaches are investigated.

in-memory: keeps the samples in the Random Access
Memory (RAM) for the whole experiment duration.
It ensures low overhead during the experiment since
no additional processing are required. At the end of
the experiment, samples are all stored in a file on the
BeagleBone Black SD card. This approach has one
disadvantage: a mechanism must ensure that enough
RAM is available for the whole experiment duration.

in-file: stores each sample read in a file. It is more
robust in case of unforeseen events such as power short-
age. However, it generates additional I/O that can impact
the monitoring performance and increase the delay d
during the experiment. Since samples are immediately
stored after reading, the RAM is not the limiting factor.
Instead, the amount of non-volatile storage on the SD

Publish
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Black

Publisher 0x40

Publisher 0x41

Publisher 0x42

Publisher 0x43

Storage

Computer

Subscriber

Publish

Publish

Publish

Fig. 2: ZeroMQ based Pub/Sub experiments using one
BeagleBone Black and one external node, for storage.

card, becomes the bottleneck. To perform continuous
sample read, other mechanisms based must be studied.

B. Pub/Sub-based samples offloading evaluation

Continuously monitoring the power consumption of
devices is important. However, reading power samples
continuously at high frequency generates a lot of data.
It can quickly saturate the local storage. One solution to
this problem is to offload the samples (during the exper-
iment) on another node with higher storage capabilities.
This offloading process takes additional computational
and I/O resources.

To evaluate the feasibility of this approach with our
setup, we designed a Pub/Sub based application written
in C, using ZeroMQ, detailed Figure 2. It shows four
publisher processes, located on the BeagleBone Black.
These processes collect continuously power samples
from the INA260. They send samples periodically to a
subscriber process, located on a storage computer. These
steps are repeated until the end of the experiment.

C. Experimental parameters

To run experiments, the four INA260 must be con-
figured. The most important parameters of the INA260
are located in the configuration register (pointer address
0xFF). This register provides the following fields:

• AVG: Averaging mode (number of measurements
used to generate a sample)
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• VBUSCT: Bus voltage conversion time (time spent
generating a bus voltage sample)

• ISHCT: Shunt current conversion time (time spent
generating a current sample)

These parameters impact the INA260 samples accuracy.
They also influence the frequency at which samples are
generated by the INA260. The INA260 datasheet does
not explicitly define how these parameters contribute to
its sampling frequency. Thanks to the theoretical values
provided by the datasheet, we deduced that INA260
sampling frequency f is computed as:

f =
1

NAVG × (TVBUSCT + TISHCT)
(1)

Where NAVG corresponds to the number of collected
measurements that are averaged, TVBUSCT the bus volt-
age conversion time and TISHCT the shunt current conver-
sion time. The value of these three parameters depends
on the experimental context. For accurate measurements,
the value of these three parameters must be maximized.
This work uses the default INA260 configuration with
NAVG = 1, TVBUSCT = 1.1ms, TISHCT = 1.1ms. Thus,
we define fdefault = 454.54Hz. The configuration used in
our experiments for four INA260 are detailed in Table I.
According to the INA260 datasheet and Equation 1, the
highest achievable sampling frequency with the INA260
is fmax = 3571.429Hz (with NAVG = 1, TVBUSCT =
TISHCT = 140 µs).

For maximum throughput between the INA260 chips
and the BeagleBone Black, their respective I2C clock
frequencies must be adjusted to the highest common
supported frequency. As detailed in Section III, it cor-
responds to the I2C Fast mode frequency of 400 kHz.
This parameter is specified in Table I. By default, the
BeagleBone Black is programmed to use the Standard
mode. To allow the Linux kernel I2C subsystem to use
the Fast mode frequency, the BeagleBone Black Device
Tree specification must be updated and recompiled.

Regarding the monitored hardware, four different
loads are used (see Table I). Aside from the resistor,
we choose to monitor hardware that fit in IoT and edge
applications and withing the INA260 load limitations.

The parameters used for sample read performance
evaluation are detailed in Table I. These experiments
evaluate the reading performance using up to four
INA260 concurrently, and store the samples either in-
memory (RAM) or in a file. The experiment runs until
each INA260 collects 500 000 samples.

Parameters used for the Pub/Sub experiment are de-
tailed in Table I. Up to four INA260 are used con-
currently for a duration of 300 s. Every minute, each
publisher offloads its collected samples to the subscriber.
One sample queue is used per publisher, thus, no mea-
surements can be collected during the offloading process.

D. Metrics

To measure the performance of our setup, three met-
rics are introduced. The sample read frequency, fr in
Hz, is the number of samples read that happens each
second. This metric is computed from the file containing
all collected samples, generated by each experiment. The
average delay d in seconds measures the average delay
over one second between consecutive reads. It permits to
measure the stability of samples readings, highlighting
potential missed values.

The percentage of samples that are off delay for
a given experiment, according to a threshold is noted
pod(x). Taking more than x seconds categorises a sample
as off delay. This metric is computed as follows: Given
the samples collected from an experiment, lets define
the delay of a sample i as di = ti − ti−1 with ti
the time at which the sample i is read. Lets define the
set of delays D = {di} and D′ = {di|di > x}. Then,
pod(x) =

card(D′)
card(D) × 100.

Using an INA260 with a sampling frequency f , the
maximum tolerable delay between sample reads is x =
1
f . The lower pod(

1
f ) is, the lower the amount of missing

samples is going to be.

V. EVALUATION RESULTS

This section analyses the results of our experimental
protocol. All these experiments are reproducible, and
available online [26].

A. Sample read frequency fr

Figure 3 presents the results of the sample read perfor-
mance evaluation. Figure 3a and Figure 3b correspond
to in-file and in-memory experiments, respectively.

Figure 3a depicts the evolution of the sample read
frequency fr through time when 1 to 4 INA260 are
used concurrently. Each color corresponds to fr for
a given INA260. Dash lines indicates the end of the
experiment for a given INA260. The horizontal black
line encompasses the median sample read frequency fr
for all INA260 of a given experiment.

in-memory experiments results show that, with one
INA260, our setup is able to reach a median fr of
6714Hz. For the whole duration of the experiment with
one INA260, we have fr > fmax > fdefault. Aside from
the startup, and end phase, small drops in fr can be
observed during the experiment. However, these drops
never exceed 600Hz. Consequently, with one INA260,
we are not loosing any power measurements. However,
when increasing the number of concurrent INA260,
the median fr is significantly reduced. However, this
decrease is not linear. It can be due to a combination
of mechanisms involved in software and hardware to
handles concurrent accesses to the I2C bus. In addition,
the sample read frequency fr is also unstable. Still,
in all cases fr > fdefault. However, with two or more
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TABLE I: Experimental parameters.

Hardware/Experiment Parameter Value

INA260
Configuration register 0x6127 (default value)
Sampling frequency 454.54Hz (fdefault)
I2C physical addresses {0x40, 0x41, 0x42, 0x43}

BeagleBone Black I2C Clock frequency 400 kHz, Fast mode

Monitored load

Address 0x40 1 kΩ resistor, 5.0V DC
Address 0x41 Raspberry Pi 3 model B (2016), 5.1V DC
Address 0x42 Raspberry Pi 3 model B+ (2017), 5.1V DC
Address 0x43 Raspberry Pi 4 model B (2018), 5.1V DC

Sample read experiments
Concurrent INA260 used 1, 2, 3 and 4
Sample storage modes in-memory or in-file
Collected samples per run 500 000

Pub/Sub experiments

#INA260 used concurrently 1, 2, 3 and 4
Experiment duration 300 s
Samples publishing interval 60 s
Sample queues per publisher 1
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Fig. 3: Sample read performance evaluation. Time series of the sample read frequency fr.

INA260, fr < fmax. In this case, our setup will lead
to a significant amount of missed samples, when the
INA260 sampling frequency uses fmax.

Figure 3b shows the results for the in-memory exper-
iments. When using with one INA260, the median fr
increases to 7433Hz (+719). In addition, compared to
the in-file results, fr is more stable through time. Since
no additional I/O and computations are required to keep
samples in memory, the sample read process has stable
performance. Still, with two or more INA260 in use,
fr < fmax. Storing the samples on the SD card makes
fr = 0, at the end of the experiment. The more INA260
are used, the longer this writing period lasts.

To summarize, both approaches (in-file or in-memory)
have their pros and cons. Keeping samples in memory
provides more stable and slightly higher fr, but a writing

period is required to save the measurements. In addition,
enough RAM is needed on the BeagleBone Black for
the whole experiment duration. Writing samples to files
provides better reliability, but generates more I/O that
lead to unstable and slightly lower fr.

B. Sample read delay

Figure 4 presents the average delay d for the sample
read performance evaluation of the in-file and in-memory
experiments.

Figure 4a presents, for the in-file scenario, the average
delay d between consecutive sample reads for each
second. These results are shown when 1 to 4 INA260
are used concurrently. Each color corresponds to d for
a given INA260. The dash lines indicates the end of the
experiment for a given INA260. The horizontal black
line encompasses the median d for all INA260 of a
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Fig. 4: Sample read performance evaluation. Time series of average delay d.

given experiment. Overall, the average delay between
sample read d is stable using one INA260. Increasing
the number of concurrent INA260 in use, introduces
more variability in the average delay d. But overall,
the average delay d reflects the associated fr. As an
example, with one INA260, fr ≈ 1

d
≈ 6714.338Hz.

Table II shows the percentage of missing samples
(pod(x) metric) for each experiments and for both
INA260 sampling frequency setup fdefault and fmax. For
the in-file experiments, using INA260 configured with
fdefault, the percentage of off delay samples is lower than
0.08%. Up to four INA260 can be used concurrently.
However, if the INA260 are configured to use fmax
sampling frequency, only one INA260 can be used, due
to more than 95% samples being off delay.

Figure 4b shows the average delay d metric for the
in-memory experiments. Keeping samples in memory
provides more stability on the average delay d, since less
I/O and computations are required. Results from Table II
highlight this stability. Using INA260 configured with
the fdefault, pod is lower than 0.03% as d is getting
closer to its real value. Using INA260 configured with
fmax increases pod, compared to in-file. A slightly higher
amount of short delays, when samples are written to file,
are measured. The majority of these delays are located in
the first 100 s and seems related the management of I/O
operations by the operating system. Overall, in-memory
provides lower, and more stable delay d.

To summarize, this power monitoring setup allows for
high sample read frequency (more than 6000Hz at best).
However, the pod metric reveals that, even with high fr
values, and an average delay d that is stable and reflect
fr, a significant amount of samples can be off delay.
This leads to a high amount of missing samples. Hence,

TABLE II: pod(x), for each experiment

in-file in-memory

#INA260 pod(
1

fdefault
) pod(

1
fmax

) pod(
1

fdefault
) pod(

1
fmax

)

1 0.01% 1.31% 0.00% 0.07%
2 0.01% 95.62% 0.00% 99.04%
3 0.04% 99.06% 0.02% 99.60%
4 0.07% 99.39% 0.03% 99.85%

up to four INA260 configured with a sampling frequency
of fdefault can be used with our setup. However, only a
single one configured with fmax can be used at a time.

C. Pub/Sub

Figure 5 details fr for the performance evaluation of
the Pub/Sub-based offloading approach, generated using
the power samples and associated timestamp, collected
on the subscriber node. When using one INA260, the
median fr is comparable to in-memory (Figure 4b).
With more than one INA260, the median fr is even
lower compared to in-file (Figure 4a). This is due to the
additional resources used by the publisher processes. A
significant drop in fr is visible every 60 s, corresponding
to the sample publishing interval (Table I).

To mitigate the impact of publishing on fr, two
approaches can be used. Increasing the samples publish-
ing interval or using more than one sample queue per
publisher. However, additional experiments need to be
made to evaluate potential drawbacks. The impact of the
Pub/Sub publisher processes on d and pod must also be
investigated. These results show that our setup is able to
offload samples during experiments, while maintaining
a high sample read frequency median fr on the non-
publishing phases.
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Fig. 5: Pub/Sub-based offloading performance evalua-
tion. Time series of the sample read frequency fr.

VI. CONCLUSION

A design and evaluation of an SBC-based power
monitoring system that is accessible and entirely re-
producible has been proposed. This setup uses a Bea-
gleBone Black combined with a mikroBUS Cape and
four VCP Monitor Click that communicates with the I2C
interface. This choices for hardware setup are precisely
detailed and the proposed drivers are provided.

An evaluation framework to study the performance of
the sample read frequency of a power monitoring device
from a computer system is proposed. The evaluation
results of our setup shows that a single INA260 can be
used with its maximum sampling frequency. However,
if more than one INA260 is used on the same I2C bus,
it leads to significant drop in the sample read frequency.
The sampling frequency of the INA260 must be adjusted
according to the amount of INA260 used concurrently.

This work provides early results on the impact of
samples offloading during the measurement period. The
results show a significant drop in the sample read
frequency during the publishing phases. Strategies that
could mitigate this phenomenon are proposed. We plan
to perform in depth studies of the suggested strategies to
leverage maximum sample read performance. An eval-
uation of the integration of such monitoring device into
an IoT and edge computing test-bed is also considered.
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