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Abstract—AC microgrids play a crucial role in integrating
distributed energy resources and facilitating localized power
management in contemporary power networks. Nevertheless,
conventional droop control methods in these microgrids have
constraints in guaranteeing precise power distribution, stability of
voltage/frequency, and flexibility in response to changing operat-
ing conditions. This study introduces an approach, with adaptive
droop control using Biomimetic Valence Learning (BVLAC).
Inspired by the emotional and rational decision-making processes
within the brain, BVLAC dynamically adjusts droop coefficients,
optimizing power sharing and transient response in microgrid op-
eration. Simulations were conducted using SIMULINK/MATLAB
and the results showcase the superiority of the proposed BVLAC
approach in achieving precise power-sharing, maintaining voltage
and frequency stability, and improving the control performance
of microgrids, under varying load conditions. This work advances
the field of microgrid control by offering a robust, AI-inspired
solution for the challenges faced by conventional droop control
techniques.

Index Terms—Artificial intelligent control, Biomimetic Valence
Learning, Adaptive droop control

I. INTRODUCTION

THe growing incorporation of Distributed Energy Re-
sources (DERs), such as solar and wind power, offers

promising prospects for contemporary power networks. These
DERs have the potential to strengthen the ability to recover
quickly from disruptions, increase the effectiveness, and pro-
mote energy markets that are focused on specific local areas
[1]–[3]. AC microgrids, also known as ACMGs, provide a
flexible framework for effectively managing these resources.
However, a primary obstacle persists: how to guarantee con-
sistent and dependable power distribution in the case of the
inherent unpredictability of renewable energy production and
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also changing electricity use [4]. To fully use the advantages of
ACMGs, it is crucial to prioritize the creation and execution of
efficient control methods [5] and advanced control approaches
are necessary to enable effective and robust power manage-
ment inside autonomous ACMGs. Traditional droop control
has become a widely adopted method to achieve decentralized
control in ACMGs. This approach mimics the behavior of
synchronous generators, where active power-frequency and
reactive power-voltage relationships govern the power-sharing
among DERs [6]–[8]. However, conventional droop control
has several limitations:

i Inaccurate power-sharing: Load changes and variations in
DER output can lead to deviations from the proportional
power-sharing and potentially overloading certain DERs
[9].

ii Susceptibility to instability: Disturbances, rapid load vari-
ations, and line impedance mismatches can destabilize
an ACMG operating under conventional droop control,
leading to voltage and frequency fluctuations that exceed
acceptable limits [10].

iii Sensitivity to parameter tuning: Fixed droop coefficients
may not be optimal across diverse operating conditions.
Manual tuning is complex and may not guarantee the best
performance in dynamic scenarios [11].

In order to address these constraints, much study have
been dedicated to the development of adaptive droop control
strategies [12]–[14]. These techniques dynamically modify
the droop coefficients in real time, optimizing the ACMG’s
response to various operating conditions. Ref. [12] streamlined
AC-DC coupled droop control for VSC-based DC microgrids,
removing the need for additional outer loops and boosting
the bus voltage dynamics. Addressing stability concerns, [13]
introduced a robust H∞ multivariable stabilizer approach for



autonomous AC microgrids, improving the transient power
sharing performance. Furthermore, in [14] a particle swarm
optimization (PSO) method is used to fine-tune the droop con-
trol parameters, and the voltage deviation and power allocation
accuracy are addressed.

Existing adaptive schemes improve the performance, yet
often rely on system models, complex calculations, or manual
tuning, hindering a widespread practical implementation [15]–
[17]. Artificial intelligence (AI) has revolutionized various en-
gineering domains and holds considerable promise in the field
of power system control [18], [19]. AI techniques offer self-
learning, data-driven approaches that can adapt to the complex-
ities of ACMGs without requiring explicit system models. This
enables enhanced power-sharing accuracy, improved transient
response, and the potential for self-optimizing behavior [20].
Biomimetic Valence Learning (BVLAC) emerges as a novel
AI-inspired approach, drawing insights from the biological
learning mechanisms to steer optimization processes. BVLAC
incorporates elements analogous to the brain’s emotional
regulation (amygdala), decision-making (prefrontal cortex),
and information processing (sensory areas) [21]. This unique
approach is here, presented for the first time to overcome the
limitations of existing adaptive droop mechanisms, enabling a
new generation of intelligent, robust, and self-tuning ACMG
controllers. This paper presents a BVLAC as a new AI-
based approach that is inspired by how living things learn.
Its purpose is to assist in the development of self-tuning
droop control. An intelligent adaptive droop control strategy
is presented based on the principles of Biomimetic Valence
Learning.

II. AC MICROGRID MODELING
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Fig. 1: Single-line diagram of the ACMG with two VSC based
DG units and different loads, operating in islanded mode.

TABLE I: Parameters of ACMG

Parameter Value Parameter Value
rf , Lf , Cf 0.1 Ω, 4.3 mH, 15 µF TS 20 µSec

SL1, SL2, SL3 0.8, 1.5, 1.28 kVA Vref 400 V
rl1, rl2, rl3 2.8, 2, 1.1 mΩ fref 50 Hz
Ll1, Ll2, Ll3 0.44, 0.32, 0.17 mH

The layout depicted in Figure 1 portrays the configuration of
the ACMG, featuring two Distributed Generation (DG) units

operating as Voltage Source Converters (VSCs). These units
have the responsibility of supplying power to both adjacent
and remote loads. The ACMG functions independently in
island mode. The decentralized control system, depicted in
Figure 2, is installed in each DG unit to oversee the microgrid
regulation. An LC filter with three phases is installed to
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Fig. 2: Block diagram of the proposed control system for
the ACMG, including droop control (outer loop) and volt-
age/current control (inner loops).

eliminate undesirable harmonics from the output voltage and
current, while being linked to a load. The filter’s dynamic
model, as depicted in the α− β frame, is as follows:

Lf
dif

dt
= vi − vc− if · rf

Cf
dvc

dt
= if − io (1)

The filter comprises of two primary elements: the inductor
(Lf ) and the capacitor (Cf ). The parameters of utmost im-
portance are the input voltage (vi) and the output current (io).
The input voltage vi is linked to both the dc-link voltage Vdc
and the switching state vector.

In order to get the ability to regulate load voltages in the
presence of disturbances, we convert the dynamic model into
the stationary α−β frame by using the Clarke transformation
T. The system of equations can be represented as:

Ẋ = AX+BU+ED, Y = CX (2)

The equation employs matrices to symbolize various compo-
nents of the system: X denotes state variables, U represents
inputs, D signifies disturbances and Y stands for outputs.

The output voltage in the α− β frame is ultimately repre-
sented in the Laplace domain.

Vcαβ
(s) = M(2×2)(s)Viαβ

(s)−N(2×2)(s)Ioαβ
(s) (3)

The matrices M(2×2)(s) and N(2×2)(s) represent the decou-
pled dynamics of the system.



A. Voltage Control

The control system places the primary control at the fore-
front, structured to integrate droop control as the outer loop
and voltage control as the inner loop. Its function is to control
voltage and frequency at a local level during island mode
operation. The primary control establishes the foundation for
crucial control loops, such as the inner current and voltage
loops, which are known as zero-level control. Here, the current
control utilizes a PI controller with parameters Kcp and Kci,
which are adjusted to ensure internal stability. Meanwhile,
the Proportional Resonant (PR) controller is responsible for
regulating voltage, ensuring accurate tracking of the sinusoidal
current reference signal in steady-state conditions.

When adjusting the parameters of (PR) and (PI) controllers,
it is crucial to carefully evaluate the pulse width modulation
(PWM) and calculation delay. Moreover, it is important to
guarantee that the bandwidth of inner loops surpasses that
of outer loops to avoid negative interactions. The voltage
control system uses state feedback of if to improve the
dynamic performance of the inner control loop and includes
a feed-forward io to decrease dependence on the output load.
Consequently, the first loop, which regulates the voltage of
the capacitor, supplies reference signals to the current control
loop. Nevertheless, conventional control systems have diffi-
culties in rapidly adjusting to suddenly dynamic changes. To
address problems such as steady-state error occurring at the
fundamental frequency and successfully eliminate higher-order
harmonics, the voltage control loop includes a proportional
resonance control loop that comprises resonant filters. Then
the transfer function of the PR controller can be represented
as:

Gv(s) = KP +Σ∞
h=2n+1

Khs

s2 + 2hωcs+ ω2
h

n = 0, 1, 2, 3, ...∞ (4)

Here, KP and Kh denote the proportional and integral
harmonic gains, respectively.

B. Droop Control

Conceptually, the VSC can be seen as voltage source with
voltage amplitude (Vi) and power angle (δi). Considering the
terminal bus voltage of Vg∠0 and a connection line impedance
of z∠θ, the exchange of apparent power can be expressed as
follows:

S = VgI
∗ =

VgVi∠θ − δi
z

−
V 2

g ∠θ

z
(5)

then, the active and reactive power can be calculated as
follows: {

P =
VgVi

z cos(θ − δ)− V 2
g

z cos(θ)

Q =
VgVi

z sin(θ − δ)− V 2
g

z sin(θ).
(6)

The transfer of active and reactive power in the VSC system is
influenced by both the voltage magnitudes and the phase angle
difference (δ) between the VSC and the AC bus. To simplify

analysis, the concept of virtual impedance is employed. This
approach ensures that the VSC perceives a well-defined output
impedance, either purely inductive or purely resistive. Conse-
quently, for inductive virtual impedance, the phase angle is
typically assumed to be θ = 0◦, while for resistive virtual
impedance, θ = 90◦ is used. Resistive virtual impedance
is generally preferred due to its inherent characteristic of
being independent of frequency variations and non-linear load
effects. Furthermore, when the phase angle difference between
the VSC voltage and the AC bus voltage is minimal, the cosine
of δ (cosδ) can be approximated to 1, and the sine of δ (sinδ)
can be approximated to δ itself. Under these assumptions, the
droop control characteristic can be expressed as:{

ω = ω∗ −DQQ

V = V ∗ −DPP
(7)

where ω∗ and V ∗ represent the reference frequency and am-
plitude for the voltage. DQ and DP are the droop coefficients.

The value of DQ and DP coefficients depend on the max-
imum allowable deviation of voltage and frequency. Usually,
for a microgrid with N DGs and N resistive output impedances.
these coefficients can be determined as a proportional expres-
sion with the rated power of each DG.{
Dp1P1 = Dp2P2 = · · · = DpiPi = · · ·DpN

PN = ∆Vmax

DQ1Q1 = DQ2Q2 = · · · = DQiQi = · · ·DQN
QN = ∆ωmax

(8)
Pi and Qi, i = 1, 2, ...N represent the nominal active and
reactive power output of the ith DG, respectively. Similarly,
∆ωmax and ∆Vmax denote the maximum permissible deviations
of the frequency and voltage, respectively.

The conventional techniques employed for adjusting droop
coefficients present practical challenges, frequently requiring
meticulous manual calibration endeavors. Nevertheless, AI
methodologies emerge as promising alternatives for automat-
ing this intricate process. Furthermore, the integration of
Biomimetic Valence learning (BVL) into these methodolo-
gies introduces a novel approach by assimilating emotional
responses to steer the optimization process. This innovative
approach is elaborated upon in the subsequent subsection.

III. BIOMIMETIC VALENCE LEARNING FOR ADAPTIVE
CONTROL (BVLAC)

BVLAC is a groundbreaking control framework. Unlike the
traditional systems, it does not just work – it actively learns
and adapts as the system itself changes. This adaptability
is critical, and putting BVLAC at the forefront of research
in various engineering fields. flexibility makes it to handle
even the most complex and unpredictable scenarios. And its
design is inspired the brain’s complex processing mechanisms:
BVLAC’s design mimics of brain’s elements: the amygdala
(for affect regulation), the prefrontal cortex (for higher-order
decision-making), sensory areas (for processing information),
and the thalamus (for integrating that information). Oper-
ational Framework BVLAC’s control process centers on
the dynamic interaction between sensory data (Xi) and an
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Fig. 3: Schematic representation of BVLAC and droop control
interaction for adaptive Dp and Dq .

affective signal (Em). Sensory information is first prepro-
cessed and then transmitted to the system’s equivalents of the
amygdala and prefrontal cortex. The final control output, u(t),
is calculated as the difference between the outputs of Networks
A and O:

u(t) = A(t)−O(t) (9)

Network A: Excitatory Pathway Network A mimics a neural
excitation pathway. It processes the sensory input (Xi) along
with a weight parameter (Wa(t)) that continuously adapts over
time:

A(t) = Xi(t) ∗Wa(t) (10)

Wa(t) is remarkably adaptable. Its learning mechanism is
quite complex, driven by a weight adjustment function we
call δwa(τ). This function, along with the initial value Wa(0),
determines how quickly the weight can change over time.

Wa(t) =

∫ t

0

δwa(τ)dτ +Wa(0) (11)

δwa(t) = α ∗Xi(t) ∗ [max(0, Em(t)−A(t)−Aref(t))]
(12)

Aref(t) = max[Xi] ∗Wref(t) (13)

Network O: Inhibitory Pathway Network O, serving a
complementary inhibitory role, takes in sensory input (Xi),
the affective signal (Em), and the previous control output
(u(t− 1)). Its output is calculated as:

O(t) = Xi(t) ∗Wo(t) (14)

Similar to Network A, the weight parameter Wo(t) adapts over
time. Its learning rule incorporates a factor (β) to adjust the
strength of the inhibitory effect:

Wo(t) =

∫ t

0

δwo(τ)dτ +Wo(0) (15)

δwo(t) = β ∗Xi(t) ∗ [A(t)−O(t)− Em(t)] (16)

Integrated Control Dynamics The complete formulation for
the BVLAC control output (u(t)), including initial conditions

(Wa(0) = Wo(0) = Wref(0) = 0), demonstrates the continu-
ous adaptation of Networks A and O. This integrated control
scheme is what enables the system to respond robustly to ever-
changing system dynamics.

Algorithm 1 Adaptive Droop Coefficients Tuning Algorithm
with BVLAC (see Fig. 3)

1: Input: Vm, fm
2: Given: V *, f *, Kv , Kf , DP , DQ, α, β, γ
3: Output: DPnew , DQnew

4: ∆V = V * − Vm
5: ∆f = f * − fm
6: if |∆V | ≤ ev and |∆f | ≤ ef then
7: return Dp, Dq
8: end if
9: Em = [Kv,Kf ]

T · [(∆V ), (∆f)]
10: A = [Vm, fm]

T · [Wva,Wfa]
11: Aref = [max(Vm),max(fm)] · 0.5
12: Solve (12) ⇒ δWva, δWfa

13: Wa ←Wa + δWa

14: Solve (14) ⇒ δOva, δOfa

15: Solve (16) ⇒ δWvo, δWfo

16: Wo ←Wo + δWo

17: [DPnew , DQnew ]
T = [DP , DQ]

T + γ · [Vm, fm]
T · Wa −

[Vm, fm]
T ·Wo)

18: return DPnew , DQnew

where: Vm and fm are the measured voltage and frequency
from the microgrid, V * and f * are the desired voltage and
frequency setpoints, DP and DQ are the current droop coef-
ficients for active power and reactive power, ev and ef are
the acceptable voltage and frequency deviation tolerances, α
controls how quickly the learning rate adapts based on error
size, β is the smoothing factor applied to updates, promoting
smoother convergence, γ is a convergence smoothing factor
applied to updates of the droop coefficients. It promotes
smoother and more gradual adjustments. DPnew and DQnew are
the updated droop coefficients for active power and reactive
power. Kv and Kf are constants to adjust how strongly the
voltage and frequency errors impact the affective signal. The
BVLAC and droop control interaction for adaptive Dp and Dq

is shown in Fig. 3

IV. SIMULATION AND RESULTS

To thoroughly assess the proposed BVLAC method, simu-
lations are carried out through MATLAB SimPowerSystems.
The purpose of these simulations is to assess the effectiveness
of the proposed control in an ACMG consisting of two VSC-
DGs, as shown in Figure 1. The system was set up with a
standard voltage of 400V and a frequency of 50 Hz. The
system parameters of the microgrid are shown in Table I.

A. Performance Assessment: Dynamic Load Changes

To assess the controller’s ability to adapt to real-time
changes, we conducted a simulation in which the distributed
generators (DGs) encountered a sequence of load variations.
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Fig. 4: Active (a) and Reactive (b) power sharing with pro-
posed controller under different load variations.

(a)
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Fig. 5: Active (a) and Reactive (b) power sharing with con-
ventional controller under different load variations.

conventional

 

Fig. 6: Error of output voltage amplitude of DG#1 with
conventional and BVLAC control.

Load #2 had a significant surge of 35%, followed by a subse-
quent lesser rise by 12%, and ultimately a severe decline by
35%. Fig. 4 and 5 depict the allocation of active and reactive
power between DG #1 and #2 during the whole duration
for both the proposed and conventional controls. The pro-
posed controller effectively manages power via these changes,
demonstrating its impressive ability to navigate changing sys-
tem states. The active power sharing error was -0.8% for DG
#1 and 0.3% for DG #2. The reactive power sharing error
exhibited a modest increase in absolute by 1.2% for DG #1
and 2.2% for DG #2, while they remained within an acceptable
range. The the conventional control shows the following errors
-10% for DG #1 and 7% for DG #2 for the active power
and -5% for DG #1 and -10% for DG #2 or the reactive
power, under general, the controller effectively demonstrates
its capacity to maintain constant voltage and frequency, and
even mitigate harmonics under challenging conditions. This
indicates a resilient architecture. Fig. 6 compares the error in
output voltage amplitude of DG#1 under conventional droop
control and the proposed BVLAC method. The conventional
droop control exhibits a 5% error, while the BVLAC method
reduces this error to approximately 2.5%. Similarly, Fig.
7 demonstrates the frequency regulation improvement with
BVLAC. The conventional droop control results in a 0.3 Hz
(0.6%) frequency error, whereas the BVLAC method signif-
icantly reduces this error to be less than 0.05 Hz (< 0.1%),
due to the online tuning of the droop controller parameters
according to the operation conditions, while in conventional
droop controller the parameters designed according to the
allowable limitations of droop voltage/ frequency.

V. CONCLUSION

This study indicates that Biomimetic Valence Learning
(BVLAC) shows potential in addressing some of the draw-
backs using droop control in AC microgrids. While traditional
methods can struggle with power sharing, voltage/frequency
stability, and adapting to changing conditions, the BVLAC
approach offers a flexible and self-tuning way to tackle these
issues. Drawing inspiration from how the brain blends emotion
and logic BVLAC modifies the control parameters of the
microgrid. Simulations have shown that BVLAC enhances
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Fig. 7: Frequency variations of DG#1 with conventional and
BVLAC control

power-sharing accuracy, improves the voltage and frequency
regulation, and improves response times within the microgrid.
Notably, it is better than the conventional control when dealing
with varying load conditions. This research pushes forward
the realm of microgrid control by introducing an AI-inspired
approach. There is an opportunity to investigate how BVLAC
could function in microgrids that incorporate a mix of energy
sources and more intricate loads. It would also be intriguing
to implement BLAC, within hierarchical control of microgrid
system.
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