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Abstract 9 

As recurrent disease outbreaks impart economic adversity across the global shrimp farming 10 
sector in general, and in Asia in particular, clarifying determinants of outbreak susceptibility 11 
carries significance for sustainability in economic growth and social and environmental 12 
prospects. This study employs logistic regression to assess the probability of disease 13 
occurrence in intensive white leg shrimp (WLS) (Litopenaeus vannamei) aquaculture under 14 
the impact of explanatory factors grouped in (1) farmers’ perceptions of climatic events, (2) 15 
adaptation measures (3) farmer biodata, (4) farm site characteristics, (5) biosecurity measures, 16 
and (6) culture method. The analysis was performed using a survey of 267 Vietnamese small-17 
scale intensive shrimp farms in the Mekong region. Significant contributors to lowering the 18 
chance of shrimp disease occurrence include (1) regularly carrying out feed conversion ratio 19 
calculations, (2) increasing participation in training programs and extension services, (3) 20 
implementing adaptive measures related to changes in feeding schedules, and (4) increasing 21 
stocking density. The main risk factors increasing the chance of shrimp disease are the 22 
duration of the crop and more years in operation. This quantitative evidence contributes to 23 
identifying important focal points for policymakers and intensive shrimp farmers in 24 
monitoring and managing the shrimp industry under the potential impacts of climate change. 25 
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1. INTRODUCTION  36 

The global shrimp farming industry has emerged as a vital player in meeting the increasing 37 

demand for seafood, with an estimated trade value of USD 28 billion annually (FAO, 2020). This 38 

growth is notably outpacing that of other aquaculture species, with the intensification of shrimp 39 

farming playing a pivotal role since the 1980s. Technological breakthroughs, large expected 40 

profits, and a rise in domestic and international demand have driven this intensification (Leung et 41 

al., 2000). Small-scale intensive culture characterized by high stocking density involving less than 42 

0.5 hectares of farmland, has provided substantial production volumes (Nguyen, 2017). The 43 

participation of a large number of small-scale farmers in the shrimp value chain has led to the 44 

rapid expansion of intensive systems, contributing significantly to job creation in Asian rural 45 

regions (Phillips et al., 2016). Industrial production systems such as semi-intensive and intensive 46 

practices, introduced since the start of this millennium, have provided benefits in reducing 47 

horizontal transmission of shrimp disease and improving seed and biosecurity regimes. (Hoa et 48 

al., 2011; Hasan et al., 2020) 49 

In 2018, Vietnam, the world’s third largest producer of farmed shrimp, had a total shrimp 50 

production of 745,000 tons, with the Mekong Delta (MKD) accounting for 90% of this production 51 

(Nguyen et al., 2021).  The Vietnamese government, aligning with the 2020 Master Plan for 52 

shrimp aquaculture has approved a further 190,000 hectares for industrial shrimp farming 53 

(Nguyen, 2017), aiming to achieve an aquatic product export value of about 10 billion USD by 54 

2025. This ambitious goal and export target involves a planned transition towards more 55 

technologically advanced and intensified shrimp farm systems, which the government views as a 56 

strategy to increase output potential while strengthening adaptive capacity to increasing climate 57 

variability and extreme weather events that have become steadily more prevalent in recent 58 

decades (FAO, 2016). Nonetheless, the highest risk of loss in the shrimp industry appeared to be 59 

associated with more intensive farming practices (FAO, 2013). In addition, FAO (2020) pointed 60 
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out that disease is already the main problem for shrimp aquaculture, especially in Asia and Latin 61 

America. Adverse changes in water quality due to increased stocking densities and rates of 62 

feeding lead to a rising incidence of disease with the subsequent application of chemicals and 63 

antibiotics (Li et al., 2016).  64 

1.1 Disease issues in shrimp farming  65 

White-leg shrimp (WLS) aquaculture is susceptible to various viral diseases1. Notable 66 

examples include Red body disease caused by Taura syndrome virus, (TSV); White spot disease 67 

attributed to White spot syndrome virus (WSD); White feces syndrome associated with 68 

Hepatopancreatic parvovirus (HPV); and Yellow head disease caused by Yellow head virus 69 

(YHV) (Thitamadee et al., 2016; Chi et al., 2017; Worranut et al., 2018). WSD has accounted for 70 

the largest share of economic loss due to disease in Asia, exceeding $20 billion in 2016 (Shinn et 71 

al., 2018). Notably, WSD infection occurs via horizontal and vertical transmission, i.e., within or 72 

between generations (Walker & Mohan, 2009; Hoa et al., 2011). Horizontal transmission is 73 

impacted by numerous factors connected to the shrimp culture environment (Corsin et al., 2005). 74 

In addition to water quality and waste management, Hasan et al. (2020) underline the reduction 75 

in disease transmission facilitated by farm clusters. Vertical disease transmission is primarily 76 

connected to shrimp broodstock in early life stages (Corsin et al., 2005; Walker & Mohan, 2009). 77 

Another such common disease in WLS aquaculture is Acute Hepatopancreatic Necrosis Disease 78 

(AHPND), or what used to be called Early Mortality Syndrome (EMS) (Tang et al., 2020). This 79 

disease initially surfaced in Asia in 2009 (FAO, 2013). AHPND results in mass mortalities (more 80 

 
1 the observed effects of Taura syndrome virus (TSV) and infectious hypodermal and hematopoietic 
necrosis virus (IHHNV) on WLS have markedly diminished, primarily attributed to the introduction 
of resilient shrimp stocks and the adoption of effective biosecurity measures (Flegel, 2012). 
Decapod iridescent virus 1 (iDIV1) and IHHNV also impact Asian shrimp but were not observed or 
recorded at our research sites (Flegel, 2012). 
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than 70 %, and sometimes up to 100%) during the first 35 days post-stocking in newly prepared 81 

ponds (FAO, 2013).  82 

1.2 Motivation for this study 83 

The Vietnamese government’s 2020 Master plan for shrimp aquaculture involves a number 84 

of trade-offs that require consideration, as intensification growth is often paired with disease 85 

emergence, causing stress on aquatic animals, and resulting in unexpected complex interactions 86 

(host, pathogen, and environment) (Millard et al., 2020).  87 

Vietnam has experienced dramatic short-term declines in shrimp production due to natural 88 

disasters and disease in recent decades (Nguyen et al., 2021). Particularly noteworthy were the 89 

large disease outbreaks in 2010, which recurred in 2015. The impact of AHPND was profound, 90 

leading to a significant 50% reduction in shrimp production from 2010 to 2011, with estimated 91 

losses surpassing $60 million (FAO, 2013; Huong et al., 2016; NACA, 2012). The estimated 92 

losses due to WSD exceeded US$ 26 and US$ 11 million in 2010 and 2015, respectively (Shinn 93 

et al., 2018). By 2015, the impact of AHPND had expanded to 23 provinces, with estimated losses 94 

reaching $97.96 million. Although production recovered by 2017 due to disease control efforts, 95 

sporadic, localized outbreaks still affect shrimp farms in specific areas (Tang et al., 2019). Local 96 

authorities encourage planned intensification of shrimp aquaculture but face challenges due to the 97 

substantial unmanaged expansion of largely unregistered intensive shrimp farms. In addition, 98 

problems exist connected to tracing the origins of shrimp broodstock with disease due to 99 

thousands of unregistered traders serving small-scale shrimp farmers (Tran et al., 2013).  100 

Despite shrimp aquaculture serving as the primary income provider in the Mekong coastal areas, 101 

there has been a limited focus on Vietnamese shrimp studies that explore the critical factors 102 

influencing disease outbreaks related to farming practices and cultural techniques (Leung & Tran, 103 

2000; Duc et al., 2015; Khiem et al., 2020; Nguyen et al., 2021). Hoa et al. (2011) reported the 104 
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past spread of WSD infection in Vietnam through interviewing farmers about infected ponds 105 

across different farming systems. They found infection in enhanced extensive shrimp farms 106 

primarily resulted from the continual recurrence of WSD within the same pond across the cycle, 107 

possibly from remaining pathogens where disinfection was incomplete. In contrast, semi-108 

intensive shrimp farms reported more cases from nearby ponds, maybe as greater water links 109 

enabled transmission (Hoa et al., 2011). Identifying infection sources and transmission pathways 110 

is central to reducing disease risk, but the reliability of such identification using farmer surveys, 111 

as applied here and in most of the literature, is questionable, and rather requires effective tracking 112 

or reporting information seldom available in developing countries. The focus of much of the 113 

disease literature has therefore been on identifying critical factors of disease outbreaks, to provide 114 

information for farmers and managers concerning relevant disease-reducing behavior and policy. 115 

Li et al. (2016) highlighted a scarcity of information concerning aquaculture farmers’ knowledge 116 

and practices in disease management control measures, including their capacity to accurately 117 

diagnose shrimp disease.  Researchers have emphasized the need for practical guidance for shrimp 118 

farmers that consists of improvements in production conditions, such as facility upgrades and the 119 

implementation of biosecurity measures to reduce the occurrence of diseases (Emerenciano et al., 120 

2022; Le et al., 2022; Le & Armstrong, 2023; NACA, 2011; Subasinghe et al., 2023; Subasinghe 121 

et al., 2000).  122 

Leung et al. (2000) posed that the risk and protective factors affecting disease outbreaks vary 123 

across different production systems and farm-specific aspects. For instance, larger pond areas and 124 

farms that discharge waste into channels of water supply were associated with higher disease 125 

occurrence in shrimp-intensive farms. In contrast, extensive farms that extracted water from the 126 

sea through canals had lower disease occurrence. However, Corsin et al. (2001) argued that 127 

closeness to estuaries or the sea can result in widely fluctuating salinity levels, often leading to an 128 

increased risk of disease risk in farmed WLS. FAO (2013) points out that southern Vietnam’s co-129 
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location of semi-intensive and intensive farming systems increases the likelihood of AHPND 130 

mortalities in intensive systems. Therefore, farm site characteristics may work in both directions 131 

regarding the likelihood of disease. Lastly, Tendencia et al. (2011) found increased WSD risk 132 

when stocking density increased. Stocking density in intensive farms is significantly higher than 133 

in extensive farms, which has been identified as an explanatory factor for disease occurrence as 134 

Tendencia et al. (2011) discovered an increased risk of WSD when stocking density was elevated. 135 

Regarding chemical usage, responsible and safe use of drugs and chemicals is essential where 136 

treatments are required. Tendencia et al. (2011), perhaps somewhat surprisingly, found that the 137 

pre-stocking health analysis of fry was positively correlated to WSD infection in polyculture. In 138 

contrast, Leung et al. (2000) found that adopting good shrimp farming practices, such as pond 139 

drying and the practice of polyculture, decreased the likelihood of disease. Nguyen et al. (2021) 140 

argued that a combination of control measures is essential to prevent the spread of infectious 141 

diseases, with biosecurity measures playing a protective role in reducing disease occurrence. Le 142 

et al. (2022) indicated that in the context of disease management in MKD, most intensive farms 143 

take proactive measures to implement effective biosecurity. These measures adhere to recognized 144 

good aquaculture practices and are instrumental in mitigating disease risks. Farmers daily monitor 145 

disease-related parameters, such as water quality, shrimp health, and overall farm management 146 

activities.  147 

The impact of environmental conditions on the likelihood of disease outbreaks is widely 148 

uncontested, although data in this regard is limited. These considerations have driven our study, 149 

which aims to analyze and predict disease occurrence using farm-level data from shrimp farming. 150 

Predicting disease occurrence at the farm level is crucial for effective management and 151 

intervention in the intensive shrimp farming system. 152 

In this study, we collected primary data through a survey of 267 intensive white-leg shrimp farms 153 

conducted from Sep 2016 to August 2017 in two Vietnamese provinces, Bac Lieu and Ca Mau, 154 
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located in the Mekong region, which are significant hubs for WLS shrimp production in Vietnam 155 

(Le et al., 2022; Le & Armstrong, 2023). This study had received ethics approval from the 156 

Institutional Review Board (IRB) of Nha Trang University, Vietnam. The IRB approval ensured 157 

that the research design, methods, and procedures adhere to ethical guidelines and standards, 158 

safeguarding the rights, privacy, and well-being of all survey participants involved in this study. 159 

Furthermore, the requirements given by SIKT (then the Norwegian Centre for Research Data) 160 

for data collection and storage were followed. 161 

We employed recommended logistic regression techniques (Leung & Tran, 2000; Devi & Prasad, 162 

2006; Tendencia et al., 2011; Duc et al., 2015; Boonyawiwat et al., 2017; Hasan et al., 2020) and 163 

extended the set of explanatory variables by incorporating farmers' perceptions of extreme climate 164 

events, such as drought, saline water intrusion, prolonged heavy rain, and water cross pollution, 165 

and their adaptive measures, which impact the probability of disease occurrence. 166 

1.3 Objective of the study 167 

Using logistic regression, the paper contributes to updating and expanding the shrimp 168 

literature with key factors predicting the likelihood of shrimp disease status (disease/no disease). 169 

Furthermore, this study also seeks to provide policy input for shrimp industry management and 170 

disease control under the impacts of extreme climate events and environmental risks, supporting 171 

shrimp industry growth to achieve national export targets while maintaining sustainability under 172 

intensification targets.  173 

The specific objectives of this research include the following: 174 

(1) Identify major risk and protective factors influencing the chance of disease occurrence in 175 

farms, as provided by surveyed farmers. These factors include (i) farmers’ perceptions of 176 

climatic events, (ii) adaptation measures, (iii) farmer biodata, (iv) farm site characteristics, (v) 177 

biosecurity measures, and (vi) culture method.  178 
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(2) Provide disease control policy recommendations for Vietnamese policymakers and other 179 

developing country governments aiming to boost WLS intensification growth under the 180 

effects of extreme climate events.  181 

      2. MATERIAL AND METHODS       182 

      2.1 Study framework 183 

Previous findings linked to farm management, farm characteristics and practices, and other 184 

elements impacting the chance of shrimp disease occurrence were identified from the literature 185 

since 2000, as shown in Table A1 (see Appendix). In addition, farmers' perceptions of high-risk 186 

weather events and farmers' adaptive measures have yet to be addressed in previous studies of 187 

Vietnamese WLS shrimp farms.  188 

First, we organized focus group discussions (FGD) with 6-8 participants in each province, with 189 

the participation of aquaculture technicians, shrimp farm owners, and local officials in the 190 

provincial aquaculture extension services department. We opened the discussion by obtaining 191 

detailed information related to the following: 192 

1. The climate and environmental issues and their assessed severity. 193 

2. Adaptive measures to these climate risks in shrimp practices. 194 

3. Biosecurity applications. 195 

4. Information on farming site characteristics (land uses, water sources, culture periods, and 196 

production systems). 197 

5. Disease issues in shrimp farming in MKD.   198 

The FGDs contributed to the list of potential explanatory variables. 199 

Second, the structured questionnaire2 is a modified version of previous surveys (Leung & Tran, 200 

2000; Nagothu et al., 2012; Tendencia et al., 2011), combined with input from the FGDs. The list 201 

 
2 The structured questionnaire can be provided upon request from the first author. 
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of registered shrimp farmers was received from the provincial Agricultural Extension Center and 202 

the Department of Aquaculture. Ten pre-test surveys were performed in each province to check 203 

the understanding of the farmers regarding the structured questionnaire. The interview process 204 

took place at the farms or offices of the Department of Aquaculture and Shrimp Farmers’ 205 

Cooperatives. Third, we modified the final survey from the pre-test results by applying local terms 206 

and trained the interviewer team to collect data through face-to-face interviews. Our sample was 207 

a randomized selection of individual intensive farms from the list. In addition, a “snowball” 208 

sampling method was applied (Quyen et al., 2020). Once a randomly selected farmer refused to 209 

be interviewed, we asked them to recommend another person with a similar farm. We 210 

implemented 267 shrimp farmer interviews of approximately 30–45 minutes each.  211 

2.2 Variable selection and research hypotheses 212 

The presence of disease was the dependent variable in this study, which was binary and 213 

recorded as farmers who experienced disease occurrence in their previous crop. Table 1 provides 214 

an overview of the independent variables categorized into the six groups of factors. Most of the 215 

collected data were in the form of (yes/no), with exceptions in the case of factors related to the 216 

farmer’s biodata (experience, education, and farmer’s age), farm site characteristics (number of 217 

years farmers cultured shrimp, distance from farms to the nearest sea point, shrimp area), as well 218 

as culture method variables (months of stocking, stocking density).  Additional factors, including 219 

specific water parameters discussed in the literature (Corsin et al., 2005; Ruiz-Velazco et al., 220 

2010; Tendencia et al., 2010; Yu et al., 2006) may be relevant but fell outside the scope of this 221 

study. 222 

< INSERT TABLE 1 HERE > 223 

Table 1 presents the six groups of explanatory variables along with the expected signs based on 224 

relevant literature findings on disease occurrence prediction (see Appendix A).  We present our 225 
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expectations regarding the impact of adaptive measures adopted by shrimp farmers and their 226 

perceptions of extreme climate events, such as irregular weather and drought, during their farming 227 

crop. We aim to uncover valuable insights and policy implications for climate adaptation and 228 

disease prevention in the context of shrimp farmers cultivating WLS in the face of extreme climate 229 

conditions. 230 

2.3   Data description 231 

Table 2 presents the 47 potential predictors selected for this study, which are categorized into 232 

six groups as shown in the table. Farmers were asked to document the presence of shrimp diseases 233 

in their most recent farming crop, which extended from September 2016 to May 2017, and this 234 

accounted for 50.2% of the sample. Regarding climate events that impacted significantly shrimp 235 

crops, most farmers identified irregular weather (41.6%) and drought (38.2%) as the most 236 

problematic. In contrast, prolonged heavy rain, saline water intrusion, and water pollution had 237 

lower reported occurrences, all below 10%. When respondents were asked about adaptive 238 

measures that they take to adapt to extreme weather events, their responses predominantly centered 239 

around dealing with drought. Therefore, this study focused on the adaptive measures that farmers 240 

employ in response to drought. The most selected measures were changes in the schedule of 241 

feeding practices, water exchange, and other treatments (e.g., use of probiotic/chemical treatment, 242 

lime application to ponds). These measures were also recognized in the findings of a study by Le 243 

et al. (2022).  244 

The farmers' biodata offered insight into shrimp farm owners' backgrounds. On average, these 245 

farm owners had nine years of experience in shrimp farming. Their experience ranged from a 246 

minimum of one year for the youngest farmer to a maximum of thirty years for the oldest. The 247 

education level of shrimp farmers in the sample ranged from about eight years (primary level) to 248 

the highest of 22 years (post-graduate). The average farmer's age was 43, with the youngest being 249 

21 and the oldest 76 years old.  250 
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In the Mekong area, the tradition of shrimp aquaculture is typically handed down from father to 251 

son, from one generation to the next, serving as the primary source of the family's income. A 252 

shrimp farmer often assumes the role of the family head and employs family members as workers. 253 

Among our sample, only about 54% of farmers had participated in training programs related to 254 

farming knowledge, organized by local authorities and shrimp processing companies. In contrast, 255 

30% of farmers had benefited from extension services and were actively involved in farmer 256 

associations. Approximately 25% of the sample relied on bank credit for financial support, while 257 

most farmers invested their own capital in their shrimp business. 258 

The number of operating years of shrimp farming ranged from one to thirty years, with an average 259 

of eight years. Seventy percent of the farms were located within the provincial planning area. The 260 

primary water source was directly from the sea, accounting for 81% of farmers. Only about 31% 261 

of farmers apply fry analysis (fry quarantine certificate of seed). Furthermore, only 40% of farmers 262 

reported cases of disease outbreak symptoms to the local authorities, as most preferred to address 263 

such situations independently, relying on their own experience and knowledge. About 50% of 264 

farming households had separate water supply and drainage systems, while more than 80% of 265 

these households had sedimentation ponds in place for water treatment before releasing shrimp 266 

seeds to grow-out ponds. The average stocking density was 68 individuals per square meter with 267 

a range from 25 to 240 shrimp per square meter. The average crop duration was 2.8 months, with 268 

variations between one to four months. In our interviews in MKD, we learned that the cultivation 269 

period of WLS was typically less than 30 days when the disease was discovered, which aligned 270 

with the observations of Nguyen et al. (2021). 271 

< INSERT TABLE 2 HERE> 272 

    2.4. Methods  273 

This section outlines our methodology for predicting the key factors influencing disease 274 

occurrence during climate events. We will also provide in-depth explanations of our logistic 275 
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regression approach and the robustness checks we employed to ensure the accuracy and reliability 276 

of our models and estimations. An overview of the approach is depicted in Figure 1.  277 

<INSERT FIGURE 1 HERE> 278 

In Figure 1, we began with a total of 47 predictors extracted from aquaculture literature related 279 

to disease occurrence in shrimp farming, our research objectives, and typical shrimp farming 280 

practices in the Mekong region. A comprehensive list of these 47 predictors can be reviewed in 281 

Table 1, marking the initiation of our data management process. The second step involved variable 282 

selection in Figure 1, where we randomly divided the entire sample of 267 observations into two 283 

subsets: a training set (80% - 215 observations) and a testing set (20% - 52 observations). We 284 

employed the training set to identify potential predictors associated with planning disease 285 

occurrence, while the testing set served to validate the model's performance.  286 

Working with as many as 47 predictors can lead to complex predictive models that may introduce 287 

redundancies concerning disease occurrence. Redundant variables will provide lower predictive 288 

power and model reliability (Hall & Holmes, 2003). Therefore, we applied techniques aimed at 289 

constraining the coefficients, such as stepwise procedure and regularization in the logistic 290 

regression model. This was done to enhance prediction accuracy and model interpretability, 291 

ensuring the best fit for our dataset.  The next subsections, including logistic regression, logistic 292 

regression with subset selection, and Regularization, provide brief introductions to each approach 293 

with the objective of variable selection (step 2). We aim to underscore the main differences and 294 

the computational advantages among the employed techniques for identifying the best predictors 295 

explaining the likelihood of disease occurrence. 296 

Logistic regression  297 

Logistic regression is an often-used method to assess critical factors affecting disease in shrimp 298 

farming, often complemented by other models for robustness checks (see Table A1- Appendix). 299 
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P is the probability that the outcome will occur. We predict the log odds of disease occurrence 300 

as follows: 301 

                                   𝐿𝐿𝐿𝐿𝐿𝐿 �
𝑃𝑃(𝑥𝑥)

1 − 𝑃𝑃(𝑥𝑥)
� = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ⋯+ 𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛                                 (1) 302 

Where  � 𝑃𝑃(𝑥𝑥)
1−𝑃𝑃(𝑥𝑥)� is the ‘odds’ of the outcome and has two classes, farms that experience disease 303 

and farms that do not (Leung & Tran, 2000). According to equation (1), the logarithm of the odds 304 

(so-called logit) is a linear function of the potential variables 𝑋𝑋(𝑥𝑥1,…., 𝑥𝑥𝑛𝑛) (see table 3). Taking 305 

the exponentiation of the coefficients gives the odds ratio. A value greater than 1 signifies that a 306 

factor increases the odds of disease, while a value less than 1 indicates that a factor reduces the 307 

odds. We then use the maximum-likelihood method from the Hosmer and Lemeshow goodness-308 

of-fit test to estimate the coefficients 𝛽𝛽1….𝛽𝛽𝑛𝑛(Hosmer et al., 2013). The exponential of the 309 

regressors (β) represents the expected change in the odds of disease occurrence versus no disease 310 

per unit change in the explanatory variable, other things being equal. A positive coefficient 311 

implies that an increase in the corresponding factor will increase the chance of disease 312 

occurrence.  In contrast, a negative coefficient indicates that an increase in that factor will reduce 313 

the likelihood of disease occurrence (Tendencia et al., 2011). 314 

The backward stepwise procedure is usually preferred as the forward stepwise approach could 315 

potentially eliminate important variables (Leung & Tran, 2000; Alapide-Tendencia, 2012). As 316 

multicollinearity was found, the stepwise procedure was repeated, replacing a specific predictor 317 

that highly correlated with another independent factor of the same class of equal importance, to 318 

check the contribution to the variability. The selection of the single best model for predicting 319 

disease occurrence, whether through forward or backward stepwise regression, involves 320 
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evaluating cross-validated prediction error, negative log-likelihood value, equivalently largest 321 

adjusted R squared3 as well as AIC, and BIC values.  322 

We applied the Ridge, Elastic Net, and Lasso logistic regression on the testing set to compare 323 

predicted outcomes and actual outcomes (see Table A3 – Appendix). The accuracy of these 324 

predictions, indicating whether disease occurred or not, measures the model’s performance. Once 325 

potential variables were identified via subsection and regularization, we further examined the 326 

results of the fitted logistic regression model. Statistically significant variables were selected if 327 

the p-value was less than 10%.  328 

In general, this variable selection step contributes to determining the signs and degree of possible 329 

variables’ association with disease occurrence. In addition, as part of our robustness check for 330 

logistic regression with subset selection and regularization, we employed Bayesian logistic 331 

regression, and stepwise regression using BIC as the performance evaluator (see Table A2 – 332 

Appendix).  333 

3.   RESULTS 334 

3.1 Results of backward logistic regression  335 

       Our analysis, as detailed in Table 3, reveals that the Lasso regression gives the best-fit model 336 

with the lowest value of the AIC (82.04) and the highest accuracy classification in testing data 337 

(75%) compared to other logistic regressions with subset selection approaches. In contrast, the 338 

backward logistic regression had the same level of prediction accuracy (75%) but a higher AIC 339 

value (237.11) compared to the Lasso regression. While both models performed well on 340 

predictive accuracy, backward logistic regression identified a subset of predictors generating 341 

accuracy on par with the more complex Lasso specification. This balance between explanatory 342 

 
3 The log-likelihood (LL) ratio is an attained indicator from a stepwise logistic regression that reflects the statistical fit of 
the model and measures the relationship between the dependent and independent variables. The smaller the deviance, the 
better the fit. The adjusted R-squared (R2) value indicates the strength of the relationship between the outcome and 
predictor. 
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power and simplicity justified emphasis on the backward logistic regression method, even with 343 

slightly weaker fit statistics. We therefore opted for backward logistic regression, prioritizing its 344 

superior balance between prediction accuracy and model simplicity. 345 

<INSERT TABLE 3 HERE> 346 

Table 3 displays the model performance measure for the full set of logistic regression methods 347 

utilized, including the backward stepwise logistic approach ultimately selected. As depicted in 348 

Figure 1, backward regression identified an optimal subset of 13 key variables with p-values 349 

lower than a 10% significance level. Table 4 presents the detailed output for disease predictors 350 

selected through the backward logistic regression. Out of those thirteen variables, nine exhibited 351 

p-values below 5% significance, confirming a robust association with disease occurrence 352 

likelihood. The odds ratio serves as a measure of the expected shift in the odds of farms 353 

experiencing disease for each one-unit change in an independent variable, holding other variables 354 

constant. An odds ratio above one indicates an increase in disease odds, while below one signifies 355 

reduced odds.  356 

There were notable risk-increasing factors associated with shrimp disease probability. They were 357 

longer crop duration, increased years in operation, higher levels of farmer education, and 358 

application of other measures related to pond management. For example, regarding years in 359 

operation, the odds ratio is 1.581. This means for each additional year of operation; the disease 360 

probability increases by 58.11%. 361 

In addition, prominent protective factors, leading to reduced disease odds, include changes in 362 

feeding practices, training participation, extension services, regular feed conversion ratio 363 

calculations, and stocking. For example, regarding training participation, the odds ratio is 0.345. 364 

This means that for one unit increase in training participation (going from 0 training to 1 training), 365 

the probability of disease occurrence is expected to decrease by 34.55%. These patterns help us 366 

understand the conditions and practices that either reduce or increase the disease probability. 367 
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< INSERT TABLE 4 HERE> 368 

3.2 Robustness checks 369 

Several additional logistic regression models were run to evaluate the robustness of the 370 

results from the backward stepwise method. Comparing key predictors across models provides 371 

a check on whether the findings are sensitive or consistent (Leung & Tran 2000). We found 372 

general agreement regarding the direction of effects for important variables like extension 373 

services and regular feed conversion ratio calculations, education, training participation, crop 374 

duration, and stocking density.  375 

In addition, in the Bayesian and BIC stepwise models (Table A2 in Appendix), two factors - 376 

years in operation and changes in feeding schedules - were no longer significantly associated 377 

with disease occurrence, unlike in the backward logistic regression. This indicates a slight 378 

variability between models regarding which indicators retain statistical significance. However, 379 

the signs of the coefficients for the most relevant variables persisted across specifications, 380 

underscoring robustness. 381 

The Lasso model (Table A3 in Appendix) retained most of the mentioned predictors (e.g., 382 

training participation, extension service, education, crop duration, stocking density) but not 383 

changes in the schedule of feeding practices, as prominent. Adaptive measures were still 384 

negative, suggesting a protective tendency. The appearance of years in operation instead of 385 

separate water supply/drainage systems and other adaptive measures rather than a change in 386 

feeding schedules demonstrated slight variability in retained variables. While the magnitude 387 

and precision of estimates shifted, the signs of the coefficients for the most significant variables 388 

persisted across Ridge, Lasso, and Elastic Net approaches. This indicates a degree of parameter 389 

estimate stability and generalizability of the backward logistic regression results regarding the 390 

direction of effects, indicating robustness in estimation. However, continued expansion and 391 

sensitivity testing of disease predictor models are demanded to account for additional farm-392 
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level complexities. For instance, future data collection could assess interactive effects between 393 

stocking density, adaptive behaviors, and local climate fluctuations. Such model refinements 394 

would strengthen causal attribution and strategic precision regarding influential disease drivers 395 

across diverse shrimp operating contexts. 396 

4. DISCUSSION 397 

Our backward logistic regression model demonstrated 75% accuracy in correctly 398 

classifying disease outcomes on the testing data. This signals that it can differentiate well 399 

between disease presence and absence.  400 

The research findings revealed the determinants that reduce and increase the chance of shrimp 401 

disease occurrence. Hence, we identified several protective factors that significantly 402 

negatively impact the likelihood of disease occurrence. Training participation, extension 403 

services, regular FCR calculations, and stocking density contributed to a lower chance of 404 

shrimp disease occurrence. In addition, we found risk variables that have a positive 405 

relationship with shrimp disease, such as the length of crop duration (number of stocking 406 

months), applying other measures for daily pond management, years in operation, and 407 

education. These will be discussed in the following subsections. 408 

4.1 Protective factors 409 

In the following, we listed seven factors that influenced disease occurrence in 410 

Vietnamese WLS farming.  First, regarding self-adaptive measures taken by shrimp farmers, 411 

we found that changing the feeding practices schedule, which includes feeding amounts, input, 412 

and timing, was significantly associated with a lower chance of disease outbreaks. This 413 

finding aligns with Abdelrahman et al. (2019) who pointed out that prolonged drought can 414 

impact pond water temperature, resulting in reduced survival and shrimp weight. Adjusting 415 

feeding schedules including reducing feed inputs, can help mitigate the effects of pond water 416 

pollution and the potential for shrimp disease. 417 
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In the case of shrimp mortality caused by extreme drought, prompt measures such as reducing 418 

or stopping feeding4 the shrimp in grow-out ponds, supplementing shrimp feed with vitamin 419 

C and minerals, and adhering to prescribed feeding guidelines, can increase shrimp recovery 420 

and health. It is essential to note that the adjustment of feed input aims at managing the impact 421 

of water conditions while supplementing shrimp feed with essential nutrients is crucial for 422 

supporting shrimp health during extreme drought. Furthermore, Mekong farmers were legally 423 

required to report disease status and seek technical guidance from local authorities or farmers' 424 

groups to effectively address and prevent potential issues. 425 

Though we failed to obtain statistically significant results for other adaptive measures in 426 

backward logistic analysis, it is worth noting that their direction was negative, as expected. 427 

The other adaptation measures involved using chemicals (i.e., chlorine, lime application) for 428 

pond treatment and reducing algal growth5. In addition, farmers employed techniques such as 429 

pumping microbial products from sediment ponds to stabilize pH and prevent algal blooms, 430 

and aeration to ensure sufficient oxygen amounts at the pond bottom. These responses were 431 

essential for coping with drought and reducing the likelihood of disease outbreaks in Mekong 432 

shrimp farming.  433 

Second, we identified that carrying out feed conversion ratio calculations (biosecurity 434 

measures) significantly lowered the chance of shrimp disease. The feed conversion ratio is a 435 

measure of how efficiently the shrimp converts the feed they consume into biomass. This 436 

suggests that careful and efficient feed calculation, which reduces feed redundancy in grow-437 

out ponds, can contribute to disease occurrence control. It helps to reduce feed waste in the 438 

surrounding environment of intensive farms, contributing to better biosecurity practices. The 439 

 
4 When the temperature is more than 32 degrees Celius, WLS will stop eating and hide on the pond bottom, covering 
themselves in the mud, leading to a high risk of toxic contamination (e.g., H2S, NO2, CO2, NH3), pathogenic bacteria and 
lack of oxygen. As the temperature increases, the respiration process of shrimp increases along with a rise in biochemical 
reactions in the pond water. Hence, shrimp are also prone to disease due to a lack of oxygen. 
5 Algal blooms cause a lack of oxygen in the water, pH fluctuations, and accumulation of toxins in pond water, resulting 
in mass mortality of shrimp. 
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significance of this finding was supported by Corsin et al. (2001), indicating that higher feed 440 

amounts were associated with an increased risk of introducing WSD into Vietnamese shrimp 441 

ponds. Therefore, engaging in feed calculations is a proactive measure that contributes to 442 

maintaining healthier pond conditions with lower pollution levels, resulting in reduced shrimp 443 

disease occurrence.  444 

Third, farmers’ participation in training courses (e.g., lectures, workshops, field trips) 445 

organized by local government, non-profit organizations, and processing companies 446 

significantly lowered the likelihood of shrimp disease. Such training courses can enhance 447 

farmers’ awareness of environmental impacts on their farms and surrounding communities. 448 

Nguyen (2017) emphasized that training should focus on disease prevention and aquaculture 449 

production. When shrimp disease outbreaks occur, the costs incurred by farmers, local 450 

governments, and even communities for disease management and control may be substantial. 451 

Suitable training programs can empower shrimp farmers with knowledge and skills to cope 452 

effectively with climate and environmental impacts. They can promote responsible actions 453 

concerning protecting shared water sources, thereby mitigating severe environmental impacts.  454 

Fourth, increasing extension services through technical support including visits from local 455 

government, input suppliers, and processing companies, had a significant impact on reducing 456 

the likelihood of shrimp disease. For instance, when farmers report shrimp disease to the local 457 

government, they receive free supplies of chemicals for water treatment. In addition, the local 458 

governments’ extension service can provide water sample analysis at local laboratories, 459 

enabling the identification of disease risks and specific disease types that farmers may face. 460 

Technical visits as part of extension services can include guidance on designing farming 461 

infrastructure and providing support for the operation of intensive production systems. This 462 

information related to shrimp farming technology can help improve the biosecurity system 463 
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and farming environment, resulting in more effective disease prevention and ultimately 464 

reducing the chance of shrimp disease outbreaks.   465 

Lastly, we found that the stocking density had a noteworthy impact on the likelihood of 466 

disease.  It is important to note that we observed that the higher the stocking density, above 467 

the average of 68 individuals per square meter, the lower the chance of disease, which may 468 

appear counterintuitive. Though Tendencia et al. (2011) also found that stocking density was 469 

negatively correlated with shrimp disease, these findings require a more detailed explanation. 470 

One possible explanation is the management practices adopted by intensive farms in our 471 

sample. These farmers may employ advanced technology such as multi-phasic integrated 472 

intensive shrimp production systems and recirculation aquaculture systems. Technological 473 

innovations, e.g., the implementation of biofloc systems, have become increasingly prevalent. 474 

In our sample, we observed farms implementing robust biosecurity measures and sustained 475 

high stocking density without a significantly increased disease risk. Though intensified 476 

density can exacerbate or boost waste accumulation challenges (Tendencia et al., 2011), our 477 

findings imply that certain advanced practices may mitigate these disease issues. Farms 478 

utilizing super-intensive technology and expertise may represent the subset applying higher 479 

density. Therefore, advanced methods providing resilience, or lower disease likelihood, may 480 

also stem from broader operational capabilities allowing farmers to intensify responsibly. 481 

Further research controlling for farm complexity should consider separating the true impact 482 

of production intensity on health parameters. 483 

4.2 Risk factors 484 

Several risk factors increase the chance of shrimp disease outbreaks. These factors 485 

include crop duration, other pond management activities, education level, and years in 486 

operation. Extensive use of land for shrimp farming as found in intensive farms, combined 487 

with longer crop duration, can lead to soil deterioration, reduced nutrient levels, and pollutant 488 

contamination, all contributing to increased disease risk. More surprisingly, adopting other 489 
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pond management activities and higher levels of schooling, significantly increase the 490 

likelihood of disease while individuals with an average of only 8 years of education tend to 491 

have a relatively low risk of disease. We found that experience and education are negatively 492 

correlated in our data, suggesting that less educated farmers tend to have a lower likelihood 493 

of disease. Mekong farmers have traditionally carried out their business based on experience 494 

passed on from father to son (Le et al., 2022). Most farmers have developed their management 495 

skills through a 'learning by doing' approach (Duy et al., 2021). Shrimp farmers concerned 496 

with disease risk to their farm profitability have a history of undertaking more disease risk 497 

management (Lebel et al 2021), seemingly taking proactive measures based on hands-on 498 

experience in disease prevention.  499 

Assuring disease control in shrimp farming includes care concerning various aspects, not 500 

solely based on pond management. There may be trade-offs between the goals of different 501 

pond management decisions. For instance, decisions aimed at growth enhancement might 502 

inadvertently increase the susceptibility to diseases. Pond management strategies include 503 

various aspects, such as implementing pond preparation, creating a secure rearing 504 

environment through chemical treatment to prevent infections, or implementing pond 505 

renovation. Furthermore, disease control in shrimp farming necessitates attention to diverse 506 

aspects, from selecting seed sources for nursery ponds to executing harvesting processes. In 507 

the study of Nguyen et al. (2021), several risk factors associated with shrimp farming disease 508 

were identified, such as the ownership of settling ponds, sun-drying ponds exceeding 62 days, 509 

and the introduction of stock from multiple suppliers into grow-out ponds. 510 

5. CONCLUSIONS AND FUTURE RESEARCH 511 

This study identified key protective and risk factors that significantly impact the 512 

probability of disease occurrence in intensive shrimp farms. Key focal points for reducing the 513 

probability of disease occurrence included increasing farmers' adaptive measures (e.g., 514 
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adjustment of feeding schedules) on their farms, increasing farmers’ participation in training 515 

programs, and the provision of extension services. Such approaches help control the carrying 516 

capacity in ponds or manage the usage of feed inputs.  517 

Our findings can inform regulatory and policymaking efforts in shrimp disease management 518 

for intensive farms, further boosting shrimp production with intensification in the Mekong 519 

area. By collecting information/data from farmers in the region, local authorities can develop 520 

a toolbox that integrates the various approaches and model testing, potentially providing more 521 

comprehensive forecasts than the farmers can carry out independently.   522 

Last but not least, our results underscore the critical management roles of farm owners and 523 

workers on each farm. They play a key role in managing and identifying the likelihood of 524 

disease occurrence. Therefore, collecting farm-level input data is invaluable, especially 525 

regarding factors such as feed data, crop duration, adaptive measures, and regularly estimated 526 

feed ratios, which could be mandatory requirements and recorded more regularly. These 527 

actions can provide early warnings and alerts to farms, timely preventing or mitigating disease 528 

outbreaks. 529 

Future research could be enriched by exploring further infection sources and transmission 530 

pathway elements combined with risk factors and preventive behaviors. Although the current 531 

study faced limitations due to data constraints and relied solely on available survey data, we 532 

acknowledge the value of a more comprehensive investigation that integrates these variables 533 

with water quality and climate change indicators over time. Such insight could significantly 534 

enhance our understanding of disease management strategies in the WLS shrimp business. A 535 

larger data sample would also improve model performance and enable advanced analysis 536 

using other advanced machine-learning techniques. 537 

 538 
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Notes: AIC: Akaike information criterion. R Studio was employed for the analysis in this study.  

 

 
1 Subset selection and regularization approaches were utilized to prevent overfitting and underfitting in model 
estimation. Backward stepwise logistic regression with a likelihood ratio test removed the least contributing 
factors sequentially to obtain the minimum Log-likelihood. Forward stepwise regression incrementally added 
significant predictors. Ridge, Elastic Net, and Lasso regressions on the testing data compared predicted to actual 
outcomes (see Table A3). Bayesian logistic regression and BIC stepwise regression provided robustness checks 
(see Table A2). 
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TABLE 1:  The expected sign in specific sets of explanatory factors 

No The group name of potential predictors Total variables Expected sign 

1 Farmer’s perception of extreme climate and 

environmental risks 

5 + 

2 Adaptive measures to extreme climatic events 6 - 

3 Farmer biodata 7 - 

4 Farm site characteristics 8 +/- 

5 Biosecurity measures 19 - 

6 Culture method 2 + 

 Total number of potential predictors 47  

Notes: More detail on the possible explanatory variables in each group can be found in Table 2. 
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    TABLE 2: Characteristics of Survey Respondents and Potential Explanatory Variables for Disease Occurrence (Observations: 267) 

N
o 

Factors Data type Data description 
 

 Mean S. D Min Max 

 Disease   0.502 0.500 0 1 

 
Group 1: Farmers’ perception of negatively impacting extreme climatic 
and environmental events  

 
    

1 Drought Yes =1, no = 0 0.382 0.487 0 1 
2 Irregular weather   Yes =1, no = 0 0.416 0.494 0 1 
3 Saline water intrusion Yes =1, no = 0 0.037 0.190 0 1 
4 Prolonged heavy rain  Yes =1, no = 0 0.026 0.160 0 1 
5 Water Cross pollution Yes =1, no = 0 0.105 0.307 0 1 
 Group 2: Adopted adaptive measures to the climatic event(drought)       
6 Change in the schedule of feeding practices Yes =1, no = 0 0.139 0.346 0 1 
7 Adjust stocking densities Yes =1, no = 0 0.037 0.190 0 1 
8 Change another type of production system (e.g., extensive, shrimp mangrove) Yes =1, no = 0 0.060 0.238 0 1 
9 Change in the schedule of water exchange Yes =1, no = 0 0.112 0.316 0 1 
10 Water conservation  Yes =1, no = 0 0.015 0.122 0 1 
11 Other measures  Yes =1, no = 0 0.109 0.312 0 1 

 
 
Group 3: Farmer’s biodata 

 
    

 

12 Experience year Yes =1, no = 0 9.637 7.129 1 30 
13 Schooling year  Yes =1, no = 0 8.075 4.227 1 22 
14 The farmer’s age Yes =1, no = 0 43.633 10.011 21 76 
15 Farmer participated in a training course in a recent year Yes =1, no = 0 0.547 0.499 0 1 
16 Member of farmer group or shrimp association In number  0.300 0.459 0 1 
17 Extension services  In number  0.300 0.459 0 1 
18 Access the bank loan Yes =1, no = 0 0.255 0.437 0 1 
 Group 4: Farm sites characteristics      
19 Years in operation In number of years 8.972 6.626 1 30 

20 The distance from farms to the primary water source  In number (meter) 133.40
8 

239.10
4 0 3000 

21 The distance from the farming area to the sea (estimated from Google maps)  In number (meter) 12.477 6.353 4.46 28.33 
22 Belonged to planned areas for shrimp aquaculture Yes =1, no = 0 0.708 0.456 0 1 
23 Total farm area per hectare  In number (1000 m2) 0.402 0.399 0.1 3 
24 Water source (estuary/river) Yes =1, no = 0 0.094 0.292 0 1 
25 Water source (direct from sea) Yes =1, no = 0 0.831 0.375 0 1 
26 Water source (canal from sea) Yes =1, no = 0 0.064 0.245 0 1 

 

 
 
Group 5: Biosecurity measures 

 

    
Use of feeding tray/ siphon activity to check feed consumption Yes =1, no = 0 0.959 0.199 0 1 
Regular Feed Conversion Ratio calculations Yes =1, no = 0 0.345 0.476 0 1 
Regular operating cost analysis Yes =1, no = 0 0.588 0.493 0 1 
Other feed monitoring measures Yes =1, no = 0 0.022 0.148 0 1 
Daily monitoring of water quality parameters Yes =1, no = 0 0.985 0.122 0 1 
Daily monitoring of checking sediment condition Yes =1, no = 0 0.678 0.468 0 1 
Daily monitoring of checking water of influent and effluent waters Yes =1, no = 0 0.491 0.501 0 1 
Daily monitoring of water quality parameters Yes =1, no = 0 0.846 0.361 0 1 
Daily monitoring of stock survival Yes =1, no = 0 0.884 0.321 0 1 
Daily monitoring of shrimp behavior Yes =1, no = 0 0.978 0.148 0 1 
On-farm and off-farm shrimp health check when disease occurred Yes =1, no = 0 0.566 0.497 0 1 
Other pond management activities Yes =1, no = 0 0.243 0.430 0 1 
Seed sourced from a well-known seed company Yes =1, no = 0 0.914 0.281 0 1 
Pond renovation and other costs Yes =1, no = 0 0.607 0.489 0 1 
Break for minimum 30 days between crops  Yes =1, no = 0 0.828 0.378 0 1 
Fry analysis (quarantine certificate of seed following regulations) Yes =1, no = 0 0.311 0.464 0 1 
Report disease outbreak to the nearest aquaculture or veterinary authority Yes =1, no = 0 0.408 0.492 0 1 
Separate water supply/drainage system Yes =1, no = 0 0.502 0.501 0 1 
Sedimentation pond   Yes =1, no = 0 0.824 0.382 0 1 
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 Group 6: Culture methods      
46 The Duration period of the most recent crop (no. of months) In number 2.805 0.813 1 4 
47 Stocking density – the number of shrimps per m2 in a grow-out pond In number 68.981 28.955 25 240 

Notes: Other feed monitoring measures and other pond management activities include own practices related to biosecurity measures that shrimp farmers 
undertake in their ponds. 

 
 TABLE 3: The model accuracy and AIC indicators for various logistic regression. 

  
Forward 
stepwise 

regression 

Backward 
stepwise 

regression 

Lasso 
logistic 

regression 

Ridge 
logistic 

regression 

Elastic Net 
logistic 

regression 

Stepwise 
regression 
using BIC 

 

Bayesian 
logistic 

regression, 
stepwise 

Corrected accuracy (%) 
0.75 0.75 0.75 0.69 0.73 0.73 0.75 

AIC 285.74 237.11 82.04 147.57 87.39 241.12 238.17 
 

     TABLE 4: Results of fitted backward logistic regression model for intensive shrimp farms (N=215 observations) 

  
Odds ratio 

  
Estimate 

(log-odds) S.E. P-value 
(Intercept) 0.012 -4.368 4.293 0.309 
Adaptive measures to drought         
Change in the schedule of feeding practices 0.370 -0.995* 0.569 0.080 
Other adaptive measures 0.448 -0.804 0.557 0.149 
Farmer biodata         
The farmer’s age 3.885 1.357 0.860 0.115 
Education 2.075 0.730** 0.363 0.044 
Training participation 0.345 -1.065** 0.420 0.011 
Extension services 0.319 -1.143** 0.447 0.011 
Farm site characteristics         
Years in operation 1.581 0.458* 0.252 0.069 
Biosecurity measures         
Regular Feed Conversion Ratio calculations 0.378 -0.973** 0.438 0.026 
Other cost-monitoring measures 0.000 -15.368 831.032 0.985 
Other pond management activities 2.651 0.975* 0.497 0.050 
Report disease outbreak to the nearest 
aquaculture or veterinary authority 

 
1.978 0.682 0.449 0.129 

Culture method         
Duration of crop 18.029 2.892*** 0.633 0.000 
Stocking density 0.260 -1.346** 0.560 0.016 
AIC   237.11     
Corrected accuracy (%) in the testing set   0.75     

Significance level ‘***’ 0.001 ‘**’;0.01 ‘*’ 0.05 ‘.’ 
Notes: Odds ratio = exp(log-odds). The odds ratio shows the change in odds of disease occurrence for a 1-unit increase in that predictor variable. The further below 1 the odds ratio 
is, the more protective the factor is against disease. The further above 1 it is, the more the factor increases disease risk. Factors that exhibit a statistically significant negative 
association reduce disease risk, i.e., the odds ratio is less than 1, while a statistically significant positive association increases disease risk, i.e. the odds ratio is greater than 1 (Leung 
et al., 2000). 


