Some Hints on the Theory and Practice of Authentication in
Distributed Systems

Tage Stabell-Kulg

Andrea Bottoni

2. November 1995
Revised 17. May 2003

Abstract

Authentication in Distributed Systems: Theory and
Practice [9] provides considerable insight. How-
ever, it can be hard to read, as many details are
left out, probably for brevity; it is still 45 pages
long. We provide detailed explanations of some
tricky points.

This is the revised version.

Introduction

The purpose of this small technical report is solely
to assist in the reading of [9]. Because this is a
technical report explaining elements in a published
paper, we do not claim that any novel aspects can
be found herein.

On notation: “the paper” and “this paper” im-
plies [9], and all references, such as “as described
in Section 7” or “as shown in Figure 1”7, refer to the
relevant section in the paper. Figures and tables in
the text you are reading just now are clearly refer-
enced as belonging to this technical report.

In “theory” it is simple to implement authoriza-
tion (and hence authentication) correctly. PKI is far
too often named as a panacea. The monitor is sim-
ply to compare the credentials supplied with the
request with the requirements specified by the ACL.
If there is a match, the request is granted; if there
isn’t the request is logged and rejected (in that or-
der).

The following observation should demonstrate
why such a view is far too simplistic: Traditionally,
in order to withdraw money from your own bank
account, you would have had to sign a receipt. The
bank kept the original, while you got a copy for

your own records. When your withdraw from an
ATM some other “signatures” are in play; this paper
provides the necessary vocabulary to discuss such
settings.

This technical report is meant to be read as a
companion to the paper; we believe that reading
this technical report in isolation will not be very
fruitful.

A good grasp on the inherit complexity of au-
thentication is required in order to fully enjoy the
issues considered in this paper. The best starting
point is probably [10] or [2].

Theory

In this section we will discuss the axioms, their in-
terpretation, and immediate consequences.

When a theory is used to obtain a better un-
derstanding of a system, it is crucial to determine
whether the axioms match the system we try to
model. The classical example is whether Euclidean
geometry is a description of the “real” world or
not. Before using geometry, we must examine
the axioms and determine whether they reflect the
system at hand. In particular, you must decide
whether the fifth postulate in the first book (on par-
allel lines) holds for the system at hand: If you are
calculating how much graniglia you need to tile the
library in your Italian villa it probably does, but
if you are calculating the trajectory of Mercury it
does not. There is nothing within a theory that
can guide you in making this decision; great care
should be exercised before modeling a system with
any theory.

Statements
Axiom S3 reads:
+ (A says s AAsays (s Ds')) D Asayss’ (S3)

This is modus ponens for says; when things are
“said” we can expect them to have consequences.
Or, in other words, we expect that (honest) prin-
cipals understand their beliefs, and, just as impor-
tant, believe the consequences of their beliefs. As
an example, assume that this message is received
(where A is shorthand for Alice and B for Bob):

{B = A}K;1 (1)

We could now reason as follows: Since we know
that K5 is Alice’s key, we conclude that the state-
ment is (was) made by Alice (or someone Alice
trusts). She says that Bob speaks for her, and by
(P10), this implies that we can proceed as if it is
true that Bob speaks for Alice.

However, before we proceed there are two issues
we should consider:

1. Is Alice honest?

If she is not there will be problems, but the
source of the problems will be obvious.

2. Does she know what she is doing?

Message (1) can be viewed as a contract. In
many countries contracts need to be signed
in front of a Notarius Publicus. One of the
reasons is that there is a need to determine
not only who signed the contract (authenti-
cation), but that the signer understood what
the contract implied. Or, in other words, in
those countries it is not assumed that when-
ever something is said, we can proceed as if
the consequences are true.

Axiom (S3) makes it explicit that this theory
should only be applied to systems where the
participants understand the consequences of
their actions.

BAN is another well-known theory that deals
with settings similar to the one considered in this
paper [3]. In BAN, honesty is implicitly assumed
in that anyone who is believed to have jurisdiction
over an issue (for example to generate a “good”
encryption key), will do so. BAN has been criti-
cized for this and a different semantics (than the

possible-world) makes away with this; see [1] for
a discussion. Honesty is not assumed in the paper
we will discuss, but (S3) makes it clear that all par-
ticipants are assumed to be rational. Assume that
message (1) was received by Server, and it made
the Server grant Bob access to Alice’s resources.
The crux of the matter is how Server will respond
to the following accusation from Alice:

“You received a random message from
me, and you concluded that Bob is to
be granted access to my resources. How
could you draw this conclusion from this
message? Please note that the message
did not say “Please give Bob access to my

27 9

resources .

Can the server detect a difference between lying
and lack of rationality?

Principals
It is taken as axioms in the theory that:

(P4): + A is associative, commutative, and idem-
potent.
This means that it is taken for granted that the
following holds (in the same order):
e (AANB)AC=AA(BACQC)
e AAB=BAA
e ANA=A

To us, all these seem reasonable.

(P6): F | distributes over A in both arguments.

This means that it is taken for granted that the
following holds:

e A(BAC)=(AB)A(A|C)

e (AAB)IC=(A|C)A(B|C)
To us, both seem reasonable.
(P7): F(A=B)=(A=AAB)

Two paragraphs later the following three conclu-
sions are drawn (numbered by us):

The operators A and = satisfy the usual
laws of propositional calculus. (1:) In par-
ticular, A is monotonic with respect to =.

This means that if A = Bthen AAC =
B A C. (2:) It is also easy to show that |
is monotonic in both arguments and (3:)
that = is transitive.

Below we will first show that all these are formally
correct, then give justifications supporting them.
Statement 1

When an operator is monotonic with respect to an-
other (point in case: A is monotonic with respect
to =) the first can be applied to both sides of the
second. Or, in other words, the following should
hold:

(A=B)D ((AAC)= (BAC) (2
Formally is does. Assume that
A=B
then (by (P7)
AANC=(AAB)AC.
Because A is idempotent (by (P4) we get
AANC=(AAB)ACAC
and because A is associative (also by (P4)) we get
AANC=(AANC)A(BAC).
If we apply (P7) we obtain
ANC=BAC.

Hence (2) holds.

The justification is that when A = B then the
principal A “controls” B. Hence, when A utters a
statement together with another principal, B will
support it (together with the same principal, if
need be).

Statement 2

That | is monotonic in both arguments means that
the following should hold:

(A = B) D ((AIC) = (B|C)) 3)

and

(A= B) > ((CIA) = (C[B)) “

Formally this holds; we will prove only (3) be-
cause the other is symmetric. Assume that

A=B

then
A|C = (A AB)|C.

By (P6) we have that
A|C = A|CAB|C,
hence (by (P7))
A|C = BIC.

The justification for (3) is that when B is “con-
trolled” by A then when A quotes C, then B would
also do so. The justification for (4) is similar. As-
sume a channel C. A message arrives on this chan-
nel, and the sender claims that the content is sup-
ported by A. Whenever this happens to be true,
and if at the same time A = B, the sender can
claim that the message is supported also by B. For
this reason, (4) is justified.

Please take care to understand that whether C is
right when he quotes A or not, and hence whether
this applies also to B, depends on the will and abil-
ity of C to ensure that he is acting correctly; it is
not an aspect of this theory to ensure that no one
is lying. Furthermore, knowing who C is does not
ensure he is honest.

Statement 3
The question is if the following holds:
(A=B)A(B=C)D>DA=C.

Formally it does, because by using the axiom
(P7) together with A, B and C we obtain:
A=B=A=AAB 5)

and

B=C=B=BAC (6)

by substituting (6) in (5) we obtain
A=AABAC
which by (5) gives us
A=AANC

which, according to the axiom, is equivalent to
A= C.

The justification is that if A speaks for B (B will,
if need be, repeat everything A says), and B speaks
for C in the same manner, then whatever A says
will be supported by C.

Channels and Encryption

Encryption Channels

There is more to key identifiers than meet the eye.
The most important issue is that it is impossible
to know whether a message has been correctly de-
crypted unless one knows the content in advance.
Or, in other words, it is not possible to use encryp-
tion without some A PRIORI agreement on syntax.
“Decrypted correctly” implies one of two: That the
correct key has been used, and/or that the mes-
sage was unaltered. When a human is the intended
recipient, this can be achieved by including some
(human) readable text! in the message. Further-
more, when the message contains random bits, like
a new key, some care must be taken to ensure that
the recipient can verify that the message has been
decrypted correctly, and that the correct key was
used. Notice that a key by its nature is random, and
it is (well: should be) impossible to distinguish be-
tween random data, encrypted data and a new key
without resorting to syntax. This might not be nec-
essary if the protocol is guaranteed to detect this
fact later [6].

Let us turn now to how the functionality of
public-key encryption can be implemented by the
application of (only) shared-keys and a relay. The
setting is one where B exchanges messages with R.
As explained in Section 4.3, and shown in Table II,
after the exchange B can believe that “K, says s”
even though B does not possess K.

First a few words on notation. The key K? is key
K, together with an identifier (probably a number)
that will be used to identify the key. The identifica-
tion (in this case ?) is local to the receiver, and the
implementation of systems should be such that it

14If you can read this, the message has been decrypted cor-
rectly”. However, a fixed text should not be used since one is
then exposed to “known text” attacks.

will be detected without delay if an incorrect iden-
tificator is used.
The starting point is that B receives from R the
message:
KP[K! says s

(7)

and the question is, how can B conclude that

A says s?
As usual, we assume for simplicity that the certi-
fication authority is trusted by all participants:
K¢a = anybody 8)

and
Kea says Ky, = B.

B trusts the certification authority to having pro-
vided him and R with a key to share:

Kcq says Ky, = R

which implies, using (P11):

Ky =R C))
and
Ky = B
Using (9) inside (7) we obtain?:
RIK?, says s (10)

For the relay to work, R must be trusted by all
principals; that is:

R = anybody 1D

How this is achieved is not of interest to us here.
If the system is designed in such a way that (11)
is unacceptable, then delegation could be used in-
stead.

Using (11) to simplify (10) we obtain

K7, says s (12)
Notice that although (12) is very similar to
Kq says s (13)

they are very different. Message (7), which con-
tains a claim about (12), is received as a message
encrypted with Ky, and an identifier that tells B the
message is intended for him (and hence sent by R

2See footnote 12 for the explanation.

(shared-key-encr (key-id 42) <ciphertext>)

Figure 1: Message sent from R to B, before decryption

(says (key-id 43) (statement <s>))

Figure 2: <ciphertext>, after decryption

and not B himself), while (13) would be a message
encrypted with K, itself. Message (7) could be en-
coded as shown in the Figures 1 and 2 (both in this
technical report). Notice that 42 and 43 are not en-
cryption keys but rather indices into a table where
the keys can be found.

while message (12) could be encoded as in Fig-
ure 3 (in this technical report). Recall that B does
not possess K, ; this is the rationale for the entire
exercise.

Splicing the channels

Let us consider the following scenario: A is a server
and B is a client that uses one of A’s services. B
wants to authenticate the messages coming from
A; he knows that K, = A. For every message that
B receives from A (K[, says s) he needs to talk with
the relay for asking and receiving the translation.
This introduces performance and reliability issues.
What R could do, instead, is to create a temporary
shared key channel between A and B, by splicing
the channels A-R and B-R. To that end, R generates
a key K and two key identifiers K¢ and KP, to allow
A and B to get hold of the key.

K = (Kg, Encrypt(Kq, K)
K® = (K2, Encrypt(Ky, K)).
Now, R can easily tell B about the key K, by saying:

(14)

When B receives this message from R, he knows
that he has a shared key channel K with the princi-
pal who holds K}, (which is A, since, from what we
have assumed, B knows that K], = A). Now the
point is: how can R tell A about the key to use? In
our scenario, in fact, only A’s authentication is re-
quired: A answers the requests he receives regard-
less of the principal who is behind them. A possi-
ble solution is to delegate to B the task of telling

K} says K® = K.

A about the channel he has with B, i.e. about the
key to use when answering to A’s requests. This is
easily achieved if B’s request is:

Kb says s

where s is B’s request and K¢® = (K¢ Kb). A, by
accessing K¢, gets hold of the key K and answers
to B as follows:

KP says s

where s is now a reply message. R can easily tell
B about K¢ by including it in message (14), which
becomes:

K{ says Ke° = K.

Notice that, with this approach, neither A nor R
need to keep any state.

Authenticating the channel

So far, the assumption in our scenario was that
B knew K, = A. How can B get to know this?
The idea is to have a certification authority sign an
equivalent of a public key certificate, i.e.

KX, says K¥ = A

The crucial is: what should X and Y be?

The statement made by the certification author-
ity should be both general and accessible by every
principal. In order for the statement by the CA to
be readable by every principal, it has to be X = R
(If we put, for instance, X = B, C is not able to
read it). This way, every principal can ask the relay
to translate the statement made by the certification
authority. In our case, B will send two messages to
R

K, says KY = A

and
KpT

(signed-message

(says (public-key K,) (statement <s>))

(signature <signature>))

Figure 3: Signed message sent from R to B

while R will reply with
KP[K!, says KY = A

and B will infer (since he trusts both the CA and
R),
KY = A.

B wants to be able to infer A says s from K}, says

s, therefore he needs Y = R. For this reason, the CA
will issue

K{, says K = A. (15)

If we compare the certificate by the CA in the ar-
ticle with (15), we see that the latter has a missing
key identifier, namely K%. The reason why K¢ is
needed comes from the semantic of the certificate.
The CA is guaranteeing that K, is A’s key, the one
that A shares with R. In order to refer to the key
without explicitly quoting it, the CA uses R’s key
identifier. Now, assume that A wants to check that
the key he is using when speaking to relay R is re-
ally the one he is supposed to use (the one that has
been certified by the CA), or assume that he wants
to retrieve the key from the certificate by the CA3
A should be allowed to do so, and the only way to
make it possible is to add his key identifier to the
certificate, which becomes:

K, says K" = A

as in the article.

Splicing and authenticating

In the previous paragraphs we have seen how a re-
lay R can splice two channels into a channel K and
how R can translate a statement by the CA in order
to authenticate a principal (A). In order to do so,
the statements by R are, respectively:

K{ says Ke° = K[(16)

3This only works if the key identifier contains the key en-
crypted with the principal’s master key.

KP[KL, says K&™ = A. 17

R could do both things together, i.e. he could au-
thenticate the spliced channels. If B receives both
(16) and (17), since he trusts both R and the CA,
he understands

Kab = KL
and

Ko = A.

Then, by applying the transitivity property of =,
he gets
Kab :> A

R could also derive the same conclusions by him-
self and say (16) and (17) in one mouthful as fol-
lows:

KP[KL, says K® = A (18)

Again, (18) is obtained by using (16) inside (17)
and applying the transitivity property of =.
Two way authentication

If A has the same requirements for authentication
as B has, then R needs to produce symmetric state-
ments regarding B. Therefore, when splicing the
channels, R will send to A:

K¢ says K = K},

When splicing and authenticating at the same
time, R will fetch B’s certificate by the CA:

KL, says K" = B

and will tell A about the new channel he has with
B as follows:

K¢[KL, says K*® = B.

Principals with names

A single Certification Authority

This section describes the use of an on line agent
O, as discussed in Section 5.1. We have an highly
secure certification authority CA with key K¢,. As
long as CA is on line, there are no difficulties,
since it can issue K., says K, = A whenever it is
needed; assuming, of course, it can be established
that K. = CA.

There are two disadvantages related to the cer-
tificate K., says K, = A. The first is that it can not
be revoked unless it times out. This again makes it
necessary to either give it a very long time to live,
or having CA on line to reissue it whenever it times
out.

Keeping a key secret is less hard when the key
is off line. We want to construct a scheme where
we have an agent that is on line supporting CA
which is off line. In other words, certificates made
by CA is not valid unless O, the on line agent, veri-
fies them. But O alone can not make anything valid
that CA has not already certified.

Instead of certifying that K., says K, = A, CA
makes the “weaker” certificate:

Kea says (O|Kq AKg) = A 19)

(we will return in a moment to the “meaning” of
this certificate). O then counter-signs this by issu-
ing

O|K, says Kq = O|K, (20)

From these two, K., = A, and (P12) we again get
Ko = A if we proceed as follows: we start with
(19); in prose, it is:

“Keq assert that K, = A, if O also says
so”.

We assume that K., = A, and with (19) and (P8)
yields
A says (OKq AKy) = A
(P10) is used to obtain
OKa AKq = A (21)

In prose, (20) is: “O quoting the key K, implies
(says) that K, alone is as good as having O saying

that it is good”. Or, in other words, K is still valid.
Now, (20) with (P10) gives

Kqa = OKq (22)

The meaning of (22) becomes less obscure if we
use (P7) and substitute K, for A and O|K, for B.
Then we obtain

Ko = O|Kq =Kq = Kg AOIKg

using K, by itself is as good as having O saying it.
This certificate should have a limited validity (in
time).

We now substitute (22) in (21) and get

KaAKg = A
which, by (P4), gives us the desired

Ko = A.

Path Names and Multiple Authorities

It it not easy to obtain the public keys of others
in a secure way. There are two main reasons why a
centralized database is not a good solution. First, it
will be heavily loaded. Second, everyone will have
to trust it; finding an organization or person that
everyone trust is hard.

Even though we want to arrange certification au-
thorities in a tree, we do not want to give “/” the
authority to speak for everyone. For example, if we
have the following two certificates

/dec says / = /dec (23)

so that we can believe that

K/dec = /dec

when
/ says K, g.c = /dec

and
burrows says /dec = burrows

so that we can believe that
Kburrows = burrows

when
/dec says Kyyrrows = burrows

we end up with
/ = burrows 24)

since = is transitive. The problem is that DEC might
not accept (23) even though DEC is part of the tree,
and burrows might find (24) not to be true regard-
less of whether he works for DEC. Furthermore, as-
sume Alice issues the following certificate:

alice says Kyiice = alice

Incidently, Alice happens to be root of the tree, but
how is burrows going about to establish this fact?
It would have been nice to have

Kgec says Kaiice = root
and, vice versa:
(25)

in order for burrows to use (P10) and deduce that

Kaiice SAys dec = root

Kalice = root

The problem is that Alice might very well find it
somewhat inconvenient to issue (25).

We need a mechanism enabling us to model a
tree, where trust is localized but (nevertheless)
transitive. Furthermore, in a tree, the relations are
different upwards and downwards: this should be
visible. This means that it should be possible to
distinguish a ’"downward pointing’ certificate from
an 'upward pointing’. The underlying problem is
twofold: handoff is unconditional and “=" is tran-
sitive. And as we have seen, this is an issue both
‘up’ and ’down’ in the tree. We will walk through
an example before embarking on a discussion on
these mechanisms in general, and alternatives.

We start with burrow’s assumption about himself
and his position in the tree:

Churrows = /dec/burrows except nil (26)
which by the monotonicity of quoting is equal to
Cburrows|‘ .0 = (27)

(/dec/burrous except nil)|‘. ..

We also have that, by (N3), the right hand of this*
implies that:

(/dec/burrows except nil)|‘..’ =
/dec except burrows

“4Please notice that the very last period in (27) terminates the
sentence and is not part of the equation itself.

which, together with (26) and (27) demonstrates
that

Churrows| ¢« . > = /dec except burrows. (28)
In this position, a certificate is then issued:
Cburrowsl‘ .2 saySCdec :> (29)

/dec except burrows
which, by (28) and (P8), is equal to

/dec except burrows saySCgec =
/dec except burrows

and by using (P10) we get the desired

C4ec = /dec except burrows (30)

which is what burrows needs in order to know
something about his “parent” node in the tree.

There are several issues worth discussing regard-
ing these axioms and their application. The first
is whether they are needed at all. Basically the
concept of except captures that it is not unimpor-
tant who actually says what (not all parties are
equal); the position in the tree matters. Another
approach would be to introduce a “speaks for re-
garding” relation, where the “regarding” would be
“statements regarding positions in the tree”. Un-
fortunately the relation “speaks for regarding” has
deep-rooted problems also under very reasonable
semantics; please see the section named “Discus-
sion” at the end of this technical report.

The aim of the entire endeavor is for burrows to
obtain the credential

Cmit‘C:Lark Sayscclark :> (31)

/mit/clark except ¢..’.

It is reasonable to ask why mit simply do not issue
this certificate, and the usual axioms would apply?
If clark is to issue certificates for those below him
in the tree, their credentials would be

Cmit|Cc1ark‘a1ice SaYS Calice :>
/mit/clark/alice except ‘..~

and so on; this chain of quotes is not at all esthet-
ically appealing. The combination of except and
quote together maintains the fact that there is a

difference between a node speakign about a sub-
ordinate, and one stating his own position in the
tree.

Another point of importance is that burrow’s
view of mit’s rble (as external to mit) is quite
different from clark’s (as internal). Also this as-
pect is captured by the credentials that are in play.
This becomes evident when we notice that while
burrows infers

Cmit‘C]-ark says Cclark =
/mit/clark except ¢..’

to understand clark’s position, clark uses
Ceclarkl’ . . ? says Cpiy = /mit except clark

on exactly the same relation. If we issued certifi-
cates like (31), rather than infering credentials as
we have shown, this difference would vanish.

This last point also highlights the underlying ma-
chinery: The path upwards in a tree (from your
own position) is different from that of a peer de-
scending down towards you, even if the nodes that
are “visited” are identical.

Roles and Programs

Roles are used to restrict authority. There are two
reasons why roles are useful (and hence desirable):
first and foremost roles are used to make it possible
to restrict authority. Alice can delegate authority
over the role “Alice as User” without having to re-
linquish authority over “Alice as Manager”, or the
all-powerful “Alice”.

Secondly, one could believe that, based on by
(R1) and (R2), roles are only shorthand for quot-
ing. This is not the case, since the operator as
is strictly typed: the axioms only hold when the
right-hand side is a réle. The problem is that build-
ing proofs that contains arbitrary combinations of
A and | can take exponential time. As a higher-
level operator, as can be combined in fewer ways,
hence keeps the problem tractable.

Also notice the implementation issues stemming
from the fact that roles are part of a global name
space. That is, assume we have the following two
certificates:

A says B = (A as user)

and
P says B = (P as user)

How do we know that A and P have the same
understanding of the role user? Even though this
is related to an implementation, it is not a detail.

Loading Programs

If A doesn’t trust the file system, he computes the
digest D of the program text and looks up the name
P to get credentials for D = P. Obtaining the cer-
tificate in a trusted way takes away the need for
trusting the file system.

Not trusting the underlying file system creates
a difficult booting problem, which is discussed in
Section 6.2. In general, however, most file systems
are not local to the machine, but rather mounted
across some network.

Booting

A secure system consists of a chain of certificates
linking two principals together. The security of any
system is no stronger than that of the weakest link.
It is indeed an interesting problem to devise a prac-
tical installation procedure. Allowing users to have
physical access to a machine which contains a se-
cret key might turn out to be impossible. We are
then faced with a setting where personal comput-
ing is no longer possible. Or, more likely, personal
machines over which one has physical control will
replace the typical workstation of today.

Delegation

When authority is being handed over to another
principal, e.g. A says B = A there are two issues
to consider:

e The handoff is unconditional. If a certificate
that hands off authority needs to be verified,
an online certification service must be added
as discussed in Section 5.1.

e When A hands off his authority to B there is no
difference between A and B since, by (P7), we
have that (B = A) = (B = B A A); however,
see below for a discussion. So, if we want A to
acknowledge what B says, we need delegation
rather than handoff.

When B has been given the right to speak for A by
A we end up with the conclusion that B = A even
though B might not know that this is the case: If B
is careless, A might suffer. Now, B might not care
that A suffers—after all it was A how handed off
his authority, not B—but B might suffer as well. In
particular, others who known that B = A might
expect B to know, and to behave accordingly. But
how, in the general case, is B to know that it speaks
for A? Delegation is less strict than handoff in that
a delegation must be acknowledged.

Before we proceed, let us digress a moment to
discuss the semantics of B = A. Under the seman-
tics based on “possible worlds”, A would allow B to
speak for him, only when the set of worlds believed
possible by B is a subset of those believed possible
by A; if there are worlds believed to be possible by
B but not by A, it is impossible for A to let B speak
for him since B might enter a world which is im-
possible for A. An important consequence of this
semantics is that A might consider worlds possible
that B will never enter; A set of worlds might be
larger than those of B. Thus, even though B speaks
for A, A might say things not supported by B. Or,
with other words: it is too simplistic to claim that
A and B are equal when B = A.

Given the axiom

FAABIA= BforA (D1)
and the two certificates
A says BJA = B for A (32)
and
B|A says B|A = B for A (33)
we obtain

(A AB|A) says B/A = B for A
and by (D1) we get
(B for A) says B|JA = B for A
which by (P10) yields
B|A = B for A.

The crucial issue becomes visible in the conclu-
sion, since only when B explicitly quotes A does it
speak for B for A. This is essential during login,
where the user delegates to the workstation some
authority, and the workstation accepts it. Note that
by accepting the delegation the workstation has ac-
knowledged that the user is logged on.

Axioms for Delegation

As pointed out in the article in Footnote 24, a dif-
ferent set of axioms could have been used as the
basis of delegation:

B for A =BIAADIA
A= DA

(D5)
(D6)

These two axioms are more powerful than (D1)
and (D2). In fact, using only (D5) and (D6) is
possible to derive (D1)-(D4) as theorems.

As an example, we will derive here (D1): AABJA
can be written, using (D6) and (P7) as

ANDIAANBIA

Since by (P4) A is idempotent and commutative,
this is equal to

AANBJAABIAADIA.
Now,
AABIA=AABJAABAADIA
can be written, using (P7) as
AABIA = BIAAD|A
and by using axiom (D5) we get to (D1):
AABJA = B for A.

Let’s turn now to the meaning of (D5) and (Dé6).
A wants to delegate to B in a way that ensures that
B’s identity is visible in requests made by B on A’s
behalf. Therefore handoff (A says B = A) is not
appropriate. A new compound principal needs to
be introduced: B for A. A could use a delegation
service by the trusted principal D, to manage giv-
ing and revoking the delegation. A could tell D
about his delegation to B (by some means) so that,
whenever B|A says something, D|A, triggered by
B, says the same. B|A says s and DJA says s, to-
gether give (BJA A D|A) says s, which becomes,
using (D5) (B for A) says s.

In this setting D is a critical server: it must be
both highly available and secure; therefore it may
not be convenient to implement it. A more realis-
tic approach could be to allow the principals to be
their own delegation service. In other words, we
are introducing axiom (D6) in our model of reality.

10

What has changed now is the fact that, in order for
B for A to say something, we need both B|A and
A to say so. This is not what delegation is for: A
would better not be involved in confirming every
statement by B. He will rather delegate to B the
right to speak for B for A. In order to do so, he
will produce the certificate:

A says BJA = D|A. (34)

As long as this certificate is valid, B for A = B|A,
therefore A has to be careful in estimating its
lifetime?

There is an important drawback in this ap-
proach: B does not acknowledge the delegation.
Therefore, instead of certificate (34), A will pro-
pose the delegation to B as follows:

A says BJA = B for A (35
and B will acknowledge it:
B|A says BJA = B for A. (36)

Summing up, we can say that (D5) and (D6) are
the basic axioms for delegation. (D5) models the
concept of delegation, while (D6) models the shift
of the delegation service towards the principals.
Using only these two axioms, we can have (D1)-
(D4) as theorems. On the other hand, (D5) and
(D6) lead to a delegation certificate by A which is
too powerful (it does not need B’s awareness) and
involves a fake principal D. Instead, (D1) is what
we need to use for having delegation when certifi-
cates as (35) and (36) are used, while (D2)-(D4)
are what we need for the manipulation of expres-
sions with operator for. This is why for practical
purposes we will consider (D1)-(D4) as our ax-
ioms for delegation.

Login

When the user logs in, the user’s key K,, must be
used to sign certificates that are used to demon-
strate that the user is logged in; more on this below.
In the case a user actually has a public-secret key-
pair login proceeds as described in the paper; both
keys, or at least the private one, must be stored at a
safe location such as on a smartcard. Even though

50One of the reason for having a dedicated revocation service
was to manage revocation of delegation.

a malicious workstation can still wreck havoc on
the objects the user controls, the login will eventu-
ally time out and no further harm can be done; the
mechanisms for this are discussed below.

When authentication is done with passwords the
user is in a less favorable position. If we assume
that the password (or phrase) is used as an en-
cryption key (possibly after hashing it to a proper
length), this key then speaks for the user. This
key is then used to sign the certificate (37) shown
(and discussed) below. The issue here is that when
the user has given his password to the worksta-
tion, W = K,. The workstation will proceed as
usual (as discussed below), but there si a signifi-
cant difference: Since K,, is a shared key, the work-
station is not able to provide evidence that the user
is logged in (as opposed to has been). This is equiv-
alent to saying that the login certificate (37) does
not time out; there is no time limit on the malicious
behavior of a workstation.

Turning now to the analysis of login per se. At
login, a session key Ky is constructed by the work-
station. The user delegates to the combination of
the session key and the workstation by issuing

Ky says (K., A KKy = K,, for K, 37)

which in prose is:

the user, represented by the key K,,, says
that when the workstation, represented
by the key K,,, and the session key K; to-
gether quote the user, they speak for the
workstation for the user.

The user has tied together the three principals:
the user, the workstation and the session key, or
in other words, the user delegates some authority
to this workstation (K,,) during this login session
(Ky). Notice that K, is a newly generated, tempo-
rary, public key.

Because | distributes over A we can write (37) as

K, says (K., Ky AK{|Ky) = K, for K,

and we can clearly see that either K,, and K;
together must issue all statements (and explicitly
quote the user), or K,, must obtain the power to
speak for K.

The workstation now accepts (his part of) the
delegation, and acknowledges that it must coop-
erate with the session key:

KwlKy says (K, AKy)IK, = K, for K, (38)

11

which in prose is:

I (i.e. K,,) acknowledge that I am aware
that the user K., has said that whenever
I and K, together quote him, together we
speak for the combined principal K,, for
K-

In order for the delegation to be valid, also K;
must acknowledge (37) in the same manner as K,,
did in (38). However, the role of K is “only” to act
as a device to ensure that the delegation is limited
in time, and there is no need for K; to participate in
the exchange of messages. Hence, Ky will hand off
all its power to K,,, and in order to do so, issues:

Ky says Ky = K. (39

Armed with (39), K,, is as powerful as K is; re-
call that according to (P7) we have that A = B =
A = A A B. Since K,, = Ky it should be appar-
ent that K,,|K, = K/K,.. For this reason, there is
no need for K; to issue a certificate similar to (38).
Following this line of argument, it becomes clear
why (38) and (39) together accepts the delegation
offered in (37).

Note that (39) is an optimization and as such
should be given a fairly short lifetime.

Authenticating Interprocess
Communication

When two principals share a secret key they have
access to a channel, and whenever a message ar-
rives that can be decrypted by the key, we say
that the channel says something. Each message in-
cludes some identification of the sender, as must
be the case when several processes are multiplexed
through the node key. How this is done is irrelevant
as long as the identification is unique.

When a channel quotes a principal A saying s,
for example by transferring the message read (A,
s), we have that C|A says s. By (P2) this is equiv-
alent to C says A says s, and the usual axioms
apply. Recall that C might lie or be mistaken.

As an example of how this is used, Figure 7
shows an expanded version of the example in Fig-
ure 1. The issue at hand is to determine which
credentials must be supplied with a request to read
a file in a non-trivial setting. It is assumed that the

request is simply “read foo”, that the request is sent
on the (encryption) channel C, and the request is
somehow (by C) marked as originating from the
process running the Accounting application; we
name this process pr.

The AcL attached to the file contains “src-node
as Accounting for bwl may read”. We under-
stand this to be: “A machine that can provide ev-
idence it is configured such that it belongs to the
group of machines named src-node, and where
the Accounting application is running on behalf of
the user bwl, may read when the request is made
by the user.”

Three important credentials were generated as
side effects of booting the machine and bwl’s lo-
gin. They are shown in Table 1 (in this technical
report).

In addition to the credentials that were gener-
ated as part of booting and login, there is a set
of “standard” credentials that are (assumed to be)
available to the server, either by caching or by ac-
cessing a database of credentials. These are shown
in Table 2 (in this technical report).

By combining the credentials in Table 1 (in this
technical report) and Table 2 (in this technical re-
port) the server is able to derive a set of relation-
ships between the principals that are involved.

All the credentials in Tables 1 (in this technical
report) and 2 (in this technical report) are not suf-
ficient to accommodate the request. In particular,
although the server believes bwl is logged in on ws,
there is nothing tying the principals together. The
ACL requires that the machine, the operating sys-
tem, the application and the user all be asserted to
be operating in concert.

One possible solution would be that K,, cre-
ates a channel C, and issues a certificate asserting
that the channel speaks for the combined principal
“src-node as Accounting for bwl”. The question
is: is it in the power of K, to do so? It is, if we can
prove that:

Kn|Kpw1 = (src-node as Accounting) for bwl
From booting ws it follows that
kn = Kys as Taos
and because as is monotonic,

Ky as Accounting =

(Kys as Taos) as Accounting.

12

Credential

Kws says K, = K,,s as Taos

Kpwi says (Kn AKy)[Kpwi = Ki for Ky

Ky says K, = Ky

Comment

From booting ws (C1)
From bwl’s login (C2)
Also from login (c3)

Table 1: New Certificates

Credential

Kws = ws

ws as Taos = src-node

Kpwi = bwl

Comment

HW c4

HW + 0s (C5)
(Co6)

Table 2: Established certificates

Kn = K, as Accounting, since Accounting is a
role. Using the transitivity property of =, we get

Kn = (Kys as Taos) as Accounting.
Since for is monotonic we get

Ky, for Kyn =

((Kws as Taos) as Account ing) for Kyy1.

Now, since Ky, has delegated authority to K,,, we
have that K, |[Kpsa = Ky for Ky,z. Using the transi-
tivity property of =, we get

KnlKper = ((Kws asTaos) as (40)

Accounting) for K.
What we need now is to show that

((Kws asTaos) as Accounting) for Kyu1 =

(src-node as Accounting) for bwl.
Using K, = ws and as’s monotonicity, we get
Kyus as Taos = ws as Taos.

But ws as Taos => src-node, therefore, since = is
transitive,

Kys as Taos = src-node
Using, again, as’ monotonicity, we obtain

(Kys as Taos) as Accounting =

src-node as Accounting

Using the monotonicity of for:

((Kws as Taos) as Accounting) for Kyy1 =

(src-node as Accounting) for Ky,

Because Ky, = bwl and since for is monotonic,
we have

(src-node as Accounting) for Ky, =

(src-node as Accounting) for bwl

Putting the last two equations together, by the tran-
sitivity of = we get

((Kws as Taos) as Accounting) for Ky,; = (41)

(src-node as Accounting) for bwl.

By using (40) and, again, the transitivity of =,
we finally get to:

Kn[Kpe1 =
(src-node as Accounting) for bwl.

We have now proven that the server should ac-
cept the credentials of the channel C, and the pro-
cess running the accounting application can now
be allowed to use this channel.

There are (probably) many processes running on
ws, and many of them might be “speaking” to the
server. For simplicity, communication from all the
processes will be multiplexed on C. Thus, it is nec-
essary that each of these multiplexed channels is

13

(says <kbwl>
(speaks-for
(quote <C> <pr>)
(for

(as (as <kws> <Taos>) Accounting)

<Kbwl>)))

Figure 4: Message sent on C

clearly identified, and is assigned the correct cre-
dentials. The process running the Accounting ap-
plication is named pr, hence the channel we are in-
terested in is Clpr. This channel needs to speak for
src-node as Accounting for bwl for its requests to
be honored. According to the paper, the server is
able to deduce this credential from a message on
the shared channel C, which has the following cre-
dentials:

(42)
((Kws as Taos) as Accounting) for Ky

Ky K1 says Clpr =

The question is what this message “says” and how
it is encoded.

The content of the message is: when a request
arrives on the channel C quoting process pr, it has
the credentials of

((Kyys as Taos) as Accounting) for Ky,

Because of statement (41) and the transitivity of
=, it also means that C|pr has the credentials of

(src-node as Accounting) for bwl.

The server will believe it, because of (40) and the
handoff rule.

Turning now to how the message is encoded: the
message will appear on channel C, since C = K,,.
To highlight this, we rewrite (42) as follows:

(43)
((Kws as Taos) as Accounting) for Kyyi.

C says K1 says Clpr =

The actual message on channel C would be the en-
coding of everything that appears after “C says” in
statement (43). A possible encoding is shown in
Figure 4 (in this technical report).

Discussion

The theory in this article lacks a semantics; there
is no discussion about what the different construc-
tions “mean”. An effort to remedy the situation is
presented in [7]. There it is made clear that as-
signing a semantics reveals subtle but important
problems. In particular, assume that the “speaks
for” operator is limited to a “speaks for regarding”-

operator where A 2 B means that A speaks for B
on statements in the set T. The problem is that with
the semantics that seems natural (using the same
possible-world setting as in this paper) we get the
surprising relation:

(ASB)A(A=B) 2 (AL B)

This indicates that a limited version of “speaks for”
might require a more detailed investigation.

Another approach is taken by spki [4, 5]. There,
certificates can be augmented with a “no delega-
tion bit”; this captures the fact that the meaning
of “speaks for” is dependent on the object. On the
surface, when this bit is set it simply says that the
rights granted in the certificate can not be dele-
gated (further). However, in effect a new opera-
tor “speaks for but not delegatable” has been in-
troduced: we write this as —|. Now we face the
problam that transitivity of “speaks for” ceases to
hold; see the discussion regarding “Statement 3”
on page 3 in this technical report.

The relationship between = and —| is the fol-
lowing:

(A=BJABHC)DA-C
(A4 BAB=C)pA=C
(A—{BJAB=C)pA 4 C

and this would complicate all the proofs we have
carried out.

Based on these two observations we can only em-
phasize the same argumentas before: Before any
theory can be used to reason about a (real) system,
the validity of the axioms must be examined care-
fully; see the discussion on axioms in the section
on Statements, on page 2 in this technical report.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

Martin Abadi and Mark Tuttle. A Semantics
for a Logic of Authentication. In Proceedings
of the 10th Annual ACM Symposium on Prin-
ciples of Distributed Computing, pages 201-
216, August 1991.

Ross J. Anderson. Security Engineering. John
Wiley & Sons, Inc., 2001. ISBN 0-471-38922-
6.

Michael Burrows, Martin Abadi, and Roger
Needham. A logic of authentication. ACM
Transactions on Computer Systems, 8(1):18-
36, February 1990. Also available as DEC
SRC Research Report 39, originally published
February 28, 1989, and revised on February
22, 1990.

Carl Ellison. SPKI requirements. RFC 2692,
The Internet Society, September 1999.

Carl M. Ellison, Bill Frantz, Butler Lampson,
Ron Rivest, Brian Thomas, and Tatu Ylonen.
SPKI certificate theory. Rfc, The Internet So-
ciety, September 1999.

Li Gong and Paul Syverson. Fail-Stop Proto-
cols: An Approach to Designing Secure Pro-
tocols. In Proceedings of the 5th IFIP Working
Conference on Dependable Computing for Crit-
ical Applications, Urbana-Champaign, Illinois,
September 1995.

Jon Howell and David Kotz. A formal
semantics for SPKI. Technical Report
2000-363, Department of Computer Sci-
ence, Dartmouth College, March 2000.
Extended version of [8]. Available from
http://www.cs.dartmouth.edu/reports/
abstracts/TR2000-363/.

Jon Howell and David Kotz. A formal seman-
tics for SPKI. In Proceedings of the Sixth Euro-
pean Symposium on Research in Computer Se-
curity (ESORICS 2000), volume 1895 of Lec-
ture Notes in Computer Science, pages 140-
158. Springer-Verlag, October 2000.

Butler Lampson, Martin Abadi, M. Burrows,
and E. Wobber. Authentication in distributed

15

systems: Thory and practice. ACM Transac-
tions on Computer Systems, 10(4):265-310,
November 1992.

[10] Richard E. Smith. Authentication. Addison-
Wesley, 2002.

16

