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Summary  
The quality of farmed fish is assessed according to multiple criteria including freshness, fat 

content, blood spots, flesh colour and gaping. Blood spots and residuals have become more 
frequent in fish fillets, after the reorganisation of the industry with a shift from small manually 
operated slaughterhouses to larger and more mechanized production lines. This has led to 
increased degree of rejection by consumers and financial losses. Today, blood residuals are 
mainly detected by manual visual inspection. However, this method is labour-intensive and 
involves subjective evaluation and thus a high degree of inaccuracy. 

The main objectives of this work was to find and establish an appropriate method to 
measure residual blood and blood spots in fish muscle and to study factors contributing to the 
problem in order to help the industry improve slaughter procedures.  

A chemical method used to quantify haem pigment in meat was adapted and established 
for quantifying blood in fish muscle. However, use of chemical methods involve toxic chemicals 
and are destructive to the product, they are therefore not suited in industrial food production. 
Nevertheless, the chemical method demonstrated that the amount of residual blood and blood 
spots were influenced both by pre-slaughter activity, killing procedures, chilling and storage 
conditions. In particular, percussive stunning prior to bleeding was proved better in terms of 
residual blood compared to carbon dioxide (CO2) stunning. In terms of fish welfare, CO2 
anaesthesia is not recommended, as it creates vigorous activity among the fish before they 
were proper stunned. Pre-mortem activity also resulted in more blood in the fish muscle.  

The primary chromophore that gives the blood its characteristic colour is haemoglobin (Hb). 
Visual and near infrared (VIS/NIR) spectroscopy is a rapid technique and may be a valuable tool 
for the assessment of the blood residuals in fish fillets. Thus, with the chemical method as a 
reference, it was anticipated that VIS/NIR spectroscopy could be used to quantify haem pigment 
in whole fish fillets. A correlation between the VIS/NIR and chemical measurements of Hb in fish 
muscle was found. Most of the information regarding Hb in the fillet was found in the visible 
range (400–700 nm), but the 400–1100 nm ranges resulted in the lowest error of prediction. Even 
so, the error of prediction was still too high to recommend this method for industrial application.   

Detection limits and correlation of VIS/NIR measurements are influenced by the substance 
used for calibration. Mammalian Hb has been used as reference when measuring blood Hb. 
However, when comparing the optical spectra of mammalian and fish Hb, significant differences 
with respect to absorbance in the visible range (450-700 nm) was found. The fish Hb was also 
influenced by pH, resulting in deoxygenating and increased auto-oxidation and thus pH related 
differences in absorption spectres were evident.  

The knowledge gained through this work, regarding blood residuals in fish muscle, suggests 
measures in the slaughterhouse to improve bleeding. Added knowledge to improve online or 
automated VIS/NIR inspection of blood residuals was also gained. With regard to fish welfare 
and muscle quality, the stunning methods used today are disputed. Further studies are needed 
to improve these methods and their goal should be to satisfy both the requests for fish welfare 
and to improve muscle quality. Further studies should also focus on possible industrial 
application of using non-contact imaging spectroscopy to assess residual blood in fish fillets, 
using fish Hb spectra as a reference. In addition, studies investigating possible differences in 
the Hb spectra between fish spices are both academically interesting and may also have 
relevance if VIS/NIR spectroscopy is to be applied industrially. 
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Sammendrag 
Kvaliteten på fisk blir industrielt vurdert etter kriterier som ferskhet, fettinnhold, blodflekker, 

muskelfarge og filetspalting. En omorganisering og konsentrasjon i oppdrettnæringen har ført til en 
overgang fra små slakterier til større og mer mekaniserte eller automatiserte anlegg med høy 
slaktekapasitet. Samtidig har også uønskede blodflekker eller høyere innhold av blod i fiskemuskel 
blitt et økende problem. Dette har ført til reklamasjoner og økonomiske tap for produsentene. Fysisk 
aktivitet før slakting, levende kjøling, valg av bedøvelses- og bløggemetode antas å være faktorer 
som kan påvirke mengden av restblod i fiskemuskelen. I dag kontrolleres normalt rester av blod ved 
manuell visuell inspeksjon av fileten. Kontrollene er derfor både arbeidskrevende og de innebærer 
subjektive evalueringer med mulighet for høy grad av unøyaktighet. Dette gjør det vanskelig å 
vurdere forskjellig grad av utblødning mellom enkeltfisk.  

Målet med dette arbeidet har derfor vært todelt, å bedre kunnskapen om påvirkningen de 
ulike enhetsoperasjonene ved slakting av fisk har på utblødning, samt framskaffe kunnskap som kan 
bidra til å etablere en mer objektiv kontroll av mengden blod i fiskemuskel etter slakting. 

En kjemisk metode for måling av hem pigment ble adoptert fra kjøttindustrien og etablert 
som referansemetode i dette arbeidet. En kjemisk analyse av hem pigment involverer imidlertid 
giftige kjemikalier og er i likhet med manuelle visuelle metoder arbeidskrevende. I tillegg ødelegges 
produktet ved analyse og metoden er derfor ikke egnet ved industriell produksjon. Uansett, den 
kjemiske metoden viser at mengden hem pigment i muskel påvirkes både av stress før slakting, 
avlivningsmetoder, kjøling og lagring. Spesielt ble det funnet at bedøving ved bruk av slag før 
bløgging er optimalt med hensyn til innhold av restblod.  Bruk av karbondioksid (CO2) anbefales 
heller ikke til bedøving fra et produksjonsteknisk ståsted, da den fører til svært høyt aktivitetsnivå på 
fisken og derved større mengde blod i muskelen. Også ut fra et dyrevelferdsmessig aspekt er bruk av 
CO2 som bedøvelse omstridt, da dette utvilsomt er stressende for fisken.   

I blod er det hemoglobin (Hb) som er den primære fargebæreren og som bidrar til den 
karakteristiske rødfargen. Neste skritt var derfor uttesting av en ikke-destruktiv og objektiv metode 
basert på visuell og nær infrarød (VIS/NIR) spektroskopi for måling av restblod i fiskemuskelen, der 
den kjemiske metoden ble brukt som referanse. Vi fant en bedre sammenheng mellom kjemisk og 
VIS/NIR spektroskopisk måling av hem pigment i muskelen enn den ovenfor beskrevne manuelle 
metoden. I fiskemuskel er mesteparten av informasjonen rundt hem pigment funnet i det visuelle 
området (400-700 nm), men også informasjon fra NIR delen (700-1100 nm) av spekteret var av 
betydning. Hele VIS/NIR spekteret (400-1100 nm) ga derfor lavere prediksjonsfeil. Imidlertid ble 
sammenhengen mellom den kjemiske og VIS/NIR metoden vurdert til å ikke være god nok for å 
anbefale metoden brukt industrielt. 

Ved slik bruk av VIS/NIR spektroskopi er forbindelsen som benyttes til kalibrering 
avgjørende for resultatet. Normalt benyttes Hb fra pattedyr som standard for bestemmelse av total Hb 
konsentrasjon i blod. En sammenligning av Hb spektra mellom pattedyr og fisk ble derfor 
gjennomført i det visuelle området (450-700 nm). Resultatene viste store forskjeller med hensyn til 
absorpsjon. Dette gjør Hb fra pattedyr er mindre egnet som referanse for kalibrering. Fiske-Hb er 
påvirket av pH, noe som resulterer i deoksygenering, samt økt autooksidasjon, og derved også endret 
absorpsjonsspekter. Automatisert VIS/NIR spektroskopisk metode for måling av restblod i 
fiskemuskel antas derfor å kunne utvikles og forbedres ved å bruke Hb fra samme fiskeart som 
referanse.  

Kunnskap fra dette arbeidet kan benyttes til å bedre utblødning gjennom endringer i 
slakterutinene, samt fremover å utvikle bedre industrielle metoder for kontroll av rester av blod i 
produktet. Med hensyn til fiskevelferd og slaktekvalitet er bedøvelsesmetodene brukes i dag 
omstridt. Videre studier er nødvendig for å forbedre disse metodene slik at både velferd og 
kvalitetskrav blir tilfredsstilt. En bør også fokusere på mulig industriell anvendelse av avbildende 
spektroskopi for å vurdere restblod i fiskefilet, med spektra fra fisk Hb som referanse. Nye studier 
som ser på eventuelle forskjeller i Hb spektra mellom forskjellige fiskeslag er av faglig interesse og 
kan ha relevans dersom VIR/NIR spektroskopi skal anvendes industrielt.   
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Introduction 
 

1 Introduction  

In Norway, Atlantic salmon, rainbow trout and Atlantic cod are the most important commercial 

farmed fish species. In 2009 859 056 metric ton salmon, 76 091 metric ton rainbow trout and 

20 683 metric ton cod were produced (SSB, 2010). Successful farming has enabled a 

continuous supply of high quality fresh fish to the market, giving fish farming an advantage 

over traditional fisheries. In salmon and trout industry, control of the biological production 

process, the post-mortem biochemistry and various quality parameters has enabled a number of 

productivity enhancing innovations. These have contributed to reduce the production cost and 

price to the consumer during the last two decades. Altogether this has made farmed salmon 

products competitive compared to meat, chicken and wild-caught salmon (Asche et al., 2008; 

Borderías and Sánchez-Alonso, 2011). Opposite of this, Atlantic cod farming industry is 

struggling due to a high production costs. The cost of capture and inherent marked price of 

wild cod is substantially lower than the production cost of farmed cod (Engelsen et al., 2004; 

Fauske, 2008). Due to high production costs and market price, it is important that loss of 

quality and value due to common defects such as poor bleeding, fillet gaping and muscle 

softening is avoided. Thus farmed cod may have the same potential, in terms of production 

efficiency and cost reduction, as farmed salmon (Standal and Utne, 2007; Fauske, 2008). 

The colour of fish muscle is an important criterion when potential consumers evaluate fish 

fillets. Customers expect white fish to be white and it may hence be rejected if the muscle is 

only slightly darkened or discoloured. The main factor responsible for colour change in white 

fish is residual blood, i.e. the colour intensity is depending on the content and chemical state of 

haemoglobin (Hb) (Love, 1978; Mancini and Hunt, 2005; Saenz et al., 2008). In the fish 

farming industry, blood spots have lately become more frequent, leading to unacceptable 

appearance and financial loss (Michie, 2001; Robb and Whittington, 2004). Residual blood in 

fish fillet is mainly an aesthetic problem, but can also contribute to and alter several other 
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quality parameters, including reduced shelf life, lipid oxidation, rancid odour, muscle softening 

and inherent loss of important nutrients (Tretsven and Patten, 1981; Ando et al., 1999; 

Undeland et al., 2004; Pazos et al., 2005; Sakai et al., 2006; Larsson et al., 2007; Richards et 

al., 2007; Vareltzis et al., 2008; Pazos et al., 2009; Richards et al., 2009; Maqsood and 

Benjakul, 2010). Despite the economic importance for the industry, the problem of residual 

blood has not been extensively studied.  Several production parameters, such as pre-slaughter 

stress due to crowding, chilling, anaesthetisation and exsanguination techniques, may influence 

the amount of residual blood in the fillet (Skjervold et al., 1999; Robb et al., 2003; Roth et al., 

2005a; Olsen et al., 2006; Olsen et al., 2008; Roth et al., 2009a; Roth et al., 2009b). A more 

strict control of these factors may improve the total quality of the product. 
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2 Fish slaughtering  

Traditionally, fish slaughtering methods were chosen based on their simplicity and operating 

costs. For captured fish, suffocation in air or live chilling on ice (hypothermia) are the oldest 

methods and are characterised by a prolonged suffering period before death. Other methods 

used for killing fish are gill- or throat cutting and direct gutting in combination with the former 

to ease the slaughter process (Tretsven and Patten, 1981; Botta et al., 1986; Robb and Kestin, 

2002; Poli et al., 2005). In the fish farming industry, the most common processing line include 

live chilling, carbon dioxide (CO2) stunning in seawater, cutting of gill arches, bleeding, 

gutting, washing, chilling, sorting/grading and packing on ice (Erikson et al., 1999). During 

slaughtering, the chances of exposing fish to considerable acute stressors and handling are 

evident and this has a detrimental effect on bleeding and overall muscle quality (Erikson et al., 

1999; Roth et al., 2005a; Olsen et al., 2006; Erikson and Misimi, 2008; Olsen et al., 2008). 

Thus, gentle handling, stunning and bleeding are important factors in improving flesh quality 

of fish (Ando et al., 1999; Richards and Hultin, 2002; van de Vis et al., 2003; Undeland et al., 

2004; Pazos et al., 2005; Sakai et al., 2006; Roth et al., 2009a). Therefore, chilling of live 

farmed fish prior to anaesthetisation and slaughter was introduced in Norway in order to reduce 

pre-slaughter stress and delay onset of rigor mortis (rigor), and accordingly to enable pre-rigor 

filleting (Skjervold et al., 1999; Skjervold et al., 2001).  

However, in the last decade there has been an increased attention to welfare of fish during 

slaughter procedures. In Norway, it is decreed by law that all farmed fish must be stunned prior 

to bleeding to assure fish welfare (Lovdata, 2009). Therefore, rapid loss of consciousness and 

death is important (Robb and Roth, 2003; Robb and Whittington, 2004; Sorensen et al., 2004). 

Carbon dioxide is the only allowed chemical stunning agent used in fish slaughtering intended 

for human consumption. Thermal cold shock, combined with CO2, is the most common method 

to stun farmed fish (Burka et al., 1997; Erikson et al., 1999; van de Vis et al., 2003; Roth et al., 
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2006; Erikson, 2008). Nevertheless, the use of CO2 as a stunning agent is disputed with regard 

to fish welfare (van de Vis et al., 2003; Hastein et al., 2005; Poli et al., 2005; Olsen et al., 2006; 

Roth et al., 2006; Digre et al., 2009). It has also been demonstrated, that killing with reduction 

of acute stressors such as percussive stunning and specific electrocution techniques can 

improve muscle quality of slaughtered fish (Robb and Kestin, 2002; van de Vis et al., 2003; 

Robb and Whittington, 2004; Hastein et al., 2005; Poli et al., 2005; Olsen et al., 2006; Ashley, 

2007; Terlouw et al., 2008; Digre et al., 2009). In 2003 the Norwegian government authorised 

both percussive stunning and electrocution as new methods for the stunning of fish prior to 

slaughter.  

 

2.1 Pre-slaughter handling 

Farmed fish are in general fasted for 7-14 days depending on the season and the seawater 

temperature. The starvation, prior to slaughter, enables the gut to empty and slows down the 

metabolic rate. This contributes to improved quality and hygiene of the final product (Einen 

and Thomassen, 1998; Morkore et al., 2008). 

Live fish are transported by well boats to the processing plant where they are either processed 

immediately or kept in holding cages in order to recover after transportation. Harvest of fish 

from the cage and transport to the slaughter facility involve handling and thus stressors 

(Erikson, 2008). Today, pressure-vacuum pumps are frequently used to transport fish from the 

vessel or cage. Before pumping, the fish is crowded by reduction of the water volume in the 

cage. Crowding may also take place when the fish is unloaded from the vessels. Crowding may 

results in physical damage and suffocation of the fish (Hastein et al., 2005; Poli et al., 2005; 

Midling et al., 2008). 
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2.2 Stunning  

2.2.1 Carbon dioxide  

Traditionally, hard carbon dioxide (CO2) stunning is an easy method to stun large amounts of 

fish and loss of consciousness is obtained within minutes. Gaseous CO2 is highly soluble in 

cold seawater, and the pH of the water decreases as it becomes saturated with CO2. The fish are 

netted or pumped into CO2 saturated water and left until movement stops (Bernier and Randall, 

1998; van de Vis et al., 2003; EFSA, 2004). The CO2 narcosis occurs as a result of severe 

acidosis which reduces the brain pH and inhibits the cerebral activity (Yoshikawa et al., 1991; 

Yoshikawa et al., 1994). An alternative method to the hard stunning is mild CO2 anaesthesia in 

combination with sufficient supply of oxygen. A one step process, by means of CO2/O2 in a 

refrigerated seawater (RSW) tank, has been introduced. This method has gradually grown to be 

the most frequently used stunning method for farmed fish in Norway. However, the fish tend to 

show vigorous activity due to the sensations of strangulation when they enter the anoxic water 

(Robb and Kestin, 2002; Erikson et al., 2006; Olsen et al., 2006; Roth et al., 2006; Erikson, 

2008) and CO2 stunning is thus considered to be inhumane (EFSA, 2009). A ban on CO2 

stunning of fish has therefore been adopted but has not yet been implemented. The industrial 

transition from CO2 to electrocution or percussive stunning has led to an increase in quality 

defects such as increased blood spot formation and bruises in the product (Digre et al., 2009; 

Lambooij et al., 2010). Dispensation from the ban is still granted if the welfare of the fish can 

be documented throughout the process. However, a reconsideration of the different stunning 

methods, and combinations of these, are under evaluation by the Norwegian Food authorities 

(Hjeltnes et al., 2010).  
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2.2.2 Electrocution 

Electrical stunning methods are used in the fish farming industry today, both in the UK and in 

Norway, but these methods are still under development as technologies. This is an efficient 

method to stun large amounts of fish. The principle is to pass sufficient current through the 

brain to ensure proper stunning. The electrocution is achieved by directly applying electrodes 

to the head of the fish (dry stunning) or by exposing the fish to an electrified water bath (Lines 

et al., 2003; Robb and Roth, 2003; Lambooij et al., 2004; Roth et al., 2009a; Lambooij et al., 

2010). The challenge with electrocution is to avoid carcass damage such as muscle 

haemorrhages caused by bursting blood vessels and broken spinal columns. Electrocution can 

also influence muscle pH, onset of rigor, muscle texture and fillet gaping (Robb and Kestin, 

2002; Roth et al., 2003; van de Vis et al., 2003; Gregory, 2005; Roth et al., 2009a; Lambooij et 

al., 2010).  

2.2.3 Percussion  

Traditionally, percussive stunning has been achieved by delivering a blow to the head of the 

fish with a wooden priest. This disrupts the normal brain functions. Provided that the blow is 

accurate, percussive stunning renders the fish unconscious immediately (Robb et al., 2000; 

Robb and Kestin, 2002; van de Vis et al., 2003; Sorensen et al., 2004). Today mechanical 

percussive stunners, which also enhance bleeding immediately after stunning, are used (Roth et 

al., 2007a; Midling et al., 2008). However, large variation in fish size is a challenge when 

applying this technique. This can result in broken jaws, burst eyes, haemorrhages and 

insufficient stunning (Roth et al., 2007a; Lambooij et al., 2010).  
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2.3 Bleeding fish  

Bleeding is normally applicable to medium or large fish species, but not small pelagic species 

like herring, sardines, sprat and mackerel (Borderías and Sánchez-Alonso, 2011). Bleeding fish 

to improve flesh quality and accelerate death has a long tradition in the Nordic countries. A 

process known from the Old Norse (blóðga) is to cut the throat of fish in such a way that the 

fish are exsanguinated. However, in Norway bleeding fish was first decreed by law in fisheries 

in 1933 (Anderssen, 1934; Tretsven and Patten, 1981). Bleeding is also regulated by law in fish 

farming. Several methods have been practised to accelerate death and remove the majority of 

blood volume from the fish. Bleeding techniques such as cutting the gill arches, the throat, or 

the arteries in the neck (Figure 1), and even direct evisceration are frequently used methods. 

However, the method used has minimal influence on the residual blood in the muscle. 

Vasodilatation in peripheral tissues due to pre-slaughter stress or crowding, the time elapsed 

between death and bleeding, chilling, anaesthetisation, muscle contraction, the blood 

coagulation time and gravity are more important factors (Warriss and Wilkins, 1987; Skjervold 

et al., 1999; Richards and Hultin, 2002; Robb and Kestin, 2002; Robb et al., 2003; Lambooij et 

al., 2004; Roth et al., 2005a; Olsen et al., 2006; Olsen et al., 2008; Roth et al., 2009a; Roth et 

al., 2009b).  

 

Figure 1. Three common methods used for bleeding fish. 1. Cutting the throat and ventral aorta. 2. Cutting the 

dorsal aorta in the neck. 3. Cutting the gill arches.    
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3 Fish muscle, cardiovascular system and blood  

3.1 Muscle 

Fish typically have two distinct muscle types and these are classified according to colour; a 

large mass of white muscle and a smaller band of red muscle running the length of the animal 

just under the skin (Johnston, 1980; Summers, 2004; Saguer et al., 2006). Generally in 

whitefleshed fish species, 90% of the fish skeletal muscle is composed of anaerobic white 

fibres, which gives the flesh its characteristic light colour. The haem pigment found in white 

muscle originates mainly from Hb in blood (Johnston, 1980; 1981; 1983). In the skeletal 

muscle of tuna and other darkfleshed fish species the level of haem proteins (myoglobin and 

haemoglobin) is high, which cause the attractive red muscle colour (Brown, 1962; Schubring, 

2008). In contrast, the salmonid species have the ability to deposit dietary carotenoids in their 

muscle tissues, which gives the distinctive red flesh coloration (Shahidi et al., 1998). 

Myoglobin is the predominant haem pigment present in cardiac and aerobic red skeletal 

muscles of all vertebrates. This is a single chain globular protein with an iron containing haem 

group in the centre. The primary role of myoglobin is as an oxygen storage unit, providing 

oxygen from the capillary to the mitochondria in aerobic red muscles (Marcinek et al., 2001; 

Hankeln et al., 2005). Dark muscle fibres generally have higher levels of haem pigment 

(myoglobin and haemoglobin), mitochondria, fat and glycogen compared to white muscle 

fibres (Haard, 1992). The capillary vascularisation differs between dark and white muscle 

tissues. The capillaries cover 18-25% of the dark aerobic muscle fibre surface, whereas only 

0.2 – 9.0% in white anaerobic muscle (Soldatov, 2006).  
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3.2 Cardiovascular system  

The teleost circulation system is of considerable interest when studying exsanguination during 

slaughter. The cardiovascular systems of fish differ from the system found in mammals (Figure 

2). A fish heart is constructed for single circulation, containing a two chambered structure. The 

fish heart consists of a sinus venosus, atrium, ventricle and bulbus arteriosus that ends in the 

ventral aorta. A mammalian heart is constructed for double circulation (pulmonary and 

systemic), and consists of a four chambered structure. The pulmonary circulation is related to 

the lung aeration of blood. Deoxygenated blood from the body is pumped to the lungs where it 

is oxygenated and then returns back to the heart to increase the blood pressure. The systemic 

circulation is the mayor circulation of oxygen-rich blood pumped from the heart to the arteries 

and capillaries in the body (Randall, 1970; Farrell and Jones, 1992; Huss, 1995; Moorman and 

Christoffels, 2003). In fish, venous blood is entering the heart via sinus venosus with a pressure 

below atmospheric and up to 10 mmHg. The fish heart then forces the venous blood towards 

the gills via the ventral aorta, with a blood pressure between 10-40 mmHg (species variation). 

After being aerated in the gills, the blood pressure decreases by 50%. However, in fish, the 

aerated blood is not returned back to the heart (Figure 2). Instead, the arterial blood is forced 

into the dorsal aorta that runs just beneath the vertebral column and is dispersed further into the 

different tissues and organs via arteries, arterioles and the capillaries (Figure 3).  

Fish also have a secondary circulation system, which is an arterial-capillary-venous system 

derived from the primary circulation system. This system supplies the fins, tail and skin with 

blood. The capillaries are drained into a large collecting vein, which flows towards the head. In 

salmonids, a “caudal heart” forces blood from the secondary capillaries system in the tail into 

the caudal vein, driven by skeletal muscle contractions. The venous blood then returns to the 

heart, by the posterior cardinal vein, which is also located beneath the vertebral column. All the 

veins gather into one blood vessel (sinus venosus) before entering the heart, with a venous 
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blood pressure close to zero. Thus, skeletal muscle contractions, vasodilators and capillary 

attraction are believed to play important roles in the transportation of venous blood, which is 

helped by a system of paired valves inside the veins, preventing counter flow (Randall, 1970; 

Farrell, 1991; Bushnell et al., 1992; Satchell, 1992; Huss, 1995; Olson, 1996; Farrell et al., 

2001; Sandblom et al., 2005; Sandblom and Axelsson, 2007). This indicates that a beating 

heart is not necessary for efficient exsanguination during slaughter, which furthermore has 

been confirmed in slaughter experiments where the impact of different killing procedures has 

been studied (Robb et al., 2003; Roth et al., 2005a; Olsen et al., 2006; Roth et al., 2006; Olsen 

et al., 2008; Roth et al., 2009a; Roth et al., 2009b).  

 

Figure 2.  Blood circulation in fish and mammals (Eriksson and Johnson, 1979; Huss, 1995) 
 

Figure 3. A general sketching of the blood circulation in fish. Drawn after Bushnell and Satchell (Bushnell et al., 

1992; Satchell, 1992).  
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3.2.1 Regulation of the vascular system 

Like all other vertebrates, fish cannot fully perfuse the vascular system, because there is 

insufficient capacity to simultaneously support the blood flow demands for exercise, digestion 

and maintenance functions. During digestion and exercise a redistribution of blood flow occurs.  

In resting unfed fish, the blood flow to the gastrointestinal tract accounts for approximately 

30%–40% of the cardiac output, but during periods of aerobic exercise the gastrointestinal 

blood flow decreases. However, after feeding the gastrointestinal blood flow can increase up to 

85% via an increased cardiac output and redistribution of blood to the digestive system. Under 

physical stress fish are also able to redistribute the blood flow and thus increase the blood 

content in the muscle, prioritising swimming over digestion (Randall, 1970; Axelsson and 

Fritsche, 1991; Thorarensen et al., 1993; Farrell et al., 2001; Soldatov, 2006; Altimiras et al., 

2008). Pre-slaughter activity and stress can therefore increase the blood volume in the muscle. 

Thus, only the blood present in the gills, or in the vessels close to them, may be purged when 

the gills are cut (Olsen et al., 2006).  

 

3.3 Blood  

Blood volume in birds and mammals is normally 7-10% of the body weight (7-22% in marine 

mammals), 3-8% in reptiles and amphibians, and 3-7% in most elasmobranchs and teleost fish 

(Brill et al., 1998; Williams and Wortby, 2002; Saguer et al., 2006). It is widely accepted that 

in fish blood, like in most other vertebrate blood, erythrocytes (red blood cells) are the 

dominant cell type and the numbers range from 0.8-3.5 million μL-1. Fish erythrocytes are 

different from mammalian erythrocytes. Fish erythrocytes have an oval shape, they may be 

nucleated or not, and are larger than mammalian erythrocytes (de Souza and Bonilla-Rodriguez, 

2007; Vazquez and Guerrero, 2007). Teloeosts generally have a volume of packed red blood 

cells (PCV) greater than 20%. In spite of that, the volume of PCV is depending on temperature, 
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salinity, stress, disease etc. Stress among other factors can result in spleen red cell release and 

erythrocytic swelling. The PCV range from 15-30% in Atlantic cod whole blood and for 

salmonids as an group the PCV range from 20-50% (Gallaugher and Farrell, 1998).  

3.3.1 Blood coagulation  

Fish are aquatic vertebrates and are members of the largest and most diverse vertebrate taxon. 

They have adapted numerous mechanisms for clotting wounds rapidly in water. Stress affects 

the coagulation rate of the blood, as the rate of coagulation increases as stress increases (Ruis 

and Bayne, 1997; Tavares-Dias and Oliveira, 2009). It is well known that chilling delays blood 

coagulation. Rapid blood clotting can prevent proper exsanguination. Therefore, both chilling 

and rinsing blood from the wound can play an important role during exsanguination (Connell, 

1995; Olsen et al., 2006; Roth et al., 2009b).  

3.3.2 Haemoglobin (Hb) 

Haemoglobin is a globular protein that is present in red blood cells of all vertebrates. Generally, 

the Hb molecule consists of four globin chains, each chain having an iron containing haem 

group that is responsible for the reversible binding of O2. The main function of Hb is O2-

transport from the gas-exchange organs to peripheral tissues (Marcinek et al., 2001; Hankeln et 

al., 2005; de Souza and Bonilla-Rodriguez, 2007). There is a chemical similarity between 

myoglobin in muscle and Hb in red blood cells (erythrocytes). The different chemical states of 

Hb in the erythrocytes are called Hb derivatives and the most common derivatives are 

oxyhaemoglobin (OHb), deoxyhaemoglobin (HHb), carboxyhaemoglobin (COHb) and 

methaemoglobin (metHB). Hence, when recording optical absorbance spectrum of blood, these 

derivatives can be identified (Figure 4) by visible spectroscopy (450–700 nm) (Snell and 

Marini, 1988; Steinke and Shepherd, 1992; Zijlstra and Buursma, 1997; Volkel and Berenbrink, 

2000; Zijlstra et al., 2000; Jensen, 2007). In freshly drawn blood, the OHb and HHb forms are 
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the primary chromophores that give the blood its characteristic cherry-red colour (McMurdy et 

al., 2008). Nevertheless, the Hb in a fish blood sample will rapidly start to oxidise when 

exposed to air and the colour will then change from bright red to brownish. Thus it is the state 

of haem-iron that dictates the blood colour (Mancini and Hunt, 2005; Olsen et al., 2006; Olsen 

et al., 2008). Among vertebrates, fish display the most extensive presence of multiple Hb 

components, which show considerable differences in amino acid sequence and functional 

properties (Pellegrini et al., 2003). This is probably due to the enormous plasticity in the 

selection of environments and the capacity of some species to cope with different conditions of 

temperature, pressure, salinity, pH and oxygen availability (Pelster and Decker, 2004; Brittain, 

2005; de Souza and Bonilla-Rodriguez, 2007; Verde et al., 2007). In some fish species, a part 

of the Hb is extremely pH sensitive – this is known as the Root effect. The Root effect 

decreases the oxygen carrying capacity rapidly when pH is reduced, and parts of the Hb remain 

deoxygenated (HHb) even at a high partial pressure of oxygen (Pelster and Randall, 1998; 

Pelster and Decker, 2004; Brittain, 2005; Verde et al., 2007). The Root effect does not occur in 

mammalian Hb. However, mammalian and fish have another effect in common, the Bohr effect, 

which generally alter the oxygen binding properties of Hbs in response to changes in both 

partial pressure of oxygen and pH (Giardina et al., 2004; Brittain, 2005).  

 

Figure 4. Absorption curves of the four common derivatives of mammalian haemoglobin at pH 7.4. Millimolar 

absorptivities (L x mmol-1 x cm-1) spectra of oxyhaemoglobin (OHb), deoxyhaemoglobin (HHb), 

carboxyhaemoglobin (COHb) and methaemoglobin (metHb) in the spectral region of 450-700 nm (Olsen and 

Elvevoll, 2011) 
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4 Detecting blood in fish 

4.1 Traditional methods  

Poor exsanguination is visualised as blood effusion and blood spots, both on the surface and 

within fish fillets (Robb et al., 2003; Roth et al., 2005a; Olsen et al., 2006; Roth et al., 2009b; 

Erikson et al., 2010). In the Norwegian white fish industry, poor bleeding is detected on whole 

gutted fish by visual inspection of the cavity canal. If the fish is poorly bled, the blood vessels 

in the belly flaps are not sufficiently drained. After filleting, residual blood is registered as 

blood spots or blood effusions in the fillets by candling. This involves manual inspection over 

an illuminated table where removal of defects is done manually (Stormo et al., 2007). If 

residual blood is considered unacceptable in a particular product, it can either be trimmed from 

the fillet with a knife or sorted out and used in some frozen-coated products. Coatings may be 

enriched with antioxidants which will protect the product against oxidation during frozen 

storage (Love, 1978). Manual inspections are also practised on slaughtered farmed fish; such as 

blood spot counting on salted and smoked salmon fillet (Robb et al., 2003; Olsen et al., 2006) 

or manual inspection of the cavity canal of gutted fish (Erikson et al., 2010). Both candling and 

manual inspections are labour-intensive procedures that involve subjective evaluation with a 

high level of inaccuracy. The efficiency of candling depends on the thickness of the fillet and 

the amount of muscle pigments, because both may conceal the embedded bloodspots in the 

fillet (Olsen et al., 2006; Heia et al., 2007; Stormo et al., 2007; Roth et al., 2009b). In addition, 

due to the high scattering and absorption of visible light in fish muscle, the illumination of the 

fillet is reduced. However, many factors such as rigor mortis, water influx, drip loss, gaping 

and muscle degradation can affect the light scattering and thus the colour of fish muscle 

(Stormo et al., 2007).  
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4.2 Chemical methods  

For more accurate measurement of blood residuals or haem pigments in muscle, chemical 

methods have been established. Most of the reported procedures for determination of total Hb 

in muscle are based on chemicals which convert all Hb derivatives into a stabile haem pigment 

that can be quantified spectrophotometrically. Today there is no standard procedure for 

quantification of Hb in the muscle of mammals, birds or fish. However, the most widely used 

chemical method for the determination of total haem pigment in meat is the Hornsey acid 

haematin method (Hornsey, 1956; Warriss and Wilkins, 1987; Karlsson and Lundstrom, 1991; 

Carpenter and Clark, 1995; Olsen et al., 2006; Olsen et al., 2008). This method converts all 

forms of Hb into a stabile acid haematin (hemin) compound formed by the oxidation of hemin-

iron from the ferrous (Fe2+) to the ferric (Fe3+) state, with a peak transmission at 512 and 640 

mn (Hornsey, 1956). A alternative to the acid haematin method is the alkaline haematin 

method (Karlsson and Lundstrom, 1991). 

A common colorimetric method used for Hb determination in both blood and muscle, is the 

Drabkins cyanomethaemoglobin method (Drabkin, 1950).  This method involves highly toxic 

cyanide compounds and the principle of this method is to convert Hb to cyanomethaemoglobin 

in a solution containing potassium ferricyanide and potassium cyanide. Cyanomethaemoglobin 

is a stable colour pigment with peak transmission at 540 nm (Drabkin, 1950; Rodkey, 1967; 

Warriss, 1976; Warriss and Rhodes, 1977; Balasubramaniam and Malathi, 1992; Synowiecki et 

al., 1992; Kranen et al., 1999). Chemical methods based on carbon monoxide or sodium 

dithionite have also been used. These convert Hb either into COHb or HHb and both have a 

peak transmission at 432 nm (Brown, 1961; Richards, 2000; Richards and Hultin, 2000; 2002; 

Pazos et al., 2005; Pazos et al., 2009).  Chemical methods are labour-intensive, involve some 

highly toxic chemicals and are destructive to the product. Thus they are not useful for 

industrial online production (Olsen et al., 2008).  
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4.3 Instrumental methods  

The focus on instrumental analysis and evaluation of fish quality is increasing. The main 

principle being used is based on the optical properties of intact muscle, which may enable rapid 

at-line or on-line determination of fish quality (Scotter, 1997; Wold and Isaksson, 1997; Nilsen 

et al., 2002; Wold et al., 2006; Heia et al., 2007; Roth et al., 2007b; Stormo et al., 2007; 

Folkestad et al., 2008; Olsen et al., 2008; Sivertsen et al., 2009; Erikson et al., 2010; Sanchez-

Zapata et al., 2010; Sivertsen et al., 2011). Due to the evolution in computer technology and 

multivariate statistical software during the last decades, spectrophotometric multicomponent 

analysis has become a powerful analytical tool. This is because only small differences in the 

absorbance spectra of the individual compounds are sufficient for quantitative analysis. 

Advantage of using spectrophotometric multicomponent analysis is the ability to measure 

components in materials with little or no sample preparation, thus not destructive to the product 

(Ni and Gong, 1997; Workman, 1999; Blanco and Villarroya, 2002; Prevolnik et al., 2004; 

Mlcek et al., 2006; Nicolai et al., 2007).  

4.3.1 VIS/NIR-spectroscopy 

Visible (VIS, 400-780 nm) and near-infrared (NIR, 780-2500 nm) spectroscopy is a rapidly 

developing scientific field and has been used to assess chemical and physical properties of food 

products. For example, the colour changes of fish muscle during storage have recently been 

studied in order to predict the fish freshness spectrophotometrically (Nilsen et al., 2002; Nilsen 

and Esaiassen, 2005; Chau et al., 2009; Sivertsen et al., 2011). VIS/NIR-spectroscopy is a fast 

and non-destructive instrumental technique based on light absorption and reflection in samples 

at different wavelengths. Molecules and particles in a sample interact with light energy in the 

400–2500 nm spectral region through absorption, reflection and scattering processes. Generally, 

there are three models of measurements (Figure 5) based on transmission, reflection or 

transflection of light (Osborne, 2001; Reich, 2005; Nilsen and Heia, 2009). Reflectance 
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measurement is based on reflection of light, and a detector normally measures the reflected 

light at 45° to the incident beam (Figure 5A). The illumination and detector units are located 

on the same side of the sample. Transmittance measurements are like the classical 

spectroscopy, and when light radiation is sent through the sample, the proportion of radiation 

subdued by the sample is measured as transmittance (Figure 5B). A typical VIS/NIR (400-

2500 nm) transmittance, or reflectance measurements, is used as an online by-pass sampler and 

is well suited for measuring homogenous samples. A sample is normally measured either in a 

standard quartz sample cell or in a flow-through quartz cell. In transflectance (diffuse 

reflectance) measurements (Figure 5C), the illumination and detector unit are also located on 

the same side of the sample. However, the illumination and detector units are not focused on 

the same location, and are thus a hybrid of both transmittance and reflectance. Transflectance 

measurements are normally accomplished by using a fiberoptic probe in which one set of 

fiberoptic bundles carry the incident radiation and another carry the reflected radiation. 

Fiberoptic probes probably have the widest range of applications in online food analysis. 

However, fiberoptic probes require direct contact with the product and can cause problems 

regarding both food safety and the mechanics (Wilson and Tapp, 1999; Osborne, 2001; Wold 

et al., 2006; Benito et al., 2008; Huang et al., 2008; Nilsen and Heia, 2009).  

The main differences in the absorption spectra of blood in fish muscle are found in the visible 

region (Olsen et al., 2008). However, visible light scatters greatly in fish muscle and scattering 

increases with decreasing wavelength, thus obstructing the illumination of the fillet (Stormo et 

al., 2007; Stormo, 2009). It is well known that muscle density and degradation in fish is affected 

by large seasonal and individual variations (Love, 1975; Bjørnevik, 2003; Roth et al., 2005b). 

These factors can also influence light scatter in fish fillets, and can therefore limit the detection 

when using transmittance measurements. The preferred method used for fish fillet is thus 

transflectance measurements. This method allows both the absorbed and the scattered light to 
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be calculated, and the sample measurement results in a spectrum in the VIS/NIR region (Figure 

6). However, the existence of compounds with specific absorption characteristics is normally 

separated and identified through chemicall analysis. Specific information about components, 

either in blood or fish muscle, can be used as optical signatures. Eventually, a model between 

the recorded spectra and a chemical reference measurement can be built (Stormo et al., 2007; 

Stormo, 2009). The recorded spectral information of the chemical composition of the muscle 

can then be selectively highlighted and used in algorithms for blood detection. Thus, several 

chemical components in the muscle can be estimated from the same measurement (Lee et al., 

1992; Chen et al., 1996; Scotter, 1997; Wold and Isaksson, 1997; Blanco and Villarroya, 2002; 

Nilsen et al., 2002; Uddin et al., 2005; Folkestad et al., 2008; Huang et al., 2008; Olsen et al., 

2008).  

 
Figure 5. NIR measuring models; (A) reflectance, (B) transmittance and (C) transflectance. Light source (L), 

sensor (S) (Nilsen and Heia, 2009) 

 

 

Figure 6.  Example spectra of Atlantic cod light muscle in the 400-1100 nm region. The spectrum differing from 

the others in the visible range (blue line), with distinct peaks at about 430 and 550 nm, contained visible blood 

speckles. In general the spectra showed the same peaks of absorption, with a broad band of absorption at around 

970 nm, the water peak (Olsen et al., 2008). 
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4.3.2 Multivariate data analysis  

When using VIS/NIR spectroscopy, multivariate statistical analysis is required for quantitative 

analysis. Algorithms for principal component analysis (PCA) and partial least squares (PLS) 

regression are commonly used methods to build linear models (Gomez et al., 2006; He et al., 

2006b; He et al., 2006a; Nilsen and Heia, 2009; Sivertsen et al., 2011). In order to evaluate if 

the data may be considered similar or dissimilar, a principal component analysis (PCA) can be 

used to observe clustering or to separate the main principal components (PCs) from the noise 

within sample sets. The result from a PCA is typically displayed in the form of a scores plot 

(Figure 7). The most commonly used scores plot is for the scores vectors from principal 

component 1 (PC1) and principal component 2 (PC2). These represent the two largest 

variations in magnitude within the data. A partial least squares (PLS) analysis is applied to 

evaluate any correlation between the measured spectra and the reference method used (Figure 

8). A complete description of a PCA analysis is described earlier by others (Tzeng and Berns, 

2005).  

 
Figure 7.  Result from a principal component analysis (PCA) and score plot of spectral data (Olsen et al., 2008). 

The data is assigned according to: sb – stressed bled, n= 50; su – stressed unbled, n=50; ub – unstressed bled, 

n=50; uu – unstressed unbled, n=50. Most of the spectra from the stressed bled fish are encircled on the right side 

of the PC1.  
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Figure 8. The result of the Partial least squares 1 (PLS1) analysis of the correlation between chemically measured 

haem pigment values (optical density measured) and spectral measurements (optical density predicted, based on 4 

principal components) are shown (Olsen et al., 2008). 

 

4.3.3 Digital imaging  

It is often necessary to analyse the texture, colour and shape of food samples both qualitatively 

and quantitatively. Qualitative analysis involves visual inspection and comparison of samples, 

while quantitative analysis involves distribution and averages. Normally, a labour intensive 

visual inspection has been used to assess quality changes, hence alternative objective methods 

have been strongly warranted. The advances in computer technologies and digital colour image 

processing techniques have increased the effectiveness of imaging analysis. Therefore, focus 

on digital imaging as an objective tool in food research is increasing. Digital imaging analysis 

is based on pixels and colours obtained from the red, green and blue colour distribution and 

greyscale outputs from digital camera pictures. However, a proper light source is important 

since the colour of the sample depends on the part of spectrum it reflects (Yam and Papadakis, 

2004; Faucitano et al., 2005; Yang et al., 2006; Roth et al., 2007b; Erikson and Misimi, 2008; 

Erikson et al., 2010). 

Due to this, a new field of digital imaging analysis (imaging spectroscopy) has been developed 

during the last decade. A digital imaging spectroscopic analysis is based on non-contact 

VIS/NIR transflectance measurements. The technique is based on irradiation of the sample 
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surface with a broadband continuous light source, followed by detection of the radiation 

backscattered by the sample surface with a suitable camera device (Figure 9). The reflected 

light from the object is captured in a great number of narrow spectral bands through the 

ultraviolet, visible and infrared part of the electromagnetic spectrum. Typical parameters for 

multispectral imaging include spectral range, spatial and spectral resolution and acquisition 

rate/time. The multispectral data obtained from the sample surface can be viewed as an entire 

image (Figure 10) at any wavelength or as a full spectrum of any pixel in the image. Digital 

imaging techniques are promising tools to detect or visualise objects and discoloration in fish 

muscle, such as loose fish scales, black membranes and parasitic round worms (nematodes) 

which are not easily recognised upon visual inspections (Sigernes et al., 2000; Wold et al., 

2006; Stormo et al., 2007; Qiao et al., 2007; Nilsen et al., 2009; Nilsen and Heia, 2009; 

Stormo, 2009). The techniques also enable the detection of blood spots embedded and 

concealed within a fish fillet (Midling et al., 2008; Sivertsen et al., 2011). 

 

 

Figure 9. Principle drawing of on-line non-contact NIR transflection imaging system (Wold et al., 2006) 
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Figure 10. Hyperspectral images of an Atlantic salmon fillet, with a spectral resolution of 5 nm and pixel 

resolution of 0.5 mm2. The multispectral data were obtained from imaging spectroscopy with transflection setup 

to record data from the VIS/NIR (400-1000 nm) region, with a conveyer speed of 80 cm/second. The 

measurements were carried out in February 2007 at Fiskeriforskning (NOFIMA), in cooperation with Karstein 

Heia, Heidi Nilsen and Agnar Siversen. Figure 10A is showing a colour picture of the fillet composed of three 

colours - red (641 nm), green (552 nm) and blue (458 nm). This is a colour composition that is close to what we 

actually can see with our eyes. Figure 10B, is focusing on oxy- and deoxyhaemoglobin (572 nm) and blood is 

visualised as dark spots. Figure 10C, is focusing on methaemoglobin (630 nm) and blood is visualised as 

luminous spots.  
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5 Aim of study 

Residual blood in fish fillet is mainly an aesthetic problem for the fish industry as it leads to an 

unacceptable appearance for the customer and hence, financial loss. Despite the economic 

importance the problem has not been extensively studied. The main purpose of this project has 

therefore been to add knowledge to this field, helping to understand which factors contributing 

to the blood spot formation in fish fillets. Then evaluating the application of using Visible and 

Near-infrared (VIS/NIR) spectroscopy as a method for assessing residual blood in intact fish 

fillets, with a chemical haem pigment measurement as a reference. 

The specific aims were: 

1. Establishing a method to measure residual blood (paper I & II). 

2. Evaluating the influence of slaughter procedures on residual blood (paper I & II).  

3. Evaluating the applicability of a non-destructive method (paper II). 

4. Selecting reference material in VIS/NIR spectroscopy (paper III)  
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6 General results and discussion 

6.1 Establishing a method to measure residual blood  

In order to quantify residual blood, a modified chemical method (Hornsey, 1956) for 

measuring haemoglobin in fish muscle was adopted, evaluated and further developed (Paper I 

and II). An established method (Robb et al., 2003) involving salting, slicing and blood spot 

counting was used for comparison (Paper I), but this method lacked the sensitivity to 

differentiate between residual blood in fillets among the different slaughtering procedures. 

When applying the latter method (Robb et al., 2003), frequent blood spots were observed only 

in unbled fish. No differences resulting from slaughter procedures, such as percussive killing 

and gill cutting, percussive killing and direct gutting, or CO2 stunning and gill cutting could be 

observed. The variation in bloodspot count was high within each group, and thus large sample 

sizes are generally required to find statistical differences between treatments groups. When 

applying this method. In addition, the chemical method produces continuous data instead of 

integers, thus increasing the chance of using the more powerful parametric methods instead of 

non-parametric statistical methods to evaluate differences between groups. 

Total counts of bloodspots in the fillet and the haemoglobin content measured by the chemical 

method correlated only between bled and unbled fish. However, the results obtained through 

the established method lacked precision to recommend a slaughter procedure that led to the 

lowest content of residual blood in the fillets. The chemical method was more sensitive and 

considered a better method to quantitatively evaluate residual blood in fish muscle. 

Nevertheless, it is important to note that detecting blood spots closely resembles the 

consumer’s evaluation of the final product. Salmon farmers and buyers base their evaluations 

of residual blood on inspection of the cavity canal of gutted fish or on the surface of the fillets. 
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Although such evaluations probably involve a higher level of inaccuracy compared to the 

chemical method, it is convenient and practical, and it is the method currently in use. 

 Haemoglobin in white muscle of fish originates mainly from haemoglobin in residual blood. 

The Hornsey’s (1956) haem iron method was adapted since it is the most widely used chemical 

procedure for determining the total haem pigment in meat. Haemoglobin is converted into a 

stable haem pigment (acid haematin) that can be quantified spectrophotometrically with 

absorption peaks at 512 and 640 nm. The accuracy of the chemical method was tested and 

calculated as percent recovery (95.4 ± 3.2%) of Hb in spiked muscle after acid acetone 

extraction (paper II). The accuracy of the method showed that it was well suited for 

quantifying even low levels of haem pigments in fish muscle. However, the naturally present 

of astaxanthin in salmonid muscle is influencing the absorption at 512 nm but not at 640 nm 

(Shahidi et al., 1998). Thus the chemical method was therefore chosen and applied for 

evaluating residual blood in both salmon (640 nm) and cod (512 nm) muscle.  In addition, this 

metod was faster to carry out, compared to the established visual method. When compared to 

other chemical methods for measurement of Hb in meat, it is safe, fast and repeatable and thus, 

the chemical method was preferred as a reference method for further work. 

  

6.2 Evaluating the influence of slaughter procedures on residual blood  

Previous studies have indicated that the amount of residual blood in fish is influenced both by 

pre-slaughter activity, anaesthetisation and killing procedures (Robb et al., 2003; Roth et al., 

2005a; 2006). The effect of ante mortem stress and slaughtering procedures on residual blood 

was evaluated in both cod and salmon (Paper I and II).  

When the large arteries or veins in the throat are cut during bleeding, the blood pressure drops 

rapidly and there is no driving force from the heart to empty the capillaries embedded in the 

muscle. It has been argued that efficient exsanguination is obtained only if the fish is alive (a 
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beating heart) during bleeding. Results from Paper I showed that both CO2 stunned and 

percussive killed fish were almost equally exsanguinated. In contrast to what has been reported 

by others, a beating heart is not necessary for effective exsanguination (Robb et al., 2003; Roth 

et al., 2005a; Roth et al., 2006; Roth et al., 2009a; Roth et al., 2009b). In addition, it was found 

that a blow to the head followed by evisceration was the best procedure in terms of reducing 

levels of residual blood in fish muscle. The quick removal of blood from the muscles by 

cutting the larger vessels in the abdominal cavity can explain these results. 

Physical activity and stress is reported to increase the amount of residual blood in the muscle 

(Randall, 1970; Axelsson and Fritsche, 1991; Thorarensen et al., 1993; Farrell et al., 2001; 

Soldatov, 2006; Altimiras et al., 2008), and results from paper I and II corroborated with these 

findings. This can be explained by the ability of the fish to redistribute and thus increase blood 

volume in its muscles, which slows down the exchange of blood between parts of the vascular 

system. Thus, only blood present in the gills, or in the vessels close to them, is purged when 

the gills are cut. Increased blood viscosity and ability to clot is another well-known 

physiological response to stress (Ruis and Bayne, 1997; Tavares-Dias and Oliveira, 2009).  

Therefore, use of CO2 stunning was not optimal, because it created vigorous activity and stress 

for several minutes before the fish was properly stunned (Paper I). It is known that Atlantic 

salmon have CO2/pH-sensitive chemoreceptors on the gill arches, which respond to external 

changes in CO2 and pH (Evans et al., 2005). The vigorous activity may be linked with fish 

feeling a sensation of strangulation when it enters anoxic water. Thus use of CO2 to stun fish is 

accordingly disputed with regard to fish welfare. Carbon dioxide stunning also resulted in a 

rapid drop (pH 7.3 to 6.8) in the muscle pH ante mortem (Paper I). This is unfavourable if the 

fish is to be filleted pre-rigor. For newly percussive killed fish, not exposed to CO2, the muscle 

pH was measured to pH ~ 7.4. However, the pH declined within hours after death, reaching the 

ultimate muscle pH at 6.2-6.4 from one tills four days post-mortem (Paper I, II and III). This is 
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within the normal range of both farmed salmon and cod (Olsen et al., 2006; Kristoffersen et al., 

2007; Olsson et al., 2007) 

In the Norwegian fish industry, the fish is eviscerated within an hour after killing. The gutted 

fish can then either be filleted pre-rigor, or kept on ice for some days and then filleted post-

rigor. However, independent of the slaughter methods used initially, it is known that gravity 

can result in more blood in fish muscle facing downward during ice storage (Roth et al., 2007a; 

Roth et al., 2009b). Furthermore, chilling prolongs the blood coagulation time (Paper I). 

Improved exsanguination can therefore be obtained if gutted fish is properly chilled, cleaned 

and then stored with the belly down, allowing the residual blood to drain out through the open 

belly as a result of gravitation during storage. 

 

6.3 Evaluating the applicability of a non-destructive method  

Both visual and chemical methods used to predict residual blood in fish muscle are labour-

intensive. Chemical tests also involve toxic chemicals and are destructive to the product. 

Therefore, an investigation was carried out to examine whether already industrialized, visible 

and near-infrared (VIS/NIR) spectroscopy could be used to assess residual blood in intact fish 

(farmed cod) muscle (Paper II).  

The VIS/NIR system was operated in fibre optic transflection mode, enabling spectral 

recordings in the range 400 to 1100 nm. The probe was located on the surface of the fillet and 

ten spectra from each sample were averaged in order to reduce noise. Multivariate statistical 

analysis of the VIS/NIR spectra was performed, including a partial least square (PLS) 

regression analysis to evaluate the correlation between the measured spectra and the 

chemically measured Hb content. Then a principal component analysis (PCA) was performed 

on the data in order to observe any clustering and to separate the main principle components 

(PCs) from the noise within the sample sets.  
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A correlation between the VIS/NIR and the chemical measurements was found. However, the 

correlations in the VIS- (400–700 nm) or the NIR region (700–1100 nm) alone were not as 

good as the complete VIS/NIR region (400–1100 nm, R2 = 0.83). Information on Hb in muscle, 

both in the visible and NIR range of the spectrum is of importance. However, upon PCA 

cluster examination it was clear that the visible range of 400-700 nm contained most of the 

variations with regard to the presence of Hb in fish muscle, and the results seem to be related to 

the treatment of fish.  Thus, the VIS/NIR measurement managed to demonstrate differences in 

whole fillet. These findings indicate that it may be possible to develop a spectroscopic method 

to measure residual blood in intact muscle. However, in this experiment the correlation was not 

sufficient to apply VIS/NIR spectroscopy as a feasible method for accessing residual blood in 

intact muscle. The correlation between the chemical haem pigment measured and the VIS/NIR 

spectral recording indicate how well this method applies to assess the chemical value. The 

weakness of the reference method will influence VIS/NIR measurements, meaning that the 

detection limits, robustness, variability and correlation will never be better than the reference 

method used initially.  

With this in mind, the accuracy of the spectroscopic measurements was reduced when 

measuring Hb on whole muscle samples. This because whole muscle samples both contain 

different myoglobin derivatives in dark muscle (Marcinek et al., 2001; Hankeln et al., 2005), 

and different Hb derivatives (OHb, HHb, metHb) in blood filled vessels traversing the muscle 

(Zijlstra et al., 2000; Soldatov, 2006), which increases the heterogeneity. From the viewpoint 

of the fish processing industry, measurements on minced fish muscle are not an option for the 

evaluation of residual blood content in fish. The fiberoptic VIS/NIR probe as operated in this 

work also requires contact with the product that can cause problems regarding both food safety 

and the mechanics. Therefore, it does not satisfy the industrial requirements for online 

processing regarding speed, accuracy and food safety. For industrial application the preferred 
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instrumentation should operate at an online basis. An option could be non-contact imaging 

VIS/NIR spectroscopy. However, this method is still under development (Wold et al., 2006; 

Heia et al., 2007; Stormo et al., 2007; Sivertsen et al., 2009; Sivertsen et al., 2011). By the 

using imaging spectroscopy it is possible to simultaneously record spectral and spatial data and 

obtain information about blood spots, as well as their location in the fillet (Figure 10). An 

optical imaging method will probably comply with the requirements for online fillet inspection. 

Although, it should be kept in mind that when using VIS/NIR spectroscopy to predict 

components in fish muscle, the reference method for calibration is decisive.  

 

6.4 Selecting reference material in VIS/NIR spectroscopy  

Bovine Hb is normally used as a reference for the determination of total Hb concentration in 

meat or blood, because there are insignificant variations in the optical Hb spectra among 

mammalian species (Zijlstra et al., 2000). In mammalian Hb spectra, a pH independent 

triplicate isobestic point at ~ 523 nm is found. This point has been used to estimate the total 

concentration of Hb in solutions containing OHb, HHb and metHb in any combination (Snell 

and Marini, 1988; McMurdy et al., 2008; Bender et al., 2009). Due to this, it has been assumed 

that the isobestic point at ~ 523 nm also could be used to estimate the total concentration of Hb 

in fish muscle.  

The suitability of using mammalian Hb as reference material when determining Hb in fish 

muscle spectrophotometrically was evaluated in Paper III. The aim was to examine the optical 

spectra of mammalian (human) and fish (farmed Atlantic cod) Hb subjected to pH 7.4 and 6.5. 

These two pH values were chosen in order to reflect both muscle pH at slaughter and the 

ultimate pH, which is relevant for post-rigor-processed fish.  

The fish hemolysate was more affected by pH which induced alterations in mixtures of Hb 

derivatives, compared the mammalian hemolysate (Paper III). At pH 7.4, both the human and 
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the cod Hb were nearly fully oxygenated when exposed to oxygen during tonometry. However, 

at pH 6.5, it was mainly the cod Hb that was deoxygenated, and the concentration of HHb and 

metHb increased. Thus, the oxyHb, COHb, and HHb spectra obtained after tonometry was not 

pure, but rather a mixture of derivatives. Therefore, a spectral deconvolution was included to 

predict the exact mixture of each individual Hb (OHb, COHb, HHb, and metHb) spectrum. A 

pure spectrum of metHb was obtained by adding potassium ferricyanide to the hemolysate, 

thus assuming that all the relevant Hb derivatives in the solution were converted to metHb.   

In the mammalian Hb spectra, a pH-independent isobestic point between OHb, HHb, and 

metHb at 523 nm was found (Figure 4). This was not found in the absorption spectra of fish Hb, 

and this clearly demonstrated the species differences in Hb spectra. The most significant 

difference between fish and mammalian Hb were found in the spectra of OHb and metHb.  

The main pH-induced change was observed in the metHb spectrum. Compared to mammalian 

metHb, fish metHb was less influenced by changes in pH. No pH related differences were 

observed in the fish COHb and HHb spectra, or in the mammalian OHb, COHb, and HHb 

spectra. In the fish Hb spectra, a pH independent isobestic point was observed between OHb 

and HHb at 583 nm. In contrast to the isobestic point at 523 in the mammalian Hb spectra, the 

isobestic point at 583 nm was influenced by Hb auto-oxidation. In blood of newly killed fish, 

the OHb and HHb are the primary haemoglobin pigments (McMurdy et al., 2008). Thus an 

isobestic point between these two Hb derivatives could be used to highlight Hb in muscle. 

However, it is known that the auto-oxidation of Hb is dependent on the concentration of HHb 

and the presence of O2 (Richards and Hultin, 2002; Undeland et al., 2004; Larsson et al., 2007; 

Richards et al., 2007; Maqsood and Benjakul, 2010; 2011). It is also known that both the rate 

of Hb oxidation and losses of hemin from fish Hb depend on changes in pH. This is partly 

explained by the differences found in the amino acid sequence, which reduce the oxygen 

affinity and cause structural changes in fish Hb when pH decline (Maestre et al., 2009; 
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Richards et al., 2009). A drop in pH will deoxygenate the Hb and in presence of O2 this will 

initiate a spontaneous oxidation of Hb, thus changing the Hb spectra.   

As previously mentioned astaxanthin is important when measuring Hb in salmonids because it 

influences the absorption spectra between 300-600 nm (Shahidi et al., 1998).  The luminosity 

in the visible range (450–700 nm) will therefore depend on the quantity of both haem pigments 

and astaxanthin (Sanchez-Zapata et al., 2010).  However, the influence of the astaxanthin at 

583 nm is minimal. Thus, an isobestic point at 583 nm between OHb and HHb can also be used 

to highlight blood spots in fillets of newly killed salmon and trout (Figure 10). Alternatively, a 

spectral deconvolution can be included; a method which has been used earlier to measure haem 

pigments in meat (Krzywicki, 1982). Then all changes in the Hb spectra, due to changes in pH 

and auto-oxidation, can be calculated. Furthermore, when using spectral deconvolution, the 

influence of astaxanthin can probably be calculated by including a spectrum of astaxanthin in 

the analysis. However, due to the differences found in the fish Hb spectra and the speed of the 

Hb auto-oxidation compared to mammalian Hb, a pure spectrum of all relevant Hb derivatives 

obtained for each species should be used as a standard for the determination of total Hb content 

in a sample.  

 

7 Concluding remarks  

Results obtained in this work showed that improved slaughter procedures might be 

implemented in order to reduce residual blood in fish muscle. Percussive stunning prior to 

bleeding was the best method in terms of minimising residual blood, but also to maintain fish 

welfare. Keeping control of the ante mortem activity is important for the fish welfare, as well 

as for the exsanguination and overall muscle quality. By using VIS/NIR spectroscopy it is 

possible to predict or highlight blood constituents in intact fish muscle, but further 

development is needed to make it applicable for the fish industry. However, results from this 
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study have highlighted the requirement of choosing proper reference material when 

implementing VIS/NIR spectroscopy to measure blood residuals in fish. Fish Hb differs from 

the mammalian and is in particular sensitive to pH changes. In addition, fish Hb is more 

reactive and has a faster rate of auto-oxidation. Such differences may lead to analytical errors if 

mammalian Hb is used as a reference.   

 

8 Further work 

 With regard to fish welfare and muscle quality, the stunning methods used today are disputed. 

Further studies are needed to improve these methods and their goal should be to satisfy both 

the requests for fish welfare and to improve muscle quality. Further studies should also focus 

on possible industrial application of using non-contact imaging spectroscopy to assess residual 

blood in fish fillets, using fish Hb spectra as a reference. In addition, studies investigating 

possible differences in the Hb spectra between fish spices are both academically interesting and 

may also have relevance if VIS/NIR spectroscopy is to be applied industrially.    
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