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Abstract

This dissertation presents theoretical studies mainly of natural and magnetic circular
dichroism spectra. For magnetic circular dichroism, the importance of electron cor-
relation effects, here included at the density-functional functional level of theory, and
solvent effects are discussed, both being shown to have significant impact on the final
spectra. In addition, a unified approach for calculating the temperate-independent con-
tribution to MCD spectra are presented based on damped response theory. This approach
is applicable also in energy regions with a high density of electronic states, where the
calculation of MCD ‘B terms based on residues of quadratic response functions may give
unphysical results. It is argued for an abandonment of the conventional separation of the
temperature-independent contribution into A4 and ‘B terms since this separation may lead
to incorrect analysis of the excited states.

For natural circular dichroism spectra, calculations have been performed both at the
electronic level, as part of a study on Vitamin B, including calculations of absorption
and magnetic circular dichroism spectra, and at the vibronic level, in both cases employ-
ing density-functional theory. The study of vibrationally resolved circular dichroism was
performed for a system where the observed spectrum is solely due to isotopic substitu-
tion. The model system, 2(R)-deutoriocyclopentanone, exists in two distinct, but near
1soenergetic conformations with circular dichroism signals that nearly cancel each other,
emphasizing a high requirement for computational accuracy.

The dissertation is concluded with a discussion on the construction of accurate model
Hamiltonians for the simulation of vibronic spectra beyond the adiabatic approximation,
using pyrazine as an example. Here, multireference wave-function based methods were
employed in order to accurately describe potential energy surfaces over a large region of

nuclear configuration space.
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Chapter 1
Introduction

The interaction between light and matter gives rise to physical phenomena that have
intrigued humanity for thousands of years. An early example of this is the story of
flood in the Hebrew Bible’s book of Genesis, where the manifestation of the rainbow
is described as a sign of a covenant between God and the human race. In the sami
tradition, the northern lights, Aurora Borealis, likewise features a prominent role. As
the story goes, a kind of troll known as stallu would come to get you if you forgot to
whistle or wave to the northern lights. Even though modern science has provided us
with a framework for understanding the physical origin of such phenomena, the colours
surrounding us still fills us with wonder, from the rainbow and northern lights to the blue
sky, red sunset, and variety of colors in a springtime field of flowers.

The scientific study of the physical origin of the rainbow started with Rene Descartes
and Willebrord Snel in the early seventeenth century. They found that light would deviate
from a straight path when passing through a raindrop, a process called refraction. Light
of different colour, or wavelength, would have different deviation angles, causing a band
of colours to be shown.

When light interacts with matter, light can be absorbed, emitted, or scattered. Re-
fraction is an example of the latter, caused by the interference between forward scattered
light and the unscattered component of the incident light. The study of absorption and
emission of light gained momentum in the early nineteenth century with the observation
that atoms will absorb and emit light with specific wavelengths; a finding that would lead
up to the formulation of the theory of quantum mechanics a century later. Atoms have
discreet states and can only absorb or emit quanta of energy corresponding to the differ-
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ence between these states. The same holds for molecules, although here the description
is complicated by the large difference in timescale betweeen the relative movements of
electrons and the heavier nuclei, which means that transitions involving changes to the
potential energy of electrons will require a lot more energy than transitions that only
change the potential energy of the nuclei. Microwave and infrared light will typically
cause transitions related the rotational and vibrational motion of the nuclei, respectively,
while transitions involving changes to electronic energy levels are seen for visible and
ultraviolet light. In this work, the interest will be in absorption of light in frequency
regions corresponding to transitions between electronic energy levels.

Spectroscopy is the study of the interaction of electromagnetic radiation, or light,
with matter. A special class of manifestations of this interaction is called optical activ-
ity, first observed in the form of optical rotation. Optical rotation is the phenomenon
where the plane of polarization for a linearly polarized light beam is rotated when pass-
ing through an optically active medium. In absence of external static fields, it can be
observed for molecules or crystal structures which a characteristic that called chirality,
meaning handedness. Just like the left hand is not superimposable on the right hand,
these molecules are not superimposable on their own mirror image.

The refractive index is closely related to absorption, which means that for chiral me-
dia the absorption is different for left and right circularly polarized light, a phenomenon
called circular dichroism. Circular dichroism can be measured directly as the difference
in absorption for left and right circularly polarized light, or as the ellipticity induced in a
linearly polarized light beam, the former being prevalent today. It has a high sensitivity
to the relative spatial arrangement of atoms within molecules, stereochemistry, and is
therefore often used to analyse this, or as a fingerprinting tool for identifying molecules
in a sample. In addition, it complements regular absorption spectroscopy since measur-
ing intensity differences means that bands can be either positive or negative, making it
easier to identify different transitions from these.

Optical rotation and circular dichroism in the absence of static external fields are
two forms of natural optical activity, and can only be observed for chiral media. Optical
rotation and circular dichroism can, however, be observed also for non-chiral media in
the presence of an external static magnetic field. The perturbation by the static mag-
netic field gives rise to magnetic optical rotation, commonly called Faraday rotation or
the Faraday effect, and magnetic circular dichroism. Like natural circular dichroism,

magnetic circular dichroism provides information about the excited states of molecules



which is complementary to what is obtained from regular absorption spectroscopy. Mag-
netic circular dichroism is, however, applicable to all molecules, and can, in particular,
provide information about degenerate or near-degenerate states, as will be seen in the
following chapter.

Although combining experimental results from different spectroscopical techniques
can provide a lot of information about the properties of a molecule, there will often
be aspects of interest in that are not adequately understood from experiments alone.
A valuable complement to experiments can then be provided by calculations based on
molecular quantum-mechanical techniques. In theory-based calculations, microscopic
properties of interest such as excitation energies and spectroscopic intensities can be
obtained directly, elucidating the origin of spectral features observed.

Quantum mechanical expressions can only be evaluated exactly for a few simple sys-
tems such as the hydrogen atom, so for practical calculations on molecular systems, ap-
proximations need to introduced. Common approximations used in molecular quantum
mechanics include separation of nuclear and electronic motion, as well as approximate
treatment of the correlated motion of electrons and the effect of the environment sur-
rounding the molecule of interest. These approximations will be discussed in relation to
the various applications presented in this dissertation, which are mainly concerned with
natural and magnetic circular dichroism.

The following chapter presents the properties related to natural and magnetic circular
dichroism, as well as regular absorption spectroscopy. Chapter 3 then introduces the
framework for describing the ground state of molecular systems, including the separation
of electronic and nuclear motion. Treating only the electronic part of the problem, the
theories used for calculating the response of these systems to electromagnetic radiation
are presented in Chapter 4. In Chapter 5, the description of transitions involving both
electronic and nuclear states, so-called vibronic transitions, will be discussed. Finally,
a summary of the papers included in this dissertation and the main results obtained, are

presented in Chapter 6.






Chapter 2

Natural and magnetic circular
dichroism

This chapter presents the properties related to natural and magnetic circular dichroism,
as well as regular absorption, using the semiclassical approximation. I will start with an
introduction to polarized light in Sec. 2.1 and a presentation of the interaction Hamil-
tonian in Sec. 2.2. Then I will turn to a discussion of the spectroscopies of regular

absorption and both natural and magnetic circular dichroism in Secs. 2.3-2.5.

2.1 Polarized light

The electric vector of a monochromatic linearly polarized electromagnetic wave may be
given by [1, 2]
F(r,r) = Focos(ot — K1), (2.1)

where o is the frequency of the wave, r is the position vector. K is the wave vector given

by
LT 2.2)
€0
where n is the refractive index, cg is the speed of light, and i, is unit vector in the direction
of the propagation, which I have assumed to be the z direction.
The electric field can be reformulated as the real part of the following complex ex-

pression,

F(r,t) = Fe! =), (2.3)
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which means that the electric field is given by

Fr.) = 5 [Fod™" o) 4 (Ro)e0r-o0]
— @ . i(kr—ot) | ok —i(KT—01)
= 2 ire +ije B (2.4)

Here if is the unit vector for the electric vector of the polarized field.

Of particular importance for the later discussion of the interaction between electro-
magnetic fields and quantum mechanical systems is the vector potential. In the Coulomb
gauge (see i.e. Ref. [1]), the vector potential A relates to respectively the electric and

magnetic components of the field by

oA
= —= 2.5
o 2.5)
B = VxA. (2.6)
A vector potential consistent with Eq. 2.4 can then be given by
Ao T, i(kr—or) | % —i(kr—or)
A(r,t) = > |IFe +ipe ] , (2.7)
which means that
F = —iA)® (2.8)
®
By = —iAOn—. 2.9)
€o

Note that the magnetic component of an electromagnetic field will be perpendicular to
the electric component.

The linearly polarized wave discussed above is a special case of plane waves. Plane
waves have the same value over any plane normal to the direction of propagation. These
waves have no field components in the direction of propagation. This means that if the
wave is propagating in the z direction, any plane wave can be written as a sum of two

coherent waves linearly polarized in the x and y directions,
F = Fi, + Bjiy. (2.10)

If the field components £y and £y have the same phase, F will be linearly polarized.
Another special case occurs when £, and Fy have equal magnitude and are /2 out of
phase. Then the polarization will be circular. In this case, the tip of the electric field



2.2 The interaction Hamiltonian 7

vector will, at a fixed point in space, describe a circle as time progresses. If the direction
of rotation is clockwise when viewed against the direction of propagation, the circular
polarization is said to be right-handed. This is because the tip of the electric field as a
function of the direction of propagation z at a given time ¢ then will form a right-handed
helix. I will denote this case by a plus sign. The opposite polarization is said to be left-
handed, and I will denote this by a minus sign. The two forms of circularly polarized

light will then, in accordance with Eq. 2.4, be given by

- F . .

Fi(rn) = 2 [i+e’(‘°r—"”) +ifre_’(“_‘°’)} @.11)

- K . ;

Fo(r,) = 7" [i_e’“"f—‘”’) +iie—’('<'f—"”)} , (2.12)
where the unit vectors for the electric field component of the two forms of circularly
polarized light is

. | P
iy = —(+i)) (2.13)

S-S

(i — iiy). (2.14)

2.2 The interaction Hamiltonian

The macroscopic absorption of light is closely related to microscopic properties of the
sample studied. At the microscopic level, the behaviour of particles is described by
quantum mechanics, where in the standard formulation, the information about the system
is contained in a wave function |¥(z)). The time-evolution of this wave function is in

the nonrelativistic domain given by the time-dependent Schrodinger equation,

J|¥(t))
or

In this work, the microscopic system will be a molecule perturbed by static and dynamic

H()|¥()) =ih

(2.15)

electromagnetic fields. The semiclassical approximation will be employed, where the
particles of the molecule is described with quantum mechanics, while the applied fields
are described with classical electrodynamics. The Hamiltonian for the molecular system

perturbed by external fields can then be given as

H(t)=Hy+V(¢), (2.16)
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where Hy is the Hamiltonian for the system in absence of external fields, and V(¢) de-
scribes the interaction of the system with the fields.
The Hamiltonian for the unperturbed system is given by

Hy=Ty+ T +U, (2.17)

where T is the kinetic energy operator for the electrons, 7. the kinetic energy oper-
ator for the nuclei, and U the potential energy operator for the interaction between the
particles. Hy describes a static system which will have well-defined energy levels. The
quantum states |n) of the system and the corresponding energies E, are respectively the
eigenfunctions and eigenvalues of the time-independent Schrodinger equation

Hy|n) = E, |n), (2.18)

The state |0) with the lowest energy is called the ground state.
The interaction operator introduces the time-dependence in the Hamiltonian. Includ-

ing only effects to first order in the field, the interaction operator is given by [2, 3]
V() :Z%A(U,I)'f’i, (2.19)
i 1

where the sum runs over all particles in the system, g; is the charge of a particle, and m;

its mass. The linear momentum operator is given by
pi = —ihV;. (2.20)
The interaction operator may be reformulated in terms of fields of radiation interacting

with molecular multipole moments, giving

VFy A

V(1) = —Fo(ir - ) = Bo(ip -1h) — —=(ic-0-ir) + - (2.21)

where {1 is the electric dipole moment operator, 6 the electric quadrupole operator, and

m the magnetic dipole operator. These operators are defined respectively by
po= Y ar (222)
i
A qi
= — (i xpi 2.23
i ; 5, (£ixPi) (2.23)

i

é = Zqiriri, (224)
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where g;, r;, and p; are respectively the charge, position, and momentum of particle i,
and I have used the traced form of the quadrupole operator.

Note that the unit vector in the direction of the magnetic component of the field is
given by ip =i, XiF.

2.3 Absorption

When the frequency of incident light matches the energy difference between two quan-
tum states of the molecular system, the molecule may absorb light. The one-photon
transition rate from an initial state |i) to a final state |j) is according to Fermi’s golden
rule proportional to the square of the transition moment of the perturbing operator as
described in Refs. [4, 5, 3]

Pi(o) Vij| > 8(o — ), (2.25)

T
=32 ’
where o is the frequency of the field, fio;; = E; — E;, and V;; = (i }V(r) ’ j). The Dirac
delta function here ensures that the transition only occurs when the photon energy ex-
actly matches the energy difference between the initial and the final state. Usually the
initial state will be the ground state.

In spectroscopic conditions, the energies of the states will be broadened by several
processes, like collisions among molecules and spontaneous emission of light. These
processes are not easily included in the Hamiltonian and are therefore usually accounted
for by replacing the delta function by a phenomenological lineshape function g;;(w)
centered at ©;;.

The spontaneous emission of light causes an exponential decay of the excited states.
This effect may be described by making the energy of the excited state complex, as is
done explicitly in Sec. 4.5, which causes resonance with an excited state to be obtained
for a range of frequencies [2]. If only the spontaneous emission of light is considered,
or this process dominates the broadening, the broadening function will be a Lorentzian

function
1 T (0) (Dl.j)z 2’

(2.26)

where I is the broadening parameter, here related to the inverse lifetime of the excited

state. This process is called homogeneous broadening.
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In experimental conditions, this picture is complicated by other processes contribut-
ing to the broadening. Collisions among molecules have already been mentioned, and
are of course particularly important in the condensed phase. This is one example of the
effect of the environment on the lineshape broadening. Another type of contribution
comes from the Doppler effect, which is due to the effect of the molecular velocities
on the excitation energies. Both these types of processes give rise to inhomogeneous
broadening, which can be described by a Gaussian function

1 (0-0;))?

gij<0)):l_, N a (2.27)

The absorption of light is according to the Beer-Lambert law proportional to both the

light path length through the sample and the concentration of the sample. The absorption

of light at a particular frequency may therefore be defined as
A =¢(m)Cl, (2.28)

where C is the concentration of the sample and / is the light path length through the
sample. €(m) is called the molar decadic absorption coefficient and is the typical measure
of absorption. Most commonly it is reported in units of 1 mol~! cm™!, and can then be

identified as [6]
NATTI®

1000 x In(10) x 2kl l_ngij(w) |Vij

g(w) = 2, (2.29)

where N, is Avogadro’s number and the quantities on the right-hand side of the equation
are given in S.I. units. The summation runs over contributing transitions. The intensity

of a monochromatic electromagnetic wave is given by

2 3
ne€pcp »  €oCy €0¢y
Fy = —FBy=—

2 0T Ty T T,
where 7 is the refractive index, cg the speed of light in vacuo, and €( the vacuum permit-

Ip = B3, (2.30)

tivity.
The dominant contribution from the interaction operator in Eq. 2.21 to the absorption

is from the dipole moment operator, and other terms like contributions from the electric
quadrupole and magnetic dipole operators may therefore be neglected for the total ab-
sorption. For a sample of randomly oriented molecules, the molar decadic absorption
coefficient is then from Eqgs. 2.29 and 2.30 given as [3]

e(®) = 4T Ns©
3 %1000 x In(10)(4meg)nhco 4

Zg] ) |uijl’, (2.31)
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where
wi= Y (ildal ) (2.32)

0=x,y,2
is called the dipole transition moment between states i and j.
Often, the oscillator strength of a transition is used. This is a dimensionless quantity

given by
2m,; ; 2
fij 37’;@2] }‘ull‘ ’ (233)

where m, and e is respectively the mass and charge of an electron.

2.4 Natural circular dichroism

In circular dichroism spectroscopy, the difference between the absorption of left and
right circularly polarized light is measured. In analogy with regular absorption, it is

conventionally reported as the difference in the molar decadic absorption coefficient,

Ag(0) = e“(o)—eR(w) (2.34)

- NAT® ) NI
- 1000><ln(10)><2h10§'g”(0))<‘(v Jul = vR*), @39

where superscripts L and R refer to left and right circularly polarized light respectively.

The difference in the square modulus of the interaction transition moment is, for
circularly polarized light with the electric unit vectors defined by Egs. 2.11-2.12, given
by [2, 6]

(VEY [ = |(vRF = %Im [(k)ij(my)ij + (py)ij(ma)ij] FoBo

—l—iig (,u,-j X,Uji) F02 + ilz (minmji) Bg, (2.36)

where I have neglected the contributions from the quadrupole operator since these vanish
when taking an orientational average. In the absence of external magnetic fields, the
wave function may be taken to be real. In this case, we will have that y;; = uj; and
m;; = mj;, and the two last terms in Eq. 2.36 will therefore disappear for natural circular
dichroism.

In the commonly used units of 1 mol~! cm™!, the difference in the molar decadic

absorption coefficient will then for a sample of randomly oriented molecules be given
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by [3]
16’]1: Ni®
Ae(® i R;j, 2.37
(©) = 377000 x In(10) (47eq Vel ;g’ J (E=0
where [ have introduced the rotational strength
R,‘j = Im(yij~m,-j). (238)

The rotational strength can only be nonzero for molecules with no improper rotation

axes. This means that natural circular dichroism is only observed for chiral molecules.

2.5 Magnetic circular dichroism

Although natural optical activity is a feature only of chiral molecules, optical activ-
ity may be observed for all molecules in the presence of a static magnetic field with a
component lying in the direction of the propagating light. In this case, the perturbing
operator will have an extra term coming from the interaction with the static field. For a
magnetic field applied in the direction of the propagating light, the perturbing operator
then becomes

V(t) = —Fy(ip-ft) — Bo(ip-h) — —— (i,-0-i) — Bex (i) + - -, (2.39)

where Bey; is the strength of the static magnetic field.

Expressions for MCD may be obtained by insertion of the interaction operator in
Eq. 2.39 into the general expression for CD in Eq. 2.34. A more common approach,
however, is to start with the expressions for CD in the absence of static magnetic fields
and treat the interaction with the magnetic field as a perturbation to this system.

Looking now at Eq. 2.36, the first term will be zero for achiral systems. Moreover,
it will not be affected by the static magnetic field to first order, so this term does not
contribute to the MCD. Of the two remaining terms, the contribution from the latter will
be negligible. Since the perturbed wave function can no longer be taken to be real, the
terms involving (u;;j><u;;) and (m;;xm;;) may contribute. The latter of these terms will
have a dependence on the magnetic component of the dynamic field, causing it to be
negligible compared to the former.

In addition to the transition moments, the external field will perturb the energies of

the states. This will affect the lineshape of the transitions, and for a degenerate ground
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state, the population of the degenerate components. The difference molar decadic coef-

ficient can then be given as

STZN4®
3 x 1000 x In(10)(4meg)hc}

X Y Xy (Bext) X 81y (0, Bext) i (i |ty (Bex!) Xt (Bext) | )(2.40)
ioch

Ag() =

where ig and jg refers to states in the degenerate manifold of states i and j respectively,
and X;, is the Boltzmann weight of component i.

The static magnetic field will split the energies of degenerate states, an effect known
as the Zeeman splitting. To first order in the field, the Boltzmann weight of a component
of the degenerate manifold will be given by

1 i;m;; )B
Xio(Bext) = 5 [H—(Z ;j’;) t} (2.41)
l

since the energy of this component is to first order in the field
he, = hey — (i miyi, ) Bext. (2.42)

In this approximation, it is assumed that the only effect the magnetic field has on the
lineshape of an individual component of the degenerate manifold is to shift its energy.
That is, it is assumed that the shape of the transition does not change. If the energy shift
is negligible compared to the linewidth, the lineshape function may then be expanded in
a Taylor series, which gives to first order in Bey,

-~ Bext agij . .
8injp () ~ 8ij(®) + 7 90 [(lz'mjﬁjﬁ) - (lz'miaia)] : (2.43)

The wave functions will to first order in the field, be given by

Bex .z' ri
B = 1) 2 .44
. . . Bext (iz'mjr)
(Bex)| = (il== ,;J.co,—w, (rl, (245)

which means that the perturbed dipole transition moments are, again to first order in Beyt,

(i;m;,,) (iz'm’jﬁ)
Higjy(Bext) = Higjy + Bext r;l N r; rw—— (2.46)



14 Chapter 2. Natural and magnetic circular dichroism

Inserting the expressions for the Boltzmann weights, the perturbed lineshape, and

the perturbed dipole transition moments into Eq. 2.40, this gives [3]

8T NA® 19gij(® Gj
Ag(®) = X B.
(©) = = 357000 x In(10) (470 ) g - tz{h o -+ (@) |+ £ T
2.47)
where the Faraday A4, B, and C terms [7, 8, 9] are for a sample of oriented molecules
given by
3i . . .
/qij = 2Nl lazj‘é [(1z.mjﬁjﬁ) — (lz'mjﬁjﬁ)] (12- [‘uiocj[s X”j[sioc):| (248)
By = Y Y UEm) (])
ij th ias = o, z" |Hjpr ~Hiajp
(lZ m]ﬁr)
+ Z NN ( |::urla X;ul(xjﬁ]) (2.49)
W, —O;
7] J
3i .
Gj = N (imy, ) <lz' [ﬂiajﬁxﬂjgia>] (2.50)

ll_]

Since we are here interested in isotropic samples, an orientational average have to be

performed. The final expressions for the Faraday A4, B, and C terms then become

Aij = _Z Z [mm] zaz’a_miaiaSJBj’B}'(“i’aj’ﬁx'“fﬁia> @31)
llq]ﬁl of'p
mW
By = Y im{ Y (,,,B,xylm)+z (o xttiasy ) ¢ 2:52)
Ni (7 r£i —
Gj = szlal’ '(;Ui’ajﬁ X,Ujﬁia>- (2.53)
lz sz

The A4 and C terms can only be non-zero for systems with degenerate states since
non-degenerate states can not have permanent magnetic moments. To have contributions
from the temperature-dependent C term the ground state needs to be degenerate. Open-
shell systems are the most typical examples of this, though also ground-state orbital
degeneracies will give contributions to the C term.

The study of MCD will in the present work be restricted to systems showing only 4
and B terms. The 4 term is understood as being due to the splitting of degenerate states
by the magnetic field, the so-called Zeeman effect. If the ground-state is non-degenerate
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the 4 contribution from a degenerate excited state is proportional to its magnetic moment
and may be used to provide a measure for this. The A4 has a characteristic derivative
lineshape, which often makes it easy to identify in MCD spectra. As will be seen later,
this is, however, not without pitfalls.

The ‘B term is interpreted as a mixing of energy levels by the magnetic field. Since it
does not depend on permanent magnetic moments, it may be observed for all molecular
systems. The B contributions to MCD spectra have the shape of a broad absorption
band with a positive or negative sign, similar to the contributions to natural CD spectra.
Typically this term will have smaller intensities than the A4 term, so for systems with
degenerate states, the A4 term contributions usually dominate.

A special case is represented by two near-degenerate states, where the B term for
these states will then be dominated by the mixing of these two states, as can be seen
by looking at the denominator in the second sum in Eq. 2.52. The two terms will have
opposite sign, and relatively large intensities. Since the bands will be overlapping, this
feature is not easily distinguished from an A4 term. The combined bands for the two

near-degenerate states are therefore commonly referred to as a pseudo-A4 term.






Chapter 3

Quantum chemical methods

This chapter introduces the basic quantum mechanical methods used in this work. The
time-independent molecular Schrodinger equation and the separation of electronic and
nuclear motion in the Hamiltonian is first discussed. In Sec. 3.3, the vibrational part of
the nuclear motion will be discussed, before the attention is turned to the solution of the
electronic problem from Sec. 3.4 and onwards.

3.1 Atomic units

At the microscopic level, it is convenient to use atomic units, which is a unit system
where the basic units are defined to be unity. These basic units are the electron mass
m,, the elementary charge e, the reduced Planck’s constant /s = h/2m, and 47 times the
permittivity of free space, 4mey. All microscopic properties will henceforth be given in
atomic units when not stated otherwise. A more detailed introduction to this unit system

can be found in standard text books on quantum chemistry, like Ref. [10].

3.2 The molecular Schrodinger equation
The time-independent molecular Schédinger equation may be written as
H|¥(r,R)) =€|¥(r,R)), (3.1)

where r and R represent respectively the electronic and nuclear coordinates, and € is the

molecular energy. H is the Hamiltonian operator for the system, which will be referred
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to as the molecular Hamiltonian. Following Ref. [11], the molecular Hamiltonian may
be written as
FI:TCI_FTHUC—}_U(}GR); (32)

where Ty is the kinetic energy operator for the electrons, Tyuc(R) the kinetic energy
operator for the nuclei, and U (r,R) the interaction between the particles.

Due to the large difference in mass between the electrons and the nuclei, it is bene-
ficial to treat the motion of these particles separately. We can then define the electronic
Hamiltonian

Ho =T +U(rR), (3.3)

which depends parametrically on the coordinates of the nuclei. A describes a system

of fixed nuclei. Solving the corresponding electronic Schrodinger equation
I:Iel|q)n("vR)> = Eq(R) |®n(1,R)), 3.4)

we get the adiabatic electronic states |®,) and the energies E, of these states which
depends parametrically on the nuclear positions. The full molecular wave function can

then be expanded in the full set of electronic states
[P(r.R)) = Y. [xa(R)) [@n(r,R)) (3.5)
n

where the expansion coefficients |y, (R)) are referred to as nuclear wave functions.

Inserting this form of the wave function into Eq. 3.2 gives
(Toue +En(R)) [xa(R)) = Y. Aum [Xm(R)) = € [xa(R)) , (3.6)

where I have introduced nonadiabatic operators
Anm = <q)n ‘ q)m> 7Aﬂnuc - <q)n ‘Tnuc’ q)m> (37)

that couples electronic and nuclear motion. When the electronic states have a large
energy separation, these coupling terms will be small. Neglecting the nonadiabatic oper-
ators, we get the Born-Oppenheimer adiabatic approximation, where the molecular wave

function can be written as a product of a nuclear and electronic wave function

[W(r,R)) = [Xa(R)) |Pn(r,R)) . (3.83)
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Neglecting the nonadiabatic operators is in most cases a good approximation, and it
makes the computational problem a lot easier. The nonadiabatic operators will, however,
often give sizable contributions when electronic states are close in energy. In particular,
they show very complicated behaviour close to avoided crossings or conical intersec-

tions, where the adiabatic states change very fast with the nuclear coordinates.[11]

3.3 The vibrational wave function

If a given electronic state is energetically far apart from the other states, as for instance
the electronic ground state usually is, it is safe to assume that the Born-Oppenheimer
approximation can be invoked to describe this state. The nuclei can then be understood
as moving on a potential surface obtained by solving Eq. 3.3 for all values of the nuclear
coordinates R. The molecular Hamiltonian for an electronic state ®,, can then be written
as

Ap(R) = Thue + En(R). (3.9)

The kinetic energy operator for the nuclei is given as

A 1 92
TnuC e —Eza—qlz, (3.10)

i
where the summation runs over all nuclear coordinates and, following Wilson ef al.,[12]

mass-weighted Cartesian coordinates have been introduced as

qi = VMR;. (3.11)

M; and R; are here respectively the mass and Cartesian coordinates of nuclei i.

The potential energy surface for the nuclei is described by the electronic energy, see
Eq. 3.4, which unfortunately does not exist in a simple analytical form. The common
solution is therefore to make a Taylor-expansion of the potential energy around the equi-

librium geometry go, which gives

13/ PE
E,(qg) =E, + = —_— iqit+, (3.12)
(q> (QO) D) iJZ::l (aqlaqj ) Oq 4q;j

since the gradient term disappears at this geometry. Keeping only terms up to second
order in g, this is known as the harmonic approximation. For small displacements from

the equilibrium geometry, this is often a reasonable approximation.
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3.3.1 Normal coordinates and normal modes

The formulation of the potential energy in Eq. 3.12 is a bit cumbersome since it involves
cross-terms between all nuclear coordinates. It is more convenient to use coordinates
that diagonalize both Thue and E,,. These coordinates are known as normal coordinates,
and can be defined as linear combinations of the mass-weighted Cartesian coordinates

as follows
3N
Or= Z lkiqi- (3.13)
i=1
The molecular Hamiltonian in the harmonic approximation is now given as
3N 2 2
A 1 a 1 a En 2
B,(0)=EQ)+Y | 55515 ( ) Qk] ; (3.14)
= | 2007 2\090Q? )/,

which means that the problem can be solved for each of the 3N normal coordinates
separately. The eigenvectors of the differential equations,

10> 1/[dE)\
[—ia—sz (a—Qg)oQk Do) = Even W) (3.15)
are Hermite polynomials multiplied by a Gaussian function, and the eigenvalues are
1
&yn = <vk—i—§) o, vi=0,1,2,..., (3.16)

where the frequencies ®y are here given by

(%)
90; /

Unless the system is linear, the frequencies for 6 of these normal coordinates corre-

1
2

oy = (3.17)

sponding to the overall translation and rotation of the molecule will be zero. This kind
of motion will not be treated here. The remaining 3N — 6 coordinates describe the vi-
brational motions of the nuclei, that is, the displacements of the nuclei relative to each
other. For each of these normal coordinates, the nuclei move in phase, oscillating with
the same frequency, but having different amplitudes. All nuclei will be at the equilibrium
at the same time, and they will reach maximum displacement at the same time. Such a

motion is called a normal mode of vibration.
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The vibrational wave function for an electronic state ®,, can then be written as a
product of the wave functions for each normal coordinate
3N—6

|Xn> = H |Xvk,n>» (3.18)
k=1

and the molecular energy, disregarding translation and rotation, is given by

3N—-6 1
&= Ea(Q0)+ Y (vk+-§)<nb (3.19)
k=1

where vy is the vibrational quantum number or quanta of mode k.

3.4 The electronic Schrodinger equation

After having discussed the vibrational wave function, the focus will now shift to the
solution of the electronic Schrédinger equation which provides the basis for most appli-
cations of quantum mechanics to problems related to chemistry. The focus here will be
on Hartree—Fock and density functional theory (DFT). Although DFT has been used for
most of the work presented here, Hartree—Fock theory will be presented first since this
method is the starting point for many more advanced wave function based methods, and
to show the similarities between this theory and DFT in the Kohn—Sham formalism. In
the following I will use the second quantization formalism as presented in Ref. [13].

In the language of second quantization, the nonrelativistic spin-free electronic Hamil-

tonian can be written as

Ha = h+ &+ hyue, (3.20)
containing the one- and two-electron operators
h =Y hpEpg (3.21)
pq
g = Z 8pqrs€pgrs (3.22)
pqrs

as well as the nuclear-nuclear repulsion term /.
Here I have introduced the one- and two-electron excitation operators that in terms

of the creation and annihilation operators in second quantization are defined as
Epy = ) alsayo (3.23)
(o}

epgrs = EpgErs—0gEps = Zazca;rtaﬂaqc, (3.24)

o1
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where the summation over ¢ and T runs over the two spin states of the electron, often
referred to as the o and B spin. The excitation operators are multiplied by the one- and

two-electron integrals

hpg = / 0,(r) (—%V2>¢q<r>dr—;zz< / Q”r%f'r)dr (3.25)

Q0 (r1)Q,(r
g = | pal 22 =2 4o, drs, (3.26)

where ¢ are spin-orbitals, Zx the charge of nuclei K, r» the inter-electronic distance,

and the overlap distributions is given by

Qpy(r) = 0, (r)dy(r). (3.27)

3.5 Hartree-Fock theory

A common starting point in electronic structure theory is the Hartree—Fock (HF) method,
in which the electronic wave function is represented by a single Slater determinant, or in
the case of restricted HF theory in general, a single configuration state function (CSF).
The CSF is a linear combination of Slater determinants that ensures that the wave func-
tion is an eigenstate of both the total and projected spins. In the following, I will only
be concerned with closed-shell systems, and the CSF may then be written as a single

determinant as follows
0) = (Haj&ajﬁ) |vac) , (3.28)
i

where indices i refer to occupied orbitals, commonly referred to as inactive orbitals. The
index a will refer to unoccupied orbitals, also called virtual orbitals.
The HF determinant may be parametrized by a unitary exponential orbital-rotation

operator
0(x)) = exp(=&)[0), (3.29)
where
K=Y Kpg(Epg—Eqp) = Y KpgEpy- (3.30)
p>q p>q

Only rotations between occupied and virtual orbitals will affect the state ‘(~)> We can

therefore restrict the summation to occupied-virtual orbital pairs

k=Y ®uiFy. (3.31)
ai
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The electronic energy is given by the expectation value of the Hamiltonian
Eo(x) = (0(x) |Hea | 0(k)) . (3.32)

Applying the variational principle, the HF state is defined by the rotation operator which
minimizes the expectation value of the Hamiltonian, that is the state for which the ex-
pectation value is stationary

8Eo () = 8(0(x) |Hx|0(k)) = 0. (3.33)

Expanding the expectation value in terms of the orbital rotation operator, it is found that

the conditions for the optimized HF state is
(0(x) | [Eai, Het] | 0(k) ) = 0. (3.34)

A single Slater determinant represents an electron which moves independently of the
other electrons in the system. The HF state can therefore be obtained by finding the
eigenfunctions of an effective one-electron operator, the Fock operator

F =Y fraEpq- (3.35)
prq

Applying the HF conditions in Eq. 3.34, and requiring that in the absence of two-electron
interactions the Fock operator should reproduce the true Hamiltonian, the Fock operator

becomes
Fra = pg+ Y (28 pgii — &piig)- (3.36)
i

The Hartree—Fock energy is then given by
- 1 -
Eo = ZDthI%I + 5 Z dpqrsgpqrs =+ hnue, (3.37)
pPq pqrs

where density matrices are defined as
qu = <0 |qu| ()> (3.38)
dpgrs = {(0]epgrs|0). (3.39)
The one-electron density matrix can be chosen to be diagonal, and since for a closed-

shell system only the elements with both indices inactive are nonzero, the energy can be

given as
Eo=2Y hi+ Y (28iij; — &ijji) + hnuc. (3.40)
7 ij
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3.6 Correlated methods

As mentioned above, in Hartree—Fock theory, an electron is described as moving inde-
pendently of other electrons. An electron is then understood as moving in an effective
potential set up by the nuclei and the other electrons in the system. In the real system,
however, the interactions between the particles are instantaneous and will at any given
time depend on their relative positions at this time. Considering the nuclei as fixed, we
call the difference between this two descriptions for electron correlation. The correlation
energy is then defined as the difference between the HF energy and the exact electronic
energy of the system.

The exact wave function can be represented as a linear combination of all Slater
determinants within a given basis. This is called the full configuration interaction (FCI)

wave function
[FCI) =Y Gli), (3.41)

where C; are the CI expansion coefficients and |i) are Slater determinants or, in general,
CSF’s. Computationally, this expression is only tractable for very small systems. It is
therefore necessary to truncate the expansion in practical calculations.

In many cases, the FCI is dominated by a single reference configuration, the HF
ground state. The electron correlation is then said to be "dynamic", and can be under-
stood as a small, though important, perturbation of the uncorrelated system. Common
methods to include dynamic correlation include truncated CI, coupled cluster (CC) the-
ory, and Moller-Plesset (MP) perturbation theory.

For some systems, however, several configurations contribute significantly to the FCI
wave function, and a single-reference configuration will not provide an adequate start-
ing point for the treatment of dynamic correlation. This can be remedied by optimizing
the expansion coefficients and the orbital coefficients simultaneously for the most im-
portant configurations, as is done in multiconfigurational self-consistent field (MCSCF)
theory. The portion of the total electron correlation recovered by treating the multi-
configurational problem this way is typically called non-dynamical correlation. Various
methods exist for using a multi-reference configuration as a starting point for treating
dynamical correlation, including multi-reference CI and CC approaches and the pertur-
bation theory based approaches CASPT?2 [14, 15] and NEVPT2.[16]
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3.7 Density functional theory

A computationally attractive alternative to treating electron correlation using wave func-
tion based methods is to use density functional theory. According to the Hohenberg—
Kohn theorems,[17] the electronic energy can be expressed as a functional of the elec-
tron density p for a given external potential, and the density which minimizes the energy
of the system in this external potential is the ground-state density.

The ground-state electronic energy can now be formulated as

Eo[p] = T[p] + Vee[p] + Vielp], (3.42)

where T [p] is the kinetic energy, V,, is the electron-electron interaction energy, and V,,,
is the nuclear-electron interaction energy.

The problem with this approach is that the form of 7'[p] and V,, is unknown and
these terms must therefore be approximated. The largest contribution to the energy of
the system comes from the kinetic energy. However, for a system of noninteracting
electrons the kinetic energy contribution can be calculated exactly. In the Kohn—Sham
formalism, the energy is therefore instead solved for a fictitious system of noninteracting
electrons having the same density as the real system, but moving in an effective external

potential. The energy functional can then be reformulated as

Eo[p] = Ti[p] + V' [p] + J[p] + Exc[p] + /tnuc, (3.43)

where Ti[p] is the kinetic energy of the noninteracting system, V*![p] is the classical
interaction of the electrons with the external potential, and J[p] the classical Coloumb
interaction of the density with itself. Solving for the effective external potential in-
troduces the exchange-correlation functional which is unknown, but for which many
approximations exist.

Since the wave function of a noninteracting system is a single Slater determinant, the

density can in this formalism be expressed in terms of Slater determinants as
P(r,K) =} Dy (K)Qpy(r), (3.44)
pq

where the overlap distribution Q,, is defined in Eq. 3.27 and the density matrix D,
in Eq. 3.38. Following Ref. [18], the Kohn-Sham energy can then be formulated in a
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manner similar to the expression for the Hartree—Fock energy

- 1 ~ -

Eolp(x)] = Zqu(K)hpq + ) Z Dpq(K)Drs(€)8pgrs + Exc[p ()] + hnuc- (3.45)
pq pqrs

As mentioned above, the exchange-correlation functional Ex. needs to be approxi-

mated since the exact form of it is unknown. The simplest approximation would then be

to let it only depend on the local density p. This is called the local density approximation

(LDA)

EPAp(0)) = [ exc(p(r))dr, (346)
which even though often useful for describing solid-state systems, is normally not a good
approximation for molecular systems. A natural extension to this approach is to allow

the functional to depend also on the gradient { of the electron density, which then gives

the generalized gradient approximation (GGA)

ESp()] = [ exe(p(r.0).8(r,0))dr. (347

Further improvent to the functional, in particular for molecular properties like atom-
ization energies, bond lengths, and vibrational frequencies, can be made by incorpo-
rating some orbital exchange, also called exact exchange.[19, 20] A hybrid exchange-

correlation functional can then be given as

ri 1 ) D
R [p(] = BS99~ 37 X Dy ()01 (). 3.48)
pgrs

Analogous to the Fock-operator in Hartree—Fock theory, the Kohn—Sham states can

be obtained as the eigenfunctions of the one-electron Kohn—Sham operator

OE,
Fpg = hpq+ Z(gpqii —Y8piiq) +/ (8_;) Qpqdr, (3.49)

where 7y of course is zero for LDA and GGA based methods.

3.8 The polarizable continuum model

So far I have assumed that the molecular system can be treated in isolation from the en-
vironment, which is a good assumption for molecules in the gas phase. Often, however,

experimental studies are performed for molecules in solution where interaction with the
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solvent may have a significant effect on the properties of the solute molecules. This
interaction therefore needs to be included in the quantum mechanical system to give a
good description of solvated molecules.

The solvent may be described by including discrete solvent molecules, as a con-
tinuum, or with a combination of these approaches. In this work, the interaction be-
tween the solute and the solvent will be described using the polarizable continuum model
(PCM),[21, 22] where the solute molecule is placed in a cavity in a continuum describ-
ing the solvent. The continuum will be polarized by the solute, giving rise to apparent
charges at the cavity surface.

In the integral equation formalism of PCM (IEF-PCM),[23, 24, 25] the interaction

Hamiltonian is given as
H=Hy+J/+Y+X(0)+Uyy, (3.50)

where J is the interaction of the solute electrons with the apparent surface charges pro-
duced by the nuclei, ¥ the interactions of the solute nuclei with the apparent charges pro-
duced by the electrons, X (0) the interaction of the electrons with the apparent charges
produced by themselves, and Uyy the nuclear solvation energy.

In the second quantization formalism, these operators take the following form [26,
27]

J = Veq" =Y Vg = Y Vi pedh Eng 3.51)
T T.pq
Yy = vVV.g°= ngvqg =) V{Vq;pquq (3.52)
T T,pq
X(O) = Ve'<(~)|fle|(~)>:z,‘7re <6|@§|6>: Z Vf,pquqq«e:,rsDrs (3.53)
T T,pqrs
Uw = VVN.qV, (3.54)

where the cavity surface is divided in small tesseras . V¢ and V¥ are column vectors
of electrostatic potentials produced by the solute electrons and nuclei respectively, and
evaluated at the centers of these tesseras. Similarly, qy collects the apparent surface
charges produces by the nuclear charge density.

The wave function of the solute is obtained by minimizing the free energy of the
solute

8G(x) = 8(0(x)|G

0(x)) =0, (3.55)
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where since J and ¥ are formally equivalent [22], and Uyy does not affect the wave

function, the free energy operator may be given as

X(0). (3.56)



Chapter 4
Response theory

This chapter introduces the methodology employed to calculate the response of a molec-
ular system to external electromagnetic fields. I will here restrict the discussion to the
electronic problem, returning to the treatment of the full molecular Schrédinger equation
and vibronic states in Chapter 5. The formalism used will mainly follow Refs. [3, 28, 29].

4.1 Response functions

The time-evolution of a state [y(¢)) is given by the time-dependent Schrodinger equation

A(0) = i 1wl0). @)
In the cases of interest here, the time dependence in the Hamiltonian is due to the interac-
tion of the system with an external electromagnetic field that is assumed to be weak. This
interaction can then be treated as a small perturbation to the time-independent Hamilto-
nian
H(t)=Hy+ V(). (4.2)
In the frequency domain, the interaction operator may be written as

V()= / " pogl-ioter g, (4.3)

where € is a positive infitesimal ensuring that V (z) is zero before the external field is
switched on at the time t = —oo. If we only consider the electric dipole contribution, the

interaction operator in Eq. 2.21 is given as

A

VO =~ Fy, 4.4)
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where F is a component of the electric field strength oscillating with frequency o,

and V~® = (V®)" ensures that the perturbation is Hermitian. The Einstein notation of

implicit summation over repeated indices will be used throughout this chapter.
Response functions can be defined from expanding the evolution of the expectation

value of an operator A to various orders in the perturbation V(t),
WO Alwn) = (0[A]0)+ [ (AP0 e et doy

+/°° /°° <<A;Vm1,Vm2>>€_i(w1+m2)t€28tdﬂ)|d0)2+--- (4.5)

A

Molecular properties can be identified from these response functions and their resi-
dues [28]. For monochromatic perturbations, the integrals may be replaced by discrete
sums over the relevant frequencies.

In the following, the Ehrenfest approach will be used to obtain expressions for the
response functions as is done in Ref. [28]. It should be noted that in recent years the
framework of quasienergy derivatives has gained increasing popularity.[30, 31] In addi-
tion to being more readily applicable to nonvariational wave functions than the Ehrenfest
approach, this framework also has the advantage of an inherent symmetry with respect to
exchange of operators. The picture provided by the Ehrenfest approach does, however,
maintain a closer connection to the underlying physics involved, and I will therefore
use this formalism below, noting that the same final expressions may be obtained in the

framework of quasienergy derivatives.

4.2 Exact states

If the eigenstates and eigenvalues of the time-independent Schrodinger equation
Ho|n) = Ey|n) (4.6)

are known, these states may be used as a basis for expanding the time-dependent state
|w(z)). One way of doing this is to define unitary rotation operators

(1)) = €0 0), (4.7)

where P(t) is a Hermitian operator given by

P(r) = ; [Pa(t) ) (O + F; (1) 0) {nl] (4.8)
n#0
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The time-dependence of an expectation value is given by the Ehrenfest theorem.[32]
For a general state-transfer operator Q,,,, = |n) (m| that has no explicit time dependence,
this gives

a A . a A

57 (W) [ Q| w(1)) = =i W 0) [, H] [ W(1)) - (4.9)
Expressions for the response functions in Eq. 4.5 are obtained by solving Eq. 4.9 to
various orders in the perturbation.

In this work, we will focus on the linear and quadratic response functions. For exact

states, the linear and quadratic response functions will be given by

((A:ve) = ((A:B)),,

_y | {0l n|B[0) | (O]B|m)nlA}0)) 4,
n#0 ©n — 01 On 1
((Avorve)) = ((AB.C))g, w
_ o, ¥ A= QB0 EED)

k20 (0, — 0 ) (@ — )

where ®, = E,, — Ep and 0g = ®1 + 0. P_g,1 2 is a permutation operator that permutes
the pairs of operators and frequencies (A, —®5), (B,®;), and (C, ), meaning that the

quadratic response function consists of a total of 6 terms.

4.3 Approximate states

In practical calculations, the exact eigenstates of the time-independent Hamiltonian in
Eq. 4.6 is not known. Instead of using a truncated set of approximate eigenstates as a
basis for expanding the time-dependent wave-function, a different parametrization may
be chosen. This choice of parametrization will then depend on the methodology used
to obtain the time-independent reference state, which in most cases will be the ground
state.

I will assume that the reference wave function is variationally optimized with re-
spect to the energy of the system in the absence of external fields, and that a single-
determinant approximation, that is Hartree—Fock or Kohn—Sham DFT, has been used.
The time-dependent wave function can then be parametrized using a unitary orbital ro-
tation operator as

10(r)) = €@ 0) . (4.12)
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The Hermitian operator k(¢) is defined as
&)=Y [Kai(t)dZd,’ i (0)a] 4] - (4.13)
ai
where, as in Sec. 3.5, index i refers to inactive orbitals and a refers to virtual orbitals.

Following Norman et al.,[29] it is convenient to introduce a summation index 7 run-

ning over D pairs of indices (a, i). Letting §, = @ d;, this gives
D
= Y Kudn, (4.14)
n=-—D

where n = 0 is excluded from the summation, §_, = c},L and x_, =K.
Solving Eq. 4.9 to different orders in the perturbation, the linear and quadratic re-
sponse functions may then be written as

(A70) = ((AB)),, = —ArN (1) @19
((Aspen, o)) = ((A:B, @>>mlm [ALAHLL]NB( 1N (@2)
+NA( )[ mNC((DZ)‘f‘Cr[W;LNB( )] (4.16)

where the response vectors solve the following set of linear response equations

N o) = AMEE —ous2) ! (4.17)
NB(wy) = [EP)— w52 B! (4.18)
NC(y) = [EP—apsPytch, (4.19)

A = =(0][a.4]|0) (4.20)
A = 2001 [an [am A1 0) @2
S = <0 [i»éz”o (4.22)
Sy = —%<0 qu[Qm’qu]”0> (4.23)
Ey = —<0 [@L[ézﬁo” 0> (4.24)
Epy = %<0 [qj;, [éz,[émﬁoﬂ”0>. (4.25)
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Constructing the inverses of (E 2 — s [2]) for the linear response functions is not
computationally tractable. Instead, the response equations in Eq. 4.17-4.19 are solved
iteratively by multiplying (E 2 coS[zl) with trial vectors N and comparing with the
property gradient, i.e Al until convergence is obtained.[28] For a more detailed discus-
sion of the form of the response equations for Kohn—Sham DFT, the reader is referred to
Ref. [33].

4.4 Absorption, circular dichroism, and magnetic circu-

lar dichroism from response theory

For optical frequencies close to resonance with an electronic transition, the response
functions will diverge, and the evaluation of the response functions themselves in these
regions is therefore not particularly meaningful. Using linear response as an example, it

is easily seen from the expression for exact states in Eq. 4.10 that this function will have

poles at ®; = + ®,. The residue of the response function gives transition moments
Hlim (01— ) ((A:B)),, = —(0|A|n)(n|B|0). (4.26)

This means that the oscillator strength for absorption and the rotational strength for
circular dichroism can be obtained from the residues of the appropriate linear response
functions given in Eqgs. 4.10 for exact states and in 4.15 for approximate states, with the
positions of the poles determining the excitation energies. The oscillator strength is from

Eq. 2.33 identified as
2

= S 4.27
fOn 30)” n ( )

where the dipole transition strength is given as

S%% = — lim (00— o) (o fle) ) - (4.28)

O—0,

The rotational strength is similarly identified from Eq. 2.38 as

Rop = — 1im (0 — 0,) (e i20)) o - (4.29)

w—0,

It should here be noted that although the rotational strength will be independent of the

choice of gauge origin in the limit of a complete basis set, this is not generally the
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case for calculations with finite basis sets. One approach to obtain gauge-origin inde-
pendence also for finite basis set calculations is to use London orbitals, also known as
Gauge-Including Atomic Orbitals.[34, 35] Another option is to use the velocity-gauge
formalism for the dipole moment operator instead of the length-gauge formalism as-
sumed above. In the velocity-gauge formalism, the rotational strength will always be
gauge-origin independent, but its convergence with respect to basis set size is slower
than in the length-gauge formalism.

The contributions to magnetic circular dichroism are commonly divided into three
terms as discussed in Sec. 2.5. The term that has the closest analogy to natural circular
dichroism is the Faraday B term. This term has often been calculated directly from
the sum-over-states (SOS) expression in Eq. 2.52. Excitation energies and transition
moments may then be obtained from poles and residues of linear response functions as
shown in Eq. 4.26. The drawback of this approach is that a large number of states are
often needed in the summation in order to get converged results.

An alternative approach, which has been used in this work, is to identify the B term
from the single residue of a quadratic response function [36]

Bon = EqpyIm ( (- o) <<ﬁa;ﬁﬁamy>>m’0> : (4.30)

lim
0—=0),
As was the case for the rotational strength discussed above, the calculated B term will
in general not be gauge-origin independent for finite basis set calculations. It should be
noted that this residue includes some terms that are excluded from the expression for
the B term in Eq. 2.52. This means that, depending on the symmetry of the system,
the residue may have singularities causing unphysical divergencies for the calculated B
terms. A suitable projection that removes these singularities is described in Ref. [37].

In the framework of quasienergy derivatives, a different approach for calculating the
B term of MCD has been proposed.[38] The B term can here be identified from the
magnetic-field derivative of the dipole transition strength in Eq. 4.28,

1 dsP

%n = ESOLBYIHI <d_B,Y . (431)
B=0

This expression for the B term has the benefit of making it easier to include London

atomic orbitals for gauge-origin independent calculations, in addition to being applicable

to both variational and nonvariational wave functions.
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The derivative approach may also be applied to the 4 term of MCD. The A4 term
for a given degenerate state can be obtained from the magnetic-field derivative of its

excitation energy [39]

1 fo[0)
1 n of
Aon = SEapy §r K T )BO Im (Snr )} : 4.32)

where r runs over the degenerate states.

In this work, instead of calculating the 4 term directly, the attention has been turned
to damped response theory, which in the Ehrenfest approach employed here also has
been referred to as complex polarization propagator theory.[29] This approach, as will
be discussed below, provides a unified framework for the 4 and B terms of MCD. It
also avoids the problems with divergences due to near-degeneracies that might be en-
countered in some cases when calculating the B term as a residue. A drawback of the
approach presented that should be noted, however, is that it is not as readily applicable
to vibronic theory as the more conventional approaches employing the infinite lifetime

approximation.

4.5 Damped response theory

In the formulation of response theory discussed above, the excited states are treated as
having an infinite lifetime. This approximation is responsible for the divergence of the
response functions close to resonance. Absorption spectra then become a progression of
discrete poles. In reality, excited states will always decay to lower-lying states and will
therefore have a finite lifetime. This is one of the effects that cause a broadening of the
absorption bands. Typically this is simulated by multiplying the transition probabilities
with a Lorentzian or Gaussian lineshape function as described in Sec. 2.3. Alternatively,
the decay or relaxation of the excited states may be introduced in the equation of motion
for the perturbed system, removing the singularities in the response function. This latter
approach will here be referred to as damped response theory.[40]

Assuming that the system is in the ground state at thermal equilibrium, the Ehrenfest

theorem may be modified to include decay of the excited states as follows [29]

— (W (t) [ Q| W(1))] (4.33)

e
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where v,,, 1s the decay rate of state m to state n.

In the following, the excited states will be restricted to only relax directly to the
ground state, and a common damping parameter, Y = 7,0, for all excited states will be
introduced. The damping parameter will in practical calculations be chosen to mimic the
broadening of the experimental spectra. Since only the electronic part of the problem
will be treated, this phenomenological parameter will also include the broadening of
absorption bands due to the vibrational substructure of the electronic states.

For electronic states, it is normally safe to assume that the system is in the ground
state at thermal equilibrium, and the last term in Eq. 4.33 can therefore be neglected.
Restricting the equation of motion in this fashion is equivalent to introducing complex
frequencies

O = w+1y, (4.34)

and solving the response functions in Sec. 4.3 for these complex frequencies.[40]
For the linear response function, the form of Eq. 4.15 will be retained in the damped
formalism, with the modification that the response vector N3(w;), and thus also the

response function ((A; B))¢,, will be complex. The response vector
NE(y) = [E?) = (0 +iy)s] Bl (4.35)
may then be separated into a real and an imaginary part as follows [41]
NB (o) = NBR(w) +iN? (w). (4.36)

The real and imaginary parts of the response are then coupled through the damping
parameter Y

[EP — wSPIINBR = Bl _ ySRINBT (@) (4.37)
[EP] — oSPINBT = ySPINR (@), (4.38)

Similarly, the expression for the quadratic response functions will be given by

((A:B,C)) g,y =[Atin + A INE (@1)NG (@2)

N, (06) [Epy — (01 = 10)Sm 4+ Ey, — (02 = )8, INJNE
+ N2 (06) BING (002) + ChNE (7). (4.39)

For real perturbations, the real part of the response functions is related to dispersion,
that is polarizabilities and hyperpolarizabilites. The imaginary part may be shown to be
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related to absorption.[41, 42] For odd numbers of imaginary perturbation operators, the

relationship will be reversed.

4.5.1 Molecular properties from damped response theory

The identification of the contributions to absorption, CD, and MCD from the complex
response functions can be made based on the refringent scattering approach presented in
Ref. [1]. Assuming that the external field is oscillating with a single frequency, ®, the
oscillating dipole moment can be expanded as

1, oFy 1.  0Fy 1 oF
) B By By
pa = g OapFy 0 Ay T3 A by,

1. 9B
+GopBp + E)G B, +-, (4.40)

where Fog = Vg Fp is the electric field gradient. The tensors 1o, Op and so on are
referred to as molecular property tensors and will be given by the appropriate response
functions. In the framework of damped response theory, these property tensors will
be complex, with the imaginary part being related to absorption when the perturbing
operator is real.

The dominant contribution to regular absorption comes from the imaginary part of

the electric dipole polarizability, identified as

o = ((flos 1B)) - (4.41)

The mixed electric dipole-magnetic dipole polarizability G’ op» and the mixed electric
dipole-electric quadrupole polarizability, A gy, contributes to natural CD. Contributions
from the latter will, however, cancel out for isotropic samples, so the main contributions

surviving come from the real part of

GlocB = <<ﬂoc§”7’lﬁ>>m7 (4.42)

noting that one of the perturbing operators is imaginary. Both A and G’ op vanishes for
nonchiral systems.

Another contribution to CD comes from the response to first order in the time-
derivative of the electric field, o/ of> but this is only non-zero in the presence of an
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external time-odd influence, such as a static magnetic field. This property tensor is

responsible for MCD, and may be expanded in the static magnetic field as follows,

ooy (B) = o 4 (0) + ) By -+ (4.43)

(m)
oy’
ture-independent part of the MCD signal, which is usually interpreted in terms of the 4

The response to first order in the magnetic field, o is responsible for the tempera-
and ‘B terms discussed in Sec 2.5. In the damped response theory framework, they are

identified from the real part of a single response function,

rm)

o aof,y - <<;aoc;:a[37m7>>m,07 (4'44)

again noting the presence of an imaginary perturbing operator.

4.6 Response theory for the polarizable continuum model

When a solvated system is perturbed by a dynamic field, both the dynamics of the solute
and the solvent must be taken into account. In a fast process, the solvent will not be
able to stay in equilibrium with the fast changes in the solute electron distribution. In
the nonequilibrium formalism, this may be accounted for by partitioning the bielectronic
term in Eq. 3.53 in a fast component X“(0) that always will be in equilibrium with the
electron density of the solute, and a slow component X (p) that is kept fixed to a
frozen electron density p™. The fast component may be related to the solvent electronic
distribution close to the cavity which instantenously equilibrates to the new electron
density of the solute, while the slow component is related to other degrees of freedom in
the solvent [43, 44].

The free energy operator for the solvated system in a dynamic external field is now
given by [27]

G=Hy+J+X"(p™) +%X”’(())+V(z). (4.45)

Response equations for PCM can then be obtained by replacing the derivatives of the
electronic energy E in Eqgs. 4.16-4.19 with the corresponding derivatives of the free
energy of the solvated system G

2 2 2 i 1 1]

G2 = EF VI ¢V +q" 1 q)+ Vi (4.46)
3 3 3 i 2] gl 1 2]

3= BB VB gV g g+ VB - villgl . @4
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q" are here a column vector of apparent charges produced by solvent nuclei, ™ apparent
charges produced by the frozen reference electron density p™, and q? apparent charges

produced by the dynamic electron density.






Chapter 5
Vibronic models

This chapter introduces the methods used to calculate vibrationally resolved spectra.
First, methods within the Born—Oppenheimer adiabatic approximation will be discussed
in Sec. 5.1. Then in Sec. 5.2, I will proceed with describing a method based on a vibronic

model Hamiltonian that is suitable when the adiabatic approximation breaks down.

5.1 Adiabatic approximation

Within the Born—Oppenheimer approximation, also known as the adiabatic approxima-
tion, a molecular wave function can be expressed as the product of an electronic wave
function and a vibrational wave function, when only vibrational motion are considered
for the nuclei. Following Ref. [45], I will let |gv,) refer to the initial state and | fVy) to
the final state. Here v, and v label the vibrational states of the electronic states g and f.

In Secs. 2.3-2.5, it was shown how spectral intensities are related to products and
combinations of transition dipole moments. Starting with the electric dipole transition

moment, this is then in the notation introduced above given by
s = (gvi il £V7) 5.1)
Integrating over the electronic coordinates gives
e = (Ve |l (@) vy) (52)

where Q is the set of normal coordinates defined in Sec. 3.3.1. The electronic transition

g

moment, (" (Q), may be expanded around the equilibrium geometry of the initial state
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with respect to its normal coordinates as follows

9 &g Q
,u&g(gQ) :yég(ng) + P‘ggé >gQa e (5.3)
a a
Inserting this expression into Eq. 5.2 gives
W&V 3 (2Qp) <Vg\vf>+2 a«%’Q <vg 8Q0| V) 4+ (5.4)

The magnetic dipole transition moment can be expressed in the same way as,

am(x
040,

The first term in Eqgs. 5.4 and 5.5 consists of respectively the electric and magnetic

mﬁngvf = m8(Qo) vg\vf>+z <vg] 8QalVF) + - (5.5)

transition moment at the equilibrium position of the ground state, multiplied with the
overlap between the vibrational states, the so-called Franck—Condon factors. This term
is referred to as the Franck—Condon (FC) contribution. The second term is called the
Herzberg—Teller (HT) contribution and couples electronic states through the nuclear vi-
brations, giving rise to what is often called the "intensity-borrowing mechanism".[46]
This mechanism may cause a non-zero intensity for transitions that are dipole-forbidden
in the purely electronic picture (that is when ,uf # =0 for ot = x,y,7), in addition to altering
the intensity of other transitions.

The significance of the HT "intensity-borrowing mechanism" may be evaluated by
writing the derivative of the electronic transition moment as [47]

(ggﬁ>%:<<% v >>QO+(< a®f>> . (56)

where the derivatives of the electronic wave functions may be expanded as

2(0@,) ) (O, [0H®! /0%0,|©,)
2% =Y 0,). 5.7
( F0u Jsg, ( En—E, 0 ©n) 5.7)

It is seen from Eqgs. 5.6 and 5.7 that when the final electronic state has a large energy
separation with respect to other electronic states, the HT contribution will be small and
the FC contribution will dominate.

The electronic states may also couple through the non-adiabatic operators in the

molecular Hamiltonian (see Eq. 3.6). For electronic states that are close in energy, the
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non-adiabatic operators may be quite significant, contributing to coupling terms that are
substantially larger than the HT terms. In this case it is necessary to move beyond the
adiabatic approximation. I will return to this situation in Sec. 5.2.

5.1.1 Analytical sum rules

To calculate a spectrum what is needed is then to insert Egs. 5.4 and 5.5 into the final
expressions in Sec. 2.3-2.5 and sum over all vibronic states in the region of interest. In
practical calculations, it is not possible to include the overlaps of all vibrational states
and the summation will therefore have to be truncated. The total intensity for a transition
between two electronic states, can nevertheless be calculated analytically and this can be
used to make sure that all non-negligible vibronic transitions have been included.

The total absorption intensity for the electronic transition g — f is from Egs. 2.29

and 5.1 proportional to

Y oo Xl :V;fpvg;(@g

Vg,Vf o
where py, is the probability of the system initially being in the vibrational state V.

Ve fVf
Ho,

dECQvr ) (ve Q)| vy)), 68)

Inserting Eq. 5.4 truncated after the linear term, this may be shown to give [48]

vofvy|? 2
Y po Y=Y {(uﬁf(ng))
Vg,Vr o o
)\ 1
+;§pvg S0, | 39 Pest ], 69

where ®, is the frequency of normal mode a. The first term on the right-hand side above
is the total Franck-Condon contribution, which is here just the product of the electric
transition moment with itself. The second term is the total Herzberg-Teller contribution.

Similarly, we have from Eq. 2.38 that the total rotatory strength of ECD for the



44 Chapter 5. Vibronic models

electronic transition g — f is proportional to [45]

1 ( Ve fvy ngfo>
v§f Pv, Z m My,
- Z Pv, ZIm (<Vg

VVf

dEEQvr) - (v mlfEQ)|vs)) .10
=Y 1m |18/ (*Qo)m¢/ (+Q)
+ZZP al—'fg amég (*Q) 1

agQa 2P0, 20,

(2Vag+1) (5.11)

a Vg

Again, the first term in 5.10 is the total FC contribution, while the latter is the HT con-
tribution. It is noteworthy that there is no contribution from terms mixing the FC part
of the electric transition moment and the HT part of the magnetic transition moment,
or vice-versa. Another interesting feature is the possibility of "sign-inversion", where
the HT contribution has the opposite sign of the FC contribution. This may give both
positive and negative intensities for a single electronic state.

5.1.2 Adiabatic Franck—Condon

Within the adiabatic approximation, the main difference between the time-independent
methods we will consider here lies, in addition to whether HT effects are included, in the
description of the potential energy surfaces (PES) of the electronically excited states.

The (harmonic) adiabatic Franck—Condon model [49, 50, 51] is based on an har-
monic analysis of the PES of each electronic state of interest around the equilibrium
geometry of the respective state. It thus requires the optimization of the excited state
geometry, as well as the calculation of the corresponding Hessian at this geometry. The
expansion may also in principle be expanded to include anharmonicities, but this has not
been done in the applications of AFC in the present work.

Restricting the description of the excited state PES to the harmonic approximation,
the sets of normal coordinates for the initial state g and finale state f are related by the
linear transformation [52]

8Q=JQ+K, (5.12)

where J is the Duschinsky matrix that describes the rotation between the ground- and

excited state normal modes and K is a vector describing displacement from the ground
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state equilibrium geometry. The Duschinsky matrix and the displacements vector are
given by

L&/ (5.13)
L1/ Qo—* Qo). (5.14)

—
|

where L# and L/ are the normal coordinate matrix of the initial and final state, respec-
tively, and / Qg and 4Qy the equilibrium normal coordinates of the same states.

It should here be noted that though the three translational coordinates can be elimi-
nated exactly from Eq. 5.12, this is in general not the case for the rotational coordinates.
The mixing of the rotational and vibrational coordinates can, however, be minimized by
through a suitable rotation of one of the two equilibrium structures. This can be achieved
by minimizing the root-mean-square distance (RMSD) of the molecular nuclei in the two
equilibrium positions, which in one approach can be done using quaternions.[53]

Since in general the Duschinsky matrix J is not diagonal, the multidimensional FC
overlaps cannot be separated in a product of one-dimensional integrals. The overlaps
can, however, be calculated recursively using either the generating functions approach
of Sharp and Rosenstock [54] or the coherent state approach of Doktorov et al. [55]
Here, the former approach has been used. The form of the one-dimensional integrals
will be discussed in the next section.

An aspect that may make calculations challenging, is the huge number of vibrational
states that may contribute to the spectra. In most cases, however, the contributions from
the majority of the excited states will be neglible. This means that it is beneficial, and
indeed, crucial when going to larger systems, to adopt a strategy for preselecting the
important integrals.

In the calculation of vibrationally resolved spectra within the adiabatic approxima-
tion in the present work, the program FCclasses [56] has been employed to calculate the
vibronic intensities. This program performs a prescreening of which FC integrals to in-
clude in the calculation by collecting transitions to the manifold of vibrational states |V )
into classes C,, where n is the number of vibrational modes with a non-zero quantum
number.[48, 57, 58, 59] Selection schemes are then employed to determine the maxi-
mum number of quanta to include in each class. Convergence can finally be tested by
comparison with the result of the analytical sum rules in Sec. 5.1.1. It is noted that a
more rigorous method for prescreening FC integrals has been proposed by Jankowiak et
al. [60]
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5.1.3 Vertical gradient model

The computational demands of the AFC model, which includes the optimization of ex-
cited states, makes it unfeasible for larger systems. A more simplistic model is provided
by the vertical gradient (VG) model,[61] sometimes referred to as the linear coupling
model (LCM). In this approximation, it is assumed that the ground and excited states
have the same harmonic PES apart from a small displacement of the equilibrium coor-
dinates. That is, the excited state will have the same set of normal modes as the ground
state, with the only difference that each excited state normal mode a will be displaced
by a distance AQ,. This displacement can be calculated from the excited state gradient,

1 9E/(Q).

A0a= =42 30,

(5.15)

In contrast to the AFC model, the FC factors will in the VG model be given as
products of displaced one-dimensional harmonic oscillator overlap integrals

(Ve Vy) =1 {Vagl Var)- (5.16)

Assuming that v, ; <V, r, these one-dimensional overlap integrals are given by

vy G (Vaf—Vag) [Vag' Var—Va
(Vag | Vag) = (1) s D) [RE LT ) s
a,f -

where x, is a dimensionless factor relating the displacements and the frequencies, and

Lzzgf TYag (x4) is the associated Laguerre polynomial.

[VafVag (x4) = Vazg V%f!(_xg)r
£(x,) = .
= (Vag — 1) (Va,f —Va,g +1)!r!

(5.18)

The integrals involved in the Herzberg—Teller contribution will also be given as prod-

ucts of one-dimensional integrals,
(Ve|Qal Vi) = (Vag1Qal Va ) [T (Vo | Vors) (5.19)
b#a

where the one-dimensional integral over the normal coordinate Q, is related to the FC
factors by

1
- (Va1 (Vag + 1 Va) +Vag (Vag = 1Vay) ) . (5:20)
a

(Vag|QalVa,r) =
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The assumption that the curvature of the excited states is the same as that of the
ground state is of course a rather crude approximation to the excited state PES. Never-
theless, the benefits of the VG model include quite easily obtainable excited state sur-
faces, as well as a simple form for the overlap integrals contributing to the intensities.
This makes the model applicable to much larger systems than the AFC model which
provides a more accurate description of the excited state surfaces. For reasons that will
be clear from the discussion in Sec. 5.1.4, the VG model will typically be able to capture
the most important features of vibrationally resolved spectra.

5.1.4 Vertical Franck—-Condon

The approach used in the VG model may be extended by performing a harmonic analysis
of the excited state surfaces around the equilibrium geometry of the ground state. This
gives the vertical Franck—Condon (VFC) [62] model, which avoids the cumbersome
optimization of the excited state geometries needed in the AFC model, while providing
a better description of the excited state surfaces than the VG model since it includes
Duschinsky rotation. Although no applications of the VFC model have been made in
this work, it might be useful to mention some aspects of the motivation for the model,
since it provides a connection between the models within the adiabatic approximation
and the model discussed below which goes beyond this approximation.

The motivation for the VFC model comes from the time-dependent picture of spectro-
scopy,[63, 64] where the excited wave function is understood as a localized wave packet
evolving on the excited-state surfaces before finally decaying back to ground state. The
spectrum can be obtained from a Fourier transform of the time-correlation function C(7)
for the process,

C(t) = (2(0) | (1), (5.21)

where W(¢) is the evolving wave packet. It is only necessary to know the time-correlation
time function for a short time (50-100 fs) to simulate the absorption, though the reso-
lution of the spectrum will be better with increasing simulation time. In particular we
have that both the maximum and the width of the absorption envelope, the "band" corre-
sponding to a transition to an electronic state, come from short features in time.

In the short-time picture, the wave packet will probe only the region of the excited
state close to the ground state equilibrium geometry, the so-called Condon region. To

describe the broad features of the spectrum accurately, what is needed is therefore a good



48 Chapter 5. Vibronic models

description of the excited-state PES in the Condon region. This is exactly what the VFC
model aspires to provide, in contrast to the AFC model based on an expansion around
the excited state equilibrium geometry. It is therefore expected that the broad features
of the spectrum will be better described by VFC, while AFC will give better results for
low-lying transitions in particular. In the limit where the harmonic approximation holds
exactly, the two approaches will be equivalent. The VG model, like the VFC model
based on a vertical approach, will typically also give an adequate description of the
broad features of the spectrum, though of course in a less accurate manner than the VFC

model.

5.2 Vibronic model Hamiltonian

As mentioned above, the adiabatic approximation tends to break down when electronic
states are close in energy. It is then necessary to include the coupling of the electronic
states in the Hamiltonian. Since the nonadiabatic coupling elements are complicated to
calculate and may even be divergent, it is beneficial to switch to a basis that minimizes
these. In the following, I will first discuss the diabatic basis chosen for the vibronic

model before proceeding with describing how spectra are obtained in this model.

5.2.1 The diabatic basis

Following the review by Koppel et al.,[11] the molecular Schrédinger equation in Eq. 3.6
may be written in matrix form. If the electronic states are chosen to be in the adiabatic
representation, as has been done so far, the corresponding matrix Hamiltonian is given
as

H = Thuel +V(Q) +M(Q), (5.22)

where V is a diagonal matrix of electronic energies

and A(Q) are the non-adiabatic coupling matrix with elements given by Eq. 3.7.
When the electronic states are well separated, the adiabatic approximation is valid
since the non-adiabatic coupling matrix elements will be negligible. On the other hand,

when the separation between the electronic states is small, i.e for near-degeneracies,



5.2 Vibronic model Hamiltonian 49

conical intersections and avoided crossings, the coupling matrix elements can become
very large and even divergent. In such cases, this coupling may not be neglected.

The adiabatic states rapidly change character in the vicinity of conical intersections
and avoided crossings. This gives rise to the complicated behavior of the non-adiabatic
coupling matrix elements in such regions. In addition, these coupling elements are quite
cumbersome to calculate. One solution to this problem is to switch to a basis of states
that are smooth functions of the nuclear coordinates and that are allowed to cross at the
avoided crossings of the adiabatic states. Such states are referred to as diabatic electronic
states.

In the diabatic basis, the matrix Hamiltonian can be written as

H = Thuel + W(Q), (5.24)
where
Wom = (0n(Q) |He1| 0m(Q)) - (5.25)

Here, |0,(Q)) refers to diabatic states, and it is assumed that these states are obtained in
such a way that the coupling elements A can be neglected in this basis. The electronic
states are now instead coupled through W(Q), which in general is not diagonal.

The elements of the potential energy matrix W are, in contrast to what is the case
for the adiabatic states, slowly varying functions of Q, and one can therefore expand
(W — Ep1) about a reference geometry Qp as follows

Hyw = True+Eo(Q) +[En(Q0) — Eo(Q0)] + Y. k0, +--- (5.26)
Hom = YN0+ (5.27)

()

In the above expansion, Ky ’ and x§"’m) are called intrastate and interstate coupling con-
stants respectively, and Q; refer to a displacements along normal modes s.

In practice, the diabatic matrix Hamiltonian is constructed for a subset of the elec-
tronic states, and the vibronic coupling problem will only be solved for the states within
the subset.

5.2.2 Diabatization scheme

Diabatic states are in general not uniquely defined. The main approach employed in the

present work is based on the overlap between excited-state wave functions calculated
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at the reference geometry and at displaced nuclear geometries.[65] At each displaced

geometry, A, an overlap matrix S is calculated
Sab = (Pa(A) | Pp(0)), (5.28)

where ®,(A) is an adiabatic excited state at the displaced geometry and ®,(0) an adi-
abatic excited state at the reference geometry. The exact form of the this overlap when
the excited states are obtained from response theory, as is the case for TDDFT, is given
in Ref. [66]. It is noted that since the molecular orbitals themselves are geometry depen-
dent, the overlap must be calculated in the atomic orbital basis.

Diabatic states ¢, are then defined by the unitary transformation

|¢C(A)> = ZUca ‘(I)C(A)> (5.29)

that minimizes the off-diagonal elements of the overlap matrix. At the reference geom-
etry the diabatic and adiabatic states are defined to be equal.

The adiabatic potential energy matrix and transition moments can then be trans-
formed to the diabatic basis

Wep(8) = Y UeaEa(A)Ugp (5.30)

TH(A) = ZUca%a<A)7 (5.31)

where I have introduced T and T as a column vectors of general electronic transition mo-
ments T, and T,, in respectively the adiabatic and the diabatic basis. Using the diabatic

transition moments as an example, these are defined for an operator 7' by

T

T = (00 |T | 0n) - (5.32)

Numerical differentiation is then used to obtain the vibronic coupling constants.
Small nuclear displacements A = dQ; and A = 2d(Q; along normal coordinates Q; are
used to extract up to quartic diagonal coupling constants and displacements A = dQ,dQ
to extract off-diagonal quadratic coupling constants in Eqgs. 5.26 and 5.27. If we disre-
gard the interstate coupling, the off-diagonal coupling constants account for Duschinsky

rotation, while the diagonal higher-order couplings describe anharmonicities.
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5.2.3 The vibronic absorption and CD spectra

If the molecular ground state is well separated from the electronically excited states,
the one-photon absorption probability can from the golden rule (see Eq. 2.25) be given
as [11, 67]
P(0) = 5 Y| (%o |7 93)[ 80— o) (5.33)
v

where Wy and W, are the exact states of the system, the summation running over all
excited states. The interactions of the electrons with the electromagnetic field are here
described by the operator 7. Eq. 5.33 may be rewritten in a time-dependent form that
does not explicitly include the final states and energies as follows

1 />~ .
P(o) = / e (o

where the auto-correlation function in Eq. 5.21 is given in terms of the time-independent

FeiHI ‘ ‘P0> dr, (5.34)

ground-state wave function so that
c() = (% ’ff”ﬁ*’%) (5.35)

The time-dependent approach will not be used directly here. Instead the auto-correlation
function will be described by a model Hamiltonian that can be diagonalized to obtain
the spectrum. This is achieved by representing both the real Hamiltonian and the ground

state in the diabatic basis,

H =) |0n) Hun (O] (5.36)
Wo = %0(Q)oo(r.Q). (537)

where it is assumed that the adiabatic approximation holds for the electronic ground
state. |xo) = |Xoo0) is the nuclear ground state.

In terms of this model Hamiltonian, the excitation spectrum is now given by

| Al ;
P(w) = 4_1/ ' <X0 "ETe_ﬂ{tT

X0>df> (5.38)

which when integrated over time gives

P(o) = g <XO ‘Ha(co— }[)r‘ XO> . (5.39)
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The matrix Hamiltonian # will be represented in the basis of the vibrational states
introduced in Sec. 3.3 which are eigenstates for the nuclear Hamiltonian in the electronic
ground state. Simplifying Eq. 3.18, the compact notation

In) = |[niny---n3y_e) (5.40)

will here be used to denote a vibrational state for the electronic state ¢,,, where ng are the
vibrational wave number or quanta in mode s. If M electronic states are included in the

vibronic model, a supermatrix with M x M matrices #ny, as elements is obtained
Hom = (n|#|m). (5.41)

The absorption spectrum can from Eq. 5.39 now be obtained by diagonalizing the

matrix Hamiltonian # in this basis. This gives the vibronic eigenstates,
A
[wa) =} [m,a) cn g, (5.42)

where a labels the diabatic electronic states. The corresponding eigenvalues gives the
vibronic excitation energies, m;. Inserting this expression for the final vibronic states
into Eq. 2.33 and 2.38 gives respectively the expressions for the oscillator strength of
regular absorption spectroscopy and the rotational strength of ECD,[68]

Jor =

0, a,ua (5.43)

Ry, = m (ubt - md) . (5.44)

Since the diabatic states have been constructed to vary slowly with the geometry, it has
here been assumed that the transition moments are geometry independent in the diabatic
basis. The simulation of the MCD spectrum based on the vibronic model the will not be
discussed here, but it should be mentioned that a time-dependent approach to vibronic
MCD recently was presented by Lee et al.[69]

Note that the dimension of %y, depends on the number of vibrational modes of the
system studied and on how many quanta ng we allow in each normal mode, which means
that this quickly becomes a very large matrix to diagonalize.

In this work, the Lanzcos algorithm have been used to diagonalize the matrix Hamil-
tonian [65, 70] using the VIBRON program.[71] The Lanzcos algorithm is an iterative
method that is especially suitable for large, sparse matrices like we have here. The
computationally effort needed for the diagonalization might still be considerable and a

judicious choice of the maximum quanta allowed in each normal mode is needed.



Chapter 6
Summary of papers

This chapter presents a summary of the papers included in this dissertation and the main
results obtained. In Secs. 6.1-6.3, results obtained at the electronic level is presented.
Here, the focus will be on MCD in Papers I-11I, while in Paper IV results for both ab-
sorption, CD, and MCD spectra are presented in a more applied study. The attention then
turns to vibrationally resolved spectra in Secs. 6.4-6.5. Paper V presents calculations of
CD for a molecule with isotopically engendered chirality. In Paper VI, aspects of the

construction of an accurate vibronic model Hamiltonian are discussed.

6.1 Solvent and correlation effects on the MCD B term

In Paper I, the first theoretical investigation of solvent effects on the MCD ‘B term at the
DFT level is presented. The B term has here been calculated from the single residue
of a quadratic response function as described in Sec. 4.4. Results for four different
benzoquinones obtained both at the Hartree—Fock level and the DFT level using several
functionals are discussed. It is seen that inclusion of correlation effects are crucial to get
qualitative agreement with experiment.

As an example, the results for the first dipole-allowed electronic transition in para-
benzoquinone are collected in Table 6.1.1. It is seen that at the Hartree—Fock level, which
does not include electron correlation, even the sign of the B term is not correct. The sign
is, however, predicted correctly by all the DFT functionals shown here. Nevertheless,
the intensity of the transition is grossly overestimated by most of the functionals. For all

the molecules included in the study, the B term shows a strong sensitivity to the amount
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Wavelength B term

Hartree—Fock 203 (211) 6.78 (8.73)
B3LYP 251 (257) -3.75(-4.41)
CAM-B3LYP 234 (240)  -2.21 (-2.20)
BHLYP 227 (234)  -1.31 (-0.99)
BLYP 279 (278) -3.88 (-6.12)
KTl 269 (275)  -2.66 (-4.68)
KT2 269 (275) -4.76 (-4.88)
KT3 269 (275) -4.74 (-5.27)
Experiment (Ref. [72]) (241) (-0.68)

Table 6.1.1: Excitation wavelength in nm and MCD B term in a.u. in gas phase and, in paranthe-

sis, n-hexane for the X ]Ag — 1 'B,, transition in para-benzoquinone. Basis set aug-cc-pVTZ.

of exact exchange included in the functional. This can be seen from a comparison of the
results for B3ALYP, CAM-B3LYP, and BHLYP in our example. BHLYP, which includes
the largest amount of exact exchange, predicts the smallest negative intensity for the B,
while B3LYP, which includes the lowest amount of exact exchange, predicts the largest
negative intensity of these three functionals.

Another interesting observation is that while in most cases dielectric continuum ef-
fects increase the value of the B term, in some cases a decrease in this value upon solva-
tion is predicted. In Table 6.1.1, such a decrease is seen for CAM-B3LYP and BHLYP.
This effect is caused by an interplay of correlation and solvation effects on the individual

contributions to the B term.

6.2 MCD A4 and B terms from damped response theory

Traditionally, the temperature-independent part of MCD spectra have been rationalized
in terms of the Faraday A4 and B terms, which I above have called the MCD 4 and B
terms. The 4 term is then only observed for systems with degenerate states, while the B
term contributes to the MCD spectra for all molecules. In Papers II and III, calculations
based on damped response theory are presented as an alternative and unified approach

for the time-independent contributions to the spectrum at the electronic level.
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Figure 6.1: Calculated MCD spectra of cyclopropane. The excited-state lifetime broadening is
set to 1000 cm ™!, and the frequencies have been calculated with a separation of 0.001 Hartree.

The inset shows the experimental spectrum from Ref. [73].

Paper II demonstrates that the appropriate quadratic complex response function (see
Eq. 4.44) can account for both the A4 and ‘B terms of MCD. The example systems used
are para-benzoquinone and tetrachloro-para-benzoquinone, which belonging to the Dy,
point group will only have contributions from the B term, and cyclopropane, where
contributions from the A4 term will be present, and likely dominate the spectrum, since
it belongs to the D3y, point group.

For the benzoquinones, it is demonstrated that the simulation based on damped re-
sponse theory reproduces the results of the calculations in Paper I when suitable Lorent-
zian lineshape functions are added to the calculated B term intensities of the latter. As
for cyclopropane it is seen that the calculated spectra have features that can be attributed
to A4 term contributions. In Fig. 6.1, this is most clearly seen for the 2E’ state, whose
vertical excitation wavelength is predicted to be 164.0 nm by B3LYP, 153.3 nm by CAM-
B3LYP, and 150 nm by BHLYP. The experimental spectrum also has a distinct band that
may be attributed to the 1E’ state. Calculations based on the mentioned DFT functionals
predict low intensity for this state, and thus fail to reproduce this part of the spectrum.

This work is followed up in Paper III, where a proposal is made for the abandonment
of the historical separation of the temperature-independent part of the MCD spectrum

into an A4 and a B term. This separation stands in contrast to most other birefringencies
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Figure 6.2: Calculated MCD spectra of Zn-porphyrin bent about the meso-carbon—-metal-meso-
carbon axis obtained using the aug-cc-pVDZ basis set and the CAM-B3LYP functional.

where the temperate-independent part are described by a single term.[74] It is argued
that the separation in A4 and ‘B terms is artificial and may lead to incorrect analysis of the
nature of excited states in highly symmetric systems.

The artificialness of this separation may be illustrated by looking at small geometrical
distortions of a highly symmetric system, as shown in an exaggerated manner for Zn-
porphyrin in Fig. 6.2. In the fully symmetric D4, system, the dominant contributions will
typically arise from the A4 terms of the degenerate states. However, when the symmetry
is reduced, the degeneracies will be lifted and the spectrum may now only contain B
terms. The MCD spectrum will still show a derivative band shape, which in this case
will be described as due to overlapping B terms, often referred to as a pseudo-A4 term.
From Fig. 6.2, it observed that even for the rather severe geometry distortion of 30°, the

features of the original spectrum is retained.

6.3 Absorption, CD, and MCD of cobalamins

Studies of the excited electronic states of cobalamins have been an active field of research
lately. Still there are open questions related to the assignment of the bands in spectra of
these systems. So far the theoretical studies have been performed at the DFT level and
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Figure 6.3: Comparison of low-energy regions of CNCbl absorption and CD spectra computed
with BP86/aug-cc-pVDZ. Experimental data were taken from Ref. [75].

only considering the absorption spectra. CD and MCD spectra can provide informa-
tion complementary to that given by regular absorption spectroscopy, and in the study
of cyanocobalamin (CNCbl), known as Vitamin Bj;, and methylcobalamin (MeCbl) in
Paper IV, calculations of the CD and MCD spectra, in addition to absorption spectra,
have been performed.

Usually the absorption spectra of cobalamins are discussed in terms of four main
bands, labelled o./B, D/E, v, and 8, respectively. In Paper IV, results for the three first
of these bands are analyzed, with particular attention given to the low-energy o./3 band.
At the DFT level, calculations were performed on truncated models of the two systems
studied, and results for gas phase and solution were compared. A simple scaling pro-
cedure was applied to the calculated excitation energies to ease the comparison with
experiment.

Of the two functionals included in the study, BP86 and CAM-B3LYP, the best agree-
ment with experiment overall was found for BP86. Focusing on the o/p band, the
band shape was found to be strongly affected by solvent effects for CNCbl as shown in

Fig. 6.3, but less so for MeCbl. This difference may be due to the more ionic character of
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Figure 6.4: Calculated CD spectra of 2RDCP based on AFC in the region of the first excited
state. The equatorial (Eq) conformer is shown in the upper panel, the axial (Ax) conformer
in middle panel, and the Boltzmann averaged spectrum, assuming an equal weight of the two
conformers, in the middle panel.

CNCbl in polar solvents. For CnCbl, the o/ band has traditionally been interpreted as
a vibrational progression associated with a single electronic state, but the BP86 calcula-
tions including solvent effects presented here, suggest that the band is better interpreted

as consisting of multiple electronic transitions.

6.4 Isotopically engendered chirality

The final two papers presented in this dissertation address the calculation of vibrationally
resolved spectra. The first of these is a study of the CD spectrum for an isotopically
substituted molecule. In Paper V, calculations both at the adiabatic level, using the
vertical gradient model and AFC, and beyond, using the vibronic model Hamiltonian,
are presented for 2(R)-deuteriocyclopentanone (2RDCP). In equilibrium, 2RDCP has
two distinct, but near isoenergetic, half-chair conformations, which complicates the cal-

culations. Without the substituted deuterium, the two conformations will actually be
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enantiomers of each other and the CD signals would cancel each other. For 2RDCP,
this cancellation is no longer complete, even when it is assumed that the two conformers
will have the same Boltzmann population. An interesting aspect is that the comparison
between the experimental and simulated CD spectra may help determine the Boltzmann
weight of each conformer. This weight is hard to predict from energy calculations alone
due to the small energy difference between the conformers.

In Fig. 6.4, simulated spectra based on the AFC model assuming an equal distribution
of the two conformers, are shown for the first excited state. This illustrates how the CD
signals from the two conformers nearly cancel each other, emphasizing the need for
an accurate description of the potential energy surfaces. This state has a quite large
energy separation from higher-lying states, so for this band nonadiabatic effects are less
important.

The low-wavelength region of the spectrum has contributions from four electronic
states, where in particular two of the states are very close in energy. For this region, the
inclusion of vibronic coupling effects is expected to be essential, and this is confirmed

by a comparison of the results from the VG model and the vibronic model.

6.5 Systematic construction of vibronic coupling Hamil-

tonians

Vibronic coupling phenomena is frequently observed in molecular spectroscopy due
to the breakdown of the Born—Oppenheimer approximation. In Paper VI, the system-
atic construction of vibronic coupling Hamiltonians is discussed using the 1!Bs, and
1'B,, states of pyrazine as an example. For an accurate treatment of the excited-state
potential-energy surfaces in this system, inclusion of nondynamical correlation is neces-
sary. In contrast to the papers discussed above where DFT was employed, calculations
have therefore here been performed using wave-function based correlated methods. The
ground-state force field was obtained at the MP2, CASPT2 and CCSD levels, while
NEVPT2, CASPT2, MRCI and similarity transformed EOM-CCSD was used to analyse
the excited-state PES.

The focus in this study is on aspects that are important for the derivation of accurate
approximations of the potential energy surfaces, and to a lesser degree on the actual
simulation of the vibronic spectra. Indeed, in the version of the manuscript included
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in this dissertation, simulated spectra have not been included. Spectra are, however,
planned to be included in the final version of the manuscript.

Vibronic coupling parameters are obtained by making displacements along normal
mode-like coordinates. In a strict sense, a normal coordinate is only defined for in-
finitesimal displacement from a stationary point so any finite displacement is necessarily
approximate. Usually this is done by evaluating linearized shifts away from the reference
geometry along Cartesian normal coordinate vectors. In the present study, this approach
has been compared with using curvilinear coordinates to represent displacements along
the normal coordinate.

The need for consistency in the methodology used for computing the excited-state
potential energy surfaces is also discussed. Ideally, the same method should be used
both for obtaining the ground-state reference geometry and force field and the excitation
energies. Due to limitations in various electronic structure models, this will not always
be realizable. Results presented in this study indicate that in some cases, the effects
of both the approximation used for normal-coordinate displacements and the level of
consistency between different electronic structure models employed may be larger than
expected.
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