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1. Introduction

From the point of view of commutative algebra the ring C[xij : i ∈ N, j ∈ [n]], where 
[n] = {1, . . . , n}, is a complicated object, as it is, for example, not a Noetherian. On the 
other hand, various results from classical commutative algebra from finite-dimensional 
commutative rings have been established in an equivariant version, with respect to the 
natural permutation action of the infinite symmetric group Sym(∞) on the first index. 
Most notably, it was observed by Cohn in [3,4] that symmetric ideals in this ring satisfy 
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the ascending chain condition, i.e., it is Sym(∞)-Noetherian. This result was indepen-
dently recovered by Aschenbrenner and Hillar [1] in 2007. A renewed motivation to study 
such ideals stemmed from the observation that one can view such ideals as limits of se-
quences of algebraic objects that arise in practical areas like algebraic statistics and 
algebraic chemistry (see for example [5]) and also have natural connections to the notion 
of FI-modules developed by Church, Ellenberg, and Farb [2]. Further, work by Nagel and 
Römer [18] observed that one can define a bivariate Hilbert series to these sequences of 
ideals which also allows for the study of the asymptotic behavior of classical commutative 
algebraic concepts like the Castelnuovo-Mumford regularity, codimension and projective 
dimension along invariants chains [15,16]. We refer the reader to [13] for a more detailed 
overview of this fascinating research area. Complementing the rich literature of algebraic 
properties up to symmetry, the results presented in this article are rather of geometrical 
flavor. Compared to the sophisticated set of techniques (see for example [6,8,9]) that has 
been developed by various authors in the subsequent years we will pursue an elementary 
approach to understand the geometry of symmetric algebraic and semi-algebraic sets in 
the spectrum An

∞ of this ring. In fact, the proofs of our main results do not even rely on 
equivariant Noetherianity.

The essence of our approach is to study orbit closures of (not necessarily) closed 
points of An

∞. After characterizing orbit closures of closed points in Theorem 3.5, we 
prove in Theorem 3.12 that fixed points of An

∞, i.e. invariant prime ideals, are exactly 
those points that arise as the image of some natural fixed points under the base change 
of An

∞ to some field extension. In Theorem 3.18 we give an alternative description of (not 
necessarily closed) fixed points. From this one can easily construct infinite specialization 
chains of fixed points in An

∞ when n > 1 (Example 3.20). Note that it is well-known 
that this cannot happen when n = 1. In this case, any such chain has length ≤ 3, see 
also Example 3.13. This highlights the special role played by the n = 1 case which we 
also observe in Section 4 in the semi-algebraic setup. While in the case n = 1 our results 
are not as strong as the results from [19,20] where a characterization of invariant radical 
ideals [19] and invariant ideals [20] is given, our results also apply to larger n > 1. Our 
results lead naturally to Conjecture 3.24 which states that the Kolmogorov quotient of 
the orbit space is a spectral space, i.e. it is homeomorphic to the Zariski spectrum of a 
commutative ring [11]. Together with Theorem 3.22 this would provide a description of 
invariant radical ideals.

We further try the same approach of studying orbit closures for the semi-algebraic 
setup in order to establish an equivariant version of quantifier elimination. Recall that a 
subset of Rn is called semi-algebraic if it can be described by a finite boolean combination 
of polynomial inequalities. The Tarski–Seidenberg theorem states that the projection of 
a semi-algebraic set is again semi-algebraic. In Section 4 we explore analogous statements 
in the equivariant setup. Again the situation with n > 1 differs substantially from the 
case n = 1: In Theorem 4.4 we prove an equivariant version of Tarski–Seidenberg for 
the case n = 1 and Example 4.5 shows that the analogous statement fails for n > 1. 
This fits with [17, Theorem on p. 14] where it is shown that a naive version of quantifier 
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elimination over the reals cannot exist in the infinite symmetric setup. Note that for the 
setup considered in [17], where both index sets are infinite, even the results on the side 
of commutative algebra are generally less well behaved [1, Proposition 5.2].
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2. Preliminaries from algebraic geometry

In the following let K always denote an algebraically closed field with uncountably 
many elements. The affine scheme Spec(K[x1, . . . , xn]) over K is denoted by An

K or by 
An if the ground field does not matter or is clear from the context. We are mostly 
interested in the case K = C but in the course of the proofs we have to work over other 
algebraically closed fields. Consider a (not necessarily finitely generated) K-algebra A
and let X = Spec(A) the associated affine scheme over K. We denote by Xmax the 
subspace of X consisting of all closed points of X, i.e. maximal ideals of A. Recall that 
for any field extension K ⊂ L the set X(L) = HomK(A,L) of L-rational points admits 
a natural map X(L) → X that sends a homomorphism of K-algebras to its kernel. If 
K = L, this map is injective. The pullback of the Zariski topology on X to X(L) is 
called the Zariski topology on X(L). The base change XL of X to L is the affine scheme 
Spec(A ⊗K L) over L. Composing with the natural map A → A ⊗K L gives a natural 
map XL(L) → X(L) where XL(L) = HomL(A ⊗K L,L). By the universal property of 
the tensor product ⊗K this map is a bijection. Further, the map XL(L) → X(L) is 
continuous but in general not a homeomorphism.

In analogy to the definition of a scheme of finite type over K, we define an affine 
scheme of countable type over K to be a scheme over K of the form Spec(A) where 
A can be generated by countably many elements as an K-algebra. Clearly, any closed 
subscheme of an affine scheme of countable type over K is again an affine scheme of 
countable type over K. Recall the following version of Hilbert’s Nullstellensatz in the 
infinite-dimensional setup provided by Lang [14, p. 407].

Theorem 2.1 (Lang). Let I be some index set of countable cardinality and consider B =
K[xi : i ∈ I] the polynomial ring with variables indexed by I. Further let X = Spec(B), 
J ⊂ B an ideal and Z ⊂ X(K) the set of K-rational points of X where all elements of 
J vanish. Then the following holds:

(1) If f ∈ B vanishes on Z, then fk ∈ J for some k ∈ N.
(2) If J �= B, then Z is not empty.



M. Kummer, C. Riener / Journal of Algebra 666 (2025) 28–46 31

(3) Let K ⊂ L be some field extension and ai ∈ L for i ∈ I. The ring extension 
K[ai : i ∈ I] is a field if and only if ai ∈ K for all i ∈ I.

From this, we can deduce that affine schemes of countable type over K share several 
desirable properties with affine schemes of finite type over K.

Corollary 2.2. Let X = Spec(A) be an affine scheme of countable type over K.

(1) X(K) is dense in X.
(2) The image of X(K) → X is Xmax.
(3) If I ⊂ A is an ideal and Z ⊂ X(K) the zero set of I, then the set of all f ∈ A that 

vanish on Z is the radical ideal 
√
I.

Proof. By assumption there is a countable index set I and a surjective homomorphism 
ϕ : B → A of K-algebras where B = K[xi : i ∈ I]. Let J = ker(ϕ). In order to prove the 
first statement, let f ∈ A vanish on X(K). If g ∈ B is some element with ϕ(g) = f , then 
by (1) of Theorem 2.1 we have gk ∈ J for some k ∈ N which shows that f is nilpotent 
in A and thus vanishes on X. This shows that X(K) is dense in X. For the second 
statement let m be a maximal ideal of A. Then A/m is a field extension of K which is 
generated as K-algebra by the residue classes of ϕ(xi) for i ∈ I. Thus A/m must be K
by (3) in Theorem 2.1. On the other hand, the kernel of any homomorphism A → K of 
K-algebras is a maximal ideal.

For the third statement let g ∈ B such that ϕ(g) = f . Then g vanishes on the set 
of all K-rational points of Spec(B) where all elements of ϕ−1(I) vanish. Thus by (1) in 
Theorem 2.1 we have that g is in the radical of ϕ−1(I) which implies that f is in the 
radical of I. �
Corollary 2.3. Let f : X → Y be a dominant morphism of affine schemes of countable 
type over K. The image of X(K) is dense both in Y (K) and in Y .

For any field extension K ⊂ L and any two affine schemes X,Y over K we have 
(X × Y )(L) = X(L) × Y (L) (as sets). We prove some basic facts on such products.

Lemma 2.4. Let T be a topological space and S ⊂ T a dense subset. Then S ∩U is dense 
for every open dense subset U ⊂ T .

Proof. Let V ⊂ T be an open subset with S ∩ U ∩ V = ∅. Then the closure of S is 
contained in the complement of U ∩ V . Thus U ∩ V = ∅ since S is dense. But then by 
the same argument, V = ∅ since U is dense as well. �
Lemma 2.5. Let X and Y be affine schemes over K. Let A ⊂ X(K) and B ⊂ Y (K) be 
dense subsets of X(K) and Y (K) respectively. Then A× B is dense in (X × Y )(K) =
X(K) × Y (K).
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Proof. For every a ∈ A the set {a} × B is dense in {a} × Y (K). Thus the closure of 
A×B contains A×Y (K). The closure of A×Y (K) contains X(K)×Y (K) by the same 
argument. Thus the closure of A×B is X(K) × Y (K). �
Remark 2.6. If K ⊂ L is a field extension, the corresponding statement of Lemma 2.5 for 
dense subsets A ⊂ X(L) and B ⊂ Y (L) fails to be true in general. Indeed, let L = K(t)
the rational function field, X = Y = A1

K and A = B = {t}. Then A and B are dense in 
A1

K but A×B is contained in the diagonal Δ = V (x1 − x2) ⊊ A2
K .

Corollary 2.7. Let X be an affine scheme over K and Y ⊂ X(K) a dense subset of 
X(K). Then Y m = Y × · · · × Y is dense in (Xm)(K) = X(K) × · · · ×X(K).

Proof. We prove the claim by induction on the number m of factors. The claim is clear 
for m = 1. The induction step follows from Lemma 2.5. �
Lemma 2.8. Let X be an affine scheme of finite type over K. Let X = X1 ∪ · · · ∪Xs be 
the decomposition of X into irreducible components. Furthermore, assume that Xi(K) is 
infinite for all i = 1, . . . , s. The subset

B = {(x1, . . . , xr) ∈ X(K)r : xi �= xj for all i �= j}

is dense in X(K)r.

Proof. Since K is algebraically closed, we have that the K-rational points of the irre-
ducible components of Xr are the sets of the form Xi1(K) × · · · ×Xir (K) for ij ∈ [s]. 
None of these is contained in one of the closed subsets of the form

Δij = {(x1, . . . , xr) ∈ X(K)r : xi = xj}

for i �= j since each Xi(K) is infinite. This implies the claim. �
3. Orbit closures in An

∞

We let S = K[xij : i ∈ N, j ∈ [n]]. There is a natural action of the infinite symmetric 
group G = Sym(∞) = ∪k∈NSym(k) on S given by σ(xij) = xσ(i)j for all σ ∈ G and 
i ∈ N, j ∈ [n]. We denote by An

K,∞ the integral affine scheme Spec(S) of countable type 
over K. If the ground field K is clear from the context, we will just write An

∞ = An
K,∞. 

Throughout the article L will always denote a field extension of K. The action of G on 
S induces an action on An

∞ and on An
∞(L) for every field extension L of K. We identify 

An
∞(L) with the set of sequences (pi)i∈N ⊂ An(L) = Ln. Our goal is to characterize the 

closures of orbits of single points in An
∞:
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Definition 3.1. Given any x ∈ An
∞, the orbit closure Gx of x is the Zariski closure of the 

orbit

Gx = {σ(x) : σ ∈ G}.

If we equip Gx with the reduced induced closed subscheme structure, then Gx is a 
reduced affine scheme of countable type over K on which the group G acts. The orbit 
closure of an L-rational point is defined to be the orbit closure of the associated point 
in An

∞.

3.1. Orbit closures of closed points in An
∞

We first compute the orbit closures of K-rational points of An
∞ which are exactly the 

closed points of An
∞ by Corollary 2.2. For this we need to set up some notation.

Definition 3.2. Let p = (pi)i∈N ⊂ An
K(L) be a point from An

∞(L). We denote by Vp ⊂ An
K

the closure of the set {pi : i ∈ N}. Further for any M ⊂ An
K(L) we let ν(p,M) = |{i ∈

N : pi ∈ M}|. For q ∈ An(L) we write ν(p, q) := ν(p, {q}).

Lemma 3.3. Let p ∈ An
∞(L) and X ⊂ An

∞ its orbit closure. For every q ∈ X(L) we have 
Vq ⊂ Vp.

Proof. Let p = (pi)i∈N ⊂ An
K(L) and q = (qi)i∈N ⊂ An

K(L). Let f ∈ K[x1, . . . , xn] be a 
polynomial that vanishes on Vp. This implies that p is an L-rational point of the closed 
subscheme Y of An

∞ defined by the ideal I ⊂ S generated by all gi = f(xi1, . . . , xin) for 
i ∈ N. The subscheme Y is closed, invariant under G and Y (L) contains p. Thus we have 
X ⊂ Y and in particular we have q ∈ Y (L). This shows that f(qi) = 0 for all i ∈ N and 
thus implies the claim. �
Lemma 3.4. Let p ∈ An

∞(L). Consider the decomposition

Vp = V1 ∪ · · · ∪ Vr

into irreducible components and let Wk = Vk(L)\(∪i�=kVi(L)). Let X be the orbit closure 
of p. Then X(L) is contained in

Wp := {w = (wi)i∈N ⊂ Vp(L) : ∀k ∈ [r] : ν(w,Wk) ≤ ν(p,Wk)}.

Proof. For every w = (wi)i∈N ∈ X(L) we must have wi ∈ Vp(L) for all i ∈ N by 
Lemma 3.3. For all i ∈ N and k = 1, . . . , r we let Iik ⊂ K[xi1, . . . , xin] be the vanishing 
ideal of ∪j �=kVj . Note that the first index of Iik only indicates the labeling of the variables. 
If m = ν(p,Wk) is finite, then all elements of the ideal generated by
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σ(f) where f ∈ I1k · · · Im+1,k, σ ∈ G

vanish on p and thus on X. That implies that ν(w,Wk) ≤ m for all w ∈ X(L) and thus 
X(L) ⊂ Wp. �

Now we are able to describe the orbit closure of any closed point. By Corollary 2.2
any closed subset of An

∞ can be understood in terms of its K-rational points.

Theorem 3.5. Let p ∈ An
∞(K) and assume that the decomposition of Vp into irreducible 

components has the form

Vp = V1 ∪ · · · ∪ Vr ∪ {v1} ∪ . . . ∪ {vs}

where the Vi(K) are infinite and the vi are closed points of An
K . Let X be the orbit 

closure of p. The set X(K) of K-rational points of X consists exactly of those sequences 
in Vp(K) where each vj appears at most as often as in p.

Proof. The claim is equivalent to X(K) = Wp defined in Lemma 3.4 and X(K) ⊂ Wp

is the statement of Lemma 3.4 (for K = L).
Let w ∈ Wp, this amounts to w = (wi)i∈N ⊂ Vp(K) such that for all 1 ≤ j ≤ s we 

have ν(w, vj) ≤ ν(p, vj). We have to show that w ∈ X(K). Let f ∈ S be a polynomial 
that vanishes on X. There is a natural number l such that f ∈ K[xij : i ∈ [l], j ∈ [n]]. 
We need to show that f(w) = 0. Without loss of generality assume that w1, . . . , wl′ ∈
{v1, . . . , vs} and wl′+1, . . . , wl ∈ U(K) where U := ∪r

i=1Vi for some suitable l′ ≤ l. 
The set A = {p1, p2, . . .} ∩ U(K) is dense in U . Thus Al−l′ is dense in U(K)l−l′ by 
Corollary 2.7. Moreover, since every irreducible component of U has infinitely many 
K-rational points, the open subset

B = {(ul′+1, . . . , ul) ∈ U(K)l−l′ : ui �= uj for all i �= j}

is dense in U(K)l−l′ by Lemma 2.8. Lemma 2.4 implies that B∩Al−l′ is dense in U(K)l−l′ . 
Note that each element of B ∩ Al−l′ is a tuple (pil′+1 , . . . , pil) with il′+1, . . . , il ∈ N

pairwise distinct and all pij ∈ U . Thus since f vanishes on X, it vanishes on

{w1} × · · · × {wl′} × (B ∩Al−l′).

By the above shown density f therefore vanishes on {w1} × · · · × {wl′} × U(K)l−l′ . In 
particular f vanishes on (w1, . . . , wl) and thus on w. �
Remark 3.6. Let p ∈ An

∞(K) and X its orbit closure. The proofs of Lemma 3.4 and 
Theorem 3.5 yield an explicit ideal I ⊂ S whose zero set is X. Indeed, consider the 
decomposition

Vp = V1 ∪ · · · ∪ Vr ⊂ An
K
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into irreducible components. Assume that f1, . . . , fa ∈ K[x1, . . . , xn] generate the van-
ishing ideal of Vp and for k = 1, . . . , r let gk1, . . . , gkmk

generate the vanishing ideal of 
∪j �=kVj . Further, for any polynomial h ∈ K[x1, . . . , xn] let hi = h(xi1, . . . , xin) ∈ S. 
Then we can choose I to be the ideal generated by all f i

l and the G-orbit of all

Pkj = g1
kj · · · g

ν(p,Vk(K))+1
kj

for all k with ν(p, Vk(K)) finite (which can only happen if |Vk(K)| = 1).

Example 3.7. Let n = 2, K = C and

p = ((i− 1, sgn(i− 1))i∈N ∈ A2
∞(C)

where sgn(k) ∈ {−1, 0, 1} is the sign of k. Let X be the orbit closure of p. The irreducible 
components of Vp are A1

C × {1} and the singleton {(0, 0)}. Thus the C-rational points 
X(C) are all sequences ((ai, bi))i∈N ⊂ C2 where all but at most one of the bi are equal 
to 1 such that if bk �= 1, then ak = bk = 0. Further X is the zero set of the ideal of S
generated by all xi2(xi2 − 1), xi1(xi2 − 1) for i ∈ N and (xi2 − 1)(xj2 − 1) for i �= j.

3.2. Fixed points in An
∞

Next, we want to describe the fixed points of An
K,∞ under the action of G. We first 

explain an easy construction.

Lemma 3.8. Consider a prime ideal p ⊂ K[x1, . . . , xn]. Let P ⊂ S be the ideal generated 
by all f(xi1, . . . , xin) for some f ∈ p and i ∈ N. Then P is a prime ideal invariant under 
the action of G.

Proof. It is clear that the ideal P is invariant under the action of G. It thus remains to 
show that P is a prime ideal. To this end, let g, h ∈ S such that g · h ∈ P. By definition 
there is a natural number k ∈ N such that g ·h is the ideal Pk of K[xij : i ∈ [k], j ∈ [n]]
that is generated by all f(xi1, . . . , xin) with f ∈ p and i ∈ [k]. But the ideals Pk are all 
prime ideals, see for example [12, Lemma 1.54]. Therefore, one of the factors g, h is in 
Pk and thus in P. �
Definition 3.9. For any y = p ∈ An

K we define y∞ := P ∈ An
K,∞ to be the fixed point 

constructed from p as in Lemma 3.8.

We observe that y∞ naturally appears as generic point of a certain orbit closure.

Lemma 3.10. Let p ∈ An
K,∞(K) and assume that Vp is irreducible with generic point 

y ∈ An
K . Then the orbit closure of p is irreducible with generic point y∞.
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Proof. Let X be the orbit closure of p. Then by Theorem 3.5 the set X(K) consists of all 
sequences in Vp(K). Thus by definition the zero set of the prime ideal y∞ in An

K,∞(K)
coincides with X(K). Since X(K) is dense in X, the ideal of X is thus y∞ = √

y∞ by 
Corollary 2.2. �

We further observe that if K ⊂ L is a field extension, then the action of G on An
K,∞

induces an action of G on An
L,∞ = An

K,∞×KSpec(L) by letting G act on Spec(L) trivially. 
The natural morphism of affine schemes π : An

L,∞ → An
K,∞ is G-equivariant. Thus if 

x ∈ An
L,∞ is a fixed point of An

L,∞, then π(x) is a fixed point of An
K,∞. In particular, 

for any y ∈ An
L we obtain the fixed point π(y∞) of An

K,∞. This gives a convenient way 
of constructing fixed points in An

K,∞. Our next goal is to show that every fixed point of 
An

K,∞ arises in that way.

Lemma 3.11. Let x ∈ An
K,∞ a fixed point. There is an algebraically closed field extension 

K ⊂ L and a closed point y ∈ An
L,∞ such that π(σ(y)) = x for all σ ∈ G where 

π : An
L,∞ → An

K,∞ is the natural projection.

Proof. Since π is G-equivariant, it suffices to find L and a closed point y ∈ An
L,∞ such 

that π(y) = x. Let κ(x) be the residue field of x and κ(x) → L any homomorphism to 
an algebraically closed field L. This gives a point x′ ∈ An

K,∞(L) which is mapped to x
by the map An

K,∞(L) → An
K,∞. Now the claim follows from the fact that the diagram

An
L,∞(L) An

L,∞

An
K,∞(L) An

K,∞

commutes. Note that the left map is bijective and the upper map has its image in the 
set of closed points of An

L,∞. �
Lemma 3.11 enables us to apply Theorem 3.5 which can be used to describe the orbit 

closure of the closed point y.

Theorem 3.12. Let x ∈ An
K,∞ be a fixed point. There is an algebraically closed field 

extension K ⊂ L and a point y ∈ An
L such that x = π(y∞) where π : An

L,∞ → An
K,∞ is 

the natural projection.

Proof. Let SL = S ⊗K L. The fixed point x is a prime ideal p of S and by Lemma 3.11
there is a maximal ideal m of SL with p = S ∩

⋂
σ∈G σ(m). The ideal J =

⋂
σ∈G σ(m) is 

the vanishing ideal of the orbit closure Z of the closed point m. Thus Theorem 3.5 shows 
that there are integral subschemes V1, . . . , Vr ⊂ An

L, closed points v1, . . . , vs ∈ An
L and 

natural numbers m1, . . . ,ms such that the set Z(L) ⊂ An
L,∞(L) consists of all sequences 

in
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V (L) = V1(L) ∪ · · · ∪ Vr(L) ∪ {v1} ∪ · · · ∪ {vs}

where each vi appears at most mi times. We are done if r = 1 and s = 0. Indeed, in that 
case we can choose y ∈ An

L to be the generic point of V1 and J is the prime ideal y∞ by 
Lemma 3.10.

If s > 0, then let Z̃ be the set of all sequences in V where vi appears at most mi

times for i = 1, . . . , s− 1 and vs appears at most ms − 1 times. Furthermore, let J̃ ⊂ SL

be the vanishing ideal of Z̃. Since Z̃ ⊂ Z(L) we have J ⊂ J̃ and thus p ⊂ J̃ ∩ S. We 
claim that p = J̃ ∩S. Indeed, let f ∈ J̃ ∩S. There is a natural number k ≥ ms such that 
f ∈ K[xij : i ∈ [k], j ∈ [n]]. Now from any sequence which is an element of Z(L) we can 
drop one element so that it becomes a sequence in Z̃. This implies that the product

∏
σ∈Sym(k+1)

f(xσ(1), . . . , xσ(k)), where xi := (xi1, . . . , xin),

vanishes on Z(L) and thus lies in p. Since p is prime, one of the factors must lie in 
p. Since p is invariant, also f lies in p. Thus we can replace J by J̃ . By iterating this 
process, we can arrive at s = 0.

We make a similar argument for reducing to the case r = 1. If r > 1, we consider 
the sets Zl of sequences in Vl(L) for l = 1, . . . , r. Since s = 0, the set Z itself consists 
of all sequences in V (L). Let Il be the vanishing ideal of Zl in SL for all l = 1, . . . , r. 
We show that p = Il ∩ S for a suitable l. Assume for the sake of a contradiction that 
for each l = 1, . . . , r there are fl ∈ Il ∩ S with fl �∈ p. There is a natural number k such 
that f1, . . . , fr ∈ K[xij : i ∈ [k], j ∈ [n]]. By the pigeonhole principle every set of r · k
elements from V (L) has a subset of k elements from one the Vl. Thus the product

r∏
l=1 

∏
σ∈Sym(r·k)

fl(xσ(1), . . . , xσ(k)), where xi := (xi1, . . . , xin),

vanishes on Z(L) and thus lies in p. Again since p is prime, one of the factors must lie in 
p and since p is invariant one of the fl lies in p. This is a contradiction to our assumption 
and therefore shows that p = Il ∩ S for a suitable l. Thus we can replace I by Il which 
completes the proof. �
Example 3.13. We characterize the fixed points in A1

K,∞. To this end let K ⊂ L an 
algebraically closed field extension and y ∈ A1

L. There are the following possibilities:

(1) If y = (0), then π(y∞) = (0) is the generic point of A1
K,∞.

(2) If y = (x − α) for some α ∈ K, then π(y∞) = (xi − α : i ∈ N) is the constant 
sequence α = (α)i∈N .

(3) If y = (x− α) for α transcendental over K, then π(y∞) = (xi − xj : i, j ∈ N) is the 
closure Δ of the set of all constant sequences.
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Thus every maximal specialization chain of fixed points in A1
K,∞ is of the form

(0) � Δ � α

for some α ∈ K.

We now give a more geometric way of constructing fixed points in An
K which will also 

be useful for describing arbitrary orbit closures in the next section.

Definition 3.14. Let X be a projective scheme over K and let Σ be a closed subscheme 
of X ×An

K . For every x ∈ X(K) the fiber pr2(pr−1
1 (x)) is a closed subset of An

K(K). We 
further let

Seq(Σ) = {(pi)i∈N ⊂ An
K(K) : ∃x ∈ X(K) : ∀i ∈ N : pi ∈ pr2(pr−1

1 (x))}.

This is a subset of An
K,∞(K). Thus Seq(Σ) consists of all sequences in An

K(K) that 
are entirely contained in the set of K-rational points of one fiber of pr1. If Seq(Σ) is 
irreducible, then we denote by sq(Σ) ∈ An

K,∞ the generic point of its closure.

In the following, we will give a criterion on Σ for Seq(Σ) to be irreducible.

Lemma 3.15. Let X be a projective scheme over K and let Σ be a closed subscheme of 
X × An

K . A sequence (pi)i∈N ⊂ An
K(K) is in Seq(Σ) if and only if for every finite set 

M ⊂ N there exists x ∈ X(K) such that {pi : i ∈ M} ⊂ pr2(pr−1
1 (x)).

Proof. One direction of the claim is clear. Thus let (pi)i∈N ⊂ An
K(K) not in Seq(Σ). 

This means that ∩i∈Npr1(pr−1
2 (pi)) = ∅. But since X(K) is quasi-compact, there is a 

finite set M ⊂ N such that ∩i∈Mpr1(pr−1
2 (pi)) = ∅. �

Lemma 3.16. Let X be a projective scheme over K, let Σ be a closed subscheme of X×An
K

and let I be the vanishing ideal of Seq(Σ). Let k ∈ N and

Ik = I ∩K[xij : i ∈ [k], j ∈ [n]].

Furthermore, consider the k-fold fiber product

Σk = Σ ×X · · · ×X Σ ⊂ X × (An
K)k

of Σ over X. Then:

(1) Ik is the vanishing ideal of pr2(Σk) ⊂ (An
K)k.

(2) The zero set of Ik is pr2(Σk) ⊂ (An
K)k.

(3) The zero set of I in An
K,∞(K) is Seq(Σ).
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(4) I is invariant under G.
(5) If Σk is irreducible for all k, then I is a prime ideal.

Proof. By the fundamental theorem of elimination theory Yk = pr2(Σk) is a closed 
subscheme of (An

K)k. Thus the first statement implies the second statement. The K-
rational points are dense in Yk and thus it for proving (1) suffices to show that Ik equals 
the vanishing ideal Jk of

Yk(K) = {(p1, . . . , pk) ∈ (An
K)k(K) : ∃x ∈ Pm

K (K) : pi ∈ pr2(pr−1
1 (x)) for i ∈ [k]}.

Let f ∈ Ik and (p1, . . . , pk) ∈ Yk(K). Then we have (p1, . . . , pk, pk, . . .) ∈ Seq(Σ) and 
therefore f(p1, . . . , pk) = 0 since f ∈ I. This shows Ik ⊂ Jk. The other inclusion Jk ⊂ Ik
is clear. Part (3) follows by combining (2) with Lemma 3.15. Part (4) is clear and part 
(5) follows from (1) and the fact that I is a prime ideal if all Ik are prime ideals. �
Lemma 3.17. Let f : X → Y be a flat morphism of schemes of finite type over K with 
Y irreducible. If there is a nonempty open subset U ⊂ Y (K) such that for all y ∈ U the 
fiber f−1(y) is irreducible, then X is irreducible.

Proof. Let X1, . . . , Xr with r > 1 be the irreducible components of X. It follows for 
instance from [10, Prop. III.9.5] that the generic point of each Xi is mapped to the generic 
point of Y . Thus restricting f to any Xi gives a dominant morphism Xi → Y . Thus by 
Chevalley’s theorem the image of Xi(K)\∪j �=iXj(K) under f contains a nonempty open 
subset Ui of Y (K). Since Y is irreducible, the intersection of all Ui and U is nonempty. 
Let y be an element of this intersection. Then f−1(y) is not contained in any of the 
Xi(K) and thus is not irreducible. This contradicts our assumption on U . �
Theorem 3.18. Let X be an irreducible projective scheme over K and let Σ be a closed 
subscheme of X × An

K such that pr1 : Σ → X is flat. If there is a nonempty open 
subset U ⊂ X(K) such that for all x ∈ U the fiber pr−1

1 (x) is irreducible, then Seq(Σ) is 
irreducible. In particular, we obtain a fixed point sq(Σ) ∈ An

K,∞.

Proof. By Lemma 3.16 it suffices to show that Σk is irreducible for all k. Since flatness is 
preserved under composition and base change [10, Prop. III.9.2], the projection Σk → X

is flat. For every x ∈ U the fiber of this projection is the direct product of irreducibles 
and thus is irreducible itself. Therefore, the claim follows then from Lemma 3.17. �
Example 3.19. Let Σ ⊂ G(r, n) ×An

K be the closed subscheme whose K-rational points 
are of the form (H,x) with x ∈ H. Each fiber of pr1 is a linear subspace of dimension r. 
Thus we can apply Theorem 3.18 to deduce that Seq(Σ) is irreducible. The set Seq(Σ)
consists of all sequences in An

K(K) that are entirely contained in some linear subspace 
of dimension r. Therefore, the fixed point sq(Σ) is the prime ideal of S generated by all 
(r + 1) × (r + 1) minors of the matrix
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⎛
⎝

x11 x21 . . . xk1 . . .
...

...
...

x1n x2n · · · xkn . . .

⎞
⎠

with n rows and infinitely many columns.

Example 3.20. Contrary to Example 3.13, in the case n > 1 there are infinite specializa-
tion chains of fixed points in An

K,∞. Indeed, let

Σd ⊂ P (K[x1, . . . , xn]≤d)K ×An
K

the generic hypersurface of degree (at most) d, i.e. the K-rational points of Σd are of the 
form ([f ], x) where f ∈ K[x1, . . . , xn] is a nonzero polynomial of degree at most d and 
x ∈ An

K(K) such that f(x) = 0. A general fiber of pr1 is an irreducible hypersurface of 
degree d. It further follows from the fact that open immersions are flat together with [10, 
Prop. III.9.9] that pr1 is flat. Thus by Theorem 3.18 the set Seq(Σd) is irreducible. It 
consists of those sequences (pi)i∈N ⊂ An

K(K) for which there exists a non-zero polynomial 
of degree at most d that vanishes on all pi. In particular, we have Seq(Σd) ⊂ Seq(Σd+1). 
Thus letting zd = sq(Σd) we have the following infinite specialization chain of fixed 
points in An

K,∞:

· · · � z4 � z3 � z2 � z1.

3.3. Orbit closures of arbitrary points in An
∞

Finally we describe the vanishing ideals of orbit closures of arbitrary points in the 
infinite affine space.

Lemma 3.21. Let ϕ : X → Y a morphism of affine schemes X = Spec(B) and Y =
Spec(A). Let ϕ∗ : A → B the pullback. Let IB ⊂ B an ideal and IA = (ϕ∗)−1(IB).

(1) Let S ⊂ X the zero set of IB. The zero set of IA in Y is the closure of ϕ(S).
(2) Assume further that ϕ : X → Y a morphism of affine schemes of countable type 

over K and let S ⊂ X(K) the zero set of IB. Then the zero set of IA in Y (K) is 
the closure of ϕ(S).

Proof. (1) is a basic fact from algebraic geometry and (2) can be proved analogously. To 
that end let T ⊂ Y (K) the zero set of IA. The containment ϕ(S) ⊂ T is then clear. For 
proving the other inclusion let f ∈ A vanish on ϕ(S) which implies that ϕ∗(f) vanishes 
on S. By Corollary 2.2 this implies that ϕ∗(f)k ∈ IB . But that shows that f ∈

√
IA and 

thus f vanishes on T . �
Theorem 3.22. Let y ∈ An

K,∞ and I the vanishing ideal of the orbit closure of y. There 
is an affine integral scheme X of finite type over K, closed subschemes Σ0, . . . ,Σr ⊂
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X × An
K and natural numbers m1, . . . ,mr such that the following holds. The ideal I is 

the vanishing ideal of all sequences (pi)i∈N ⊂ An
K(K) for which there exists x ∈ X(K)

with:

(1) For all i ∈ N we have pi ∈ Σ(0, x), and
(2) for all j ∈ [r] there are at most mj indices i ∈ N such that pi �∈ Σ(j, x).

Here Σ(j, x) ⊂ An
K(K) denotes the fiber of x ∈ X(K) under pr1 : Σj → X.

Proof. As in the proof of Lemma 3.10 there is an algebraically closed field extension 
K ⊂ L and a point x ∈ An

L,∞(L) with π(x) = y where π : An
L,∞ → An

K,∞ is the natural 
projection. Letting Y ⊂ An

K,∞ be the orbit closure of y and X ⊂ An
K,∞ the orbit closure 

of x, we have Y = π(X) since π is G-equivariant. As in Remark 3.6 we can find explicit 
generators of an ideal IL ⊂ SL := S ⊗K L whose zero set is X. In order to describe 
these here, we use the notation hi = h(xi1, . . . , xin) ∈ SL for h ∈ L[x1, . . . , xn] as in 
Remark 3.6. There are m1, . . . ,mr ∈ N and for k = 0, . . . , r polynomials gk1, . . . , gkak

∈
L[x1, . . . , xn] such that we can choose IL to be generated by gi01, . . . , g

i
0a0

for i ∈ N and 
the G-orbits of the polynomials pkj = g1

kj · · · g
mk+1
kj for k = 1, . . . , r and j = 1, . . . , ak. 

By Lemma 3.21 Y is the zero set of IK = IL ∩ S. By [4, Theorem 8] there are finitely 
many f1, . . . , fs ∈ S whose G-orbits generate IK . Since IK = S ∩ IL, each of these fl
can be written as a linear combination of the g0i and the pkj with coefficients h ∈ SL. 
We let A be the K-algebra that is generated by the (finitely many) coefficients of these 
h and all gkj as polynomials over L. Thus the gkl lie in the subalgebra SA = S ⊗K A

of SL. We let IA be the ideal in SA generated by gi01, . . . , g
i
0a0

for i ∈ N and the G-
orbits of the polynomials pkj for k = 1, . . . , r and j = 1, . . . , ak. By construction we have 
IK ⊂ IA ⊂ IL. This shows that IK = IA ∩ S. By Lemma 3.21 a dense subset of Y (K)
is thus given by the image of the K-points of the zero set of IA under the projection 
Spec(SA) → An

K,∞. Therefore, the claim follows by choosing X = Spec(A) and Σk to be 
the zero set of the gk1, . . . , gkak

in X ×An
K . �

Example 3.23. Let n = 1 and consider the ideal of S generated by x3, x4, x5, . . .. The 
zero set of this ideal is clearly irreducible. Denote by y ∈ A1

K,∞ its generic point. The K-
rational points of the orbit closure of y is the set of all sequences with at most two nonzero 
members. Its vanishing ideal is generated by the G-orbit of x1x2x3. In the notation of 
Theorem 3.22 we can choose X = Spec(K), Σ0 = A1

K , Σ1 = {0} and m1 = 2.

We close with a conjecture on the structure of the orbit space An
K,∞/G. This space is 

rather badly behaved as it does not even satisfy the T0 condition. Indeed, for example the 
sequences (2i)i∈N and (2i+1)i∈N of even and odd numbers have distinct orbits in A1

C,∞
but their orbit closures agree. In order to avoid such pathologies we pass to the Kol-
mogorov quotient KQ(An

K,∞/G), i.e., we identify topologically indistinguishable points. 
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By a classical result first proved by Cohen in [4, Theorem 7] this space is noetherian. 
We conjecture that it is even a spectral space.

Conjecture 3.24. The Kolmogorov quotient KQ(An
K,∞/G) is a spectral space.

Recall that a noetherian T0 space is a spectral space if it is sober in the sense that 
every irreducible subset has a generic point. A result of Hochster [11, Theorem 6] says 
that every spectral space can be realized as the spectrum of a commutative ring. Our 
interest in Conjecture 3.24 stems from the following fact.

Lemma 3.25. If Conjecture 3.24 is true, then every G-invariant closed subset X of An
K,∞

is the union of the orbit closures of finitely many points. In particular, the vanishing 
ideal of X is the intersection of finitely many ideals I as in Theorem 3.22.

Proof. The set X maps to a closed subset of KQ(An
K,∞/G). Since this latter space is 

noetherian, this closed subset is the union of its finitely many irreducible components. If 
Conjecture 3.24 is true, then each of these irreducible components has a generic point. 
This shows that X is the union of finitely many orbit closures. �

The case n = 1 of Conjecture 3.24 follows from the main result of [19]. Indeed, a 
description of the generic point of an irreducible subset is given in the last paragraph of 
[19, §1.1]. Note that the conjectural description of vanishing ideals is reminiscent of the 
Shift Theorem [7, Theorem 3.1.1] but without the need to pass to a localization. Nicolà 
Schnieper [21] has announced a proof of Conjecture 3.24 using the Shift Theorem in his 
Master’s thesis.

4. Equivariant semi-algebraic geometry

Let A be a finitely generated, reduced R-algebra and let V = Spec(A). Further let 
B = A[x1, x2, x3, . . .] with the natural G action on it and let X = Spec(B). We equip the 
space X(R) with the topology generated by the open sets U(f) = {p ∈ X(R) : f(p) > 0}
for f ∈ B. We have X(R) = V (R)×A1

R,∞(R) where the projection π : X → V is induced 
by the inclusion A ↪→ B. A fundamental result in real algebraic geometry is the so called 
quantifier elimination due to Tarski and Seidenberg which in particular guarantees that 
a projection of a semi-algebraic set is again semi-algebraic. The goal of this section is to 
prove a version of this theorem (Theorem 4.4) for the projection π in the case of basic 
equivariant semi-algebraic sets.

Definition 4.1. A basic equivariant semi-algebraic set is a subset of X(R) of the form
⋂
σ∈G

{p ∈ X(R) : (σf1)(p) ≥ 0, . . . , (σfr)(p) ≥ 0, (σg1)(p) > 0, . . . , (σgs)(p) > 0}

for some f1, . . . , fr, g1, . . . , gs ∈ B.
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Remark 4.2. Similarly to the finite variable case one might define equivariant semi-
algebraic set as the sets obtained by a finite boolean combination of basic equivariant 
semi-algebraic sets. However, the quantifier elimination which we show below is currently 
only established for the basic equivariant semi-algebraic case.

In order to show quantifier elimination for these equivariant basic semi-algebraic sets 
we will rely on the following property of symmetric semi-algebraic sets.

Lemma 4.3. Let p ∈ R∪ {∞}. A symmetric semi-algebraic set S ⊆ Rn has the following 
property:

∃c < p : ∀x1 ∈ [c, p) : ∃cx1 < p : ∀x2 ∈ [cx1 , p) : · · ·
· · · ∃cx1...xn−1 < p : ∀xn ∈ [cx1...xn−1 , p) ∈ R : (x1, . . . , xn) ∈ S

if and only if there is a strictly monotonously increasing sequence (pi)i∈N of real numbers 
with p = limi→∞ pi such that for every pairwise distinct natural numbers j1, . . . , jn we 
have (pj1 , . . . , pjn) ∈ S.

Proof. Suppose that S has the above property. We define our sequence (pi)i∈N recur-
sively. Let p1 = c and

pi = max({cpk1 ,...,pkj
: j = 1, . . . ,min(n, i) − 1, 1 ≤ k1 < · · · < kj < i} ∪ {p1, . . . , pi−1})

for i > 1. Clearly, the sequence is monotonously increasing. After replacing pi by 
max(pi, p − 1/i) if p ∈ R and by max(pi, n) if p = ∞ we get p = limi→∞ pi. Fur-
thermore, after passing to a suitable subsequence, it is strictly monotonously increasing. 
Finally, we have by construction (pj1 , . . . , pjn) ∈ S for all natural numbers j1 < · · · < jn
so the rest of the claim follows from the symmetry of S.

Conversely, let (pi)i∈N be a sequence with the desired properties. We prove the state-
ment by induction on n. In the case n = 1 the set S ⊆ R is a finite union of intervals 
since semi-algebraic. Since it contains (pi)i∈N which converges to p we thus find a c < p

such that S contains [c, p). For the induction step we consider the set

S′ = {x1 < p : ∃cx1 < p : ∀x2 ∈ [cx1 , p) : · · ·
· · · ∃cx1...xn−1 < p : ∀xn ∈ [cx1...xn−1 , p) ∈ R : (x1, . . . , xn) ∈ S}.

We obtain pk ∈ S for all k ∈ N from applying the induction hypothesis to the set 
{(x2, . . . , xn) ∈ Rn−1 : (pk, x2, . . . , xn) ∈ S} and the sequence (pk+i)i∈N . This shows in 
particular that S′ has p in its closure. Therefore, since S′ is also semi-algebraic, we find 
as above c ∈ R such that S′ contains all x1 ∈ [c, p). This proves the claim. �

The results from Lemma 4.3 now allow us to establish the following equivariant quan-
tifier elimination.
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Theorem 4.4. Let Y ⊆ X(R) be a basic equivariant semi-algebraic set. Then the image 
π(Y ) is a semi-algebraic subset of V (R).

Proof. We have to show that the condition on the fiber over a point v ∈ V (R) being 
nonempty is a semi-algebraic condition on v. To that end let f1, . . . , fr, g1, . . . , gs ∈
R[x1, x2, . . .] and consider

T =
⋂
σ∈G

{p = (pi)∈N : (σf1)(p) ≥ 0, . . . , (σfr)(p) ≥ 0, (σg1)(p) > 0, . . . , (σgs)(p) > 0}.

Then we already have f1, . . . , fr, g1, . . . , gs ∈ R[x1, . . . , xn] for some n ∈ N. Let

S =
⋂

σ∈Sym(n)

{p ∈ Rn : (σf1)(p) ≥ 0, . . . , (σfr)(p) ≥ 0, (σg1)(p) > 0, . . . , (σgs)(p) > 0}.

A sequence (pi)∈N of real numbers lies in T if and only if for every pairwise distinct 
natural numbers j1, . . . , jn we have (pj1 , . . . , pjn) ∈ S. Note that any subsequence of a 
sequence in T will also lie in T . It follows that T is nonempty if and only if one of the 
following conditions on T is true:

a) T contains a strictly monotonously increasing sequence;
b) T contains a strictly monotonously decreasing sequence;
c) T contains a constant sequence.

The statement now follows, since every of these conditions is semi-algebraic. Indeed, 
by Lemma 4.3 condition a) is semi-algebraic. Analogously, condition b) is semi-algebraic 
as well. Finally, let f̃i = fi(x, . . . , x) and g̃j = gj(x, . . . , x) for all i, j. Then condition c)
is equivalent to

∅ �= {p ∈ R : f̃1(p) ≥ 0, . . . , f̃r(p) ≥ 0, g̃1(p) > 0, . . . , g̃s(p) > 0}

which is also semi-algebraic. �
The argument from the proof of Theorem 4.4 does not extend to arbitrary n as the 

next example shows.

Example 4.5. Consider the set S of sequences (pi)i∈N ⊂ R5 that satisfy

pi = (ai, bi, xi, yi, zi), ai = aj , bi = bj , a
2
i + b2i > 1 and aixi + biyi + zi > 0

for all i, j ∈ N. Let S′ be the set obtained by projecting S onto the last three variables. 
Thus S′ consists of those sequences s = (xi, yi, zi)i∈N with the property that the convex 
set
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K(s) = {(a, b) ∈ R2 : axi + byi + zi > 0 for all i ∈ N}

intersects the complement of the unit disc. We will show that S′ can not be characterized 
by bounded-size sub-sequences. To that end we will construct for every N ∈ N a sequence 
of N points in R3 that can not be extended to a sequence in S′ while every sub-sequence 
of length N − 1 can: Let (xi, yi, zi) ∈ R3 for i = 1, . . . , N such that zi > 0 and such that 
the linear polynomial axi + byi + zi = 0 defines the ith edge of the regular N -gon Cn

inscribed in the unit circle a2 + b2 = 1. Clearly,

Cn = {(a, b) ∈ R2 : axi + byi + zi > 0 for all i = 1, . . . , N}

is entirely contained in the closed unit disc but

{(a, b) ∈ R2 : axi + byi + zi > 0 for all i = 1, . . . , N with i �= j}

is not for all j = 1, . . . , N .

Remark 4.6. In fact, Example 4.5 actually shows that, similarly to the setup studied 
in [17], it is impossible to expect quantifier elimination for any kind of G-equivariant 
description involving only finitely many orbits of polynomials, whenever n > 1.

Data availability

No data was used for the research described in the article.

References

[1] M. Aschenbrenner, C.J. Hillar, Finite generation of symmetric ideals, Trans. Am. Math. Soc. 
359 (11) (2007) 5171–5192.

[2] T. Church, J.S. Ellenberg, B. Farb, FI-modules and stability for representations of symmetric groups, 
Duke Math. J. 164 (9) (2015) 1833–1910.

[3] D.E. Cohen, On the laws of a metabelian variety, J. Algebra 5 (3) (1967) 267–273.
[4] D.E. Cohen, Closure relations. Buchberger’s algorithm, and polynomials in infinitely many variables, 

in: Computation Theory and Logic, in: Lecture Notes in Comput. Sci., vol. 270, Springer, Berlin, 
1987, pp. 78–87.

[5] J. Draisma, Finiteness for the k-factor model and chirality varieties, Adv. Math. 223 (1) (2010) 
243–256.

[6] J. Draisma, Topological noetherianity of polynomial functors, J. Am. Math. Soc. 32 (3) (2019) 
691–707.

[7] J. Draisma, R. Eggermont, A. Farooq, Components of symmetric wide-matrix varieties, J. Reine 
Angew. Math. 793 (2022) 143–184.

[8] J. Draisma, R.H. Eggermont, Plücker varieties and higher secants of Sato’s Grassmannian, J. Reine 
Angew. Math. 737 (2018) 189–215.

[9] D. Erman, S.V. Sam, A. Snowden, Big polynomial rings and Stillman’s conjecture, Invent. Math. 
218 (2) (2019) 413–439.

[10] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, New 
York-Heidelberg, 1977.

[11] M. Hochster, Prime ideal structure in commutative rings, Trans. Am. Math. Soc. 142 (1969) 43–60.

http://refhub.elsevier.com/S0021-8693(24)00639-2/bibBB4B48BD523FE94BE4C8651F7E1F5F75s1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bibBB4B48BD523FE94BE4C8651F7E1F5F75s1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib75778BF8FDE7266D416B0089E7B8B793s1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib75778BF8FDE7266D416B0089E7B8B793s1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib0DD87D81AA92A0EE23251BE181ECF0B2s1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib1FDFADDBA13390A92A16E27936AEA61Ds1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib1FDFADDBA13390A92A16E27936AEA61Ds1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib1FDFADDBA13390A92A16E27936AEA61Ds1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib22DC54981F102F53CCFAAD6B5D5F5221s1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib22DC54981F102F53CCFAAD6B5D5F5221s1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib2834CD06244DBD601A3EAE07B52118A5s1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib2834CD06244DBD601A3EAE07B52118A5s1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib529CAABA7DEE4E6E6EA1D10624C162DDs1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib529CAABA7DEE4E6E6EA1D10624C162DDs1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib3F5BAC332553629AB2BDFB28521DD2F5s1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib3F5BAC332553629AB2BDFB28521DD2F5s1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib4C4956E0EF987EC1324768A263D0029Es1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib4C4956E0EF987EC1324768A263D0029Es1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib998B147D8E0E03430B933910B6675B7Es1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib998B147D8E0E03430B933910B6675B7Es1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bibC0778F29C9723AC2DD9ECC7C91E82A6Ds1


46 M. Kummer, C. Riener / Journal of Algebra 666 (2025) 28–46 

[12] S. Iitaka, An introduction to birational geometry of algebraic varieties, in: Algebraic Geometry, in: 
North-Holland Mathematical Library, vol. 24, Springer-Verlag, New York-Berlin, 1982.

[13] M. Juhnke-Kubitzke, D.V. Le, T. Römer, Asymptotic behavior of symmetric ideals: a brief survey, 
in: D.I. Stamate, T. Szemberg (Eds.), Combinatorial Structures in Algebra and Geometry, Springer 
International Publishing, Cham, 2020, pp. 73–94.

[14] S. Lang, Hilbert’s Nullstellensatz in infinite-dimensional space, Proc. Am. Math. Soc. 3 (1952) 
407–410.

[15] D.V. Le, U. Nagel, H.D. Nguyen, T. Römer, Codimension and projective dimension up to symmetry, 
Math. Nachr. 293 (2) (2020) 346–362.

[16] D.V. Le, U. Nagel, H.D. Nguyen, T. Römer, Castelnuovo–Mumford regularity up to symmetry, Int. 
Math. Res. Not. 2021 (14) (2021) 11010–11049.

[17] A. Moitra, A singly-exponential time algorithm for computing nonnegative rank, in: Electronic 
Colloquium on Computational Complexity, vol. 53, 2012, pp. 1–16.

[18] U. Nagel, T. Römer, Equivariant Hilbert series in non-Noetherian polynomial rings, J. Algebra 486 
(2017) 204–245.

[19] R. Nagpal, A. Snowden, Symmetric subvarieties of infinite affine space, arXiv preprint arXiv:2011.
09009, 2020.

[20] R. Nagpal, A. Snowden, Symmetric ideals of the infinite polynomial ring, arXiv preprint arXiv:
2107.13027, 2021.

[21] N. Schnieper, Orbit closures and G-irreducibility, Master’s thesis, University of Bern, 2024.

http://refhub.elsevier.com/S0021-8693(24)00639-2/bibB9F24246770C7E15EE8D853144A2E2CDs1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bibB9F24246770C7E15EE8D853144A2E2CDs1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib40E712F30D56083318AB20A2402921D2s1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib40E712F30D56083318AB20A2402921D2s1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib40E712F30D56083318AB20A2402921D2s1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib1324700AC126A8A580403376AB0D2C4Ds1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib1324700AC126A8A580403376AB0D2C4Ds1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bibCEDEAFE34AED8F6414892D0A2C324C42s1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bibCEDEAFE34AED8F6414892D0A2C324C42s1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bibB6230F362D7544609F3405CF26CE5159s1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bibB6230F362D7544609F3405CF26CE5159s1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib09881C11CD6022D53DC1BBE350117BDBs1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib09881C11CD6022D53DC1BBE350117BDBs1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bibAF607CDC3508507D0D58A53CEFCD2857s1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bibAF607CDC3508507D0D58A53CEFCD2857s1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib05A155E8DB6452C72CBE2F5A612A9869s1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib05A155E8DB6452C72CBE2F5A612A9869s1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib3BA206F3EAFAD44A0584A5BBF46AD5F5s1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bib3BA206F3EAFAD44A0584A5BBF46AD5F5s1
http://refhub.elsevier.com/S0021-8693(24)00639-2/bibFB4F9E172A822FB5E6A22A3630751429s1

	Equivariant algebraic and semi-algebraic geometry of infinite affine space
	1 Introduction
	2 Preliminaries from algebraic geometry
	3 Orbit closures in An∞
	3.1 Orbit closures of closed points in An∞
	3.2 Fixed points in An∞
	3.3 Orbit closures of arbitrary points in An∞

	4 Equivariant semi-algebraic geometry
	Data availability
	References


