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Abstract

Transition metal complexes (TMCs) play a key role in several areas of high in-

terest, including medicinal chemistry, renewable energies, and nanoporous materials.

The development of TMCs enabling these technologies remains challenged by the need

to optimize multiple properties within very large chemical spaces, in which the thirty

transition metals can be combined with a virtually infinite number of ligands. In this

work, we provide the open tmQMg-L dataset including 30K TMC ligands, which com-

bines large chemical diversity with synthesizability. The charge and metal-coordination

mode of the ligands were robustly defined with a novel algorithm based on graph and

natural bond orbital theories. The tmQMg-L dataset was leveraged in the automated

generation of 1.37M TMCs resulting from all possible combinations between a square

planar palladium(II) scaffold and a pool of 50 different ligands. This TMC space was

used to benchmark a multiobjective genetic algorithm (MOGA) that optimized two

properties over a Pareto front; namely the polarizability (α) and the HOMO-LUMO

gap (ϵ). The MOGA evolved 130 TMC hits with maximal (α, ϵ) values in a way that

could be easily rationalized by analyzing the nature of the ligands selected. Instead

of the traditional mutation and crossover of fragments within a single ligand, this

MOGA implemented full-ligand genetic operations acting on all coordination sites,

maximizing chemical diversity. Further, we extended this MOGA algorithm with the

Pareto-Lighthouse functionality (PL-MOGA), which allows for controlling both the

aim and scope of the multiobjective optimization over the Pareto front. In explicit

spaces containing billions of TMCs, the PL-MOGA enabled the explainable generation

of thousands of novel and highly diverse TMC hits. We believe that the combined

use of the tmQMg-L dataset and PL-MOGA algorithm will facilitate the discovery of

TMCs with optimal properties within untapped chemical spaces.
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Introduction

Transition metal complexes (TMCs) are chemical compounds of high interest due to their

crucial role in diverse technologies, including medicinal chemistry,1 catalysis,2 electronic

devices,3 renewable energies,4 and nanoporous materials.5 From left to right, Figure 1 shows

examples of chemotherapy drugs and cross-coupling catalysts based on square planar TMCs,

as well as TMC alkyls used to produce semiconducting films, chelates promoting water

splitting into oxygen and hydrogen, and oxides used as building blocks in MOFs. Current

societal challenges, like the pandemics and the energy and climate crises, require accelerating

the further development of TMC-based technologies. Computational modeling has proven

successful in the design of new TMCs,6–8 though this approach is often limited to small

modifications of specific and previously known systems. Alternatively, the TMC chemical

space can be systematically explored to find optimal compounds,9,10 though its size is beyond

the capabilities of the theoretical and experimental screening techniques currently available;

for example, 10K different ligands can yield > 1015 unique TMCs.

Figure 1: Examples of technology-relevant TMCs.

Despite the vastness of the chemical space, it is possible to cut large slices of it for

their data-driven exploration with machine learning (ML) methods.11 This approach has

been successfully applied to catalysis12,13 with TMCs,14,15 including hydrogen activation,16

C-H oxidation,17 and C-O cleavage18 reactions, using methods similar to those leveraged in

organic chemistry,19 drug discovery20 and materials science,21 in which the spaces explored

are formulated explicitly. These spaces can contain thousands to millions of TMCs but their

nature is often local, representing the neighborhood of one or few TMCs that are already
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known. In principle, this issue can be tackled by formulating much larger implicit spaces if

they can be explored with algorithms that do not need to generate all the TMCs within.

Genetic algorithms22 (GAs) are the core method of evolutionary computation.23,24 In

chemistry and materials science,25 GAs can be seen as generative models26 mapping a desired

target y into a set of features X defining a compound within an implicit chemical space. GAs

thus act in an inverse design y ← X fashion,27 opposite to that of conventional ML predictive

models. Despite some pitfalls, like the need for sampling many solutions to find the optima,

GAs can match the efficiency of more complex ML methods26,28 or be used to augment

them.29–31 GAs are particularly suitable for systems that, like TMCs, can be expressed as

fragment combinations.32 Figure 2 shows an example in which a ligand is evolved by mutation

and crossover operations modifying and combining its fragments, respectively, to define new

TMC generations in an iterative manner. A critical component of this setup is the use of

ligand libraries, which, in the field of TMC chemoinformatics, are in general small in either

size or diversity. For example, the ligand knowledge bases 33,34 and the octahedral homoleptic

ligand database 35 are both diverse but their size is limited to a few thousand entries. In

contrast, the kraken platform36 allows for generating millions of ligands but all of them are

monodentate phosphines.

Figure 2: Mutation and crossover operations in a GA acting on a single TMC ligand.
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Figure 3: Directional multiobjective optimization.

Another key component in GAs for TMCs is the automated generation of guess geome-

tries. The molSimplify,37 DENOPTIM,38 AARON,39 MolAssembler,40 and other41 programs

can assemble ligands around a metal center, producing geometries with the quality needed

for quantum mechanics (QM) calculations. However, this requires a ligand library in which,

for all entries, charge and metal coordination are well-defined. Coordination is easily deter-

mined if the TMC graph can be derived from its formula or geometry, though this is not

trivial42 due to the complexity of metal–ligand bonds. Defining the charge is also difficult

and it is a major factor limiting the construction of libraries from experimental sources like

the Cambridge Structural Database (CSD).43 Previous approaches have focused on screen-

ing homoleptic TMCs44 and assigning metal oxidation states.45 Alternatively, well-defined

libraries can be made ad hoc in silico 46 but this can compromise synthesizability.47,48

Once the chemical space is set, a fitness function is defined to rank the TMCs evolved

by the GA. The fitness is optimized over multiple generations and it should therefore be a

computationally inexpensive y = f(X) function, where X specifies the TMC geometry and

y its fitness. f can be a QSAR model49 or a QM method,50 and y can refer to one or several

target properties, depending on whether the GA optimization is single- or multi-objective.

The latter is intrinsically more challenging, especially when it involves uncorrelated molecu-

lar properties forming a Pareto front and one wants to direct the optimization to a specific

region (Figure 3). Multiobjective optimization with genetic algorithms (MOGA) has been
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implemented with different methods,51–53 including the NaviCatGA platform,54 without re-

quiring the explicit spaces used in other ML approaches.55,56 GAs have been applied to

the de novo design of catalysts for the olefin metathesis,49 oxidative C-C cleavage,54 and

Baylis–Hillman57 reactions. With TMCs, the genetic operations have focused on a single

ligand within a previously known system (Figure 2). This approach is efficient at exploring

the chemical space but it can also compromise synthesizability or halt the GA into local

minima.

Figure 4: Multiligand MOGA in a square planar TMC. M = metal.

In this work, we report the 30K tmQMg-L library, which provides an extensive, diverse,

and synthesizable set of TMC ligands extracted from the CSD. This library was compiled

as a dataset including metal-binding geometries and electronic and steric information, in

an open format allowing for automated workflows. Ligand charges and metal coordination

modes were robustly defined with a new algorithm based on NBO and graph analyses.
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tmQMg-L was leveraged in a novel MOGA that, instead of doing local modifications of a

single ligand (Figure 2), does full-ligand genetic operations over all coordination sites of

any given TMC scaffold, considering the coordination geometry and its isomerism, as shown

in Figure 4 for the square planar TMC space. This MOGA thus has the ability to evolve

unprecedented combinations of known ligands within diverse and vast combinatorial spaces.

We also developed the Pareto-Lighthouse MOGA (PL-MOGA) which, through a simple

and intuitive selection of scaling factors, allows for fine-tuning the aim of the optimization

over the Pareto front, controlling not only its direction, as shown in Figure 3, but also its

scope. After benchmarking this evolutionary method in the multiobjective optimization of

the polarizability (α) and the HOMO-LUMO gap (ϵ) in a space of 1.37 million square planar

Pd(II) TMCs, we explored implicit spaces containing billions of TMCs. The algorithm

evolved TMC hits maximizing one or both target properties in an explainable manner, and

keeping chemical diversity and originality high with a low computational cost.

The tmQMg-L ligand dataset

tmQMg-L is a dataset belonging to the transition metal Quantum Mechanics (tmQM) se-

ries.42,58 It provides 29,764 (30K) ligands extracted from the tmQMg dataset, which contains

the geometry and electronic structure properties of 60,799 TMCs. All these complexes are

present in the CSD, and, therefore, all ligands in tmQMg-L exist in at least one TMC for

which the experimental crystal structure and synthesis have been reported. This can be a

useful feature for enforcing synthesizability in generative models.47 Further derivatization of

the ligands through decoration with functional groups is also possible using the data pro-

vided. The tmQMg-L dataset is diverse in terms of the ligand charge, metal-coordinating

elements, and metal-coordination modes, bulkiness, and ligand field strength. Figure 5 shows

a random sample of 28 ligands illustrating the diversity of the dataset, with examples in these

12 different categories: phosphines, alkyls, carbenes, chelating amines, allyls, olefins, arenes,

carboxylates, amidos, arsinines, halides, and pincers.
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Figure 5: A random selection of 28 ligands illustrating the diversity of the tmQMg-L dataset.
Each ligand is labeled with its charge, followed by the denticity (κ) and hapticity (η), including
both order and elements involved, as determined by the protocol shown in Figure 6.
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The TMC dataset from which the ligands were extracted, tmQMg, is also a graph dataset;

i.e., each TMC is defined by an undirected natural quantum graph (u-NatQG),42 which is a

representation based on natural bond orbital (NBO) theory yielding molecular graphs similar

to the skeletal formulas used by organometallic chemists. From the u-NatQG graphs, the

extraction of the tmQMg-L ligands is trivial; after removing the metal node, the resulting

disconnected subgraphs are immediately identified as the ligands (Figure 6). Further, the

node and edge indices defining the topology of the graphs allowed for describing the ligand

coordination, including the atomic numbers defining the metal-bound elements (E) and

their coordination in terms of both order (n) and mode (κ or η); i.e. κn
E denticity, for n

non-contiguous atoms, and ηnE hapticity for n contiguous atoms.

Whereas extracting the tmQMg-L ligands was straightforward, assigning their charge was

challenging. In a recent account, Ess and co-workers developed an ML approach to ligand

charge assignment based on QM features.59 After experimenting with different data sources

and algorithms, we found that the most reliable approach was to use the Lewis structures

available from the NBO data of the tmQMg dataset42 (Figure 6). By counting the number

of bonding (NBD) and lone (NLP ) electron pairs relative to the number of valence electrons

(NVe), we could derive the formal charges of all atoms, which, upon summation, yielded the

overall charge of the ligand (qL in equation 1). The electron pairs of the metal–ligand bonds

(NM−L
BD ) were counted as filling the valences of the metal-bound atoms (i.e. ionic electron

counting).

qL =
atoms∈L∑

i

−(NBD + 2NLP + 2NM−L
BD −NVe) (1)
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Figure 6: Derivation of the tmQMg-L ligand dataset. L = ligand; TMC = transition metal
complex; NBO = natural bond orbital; HyDGL = Hylleraas deep graph learning program; qL =
ligand charge; MC = metal coordination; FP = fingerprint; L∗

∈TMC = in-TMC L geometry yielding
the lowest energy; L∈TMC = collection of in-TMC L geometries; Lfree = optimized metal-free L
geometry.
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In order to assess the robustness of our protocol in assigning charges and coordination

modes, we manually inspected 500 random ligands from tmQMg-L, which were selected by

considering their size in atoms, charge, metal-bound elements, and metal-coordination mode.

With the aim of maximizing the diversity and representativity of the selection, the different

categories associated with these variables (e.g. κ and η, for the metal coordination mode)

were included in the same ratio observed in the whole dataset. For all 500 ligands, the charge

assigned to the ligand was consistent with a singlet spin multiplicity. The success rate in the

assignment of the charge was 95%; i.e. for 475 of the 500 ligands, the charge was the most

commonly observed in TMCs (e.g. alkyl- and aryl-phosphines were assigned q = 0 instead of

–2 or +2, which would also be spin-consistent but rare). The other 25 ligands were assigned

spin-consistent but unusual charges. Further, the indices of the metal-bound atoms were

found to be correct for all 500 ligands, whereas the metal coordination mode was correctly

defined for 485 of the 500 ligands assessed (97%). Considering the assignment of both the

ligand charge and the coordination mode yielded an overall success of 92%, reflecting the

robustness of this approach.

It should be noted that, depending on several factors, like the synthesis of the TMCs and

the nature of their metal centers, there are ligands for which the charge can take different

values and the coordination to the metal can occur in different modes. For example, regarding

the charge, the O2 ligand can be either neutral (i.e. dioxygen ligand) or anionic (i.e. superoxo

O2
−1 and peroxo O2

−2). Regarding the coordination mode, whereas the superoxo often

coordinates in κ1 fashion, the peroxo prefers the η2. Further, these two factors are not

necessarily related. For example, aliphatic ligands with a single carboxylate functional group

will have a unique charge of -1e, and yet they may coordinate to the metal in either κ1 or κ2

fashion. For this type of ligands, the tmQMg-L dataset may contain either one or multiple

charge and coordination variants. Using the provided fingerprints (vide infra), these ligands

can be easily distinguished and found in the dataset and, if needed for a given task, their

charge and coordination mode can be further diversified.
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Table 1: Systematic list of all features included in the stereoelectrochemical fingerprints of the
tmQMg-L ligand dataset. NBO = Natural Bond Orbital theory; NatQG = Natural Quantum
Graph;42 DFT1 = PBE/def2SVP optimization; DFT2 = PBE0/def2TZVP single-point.

Chemical properties. General
Label Definition Units Method/Software Structure(s)
F Chemical formula — Hill system —
M Molecular mass Da — —
qL Molecular charge e NBO —
NA Total number of atoms — — —
NA,E Number of atoms by element — — —
Ne Number of electrons — — —
Pop Occurrences in tmQMg — — L∈TMC

Chemical properties. Coordination mode
Label Definition Units Method/Software Structure
NMB Number of metal-bound atoms — NatQG L∈TMC

κn Denticity order — NatQG L∈TMC

κn
E κn by element — NatQG L∈TMC

ηn Hapticity order — NatQG L∈TMC

ηnE ηn by element — NatQG L∈TMC

Cheminformatics descriptors
SMILES SMILES string — RDKit —
MFP Morgan fingerprints — RDKit —
logP Octanol/water partition coefficient — RDKit —
NR,Al Num. of aliphatic rings — RDKit —
NR,Ar Num. of aromatic rings — RDKit —
NR,Sat Num. of saturated rings — RDKit —
NRB Num. of rotatable bonds — RDKit —

Electronic properties
Label Definition Units Method/Software Structure
α Polarizability Bohr3 DFT1 Lfree

µ Dipole moment D DFT1, DFT2 Lfree, L
∗
∈TMC

ν Largest vibrational frequency cm−1 DFT1 Lfree

ϵ HOMO-LUMO gap Ha DFT1, DFT2 Lfree, L
∗
∈TMC

EMB
HOMO Metal-bound HOMO energy Ha DFT1, DFT2 Lfree, L

∗
∈TMC

SMB
HOMO Metal-bound HOMO symmetry — DFT1, DFT2 Lfree, L

∗
∈TMC

EMB
LUMO Metal-bound LUMO energy Ha DFT1, DFT2 Lfree, L

∗
∈TMC

SMB
LUMO Metal-bound LUMO symmetry — DFT1, DFT2 Lfree, L

∗
∈TMC

Steric properties
Label Definition Units Method/Software Structure

V Molecular volume Å3 DFT1, DFT2 Lfree, L
∗
∈TMC

I1
I3
, I2I3 Principal moments of inertia ratios60 — DFT1, DFT2 Lfree

Ec Eccentricity Å RDKit Lfree, L
∗
∈TMC

ASAS Solvent accessible surface area (SAS)61,62 Å2 Morfeus Lfree, L
∗
∈TMC

V SAS Volume within SAS61,62 Å3 Morfeus Lfree, L
∗
∈TMC

VBur Buried volume63 % Morfeus L∗
∈TMC

θ◦ Exact cone angle64,65 ° Morfeus L∗
∈TMC

Ω Solid angle66,67 sr Morfeus L∗
∈TMC

Θ Solid cone angle66,67 ° Morfeus L∗
∈TMC

G G parameter66,67 — Morfeus L∗
∈TMC
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Both the charge and the coordination mode of each ligand are included in an extensive

stereoelectrochemical fingerprint provided with the dataset (Figure 6). The information

included in the fingerprints allows for a fast search and systematic analysis of the tmQMg-L

ligands, and their multiple features can be leveraged in machine learning models. These

features include SMILES strings, molecular properties, orbital energies and symmetries, and

diverse measures of shape and bulkiness. Table 1 gives a systematic list of all features

included in the fingerprint.

Figure 7: The L∗
∈TMC , L∈TMC , and Lfree geometry sets for an example phosphine ligand in

tmQMg-L. Element color code: Violet (P), blue (N), grey (C), red (O), yellow (S), and white (H).

In addition to the fingerprint properties, tmQMg-L also provides geometric information

in two distinct categories (Figures 6 and 7). One category corresponds to the structure of

the ligand as it is within the DFT-optimized TMC from which it was extracted (L∈TMC),

whereas the other corresponds to the metal-free ligand (Lfree). The L∈TMC category contains

either one or multiple geometries, depending on whether the ligand was found in one or

more TMCs of the original tmQMg dataset. When there are multiple geometries, the most

stable one (L∗
∈TMC) is provided first, followed by the others ordered by increasing energy.

These geometries do not differ by either charge or coordination mode, which would generate

additional different entries in the ligand dataset, but rather structurally, in spatial regions far

from the metal center (e.g. different conformations of aliphatic chains). The Lfree structural

category contains a single geometry, which is that of the fully optimized free ligand (i.e.

not bound to the metal center), starting from L∗
∈TMC . This geometry was mainly computed

for the sake of deriving other properties depending on energy derivatives (e.g. the largest
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vibrational frequency). Table 1 shows how these structural categories relate to the features

of the ligand fingerprint, and Figure 7 shows an example of these three sets for a phosphine

ligand. For the generation of TMC geometries with automation software like molSimplify, we

recommend using the L∗
∈TMC geometry. All geometry optimization and single-point energy

calculations were performed at the DFT(PBE/def2SVP) and DFT(PBE0/def2TZVP) levels

of theory, respectively, in the closed-shell singlet state.

1.37M explicit space

The tmQMg-L ligand dataset can be leveraged in the automated construction of vast TMC

spaces. With the aim of assessing this application, we explored the palladium square planar

scaffold, which is very popular in the fields of metallodrugs and catalysis. For a Pd(II) center,

restricting the ligand choice to monoanionic (na) and neutral (nn) monodentate ligands, and

the overall charge of the resulting complex to {-1, 0, 1}, the total number of unique TMCs

(N) is given by

N = n3
ann +

3

2
n2
an

2
n + nan

3
n +

1

2
nann (2)

This expression accounts for the rotation invariances and cis/trans isomerism of the square

planar coordination geometry for all possible M(L)4, M(L)3(L’), M(L)2(L’)2, M(L)2(L’)(L”),

and M(L)(L’)(L”)(L”’) formulations (Figure 8; see SI for a full derivation of Eq. 2). The

8418 monodentate ligands that are either neutral or monoanionic within tmQMg-L generate

a massive chemical space of 1.26·1015 TMCs. Further, Figure 8 shows that the 1 million and

1 billion marks in the size of this particular TMC space are surpassed by using only ∼50

and ∼250 different ligands, respectively.
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Figure 8: Chemical space size of a square planar palladium(II) scaffold as a function of the number
of unique monodentate ligands that can be coordinated to it (Eq. 2). The charges of the ligands
and the resulting TMCs were restricted to {-1, 0} and {-1, 0, +1}, respectively. The inset shows the
different possible symmetries depending on the number of different ligands within a single TMC.

Under these ligand charge and metal-coordination constraints, we created a Pd(II) square

planar TMC space using the 50 most popular ligands, half of them neutral and the other

half monoanionic, and limiting their size to a maximum of 15 heavy atoms (Figure 9).

Popularity hereby refers to the number of occurrences; i.e. the number of palladium TMCs

within the tmQMg dataset containing a given ligand. Using molSimplify to automate the

generation of the TMCs, these ligands yielded 1,367,485 (1.37M) geometries, which were

fully optimized at the semiempirical GFN2-xTB level of theory. Figure 10 shows a scatter

plot of their polarizability (α) and HOMO-LUMO gap (ϵ). Within this large chemical space,

α and ϵ appear poorly correlated and distributed over wide ranges; i.e. ∼50-475 Bohr3 and

∼0.15-4.15 eV, respectively.

15

https://doi.org/10.26434/chemrxiv-2023-k3tf2-v2 ORCID: https://orcid.org/0000-0002-3389-0543 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-k3tf2-v2
https://orcid.org/0000-0002-3389-0543
https://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 9: The 50 ligands used in the generation of the 1.37M chemical space ordered by popularity
from top-left to bottom-right. In the polyatomic ligands, the arrow signals the metal-coordinating
atom.
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Figure 10: (α, ϵ) distribution at the GFN2-xTB level of theory for the tmQMg and 1.37M chemical
spaces. The dashed line corresponds to α = 475 Bohr3. The entire 1.37M distribution plotted on
top is covered by the 60K tmQMg underneath. The α and ϵ units are Bohr3 and eV, respectively.

Figure 10 plots the 1.37M data against the tmQMg space, which contains 60K TMCs for

which α and ϵ were computed at the same level of theory. There is a large overlap between

both spaces except for α > 475 Bohr3, due to the size limit applied to the ligands used to build

the 1.37M space. Interestingly, below this threshold, and thus for most of the (α,ϵ) range, this

space covers the tmQMg. This may seem an expected observation because tmQMg is more

than one order of magnitude smaller than the 1.37M space. However, whereas tmQMg is a

CSD collection of TMCs combining the 30 transition metals with 30K different ligands, the

1.37M space is based on only one metal and 50 ligands. This shows that full combinatorial

explosions with a limited number of metals and ligands can cover significant portions of the

properties associated with the TMC space. In the next two sections, the (α,ϵ) data of the

1.37M space was used to benchmark the MOGA and PL-MOGA algorithms.
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MOGA benchmark

Besides the overlap, Figure 10 also shows the poor correlation between α and ϵ, which, due

to their relationship (i.e. large ϵ values limit the extent to which α can be maximized,

and the other way around), form a Pareto front. The interplay between these two molec-

ular properties is relevant in the field of drug discovery, since, ideally, a commercial active

compound would maximize both α, for electrostatic and Van der Waals interactions with

biomolecules, and ϵ, for stability against moisture, heat, or light. Given the interest in these

two properties and the use of square planar metal complexes as chemotherapy drugs, we

decided to tackle the Pareto front optimization of α and ϵ. In particular, we implemented

a MOGA that used the genetic operations shown in Figure 4. The parent TMCs of each

generation were selected with the probabilistic roulette-wheel method, after ranking them

according to the non-dominating fronts of the populations. In contrast, the survivors were

selected in a deterministic manner, ranking them according to the number of TMCs they

are dominated by (see SI for further details).

The MOGA (α,ϵ) optimization was benchmarked in the explicit 1.37M space (Figure 10),

for which the GFN2-xTB ground truth was known. We set the goal of finding 130 hits by

exploring 13,000 TMC candidates (i.e. 0.01% and 1% of the entire space, respectively), which

was implemented by evolving 100 generations with the genetic operations shown in Figure

4. The progress of the MOGA optimization is shown in Figure 11. After the first random

generation, the TMCs evolved in the 10th generation already appeared clustered over a wide

(α,ϵ) region parallel to the Pareto front. The solution cluster quickly thinned and advanced

and, by the 50th generation it was mostly converged, suggesting that an exploration of a

smaller space of solutions would also be efficient. In the last generation of hits, the 100th,

all TMCs are over the Pareto front and 18 were dominating points.
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Figure 11: Multiobjective (α,ϵ) optimization in the 1.37M space with the MOGA algorithm. The
α and ϵ units are Bohr3 and eV, respectively.

In order to rationalize the progress of the MOGA toward the Pareto front, we plotted a

histogram (Figure 12) showing the absolute and relative frequencies with which the different

ligands were used. This plot shows that the MOGA enforced diversity by using all 50

ligands in the pool (Figure 9) over the 100 generations evolved. The 10 most popular

ligands indicated a clear trend toward picking the ligands that maximize α with aromatic

rings (e.g., the P(Ph)(Me)2 phosphine), ϵ with strong field coordinating moieties (e.g. the

CN(Cy) isocyanide), and both α and ϵ by combining these features (e.g. C6F
−
5 ligand).
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Figure 12: Ligand use absolute and relative frequencies in the (α,ϵ) Pareto front optimization.
The red bars correspond to the ten most used ligands. From the left- to the right-hand sides,
ligands are ordered by popularity as they are in Figure 9.

Figure 13: Average Tanimoto coefficient over the MOGA generations. The insets show random
examples of TMC hits maximizing the polarizability (α), the HOMO-LUMO gap (ϵ), or both.
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GAs tend to converge into local minima, limiting the diversity of the elite generations.

However, this is not a significant issue in the present study, as shown by Figure 11, in which

the hits appear scattered over the whole Pareto front, and Figure 12, in which at least 10

different ligands stand over the base frequencies. Further, of the 50 ligands of the pool

(Figure 9), nearly half of them, 24, are present in the TMC hits of the last generation. In

order to assess chemical diversity, we plotted the change in the average Tanimoto coefficient

(TC) over the MOGA run (Figure 13), based on the concatenation of the four ligand SMILES

strings. This coefficient measures molecular similarity within the [0,1] range. In line with

the convergence of (α,ϵ), the TC also starts to converge in the 50th generation at a rather

small value of ∼0.33, reflecting the diversity of the TMC populations in the last generations.

This diversity can also be appreciated in the structures of the TMC hits shown in Figure 13,

which, along the Pareto front, maximize either one or both target properties.

The evolution of the hits with the GFN2-xTB fitness was also assessed by recomput-

ing the target properties at a higher level of theory. From generations 1, 10, 30, 50, and

100, we extracted all TMCs for which the calculation of α and ϵ with xTB was success-

ful. For these TMCs, 99% of the total, we computed α and ϵ at the DFT(PBE/def2SVP)

and DFT(PBE0/def2TZVP) levels, respectively. The results were plotted against the 60K

tmQMg dataset, for which these properties were also available at the same DFT level (Figure

S9). This plot showed that 1) there was clear progress towards the DFT tmQMg Pareto

front, though less stable than with xTB (Figure 11) and in line with the significant differ-

ences between these two methods, and 2) there was a gap between the TMC hits and the

DFT tmQMg Pareto front, in line with the different sizes of the associated fragment pools;

i.e.: 1 vs. 30, for the metal center, and 50 vs. 30K for the ligands. We hypothesized that the

average deviation between DFT and xTB would increase by approaching the Pareto front

but the opposite trend was seen, likely due to the TMCs being constrained into a smaller

(α,ϵ) region. These results also suggested that an xTB-guided MOGA followed by a DFT

verification of selected solutions may constitute a robust computational protocol.
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PL-MOGA benchmark

Being able to guide the MOGA search towards one specific region of the Pareto front can

be of high interest as this allows biasing the TMCs of the final population to emphasize

certain properties more than others (Figure 3). This can be useful in applications where one

property is particularly important and thus its optimization should be prioritized. One way

of achieving this is to introduce a masking function that sets the fitness vector of any TMC

to zero if one of its components is lower than a specified threshold. This causes those TMCs

to be strongly disfavored during parent and survivor selection, thereby ensuring that the

final population is pushed towards fitness values higher than the threshold. Previously, this

has been done with static thresholds that stay constant during the whole MOGA run.68,69

However, this requires setting an appropriate threshold a priori without knowledge of the

ranges of the fitness values and is therefore almost exclusively useful for constraint handling.

We hereby propose a novel dynamic masking procedure that keeps updating the threshold

values based on the median over the current population. In each generation, the function

loops over a list of selected targets, considering their values for masking. For each of these

targets, the population median is calculated and multiplied by a target-specific scaling factor

to obtain a threshold. The target values of each individual are then compared to these

thresholds and if any of them is smaller, their fitness target vector is set to zero. This

ensures an additional, continuous selection pressure and pushes the population towards a

specific region of the Pareto front. The scaling factors can be chosen individually for each

target and, depending on the choice of values, the position (i.e. aim) as well as the width (i.e.

scope) of the region explored can be tuned smoothly. We experimented with different values

and found that the scaling factors should be within the continuous [0, 1] range, where zero

corresponds to no masking applied. Scaling values larger than 1 yielded high thresholds with

which large portions of the population were mapped to zero fitness, significantly hindering

evolution.
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Algorithm 1 PL-MOGA ZEROMASK function

function zeromask(x, X, T , S)
for t in T do

mt ← population Xt median
if xt < st ·mt then

return 0
end if

end for
return x

end function

Figure 14: Pareto-Lighthouse MOGA in the 1.37M space. In the aimed optimizations (left-hand
side), the (Sα,Sϵ) scaling factors were (1,0), (0,1), and (1,1) for the extreme α, extreme ϵ, and
α,ϵ-balanced runs, respectively. In the scope optimizations (right-hand side), all runs were center-
aimed with a widening scope set by the S = Sα = Sϵ values shown in the legend. Only the initial
random population (the same in both cases) and the final populations are shown. The α and ϵ
units are Bohr3 and eV, respectively.
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We called this MOGA Pareto-Lighthouse (PL-MOGA), in analogy to a seacoast light-

house in which the aim and scope of the beam can be modulated, and we implemented it by

developing the ZEROMASK function. Algorithm 1 shows the pseudocode of this function,

where x denotes the fitness vector of any query TMC, X denotes the list of fitness vectors of

the current population, T denotes the list of t indices of the selected targets, and S denotes

the list of corresponding factors st used to scale the population median of each target (mt).

ZEROMASK returns the fitness either unchanged or transformed to zero, assuming that this

is its lowest possible value for any target. This function is only valid when dim(T ) = dim(S);

i.e. one scaling factor must be provided for each selected target.

Figure 14 shows the application of the PL-MOGA algorithm to the optimization of the α

and ϵ properties within the 1.37M space. In a first run, with (Sα,Sϵ) = (1,0), the algorithm

explored the Pareto front region in which α and ϵ are maximized and minimized, respectively,

whereas the opposite region was explored in a subsequent run after permuting the scaling

factors to (Sα,Sϵ) = (0,1). The center region of the Pareto front, in which both target

properties are maximized in a balanced manner, was also explored using (Sα,Sϵ) = (1,1).

Additional “in-between” explorations can be made with 0 < Sα, Sϵ < 1, and either Sα <

Sϵ or Sα > Sϵ, depending on whether the region of interest is α- or ϵ-biased, respectively.

Further, the scope of the calculation can also be fine-tuned; e.g., Figure 14 illustrates how

a MOGA optimization aiming at the center of the Pareto front can be gradually widened

by decreasing the value of S from 1.0 to 0.8 and 0.6, with S = Sα = Sϵ. A conventional,

i.e. unmasked, MOGA optimization can also be easily set with S = Sα = Sϵ = 0. The

PL-MOGA thus allows for exploring the Pareto front in a continuous manner, by controlling

both the aim and the scope of the optimization with a simple an intuitive choice of scaling

factors.
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Billion-scale multiobjective optimization

After benchmarking the PL-MOGA algorithm in the 1.37M space, we scaled up the multi-

objective (α,ϵ) optimization task to implicit chemical spaces containing billions of TMCs.

Two different 252-ligand pools, both monodentate, were defined: the extended and the ran-

dom. The extended pool was made by adding 202 ligands of decreasing popularity to the

50-ligand pool underlying the 1.37M space. Popularity (i.e. number of occurrences in the

tmQMg dataset for Pd complexes) was decreased with the aim of exploring more unusual

TMCs. The random pool was made with a random selection of 252 ligands from the tmQMg-

L dataset. We used the square planar Pd(II) scaffold, which, for each of these two pools,

yields 1,008,189,504 unique TMCs (Equation 2). The same charge constraints of the 1.37M

space were applied: {0, -1} for the ligands, in a 1:1 ratio, and {-1, 0, +1} for the resulting

TMCs. Regarding ligand size, we kept the same limit in the extended pool (≤15 heavy

atoms), whereas, for the random, any ligand size was allowed to maximize the scope of the

multiobjective optimization.

The spaces resulting from the extended and random ligand pools were explored by evolv-

ing a total of 195,000 TMCs over 150 generations of 1,300 TMCs each. At this scale, both

target properties were converged (Figure S10), with the ligand use frequency histograms

showing that all 252 ligands in the two pools were used from ∼1K to 67K times (Figure

S11), after exploring 0.02% of the space. As in the 1.37M space benchmark, these his-

tograms could be used to follow and interpret the evolution of the TMC hits. The average

Tanimoto coefficients converged at ∼0.2 (Figure S12), showing high chemical diversity in

the last generation of TMC hits, which contained 108 (extended pool) and 143 (random

pool) unique ligands. This value is significantly smaller than that converged in the 1.37M

space (∼0.33 in Figure 13), in line with the larger size of the ligand pools and the associ-

ated chemical spaces. The PL-MOGA was also used to show that the 1,300 hits from the

last generation could be chosen to be either scattered over the entire Pareto front (i.e. no

masking) or concentrated at its center with the (Sα, Sϵ) = (1, 1) mask.
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Figure 15: Multiobjective (α,ϵ) optimization in the billion chemical spaces with the PL-MOGA
algorithm. The last generation of hits is plotted for both the extended and random 252-ligand
pools over the 1.37M, tmQMg, and tmQM spaces. The center-masked optimization was done with
(Sα, Sϵ) = (1, 1). The α and ϵ units are Bohr3 and eV, respectively.

Figure 15 shows the (α, ϵ) coordinates of the 1,300 TMC hits evolved from the extended

ligand pool. Relative to the 1.37M space, the unmasked PL-MOGA leveraged the 202 ligands

added to the original 50-ligand set, yielding a new Pareto front well ahead in the (α,ϵ) map.

The TMC hits pushed the upper limit of α from ∼450 to 600 Bohr3, despite the ligand size

limit. Further, the ∼600 Bohr3 limit coincides with that of the whole tmQMg space, which

contains larger TMCs up to a maximum size of 85 atoms. These results can be ascribed

to the selection of cyclic ligands containing heavier elements like sulfur, as shown in Figure
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16 for a random selection of TMC hits. The hits covered most of the tmQMg Pareto front,

using only the 252 ligands available from the pool, which was much smaller than the 30K

tmQMg-L dataset underlying this chemical space. At the ϵ > 3 eV extreme, the algorithm

picked strong field ligands (e.g. CF3(CF2)
−
3 ), adding also larger rings and heavier elements in

the central region of the Pareto front, where both α and ϵ were maximized jointly to ∼2.5 eV

and ∼450 Bohr3, respectively. This same central region was populated exclusively by using

the center mask – the small number of new dominating points generated in this calculation

suggested that a physical limit was reached with this ligand pool, which, in the unmasked

run, was also incapable of reaching the region at ∼2 eV / 550 Bohr3. Two repetitions

of this calculation from different random initial populations yielded the same observation,

producing hits at very similar (α, ϵ) coordinates and thus also reflecting the robustness of

the algorithm (Figure S13).

Figure 16: Random samples of the TMC hits evolved within the billion spaces. Long lines were
only used to simplify the 2D drawings and they do not represent unusually long bonds in any case.
The structures of the largest TMCs were verified at the DFT(PBE/def2SVP) level (SI).
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With the random pool, we first took tmQMg as reference since this chemical space is based

on the same ligand dataset (i.e. tmQMg-L) from which the 252 ligands were extracted. The

plot in Figure 15 shows how the evolved TMC hits redefined most of the Pareto front, with

the exception of the ϵ extreme, for which only a few hits reached ϵ ≥ 4 eV. This observation

may signal that further sampling is needed to cover this region by, for example, repeating

the optimization with a different set of random ligands. Regarding α, the hits opened a wide

gap, which at ϵ ∼ 2.5 eV spans ∼400 Bohr3. This dramatic gap is mostly due to molecular

size, which was limited to 85 atoms in tmQMg, whereas the PL-MOGA could produce hits

with more than 200 atoms. We thus considered a second chemical space as a reference:

tmQM, the original dataset of this series.58 tmQM included 86K mononuclear TMCs from

the CSD database, selecting the highest quality structures with a charge in the [-1, 0, +1]

range, without imposing any size filter (the largest TMC in tmQM has 569 atoms).

Figure 15 shows that the population of hits evolved from the random pool with the

unmasked PL-MOGA largely overlaps with the tmQM Pareto front, augmenting the density

of TMCs in this region significantly. At the α ∼ 1200 Bohr extreme, the algorithm optimized

very large TMCs like the one shown in Figure 16. We also observed that in several TMCs

the ligands were fused through bond rearrangements yielding systems that can be chemically

valid, converging an optimized geometry at the xTB level, but probably very unstable,

since, in this maximum α region, ϵ is minimized to ∼ 0 − 0.5 eV. Besides this region, the

MOGA found hundreds of stable TMCs maximizing either ϵ alone or both ϵ and α. The hits

shown in Figure 16 for these two regions of the Pareto front, which were all verified at the

DFT(PBE/def2SVP) level (Figure S14), show how the algorithm managed to leverage the

random 252-ligand pool to select and combine both common (e.g. phosphines and carbenes)

and unusual (e.g. alkoxides and alkyls) ligands for the Pd(II) scaffold. Further, all 1,300

TMC hits were new relative to the tmQM dataset, which was also the case when the center

mask was applied. Hence, the PL-MOGA was capable of generating novel TMC spaces in a

directional multiobjective optimization framework.

28

https://doi.org/10.26434/chemrxiv-2023-k3tf2-v2 ORCID: https://orcid.org/0000-0002-3389-0543 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-k3tf2-v2
https://orcid.org/0000-0002-3389-0543
https://creativecommons.org/licenses/by-nc-nd/4.0/


Conclusions

The present work showed how NBO and graph theories enabled the robust definition of

TMC ligands in terms of their charge and metal coordination mode. With this approach,

we curated the 30K tmQMg-L ligand dataset, which combines synthesizability with a wide

range of molecular sizes and chemical environments, in a format enabling the automated

exploration of the vast TMC chemical space. The information provided by tmQMg-L was

leveraged in the generation of a TMC space based on the square planar palladium(II) scaffold.

Using only 50 of the 30K ligands available and doing the full combinatorial explosion, we

obtained a chemical space of 1.37M unique TMCs, in which two quantum properties, i.e. the

polarizability (α) and the HOMO-LUMO gap (ϵ), appeared uncorrelated over wide ranges

(∼ 50− 475 Bohr3 and 0.15− 4.15 eV), forming a Pareto front.

Using this chemical space as a benchmark, we developed a MOGA for the multiobjective

optimization of TMCs. The evolution of the hits was implemented through full-ligand genetic

operations based on the geometry and isomerism of the square planar scaffold, in a way that

can be easily extended to other metal coordination geometries. In the 1.37M space, the

MOGA located 130 TMC hits over the (α, ϵ) Pareto front with high chemical diversity and

in an explainable manner. This approach was extended with the PL-MOGA algorithm, which

allowed for defining the aim and scope of the optimizer over the Pareto front through the

intuitive selection of scaling factors. When the optimization task was scaled up to implicit

spaces containing billions of TMCs, the PL-MOGA located thousands of hits that were novel

relative to extensive datasets extracted from the CSD, showing its potential for the discovery

of TMCs within unexplored regions of the chemical space.

Together, the tmQMg-L dataset and the PL-MOGA algorithm constitute a robust gen-

erative method for TMCs optimizing multiple properties based on the choice of multiple

ligands. We envision that this method can be the basis of an evolutionary learning strategy

in which, first, multiple ligands are selected to optimize properties, that, in a subsequent

step, are further refined with GAs acting at the atomic level on individual ligands.
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Supporting information

The Supporting Information provides further details about the tmQMg-L dataset, the 1.37M

chemical space, the PL-MOGA algorithm, the estimation of the chemical diversity with

average Tanimoto coefficients, the DFT benchmark, repetitions from different random initial

populations, additional information on the exploration of the implicit billion spaces, and

general computational and chemoinformatics details.

Data and code

All data and code are openly available. The tmQMg-L dataset can be accessed at the URL:

https://github.com/hkneiding/tmQMg-L whereas the PL-MOGA code is available from the

URL: https://github.com/hkneiding/PL-MOGA, which also provides the DFT geometries of

selected TMC hits.
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