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Abstract Satellite radar altimeters like CryoSat‐2 estimate sea ice thickness by measuring the return‐
time of transmitted radar pulses, reflected from the sea ice and ocean surface, to measure the radar
freeboard. Converting freeboard to thickness requires an assumption regarding the fractional depth of
the snowpack from which the radar waves backscatter (α). We derive sea ice thickness from CryoSat‐2
radar freeboard data with incremental values for α, for the 2010–2021 winter periods. By comparing
these to sea ice thickness estimates derived from upward‐looking sonar moorings, we find that α values
between 35%–80% result in the best representation of interannual variability observed over first‐year
ice, reduced to <55% over multi‐year ice. The underestimating bias in retrievals caused by optimizing
this metric can be removed by reducing the waveform retracking threshold to 20%–50%. Our results
pave the way for a new generation of ‘partial penetration’ sea ice thickness products from radar
altimeters.

Plain Language Summary Satellite altimeters like CryoSat‐2 can be used to estimate sea ice
thickness by estimating how far sea ice floes stick out above the waterline. This is done by measuring the time
taken for radar waves to travel to the surface of the ice floe and back to the altimeter. All current winter sea ice
thickness estimates assume that the radar waves return entirely from the sea ice surface, and not from the
overlying snow cover. A growing body of research suggests this may not be the case, with weather and snow
conditions affecting the fraction of the detected radar power that comes from the ice surface. We consider how
well CryoSat‐2 estimates capture whether the ice is thicker or thinner than usual at a given time of year. We find
that its skill is highest when we assume that 35%–80% of the radar power comes from the sea ice surface, and
20%–65% comes from the snow surface. However, improving this aspect of skill makes the sea ice thickness
estimates too low. To address this, we show that a simple change in the waveform processing method can
counter this bias.

1. Introduction
The Arctic's sea ice cover is decreasing in extent, age and thickness (Kwok, 2018; Stroeve & Notz, 2018) as the
region warms at nearly four times the global average rate (Rantanen et al., 2022). Accurate monitoring of Arctic
sea ice thickness is vital to understanding regional climate change, and the impact of that change on Arctic
communities, shipping routes, and wildlife living on and under the ice (e.g., Howell et al., 2024; Stroeve
et al., 2024).

Sea ice thickness can be estimated using satellite radar altimeters such as CryoSat‐2, by estimating the range
between the sea ice surface and the altimeter. The same can then be done for the nearby ocean surface, with the
difference between these two measurements of radar range referred to as the radar freeboard. Using assumptions
of hydrostatic equilibrium, snow depth and sea ice and snow density, sea ice thickness can then be calculated (e.g.,
Laxon et al., 2003). Studies have shown that the largest contributions to radar altimeter‐derived sea ice thickness
bias come from the snow basal salinity, sea ice roughness and partial snow penetration of the radar pulses (e.g.,
Landy et al., 2020; Ricker et al., 2014).
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The radar range to the top of a sea ice floe is calculated through analysis of returned radar waveforms.
Specifically, the waveforms are retracked to obtain the range to a presumed mean scattering height within the
radar footprint, with the choice of retracking algorithm affecting the range retrieved. The most commonly
used retracking approach is the threshold‐first‐maximum algorithm (TFMRA), which applies a fixed per-
centage threshold to the waveform's first maximum power return (e.g., Laxon et al., 2003; Ricker et al., 2014).
Converting radar freeboard to sea ice thickness then requires an assumed value for the fractional depth of the
snowpack from which the radar returns backscatter (α). We point out that the issue at hand is where returned
radar waves backscatter from, rather than where they penetrate to, since they may be absorbed or scattered
without returning. An assumption of α = 1 implies that received radar waves are backscattered from a mean
range corresponding to the base of the snowpack (the top of the sea ice). Assuming 0 < α < 1 corresponds to
an assumed mean backscattering height within the snowpack. An example of this would be where a fraction
of the radar waves is backscattered from the top of the snow and the remaining fraction is backscattered from
the top of the sea ice.

A growing body of research now indicates that α is not consistent under all meteorological and snow physical
conditions. Theoretical studies by Nandan et al. (2017, 2020) have indicated that snow salinity may play a key role
in reducing the ability of CryoSat‐2's radar waves to reach the sea ice surface. Surface‐based studies document a
strong backscattering response from ranges above the ice surface (e.g., Willatt et al., 2010, 2023), implying low α
values. However, it has been suggested that the ice surface may be less specular relative to the snow surface at the
viewing geometry and length scale of a surface‐based instrument, suppressing its visibility to those instruments
(De Rijke‐Thomas et al., 2023). Airborne investigations such as those by Willatt et al. (2011) and King
et al. (2018) also imply that Ku‐band radar waves do not always return from the base of the snowpack. The
airborne investigation by De Rijke‐Thomas et al. (2023) found that although most power did return from the
snow‐ice interface over landfast first‐year ice (FYI), the air‐snow interface provided stronger backscatter for
around 30% of returns.

Given the potential sensitivity of α derivations to the altitude and viewing geometry of the investigating
instrument, satellite‐based approaches to the question of CryoSat‐2's α values are particularly desirable. Ricker
et al. (2015) found that snowfall at drifting buoys led to increases in CryoSat‐2's radar freeboards, contrary to
the expected decrease if α = 1. Nab et al. (2023) examined pan‐Arctic changes in radar freeboard in response
to snow accumulation from a reanalysis‐driven model, and found that it also increased with accumulation. The
authors derived a mean α value of ∼ 0.6. However, both Ricker et al. (2015) and Nab et al. (2023) examined
the sensitivity of radar freeboards on short timescales: This leaves open the possiblity that snowfall events are
associated with temporary suppression of α (for instance due to changing the roughness of the surface), with α
otherwise being very high. In this paper, we present a new method for calculating α that is not constrained to
synoptic timescales.

Despite previous findings, all current winter sea ice thickness estimates using Cryosat‐2 rely on the assumption
that all returned Ku‐band radar waves have fully penetrated the snowpack and backscattered from the sea ice
surface (α= 1). Despite this, thickness retrievals generally have a low bias compared to independent observations,
due to what could be described as tuning: Competing biases in the sea ice thickness processing chain cancel out to
give an appropriate final value, at the cost of intermediate values (such as the radar freeboard) having limited
physical meaning. Here, we argue that instead of tuning our processing chains to the absolute sea ice thickness
values themselves, we should also consider optimizing the interannual variability in sea ice thickness. This is
because knowledge of whether the sea ice is thicker or thinner than usual in a given year is often critical for
operational uses, and is also a key aspect of trend and regime‐shift detection. We will also go on to show that
tuning to interannual variability offers a unique optimum combination of retracker‐threshold and penetration‐
values, whereas tuning to bias does not.

We first reflect on the conventional method of evaluation for CryoSat‐2 derived sea ice thickness products at
upward‐looking sonar moorings. We then introduce our new method of evaluating sea ice thickness products
based on their ability to capture interannual variability, and present an example application of this method.
We do this by creating an ensemble of sea ice thickness estimates with incremental combinations of α and
TFMRA threshold, assessing the skill of each member at the moorings relative to both bias and interannual
variability.
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2. Data
2.1. Sea Ice Thickness From Upward‐Looking Sonar Moorings

Sea ice thickness is derived from bottom‐anchored moorings equipped with upward‐looking sonars, which
estimate sea ice draft continuously at two‐second intervals. In this paper we use mooring data collected by the
Beaufort Gyre Exploration Project (BGEP) and at the Fram Strait Arctic Outflow Observatory (AOO). The AOO
data used here was collected at four locations (F11–F14) from 2010–2019 (Sumata et al., 2022), while the BGEP
data was collected at three locations (BGEP‐A, BGEP‐B and BGEP‐D) from 2010–2021 (BGEP, 2022). The
location and active period of the moorings are shown in Figure S1 in Supporting Information S1. We convert draft
measurements from both campaigns into monthly averages, and then derive sea ice freeboard as per Equation 2 of
S. Kern et al. (2015):

Fi =
D(ρw − ρi) − hsρs

ρi
(1)

where D is monthly sea ice draft, ρw is the density of seawater (1,023.9 kgm− 3), hs is the snow depth, ρs is the
snow density and ρi is the bulk density of sea ice. The sea ice type product of Aaboe et al. (2021) is used to classify
measurement as FYI or multi‐year ice (MYI). Sea ice bulk densities of 916.7 and 882 kgm− 3 are used for FYI and
MYI, respectively, per Alexandrov et al. (2010). For snow depth and snow density, daily estimates from
SnowModel‐LG are used (ERA‐5 version; Liston et al., 2020, 2021). SIT is then calculated from the ice freeboard
assuming hydrostatic equilibrium:

SIT =
Fiρw + hsρs
ρw − ρi

(2)

Due to their close proximity (<50 km apart), we make a single timeseries of monthly SIT averages for the AOO
moorings.

The mooring data shows clear interannual variability, with mean monthly sea ice thickness values ranging from
0–1.97 m in October (mean 0.65 m) and 0.95–2.34 m in April (mean 1.8 m).

2.2. CryoSat‐2 Monthly Sea Ice Thickness

Next, we create monthly sea ice thickness products for all CryoSat‐2 radar freeboard tracks that pass within 25 km
of any of the seven moorings during the 2010–2021 winter season period (October–April). We do this by
processing CryoSat‐2 waveforms (Level 1B, Baseline D) using the pysiral package (Hendricks et al., 2024).

The waveform retracking and subsequent radar freeboard estimates were carried out using pysiral following the
AWI CS2 L2 v2.6 near real time processing chain (Hendricks & Paul, 2023), with two exceptions: (a) We
processed the sea ice waveforms using retracking thresholds of 5%–95%, increasing in increments of 2.5%, whilst
keeping the threshold used to process lead waveforms at 50%. (b) We used the OSI SAF (2022) sea ice con-
centration product for surface classification, rather than the OSI SAF operational product.

The resulting radar freeboards within a 25 km radius of each mooring are then averaged to produce a monthly
radar freeboard product at each mooring.

The radar freeboards (Fr) are then converted to sea ice freeboard (Fi) as per Equation 6.1 of Lawrence (2019):

Fi = Fr + (α
c
cs
− 1) hs (3)

where α is the fractional depth of the snowpack from which the radar waves backscatter, c is the speed of light in
air (3.0 × 108 ms− 1) and cs is the speed of light in snow (2.4 × 108 ms− 1 in this study). We calculate sea ice
freeboard using α values between 0 and 1, increasing in increments of 0.01. Assuming hydrostatic equilibrium,
SIT is then computed as per Equation 2. The values for ρw, ρs, ρi and hs used are the same as those used in
Section 2.1.
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3. Methods and Results
3.1. Reassessing the Skill of Publicly Available Monthly Products

We begin by reflecting on the conventional metric for the skill of CryoSat‐2 derived sea ice thickness
products: This might be referred to as the ‘all‐months correlation analysis’. A typical version of this analysis is
shown in Figure 1a: The sea ice thickness in all winter months are scatter‐plotted against the coincident
sea ice thickness derived at upward‐looking sonar moorings; R2 and Root Mean Square Error (RMSE)
values are generally calculated from the plot. Versions of this plot and analysis appear in Laxon et al. (2013);
Kwok and Cunningham (2015); Guerreiro et al. (2017); Tilling et al. (2018); Jiang et al. (2023);
Bocquet et al. (2023). Climatologically high ice thickness values in April generally inhabit the top‐right hand
corner of these plots, and climatologically lower sea ice thickness values from October generally inhabit the
bottom left area. This consistent pattern results in generally high R2 correlation values in excess of 0.6.

To meaningfully assess the skill of publicly available monthly sea ice thickness products, we compare their
skill against that of their monthly climatologies in the all‐months correlation analysis. To do this we
download three publicly available monthly sea ice thickness products from the Goddard Space Flight Center
(GSFC; Kurtz et al., 2014), the Center for Polar Observation and Modeling (CPOM; Tilling et al., 2018) and
the Alfred Wegener Institute (AWI; Hendricks & Paul, 2023). We then construct a monthly climatology for
each product over the 2010–2021 winter season period (October–April): These contain no information about
whether the sea ice is thicker or thinner than usual in a given year. We characterize the skill of each
publicly available product and its derived climatology with the conventional ‘all‐months correlation
analysis’.

It transpires that the R2 value for each of the products is lower than that of its climatology, which contains no
representation of interannual variability. While R2 skills are generally high (>0.6), the skills of the climatologies,
which contain no information about a given year's radar data, are higher. This is because the seasonal cycle of sea
ice thickening at the moorings and in satellite products is highly predictable: April thicknesses are consistently
much higher than October thicknesses in both products, which produces high R2 values. We performed this
analysis by averaging CryoSat‐2 retrievals within 100 km of a given mooring. We observed the real products to
fare less well against their climatologies when the analysis was conducted with smaller radii (25 and 50 km;
Figures S2 and S3 in Supporting Information S1), with the exception of the AWI product at a 50 km radius, which
marginally outperforms its climatology.

When replicating the analysis in Figure 1 for a single month, we find markedly reduced R2 values, because the
products struggle to capture interannual variability (as opposed to the seasonal cycle). This impairment becomes
stronger over the winter. For instance, when the analysis is performed just for January, the R2 values for the
AWI, CPOM and GSFC products are reduced to 0.45, 0.21 and 0.31 respectively (Figure S4 in Supporting
Information S1). By April, these values are 0.22, 0.14 and 0.10 (Figure S5 in Supporting Information S1). A full
table of R2 and RMSE values is given in Table S1 in Supporting Information S1. While the R2 values are
reduced when only a single month is considered, the ‘real’ products do now significantly outperform their
climatologies. We suggest that the degree of this outperformance is a good metric of a product's skill. These
results show that neither the R2 or RMSE metrics in the conventional analysis (shown on the left of Figure 1) are
apt for capturing a product's skill in representing the sea ice thickness anomaly from what it typically is at that
time of year.

3.2. Optimizing Retracking Threshold and Assumed Radar Penetration

Before investigating the effect of adjusting the TFMRA thresholds away from those traditionally used, we briefly
summarize how this might be justified. We first note that the AWI threshold of 50% is entirely empirically
motivated, based on the bias‐minimization approach of Ricker et al. (2014) using α= 1. We suggest that the use of
a lower α value would have motivated a lower threshold. The CPOM threshold of 70% is not empirically
motivated by a similar sensitivity analysis, but instead by the theoretical impulse response of a SAR radar over a
surface with Gaussian roughness statistics (see Equation 2.4 and Figure 2.4 of Tilling, 2016). A substantial body
of research now indicates that sea ice surfaces are better described by a non‐symmetrical roughness distribution
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(e.g., Landy et al., 2020), the skewness of which affects the appropriate retracking threshold. We therefore
consider it justified to suggest empirical adjustments to the retracking threshold in order to minimize bias,
following the approach of Ricker et al. (2014).

Figure 1. Publicly available monthly SIT products compared to their climatologies, for grid cells within 100 km of at least one
of the BGEP moorings. The AOO moorings are exluded from this analysis, as none of the publicly available monthly SIT
products include data in the Fram Strait region. Left‐hand plots represent those traditionally presented in evaluation
exercises, right hand plots indicate the performance of each product's climatology. We note that none of the SIT products
outperform their climatologies at this radius.
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For each combination of α and TFMRA threshold, we thus calculate interannual skill statistics by producing a
climatology for each of our sea ice thickness products at each mooring. This yields the average sea ice thickness
for each winter month at each mooring. We then calculate the bias between the CryoSat‐2 SIT values and mooring
SIT values by considering the average difference in the values at each α and retracking threshold combination.
This is done for all moorings, and also separately for the AOO and BGEP clusters. This produces a single mean
bias value for each combination (Figure 2, left column).

We find the lowest mean bias values (≤0.8 m) along a line which runs between threshold values of 20%–50%,
depending on the α value (Figure 2, left column). The minimummean biases, shown by the black lines in Figure 2,
were found to be <0.17 m and <0.12 m for the AOO and BGEP moorings, respectively, although this may be
further reducible by varying the retracking thresholds at smaller increments. Tuning to the lowest mean bias in sea
ice thickness products is therefore possible at every tested value of assumed radar penetration, as any bias induced
by assuming partial penetration can be counter‐acted by choosing the most appropriate retracking threshold. This
makes clear that the best combination of threshold and assumed radar penetration values cannot be found with
analysis of bias alone. We should therefore also consider the CS2‐derived products' ability to represent the
interannual variability measured at the moorings.

To evaluate each combination's skill at capturing interannual variability, we create a list of anomalies from the
climatology for each winter month, for each mooring, over the 2010–2021 period. We then calculate the RMSE
between the CryoSat‐2‐based anomalies and the analogous anomalies calculated from the mooring‐derived sea
ice thickness data, again for all moorings but also for the separate clusters (Figure 2, right‐hand column).
Examples of the resulting scatterplots for individual combinations can be found in Figure S6 in Supporting In-
formation S1. We find the lowest RMSEs (0.35–0.4 m) at retracking thresholds of 70%–85% and 0.4 < α < 0.75
when combining the two mooring datasets (Figure 2f). Overall, for the separate and combined mooring datasets,
the optimal α is never 1, at any given threshold. We also calculate the linear correlation coefficient between the
CS2‐ and mooring‐derived SIT anomalies at each threshold and α combination, but find this metric inferior to the
RMSE as it does not capture the slope between the two datasets, such that the linear correlation coefficient and
slope have to be considered together to find the optimal combination. This analysis is shown in Section 1 in
Supporting Information S1, and results in similar optimal α values to the RMSE analysis (Figures S7 and S8 in
Supporting Information S1).

Our analysis of the two skill metrics (bias and interannual variability) reveals a tension between them. It appears
that, although there are many combinations of α and TFMRA value that effectively minimize bias, none of them
lie where retrievals are most skillful at capturing variability. This points to the presence of other, untested biases in
the retrieval chain which we will discuss in Section 4.

3.3. Ice Type Dependence of α

We note that there is a higher prevalence of FYI (69% and 80% of data points for BGEP and AOO, respectively)
than MYI at the moorings during the time period analyzed in this study. To determine whether there is an ice type
dependence in our calculated values, we calculate the optimal α and retracking threshold over each ice type
separately.

We find a clear difference in the optimal α and retracking threshold combinations over first‐year and MYI
(Figure 3). Over FYI, the lowest RMSEs are found at thresholds of 60%–85% when assuming 0.35 < α < 0.8,
compared to 50%–75% and 0.25 < α < 0.55 over MYI. Lower RMSEs were found over FYI than MYI, with
minimum mean biases (shown by the black lines in Figure 3) of <0.18 m and <0.13 m, respectively. This
illustrates the potential benefits of having ice type dependent TFMRA threshold and α values.

4. Discussion and Conclusions
4.1. Snow and Ice Property Dependence of α

It is striking that the interannual skill of our CryoSat‐2 retrievals is higher in general over MYI. Retrievals over
MYI are considerably more skillful for any value of α than for even the optimal α value for FYI. This might be
explained by the higher freeboards associated with MYI, which are more easily discerned by CryoSat‐2 (Ricker
et al., 2017).
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Figure 2. Mean bias (left) and RMSE (right) between anomalies of sea ice thickness derived from CS2 and at the moorings, at
incremental values of assumed radar penetration and retracking threshold. Top row shows AAO moorings (n = 63), middle
row shows BGEPmoorings (n= 216), bottom row shows all moorings (n= 279). Black line shows the threshold value where
bias is minimized for a given α value. The combination of assumed radar penetration and retracking threshold at which the
RMSE is minimized is shown in purple.
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Modeling studies have previously suggested that radar penetration is higher over MYI than FYI, due to a lack of
salty brine in the snow overlying MYI (Nandan et al., 2017, 2020). However, our results imply the opposite, with
lower optimal α values calculated over MYI. We suggest two possible reasons for this: The first may be that
volume scattering (as opposed to surface scattering) may become more significant in the deeper and potentially
coarser‐grained snowpacks associated with MYI, reducing backscatter from the ice surface while backscatter
from the snow surface remains the same. The second (and potentially much more significant) reason is increased
roughness (decreased specularity) associated with MYI, leading to fewer coherent returns from the ice surface
relative to the snow surface (De Rijke‐Thomas et al., 2023). When analyzing CryoSat‐2's SARin mode, De Rijke‐
Thomas et al. (2023, Figure 11) found a higher degree of coherence for FYI returns.

Figure 3. Mean bias (left) and RMSE (right) between anomalies of sea ice thickness derived from CS2 and at the moorings, at
incremental values of assumed radar penetration and retracking threshold. Top row shows FYI (n = 214), bottom row shows
MYI (n = 65). Black line shows the threshold value where bias is minimized for a given α value. The combination of
assumed radar penetration and retracking threshold at which the RMSE is minimized is shown in purple.
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The higher interannual skill at α <1 suggests that the real, mean height of backscattered power corresponds to
neither the mean ice surface nor the mean snow surface. However, Figure 3 also indicates that the degree to which
this is the case depends on the ice type.

We find a small sensitivity in the optimal α to the snow depth and bulk sea density used in the SIT calculation.
When increasing the snow depth used in our SIT calculations by 10%, we find a small decrease in the number of
α/threshold combinations in the lowest RMSE class (Figure S9 in Supporting Information S1). When decreasing
the snow depth by 10%, we find no noticeable difference in our results (Figure S10 in Supporting Information S1).
When using the output of SM‐LG forced by MERRA‐2, we find a consistent increase in RMSE of 0.01 m at the
BGEP moorings (Figure S11 in Supporting Information S1). At the AOO moorings, no clear change is
perceivable. When increasing our bulk sea ice densities by 1.3% (FYI) and 2.3% (MYI), as per Jutila, Hendricks,
et al. (2022), we find an increase in RMSE of 0.02–0.04 m at all of the moorings (Figure S12 in Supporting
Information S1). We find no change in the combination of assumed radar penetration and retracking threshold at
which the RMSE is minimized (shown in purple) when changing these parameters. For each of the snow depth
and sea ice bulk density values tested, the threshold/α combination at which the RMSE is minimized is at
thresholds of 70%–85% and 0.4 < α < 0.8, when the moorings are combined.

4.2. Optimal Combination of Threshold and α

Our results suggest an optimal retracking threshold of 70%–85% and 0.4 < α < 0.8 when investigating inter-
annual trends in sea ice thickness. However, there appears to be no ‘perfect’ combination of threshold and α: At
our optimal values for α, there is generally a bias of >2.5 m, and at our optimal thresholds the skill in representing
interannual variability is reduced or not statistically significant. This suggests the need for a compromise between
the two metrics, with the α and threshold values chosen as a combination where the two are both optimized as
much as possible. For example, our results show that at α >0.6, there is still some skill in representing interannual
variability at thresholds of 45%–55%, at which the bias is also minimal (<0.8 m).

Our results suggest sea ice thickness products could be optimized for their purpose: When aiming to analyze
interannual variability, the skill of the product should be maximized (dark green areas on the RMSE plots), with a
correction for any induced bias applied. When analyzing absolute values, the bias should be minimized (dark
green areas on the bias plots), with less attention paid to the skill of the product in representing interannual
variability.

Correction for bias in the SIT processing chain is common. For example, in the standard CPOM and AWI SIT
processing chains for CryoSat's SAR mode, fixed bias corrections of − 16.26 cm and − 4.7 cm are applied,
respectively (Hendricks et al., 2024; Tilling et al., 2018). In the CPOM processing chain, this correction is applied
to elevation estimates from leads and the sea ice surface, to account for the different methods used to retrack leads
(Giles et al., 2007) and floes (Tilling et al., 2018). In the AWI processing chain, the bias correction is applied to all
elevation estimates (Hendricks et al., 2024). We note that the purpose of these two corrections differs: In
the CPOM processing chain, it is applied to correct for a retracker bias between surfaces, whilst in the AWI
processing chain it is applied to correct for range biases between different radar modes. To consolidate our
optimal α and threshold results, a similar fixed threshold‐dependent bias correction could be calculated to align
the black minimal bias line shown on Figure 2e with the dark green RMSE area on Figure 2f. Over FYI and MYI,
a positive bias correction would need to be applied to the radar freeboards on the order of 20 cm, as errors in the
freeboard increase roughly ten‐fold in the freeboard‐to‐thickness conversion (Ricker et al., 2014). As bias
correction is already ubiquitous, we argue that the skills of SIT products could be effectively improved by first
tuning the α and retracking threshold to maximimise interannual variability, before applying bias correction to
retrieve the correct absolute SIT values.

Our results suggest that, over MYI, the use of a lower retracking threshold is more effective, assuming lower α
values, than over FYI. This is supported by Ricker et al. (2014), who suggested that in “scenarios where the main
scattering horizon is not penetrating the snow load completely, the usage of a low‐threshold retracker might be
reasonable”. Additionally, these results are consistent with the Lognormal Altimeter Retracker Model (LARM;
Landy et al., 2020), a physical retracker that decreases the percentage threshold with increasing large‐scale sea ice
roughness. Our results also support the possibility of seasonal/regional retrackers to maximize skill, as suggested
by Ricker et al. (2014).

Geophysical Research Letters 10.1029/2024GL111071

NAB ET AL. 9 of 12

 19448007, 2024, 21, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

L
111071 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [10/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4.3. Implications and Future Directions

The scarcity of independent in situ sea ice thickness data means that this analysis is currently limited to the
Beaufort Sea and Fram Strait. However, the magnitude of our derived α values is consistent with those of Nab
et al. (Figures 2, 2023), who calculated 0.4 < α < 0.8. However, we find a significant ice type dependence which
was not observed in the previous work.

To support the results of our optimization approach, we estimate the CryoSat‐2 ice freeboard error as a
function of Operation IceBridge (OIB) snow depth (Section 2 in Supporting Information S1), finding
0.4 < α < 0.8 in March–April (2011–2018) depending on the snow depth product used. These findings
suggest our α is representative of the mean α values found in regions outside the Beaufort Sea and Fram
Strait. The OIB‐derived α values' high dependence on the snow depth product used, in contrast to our main
analysis' small sensitivity to the snow depth product used (Section 4.1) shows the benefit of conducting this
analysis using the ULS moorings.

Our method of deriving optimal α/TFMRA‐combination values has several potential applications: The most
obvious is its use in future CryoSat‐2 radar freeboard‐to‐thickness processing chains to generate more skillful
retrievals. We also point out that this technique can be used for any satellite radar‐altimetry mission with a
sufficiently long timeseries such that a climatology can be generated. We therefore anticipate the use of this
technique on radar freeboards from the SARAL/AltiKa mission (Armitage & Ridout, 2015). Ultimately, our
results pave the way for ‘partial penetration’ sea ice thickness products from both Ku‐ and Ka‐band radar
altimetry missions.

The extraction of appropriate α values for CryoSat‐2 may also facilitate more skillful retrieval of snow depths
from dual‐frequency altimetry with either ICESat‐2 (Kacimi & Kwok, 2022) or SARAL/AltiKa (e.g., Guerreiro
et al., 2016). Reducing the α values without changing the TFMRA‐thresholds would increase the retrieved snow
depths and may address the apparent low bias in the dual‐frequency retrievals of Garnier et al. (2021). The
European Space Agency is currently planning a new, dual‐frequency altimetry mission for the cryosphere
(CRISTAL; M. Kern et al., 2020). This is anticipated to launch in early 2028, and aims to retrieve snow depths
through differential penetration of returned radar waves in the Ku‐ and Ka‐bands. Our findings of incomplete
penetration imply that a considerable calibration exercise (e.g., following Lawrence et al., 2018) will be required
to retrieve snow depths in line with observations.

Finally, we highlight that an effort is currently underway to inter‐compare a variety of sea ice thickness products
from satellites (SIN’XS; https://sinxs.noveltis.fr). We suggest that calculating sea ice thickness under the
assumption of partial‐penetration stands to improve the skill of these products at capturing interannual variability.
In addition, the rubric for assessment of a product's skill should be given careful consideration.

Data Availability Statement
All code required to reproduce this analysis can be found at Nab (2024). The BGEP mooring data can be found at
BGEP (2022). The AOO mooring data can be found at Sumata (2022). The ice type data can be found at Aaboe
et al. (2021). The SM‐LG snow depth and density data can be found at Liston et al. (2021). The pysiral code can be
found at Hendricks et al. (2024). The along‐track CS2 waveforms can be found at European Space
Agency (2019). The monthly sea ice thickness products from the GSFC, CPOM and AWI can be found at Kurtz
and Harbeck (2017), Tilling et al. (2018) and Hendricks and Paul (2023) respectively. The OIB Quick‐Look and
snow radar data can be found at Kurtz et al. (2016) and Paden et al. (2014) respectively. The pySnowRadar code
can be found at King et al. (2020).
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