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Abstract 

Background  We have recently constructed a DNA methylation classifier that can discriminate between pancreatic 
ductal adenocarcinoma (PAAD) liver metastasis and intrahepatic cholangiocarcinoma (iCCA) with high accuracy 
(PAAD-iCCA-Classifier). PAAD is one of the leading causes of cancer of unknown primary and diagnosis is based 
on exclusion of other malignancies. Therefore, our focus was to investigate whether the PAAD-iCCA-Classifier can be 
used to diagnose PAAD metastases from other sites.

Methods  For this scope, the anomaly detection filter of the initial classifier was expanded by 8 additional mimicker 
carcinomas, amounting to a total of 10 carcinomas in the negative class. We validated the updated version of the clas-
sifier on a validation set, which consisted of a biological cohort (n = 3579) and a technical one (n = 15). We then 
assessed the performance of the classifier on a test set, which included a positive control cohort of 16 PAAD metasta-
ses from various sites and a cohort of 124 negative control samples consisting of 96 breast cancer metastases from 18 
anatomical sites and 28 carcinoma metastases to the brain.

Results  The updated PAAD-iCCA-Classifier achieved 98.21% accuracy on the biological validation samples, and on the 
technical validation ones it reached 100%. The classifier also correctly identified 15/16 (93.75%) metastases of the pos-
itive control as PAAD, and on the negative control, it correctly classified 122/124 samples (98.39%) for a 97.85% 
overall accuracy on the test set. We used this DNA methylation dataset to explore the organotropism of PAAD 
metastases and observed that PAAD liver metastases are distinct from PAAD peritoneal carcinomatosis and pri-
mary PAAD, and are characterized by specific copy number alterations and hypomethylation of enhancers involved 
in epithelial-mesenchymal-transition.

Conclusions  The updated PAAD-iCCA-Classifier (available at https://​class​ifier.​tgc-​resea​rch.​de/) can accurately classify 
PAAD samples from various metastatic sites and it can serve as a diagnostic aid.
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Background
We have recently developed a DNA methylation classi-
fier that can solve a difficult surgical pathology problem: 
differentiating between primary intrahepatic cholan-
giocarcinoma (iCCA) and liver metastases of pancreatic 
ductal adenocarcinoma (PAAD)–PAAD-iCCA-Classifier 
[1]. The classification pipeline starts by separating colon 
and gastric adenocarcinoma from PAAD, iCCA, and 
normal bile samples and excludes these from the final 
classification process. Samples advancing past the first 
layer are labeled as either PAAD, iCCA, or normal bile 
tissue, receiving a probability score for each class. The 
third layer filters out samples with a low probability score 
(below 0.8 for carcinomas and 0.5 for normal bile). Sam-
ples clearing all three layers are classified as either PAAD, 
iCCA or normal bile, while those excluded at any stage 
are assigned a "No Match" class.

Most cancers of unknown primary (CUP) are adeno-
carcinomas [2], and in large autopsy series, the second 
most common identified origin of CUPs is PAAD (24%) 
[3]. No current immunohistochemical and molecular 
pathological diagnostic tool can confirm this diagno-
sis. PAAD are immunohistochemically characterized by 
pan-cytokeratin (CK) positivity and more specifically 
they may be CK7 and CK20 positive or CK7 positive and 
CK20 negative [4]. A complete loss of SMAD4 is helpful 
in the diagnostic process, but this alteration is present 
in 55% of PAAD and is not specific for this entity [5]. In 
recent years, several tools have been tested to predict the 
tissue of origin of CUPs [4], and only a 2000-gene micro-
array-based expression assay, which has not been con-
firmed for PAAD, has been approved by the FDA [6]. In 
addition, targeted DNA sequencing is limited and most 
PAADs are characterized by nonspecific driver muta-
tions, such as KRAS, TP53 and SMAD4 [7]. Due to the 
small size of the primary PAAD tumors, imaging may be 
of limited value in identifying the primary site [8]. Finally, 
several studies reported that a correct diagnosis of the 
primary tumor leads to improved management and prog-
nosis [9, 10].

In recent years, DNA methylation has been proposed as 
a powerful tool for predicting the tissue of origin [11, 12]. 
We believe that such classifiers need to be built, trained 
and validated on large datasets. We used 467 PAAD sam-
ples from several geographic regions to develop our clas-
sifier and showed that for PAAD liver metastases, we can 
correctly diagnose 94.28% of tumors, achieving superior 
results compared to immunohistochemistry-based classi-
fiers [1]. Therefore, the aim of this paper was to upgrade 
our PAAD-iCCA-Classifier to work in a new scenario—
the diagnosis of PAAD metastases from other metastatic 
sites. We also used this dataset to gain biological insight 
into the epigenetic program of metastasis by comparing 

differentially methylated probes (DMP) between the met-
astatic sites and the primary PAAD tumors.

Materials and methods
Patient sets and study design
We used the same reference samples as in our previous 
publication, containing 205 primary PAAD, 144 primary 
iCCA, and 50 normal bile duct samples from 7 different 
studies [1].

For developing the anomaly detection layer, we put 
together the anomaly detection training samples, which 
included 20% of the samples from 10 different carci-
nomas from TCGA. These 10 carcinomas formed the 
negative class and were selected because of their high 
metastatic potential and their prevalence as possible 
differential diagnoses of PAAD in a metastatic setting. 
Briefly, we included: breast invasive carcinoma (BRCA, n 
= 159), esophageal carcinoma (ESCA, n = 35), lung ade-
nocarcinoma (LUAD, n = 97), stomach adenocarcinoma 
(STAD, n = 79), liver hepatocellular carcinoma (LIHC, 
n = 78), colon adenocarcinoma (COAD, n = 63), rectum 
adenocarcinoma (READ, n = 21), uterine corpus endo-
metrial carcinoma (UCEC, n = 93), cervical squamous 
cell carcinoma and endocervical adenocarcinoma (CESC, 
n = 62), and prostate adenocarcinoma (PRAD, n = 100). 
The reference samples were added to the anomaly detec-
tion layer to represent the positive class.

The biological validation cohort (n = 3579) consisted 
of 252 primary PAAD, 151 primary iCCA, and 20 nor-
mal bile duct samples partially representing the vali-
dation set for the initial classifier development [1], to 
which we added 16 primary PAAD samples, 20 PAAD 
liver metastases (PAAD met.Liv.) and 36 primary iCCAs 
(GSE217384) that represented our previous testing 
cohort, 26 previously published formalin fixed paraffin 
embedded (FFPE) primary PAAD from Benhamida et al. 
[13] and the additional 80% of the samples from the 10 
mimicker carcinomas (n = 3120).

The technical validation cohort consisted of 6 not oth-
erwise specified lung cancers and 5 BRCA samples that 
were analyzed using the Illumina Infinium Methylatio-
nEPIC v2.0 BeadChip (EPICv2) (Illumina, CA, USA) 
array (GEO GSE222919), as well as 4 in-house PAAD 
metastases: peritoneal carcinomatosis (PAAD met.PC), 
lymph node metastasis (PAAD met.LN), spleen metastasis 
(PAAD met.Spleen) and PAAD met.Liv..

The performance of the classifier was tested on a test 
set. As positive control we used 16 confirmed or clinically 
highly suspected PAAD metastases: 11 PAAD met.PC, 2 
PAAD met.LN, 2 PAAD lung metastases (PAAD met.Lung), 
and 1 PAAD met.Liv..

The negative control, used to test the classifier’s perfor-
mance in excluding potential mimickers, contained:
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	(i)	 a unique set of 96 BRCA metastasis from 18 differ-
ent anatomical sites (adrenal gland n = 3, bone n = 
3, brain n = 12, chest n = 7, gastrointestinal tract 
(GI tract) n = 2, kidney n = 1, liver n = 24, lung n = 
11, lymph node n = 12, ovary n = 3, pancreas n = 
1, pericardium and pleura n = 3, peritoneum n = 2, 
skin n = 2, soft tissue n = 7, spleen n = 1, thyroid n 
= 1, uterus n = 1) from the AURORA US network 
resource. This set contained BRCA of all different 
molecular subtypes, samples were both FFPE and 
fresh frozen and were obtained both from autop-
sies and pathology specimens. Methylation was 
performed using the Illumina Infinium Methyla-
tionEPIC BeadChip (EPICv1) (Illumina, CA, USA) 
array [14].

	(ii)	 An external set of 13 carcinoma brain metastases 
(GSE249157): 1 BRCA, 7 LUAD, 4 COAD and 1 
PRAD. All samples were fresh frozen and the meth-
ylation was performed using the EPICv1 array.

	(iii)	 An internal set of 15 carcinoma brain metastases: 
BRCA, LUAD, STAD, UCEC, PRAD, mucinous 
ovarian cancer (MOC) and CUP. A detailed pres-
entation of these samples can be found in Addi-
tional file 1: Table S1.

The study was approved by the ethics commissions of 
Charité, Universitätsmedizin Berlin (EA1/079/22).

Tissue microarray construction and immunohistochemistry
For all positive control samples, for which material was 
available (n = 11), we constructed one tissue micro-
array (TMA) containing three 1.5 mm cores for each 
tumor. For the other samples (n = 5) that were too thin 
to be included into the TMA we performed whole slide 
staining. Next, the FFPE TMA and tumor blocks were 
cut into 2.5  μm sections. One section was used for 
hematoxylin and eosin (H&E) staining and ten others 
for p53, SMAD4, GATA6, Ki-67, CK7, CK20, Annexin 
1 (ANXA1), Annexin 10 (ANXA10), CD3 and CD20 
immunohistochemistry staining. Additionally, the PAAD 
met.Liv. samples from the biological validation set were 
stained for p53, SMAD4, GATA6, CK7, CK20, CD3 and 
CD20. Other immunohistochemistry (IHC) data for the 
PAAD met.Liv. from the biological validation samples 
were previously generated [1].

For the immunohistochemical staining, a BenchMark 
XT immunostainer (Ventana Medical Systems, Tucson, 
AZ) was used. For antigen retrieval, sections were incu-
bated in CC1 mild buffer (Ventana Medical Systems, 
Tucson, AZ) for 30 min at 100  °C, or were incubated in 
protease 1 for 8 min. The sections were stained with anti-
Ki-67 antibody (M7240, Dako, 1:50, CC1 mild buffer), 
anti-p53 (M7001, Dako, 1:50, CC1 buffer), anti-SMAD4 

(Ab40759, Abcam, 1:200, CC1 buffer), anti-GATA6 
(Q92908, R&D Systems, 1:100), anti-CK7 (M7018, Dako, 
1:1000, protease 1), anti-CK20 (M7019, Dako, 1:1000, 
protease 1), anti-Annexin A10 (PA5-52151, Invitrogen, 
1:2000), anti-Annexin I (610066, BD Biosciences, 1:5000), 
anti-CD3 (A045201-2, Dako, 1:100), and anti-CD8 
(M7103, Dako, 1:100) for 60  min at room temperature, 
and visualized using the avidin–biotin complex method 
and DAB. We stained the cell nuclei by additionally incu-
bating for 12  min with hematoxylin and bluing reagent 
(Ventana Medical Systems, Tucson, AZ). Histological 
images were acquired with the digital slide scanner PAN-
NORAMIC 1000 (3DHISTECH).

Histological analysis and immunohistochemistry scoring
The ANXA1/10 immunohistochemistry score was pro-
posed as a potential tool for detecting metastatic PAAD. 
For this purpose, we used the scoring and classification 
system proposed by Padden et  al. [15]. The intensity [0 
(none), 1 (weak), 2 (intermediate), or 3 (strong)] and per-
centage of positive tumor cells [0, 1 (≤ 5%), 2 (6–10%), 
3 (11–50%), or 4 (> 50%)] for each tumor was scored 
separately and the two scores were multiplied, resulting 
the immunoreactive score (IRS). The IRS thresholds pro-
posed by Padden et al. and validated by us in a previous 
paper [1] were used also in this study. Hence, an IRS of 5 
or higher for Annexin 1 and an IRS of 0.5 or higher for 
Annexin 10 was suggestive for PAAD. According to the 
previous studies, only one of the two markers needed to 
be equal or higher to the IRS cut-off.

For Ki-67 the percentage of positive tumor cells was 
estimated in representative hot spots. For p53 complete 
loss or intense nuclear staining were considered to be 
specific for a mutated pattern. For SMAD4 complete 
loss was considered to be specific for a mutated pattern. 
For CK7 and CK20 any degree of cytoplasmic positivity 
was scored as positive. GATA6 was scored as previously 
described [16]. Briefly, semiquantitative scoring from 0 
(negative) to 4 (intense nuclear) was performed. The sam-
ples with scores from 0 to 2 were considered GATA6 low, 
and the ones with score 3 and 4 were defined as GATA6 
high.

We considered an IHC pattern to be specific for PAAD 
if a tumor showed an ANXA1/10 score that supported 
the diagnosis of PAAD, and additionally SMAD4 loss 
and/or CK7 positivity. We considered an IHC pattern to 
be inconclusive if a tumor showed an ANXA1/10 score 
that did not support the diagnosis of PAAD, and the 
tumor showed both SMAD4 loss and CK7 expression, or 
if the tumor showed an ANXA1/10 score that supported 
the diagnosis of PAAD, and SMAD4 was expressed and 
CK7 was negative. We considered an IHC pattern to be 
unspecific if a tumor showed an ANXA1/10 score that 
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did not support the diagnosis of PAAD, and the tumor 
showed only SMAD4 loss or CK7 was expressed or none.

Organoids
Organoids were established from a primary tumor and 
matched metastases (peritoneal carcinomatosis and liver 
metastases) from surgical specimens in accordance with 
the ethics approval EA1/157/21. The tissue was cut into 
small pieces using scalpels and digested with 100 µg/ml 
DNAse (STEMCELL Technologies, Vancouver, Canada), 
125µg/ml Collagenase II (Sigma-Aldrich, Merck, Darm-
stadt, Germany), 1:2000 Rock-Inhibitor (Abmole Bio-
science, Houston, TX, USA) and 1:200 Amphotericin 
B (Sigma-Aldrich, Merck, Darmstadt, Germany). The 
specimens were then incubated for 2 to 3  h. Cells were 
filtered through a sterile 100µm filter. Red blood cell 
lysis (Miltenyi Biotec, Bergisch-Gladbach, Germany) 
was performed if necessary and cells were plated in Cul-
trex (R&D Systems, Minneapolis, MN, USA). Culture 
medium as described by Broutier et  al. [17] was added 
after solidification of domes. Amphotericin B was added 
for the first 7 days of culture to prevent fungal contami-
nation. The culture medium was exchanged every 3 to 4 
days and regularly checked for Mycoplasma contamina-
tion using the Mycoplasma detection kit (Applied bio-
logical Materials, Richmond, Canada). Organoids were 
split when they reached a size of 200  µm using TrypLE 
Express (Thermo Fisher Scientific, Waltham, MA, USA) 
and plated in a ratio of 1:2.

For histologic embedding, organoids were incubated 
PFA (4% in PBS) at 4  °C. After detachment they were 
transferred into prewarmed histogel (Thermo Fisher 
Scientific, Waltham, MA, USA). The organoids were 
then FFPE. The blocks were cut into 3 μm sections. The 
slides were stained with H&E using Tissue-Tek Prisma® 
Plus Automated Slide Stainer (SAKURA). For the 
immunohistochemical staining, BenchMark XT immu-
nostainer (Ventana Medical Systems, Tucson, AZ) was 
used. The sections were stained with anti-Ki-67, anti-CA 
19-9 (1116-NS-19-9, Dako, 1:500), anti-p53 antibody, 
and anti-GATA6 antibody. Finally, representative images 
were acquired with the digital slide scanner PANNO-
RAMIC 1000 (3DHISTECH).

DNA extraction
For all samples, tumor areas were marked and the tumor 
cell content was determined using a light microscope 
(Olympus, BX46). Based on this information we deter-
mined the number of necessary slides for DNA extrac-
tion. Depending on the tumor purity and tumor surface 
we used between 7 and 20, 5 μm thick slides per sample 
from which the tumor contour was scratched for DNA 
extraction (Additional file  1: Table S2). Semi-automated 

DNA extraction was performed according to the manu-
facturer’s instructions (Maxwell RSC FFPE Plus DNA 
Purification Kit, Custom, Promega). DNA quantities 
were measured using Qubit HS DNA assay (Thermo 
Fisher Scientific).

DNA methylation
Whenever possible we used 500 ng of DNA for the DNA 
methylation analysis as input. For samples where there 
was not sufficient material available, we decreased the 
DNA input to as low as 182.8 ng of DNA. We used the 
Illumina Infinium HD FFPE DNA Restore Kit (Illumina, 
CA, USA) for DNA restoration from FFPE samples. Fol-
lowing this step, the EpiTect Bisulfite Kit (Qiagen) was 
used for bisulfite conversion. For the organoid models 
we used 100 ng of DNA extracted from fresh tissue. The 
EPICv1 array was used according to the manufacturer’s 
instructions for the DNA methylation analysis of the pos-
itive and in-house negative control samples. The EPICv2 
array was used for the hybridization of the 4 PAAD 
metastases of the technical validation cohort.

Methylation array processing
Methylation data preprocessing was performed in R 
using various packages implemented in ChAMP [18]. 
Raw signals from all the IDAT files are loaded using the 
minfi package. In the training set, the EPICv1 and the 
Illumina Infinium HumanMethylation450 BeadChip 
(Illumina, CA, USA) samples were merged.

In the sample preprocessing for differential methyla-
tion analysis, several CpG sites were excluded: those on 
EPICv1 array not present in 450k arrays; any CpG sites 
with a detection p value greater than 0.01; low quality 
sites, defined as having fewer than 3 beads in at least 5% 
of the samples; all SNP-associated sites; multi-hit sites; 
and CpGs found on chromosomes X and Y.

While preprocessing samples for the classifier, no fil-
tering was necessary, as only the 2048 CpGs which serve 
as features are selected at the end of the preprocessing 
pipeline.

Finally, the beta values were extracted and normalized 
using FunNorm and BMIQ, which together enhanced the 
process. Each cohort was pre-processed independently.

t‑distributed stochastic neighbor embedding (t‑SNE)
To generate the t-SNE plots, beta values of CpG sites 
were broken down into eigenvectors, and then handled 
using the R package Rtsne [19] using 5000 iterations. The 
count of eigenvectors (k) and the perplexity (p) were cho-
sen individually for each plot to accommodate the vary-
ing number of samples.

The t-SNE in Fig. 2A and B were created using 30 eigen-
vectors (k = 30) and a perplexity of 15 (p = 15), while for 
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t-SNE in Additional File 1: Fig. S4, we used k = 50 and p 
= 20, due to the larger number of samples plotted. The 
2048 classifier features served as input for the eigenvec-
tor decomposition.

The t-SNE in Fig. 3A consists of 16 primary PAAD, 20 
liver and 12 peritoneum metastases unmatched samples. 
The top 2000 CpGs with the highest standard deviation 
among these samples were selected and decomposed in 
15 eigenvectors (k = 15) and then further reduced to two 
dimensions using t-SNE with a perplexity of 5 (p = 5).

Tumor purity estimation
We estimated the tumor purity using the InfiniumPurify 
R package [20]. For estimating the purity of iCCA and 
liver PAAD metastases samples, we selected “CHOL” as 
tumor type, and “PAAD” as tumor type for the primary 
PAAD samples and non-liver PAAD metastases.

Updated classification pipeline
The anomaly detection layer developed in the previous 
study could only differentiate between STAD, COAD 
tumors from PAAD, iCCA and normal bile tumors [1]. 
This layer has been replaced with an updated version that 
can separate PAAD, iCCA and normal bile tissue (posi-
tive class) from 10 different mimicker carcinomas (nega-
tive class).

The new model was built by training a neural network 
ensemble on the same 2048 CpGs identified in the previ-
ous study [1] and used by the classification layer. These 
are the top 2048 CpGs with the highest standard devia-
tion among the reference samples in the training set. The 
models were trained using the anomaly detection train-
ing dataset consisting of all the reference samples (n = 
399), which formed the positive class, and 20% of the 
samples of each of the 10 mimicker carcinomas, selected 
at random, forming the negative class (n = 787).

The model ensemble was built using the python library 
keras [21] using fourfold cross-validation, while python 
library optuna [22] was used to conduct hyperparam-
eter optimization. The ensemble consists of 4 neural 
networks, each network having 5 layers (search space 
between 1 and 9 layers) with 2048 neurons per layer. A 
learning rate of 0.0088, a dropout rate of 0.2 (search 
space: 0, 0.1, 0.15, 0.2, 0.25, 0.3), L1 regularization of 
0.00067 (search interval between 0 and 0.1), and 228 
epochs (search space between 20 and 300) were found to 
be the optimal hyperparameters.

The other segments of the pipelines remained as 
they were in the previous study [1]. The python library 
reComBat [23] is used to fit a regularized empirical 
Bayes model to reduce sample storage material induced 
batch effects. The neural network model in the classifi-
cation layer was developed in the previous study using 

python keras and optuna libraries [21, 22]. The optimal 
network was found to consist of 8 layers (search space 
1 and 10 layers) with a starting width of 256 neurons 
(search space 64, 128, 256, 512, 1024, 2048, 4096) for 
the first hidden layer, incrementally decreasing to 16 
neurons in the last hidden layer. It was trained with a 
learning rate of 0.00895 (search space between 0.0001 
and 0.01). Finally, a dropout rate of 0 (search space 0, 
0.1, 0.15, 0.2, 0.25, 0.3), L1 regularization of 0.00441 
(search space between 0 and 0.1), and 191 epochs 
(search space between 20 and 300) were found to per-
form optimally. To further increase the accuracy and 
confidence in the model’s output, a threshold of 0.8 
for the PAAD and iCCA classes and 0.5 for the normal 
bile were selected. Predictions which did not reach the 
threshold were put into the “No Match” class, together 
with the samples rejected by the anomaly detection 
layer described above.

The updated classification pipeline is therefore com-
posed of three parts: (i) the anomaly detection layer that 
singles out PAAD, iCCA, and normal bile tissue from 
other carcinomas; (ii) the classification layer capable of 
differentiating between PAAD, iCCA, and normal bile 
samples; and (iii) a threshold-based filtering layer that 
weeds out samples with low confidence predictions. The 
result can therefore belong to one of four classes: PAAD, 
iCCA, normal bile tissue, or “No Match”. The “No Match” 
class contains all the samples rejected by the anomaly 
detection layer and the samples that passed the anomaly 
detection layer but did not reach the level required by the 
threshold-based filtering layer.

Copy number analysis
We calculated the copy number profiles from DNA meth-
ylation array data using the conumee package, version: 
1.3.0. [24]. A set of 63 control samples derived from his-
tologically confirmed normal pancreas tissue were used 
as baseline reference. The evaluation of copy number 
alterations was carried out manually with consideration 
of the tumor cell content for the evaluation of chromo-
somal gains or losses. In general, changes were consid-
ered relevant if the intensity ratio of a segment deviated 
from the baseline by at least more than 0.15 [25]. In addi-
tion, we created summary copy number profiles for three 
different groups: primary PAAD (n = 16), PAAD met.PC 
(n = 11), and PAAD met.Liv. (n = 21). This analysis was 
done using an adaptation of the conumee script (pro-
vided by Dr. Damian Stichel, Neuropathology Heidel-
berg). For the comparison of specific gene deletions and 
amplifications between the three groups we performed 
Fisher’s exact test with Bonferroni correction for multiple 
testing.
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Differentially methylated CpG probes and pathway analysis
The differentially methylated analysis (DMA) followed 
by pathway analysis was conducted on 48 samples from 3 
groups, 16 primary PAAD tumors, 21 PAAD met.Liv. and 
11 PAAD met.PC. The R package limma as implemented 
in ChAMP was used. Limma deploys a linear model 
alongside an empirical Bayes approach to gauge the mean 
methylation disparity between groups, following which 
it computes adjusted p values to accommodate multiple 
testing. An adjusted p value below 0.01 and an absolute 
logFC value exceeding 0.2 were chosen as thresholds 
to select the differentially methylated CpGs between 
groups.

We used the Illumina Infinium HumanMethylationE-
PIC manifest to annotate promoter and enhancer CpGs. 
Genes associated with differentially methylated pro-
moter- and enhancer-associated CpGs between groups 
(primary PAAD, PAAD met.Liv., and PAAD met.PC) were 
analyzed for enriched pathways using Enrichr [26]. The 
Reactome (2022) Pathway Database was selected for the 
enrichment analysis. Volcano plots were created using 
VolcaNoseR [27]. From the top 10 enriched pathways 
we labeled the ones linked to epithelial and mesenchy-
mal phenotypes. In addition, we used a second method 
for pathway analysis, methylGSA [28]. We used the same 
genes associated with differentially methylated promoter- 
and enhancer-associated CpGs between the three groups 
for this analysis. The KEGG pathway database was 
selected for the tested gene sets.

Classifier website
The website is a Vue.js application built with Nuxt.js run-
ning on a Node.js platform. It utilizes client-side ren-
dering and leverages Google Firebase for secure user 
authentication. The application backend responsible for 
processing the raw data and running the prediction was 
developed in python using the FastAPI framework. The 
application is hosted on Google Cloud.

Statistical analysis
We performed statistical analyses and graphics using 
the GraphPad Prism 9 software. First, we determined 
whether the data followed a normal distribution, using 
the Shapiro–Wilk normality test. For the comparison 
between two groups, p‐values were determined with 
an unpaired t test if the data were normally distributed, 
while the nonparametric Mann–Whitney–Wilcoxon 
test was applied on data with a non‐normal distribution. 
For the comparison between multiple groups p‐values 
were determined using ordinary ANOVA test for nor-
mally distributed data, and the Kruskal–Wallis test for 
data with a non‐normal distribution. Correlations were 

performed using the Pearson correlation test. All tests 
were two‐sided, and a p value < 0.05 was considered sta-
tistically significant.

Results
Updated PAAD‑iCCA‑classifier performance
The original version of the PAAD-iCCA-Classifier was 
designed with an anomaly detection layer trained only 
on STAD and COAD [1]. Therefore, we first enlarged our 
anomaly detection layer with other carcinomas that could 
come into question in a PAAD metastatic setting by add-
ing 8 additional carcinomas from the TCGA methylation 
datasets: BRCA, ESCA (both adenocarcinomas and squa-
mous carcinomas), LUAD, LIHC, READ, UCEC, CESC, 
and PRAD, reaching a total of 787 samples (Fig.  1A). 
Next, we validated the classifier on a biological and on a 
technical validation sample group, and lastly tested it on 
extrahepatic PAAD metastases and various non-PAAD 
metastases as negative controls (Fig.  1A). Briefly, each 
sample entering the classification process needed to pass 
the anomaly detection layer in order to enter the classifi-
cation layer, and then needed to pass specific thresholds 
to be classified as PAAD, iCCA or normal bile duct tis-
sue. If excluded at any point, the sample would be labeled 
as “No Match” (Fig. 1B).

We first analyzed the anomaly detection layer on the 
biological validation cohort and observed that out of 
3120 mimicker carcinomas samples, only 12 (0.38%) 
obtained a positive result and passed the anomaly detec-
tion layer, most of them being LIHC (n = 5) (Addi-
tional file 1: Fig. S1A and Additional file 2: Table S3). As 
expected, nearly all the positive class samples passed this 
layer: 141/151 (93.38%) iCCAs, 20/20 (100%) normal bile 
ducts, and 276/288 (95.83%) PAADs. Overall the anom-
aly detection layer achieved an accuracy of 99.05% (Addi-
tional file 1: Fig. S1A).

We then introduced the biological validation sam-
ples to the classification layer capable of distinguishing 
between iCCA, normal bile duct, PAAD, and “No Match” 
and achieved an accuracy of 98.21%. We observed that 
one sample from the mimicker carcinomas group was 
classified as PAAD, more specifically a LUAD sam-
ple, and one iCCA sample was also classified as PAAD. 
On the other hand, seven LIHC samples and one STAD 
sample were misclassified as iCCA (Fig.  1C and Addi-
tional file 2: Table S3). Altogether, this data supports the 
hypothesis that the PAAD-iCCA-Classifier could be used 
to diagnose PAAD metastases from extrahepatic sites. 
In addition, we also verified the effect of tissue material 
(FFPE vs. fresh frozen) on the classifier performance, 
and as previously observed [1], we achieved a higher 
true class score on fresh frozen tissue compared to FFPE 
(Additional file 1: Fig. S1B).
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Fig. 1  Upgrading the classifier. A Overview of the patient datasets used to develop, validate and test the classifier. B Overview of the classification 
pipeline. C Confusion matrix with the classifier results after applying the anomaly detection filter and the specific thresholds for the biological 
validation samples (n = 3579)
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Recently, a new generation of DNA methylation array 
chips was released (Infinium human MethylationEPICv2 
BeadChip), and we considered that for the future imple-
mentation of the classifier, it is essential to also validate 
it on samples analyzed using these new chips (technical 
validation). For this purpose, we analyzed 6 lung cancers 
and 5 BRCA from GSE222919, and 4 in-house hybrid-
ized PAAD metastases. All BRCA and lung cancer sam-
ples failed to pass the anomaly detection filter and were 
classified as “No Match” by the classifier, while the PAAD 
met. samples were correctly labeled as PAAD (Additional 
file 1: Fig. S1C, D and Additional file 2: Table S3).

Off label use of the classifier
To confirm the PAAD origin of the positive control sam-
ples we performed a broad histological and IHC analysis 
of the 16 patients with highly suspected or confirmed 
PAAD metastases (Additional file 1: Table S4). Of these 
patients, 11 had peritoneal carcinomatosis (Additional 
file  1: Fig. S2A), two had lung metastases (Additional 
file 1: Fig. S2B), two had indirect abdominal lymph node 
metastases (truncus coeliacus) (Additional file  1: Fig. 
S2C), and one had liver metastases (Additional file 1: Fig. 
S2D). Twelve of the patients had synchronous metastases 
with four undergoing simultaneous pancreas resections 
with confirmed PAAD histology, while the other eight 
patients had an imagistic suspect infiltrative mass in the 
pancreas. Three other patients had metachronous metas-
tases with a previously resected primary PAAD. For the 
one remaining patient, we were not able to determine if 
the metastasis was synchronous or metachronous but an 
imagistic suspect infiltrative mass in the pancreas further 
supported the diagnosis of PAAD metastasis. Histologi-
cally, nine of the tumors were still forming glands, four 
of which had a conventional morphology, while the other 
five had a tubular-papillary morphology. Seven other 
tumors did not form glands and showed a composite 
morphology. Twelve of the tumors were moderately-dif-
ferentiated and the other four were poorly-differentiated 
(Additional file  1: Table  S5). Immunohistochemically, 
eight tumors showed a p53 mutated pattern, and only 
three showed a SMAD4 mutated pattern. We next per-
formed a semiquantitative assessment of GATA6 [16] 

and observed that 14 metastases had a high GATA6 
score (classical subtype) and the other two a low score 
(basal like subtype). The average proliferation rate of the 
metastatic tumors was 31%. Regarding the cytokeratin 
expression pattern, ten tumors were CK7+/CK20+, five 
were CK7+ /CK20−, one was CK7−/CK20+, and none 
was CK7−/CK20−. Using the ANXA1/10 scores [15], we 
observed that 13 metastases were above the thresholds, 
hence supporting the diagnosis of PAAD, while 3 were 
below the thresholds. This data together further supports 
the diagnosis of PAAD for our samples but also outlines 
the limits of IHC for the diagnosis of PAAD. Collectively, 
of the 16 patients, 12 show IHC that supports the diag-
nosis of PAAD, two have an inconclusive IHC pattern 
and two an unspecific IHC pattern (Additional file 1: Fig. 
S2E).

Next, we wanted to test if the PAAD-iCCA-Classifier 
can also be used to classify PAAD samples with extrahe-
patic localization. We visualized the 16 positive control 
samples together with the reference samples by perform-
ing a t-SNE analysis (n = 415 individual biological sam-
ples). As expected, 13/16 samples of the positive control 
were located close to the PAAD group, while the other 
3 grouped together with the normal bile duct samples 
(Fig.  2A). The localization close to PAAD and not with 
the PAAD samples of the reference cohort could mainly 
be attributed to the fact that the positive control sam-
ples were FFPE and hybridized with EPICv1, while the 
PAAD reference samples were fresh frozen and analyzed 
with the 450k array, implying some batch effects (Addi-
tional file  1: Fig. S3A-C). In order to test this hypothe-
sis, we performed a second t-SNE with additional PAAD 
FFPE samples from our previous publication. Indeed, 
we observed that both primary PAAD and PAAD liver 
metastases were localized closely to our PAAD positive 
control samples, suggesting local relationships (Fig. 2B). 
Also, in this second t-SNE analysis, the same three sam-
ples fell into the normal bile duct tissue group. These 
three samples were metastases from different organs: 
liver, lung, and lymph node (Additional file 1: Fig. S3D). 
We observed that one of the three samples showed an 
unspecific IHC profile for PAAD, while the other two 
showed a specific profile (Additional file  1: Fig. S3E). 

(See figure on next page.)
Fig. 2  Off-label use of the classifier. A The two-dimensional representation using the t-SNE method based on the DNA methylation profiles 
of the reference cohort used to develop the classifier, to which the PAAD metastasis positive control samples were added (n = 415). B The 
two-dimensional representation using the t-SNE method based on the DNA methylation profiles of the reference cohort to which we added all 
in-house PAAD samples and in-house iCCA samples from the biological validation and the positive control samples (n = 487). C Classifier results 
of the positive control samples. D Confusion matrix with the classifier results after applying the anomaly detection filter and the specific thresholds 
for the negative control samples (n = 124, from three independent cohorts: BRCA metastases from 18 anatomical sites, n = 96; brain metastases 
extern, n = 13; brain metastases intern, n = 15). E Classifier results of the organoid models
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Fig. 2  (See legend on previous page.)
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Regarding tumor purity, we observed that the three sam-
ples that are grouped with normal bile duct tissue have 
one of the lowest tumor purities of the positive control 
cohort (Additional file 1: Fig. S3F).

We also visualized our positive control samples against 
the training set. In the t-SNE plot, we observed that the 
positive control ones were positioned among the PAAD 
samples, indicating local relationships. Additionally, 
some were positioned near the normal bile duct tissue 
samples, suggesting local similarity in this context (Addi-
tional file 1: Fig. S4A). Generally, this data suggested that 
there may be a risk to classify some PAAD metastases as 
normal bile duct tissue but not as other carcinomas.

We went on to test the neural network classifier on the 
16 positive control samples and observed that 15/16 were 
correctly classified as PAAD (accuracy 93.75%). The only 
misclassified sample (sample #10) was as expected clas-
sified as normal bile duct tissue (Fig. 2C and Additional 
file 2: Table S3). Sample #10 is one of the two PAAD lung 
metastases, being located in the t-SNE analysis together 
with normal bile tissue samples. Additionally, this sample 
showed one of the lowest tumor purities.

The negative control permitted us to test the impact 
of different tissue types on our classifier. Of all samples, 
11/124 (91.13%) passed the anomaly detection layer 
(Additional file 1: Fig. S4B and Additional file 2: Table S3). 
This group consisted of 2 BRCA lymph node metastases, 
suggesting a negative impact of the immune infiltrate on 
the anomaly detection filter, 6 LUAD, 1 STAD and 1 CUP 
sample (probable of upper GI tract origin based on IHC), 
suggesting that the anomaly detection filter is impacted 
by samples originating from the embryonic foregut, and 
1 MOC sample, for which the anomaly detection was 
never trained.

Looking at the whole classification pipeline results, 
only two passed the threshold, one being labeled as 
normal bile duct and the other one as PAAD (98.39% 
accuracy, Fig. 2D and Additional file 2: Table S3). Inter-
estingly, the sample misclassified as normal bile was a 
BRCA lymph node metastasis, further suggesting that 
the immune infiltrate impacts the results of the classifier, 
while the sample classified as PAAD was the CUP sam-
ple from the internal brain metastases cohort, a sample 
for which the IHC suggests upper GI tract origin, and for 
which PAAD origin cannot be excluded.

In our previous work using indirect deconvolution 
methods [1] and now by analyzing our negative control 
samples, we observed that the results of the classifier are 
mainly influenced by the immune infiltrate. Therefore, 
for the positive control (n = 16) and for the metastatic 
samples from the biological validation cohort (n = 20 
PAAD met.Liv., Additional file 1: Table S6), we correlated 
the predicted score of the correct class with CD3+ and 

CD20+ immune infiltrate, tumor purity, and proliferation 
rate (Ki-67%). We observed a negative correlation for the 
more abundant CD3+ immune infiltrate (Pearson r = 
−0.1579, p = 0.39), but not for CD20+ (Pearson r = 0.099, 
p = 0.59) with the predicted score for the correct class 
(Additional file 1: Fig. S5A-B). On the other hand, a posi-
tive correlation was observed between the proliferation 
rate (Pearson r = 0.2377, p = 0.16), tumor purity (Pearson 
r = 0.2755, p = 0.1) and the predicted score of the correct 
class (Additional file  1: Fig. S5C-D). We then examined 
whether there was an association between the predicted 
score of the correct class and metastatic site (p = 0.97), 
morphology (p = 0.86), grade (p = 0.92), p53 status (p = 
0.14), SMAD4 status (p = 0.29), GATA6 score (p = 0.95), 
CK7/20 profile (p = 0.68), ANXA score (p = 0.93), and 
IHC score (p = 0.99). No significant differences were 
observed for any of the comparisons (Additional file  1: 
Fig. S5E-M).

Next, we wanted to check if the classifier could cor-
rectly label organoids from primary and metastatic 
tumors that grew in a completely unnatural environment. 
We performed DNA methylation on three pairs of orga-
noids from primary and metastatic PAAD (one PAAD 
met.PC and two PAAD met.Liv.). We confirmed that the 
organoids were from tumor tissue by analyzing the IHC 
and copy number alteration (CNA) profile (Additional 
file  1: Fig. S5N-O). Finally, both the primary and meta-
static PAAD organoids passed the anomaly detection 
and were classified with very high accuracy as PAAD by 
the classifier (scores ranging between 0.87 and 0.96 for 
PAAD) (Fig. 2E).

DNA methylation‑associated organotropism of pancreatic 
adenocarcinoma metastases
We wanted to use this unique dataset to gain a better 
understanding of the genome-wide DNA methylation 
differences that exist between PAAD samples that have 
metastasized to the liver (n = 21 PAAD met.Liv.), PAAD 
samples that have spread into the peritoneal cavity (n 
= 11 PAAD met.PC), and primary PAAD samples that 
showed no evidence of metastatic disease (n = 16, pri-
mary PAAD).

First, we performed CNA profiles using DNA meth-
ylation data for each of the three groups. We observed 
that most of the PAAD met.Liv. samples showed a similar 
profile, characterized by ample chromosomal deletions, 
including chr. 6, chr. 8p, chr. 9 and chr. 18q deletions 
(Additional file 1: Fig. S6A). On the other hand, primary 
PAAD and PAAD met.PC samples did not show a char-
acteristic CNA profile (Additional file 1: Fig. S6B and C). 
Regarding gene deletions we observed additional differ-
ences between the groups. For example, CDKN2A dele-
tion was significantly more common in PAAD met.PC, 
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with 100% of the samples showing deletions compared to 
63% in primary PAAD and 52% in PAAD met.Liv. (Fish-
er’s exact test with Bonferroni correction, adjusted p = 
0.027). SMAD4 deletion was a chromosomal alteration 
specific only to PAAD met.Liv. being deleted in 29% of 
this group and in none of the cases from the other groups 
(Fisher’s exact test with Bonferroni correction, adjusted p 
= 0.027).

Secondly, we visualized the samples using t-SNE, and 
observed that PAAD met.Liv. grouped separately, while 
most of the PAAD met.PC grouped with primary PAAD 
(Fig. 3A).

Thirdly, we performed DMA and observed more dif-
ferentially methylated CpGs between PAAD met.Liv. and 
PAAD met.PC or primary PAAD than between PAAD 
met.PC and primary PAAD (Fig. 3B).

Next, a more detailed analysis of enhancer- and 
promoter-associated differentially methylated CpGs 
revealed that these are significantly more hypomethyl-
ated in PAAD met.Liv. compared to PAAD met.PC or pri-
mary PAAD, whereas only enhancer-associated CpGs are 
hypomethylated in PAAD met.PC compared to primary 
PAAD (Fig.  3C-E). These CpGs were mapped to more 
enhancers than promoters, revealing 891 versus 248 
genes associated with hypermethylated enhancer-associ-
ated CpGs in primary versus liver metastases. For PAAD 
met.Liv. versus PAAD met.PC we obtained 356 genes with 
enhancer-associated hypermethylated CpGs in liver 
metastasis samples versus 948 genes with enhancer-
associated hypermethylated CpGs in PAAD met.PC. 
While for primary PAAD versus PAAD met.PC the dif-
ferences were less striking, as we found 76 genes with 
enhancer-associated hypermethylated CpGs in primary 
versus 28 in PAAD met.PC (Additional file  3: Table  S7). 
We then performed pathway enrichment analysis using 
these gene sets. Comparing PAAD met.Liv. to PAAD 
met.PC, we observed that hypomethylated enhancer 
genes (i.e. transcriptionally active genes) in PAAD met.Liv. 
were frequently associated with pathways involved in 
epithelial-mesenchymal transition (EMT), such as: 
Extracellular Matrix Organization R-HSA-1474244, Deg-
radation Of Extracellular Matrix R-HSA-1474228, Axon 
Guidance R-HSA-422475, and RHOG GTPase Cycle 

R-HSA-9013408 (Fig.  3F, Additional file  4: Table  S8). 
When comparing PAAD met.PC with primary PAAD only 
small differences were noticed, revealing the activation in 
PAAD met.PC of EMT pathways associated with Cell-cell 
Junction Organization R-HSA-421270, and Cell Junc-
tion Organization R-HSA-446728 (Fig. 3G). Finally, sev-
eral different EMT pathways were differentially activated 
in PAAD met.Liv. versus primary PAAD, with RHOG 
GTPase Cycle R-HSA-9013408, Extracellular Matrix 
Organization R-HSA-1474244, Axon Guidance R-HSA-
422475, and Laminin Interactions R-HSA-3000157 acti-
vated in PAAD met.Liv. (Fig.  3H). Lastly, we performed 
an additional methylation specific pathway analysis of 
promoter and enhancer associated differentially methyl-
ated CpG probes using methylGSA [28]. When perform-
ing the analysis for primary PAAD versus PAAD met.PC 
there was no pathway where we achieved a ratio between 
detected genes and total pathway genes of 10% (highest 
ratio = 3.79%). For the comparison PAAD met.Liv. versus 
PAAD met.PC we detected 8 pathways reaching a ratio of 
10% or higher and between the top hits we detected Axon 
guidance and Focal adhesion (Additional file 1: Fig. S7A). 
When performing the comparison for PAAD met.Liv. ver-
sus primary PAAD we detected 6 pathways reaching a 
ratio of 10% with the top two hits being the previously 
detected pathways Axon guidance and Focal adhesion 
(Additional file 1: Fig. S7B). This additional analysis sug-
gests that PAAD met.Liv. exhibits a distinct epigenetic 
profile compared to primary PAAD and PAAD met.PC, 
with potential involvement in the EMT process.

Overall, these data indicate that PAAD met.Liv. may 
present a more mesenchymal profile from a DNA meth-
ylation perspective, which could reflect characteristics of 
metastasis, while primary PAAD and PAAD met.PC show 
greater epigenetic similarity.

Discussion
Herein, we show that the PAAD-iCCA-Classifier can be 
used for the diagnosis of PAAD metastases with various 
locations. The main purpose of this improved version of 
the classifier was to increase the safety of the tool, as the 
probability of encountering other carcinomas as input 
increases. This can be addressed in two ways: by setting 

Fig. 3  DNA methylation-associated organotropism of pancreatic adenocarcinoma metastases. A The two-dimensional representation using 
the t-SNE method, based on the DNA methylation profiles of in-house primary PAAD (n = 16), PAAD met.PC (n = 11), and PAAD met.Liv. (n = 21). B 
Venn diagram comparing differentially methylated CpGs (log FC > 0.2, and adj. p value < 0.01) between primary PAAD and PAAD met.Liv. and PAAD 
met.PC Comparison of enhancer- (left) and promoter-associated (right) DNA methylation levels (beta values) in C PAAD met.Liv. versus PAAD met.PC, 
D PAAD met.PC versus primary PAAD, and E PAAD met.Liv. versus primary PAAD. Volcano plots showing significantly activated pathways of genes 
linked to enhancer-associated CpGs (hypomethylated) in F PAAD met.Liv. versus PAAD met.PC, G PAAD met.PC versus primary PAAD, and H PAAD 
met.Liv. versus primary PAAD

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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thresholds for final scores [29–31] or by creating an 
anomaly detection filter [12]. To increase the security of 
our classifier, we combined both methods.

Regarding the use of this classifier which is now avail-
able online (at https://​class​ifier.​tgc-​resea​rch.​de/), we 
would like to point out several particularities. First, since 
most PAAD metastases are small, have low tumor purity 
and a very desmoplastic background stroma, we observed 
that better results were obtained by scratching serial 
slides compared to punching out regions of interest.

Second, because of the vast possibilities of input 
entities and because there is no highly specific IHC 
for PAAD, the workflow for translating the results of 
PAAD-iCCA-Classifier into diagnosis will have some 
particularities (Fig. 4) compared to other classifiers [32]. 
We consider that in order for a tumor to be diagnosed 
as PAAD the sample should pass the anomaly detection 
filter, receive a prediction with a probability ≥ 0.8 from 
the neural network classifier, and additionally, the diag-
nosis should be supported by at least one of the follow-
ing: (a) clinical history of PAAD, (b) matching imaging 
data, (c) mutational data suggesting the diagnosis, or (d) 
IHC suggesting the diagnosis of PAAD: SMAD4 loss and 
or ANXA10 overexpression. For cases where the meth-
ylation score indicates PAAD, but no second criterion 
is reached, we recommend redoing imaging, mutational 
analysis and/or immunohistochemistry from a second 

FFPE block if possible. For the scenario where the his-
tory/imaging/mutational data or IHC suggests PAAD, 
but the classifier returns “No Match”, one should check 
the sample for immune infiltrate, low tumor purity, and 
proliferation and grading, and based on these consider 
redoing the DNA methylation analysis, if possible, from 
a second FFPE region/block. Indeed, in our initial pub-
lication we observed that a higher immune cell presence 
within the tumor was associated with lower confidence in 
the classifier’s prediction [1]. This finding came from per-
forming cell deconvolution on bulk methylation data to 
estimate the proportions of various cell types. Since this 
method did not distinguish between different immune 
cell types, in the current study we further analyzed the 
correlation between the number of positive CD3 and 
CD20 cells with the predicted class score. As CD3 cells 
were present in much larger amounts compared to CD20, 
a negative correlation was observed between classifier 
score and CD3, but not for CD20. Similarly, when look-
ing at the relation between the tumor proliferation rate 
(Ki-67) and the prediction score, we observed that a 
higher proliferation rate was associated with an increase 
in the classifier’s prediction confidence. Finally, we also 
checked if the classifier can correctly label organoids 
from primary and metastatic PAAD tumors. In this way 
we analyzed if an unnatural environment that could 
induce epigenetic changes, induced by factors such as cell 

Fig. 4  DNA methylation workflow for the PAAD-iCCA-Classifier. Proposed workflow for the PAAD-iCCA-Classifier for PAAD samples in a CUP-like 
scenario

https://classifier.tgc-research.de/
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culture media, could impact the results of the classifier. 
We observed that all organoids were correctly classified 
despite this unnatural environment.

For the situation in which the classifier output is “No 
Match” and no additional criteria suggests PAAD, one 
should consider other differential diagnoses and poten-
tially use the DNA methylation profile to plot the sample 
in other DNA methylation classifiers [12, 29–31].

Finally, we acknowledge that the PAAD-iCCA-Classi-
fier most probably cannot exclude ampullary adenocarci-
nomas or distal cholangiocellular carcinomas and would 
probably label these tumors as PAAD or iCCA. However, 
we do not perceive this as an important limitation mainly 
because these tumors are diagnosed and treated surgi-
cally very similar to PAAD.

This is not the first classifier designed to detect PAAD. 
Draškovič and Hauptman built a model capable of rec-
ognizing BRCA, LIHC, LUAD, PAAD, STAD, CCA, and 
COAD and READ, as well as liver metastases of PAAD 
and BRCA [33]. Their focus was on differentiating pri-
mary tumors, which they achieved with high precision 
(85.3–96.4% accuracy). When tested on 13 PAAD liver 
metastases, their classifier demonstrated an accuracy 
range of 86.8–94.5%. This shows that high diagnostic 
accuracies can be achieved through methylation profil-
ing. In another paper, Bai et al. determined a biomarker 
profile of methylation sites specific to primary liver can-
cer and its subtypes, LIHC and iCCA [34]. They built a 
random forest algorithm which achieved high accuracy 
in detecting primary liver cancer (97.3% sensitivity, 81% 
specificity) and in separating LIHC from iCCA (96.8% 
LIHC and 85.4% iCCA accuracy). These results are com-
parable to the high accuracy of our anomaly filter in 
distinguishing iCCA from LIHC. Another classifier rely-
ing on a random forest algorithm is the EPICUP. Built 
by Moran et  al. it was designed to identify the primary 
sites of CUP [35]. The classifier was trained on 38 tumor 
types and predicted the primary site of 188 out of 216 
(87%) patient-test-set cases, 14 (7%) of which were PAAD 
metastases. As it was designed for a broad spectrum of 
cancers, it only included 100 primary PAAD in its train-
ing set and 57 PAAD samples in the validation cohort, of 
which 9 were metastases.

Our classifier, developed on 205 primary PAAD sam-
ples and validated on 268, was tested on a larger cohort 
of PAAD metastases (n = 40) and includes a broader 
range of metastatic sites (n = 5) than previous stud-
ies. Additionally, our approach incorporates an anomaly 
detection filter, a threshold filter and a mandatory set 
of criteria that must be met before confirmation of the 
diagnosis as these are necessary steps in order to build a 
classifier that can be used as an aid in clinical practice. 
Finally, we developed a web tool to facilitate easy access 

to our classifier: https://​class​ifier.​tgc-​resea​rch.​de/. For 
future research and using the same strict criteria, we 
are planning to expand the classifier onto other types of 
adenocarcinomas.

In addition, we used this unique genome wide DNA 
methylation data to perform an exploratory analysis 
of the epigenetic program of primary un-metastasized 
PAAD, PAAD met.PC and PAAD met.Liv.. Our explora-
tory analysis suggests that PAAD met.Liv. differs from pri-
mary PAAD and PAAD met.PC, displaying a specific CNA 
profile and a general hypomethylation of enhancers and 
promoters. In contrast, primary PAAD and PAAD met.PC 
appear somewhat similar from an epigenetic standpoint. 
Our results align with recent in  vivo data showing that 
liver metastases of PAAD is accompanied by an impor-
tant enhancer reprogramming. Similar to our data the 
enhancer reprogramming leads to an activation of mes-
enchymal programs [36]. The already existing data on 
this topic used enhancer markers (H3K27ac) for reveal-
ing the mechanism of enhancer reprogramming by ana-
lyzing patient derived organoids [36], hence we bring a 
new perspective on this topic, showing that enhancer-
associated CpGs are hypomethylated in liver metasta-
ses. The observation that hematogenous metastases are 
different from peritoneal metastases (carcinomatosis) is 
not new and is confirmed both experimentally (PAAD 
met.PC cells have no increased capacity to spread hema-
togenous) [37, 38] and at the molecular level [39]. What 
was surprising to us was that PAAD met.PC was more 
similar to primary resectable PAAD than PAAD met.Liv.. 
One potential trivial explanation for this observation is 
that an important step of a peritoneal spread is that the 
tumor reaches the peritoneal surface being followed by 
spontaneous exfoliation of tumor cells [40]. Therefore, in 
the very small retroperitoneal region of the pancreas, the 
most important difference between a resectable PAAD 
and a PAAD with peritoneal spread can be as little as a 
few millimeters in size. Future studies focusing on other 
omics and the tumor microenvironment are needed to 
further confirm this observation. For example, single-cell 
RNA sequencing analysis of 11 PAAD patients recently 
demonstrated that a specific tumor microenvironment 
(TME) is responsible for liver metastasis [41].

Our study has several limitations that must be acknowl-
edged. First, our positive control cohort includes only 
16 metastatic PAAD samples. It should be noted that 
PAAD metastases are almost never resected and very lit-
tle material is available for research. In addition, for the 
exploratory mechanistic studies we added an additional 
20 PAAD met.Liv.. Second, for both the classifier analysis 
and the exploratory part, it would have been helpful to 
have matched samples, primary and metastatic tumor 
from the same patient. Third, this classifier is developed 

https://classifier.tgc-research.de/
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retrospectively and needs to be validated in a prospective 
clinical scenario.

Conclusion
We show that the PAAD-iCCA-Classifier can be used to 
diagnose PAAD samples with high accuracy regardless of 
the site of metastasis. Furthermore, exploratory mecha-
nistic data reveal that from an epigenetic perspective, 
PAAD met.Liv. have a profile characterized by specific 
CNA and hypomethylation of enhancers involved in the 
EMT process. This epigenetic program differs from that 
of primary PAAD and PAAD met.PC, which show a more 
similar DNA methylation profile.

Abbreviations
ANXA1	� Annexin 1
ANXA10	� Annexin 10
BRCA​	� Breast invasive carcinoma
CNA	� Copy number alteration
CESC	� Cervical squamous cell carcinoma and endocervical 

adenocarcinoma
CK	� Cytokeratin
CK20	� Cytokeratin 20
CK7	� Cytokeratin 7
COAD	� Colon adenocarcinoma
CUP	� Cancers of unknown primary
DMA	� Differentially methylated analysis
DMP	� Differentially methylated probes
EMT	� Epithelial-mesenchymal transition
ESCA	� Esophageal carcinoma
FFPE	� Formalin fixed paraffin embedded
GI	� Tract gastrointestinal tract
iCCA​	� Intrahepatic cholangiocarcinoma
IHC	� Immunohistochemistry
IRS	� Immunoreactive score
LIHC	� Liver hepatocellular carcinoma
LN	� Lymph node
LUAD	� Lung adenocarcinoma
PAAD	� Pancreatic ductal adenocarcinoma
PC	� Peritoneal carcinomatosis
PRAD	� Prostate adenocarcinoma
READ	� Rectum adenocarcinoma
STAD	� Stomach adenocarcinoma
t-SNE	� T-distributed stochastic neighbor embedding
TMA	� Tissue microarrays
TME	� Tumor microenvironment
UCEC	� Uterine corpus endometrial carcinoma

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13148-​024-​01768-x.

Supplementary Material 1: Figure S1. Upgrading the classifier. A Confusion 
matrix with the results of the anomaly detection layer for the biological 
validation samples (n = 3579). B Comparison of the probability score of 
the correct class between fresh frozen and FFPE tissue in the validation 
cohort. C Confusion matrix with the results of the anomaly detection layer 
for the technical validation samples (n = 15). D Confusion matrix with 
the classifier results of the technical validation samples - EPICv2 (n = 15). 
Figure S2. Characterization of the positive control samples. A Examples 
of H&E and IHC staining of peritoneal carcinomatosis from PAAD, B PAAD 
lung metastasis, C PAAD lymph node metastasis, and D PAAD liver metas-
tasis. E Overview of the patient characteristics. Figure S3. t-SNE analysis of 
the reference and positive control samples. The two-dimensional repre-
sentation of the reference cohort and positive control samples (n = 415) 

using the t-SNE method based on DNA methylation profiles. The color 
code of the samples represents: A the origin of the study set, B material 
type, C array type, D metastases origin, E IHC profile suggestive for, and F 
tumor purity. Figure S4. Off label use of the classifier. A The two-dimen-
sional plot representation using the t-SNE method, based on the DNA 
methylation profiles of the positive control group (n = 16) together with 
reference samples (n = 399) and anomaly detection samples (10 different 
carcinomas, n = 787). BRCA—breast invasive carcinoma, ESCA—esopha-
geal carcinoma, LUAD—lung adenocarcinoma, STAD–stomach adenocar-
cinoma, LIHC–liver hepatocellular carcinoma, COAD–colon adenocarci-
noma, READ–rectal adenocarcinoma, UCEC–uterine corpus endometrial 
carcinoma, CESC–cervix squamous cell carcinoma and endocervical 
adenocarcinoma, PRAD–prostate adenocarcinoma. B Confusion matrix 
with the results of the anomaly detection layer for the negative control 
samples (n = 124). Figure S5. Factors influencing the classifier results. Cor-
relation between the probability score of the correct class and the A CD3, 
B CD20 immune infiltrate, C Ki-67 proliferation rate, and D tumor purity. 
Comparison of the probability score of the correct class between E PAAD 
metastasis locations, F morphology, G tumor grade, H p53 expression 
pattern, I SMAD4 expression pattern, J GATA6 level, K CK7/20 expression 
profile, L ANXA1/10 score, and M IHC score. N Representative H&E staining 
and IHC characterization of a primary PAAD and matched PAAD met.PC 
organoid. O Copy number plot for primary PAAD organoid and for PAAD 
met.PC organoid model. The plots show the chromosomal alterations at 
the respective CpG sites, deletions are below and gains above the base-
line located at 0. Figure S6. DNA methylation-associated organotropism of 
pancreatic ductal adenocarcinoma metastases. A Summary copy number 
plot for PAAD met.Liv. (n = 21). B Summary copy number plot for primary 
PAAD (n = 16). C Summary copy number plot for PAAD met.PC (n = 11). 
The plots show the frequency of chromosomal alterations at the respec-
tive CpG sites, deletions are below and gains above the baseline located 
at 0. Additionally, 14 genes with known roles in PAAD are highlighted. 
Figure S7. Pathway analysis for differentially methylated probes of enhanc-
ers and promoters using methylGSA. A Pathways reaching an overlap of 
over 10% between discovered genes and pathway genes for comparing 
differentially methylated probes between PAAD met.Liv. and PAAD met.PC B 
Pathways reaching an overlap of over 10% between discovered genes and 
pathway genes for comparing differentially methylated probes between 
primary PAAD and PAAD met.Liv.. Purple marks pathways also discovered 
by using Enrichr. Table S1. Characteristics of the internal set of brain metas-
tases. Table S2. Tumor purity estimated by the pathologist and number of 
slides used for the DNA extraction. Table S4. Patient characteristics of the 
positive control samples. Table S5. Histological and immunohistochemical 
characteristics of the positive control samples. Table S6. Histological and 
immunohistochemical characteristics of the PAAD met.Liv. samples.

Supplementary Material 2: Table S3. Detailed overview of the binomial fil-
ter scores and neural network classification scores of all included samples 
(Excel Table).

Supplementary Material 3: Table S7. List of genes associated to differen-
tially methylated CpGs mapping to promoters and enhancers in pairwise 
comparison: PAAD primary versus PAAD met.Liv., PAAD met.Liv. versus PAAD 
met.PC, and PAAD primary versus PAAD met.PC, respectively (Excel Table).

Supplementary Material 4: Table S8. Top 10 pathways of gene sets of 
differentially methylated CpGs associated with promoters and enhancers 
in pairwise comparison: PAAD primary versus PAAD met.Liv., PAAD met.Liv. 
versus PAAD met.PC, and PAAD primary versus PAAD met.PC, respectively. 
Pathways associated with epithelial-mesenchymal transition (EMT) are 
marked in light red (Excel Table).

Acknowledgments
We acknowledge the technical assistance of Daniel Teichmann and Sandra 
Meier of the Institute for Neuropathology, Charité-Universitätsmedizin Berlin, 
and the technical assistance of Barbara Meyer-Bartell, Kerstin Witkowski, and 
the staff of the archive of the Institute of Pathology Charité-Universitätsmedi-
zin Berlin, in retrieving the samples. Dr. Calin is the Felix L. Haas Endowed Pro-
fessor in Basic Science. D. Capper is co-founder and shareholder of Heidelberg 
Epignostix GmbH.

https://doi.org/10.1186/s13148-024-01768-x
https://doi.org/10.1186/s13148-024-01768-x


Page 16 of 17Calina et al. Clinical Epigenetics          (2024) 16:156 

Author contributions
TGC and MPD conceived the study. TGC, EP, EG, JB, SS, JB, IK, TJ, BQC, JI, SR, 
BG, BS, GAC, ETT, CCMN, DH, EK, DC and MPD curated data. TGC, EP, EG, JB, SS, 
BQC, JI, SR, BG, BS, GAC, ETT, DH, EK, DC and MPD carried out formal analysis. 
DC and MPD acquired funding. TGC, EP, EG, IK, TJ, MB, CCMN, EK and MPD 
carried out investigation. TGC, EP, AP, EK, CCMN, DC and MPD contributed 
methodology. MPD administered the project. TGC, JB, SS, A.P., BQC, JI, SR, BG, 
BS, MB, GAC, ETT, UP, CCMN, DH, EK, DC and MPD provided resources. TGC, 
EP, AP, EK and MPD contributed software. MPD supervised the study. TGC and 
MPD validated the study. TGC, EP, EG, EK and MPD generated figures. TGC and 
MPD wrote the original draft of the manuscript. All authors reviewed and 
edited the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work was 
supported by the Berlin Institute of Health, Clinician Scientist Program (to 
M.P.D. and J.I.), by DKTK Berlin Young Investigator Grant 2022 (to M.P.D.) and 
by an Else Kröner-Fresenius Foundation First and Second Applications Grant 
2024_EKEA.77 (to M.P.D.).

Availability of data and materials
The in-house clinical dataset analyzed in this study is available from the Gene 
Expression Omnibus (GEO) repository under the following accession numbers: 
GSE252130 and GSE217384.

Declarations

Ethics approval and consent to participate
The study was approved by the ethics commissions of Charité, Universitäts-
medizin Berlin (EA1/079/22 and EA1/157/21).

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 TGC Ventures UG, Berlin, Germany. 2 Faculty of Physics, Babeș-Bolyai University, 
Cluj‑Napoca, Romania. 3 Department of Neuropathology, Charité – Univer-
sitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-
Universität zu Berlin, Berlin, Germany. 4 Berlin School of Integrative Oncology 
(BSIO), Charite – Universitätsmedizin Berlin (CVK), Berlin, Germany. 5 Institute 
of Pathology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie 
Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, 
Germany. 6 Department of Pathology and Laboratory Medicine, Memorial 
Sloan Kettering Cancer Center, New York, NY, USA. 7 German Cancer Consor-
tium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), 
Heidelberg, Germany. 8 State Key Laboratory of Oncology in South China, 
Department of Radiation Oncology, Collaborative Innovation Center of Cancer 
Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 
People’s Republic of China. 9 Guangdong Esophageal Cancer Research Insti-
tute, Guangzhou, Guangdong, People’s Republic of China. 10 Berlin Institute 
of Health, Berlin, Germany. 11 Institute of Pathology, Heidelberg University 
Hospital, Heidelberg, Germany. 12 Institute of Pathology and Neuropathol-
ogy, Hospital RKH Kliniken Ludwigsburg, Ludwigsburg, Germany. 13 Institute 
of Tissue Medicine and Pathology (ITMP), University Bern, Bern, Switzerland. 
14 Department of Surgical Oncology and Robotics, Krankenhaus Waldfriede, 
Lehrkrankenhaus der Charité, Berlin, Germany. 15 Department of Translational 
Molecular Pathology, The University of Texas MD Anderson Cancer Center, 
Houston, TX, USA. 16 The RNA Interference and Non-Coding RNA Center, The 
University of Texas MD Anderson Cancer Center, Houston, TX, USA. 17 Depart-
ment of Hematology, Oncology and Tumor Immunology, Charité – Univer-
sitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-
Universität zu Berlin, Berlin, Germany. 18 Department of Medical Biology, 
Faculty of Health Sciences, UiT The Artic University of Norway, Tromsø, Norway. 

Received: 14 March 2024   Accepted: 23 October 2024

References
	1.	 Dragomir MP, Calina TG, Perez E, Schallenberg S, Chen M, Albrecht T, et al. 

DNA methylation-based classifier differentiates intrahepatic pancreato-
biliary tumours. EBioMedicine. 2023;93:104657.

	2.	 Laprovitera N, Riefolo M, Ambrosini E, Klec C, Pichler M, Ferracin M. 
Cancer of unknown primary: challenges and progress in clinical manage-
ment. Cancers (Basel). 2021;13(3):451.

	3.	 Pentheroudakis G, Golfinopoulos V, Pavlidis N. Switching benchmarks in 
cancer of unknown primary: from autopsy to microarray. Eur J Cancer. 
2007;43(14):2026–36.

	4.	 Kato S, Alsafar A, Walavalkar V, Hainsworth J, Kurzrock R. Cancer of 
unknown primary in the molecular era. Trends Cancer. 2021;7(5):465–77.

	5.	 Tascilar M, Skinner HG, Rosty C, Sohn T, Wilentz RE, Offerhaus GJ, et al. The 
SMAD4 protein and prognosis of pancreatic ductal adenocarcinoma. Clin 
Cancer Res. 2001;7(12):4115–21.

	6.	 Bridgewater J, van Laar R, Floore A, Van TVL. Gene expression profiling 
may improve diagnosis in patients with carcinoma of unknown primary. 
Br J Cancer. 2008;98(8):1425–30.

	7.	 Cancer Genome Atlas Research Network. Integrated genomic 
characterization of pancreatic ductal adenocarcinoma. Cancer Cell. 
2017;32(2):185-203e13.

	8.	 Jerusalem G, Hustinx R, Beguin Y, Fillet G. PET scan imaging in oncology. 
Eur J Cancer. 2003;39(11):1525–34.

	9.	 Hemminki K, Bevier M, Hemminki A, Sundquist J. Survival in cancer of 
unknown primary site: population-based analysis by site and histology. 
Ann Oncol. 2012;23(7):1854–63.

	10.	 Abbruzzese JL, Abbruzzese MC, Lenzi R, Hess KR, Raber MN. Analysis of 
a diagnostic strategy for patients with suspected tumors of unknown 
origin. J Clin Oncol. 1995;13(8):2094–103.

	11.	 Moran S, Martinez-Cardus A, Boussios S, Esteller M. Precision medicine 
based on epigenomics: the paradigm of carcinoma of unknown primary. 
Nat Rev Clin Oncol. 2017;14(11):682–94.

	12.	 Jurmeister P, Gloss S, Roller R, Leitheiser M, Schmid S, Mochmann LH, et al. 
DNA methylation-based classification of sinonasal tumors. Nat Commun. 
2022;13(1):7148.

	13.	 Benhamida JK, Vyas M, Tanaka A, Wang L, Bahrami A, Ozcan K, et al. 
Pancreatoblastomas and mixed and pure acinar cell carcinomas share 
epigenetic signatures distinct from other neoplasms of the pancreas. 
Mod Pathol. 2022;35(7):956–61.

	14.	 Garcia-Recio S, Hinoue T, Wheeler GL, Kelly BJ, Garrido-Castro AC, Pascual 
T, et al. Multiomics in primary and metastatic breast tumors from the 
AURORA US network finds microenvironment and epigenetic drivers of 
metastasis. Nat Cancer. 2023;4(1):128–47.

	15.	 Padden J, Ahrens M, Kalsch J, Bertram S, Megger DA, Bracht T, et al. 
Immunohistochemical markers distinguishing cholangiocellular carci-
noma (CCC) from pancreatic ductal adenocarcinoma (PDAC) discovered 
by proteomic analysis of microdissected cells. Mol Cell Proteomics. 
2016;15(3):1072–82.

	16.	 Duan K, Jang GH, Grant RC, Wilson JM, Notta F, O’Kane GM, et al. The 
value of GATA6 immunohistochemistry and computer-assisted diagnosis 
to predict clinical outcome in advanced pancreatic cancer. Sci Rep. 
2021;11(1):14951.

	17.	 Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarro LM, 
Bradshaw CR, et al. Human primary liver cancer-derived organoid cultures 
for disease modeling and drug screening. Nat Med. 2017;23(12):1424–35.

	18.	 Tian Y, Morris TJ, Webster AP, Yang Z, Beck S, Feber A, et al. ChAMP: 
updated methylation analysis pipeline for Illumina BeadChips. Bioinfor-
matics. 2017;33(24):3982–4.

	19.	 Krijthe JH. Rtsne: T-distributed stochastic neighbor embedding using a 
Barnes-Hut implementation. 2015. Available from: https://​github.​com/​
jkrij​the/​Rtsne.

	20.	 Qin Y, Feng H, Chen M, Wu H, Zheng X. InfiniumPurify: An R package 
for estimating and accounting for tumor purity in cancer methylation 
research. Genes Dis. 2018;5(1):43–5.

	21.	 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. Tensor-
Flow: large-scale machine learning on heterogeneous systems. 2015. 
Available from: https://​www.​tenso​rflow.​org/​about/​bib

	22.	 Akiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: a next-generation 
hyperparameter optimization framework. In: KDD 2019 applied data sci-
ence track. 2019.

https://github.com/jkrijthe/Rtsne
https://github.com/jkrijthe/Rtsne
https://www.tensorflow.org/about/bib


Page 17 of 17Calina et al. Clinical Epigenetics          (2024) 16:156 	

	23.	 Adamer MF, Bruningk SC, Tejada-Arranz A, Estermann F, Basler M, 
Borgwardt K. reComBat: batch-effect removal in large-scale multi-source 
gene-expression data integration. Bioinform Adv. 2022;2(1):071.

	24.	 Hovestadt V, Zapatka M. Conumee: enhanced copy-number variation 
analysis using Illumina DNA methylation arrays. R package version 1.9.0. 
2017. Available from: http://​bioco​nduct​or.​org/​packa​ges/​conum​ee/.

	25.	 Capper D, Stichel D, Sahm F, Jones DTW, Schrimpf D, Sill M, et al. Practi-
cal implementation of DNA methylation and copy-number-based 
CNS tumor diagnostics: the Heidelberg experience. Acta Neuropathol. 
2018;136(2):181–210.

	26.	 Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, 
et al. Enrichr: a comprehensive gene set enrichment analysis web server 
2016 update. Nucleic Acids Res. 2016;44(W1):W90–7.

	27.	 Goedhart J, Luijsterburg MS. VolcaNoseR is a web app for creating, explor-
ing, labeling and sharing volcano plots. Sci Rep. 2020;10(1):20560.

	28.	 Ren X, Kuan PF. methylGSA: a Bioconductor package and Shiny app for 
DNA methylation data length bias adjustment in gene set testing. Bioin-
formatics. 2019;35(11):1958–9.

	29.	 Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA 
methylation-based classification of central nervous system tumours. 
Nature. 2018;555(7697):469–74.

	30.	 Jurmeister P, Bockmayr M, Seegerer P, Bockmayr T, Treue D, Montavon G, 
et al. Machine learning analysis of DNA methylation profiles distinguishes 
primary lung squamous cell carcinomas from head and neck metastases. 
Sci Transl Med. 2019;11(509):8513.

	31.	 Koelsche C, Schrimpf D, Stichel D, Sill M, Sahm F, Reuss DE, et al. Sarcoma 
classification by DNA methylation profiling. Nat Commun. 2021;12(1):498.

	32.	 Koelsche C, von Deimling A. Methylation classifiers: brain tumors, sarco-
mas, and what’s next. Genes Chromosom Cancer. 2022;61(6):346–55.

	33.	 Draskovic T, Hauptman N. Discovery of novel DNA methylation biomarker 
panels for the diagnosis and differentiation between common adenocar-
cinomas and their liver metastases. Sci Rep. 2024;14(1):3095.

	34.	 Bai Y, Tong W, Xie F, Zhu L, Wu H, Shi R, et al. DNA methylation biomarkers 
for diagnosis of primary liver cancer and distinguishing hepatocellular 
carcinoma from intrahepatic cholangiocarcinoma. Aging (Albany NY). 
2021;13(13):17592–606.

	35.	 Moran S, Martinez-Cardus A, Sayols S, Musulen E, Balana C, Estival-Gonza-
lez A, et al. Epigenetic profiling to classify cancer of unknown primary: a 
multicentre, retrospective analysis. Lancet Oncol. 2016;17(10):1386–95.

	36.	 Roe JS, Hwang CI, Somerville TDD, Milazzo JP, Lee EJ, Da Silva B, et al. 
Enhancer reprogramming promotes pancreatic cancer metastasis. Cell. 
2017;170(5):875-888e20.

	37.	 Nishimori H, Yasoshima T, Hata F, Denno R, Yanai Y, Nomura H, et al. A 
novel nude mouse model of liver metastasis and peritoneal dis-
semination from the same human pancreatic cancer line. Pancreas. 
2002;24(3):242–50.

	38.	 Nishimori H, Yasoshima T, Denno R, Shishido T, Hata F, Honma T, et al. 
A new peritoneal dissemination model established from the human 
pancreatic cancer cell line. Pancreas. 2001;22(4):348–56.

	39.	 Avula LR, Hagerty B, Alewine C. Molecular mediators of peritoneal metas-
tasis in pancreatic cancer. Cancer Metastasis Rev. 2020;39(4):1223–43.

	40.	 Pretzsch E, Bosch F, Neumann J, Ganschow P, Bazhin A, Guba M, 
et al. Mechanisms of metastasis in colorectal cancer and metastatic 
organotropism: hematogenous versus peritoneal spread. J Oncol. 
2019;2019:7407190.

	41.	 Zhang Z, Zhu XQ, Yang F, Lai NN, Zhu L, Cole K, et al. Single-cell mapping 
reveals several immune subsets associated with liver metastasis of pan-
creatic ductal adenocarcinoma. Med. 2023;4(10):728-743e7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://bioconductor.org/packages/conumee/

	DNA methylation classifier to diagnose pancreatic ductal adenocarcinoma metastases from different anatomical sites
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Materials and methods
	Patient sets and study design
	Tissue microarray construction and immunohistochemistry
	Histological analysis and immunohistochemistry scoring
	Organoids
	DNA extraction
	DNA methylation
	Methylation array processing
	t-distributed stochastic neighbor embedding (t-SNE)
	Tumor purity estimation
	Updated classification pipeline
	Copy number analysis
	Differentially methylated CpG probes and pathway analysis
	Classifier website
	Statistical analysis


	Results
	Updated PAAD-iCCA-classifier performance
	Off label use of the classifier
	DNA methylation-associated organotropism of pancreatic adenocarcinoma metastases

	Discussion
	Conclusion
	Acknowledgments
	References


