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"In any field find the strangest thing and then explore it"

-John Archibald Wheeler



“Simplicity is prerequisite for reliability.”
–Edsger Dijkstra

“A computer would deserve to be called intelligent if it could
deceive a human into believing that it was human.”

–Alan Turing



Abstract
Deep Neural networks has pushed the boundary for what is achievable in the
field of machine learning. At its core the Neural network maps data from an
input space, to a highly abstract latent space. The representations of these
latent mappings are critical for the neural networks ability to perform the task
it is given. However critical, our knowledge on these abstract representations in
the latent space is highly restricted. Thus finding new approaches and methods
to explore the latent space is needed.

As the function constricting the latent representation is unknown, we propose
some new network-science based tools for exploring the latent space. By explor-
ing the nearest neighbour graph of the samples in the latent representations,
we observe clusters consisting of samples from the same class, regions with
samples from a mix of classes, as well as hub regions. Through exploring the
latent representations robustness to perturbation as well as the similarity be-
tween different latent representations, we find that it is crucial to consider a
suitable number of neighbours for constructing the graph structure, as well
as choosing an appropriate similarity measure depending on the scope of the
desired property to observe. Further, this nearest neighbour representation
of the latent space can be aggregated to construct the class graph, a tool for
observing high level relational information on the classes embedding in the
latent space.

In addition, this thesis explores the iterative pruning method known as the
lottery ticket hypothesis [Frankle and Carbin, 2019]. Our exploration considers
the evolution of the latent space over the pruning iterations. Through this
exploration we discover that the latent representation of the sparse sub net-
work found by the ’winning ticket’ initialisation converges towards a distinct
representation in the latent space that is different from the unpruned model
it originated from. If so, this finding could indicate that the hypothesis of a
’winning ticket’ is inaccurate.
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1
Introduction
In the field of artificial intelligence and machine learning, the introduction
of deep neural networks has increased the models capabilities to solve a
wide variety of complex problems. Ever since the introduction of the LeNet
[Lecun et al., 1998] convolutional neural network architecture, convolutional
architectures has increased in size, depth and complexity. In the midst of these
deep architectures we find what is known as the latent space. This is where the
model has encoded and extracted information of the input data, and mapped
it to an abstract representation. Ideally these abstract representations capture
meaningful representation of the data, however, it is not possible to interpret
these encoded representations in a direct manner. As these encodings are re-
sults of the internal mapping of the network architecture, their dimensionality
depends on the structure of the network and the task it is solving. However,
for classification tasks it is common that the latent space where the encodings
reside lies in a higher dimensional space.

These abstract feature vectors residing in the latent space forms the core of
these deep neural networks, as these representations are critical for the models
ability to perform its task. However, these abstract latent space representations
are largely unknown. New approaches and tools are needed to understand the
properties of the latent space. In terms of classification tasks, a good encoding
in the latent space is crucial for both the accuracy, as well as the reliability of
a particular model.

1



2 chapter 1 introduction

Many deep learning models made for classification tasks such as the Resnet
architecture [He et al., 2016], maps the input data to a high dimensional latent
space. When working in such high dimensional spaces, a set of considerations
must be taken [Aggarwal et al., 2001] such as the selection of an appropriate
distance metric. The graph of nearest neighbours constructed by these high
dimensional embeddings could be a useful tool for exploring the latent space
as the graph approximates the topology of the space.

In modern deep learning many common practices such as network prun-
ing are performed without observing how this affects the latent represen-
tations of the network. The method known as the lottery ticket hypothesis
[Frankle and Carbin, 2019] shows that it is possible to find sparse sub networks
within a neural network, capable of retaining the performance of the network.
These sparse sub networks are found under the assumption of the existence
of a ’winning ticket’ initialisation. However, it has not been investigated how
such methods impact the encoded representations in the latent space.

In this thesis, the latent space of deep convolutional networks trained for image
classification tasks is explored through the use of network science methods.
Through exploring the nearest neighbour graph of the encoded representations
in the latent space, important geometrical aspects such as clusters and regions
of low and large concentration may be uncovered. Similarly exploring these
regions with respect to the samples class labels, may uncover the presence of
regions of uniform and mixed class labels.

Other aspects of the latent space such as the transferability of the geometrical
properties in the final stage of training, as well as between two independently
initialised models are investigated. In addition the encoded latent represen-
tations susceptibility to change through both perturbation as well as pruning
is investigated. The susceptibility is related to the robustness of the geomet-
rical aspects of the latent space as well as the models ability to retent its
performance.

Lastly, this thesis introduces a higher level exploration tool of the latent space
known as the class graph, constructed by considering the distances on the
nearest neighbours graph. This tool aims to capture relations between the class
mappings, to indicate which classes are present in similar regions of the latent
space.



3

Thesis outline

The contents of this thesis is structured into six chapters. Firstly the necessary
theory needed for the methods used in this thesis such as graph theory, the chal-
lenges of higher dimensional spaces, and the basic of Neural networks is covered
in the theory chapter (chapter 2). Following the theory, is the method chapter
(Chapter 3) outlining our motivation for considering the graph approach, as
well as stating the methods used for training and the datasets considered.
Chapter 4, namely the experiments chapter covers the experiments run during
the investigation of the latent space. Each section of the chapter covers a single
experiment. The results are presented in chapter 5. This chapter is sectioned
identically to the experiment chapter, such that each section states the results
for the given experiment in addition to a brief analysis of the implications.
Succeeding the results, is a discussion (chapter 6) where all individual results
are considered together to analyse the implications in full. The thesis ends
with chapter 7 where our work is concluded, and potential directions for future
work in the field is proposed.





2
Theory
This chapter presents important theory and concepts fundamental to the work
presented in the later chapters. Important topics such as the basics of set theory,
fundamental graph theory, and the potential challenges when working in a
higher dimensional space is described. Lastly the chapter presents the basic
concepts of the Neural network and describes the architecture used in the
work.

Some sections of the following theory part is greatly inspired by, or exactly
copied from the theory part in [Nørve, 2023], which is a project paper, written
prior to the master thesis.

2.1 Set theory

As much of the succeeding theory and concepts strongly builds on set theory,
such as graphs, and related network-science, a brief introduction to the set
theory is given, by stating the definition of a set, as well of the less strict
definition that constricts the multiset.

Set theory is a fundamental field in mathematics, revolving around collections
of grouped objects refereed to as a set. Each object in the group is often
refereed to as an element in the set. A set is a well known structure much used
in fields such as physics, and computer science. In addition there exists less

5



6 chapter 2 theory

strict definitions within set theory such as the definition for multisets. For the
thesis both definitions are needed and thus presented below:

2.1.1 Set

A set can be understood as a unordered collection of distinct objects grouped
into a whole [Fraenkel et al., 1973]. A set is denoted as𝐴 = {1, 2, 3} where𝐴 is
the name of the set, and 1, 2, 3 are its elements. Sets consists of distinct objects
such that the multiplicity of the elements are ignored, thus the following sets
are equal; {1, 2, 3, 1}, {1, 2, 3}. In addition a set is said to be an unordered
collection, such that the sets; {1, 2, 3} = {1, 3, 2} are equal.

2.1.2 Multiset

A multiset is defined as a collection of unordered objects grouped into a
whole where the objects are allowed to repeat [Blizard et al., 1989]. Thus
a multiset may contain several indistinguishable copies of a single element.
The occurrences of each element in the multiset is given by the elements
multiplicity. By this definition the following multisets; {1, 2, 3, 1}, {1, 2, 3} are
not equal

2.2 Graph theory

2.2.1 defintion

A graph is a mathematical structure consisting of a non empty set of vertices and
a set of edges. Each edge connects two vertices together which indicates that
there is relational information between the two connected vertices. Formally a
graph, denoted𝐺 is an object defined by a set of vertices 𝑉 , and a set of edges
𝐸; 𝐺 = (𝑉 , 𝐸) [Zhang and Chartrand, 2006]. The vertice set 𝑉 is finite, and
must be non empty however, the edge set 𝐸 may be empty. Each vertice 𝑣 ∈ 𝑉

can contain information given by a feature vector related to 𝑣 .

Edges

The edges of a graph can be represented in an undirected or directed manner.
Undirected edges allows for traversal both ways between two connected ver-
tices, whereas directed edges restricts traversal both ways. More formally an
undirected edge can be represented as an unordered set such that; {𝐴, 𝐵} =
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{𝐵,𝐴}, 𝐴, 𝐵 ∈ 𝑉 . A directional edge can be represented by an ordered set such
that; {𝐴, 𝐵} ≠ {𝐵,𝐴}, 𝐴, 𝐵 ∈ 𝑉 . For a directional graph the notation is slightly
changed to separate the incoming and outgoing edges; 𝐸𝑖𝑛 denotes the set
containing the incoming edges to a vertice 𝐴 while, 𝐸𝑜𝑢𝑡 denotes the set of
vertices outgoing from a vertice 𝐴.

Degree

The degree𝑑 of a vertice 𝑣 ∈ 𝑉 , is defined as the number of edges 𝑒 ∈ 𝐸 incident
on 𝑣 [Zhang and Chartrand, 2006]. When working with a directed graph the
degree is defined for both incoming and outgoing edges. The degree of a
vertice is denoted as 𝑑 (𝑣) for an undirected graph. The degree (connectivity) of
a vertice is strongly related to the density of the graph. Therefore the average
degree of the vertices in a graph is a common measure to understand the
density of the graph.

2.2.2 Temporal graph

The definition of a temporal graph can vary depending on the application. The
chosen definition is restricted as it does not account for deletion or insertion of
vertices. This is purposely done as the following definition only contains what
is needed for the experiments performed.

A graph𝐺 is said to be temporal if it’s properties changes over a time-parameter
𝑡 . The changes can occur in the topology of the graph, i.e changes in the set
of edges 𝐸, or by changes in the feature vectors of the vertices 𝑉 . A temporal
graph is denoted as 𝐺𝑡 where the subscript 𝑡 denotes the discrete observation
time of which the graph is observed. As The definition only allows for change
in the edge set 𝐺𝑡 can be written as 𝐺𝑡 = (𝑉 , 𝐸𝑡 ).

2.2.3 𝑘 nearest neighbour graph

The 𝑘 nearest neighbour graph is the resultant graph structure constructed by
the 𝑘 nearest neighbours method where each vertice has a minimum degree of
𝑘. Consider a set of𝑛 samples with a dimensionality of𝑑: 𝐷 = {𝒙𝑛}𝑁𝑛=1, 𝒙 ∈ R𝑑 .
The 𝑘 nearest neighbours method revolves around constructing edges between
the 𝑘 closest neighbours to each samples 𝑥 ∈ R𝑑 . This is repeated for all
samples 𝒙 ∈ 𝐷.

More formally [Eppstein et al., 1992] gives the following definition: Given the
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set of samples 𝐷 = {𝒙𝑛}𝑁𝑛=1 present in a R𝑑 dimensional space, the nearest
neighbour to a sample 𝒙𝑖 is 𝒙 𝑗 , 𝑖 ≠ 𝑗 , with a minimum distance to 𝒙𝑖 measured
by some distance metric. An edge 𝑒 (𝑣) = (𝒙𝑖, 𝒙 𝑗 ) is then constructed between
the samples. This is performed for each sample 𝒙𝑖 such that each sample has
an edge to it’s 𝑘 closest neighbouring samples.

As stated, all vertices in the resulting graph structure will have a minimum
degree of 𝑘. However, vertices can have a higher degree than 𝑘 if the topology
of the data in the R𝑑 dimensional space allows for it. Consider two samples
𝑎, 𝑏 ∈ 𝐷: In the case where 𝑎 is present in the set of 𝑘 vertices closest to 𝑏,
without 𝑏 being present in the set of the 𝑘 closest vertices to 𝑎, then 𝑎, 𝑏 will
have a higher degree than 𝑘 given an undirected construction of 𝐺 .

This concept is illustrated in figure 2.1, where two 𝑘 nearest neighbour graphs
are constructed from the set of samples 𝑋 = {𝐴, 𝐵,𝐶, 𝐷, 𝐸}, with a 𝑘 = 2. Note
that for the undirected graph (2.1a), it can be observed that the vertices 𝐵,𝐶
has a higher degree than 𝑘 = 2 for the reason described above, since vertice 𝐴
is closest to 𝐵,𝐶, however 𝐴 is not amongst the 2 closest to 𝐵 or 𝐶.

(a) Undirected 𝑘 nearest neighbours graph the
set of samples.

(b) Directed𝑘 nearest neighbours graph for the
set of samples.

Figure 2.1: Figures demonstrating an undirected and directed 𝑘 nearest neighbours
graph from the same sample set 𝑋 = {𝐴, 𝐵,𝐶, 𝐷, 𝐸}, with 𝑘 = 2.

2.2.4 Shortest path

A fundamental problem in graph theory is finding the shortest path between
two vertices 𝑣𝑖, 𝑣 𝑗 . The shortest path is commonly defined by a set𝐴 of vertices
which minimises the total edge distance 𝑑 between 𝑣𝑖, 𝑣 𝑗 .
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Dijkstra’s Shortest Path Algorithm [DIJKSTRA, 1959], is a widely used method
to find the shortest path between two vertices 𝑣𝑖, 𝑣 𝑗 . Given a weighted graph
𝐺 (𝑉 , 𝐸) where each edge 𝑒 ∈ 𝐸 is associated to a non negative distance
𝑑 (𝑒), representing the distance between the vertices connected by 𝑒. For an
unweighted graph the distance 𝑑 (𝑒) = 1 ∀ 𝑒 ∈ 𝐸. Then the shortest path can
be found with the following approach according to [DIJKSTRA, 1959]:

First three sets; 𝐴, 𝐵,𝐶 are defined to divide the vertices in during the algo-
rithm:

𝐴 Contains the vertices with the current minimum distance to 𝑣𝑖 . The
vertices are added to 𝐴 in the order of increasing minimum length to 𝑣𝑖 .

𝐵 Contains the vertices which are to be explored next, i.e the vertices that
are connected to at least one vertice in 𝐴 but not yet present in 𝐴.

𝐶 Contains the remaining vertices in 𝐺 .

Likewise three sets; I, II, III are defined to divide the edges during the algo-
rithm:

I Contains the edges present in the shortest paths between the vertices in
𝐴 and 𝑣𝑖 .

II Contains the branches that are next to be a part of I}. There is only one
edge in II, which leads to each vertice in 𝐵.

III Consists of the remaining edges in 𝐺 not yet considered, or rejected by
the solution.

The algorithm is initialised with all vertices present in set 𝐶, and all edges
present in set III. Vertice 𝑣𝑖 is transferred to set 𝐴. Consider the following two
step approach:

Step 1: Evaluate the edges 𝑒𝑟 connecting vertices 𝑣𝑟 in sets 𝐵 or𝐶 to the last
vertice transferred to 𝐴. If 𝑣𝑟 is present in 𝐵: Consider if traversing along 𝑒𝑟
results in a shorter path from 𝑣𝑖 to 𝑣𝑟 than the path using the corresponding
branch in II: 𝑒𝑟 is rejected if the path is longer than the established path in
II. However if the path using 𝑒𝑟 leads to a shorter path between 𝑣𝑖, 𝑣𝑟 then
reject the established path, and replace it with 𝑒𝑟 in set II. In the case that 𝑣𝑟
is present in 𝐶, then 𝑣𝑟 is transferred to 𝐵 and the edge 𝑒𝑟 is transferred to
II.
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step 2: Under the restriction that only one edge in II is considered with
the edges in I. Then all vertices in 𝐵 has a distance to 𝑣𝑖 . The vertice 𝑣𝑟 ∈ 𝐵

that has the shortest distance to 𝑣𝑖 is transferred to from 𝐵 to 𝐴, likewise the
corresponding edge 𝑒𝑟 ∈ II is transferred from II to I.

The above two step algorithm is repeated until the vertice 𝑣 𝑗 is transferred
to 𝐴. 𝐴 then contains the vertices present on the shortest path from 𝑣𝑖 to 𝑣𝑘 ,
similarly I contains the edges defining the shortest path. When the set 𝐴 is
found, then the shortest path distance can be computed as:

min𝑑 (𝑣𝑖, 𝑣 𝑗 ) =
|𝐴 |−1∑︁
𝑛=1

𝑑 (𝐴𝑛, 𝐴𝑛+1) (2.1)

Diameter The diameter of a graph 𝐺 is defined as the number of vertices
in the longest shortest path present in 𝐺 .

2.2.5 Clustering in graphs

Clusters is a partition of a set where there is a high similarity between the
items in the partition [Meidiana et al., 2019]. Finding the vertices that forms a
clusterwithin a graph is often desirable as it can give valuable information about
the graph topology. There are several methods for measuring, and detecting
clusters in a graph, such as the clustering coefficient [Latapy, 2008] and the
Louvain comunity detection method [Blondel et al., 2008].

Clustering coefficient

For a graph𝐺 = {𝑉 , 𝐸}, the clustering coefficient for a vertice 𝑣 with a minimum
degree of 2 is defined as the probability that any two random neighbours of 𝑣
is connected [Latapy, 2008]. If two neighbours of 𝑣 , denoted 𝑏, 𝑐 is connected,
then {𝑎, 𝑏, 𝑐} forms a triangle, the clustering coefficient is found as the number
of triangles that includes 𝑣 divided by the degree of 𝑣; 𝑑 (𝑣).

The clustering coefficient is often used for describing an entire graph, and is
then found as the average clustering coefficient for all vertices 𝑣 ∈ 𝑉 .

Louvain community detection

When analysing graphs, the identification of isolated groups of vertices is often
of interest. These isolated vertices forms a cluster, or community that is weakly
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connected to other clusters. The Louvain clusteringmethod [Blondel et al., 2008]
finds the communities by partitioning the cluster such that a modularity func-
tion 𝑄 is maximised. 𝑄 can be defined given a Graph 𝐺 = (𝑉 , 𝐸). Let𝑚 = |𝑉 |
be the number of vertices in𝐺 , for vertices 𝑖, 𝑗 ∈ 𝑉 let 𝑘𝑖, 𝑘 𝑗 denote the degree
of 𝑖, 𝑗 and 𝐴𝑖 𝑗 denote the connectivity between 𝑖, 𝑗 then:

𝑄 =
1
2𝑚

∑︁
𝑖, 𝑗

[
𝐴𝑖 𝑗 −

𝑘𝑖𝑘 𝑗

2𝑚

]
𝛿 (𝑐𝑖, 𝑐 𝑗 ), 𝛿 (𝑐𝑖, 𝑐 𝑗 ) =

{
1, 𝑐𝑖 = 𝑐 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2.2)

In equation 2.2 𝑐𝑖, 𝑐 𝑗 denotes the community labels assigned to vertices 𝑖, 𝑗 .
The community labels 𝑐 are found by iteratively performing a two phase
process:

1. Modularity optimisation phase

• Assign a unique community label 𝑐𝑖 to each vertice 𝑖.

• Iteratively assign vertices to the neighbouring community that maximises
the increase in 𝑄 .

• Run until max𝑄 is reached.

2. Community aggregation phase
Construct a higher level network by aggregating the vertices in each commu-
nity to a single vertice in the new network. The edges in the new network
represents the total weights between the communities found in the modularity
optimisation phase.

The two phases are run iteratively until no further improvement in 𝑄 is found.
As a result of this iterative method the Louvain method dynamically assigns the
number of clusters in the network such that𝑄 is maximised. One disadvantage
of the Louvain method is the greedy process performed in step 1. Thus it is not
guaranteed to find the global optimum.

2.2.6 Graph comparison methods

Graphs can be compared on several scales, global metrics can be computed,
such as the number of equal edges. Graphs can also be compared at a vertice,
or edge level giving a measure of local similarities.
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Jaccard similarity

The Jaccard similarity, or Jaccard index is a method that defines a similarity
score 𝐽 between two sets 𝐴 and 𝐵. The measure 𝐽 is computed as the ratio
between the intersection and union of the two sets [TT, 1958]:

𝐽 (𝐴, 𝐵) = |𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 | (2.3)

𝐽 then becomes a value in the interval [0, 1] where a higher value corresponds
to a higher similarity between sets 𝐴, 𝐵. By the definition this measure is
symmetric such that 𝐽 (𝐴, 𝐵) = 𝐽 (𝐵,𝐴).

The Jaccard similarity is not a graph specific measure, however can be used
on graphs by comparing the set of neighbouring edges for two vertices 𝑣1, 𝑣2.
Observe vertice 𝐵,𝐶 in figure 2.1a. 𝐵’s connected to the vertices 𝑆𝐵 = {𝐴,𝐶, 𝐷},
and 𝐶 ’s connected to vertices {𝐴, 𝐵, 𝐸}, The Jaccard similarity between 𝐴,𝐶

can then be found as:

𝐽 (𝐵,𝐶) = 2
6
=

1
3

Graph average Jaccard similarity

To construct a measure for global similarity between two graphs consisting of
the same set of vertices, the average Jaccard similarity can be used. Let 𝐸 (𝑣)
denote the set of edges connected to vertice 𝑣 , then the graph average Jaccard
similarity between two graphs 𝐺𝐴 = (𝑉𝐴, 𝐸𝐴),𝐺𝐵 = (𝑉𝐵, 𝐸𝐵) can be defined
as:

𝐽𝑎𝑣𝑔 (𝐺𝐴,𝐺𝐵) =
∑

𝑛∈𝑉𝐴 𝐽 (𝐸𝐴 (𝑛), 𝐸𝐵 (𝑛))
|𝑉𝐴 |

, 𝑉𝐴 = 𝑉𝐵 (2.4)

Class neighbourhood similarity

The class neighbourhood similarity measure is proposed as a less strict measure
of similarity between pairwise equal vertices in a temporal graph. Consider
two graphs with the same set of vertices 𝑉 ; 𝐺𝐴 = (𝑉 , 𝐸𝐴), 𝐺𝐵 = (𝑉 , 𝐸𝐵). Each
vertice 𝑣𝑖 ∈ 𝑉 has a corresponding discrete label 𝑦𝑖 ∈ N.
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Consider a vertice 𝑣𝑖 ∈ 𝑉 , and let 𝑆𝐴 be the set of connected vertices to 𝑣𝑖 in𝐺𝐴.
Similarly let 𝑆𝐵 be the neighbours of 𝑣𝑖 in 𝐺𝐵. Then The following multisets,
𝑌𝐴, 𝑌𝐵 can be constructed with the class property for each vertice in 𝑆𝐴, 𝑆𝐵:
𝑌𝐴 = {𝑦𝑖 | 𝑣𝑖 ∈ 𝑆𝐴}, 𝑌𝐵 = {𝑦𝑖 | 𝑣𝑖 ∈ 𝑆𝐵}. The class neighbourhood similarity
(CNS) between two graphs can be defined:

𝐶𝑁𝑆 (𝐺𝐴,𝐺𝐵) =
∑︁
𝑣∈𝑉

|𝑌𝐴 ∩ 𝑌𝐵 |
|𝑌𝐴 |

(2.5)

The class neighbourhood similarity evaluates the to a value between [0, 1], de-
scribing the similarity in the neighbourhoods with respect to the class property
of the neighbouring vertices. It should be noted that the metric is non symmet-
ric as it is divided by the length of set 𝑌𝐴 and does not account for the change
in set length between 𝑌𝐴, 𝑌𝐵 . Thus 𝐶𝑁𝑆 (𝐺𝐴,𝐺𝐵) ≠ 𝐶𝑁𝑆 (𝐺𝐵,𝐺𝐴).

(a) 𝐺𝐴 (b) 𝐺𝐵

Figure 2.2: Two undirected graphs 𝐺𝐴, 𝐺𝐵 . The colour of each vertice corresponds to
the class property 𝑦𝑖 of the vertice.

Consider the undirected graphs 𝐺𝐴,𝐺𝐵 in figure 2.2, the class neighbourhood
similarity is specified to be calculated between two graphs, however the ex-
ample will show the similarity for only one vertice; 𝐵. In graph 𝐺𝐴, vertice 𝐵
has the following multiset 𝑌𝐴 = {𝑟𝑒𝑑, 𝑟𝑒𝑑, 𝑝𝑢𝑟𝑝𝑙𝑒}, likewise for 𝐺𝐵, vertice 𝐵
has the multiset 𝑌𝐵 = {𝑟𝑒𝑑, 𝑟𝑒𝑑, 𝑝𝑢𝑟𝑝𝑙𝑒}. the class neighbourhood similarity is
then found to be:

|{𝑟𝑒𝑑, 𝑟𝑒𝑑, 𝑝𝑢𝑟𝑝𝑙𝑒} ∩ {𝑟𝑒𝑑, 𝑟𝑒𝑑, 𝑝𝑢𝑟𝑝𝑙𝑒}|
|𝑌𝐴 |

=
3
3
= 1 (2.6)
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In terms of class the neighbourhood properties, the neighbourhood of vertice
𝐵 is the same. However if the same comparison was made with the Jaccard
similarity; then vertice 𝐵 would get a Similarity of 𝐽 = 0.5, as it measures
the similarities with respect to exact neighbours and not the neighbour prop-
erty.

2.3 The curse of high dimensionality

The curse of high dimensionality is a problem that arises when working with
high dimensional data. For each additional feature there is an exponential
increase in the unit volume of that space. Let 5 samples be evenly spaced on
a unit line R1, observe that for a unit area in R2 25 is required to span the
area with equal density to the R1 space. This exponential increase in the unit
volume continues as the space R𝑑 increases. This characteristic makes higher
dimensional spaces harder to work with. As a consequence, some requirements
not present in the lower dimensional spaces needs to be met.

As discussed in [Aggarwal et al., 2001], it is important to choose an appropriate
distance measure when working in higher dimensional spaces. They show this
by observing the distance between the maximum and minimum distance from
the origo for arbitrary data. Given some data with 𝑁 ∈ R𝑑 samples and an
𝐿𝑘 norm, let 𝐷𝑚𝑎𝑥𝑘

𝑑
be the furthest distance from the origo for the 𝑁 points.

Similarly let 𝐷𝑚𝑖𝑛𝑘
𝑑
be the closest distance to the origo for all 𝑁 points it is

shown that:

𝐶𝑘 ≤ lim
𝑑→∞

𝐸

[
𝐷𝑚𝑎𝑥𝑘

𝑑
− 𝐷𝑚𝑖𝑛𝑘

𝑑

𝑑1/𝑘−1/2

]
≤ (𝑛 − 1) ·𝐶𝑘 (2.7)

In equation 2.7 𝑛 denotes 𝑁 samples drawn from an arbitrary distribution, and
𝐶𝑘 is a constant dependent on 𝑘 present such that the data can be viewed
as drawn from an arbitrary distribution. The equation shows that the relative
distance between the maximum and minimum distance 𝐷𝑚𝑎𝑥𝑘

𝑑
− 𝐷𝑚𝑖𝑛𝑘

𝑑
de-

pends on the denominator𝑑1/𝑘−1/2. As the number of dimensions𝑑 approaches
infinity, there is three outcomes depending on the chosen norm 𝑘. Observe
that when 𝑘 > 3 the denominator converges to zero. For 𝑘 = 2 the expression
approaches a nonzero boundary value, however for the manhattan norm, 𝑘 = 1
the expression diverges to infinity.

From the arguments above it is clear that the 𝐿𝑘 norms where 𝑘 > 3 performs
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poorly in higher dimensional spaces. For the two remaining norms, 𝐿1 and 𝐿2
it can be observed that the 𝐿1 manhattan norm | |𝒙 | | = ∑𝑛

𝑖=1 |𝑥𝑖 | should be
favoured when working in higher dimensional spaces when considering that
the relative𝑚𝑎𝑥 −𝑚𝑖𝑛 distance remains unbounded.

2.4 Neural networks

Neural networks has become a fundamental part of modern deep learning
[Alpaydin, 2020]. They consist of an input layer, intermediate hidden layers,
and an output layer. Each layer is commonly followed by a non linear function,
such that the network can learn non linear patterns in the data. Each layer
in the network has weights associated to it that are applied on the data. The
weights are often called the parameters of the models. These parameters are
the parts of the network that is optimised during the training of the model.
The structure, of the parameters, and how they are applied on the input data
depends on the layer archetype.

The neural networks capability to discover complex patterns in data, and
leverage that to create complex decision boundaries is unparallel to traditional
machine learning algorithms. At its core the neural network relies on a hidden
latent representation to uncover the complex patterns used for decision making.
Depending on the task the dimensionality of the latent space can be higher
or lower than the dimensionality of the input data. Typically the latent space
dimensionality is lower in tasks that aim to compress information into a sparser
representation. For classification tasks it is common that the networks latent
space has a high dimensionality.

Neural networks can be constructed by a mixture of different layers depending
on the task it is designed to solve. When working with images a common
architecture consists a set of convolutional layers encoding the data, feeding
a latent representation to a set of fully connected layers that performs the
classification. This architecture known as Convolutional neural networks or
CNN for short was introduced as early as 1998 [Lecun et al., 1998] with the
introduction of LeNet5.

2.4.1 Fully connected layers

The fully connected layer in a neural network performs a linearmapping of some
𝑛 dimensional input data 𝒙 ∈ R𝑛, to a𝑚 dimensional output vector 𝒚 ∈ R𝑚
through a 𝑛 ×𝑚 weight matrix 𝑾 [Koutroumbas and Theodoridis, 2008]. To
allow for learning non linear patterns, an activation function 𝑓 is commonly
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applied to the output vector 𝒚, creating the vector 𝒛 ∈ R𝑚. The inclusion of
a bias term 𝑤0 is commonly included to allow for learning a shift to capture
offsets in the patterns. The mapping is defined by the following equation:

𝒛 = 𝑓 (𝑾𝒙 +𝑤0) (2.8)

2.4.2 Convolutional layers

The convolutional layerwas a proposed layer architecture to improve pattern de-
tection,andperformance in grid structureddata such as images [Goodfellow et al., 2016].
By applying filters through the convolutional operation, it is possible to detect
patterns while reducing the number of learnable parameters 𝑾 . Each convo-
lution layer typically consists of several filters, such that the layer can detect
multiple different patterns in the input signal. The introduction of the convo-
lutional layer allows for several advantages when working on grid structured
data, such as parameter sharing, and translation equivariance:

For a function to be equivalent the following relation must be satisfied: For a
function 𝑓 (𝑥) to be equivalent to a function 𝑔 then:

𝑓 (𝑔(𝑥)) = 𝑔(𝑓 (𝑥)) (2.9)

This relation shows that the order of which functions are applied, does not
change the resultant output. This is relevant for images in the context of shifts,
because of the equivalent nature of the convolution operation, the same object
translated in the input will give the same output regardless of the spatial
position of the object in the image.

2.5 Resnet

Resnet is a series of convolutional neural network architectures, introduced by
[He et al., 2016]. The Resnet architecture introduced building blocks capable of
residual learning via skip connections and the identity mapping. This allows for
constructing deeper neural network stacks while retaining the spatial resolution
in the feature maps. Each block is defined by the function ([He et al., 2016] eq
1):

𝒚 = F (𝒙, {𝑊𝑖}) + 𝒙 (2.10)

In equation 2.10 𝒚 denotes the output mapping, 𝒙 denotes the input mapping,
and F (𝒙, {𝑊𝑖}) represents the function we estimate by stacked convolutional
layers. For this equation to hold true, the dimensionality of 𝒙 and F (𝒙, {𝑊𝑖})
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needs to be the same. This is the purpose of the identity mapping which
rescales F to the dimensions of 𝒙, thus allowing for an element-wise addition
between F and 𝒙.

Several of these operations can be stacked to create one bigger layer able to
learn representations without reducing spatial resolution.

Resnet-18

The Resnet-18 is the most compact Resnet model introduced in [He et al., 2016].
The layer structure of the basic Resnet-18 is shown in table 2.1. The experiments
were performedwith themodels available from the Pytorch [Paszke et al., 2019]
library. This implementation of the Resnet-18 includes batch normalisation, and
dropout regularization after each convolutional layer. The core architecture
remains equal to the one described in table 2.1.

Layer name Output size architecture
conv1 112 × 112 7 × 7, 64, stride 2

conv2_x 56 × 56
3 × 3 max pool, stride 2[

3 × 3, 64
3 × 3, 64

]
× 2

conv3_x 28 × 28

[
3 × 3, 128
3 × 3, 128

]
× 2

downsample stride 2

conv4_x 14 × 14

[
3 × 3, 256
3 × 3, 256

]
× 2

downsample stride 2

conv5_x 7 × 7

[
3 × 3, 512
3 × 3, 512

]
× 2

downsample stride 2
1 × 1 average pool

fc, softmax 1 × 𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 linear 512 × 𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠

Table 2.1: Resnet 18 architecture
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2.6 The lottery ticket hypothesis

The lottery ticket hypothesis [Frankle and Carbin, 2019], is a hypothesis propos-
ing that there exists a sparse sub-network within the full network that is ca-
pable of giving similar performance to the full network. Thus a method was
proposed to find these sub-networks structures through an iterative pruning
process.

By assuming the initialisation of the network parameters denoted 𝜃0 is the
’lottery ticket’ initialisation. Then the network is trained, after which a small
percentage 𝑝 ofweights are creating a pruningmask𝑚0. The remainingweights
not deactivated by𝑚0, are initialised to the values originally initialised to 𝜃0.
This process is repeated for several iterations to detect the sparse sub-networks
capable with similar performance to the original.

More formally, given a neural network 𝑓 (𝑥 ;𝜃0) where 𝜃0 ∼ D𝜃 denotes the
randomly initialised parameters. The paper proposed the following training
scheme to find the sub-networks:

1. Randomly initialise a neural network 𝑓 (𝑥 ;𝜃0) (where 𝜃0 ∼ D𝜃 )

2. Train the network for 𝑗 iterations resulting in the trained weights 𝜃 𝑗

3. Prune a small percentage 𝑝% of the unpruned parameters creating a
mask𝑚0.

4. Reset the network parameters to the original initial parameters 𝜃0 ⊙𝑚

5. Repeat steps 2-4 𝑛 times each iteration increasing the mask𝑚𝑛 = 𝑚𝑛 +
𝑚𝑛−1 with the additional pruned parameters.

By following the described method, the similarly performing sub-networks
can be discovered. It was discovered that with this method it is possible to
reduce the number of parameters in the original network by 80 − 90%. As
opposed to a one-shot pruningmethodwhere a larger percentage ofweights are
pruned in one step, the lottery ticket hypothesis method retains accuracy while
reducing the networks more than what is possible with a one-shot pruning
method.



3
Method
This chapter gives a description of the steps taken in order to explore the latent
space of deep Neural Networks. In detail it will elaborate on which architecture
is explored, as well as which intermediate layer used for extracting the latent
space representation. Furthermore the chapter presents our motivation for the
graph approach, as well as explain the considerations taken for constructing
the graphs used for the analysis. Lastly the chapter will give a brief description
of the datasets and training schemes used.

3.1 Latent data extraction

The latent representations of the input data is dependent on the model ar-
chitecture as well as the layer depth it is extracted from, both in regards to
the values, and the dimensionality of the representations. For all experiments
surrounding the latent representations we have been working with the Resnet-
18 architecture, with the latent representation extracted between the average
pooling and the linear classifier (table 2.1). This latent representation is after all
convolutional layers has operated on the input data, such that the data presum-
ably is at it’s richest point in terms extracted information. The dimensionality
of the latent representations at this layer is; R512.

19
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3.2 Motivating the graph approach

3.2.1 Capturing relations

When training a model, the samples position in the latent space changes. The
final latent distribution of the data is dependent on the initial parameters 𝜃0,
the training scheme, as well as the hyper-parameters used. Thus comparing
absolute positions in the latent space would be dependent on the convergence
of the model. This can pose a challenge when comparing the two trainings
of the same model architecture with different initialisations, observering the
changes with respect to pruning, or to observe the evolution of the latent space
during training.

As opposed to using the absolute positions, a graph approach could favourably
be used as it is the relations between the data that is important. By construct-
ing a graph from the data representation in the latent space such as with a
𝑘 nearest neighbours graph it could be possible to capture the relative rela-
tions between samples in the latent distribution. With the graph approach
an absolute mapping is omitted while the relative information in the latent
representations is retained. These relative graph representations could give a
good foundation for observing relations, properties, and changes in the latent
space.

3.2.2 Approximating the latent manifold

As the function constricting themapping to the latent space is unknown, it limits
the possible exploration methods. Thus to explore the latent representations,
an approximation method is necessary to explore the the topology of the
space. The closest estimation of the latent space available to us, is the latent
representations of the input data. For this reason, the construction of a𝑘 nearest
neighbours graph 𝐺 using these latent representations is proposed. The graph
𝐺 , then functions an approximation of the latent space topology. depending
on the dimensionality of the latent representation, a suitable distance metric
should be considered. In addition it should be noted that the choice of 𝑘 could
impact the properties of the representation 𝐺 gives.

3.3 Constructing the graph of the latent space

Firstly for the construction of the 𝑘 nearest neighbours graph of the latent space
it is important to consider that the latent space of the Resnet-18 is very high
dimensional; R512. The high dimensionality constricts the number of distance
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metrics capable of capturing the high dimensional distances in a good way. For
our work, we construct the graph 𝐺 with the 𝐿1, manhattan norm distance.
The 𝐿1 is considered for it’s property of retaining an unbounded relative min
- max distance in higher dimensional spaces. Secondly the selection of 𝑘 for
constructing the graph must be considered. We explore the properties in the
latent space for several values of 𝑘 ∈ {4, 8, 16} for constructing 𝐺 . Thus the
evolution of the properties with respect to 𝑘 can be observed

Lastly, for the construction of the graphs, the test or validation data is considered
in favor of the training data. By constructing the 𝑘 nearest neighbour graph on
unseen data, it is safer to assume that the latent representations of the data is
generalised and not an artefact of overfitted training data. Computationally our
work with graphs such as such as construction, exploration, and computation
has been performed using the networkX package [Hagberg et al., 2008], a well
known, high performance network-science library for Python.

3.4 Graph visualisations

In the result section, we present visualised representations of some graph struc-
tures are presented. These visualisations are generated using the graph analysis
tool Gephi [Bastian et al., 2009]. The graph topology shown in the figures, is
generated using the ForceAtlas2 layout algorithm [Jacomy et al., 2014]. This
layout algorithm creates the topology by treating the graph as a physical system,
where the vertices has repulsive forces between them scaled by the degree.
Whereas the edges applies a linear force pulling connected vertices together
relative to the strength of the weight between them. By letting the algorithm
run, it will find an equilibrium state that the system converges to.

As an example of a visualisation created by the ForceAtlas2 layout, consider the
graph visualisation presented in figure 3.1. The graph presentedwas constructed
with the latent representation of the Cifar100 test dataset with the Resnet-18
model. A𝑘 = 4was used for the construction, considering the 𝐿1 norm between
each latent sample.

3.5 Datasets

For the experiments conducted, two datasets has been considered - namely
Cifar100, and Imagenet1k. The two datasets are different in computational
complexity, and is selected based on the given experiments computational
demand.
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3.5.1 Cifar100

Cifar100 [Krizhevsky et al., ] is a 100 class balanced dataset consisting of 32×32
pixel images. See table 3.1 for the number of samples in the training and test
set. To be used with the original Resnet-18 architecture, the images are rescaled
to a size of 224 × 224, before given as an input to the model.

Split 𝑛 samples
Training 50000
Test 10000

Table 3.1: Distribution of samples in the training and test set of Cifar100.

3.5.2 Imagenet1k

Imagenet1k [Russakovsky et al., 2015] is a widely used dataset for benchmark-
ing model performances. It consists of 1000 classes distributed equally across
all classes. The images varies in size, however the common process is to rescale
them to a 256× 256 image, followed by cropping the center of the image such
that the final size of the image is 224 × 224. See table 3.2 for the number of
samples in the training and validation set.

Split 𝑛 samples
Training 1.281.167
Validation 50.000

Table 3.2: Distribution of samples in the training and test set of Imagenet1k.

3.6 Training schemes

For the experiments there has been a mix of two supervised training methods:
A traditional training scheme running for a fixed number of epochs, and a
scheme utilising an earlystopping criterion to dynamically stop the training
when a certain criterion has been met. For each experiment in chapter 4 there
will be a small section remarking which training method has been applied
as well as defining the criterion, loss, and scheduler function as well as the
hyperparameters used for the given experiment.



3.6 training schemes 23

3.6.1 Fixed training scheme

An experiment utilising the fixed training scheme will run for a fixed number of
epochs independent of training progress and state. It is applied to experiments
where it is of interest to make absolute comparisons between different training
runs.

3.6.2 Earlystopping training scheme

An experiment utilising the earlystopping training scheme will run until a
predetermined earlystopping criterion is reached or at most for a fixed number
of epochs. The earlystopping mechanism can reduce training time as well as
reduce the risk of overfitting the model depending on the criterion chosen. Our
earlystopping criterion is implemented based on the observed validation loss,
and will cancel training when the validation loss is observed to not decrease
between sequential epochs. To allow for some flexibility the earlystopper saves
the models parameters at the lowest loss observed, and is allowed to run for a
few epochs longer to observe if the criterion will decrease further. The number
of epochs it is allowed to search for a new minima is denoted as the patience
argument of the earlystopper.

Described below is the process performed by the earlystopper after each epoch
of training:

1. Calculate validation loss for the epoch 𝐿𝑣𝑎𝑙 .

2. If the the validation loss is the lowest observed during training then :

• Save model parameters.

• Save the lowest observed loss 𝐿𝑣𝑎𝑙 .

• Reset patience count to 0.

3. Else continue training but increment a patience count by one.

4. If the patience count reaches the predetermined patience of the earlystop-
per

• Break training and return the saved model parameters from the
best state.
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Figure 3.1: Undirected 𝑘 = 4 nearest neighbour graph representation. Each vertice
represents the latent space representation for a Cifar100 sample on the
Resnet-18 model. The vertices is colored by the Ground truth of the sample,
and scaled by the degree.



4
Experiments
This chapter describes each experiment performed for our exploration of the
latent space. Each section corresponds to an individual experiment, where
factors such as the steps taken to investigate, the methods used, as well as
describing the training scheme used to produce the results stated in chapter
5.

4.1 Observing the stability in the 𝑘 nearest
neighbours graph

Exploring the stability of the latent representations is important to indicate
the rigidity of the network-science method. As the experiment explores the
stability in terms of susceptibility to noise, similarity during training, as well as
between models, the results aids establishing baseline properties for comparing
further exploration against.

4.1.1 Training scheme for the experiment

For this experiment two Resnet-18 models 𝐴, 𝐵 is trained, each model has
their initial parameters independently initialised to each other. Both models
has been trained with a fixed training scheme, on the same hyperparameters.

25
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Table 4.1 shows the hyperparameters, optimiser, and scheduler used during
training.

Parameter Value
Dataset Cifar100
Number of epochs 25
Optimiser SGD(𝑙𝑟 = 0.1,𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = 0.9)
Scheduler Step at epochs 10, 20, 30, 𝑓 𝑎𝑐𝑡𝑜𝑟 = 0.1

Table 4.1: Parameters used in training scheme for observing the stability in the 𝑘

nearest neighbour graph.

For each epoch during training the model parameters are saved. When training
is complete We select 6 sequential epochs from where the test accuracy is
observed to stabilise for both models. The latent representations of the test
data is then extracted for both models. Further the two latent representation
are used to construct the temporal graphs 𝐺𝐴𝑡

, 𝐺𝐵𝑡
according to the 𝑘 nearest

neighbourmethod. Each timestep 𝑡 corresponds to the epoch the representation
is extracted from.

4.1.2 Experiment variations

Stability with respect to noise.

For this experiment only one latent representation at a single timestep is
needed. This experiment is introduced to observe the the internal robustness
of the latent representation. By gradually perturbing the latent representation
with a zero mean Gaussian noise with increasing variance, we are interested in
observing how the latent representations changes with respect to the amount
of variance in the noise added to the system. For this experiment we have
a 𝑛 × 𝑑 matrix 𝑿 representing the 𝑛 data points in the R𝑑 latent space, as
well as the graph𝐺𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 constructed by using the latent representation 𝑿 . A
perturbed latent representation 𝒀 is constructed in the following way:

𝒀 = 𝑿 + N(0, 𝑝 · 𝝈2) (4.1)

Here in equation 4.1, N(0, 𝑝 · 𝝈2) denotes a 𝑛 × 𝑑 matrix with zero mean
Gaussian noise. Note that 𝝈2 is a R𝑑 vector where each element corresponds to
the variance in the given dimension of𝑿 , such that each column ofN(0, 𝑝 ·𝝈2)
has a variance equal to the corresponding element in 𝝈2. The scalar 𝑝, refereed
to as the percentwise relative noise variance is used to scale the variance of the
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noise used for perturbing 𝑿 .

For each representation 𝒀 a graph 𝐺𝑛𝑜𝑖𝑠𝑒𝑑 is constructed, and compared to
the unperturbed latent representation represented by 𝐺𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 . The similarity
between the two graphs are calculated between each perturbation.

Furthermore, to observe how the perturbation of the latent space affects the
models ability to perform classifications, we feed the perturbed latent space 𝒀
into the fully connected layer of the classifier. Thus the accuracy of the model
can be computed as a function of the noise added.

Change in internal stability during training

Exploring how rigorous the latent space representation is with respect to itself
during training, can give an indication as to how stable the latent representa-
tion is. This internal stability is found by comparing the graphs of the latent
representations between epochs 𝑡, 𝑡 + 1: For each graph 𝐺𝐴𝑡

, 𝐺𝐵𝑡
is compared

to itself in the next timestep 𝐺𝐴𝑡+1 , 𝐺𝐵𝑡+1 .

Comparing the similarity between two training runs

Given different initialisations, two models are not guaranteed to converge to
the same minima in the loss surface, even if trained on the exact same scheme
and equal hyperparameters. Thus it is of interest to observe to which extent the
latent space representations for the different convergences can be compared.
With this experiment we aim to investigate the similarities of the convergences
through comparing the respective graph representations 𝐺𝐴𝑡

and 𝐺𝐵𝑡
. The

graphs comparisons are performed between𝐺𝐴𝑡
,𝐺𝐵𝑡

at corresponding epochs
𝑡 .

4.2 Class graph representation

Machine learning algorithms such as the deep neural networks are well known
to be black-box methods. Understanding how the network maps relationships
between the classes can aid in giving a high level understanding of the models
latent space. This is where we propose to introduce the class graph as a higher
level observation tool to indicate relations between classes based on the latent
representation of the data.

Consider a dataset 𝐷 = {𝒙𝑛, 𝑦𝑛}𝑁𝑛=1 where 𝑥𝑛 ∈ R𝑑 , the dataset is divided
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into 𝐶 = {𝑐1, 𝑐2, . . . 𝑐𝑚} classes. A graph 𝐺 is constructed with the 𝑘 nearest
neighbours method using the the latent representation of the samples in 𝐷

using the Manhattan distance metric. Each vertice 𝑣𝑖 in 𝐺 corresponds to the
sample 𝒙𝑖 with label 𝑦𝑖 . Further the shortest path distances 𝑑 (𝑣𝑖, 𝑣 𝑗 ) between
all pairs of vertices 𝑣𝑖, 𝑣 𝑗 in 𝐺 is calculated resulting in a 𝑁 × 𝑁 symmetric
adjacency matrix 𝐴𝐷𝐽 with shortest path distances between all vertices.

From the adjacency matrix 𝐴𝐷𝐽 an average shortest path distance between
all samples in in each class 𝑐𝑖, 𝑐 𝑗 can be computed. Let 𝑆𝑖 = {𝑛 |𝑦𝑛 = 𝑐𝑖}𝑁𝑛=1
be the set of indices where 𝑦𝑛 = 𝑐𝑖 , similarly let 𝑆 𝑗 = {𝑚 |𝑦𝑚 = 𝑐 𝑗 }𝑀𝑚=1 where
𝑦𝑚 = 𝑐 𝑗 then the average shortest path distance between classes 𝑐𝑖, 𝑐 𝑗 can be
found as:

𝑑 (𝑐𝑖, 𝑐 𝑗 ) =
1

|𝑆𝑖 | · |𝑆 𝑗 |
∑︁
𝑘∈𝑆𝑖

∑︁
𝑙∈𝑆 𝑗

𝐴𝐷𝐽𝑘𝑙 (4.2)

Performing this for all 𝑖, 𝑗 we get an |𝐶 | × |𝐶 | adjacency matrix, where each
index 𝑖, 𝑗 gives the average shortest path distance between the classes 𝑖, 𝑗 ∈ 𝐶.
The average shortest path in this adjacency matrix is then considered when
constructing the 𝑘 nearest neighbours class graph representation;𝐺𝑐𝑙𝑎𝑠𝑠 .

4.3 Exploring the changes in latent
representation across an iterative pruning
process

4.3.1 Training scheme for the experiment

For this experiment we train a single Resnet-18 model in accordance to the
method proposed lottery ticket hypothesis paper (described in 2.6). The prun-
ing is performed only in the convolutional layers of the network, with the fully
connected layer left unpruned during the entire experiment. An earlystopping
training scheme is used for each run. Table 4.2 shows the functions and hyper-
parameters used for the training. We perform the experiment for two pruning
ratios; 𝑝 = 0.20 and 𝑝 = 0.01.
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Parameter Value
Number of pruning iterations 15
Number of epochs 100
Optimiser SGD(𝑙𝑟 = 0.1,𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = 0.9)
Scheduler Step at epochs 10, 20, 30, 𝑓 𝑎𝑐𝑡𝑜𝑟 = 0.1
Earlystopper Max validation accuracy, 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 = 3

Table 4.2: Parameters used in training scheme for the iterative pruning

4.3.2 Experiment

With this experiment we explore the latent space evolution during the iterative
pruning process. For each iteration the model parameters 𝜃 𝑗 and pruning mask
𝑚 is stored to be used for the exploration. As there is no investigation into the
change of the latent representations, we will be observing the similarity of the
latent representations of each pruned model to the latent representation of
the original unpruned model. This could give an indication as to how much
information from the entire network that is retained in the sparser sub network
discovered. As the model is reinitialised to the same initial parameters at each
pruning iteration, the experiment can also give a new perspective on the
’winning ticket’ hypothesis with regards to initialisation.





5
Results
This chapter contains the results produced by the experiments outlined in
chapter 5. Each section has a corresponding section in chapter 5 explaining the
experiment. The results chapter is split into three sections; An investigation of
the stability of the 𝑘 nearest neighbours method, the results of the class graph
aggregation, as well as the findings on the exploration of iterative pruning
method.

5.1 Observing the stability in the 𝑘 nearest
neighbours graph

The results shown for this experiment is calculated with latent data extracted
from two identically trained models, with different initialisations. The figures
presented in 5.1 shows the training and test accuracy for the two models during
training. Both runs converge in a similar manner to a test accuracy around
60%. The latent representations has been extracted for epochs 10-15, since the
test accuracy has converged at this point.

31
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(a) Accuracy for training and test set during
run 1.

(b) Accuracy for training and test set during
run 2.

Figure 5.1: Training and test accuracy as for Cifar100 on Resnet-18 as function of
epochs during model training.

5.1.1 Change in internal stability with respect to noise

When calculating the variance in the dimensions of the latent data 𝑿 , we find
that the elements in 𝝈2 are quite low, indicating a dense representation. Table
5.1 shows the maximum, minimum, and mean value for the variance vector 𝝈2.
As each dimension in the latent data 𝑿 has its own variance in 𝝈2 we scale the
added noise relative to the values in the variance vector 𝝈2 with the factor 𝑝
in the range [0, 1]. Figure 5.2 shows the graph average Jaccard similarity with
respect to the percent-wise noise added to the latent representation. Each plot
corresponds to the results for a given 𝑘 used for the graph construction.

Metric | Value
Max 0.34
Min 0.038
Mean 0.13

Table 5.1: Metrics related to the variance vector 𝝈2 for each dimension in the latent
data 𝑿

From figure 5.2 it can be observed that the the Graph average Jaccard similarity
decreases rapidly with the increased noise added to the latent representation.
This indicates that the datas representation in the latent latent space is very
susceptible to small perturbations. Furthermore, when observing the results
with respect to 𝑘, it can be observed that a lower 𝑘 achieves higher similarities,
however has a steeper decrease with increasing noise. The higher values of 𝑘 is
observed to be more stable with regards to similarity decrease when the noise
increases, however is more susceptible to small noise. To observe the graph
structures from a different perspective, the class neighbourhood similarity in
figure 5.3 is investigated:
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(a) Full figure showing Jaccard similarity for
all noise variance.

(b) Figure zoomed in on the smaller noise vari-
ance.

Figure 5.2: Full and zoomed plots presenting the graph average Jaccard similarity
between 𝐺𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 and 𝐺𝑛𝑜𝑖𝑠𝑒𝑑 as a function of the noise added relative
to the systems global variance. Each line corresponds to the similarity
achieved for a given 𝑘.

Figure 5.3: Plot showing the Class neighbourhood similarity between 𝐺𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 and
𝐺𝑛𝑜𝑖𝑠𝑒𝑑 as a function of the noise added relative to the systems global
variance.
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From the class similarity results in figure 5.3, it can be noted that it shows
higher similarities with respect to the noise added than the graph average
Jaccard similarity. This could indicate that there is well defined clusters for the
classes in the latent representation, such that the orientation changes within
the clusters, but not with respect to the classes. With respect to 𝑘 the same
trend can be observed regarding the decrease with respect to noise. However,
it is observed that all values of 𝑘 achieves higher similarities with little noise
added.

to get an indication on how the perturbation affects the model, the accuracy is
found for each perturbation of the latent representation. these results are pre-
sented in figure 5.4. The classification is performed for the same perturbations
used for comparing the similarity.

Figure 5.4: The achieved accuracy when sending the noised latent space through the
fully connected layer of the trained Resnet-18.

By studying the classification accuracies in figure 5.4, it can be observed that
there is a decrease in accuracy when introducing noise to the latent space.
However it should be noted that the decrease in accuracy is quite low; at
the point of introducing as much variance as is present in the system i.e a
percentwise relative noise variance of 1, an accuracy decrease of only around
4% is observed. This is a very minimal change when compared to the significant
decrease with respect to the graph average Jaccard similarity when injected
with a percentwise relative noise variance of 𝑝 = 1, especially for the lower
values of 𝑘.
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To get an understanding of why such a small decrease in accuracy is observed
relative to the larger decreases observed in the similarity measures (figures
5.2, 5.3); some properties of 𝐺𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 constructed with 𝑘 = 4 is investigated.
The longest path, or diameter of 𝐺𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is found to be 13, in addition the
average shortest path length is found to be: 6.4. Finally the distribution of short-
est path lengths between all pairs of vertices 𝑣𝑖, 𝑣 𝑗 in 𝐺𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is calculated.
The distribution is shown in figure 5.5. This distribution gives an approxima-
tion to the lengths between the samples 𝑖, 𝑗 on the latent space manifold,
when connections are kept sparse such that only the closest neighbours are
traversable.

Figure 5.5: The distribution of shortest path length between every pair of vertices 𝑣𝑖 , 𝑣 𝑗
in 𝐺 .

From the shortest path length distribution in figure 5.5, it can be observed that
the majority of shortest path lengths is between [800, 1500].

We estimate the average Manhattan norm for a R𝑑 , 𝑑 = 512, vector consisting
of Gaussian sampled noise: 𝑵 = [N (0, 𝜎2

𝑛]𝑑𝑛, 𝜎2
𝑛 ∈ 𝝈2. By performing a Monte-

Carlo approximation we find that the average Manhattan norm of the noise
vector 𝑵 to be: |𝑵 | ≈ 150.

Comparing the norm of 𝑵 to the observed shortest path length distribution
in 5.5, it can be noted that the norm of the noise vector is significantly lower
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than most path lengths. This could explain why such a small accuracy decrease
is observed, as the noise potentially only shifts the vertices position in the
local regions they are present in. Such that the observed decrease in accuracy
is caused by the samples present between two regions of well defined class
clusters. This observation further supports what was initially discussed with
respect to the arguments made for the class neighbourhood similarity, in which
there exists well defined clusters for the distinct classes.

5.1.2 Change in internal stability during training

To observe the internal stability of the latent space at the end of training the
temporal graph𝐺𝑡 is constructed from the latent representation for the epochs
𝑡 ∈ [10, 15]. Each state 𝑡 is compared to the next state 𝑡+1. First the comparison
with respect to the Graph average Jaccard similarity is observed:

Compared epoch 𝑡, 𝑡 + 1 𝑘 = 4 𝑘 = 8 𝑘 = 16
10, 11 0.91 0.92 0.93
11, 12 0.91 0.91 0.91
12, 13 0.90 0.91 0.92
13, 14 0.89 0.90 0.90
14, 15 0.91 0.91 0.92

Table 5.2: Graph average Jaccard similarity Between 𝐺𝐴𝑡
, and 𝐺𝐴𝐴𝑡+1 . The results

are shown for a selection of 𝑘 used during the construction of the 𝑘 nearest
neighbour graph structure. The leftmost column shows the epochs 𝑡, 𝑡 + 1
where the latent space used for constructing the graphs are retrieved.

From table 5.2 it can be observed that the graph average Jaccard similarity
reported is stable around 91-93%. This high similarity indicates that the latent
representations are rigid with respect to it’s final state when the validation
accuracy has plateaued. The high similarity is observed across all values of 𝑘,
with a very small increase in similarity per doubling of𝑘. The same investigation
is also performed with respect for the class neighbourhood similarity measure,
and presented in table 5.3:

Investigating the results presented in table 5.3, it can be observed that similarity
with respect to the class neighbourhood is found to be high with similarities
around 95% between the steps 𝑡, 𝑡 + 1. Considering the high values found
for the graph average Jaccard similarity (table 5.2), this is of no suprise as
the neighbourhood similarity is a less strict measure than the graph average
Jaccard similarity. Hence, if the set of connected vertices are very similar across
𝑡 for a vertice 𝑣 , then it follows that the multiset of the class neighbourhood
of 𝑣 will naturally also be almost equal, as the class property of each vertice
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Compared epoch 𝑡, 𝑡 + 1 𝑘 = 4 𝑘 = 8 𝑘 = 16
10, 11 0.96 0.96 0.97
11, 12 0.95 0.95 0.96
12, 13 0.95 0.96 0.96
13, 14 0.94 0.95 0.96
14, 15 0.95 0.95 0.96

Table 5.3: Class neighbourhood similarity Between𝐺𝐴𝑡
, and𝐺𝐴𝐴𝑡+1 . The results are

shown for a selection of 𝑘 used during the construction of the 𝑘 nearest
neighbour graph structure. The leftmost column shows the epochs 𝑡, 𝑡 + 1
where the latent space used for constructing the graphs are retrieved.

𝑣 ∈ 𝑉 do not change with respect to 𝑡 .

5.1.3 Comparing the similarity between two training runs

Comparing the similarity between two training runs 1, 2 can give an indication
of the presence of structures in the latent space representation that is critical
for the learning process. The two temporal graphs 𝐺𝐴𝑡

,𝐺𝐵𝑡
are constructed,

and their similarity is compared at each step 𝑡 . The resultant graph average
Jaccardsimilarity is reported in table 5.4:

Compared epoch 𝑡 𝑘 = 4 𝑘 = 8 𝑘 = 16
10 0.15 0.18 0.21
11 0.16 0.18 0.21
12 0.16 0.18 0.21
13 0.15 0.18 0.21
14 0.16 0.18 0.21
15 0.15 0.18 0.21

Table 5.4: Graph average Jaccard similarity Between 𝐺𝐴𝑡
, and 𝐺𝐵𝑡

. The results are
shown for a selection of 𝑘 used during the construction of the 𝑘 nearest
neighbour graph structure. The leftmost column shows the epoch 𝑡 corre-
sponding to the latent space used for constructing the graphs.

From table 5.4 it can be noted that the reported similarities are systematically
low across all steps 𝑡 , with a similarity around 15 − 20% depending on 𝑘. For
each doubling of 𝑘 there is observed a small increase in the reported similarity.
When investigating the convergence of the two runs in figure 5.1, it can be
observed that the two runs converge very similarly, however according to the
graph average Jaccard similarity they appear almost entirely different. To inves-
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tigate the similarities between the two runs further, the class neighbourhood
similarity is measured, and reported in table 5.5:

Compared epoch 𝑡 𝑘 = 4 𝑘 = 8 𝑘 = 16
10 0.53 0.57 0.64
11 0.52 0.57 0.64
12 0.53 0.57 0.63
13 0.53 0.56 0.64
14 0.53 0.57 0.63
15 0.52 0.56 0.64

Table 5.5: Class neighbourhood similarity Between 𝐺𝐴𝑡
, and 𝐺𝐵𝑡

. The results are
shown for a selection of 𝑘 used during the construction of the 𝑘 nearest
neighbour graph structure. The leftmost column shows the epoch 𝑡 corre-
sponding to the latent space used for constructing the graphs.

With respect to the class neighbourhood similarity reported in table 5.5, it can
be noted that the two training runs are found to be more similar. The similarity
with respect to class neighbourhood is found to stable across all steps 𝑡 with a
similarity between 52 − 64%, with the similarity increasing with the doubling
of 𝑘. The higher similarity with regards to the class neighbourhood, indicates
that the two different models has learned some similar patterns in the latent
representation with regards to the orientation of the classes.

5.2 Class graph representation

In this section the class graph representation for both the Imagenet1k, and
Cifar100 datasets is presented. Although the class graph for both datasets
are presented, the main focus will be on the class graph constructed for the
Imagenet1k dataset. Both class graphs are created by aggregating the shortest
path distances on the respective 𝑘 = 4 nearest neighbour sample graphs of the
Resnet-18 latent space.

5.2.1 Imagenet1k

A visualisation of the class graph 𝐺𝑐𝑙𝑎𝑠𝑠 for the Imagenet1k validation set is
shown in figure 5.6

From the class graph layout (figure 5.6) it can be observed that the network
topology appears to be composed of local clusters, and denser regions centered
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Figure 5.6: The class graph of Imagenet1k showing the entire structure of the graph.
the size of the vertices are scaled by their degree, and the hue corresponds
to the class average accuracy.

around a few hub vertices. Some common graph measures, as well as the
degree distribution of 𝐺𝑐𝑙𝑎𝑠𝑠 are calculated and presented. The measures are
presented in table 5.6, and the degree distribution is shown in figure 5.7.

Measure Value
Diameter 14
Average path length 6.4
Average Degree 6.3
Clustering coefficient 0.46

Table 5.6: Statistics for the classgraph 𝐺𝑐𝑙𝑎𝑠𝑠 of Imagenet1k (figure 5.6).
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Figure 5.7: Degree distribution of the imagenet class graph 𝐺𝑐𝑙𝑎𝑠𝑠 presented on a
logarithmic scale

Clustering

The degree distribution 5.7 is observed to follow a very linear trend, with a
tail containing vertices with a significantly higher degree than the average
degree. Indeed when inspecting the computed measures in table 5.6 it can
be observed that the average degree of 6.3 (table 5.6) is significantly lower
than the highest degree vertices present in the network. The linear trend gives
a good indication that the degree distribution of the class graph follows the
power law distribution.

Further exploration of the class graph includes further inspection into the
clustering properties of 𝐺𝑐𝑙𝑎𝑠𝑠 . The average degree reported in table 5.6 was
found to be 0.46, indicating the presence of some clustering properties through
the number of triangles found. However, to assert that the inspected clustering
(figure 5.6) is not just an artefact of the Force-Atlas algorithm, the Louvain
community detection algorithm is computed for𝐺𝑐𝑙𝑎𝑠𝑠 . The Louvain algorithm
detected 17 distinct clusters within𝐺𝑐𝑙𝑎𝑠𝑠 that contains between [1.1%, 12.6%]
of the vertices depending on the cluster. The detected clusters in the Imagenet1k
clssgraph are presented in figure 5.8
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Figure 5.8: The class graph of Imagenet1k showing the entire structure of the graph.
the size of the vertices are scaled by their degree, the color corresponds to
the cluster found by the Louvain method. Thus there are 17 distinct colors
in the figure.

A small selection of the clusters detected in figure 5.8 are inspected in a
qualitative manner by looking at the label of each class contained in the
clusters.

By observing the labels corresponding to the vertices in figure 5.9, it can be
observed that the classes this detected cluster represented are all related to
feline species. Considering that the classes are all feline species, it should be
of no suprise that they are clustered in the latent representation, considering
that they have several shared features across the classes. However, it is still of
interest to be able to observe this clustering tendency, as it can give indications
on how the model relates the various classes.
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Figure 5.9: A single community from figure 5.8. The labels on each vertice shows the
label for the class it represents.

(a) A community with classes consisting
mostly of different types of birds.

(b) A community with classes consisting
mostly of different dog breeds.

Figure 5.10: Two other community examples that corresponds to mostly types of birds
or dogs. The communities are to big to show each label in a presentable
manner.

The two other examples of clusters shown in figure 5.10, contains mostly classes
related to bird types and dog types respectively. The labels are not included
in these clusters as there are to many classes causing hard to read figures.
In these communities it can also be noted that the vertices that are pulled
far apart from the dense area of the hub appears to less connected to the
main type of object that the classes represents. To allow for exploration of
the communities in the class graph of Imagenet1K, it has been made publicly
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available through a external repository1. Through this it is possible to explore
all communities within the graph, and observe the classes the communities are
comprised of.

Hubs

In the degree distribution shown in figure 5.7, there are observed to be two
vertices with significantly higher degree than other classes at degrees of 85 and
76 respectively. These classes appears as the big hubs in the lower part of figure
5.6, and corresponds to the mini-skirt, and band aid class respectively.

The appearance of these hubs is very interesting as it indicates that these classes
exists in a central part of the latent representation,where there are several other
class representations surrounding them given the high degree. Why exactly
these classes are so well connected is hard to state exactly. However, when
exploring the images of these classes it can be observed that many of the images
has a human in the image in addition to the target class object. The presence
of humans as parts of the images can also be observed for many of the classes
connected to these hubs in the class graph. A hypothesis is that the human
in the images acts as a shared feature between all the classes such that they
converge towards a similar, yet distinct area in the latent representation.

5.2.2 Cifar100

The class graph of Cifar100 is is presented in figure 5.11.

The class graph representation for Cifar100 is constructedwith the samemethod
as for the Imagenet1k class graph. However, now it is constructed by the latent
space for the cifar100 test set on Resnet-18.

From the class graph layout of the Cifar100 class graph (figure 5.11 it can
be observed that the network appears to be tied around a few central high
degree hub vertices. When observing the degree distribution in figure 5.12, this
observation is confirmed. In addition by observing the metrics in table 5.7, it
can be observed that the clusering coefficient is found to be 0.43. However, it
should be noted that most triangles in the Cifar100 class graph passes through
some high degree hub vertices.

1. Imagenet1k class graph (https://github.com/Ivernoerve/imagenet_class_graph)

https://github.com/Ivernoerve/imagenet_class_graph
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Figure 5.11: The class graph of Cifar100 showing the entire structure of the graph. the
size of the vertices are scaled by their degree, and the hue corresponds
to the classwise accuracy.

Measure Value
Diameter 3
Average path length 2
Average Degree 7.7
Clustering coefficient 0.43

Table 5.7: Statistics for the classgraph of Cifar100 (figure 5.11).
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Figure 5.12: Degree distribution of the Cifar100 class graph 𝐺𝑐𝑙𝑎𝑠𝑠 presented on a
logarithmic scale

5.3 Exploring the changes in latent
representation across an iterative pruning
process

In this section we present the findings from analysing the evolution of a Resnet-
18 latent space across an iterative pruning, also known as the lottery ticket
hypothesis. The results are divided into two subsections, each shows the results
for performing the pruning with a high, and a low pruning ratio.

5.3.1 High pruning ratio

The results produced for the high pruning ratio, pruned 𝑝 = 20% of the weights
for each pruning iteration. We start by presenting the accuracy achieved by
the network as well as the ratio of pruned weights in the convolutional layers
per iteration of the iterative pruning. Note that iteration 0 corresponds to the
unpruned Resnet-18, this will be refereed to as the unpruned state of the model.
The accuracies and ratio of pruned parameters are shown in table 5.8.



46 chapter 5 results

Iteration Ratio of pruned weights Achieved accuracy
0 0 61.8%
1 20% 62.0%
2 36% 61.5%
3 49% 61.5%
4 59% 61.4%
5 67% 61.5%
6 73% 61.3%
7 79% 61.8%
8 83% 61.5%
9 86% 61.4%
10 89% 61.5%
11 91% 61.6%
12 93% 61.5%
13 94% 61.2%
14 95% 61.2%
15 96% 61.3%

Table 5.8: Table showing the ratio of pruned weights and the achieved accuracy on
Cifar100 testdata for the model at each iteration of the experiment.

From table 5.8 it can be observed that the model accuracy remains stable across
the pruning process when compared to the accuracy of the unpruned state.
We find that after 15 iterations of pruning the number of parameters in the
convolutional layers gets reduced by 96%. This confirms what is shown prior
by [Frankle and Carbin, 2019] that the subnetwork with parameters 𝜃 𝑗 ⊙ 𝑚

manages to retain the accuracy of the unpruned state.

For each pruned state we construct the temporal graph 𝐺𝑡 for the pruning
process with the 𝑘 nearest neighbours method for 𝑘 = 4, 8, 16. We compare
each pruned latent representation (𝑡 > 1), to the original unpruned latent
representation (𝑡 = 0). Each comparison is performed with the graph average
Jaccard similarity and presented in table 5.9. The leftmost column shows the
iterations compared.

When observing the results in table 5.9 it can be observed that the graph average
Jaccard similarity is low when compared to the unpruned state of the model.
Further it can be observed that the similarity decreases when comparisons are
made to later iterations, indicating that the loss of active parameters plays a
significant role in the convergence in the latent space.
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iteration 𝑘 = 4 𝑘 = 8 𝑘 = 16
0, 1 0.2 0.22 0.26
0, 2 0.16 0.18 0.21
0, 3 0.14 0.17 0.2
0, 4 0.13 0.16 0.19
0, 5 0.13 0.15 0.18
0, 6 0.13 0.15 0.18
0, 7 0.12 0.15 0.18
0, 8 0.12 0.15 0.18
0, 9 0.12 0.14 0.17
0, 10 0.12 0.14 0.17
0, 11 0.12 0.14 0.17
0, 12 0.12 0.14 0.17
0, 13 0.12 0.14 0.17
0, 14 0.12 0.14 0.17
0, 15 0.12 0.14 0.17

Table 5.9: Table showing the graph average Jaccard similarity for all pruning iterations
with a pruning ratio of 𝑝 = 20%. All states are compared to the unpruned
state.

With respect to𝑘 it can be observed that the similarity increases slightly for each
doubling of 𝑘. This increase in similarity with respect to 𝑘, could indicate that
only the local neighbourhoods are significantly changed, whereas the global
structure of the graph in terms of clustering properties is retained. To explore
this further we observe the evolution in the class neighbourhood similarity
shown in figure 5.13.
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Figure 5.13: plots showing the Class neighbourhood similarity between the unpruned
state 𝐺0, and each pruned iteration 𝐺𝑡 . The x axis shows the iteration 𝑡

used in the comparison.

Initially when inspecting the class neighbourhood similarity in figure 5.13, the
same small increase in similarity with respect to 𝑘 can be observed. Further the
figure shows a similar trend as the graph average Jaccard similarity in table 5.9
with a small decrease that stabilises after some iterations of pruning. Lastly the
class neighbourhood similarity is observed to be significantly higher than the
graph average Jaccard similarity, giving stong indications that the clustering
properties in the latent representation is retained in the iterations 𝑡 .

5.3.2 Low pruning ratio

When attempting to explain the large dissimilarity when comparing the la-
tent spaces, we hypothesised that the high pruning rate of 𝑝 = 20% could
drastically change the convergence in the latent space. To test this hypothe-
sis, the experiment is performed again fr a significantly lower pruning ratio
𝑝 = 1%.
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Table 5.10 shows the ratio of pruned convolutional weights and the accuracy
for the lower pruning rate. The accuracy remains stable, however, note that the
parameters of the convolutional layers in the final state is only reduced with
14%.

The similarity is presented in the same manner as for the high pruning ratio,
each iteration is compared to the unpruned state, and performed for a range
of 𝑘 for the graph construction. The results are presented in table 5.10.

Iteration Ratio of pruned weights Achieved accuracy
0 0% 62.7%
1 1% 62.4%
2 2% 61.8%
3 3% 61.9%
4 4% 61.5%
5 5% 62.2%
6 6% 61.6%
7 7% 61.8%
8 8% 62.3%
9 9% 62.8%
10 10% 62.2%
11 10% 60.5%
12 11% 61.8%
13 12% 62.6%
14 13% 61.6%
15 14% 62.2%

Table 5.10: Table showing the ratio of pruned weights and the achieved accuracy on
Cifar100 testdata for the model at each iteration of the experiment.
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iteration 𝑘 = 4 𝑘 = 8 𝑘 = 16
0, 1 0.19 0.21 0.25
0, 2 0.19 0.21 0.25
0, 3 0.19 0.21 0.25
0, 4 0.19 0.21 0.25
0, 5 0.19 0.21 0.25
0, 6 0.19 0.21 0.25
0, 7 0.19 0.21 0.25
0, 8 0.19 0.21 0.25
0, 9 0.19 0.21 0.25
0, 10 0.19 0.21 0.25
0, 11 0.19 0.21 0.25
0, 12 0.19 0.21 0.25
0, 13 0.19 0.21 0.25
0, 14 0.19 0.21 0.25
0, 15 0.19 0.21 0.25

Table 5.11: Table showing the graph average Jaccard similarity for all pruning iterations
with a lower pruning ratio of 𝑝 = 1%. All states are compared to the
unpruned state.

Observing the results for the lower pruning rate seen in table 5.11, a similar
result as for the high pruning rate can be observed. The graph average Jaccard
similarity is also here found to be low when compared to the initial unpruned
state. However a small increase in similarity when comparing to the high
pruning rate is observed, this holds true for all values of 𝑘.

When comparing this to the results found for a high pruning rate there are
some noteworthy observations to be made. Firstly it can be observed that the
graph average Jaccard similarity is constant across all comparisons for the
low pruning rate, as opposed to the decrease observed in the high pruning
rate. Further the stable similarity in the low pruning rate is very similar to
the initial similarity observed for the high pruning rate, indicating that the
smaller decreases in active parameters is better at retaining representational
knowledge of the latent space. To further assess the similarities for the lower
pruning ratio, the class neighbourhood similarity presented in figure 5.14 is
inspected.
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Figure 5.14: plots showing the Class neighbourhood similarity between the unpruned
state 𝐺0, and each pruned iteration 𝐺𝑡 . The x axis shows the iteration 𝑡

used in the comparison.

When inspecting the class neighbourhood similarity, it can be observed a similar
trend of stability as for the graph average Jaccard similarity. The small increases
in class neighborhood with respect to the doubling of 𝑘 is also observed in this
figure. The similarities are observed to be stable around the highest similarity
observed for the high pruning ratio 5.14, further indicating that the choice of
pruning rate affects the models ability to preserve information of the latent
representation of the unpruned model.





6
Discussion
In this chapter we will discuss the results presented in chapter 5 relating the
separate experiments together, while attempting to highlight the connections
between them and the insight they give us about the latent space. Further
this section will discuss challenges, and address the limitations of the work
presented.

6.1 Latent space regions and their complexity

When exploring the latent space of deep neural networks, it is important to con-
sider the various regions the representations are defined in. Investigating the
properties of these regions can bring insight on the models ability to represent
the patterns found within the data. For a model trained for a classification task
we find properties (section 5.1) indicating that the latent space can be roughly
divided into two region types; namely well defined, and mixed regions. Both
regions are of interest to detect, as both can contribute towards understanding
the models ability to handle the complexity posed by the dataset in terms of
finding patterns withing the distributions.

well defined region: A well defined region is comprised of representations
from samples that stems from mostly the same class present in a distinct area
of the latent space isolated from the other classes. Such regions can indicate

53
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that the model has learned good patterns for segregating the class. These are
the desired regions to have the latent space be comprised of, as they indicate
that the model is capable of finding distinct patterns to separate classes into
distinct regions creating clear separations.

Mixed regions: A mixed region is comprised of representations of samples
that stems from a range of different classes. Such regions can indicate chal-
lenges posed by the distributions in the dataset, such as an ambiguous pattern
that is shared between several classes. These can be formed for several reasons,
such as the lack of patterns capable of separating the data. Similarly mixed re-
gions may form if the model is not strong enough to detect deeper complicated
patterns in the data. We contemplate a third factor that can form mixed regions
in classifiers tasked to separate many classes, based on the meaningfulness of
the patterns in terms of the scope of separability. Some ambiguous pattern
present within several classes may aid in separating these classes from the
other classes, however within the classes sharing the ambiguous pattern, it
should be useless. An observation connected to this third reason is elaborated
on in the last paragraph of the next section.

6.2 The intuition of the class graph

The Imagenet1k class graph and the following exploration of it presented in
section 5.2, gives a strong indication that the network-science driven method
is capable of capturing meaningful, and intuitive insight in the latent repre-
sentations. Even though the latent representations are very high dimensional
at R512, the class graph shows tendencies of well defined and denser clusters
that contains many similar classes. Considering the known problems when
working with high dimensional spaces, the class graph shows that the pro-
posed network-science driven method has a promising potential of capturing
relational mappings in higher dimensional spaces.

The clusters found through the Louvain community detection further supports
the observed clustering properties in the space, where the clusters found are
dense within with fewer outgoing edges to other clusters (figure 5.8). The
clusters observed through the Louvain method is not necessarily a concrete
evidence for the existence of clusters due to the algorithm. As the algorithm
aggregates in a greedy manner, the initialisation is important for the conver-
gence. Further the choice of resolution in the algorithm can affect the number
of clusters. Here it was run with a standard value of 1 such that neither bigger or
smaller clusters were favoured. However, as reported, many of the dynamically
detected clusters found by Louvain does appear in agreement with intuition
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when inspected the class labels forming the clusters.

From the class graph (figure 5.6) the presence of hub classes could be observed.
The neighbourhoods of the two hub classes, namelyminiskirt, and band-aid are
found to share a common feature in many of the images for the classes. This
feature, namely a human being, or parts of a human could be the reason for
this observed hubbness phenomenon. During the learning process, the model
should learn to discard the human feature as many classes share this feature.
However, the classes are observed to be present in a similar region of the latent
space, leading to the hypothesis that the human feature can be a factor for
the observed hubness-phenomenon. As Imagenet1k contains 1000 classes, it
might be that the human feature aids in the separation of classes often related
to humans against other classes such as the dogs and birds. Thus on a global
scope between separating all classes, the human feature can be important.
However, within the local hub region it should potentially not be considered,
as all classes in the regions shares the feature.

As we are observing the latent representation between the convolutional
encoder and the fully connected layer of the Resnet-18, the fully connected
layer could potentially have a problem in ignoring the activations caused by
the shared feature found by the convolutional encoder of the network. As each
element in the latent representation is computed as the average pool of each
convolutional filter, a shared activation within a filter can have a significant
impact on the value given by the pooling operation. This potential problem
could be one of the reasons we observe the hubs in the class graph around the
shared human feature.

6.3 Observation scope, and the selection of 𝑘

From the results shown in this thesis, some considerations regarding the
selection of 𝑘 should be considered. The results presented has shown some
clear trends with regards to similarity with respect to 𝑘. If the goal is to observe
the evolution of the latent representations on a local scale, then it can be argued
that constructing 𝐺 with a smaller 𝑘 is favourable. It was observed that the
graphs created with 𝑘 = 4 has a high potential for capturing similarities with
regards to the Jaccard similarity (figure 5.2). However, it is very susceptible
to noise, such that small changes can be have great impact on the small
neighbourhood and thus easily detect local structural changes.

However, if the exploration revolves around observing larger less strict struc-
tures, i.e not comparing direct neighbours but comparing the properties of
neighbouring vertices, the selection of a larger 𝑘 for constructing 𝐺 seems
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favourable. This can be observed in the results showing the class neighbour-
hood similarity, both with respect to the injection of noise (figure 5.3), and
with respect to the iterative pruning performed in the lottery ticket hypothesis
(figures 5.13, 5.14).

From the discussion above there is no clear indication of the best value of 𝑘.
Rather the value of 𝑘 should be carefully chosen based on the property to be
observed. A small 𝑘 is good for strict comparisons and for observing changes
in the smaller local scopes, however, fails to explain bigger structures in the
graph. A larger value of 𝑘 is observed to perform better for investigating larger
topological structures such as clusters and regions. The graph constructions
made with a larger 𝑘 is however found to struggle with capturing the smaller
local structures in the graph.

6.4 Similarity measures, and the transferability
of latent representations

For the analysis done in this thesis, the similarity between two latent repre-
sentations has been measured with regards to two graph similarity measures;
namely the graph average Jaccard Similarity (table 5.4), and the class neigh-
bourhood similarity (table 5.5). The Graph average Jaccard similarity is a strict
measure of equality, as it requires the neighbourhood of a vertice to be com-
prised of the same vertices to get a high similarity. With regards to observing
clustering properties in the latent space, this measure can be too restrictive
and thus fail to find transferable representations between two latent represen-
tations. This argument is made very clear across several experiments, and is
observed with regards to perturbation (section 5.1), training comparisons, as
well as pruning both small and large percentages of weights (section 5.3). The
graph average Jaccard similarity is observed to decrease rapidly, or systemat-
ically result in a low value, across several values of 𝑘. All these experiments
points to the fact that small changes, such as perturbation, or pruning, can
cause significant changes in the local neighbourhoods in the models latent
representation.

For this reason less strict measures of similarity can be advantageous, as they
are observed to capture more transferable patterns in the latent representations.
When observing properties and topology of the latent representations, less strict
similarity measures has better potential for observing broader patterns such
as class clustering and class bordering. If within a well defined class cluster,
small changes can rearrange neighbours entirely. However, the bigger cluster
structure could be observed to be retained through only comparing the label
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property of the vertices, rather than the direct neighbours. Likewise, this is
of interest when observing and compering mixed regions present between
well defined clusters two clusters. These mixed regions will then have a class
neighbourhood consisting of several classes, thus a small rearrangement could
impact the class neighbourhood. For this reason a measure such as the class
neighbourhood can convey information on a broader, larger pattern that is
more transferable between latent representations.

6.5 A note on the lottery ticket hypothesis

With the information given by comparing the stability of the latent representa-
tion during training (table 5.2), where a high similarity between the sequential
latent spaces at epochs 𝑡, 𝑡 + 1, was observed, it was hypothesised that there
would be similar results when iteratively pruning the weights. However, as our
results shows with regards to the evolution of the latent representations for a
high pruning rate: Both the graph average Jaccard similarity (tables 5.9, 5.11)
and class neighbourhood similarity (figures 5.13, 5.14) between the unpruned
and pruned states, shows a similarity trend that converges towards the similar-
ity found between two independently initialised models (tables 5.4, 5.5). With
this observation in mind it could be hypothesised that the latent representation
of the sub-network retains core properties such as the clustering properties of
the original state, however has properties unique to itself.

From the results found with the lower pruning rate, there is no clear decreasing
trend in the similarities with respect to the pruning iterations. Rather it stays
at a constant value similar to the similarity found for the comparisons with the
first pruning done for a high pruning ratio. Even a small change in the available
parameters of the model, is observed to seemingly change representations in a
significant way. This could support the indication that the model will diverge
from the original representation as more parameters are pruned.

From the arguments made above about the latent representation convergence
towards it’s own distinct representation as the ratio of pruned weights increase,
there is an interesting point to be made about the iterative pruning method that
was proposed. Given a more complex problem, i.e a dataset that has deeper
patterns, it is important to have a model capable of capturing them, such that
the latent space can be arranged into well defined regions. For such a complex
dataset, a weaker model could struggle to find the underlying patterns, such
that several mixed regions would be present in the latent space. How does such
an increase in data complexity change the pruning methods ability to reduce
the networks parameters? Given that the sparse sub-network found through
the pruning appears to converge towards it’s own distinct latent representation,
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will the lottery ticket hypothesis method be able to yield equally impressive
reductions when finding this sub-network when posed with the harder, mixed
representations of data? The class graph representation of the Cifar100 dataset
(figure 5.11) indicates that the classes appear to exist in distinct regions of the
latent space, yet with a high connectivity towards a few classes in the core of
the latent space connecting them. This is pointing to the fact that the Cifar100
is not a very complex dataset in terms of defining clusters for the classes.

If it is the case that a more complex dataset reduces the lottery ticket hypothesis
ability to reduce network parameters with an equally impressive amount, then
the whole idea of the ’winning ticket’ initialisation could be questioned. A
’winning ticket’ would in such a case be restricted by the data complexity, such
that easy to find patterns must be present in the data if the sparse sub network
is to retain the performance of the original unpruned network.

6.6 Challenges and limitations

In this section we will discuss challenges and limitations with the work shown
in this thesis. The limitations presented here could potentially impact the
robustness of the discoveries found in the latent representations.

6.6.1 Challenges

At the start of this thesis we worked on the Imagenet1k dataset. This is
well known to be a computationally demanding dataset with it’s 1.28 mil-
lion 224 × 224 pixel images. This in addition to working with the iterative
pruning scheme proposed by [Frankle and Carbin, 2019] which requires many
sequential trainings of the network, made the initial experiments time consum-
ing to run as a result of the combined computational complexity. Unfortunately
the training on Imagenet collapsed, rendering the results useless in terms of
analysing the latent space.

Another challenge posed during the work is the computational complexity
of finding the shortest paths: Dijkkstra’s shortest path algorithm has a time
complexity of 𝑂 ( |𝑉 |2), where 𝑉 is the set of edges in a graph 𝐺 . Performing
this for each pair of vertices in 𝐺 will scale very badly with the number of
vertices in 𝐺 because of the quadratic time complexity scaling. Thus, results
such as the class graph 𝐺𝑐𝑙𝑎𝑠𝑠 which relies on having all pair shortest paths in
𝐺 = (𝑉 , 𝐸), quickly becomes computationally expensive as |𝑉 | increases.
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6.6.2 Limitations

Model selection: The results shown from exploring the latent space is
restricted to one model architecture, namely the Resnet-18. For this reason the
results shown can contain artefacts only present in the Resnet-18’s latent space,
or at worst, the properties uncovered can be totally unrepresentative for other
latent spaces.

Datasets: Similarly only two datasets were used for the experiments. The
limited number of datasets could potentially also limit the robustness of the
properties discovered, as the observed properties could be artefacts produced
by the datasets. Although we explore the latent space of Imagenet1k on the
pretrained Resnet-18, the experiments requiring training a model is only per-
formed with Cifar100. Cifar100 is a well known reference dataset, however
when compared to Imagenet1k it is a far less complex dataset.





7
Conclusion
In summary, this thesis reviews the findings from exploring the latent space
deep neural networks with a network-science approach. The latent space
exploration includes the investigation of properties such as class relational
representations, regions with well defined clusters, and observing to which
extent these properties are transferable between the latent representations of
two distinctly trained models. Further the exploration uncovers the stability,
and susceptibility of the latent space with regards to perturbation through
the introduction of noise, as well as through iteratively retraining and pruning
the weights of the model to find sparser sub-networks. As the function con-
stricting the latent space of neural networks is unknown, we approximated the
topology considering the 𝑘 nearest neighbours graph constructed by the latent
representations of images given to the neural network. This graph created the
foundation for which the exploration was performed.

The class graph created from the shortest paths on the constructed nearest
neighbour graph (section 5.2) shows promising capabilities in mapping rela-
tional information between the classes embedding in the latent space. The
information given by the class graph can help in understanding the embed-
dings of the latent space and detect bigger regions containing similar classes,
as well as denser hub regions.

With regards to stability,we observed the similarity in the latent representations
between several epochs when the model has converged in terms of validation
accuracy. With respect to both similarity measures, namely the graph average
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Jaccard similarity (table 5.2) and class neighbourhood similarity (table 5.3) we
discovered high similarities in the range 89 − 93%, 94 − 97% respectively for
all values of 𝑘 used during construction showing that the latent representations
converge to a point where only minor rearrangements occurs between epochs.
With the same similarity measures, we observed the transferability between the
latent representations between two independently initialised models trained
with the same method. Here it was observed that the Jaccard similarity gave
a low similarity in the range 15 − 21% (table 5.4) increasing with a larger
value of 𝑘. The class neighbourhood similarity gave a higher similarity in the
range 53 − 64% (table 5.5) also increasing with 𝑘. These results stresses the
importance of selecting an appropriate similarity measure, as well as a suitable
𝑘 for constructing the graph, depending on the properties of the latent space to
be observed. For detecting similar structures i.e well defined regions between
two distinct latent representations, the combination of graph constructions
with a larger 𝑘, and a similarity measure such as the class neighbourhood
proves better suited for the task through our results.

Further we observed the susceptibility of the latent representation with regard
to perturbation. When introducing Gaussian noise to the latent representation,
we discovered that the graph average Jaccard similarity between the original,
and perturbed latent representation decreased rapidly (figure 5.2). This finding
indicates that the direct neighbouring structure of the latent representations
is very sensitive to perturbation. However, from the results from observing
the class neighbourhood similarity with respect to the same noise (figure 5.3),
it is clear that the neighbourhoods with respect to the class label are less
susceptible to the introduced noise. For 𝑘 = 16 we observe a decrease of 12% in
neighbourhood similarity when introducing noise with as much variance as is
present in the original latent space. This observation indicates a strong presence
of separated well defined regions comprised of representations with the same
class, such that when noise is introduced, only the structure of direct neighbours
are affected. However, the distinct cluster retains it’s structure. This observation
was further supported when observing the models performance on the noised
latent representation (figure 5.4). Only a 4% decrease in accuracy was found
when introducing noise with as much variance as is in the system, emphasising
the importance of these well defined clusters in the latent representation.

Through exploring the evolution of the latent representation for a network
pruned iteratively by the lottery ticketmethod,we discover some properties that
potentially could point to the fact that there is no winning ticket. By observing
the graph average Jaccard similarity when pruning with a high pruning rate,
we observed that the similarity converged to the range 0.12−0.17% depending
on 𝑘 (table 5.9). The similarities found here are lower than the similarity when
comparing the latent representations of two unique models for all𝑘 (figure 5.5),
showing that the pruned model creates it’s own distinct latent representation
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through the pruning. The Class neighbourhood through the pruning had a
similar trend, where it was observed to decrease during the iterative process
(figure 5.13). By using a lower pruning rate between each iteration of the lottery
ticket, we observe that both the graph average Jaccard similarity (table 5.11)
and the class neighbourhood similarity (figure 5.14) remain stable across all
iterations. Given that the sparse sub network appears to converge to its own
latent representations, the concept of a ’winning ticket’ could potentially be
questioned, as the sub networks ability to retain the performance of the original
network could rely on the complexity of the patterns in the data.

7.1 Further work

With the limitations of this work in mind discussed in section 6.6, there are
several interesting aspects of the latent representations to uncover. Firstly,
it is crucial to perform the experiments on a wider combination of network
architectures and datasets. This is necessary to establish whether the properties
observed in the latent space through our work is universally applicable. Before
such a wider exploration is performed there is not enough evidence to propose
any hard conclusions related to the latent representations of deep learning
models.

Many of the performed experiments shows that the local neighbourhood struc-
tures in the latent representation are very susceptible to change when per-
turbed. The perturbation can occur both through noise as well as through an
iterative pruning on the network. However, it was observed that the network
is able to retain most, if not all of it’s accuracy after such a perturbation even
when the latent representation appears severely different with respect to the
original unperturbed network. Through the experiments performed in this the-
sis the similarity has been observed, with respect to the strict neighbourhood
of vertices by the Jaccard similarity, and the less strict class neighbourhood
similarity. Both of these measures are measures similarities on a local scope
and aggregates an average for the entire network. It is yet to compare the
models with a global measure, such as by observing the similarity of the close to
zero Laplacian eigenvalues of the graphs. By observing the spectral similarity,
similar properties could be compared on a global scope between two latent
representations.

From what has been observed when comparing the results from the iterative
pruning, it could be of interest to test the lottery ticket hypothesis on a more
complex dataset such as Imagenet1k. Is it still possible to prune 90% of the
convolutional weights when attempting to separate a more complex dataset,
or will it be observed to collapse for a lower ratio of pruned weights? It could
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be that the hypothesis only works on datasets that are easy to embed in the
latent space as defined clusters for each class, and thus fails to achieve the
same results for more complex and messy data.

While discussing the potential use cases of the class graph tool, we theorised
on using the regional information given by the graph for constructing re-
gion specific classifiers for difficult regions similar to the Mixture of Experts
[Jacobs et al., 1991] idea. By constructing an architecture consisting of a router
model together with several smaller models that are trained on local regions,
we could potentially leverage the patterns within the on a global and a local
scale. The router model would consider the input with respect to all classes,
select the region it belongs to, and send it to the ’expert’ model. The ’expert’
networks would be trained on a subset of classes from the respective region on
the class graph it is responsible for. Given the discussion on hubs in the class
graph (observed in figure 5.8) such a mixture of experts architecture could
potentially be better at exploiting the patterns relative to the scope. The routing
model could learn from the patterns shared between classes to perform a global
scope assertion on the respective region, while the expert models could learn
patterns to distinguish the classes within the region. Such a mixture of experts
architecture would be more computationally expensive than a single model
that considers all classes. However, the smaller expert models could potentially
learn better representations for separating the data within the region that the
model considers as it would not be influenced by the patterns important on a
global scale between all classes.
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