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Summary 

Inflammatory bowel disease (IBD) is a chronic autoimmune inflammatory disease consisting 

of two major types: Ulcerative colitis (UC) and Crohn's disease (CD). UC is limited to the colon 

in contrast to Crohn's disease affecting any area in the gastrointestinal tract. Both UC and CD 

are characterized by a relapsing and remitting time course. The pathogenesis of UC involves a 

complex interplay of genetic susceptibility, environmental factors, and immune system 

dysregulation. The complex relationship between UC remission and relapse in terms of genetic 

alterations, epigenetic modifications, and non-coding RNAs (ncRNAs) is not fully understood.  

Current treatment strategies are hampered by the lack of the ability to predict relapse in UC 

patients. Clinical diagnostic tools are frequently limited by visible disease manifestations, 

which are often absent in remission patients. Therefore, the molecular characterization of 

remission is needed.  

Whole transcriptome sequencing (RNA-seq) and whole genome bisulfite sequencing (WGBS) 

data from mucosal biopsies have been used to explore the molecular landscape in remission 

and active UC. A group of mitochondrial RNAs and snoRNAs was identified that may be able 

to predict the duration of remission in UC. Several remission-specific genes were identified 

involving pro- and anti-inflammatory pathways whose expression may be under the control 

of methylation. Several long non-coding RNAs (lncRNAs) were discovered that may be under 

the regulation of methylation and involved in the inflammatory immune response. 

The results may provide an understanding of UC pathogenesis and potential diagnostic 

markers that may contribute to disease management for remission patients. 
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1 Introduction 

1.1 Inflammatory Bowel Disease 

Inflammatory Bowel disease (IBD) is a chronic inflammatory disease with a relapsing-remitting 

course. IBD comprises a group of disorders that cause inflammation in the gastrointestinal 

tract [1]. There are two major types of IBD: Ulcerative colitis (UC) and Crohn’s disease (CD), 

with some differences in their pathophysiologies [2]. The exact causes of IBD have not been 

fully understood. UC and CD have similarities in clinical manifestations. UC is characterized by 

chronic inflammation primarily in the colon while CD affects the whole gastrointestinal tract. 

Symptoms associated with IBD include diarrhoea, rectal bleeding, weight loss, and abdominal 

pain. IBD affected 6.8 million people in 2017, and the number is predicted to keep rising due 

to an increasing prevalence [3,4]. Although the global age-standardized death rate from IBD 

decreased from 1990 to 2017 due to recent treatment advances [5], UC patients still have an 

increased risk of developing colorectal cancer (CRC) [6,7].  

 

1.1.1 Ulcerative Colitis 

UC is limited to the mucosal layer of the colon and the rectum [8]. The cause of UC is believed 

to be a result of genetic susceptibility and environmental risk factors including lifestyle choices, 

stress, and gut microbiota alterations. The interplay between these factors can compromise 

the immune response in the gastrointestinal tract and eventually lead to chronic inflammation.  

 

1.1.2  Management of UC 

After diagnosis of UC, medical treatment and clinical management are often required. The 

treatment decision follows a step-by-step procedure as depicted in Figure 1, with the 

consideration of the treatment response and severity. 5-aminosalicylic (5-ASA) is commonly 

used as the first-line treatment for UC patients with mild to moderate disease. 5-ASA 

treatment may reduce the risk of CRC [9]. However, only 40%-70% of patients respond to 5-

ASA treatment [10]. Patients that do not respond to 5-ASA often receive steroids. For mild to 
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moderate UC, a combination of 5-ASA and corticosteroids is used, especially for left-sided and 

extensive UC [11]. 5-ASA is also commonly used for maintenance therapy for remission 

patients [12]. 

 

Figure 1. The treatment pyramid after diagnosis of UC. With permission from [13]. 

 

When the treatment with corticosteroids is not successful, immunomodulators (IMs) are used. 

IMs including azathioprine, 6-mercaptopurine(6-MP), and methotrexate suppress the 

immune system [14]. However, the effect of IMs has not been carefully evaluated. Evidence 

indicates that prolonged low doses of methotrexate could lead to chronic liver disease, fibrosis, 

and cirrhosis [15,16]. It has been reported that immune suppression may be associated with 

a higher rate of adverse events such as increased risk of cancers [17]. With sparse data 

available, the efficacy of IMs as a treatment option is still elusive [18]. 

Recently, the biological agent anti-TNFα (e.g., infliximab) has been used for patients with 

moderate-to-severe UC or patients who do not respond to conventional therapies like 5-ASA, 

corticosteroids, or IMs [19]. 40% of UC patients achieved remission through the combination 

of anti-TNF-α with IMs [11]. When patients do not respond to treatments or have severe 

complications, surgery such as colectomy or proctocolectomy is considered [20]. 
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1.2 Remission 

Remission is a term to describe UC in the absence of inflammation in the colonic mucosa. 

Three definitions of remission are widely used, namely clinical remission, endoscopic 

remission, and histological remission. These definitions are based on different criteria and 

may be used in combination to determine whether a patient has achieved remission. 

Clinical remission includes the cessation of rectal bleeding and normal stool frequency [21]. 

Diagnosis of clinical remission is often relying on patient-reported outcomes and endoscopy 

scores [22]. Endoscopic remission is defined as the absence of inflammation in the colon 

during endoscopy. The most widely used clinical scoring system is the Mayo score [23]. The 

evaluation of histological remission is controversial in terms of criteria and methods [23]. 

Histological activity such as crypt structure for defining remission was used in studies focused 

on incorporating more objective measures of disease activity [24]. Currently, the Geboes score 

is a widely used histological method for evaluating inflammation in UC [25,26]. Achieving 

histological remission is challenging in clinical studies because of invasive nature of biopsies 

taking [23]. The term “mucosal healing” is commonly used for the remission assessment with 

only endoscopic results [27]. In some studies, the combination of mucosal healing and clinical 

remission is described as deep remission, which is associated with better clinical outcomes for 

UC patients [28].  

 

1.2.1 Classification and Diagnosis of UC 

To ensure effective treatment strategies for UC, it is important to have a detailed system for 

disease classification. Anatomically, UC is located in various parts of the colon (Figure 2). 

Based on disease severity, UC is classified into mild, moderate, or severe disease.  

Additional endoscopic, histologic and laboratory tests are needed to diagnose UC and to 

define the inflammatory status [23,29]. Biomarkers including calprotectin, faecal C-reactive 

protein (CRP), and prostaglandin E-major urinary metabolite (PGE-MUM), are extensively used 

as diagnostic indicators but are not sensitive or specific to UC [30,31]. Currently, it is not 

possible to diagnose UC using a single biomarker [30]. 
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Figure 2. Ulcerative Colitis phenotypes. With permission from [32]. 

 

1.2.2 Clinical Outcome 

The efficacy of the different treatments is not satisfactory as up to 40% of severe UC patients 

do not respond to anti-TNF-α treatment [33]. Anti-TNF-α agents in conjunction with IMs have 

demonstrated marked improvements in both response and remission rates in UC [34]. Of note, 

these therapies have not only facilitated prolonged mucosal healing and deep remission but 

also minimized the potential for future complications [35]. However, despite a general decline 

in the risk of colectomy, clinical data show that emergency colectomy rates have not changed 

over time [36]. Patients in remission often relapse upon discontinuation of treatment due to 

side effects [28,37]. Discontinuation of anti-TNF-α treatment results in relapse rates of 30-40% 

within the first year and exceeds 50% beyond two years [34]. Patients in deep remission have 

a higher likelihood of maintaining remission at a 12-month follow-up [28]. Patients achieving 

histological remission have a minimal risk of relapse [38]. The European Crohn’s and Colitis 

Organisation (ECCO) is proposing recommendations for treatment options to achieve 

remission [39].  
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1.3 Pathogenesis of UC 
The pathogenesis of UC includes a complex interplay between genetic, environmental, 

microbial, and immunological factors. These factors collectively contribute to the 

development and progression of UC [40].  

  

Figure 3. The factors that contribute to IBD pathogenesis. With permission from [1]. 

 

1.3.1 Genetics 

Individuals with a family history of UC have an increased risk of developing the disease 

compared to the general population [41]. Yet, genetic risk factors explain only a small fraction 

(7.5–22%) of UC prevalence [42,43]. Genome-wide association studies (GWAS) identified 163 

loci associated with IBD, including 23 loci specific to UC and 110 loci shared between UC and 

CD [44,45]. IBD risk genes include interleukin-10 (IL10), CD40 molecule (CD40), signal 

transducers and activators of transcription 1 and 4 (STAT1 and STAT4), interleukin-2 (IL2), and 

major histocompatibility complex, class II DR beta 1 (HLA-DRB1). However, the exact influence 

of these genes in IBD pathogenesis is not fully understood. Susceptibility genes are involved 

in immune regulation, inflammatory responses, and gut barrier function. Single nucleotide 

polymorphisms (SNPs) in genes such as caspase recruitment domain family member 15 

(CARD15), nucleotide-binding oligomerization domain containing 2 (NOD2) and several Toll-

like receptors (TLRs) are involved in innate immunity and associated with UC [46,47]. Genes 
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involved in adaptive immunity associated with an increased risk of UC include the human 

leukocyte antigens (HLAs), particularly HLA-DRB1 [48]. Interleukins (ILs) are cytokines that are 

key molecular modulators involved in UC [49]. Several reports suggested that the interleukin 

23 receptor (IL23R) and signal transducer and activator of transcription (STAT3) are associated 

with the Th17 pathway [50,51]. Other IBD risk genes are involved in the maintenance of 

epithelial barrier integrity, such as extracellular matrix protein 1 (ECM1), cadherin-1 (CDH1), 

hepatocyte nuclear factor 4 alpha (HNF4A), laminin beta 1 (LAMB1), prostaglandin EP4 

receptor (PTGER4), solute carrier family 22, member 4/5 (SLC22A4/SLC22A5), myosin 9B 

(MYO9B), and multidrug resistance mutation 1 (MDR1) [52]. 

 

1.3.2 Environmental Factors 

UC is influenced by a multitude of environmental factors, including smoking, hygiene, lifestyle, 

microbiota, body weight, stress, antibiotic usage, and diet (Figure 4) [53,54]. These factors can 

directly or indirectly affect microbial diversity and modulate immune responses [55,56].  

 

Figure 4. The environmental factors of IBD. With permission from [57]. 
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1.3.3 Gut Microbiota 

Dysbiosis characterized by an altered composition of microbiota has been associated with 

heightened intestinal inflammation in UC [58,59]. The bacteria B. vulgatus is associated with 

UC severity [60]. To address dysbiosis in the gut microbiota, faecal microbiota transplantation 

(FMT) has been used as a treatment option for UC patients. However, FMT is not always an 

effective treatment [61,62]. 

 

1.3.4 Nutrition 

Diet varies significantly between regions and cultures [63]. The precise mechanisms of how 

diet affects UC development are unknown. Epidemiological evidence suggests that children of 

immigrants moving from undeveloped to developed countries show a higher incidence of IBD 

[64]. The Mediterranean diet, which includes substantial amounts of whole grains, fruits, and 

vegetables, has been shown to help alleviate UC [56].  

 

1.4 Inflammation in UC 
Dysbiosis in the gut has been implicated to be important in the development and progression 

of UC [65]. The dysbiosis disrupts the normal function and composition of the epithelial layer, 

which may be involved in the development and progression of UC through regulation of gut 

permeability [66]. Epithelium consists of several types of cells including stem cells, goblet cells, 

Paneth cells, glial cells, and epithelial cells (Figure 5). Stem cells in the crypt can differentiate 

into different cell types including goblet cells and epithelial cells. Paneth cells are secretory 

cells that produce antimicrobial peptides [67]. Glial cells provide nutrition to neurons and 

communicate with neurons [68]. Goblet cells located in the epithelium produce and secrete 

mucus. Depletion of goblet cells results in a weakened mucosal layer [69]. Structural 

weakening of the mucus barrier is an early event in UC pathogenesis. The weakening of the 

mucosal barrier exposes the underlying epithelium to potential damage [70]. Epithelial cells 

are a physical barrier that maintains the permeability of nutrients but limits the entry of 

pathogens. Disrupted tight junctions (TJs) in the epithelial layer increase epithelial 
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permeability, which allows bacteria, toxins, and other antigens to penetrate the intestinal 

tract [71]. Pathogens go through disruptive TJs and then trigger an immune response resulting 

in inflammation [72].  

 

Figure 5. The crypt contains various cell types. With permission from [73]. 

 

Under the epithelium, the lamina propria harbours numerous immune-derived cells, including 

macrophages and lymphocytes (Figure 6) [74,75]. In the event of injury or infection, immune 

cells within lamina propria migrate to the site of damage and initiate an immune response 

[76].  

The immune response is classified into two branches: the innate and the adaptive immune 

responses. The innate immune system serves as the first line of defence against microbial 
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pathogens and is characterized by a rapid non-specific immune response [77]. Dendritic cells 

(DCs), macrophages, and B cells are antigen-presenting cells (APCs) communicating between 

innate and adaptive immune responses [78]. APCs can initiate an immune response to combat 

threats [79]. These cells express pattern recognition receptors (PPRs), such as Toll-like 

receptors (TLRs) and nucleotide-binding oligomerization domain-coding proteins (NODs), to 

recognize specific molecular patterns [71]. After recognition, TLRs stimulate downstream 

signals by secreting pro-inflammatory mediators [80]. These mediators, including cytokines 

and chemokines, are key molecules that connect the innate immune response and adaptive 

immune response.  

The adaptive immune system generates specific and long-lasting responses to pathogens. This 

system is composed of T cells and B cells. T cells can differentiate into cytotoxic CD8+ T cells, 

and T helper cells (CD4+ T cells) after being stimulated by APCs [81]. CD8+ T cells participate 

in apoptosis [82]. T helper cells release various cytokines to regulate the immune response 

[83]. Among T helper cells, Th1, Th2, Th17, and regulatory T cells (Tregs) are pivotal in an 

adaptive immune response [84]. Chronic inflammation in UC may be partly due to an 

imbalance between pro-inflammatory T cell subsets (Th1/Th2 and Th17) and anti-

inflammatory Tregs [85]. B cells have antigen-binding receptors and recognize antigens 

directly [86].  

The immune system in active UC is activated, resulting in an elevated production of pro-

inflammatory cytokines and chemokines [87]. The complex network of immune response and 

interactions is depicted in Figure 6.  
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Figure 6. Pathogenesis of UC. Adapted and with permission from [88]. 

 

1.4.1 Inflammatory Mediators 

Many pro-inflammatory molecules and signalling pathways contribute to the immune 

response in UC. Key inflammatory mediators released in various immune cells include Tumour 

Necrosis Factor-alpha (TNF-α), interleukin-6 (IL6), and interleukin-1 beta (IL1B). The 

dysregulation of pro-inflammatory cytokines such as TNF-α can contribute to immune cell 

recruitment and activation, leading to chronic inflammation [89]. Cytokines can alter the 

balance of anti-inflammatory and pro-inflammatory responses. This may induce tissue 

damage and subsequentially lead to an increased exposure to antigens and sustained immune 

responses [32,90].  

IL6 is pro-inflammatory in chronic inflammation and anti-inflammatory in acute inflammation 

[91]. IL6 is highly expressed in active UC and involved in the differentiation of Th17 cells and 

Treg cells [92,93]. An increased expression of IL6 and its consequent interaction with CD4+ T 

cells lead to the induction of the expression of the anti-apoptotic genes, such as STAT3 and B-

cell lymphoma-extra-large (BCLxL). Anti-apoptosis elevates the population of CD4+ T cells in 
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the lamina propria, which leads to perpetuating chronic intestinal inflammation [94,95]. The 

gut microbiome may also stimulate macrophages and DCs to release IL6 [96].  

IL10 is a regulatory cytokine that inhibits antigen presentation and pro-inflammatory cytokine 

release [97]. Treg produces IL10 to impair the production of IL1B thereby suppressing 

intestinal inflammation [98]. IL10 may also inhibit the production of pro-inflammatory 

cytokines such as TNF-α and interferon-gamma (IFN-γ) in Th1 cells and macrophages [99].  

 

1.5 Epigenetics 
The term "epigenetics" refers to changes in gene expression patterns that are brought on by 

changes in the DNA structure or its related proteins rather than changes in the DNA sequence 

[100]. Epigenetic modifications include DNA methylation, histone modification and non-

coding RNAs, depicted in Figure 7 [101–104]. Epigenetic regulation of gene expression levels 

is heavily influenced by the environment [105,106]. The interactions between the genome 

and the environment have the potential to modify gene expression and impact an individual’s 

susceptibility to certain diseases [107]. The expression of many genes is regulated by 

epigenetics during embryogenesis and ageing [108].  

 

Figure 7. Overview of epigenetic modifications. With permission from [109]. 
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1.5.1 DNA Methylation Mechanism and Biological Effects 

DNA methylation is the addition or removal of a methyl group on cytosine nucleotides. 

Methylation events occur typically on the CpG sites where a cytosine is followed by a guanine 

nucleotide. Large stretches of CpG sites are called CpG islands [110]. CpG islands are located 

mostly in promoter regions of transcripts [111]. The methylating of CpG sites can regulate the 

expression of a transcript through activation or inactivation of the transcription (Figure 8). 

Many biological processes are regulated by methylation such as embryonic development, 

suppression or activation of transcription, and X-chromosome inactivation [112,113]. Notably, 

60%-80% of CpG sites in the human genome are methylated [114]. Hypermethylation is an 

increase in methylation, which is the default for most CpG islands [115]. Hypermethylated 

DNA may have limited access for transcription factor binding, which may further reduce the 

gene expression level [116]. 

 

Figure 8. DNA methylation mechanisms in regulating gene expression. With permission from [117]. 
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1.5.2 DNA Methylation in UC 

The influence of DNA methylation on the UC progression is still unclear. DNA methylation has 

been shown to be involved in the dysregulation of T-cell development and differentiation 

[118–121]. A Change in methylation profiles of CD8+ T cells and B cells has been reported 

[122,123]. Studies have shown that several pro-inflammatory genes such as toll-like receptors 

2 (TLR2), toll-like receptors 4 (TLR4), and TNF-α are under epigenetic regulation [124–126]. It 

is hereby noted that DNA methylation can also occur in the absence of known CpG islands 

[127]. Previous research has revealed a global hypomethylation of DNA in UC patients [128]. 

Hypomethylation of sialic acid binding Ig like lectin 5 (SIGLEC5), cluster of differentiation 86 

(CD86), and CXADR like membrane protein (CLMP) is related to severe UC [129]. Protease-

activated receptor 2 (PAR2) hypermethylation is observed related to the severity of UC [130].  

DNA hypomethylation is related to increased blood CRP levels and expression of NOD2 [131]. 

Transcription factors that are methylation regulated and associated with inflammation are the 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), forkhead box P3 

(FOXP3), interferon regulatory factors (IRFs), and STAT3 [132].  

 

1.6  Functional Genomics 
Functional genomics is a field that studies transcriptomics, genomics, proteomics, and 

metabolomics to define distinct phenotypes (Figure 9).  

 

Figure 9. Overview of functional genomics. With permission from [133]. 
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1.6.1 Transcriptomics and Epigenomics 

Transcriptomics focuses on the study of all RNA molecules present in a cell or tissue at a given 

time, collectively known as the transcriptome. The transcriptome includes ribosomal RNA 

(rRNA), transfer RNA (tRNA), messenger RNA (mRNA), non-coding RNA, and other RNA species 

[134]. There are three common methods to measure the transcriptome: PCR arrays, 

microarray, and next-generation sequencing (NGS).  

PCR arrays are a sensitive technique used to quantify gene expression levels [135]. This 

method uses reverse transcription to create complementary DNA (cDNA) followed by 

amplification of specific transcripts and housekeeping genes (controls) [136]. PCR arrays have 

advantages offering precise and rapid quantification of known genes [137]. PCR arrays are not 

able to discover novel transcripts or provide a comprehensive view of the transcriptome [137]. 

Microarray uses hybridization of cDNA transcripts to a pre-designed array of nucleotide 

probes. This allows for the relative quantification of known transcripts [138]. They are suitable 

for large-scale studies, though this method is non-explorative and limited to the probes 

designed. The limited dynamic range between signal background levels and saturation levels 

may be unfavourable for downstream analysis [139,140].  

RNA sequencing is a NGS approach, which sequences cDNA from reversed transcribed RNA, 

providing quantitative data [141]. RNA-seq can be used for gene expression or whole 

transcriptome including novel transcripts and isoforms in the genome with higher resolution 

and dynamic range than microarrays [142].  

Beyond transcriptome analysis, sequencing can be used to study epigenetic modifications. 

DNA methylation can be detected by bisulfite conversion sequencing (BS-seq), which uses 

bisulfite treatment to change unmethylated cytosine to uracil [143,144] (Figure 10). DNA 

methylation status may aid in the functional interpretation of the genome [145].  

Several methods are available for the detection of methylation events, including PCR-based 

methods, microarrays, reduced representation bisulfite sequencing (RRBS) and NGS.  
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PCR-based methods such as methylation-specific polymerase chain reaction (MSP) use 

specific primers to detect the methylation status of targeted sequences. After treating 

samples with bisulfite, two sets of primer targets both methylated DNA and unmethylated 

DNA sequence [146]. After amplification, sequences from the methylation-specific primers 

could provide qualitative result with high sensitivity [147]. This PCR-based method is not 

suitable for genome-wide analysis because it requires predefined regions [146].  

 

Figure 10. The bisulfite conversion in bisulfite sequencing. With permission from [148].  

 

Array-based methods use probes to hybridize bisulfite-converted DNA that enable analysis on 

selected CpG sites or regions [149]. Illumina Infinium array platform uses two types of probes 

for each CpG site: One for the methylated sequence and another for the unmethylated. After 

hybridization, fluorescent signals can be detected with different intensities to determine the 

methylation status at each CpG site [150]. Though the number of detected CpG sites is limited, 

array-based methods are commonly used due to the established standardised processing 

methods [151].  
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Another method for detecting methylation status is reduced representation bisulfite 

sequencing (RRBS). This method provides the opportunity for large-scale investigation of 

methylation patterns across the entire genome [152]. RRBS uses the restriction enzyme MspI 

which recognizes the DNA sequence CCGG [153] (Figure 11). Then, the adapter-ligated DNA is 

selected for the proper size, treated with bisulfite, and PCR amplified [154]. The treated DNA 

is sequenced. RRBS mostly targets CpG rich regions, which leaves CpG-poor regions and 

intergenic areas with relevant methylation changes ignored [155]. Furthermore, the 

restriction enzyme is also limited to the genomic regions containing recognition sites, leaving 

the sequence lacking those sites undetected [156]. The advantage of RRBS is that it is cost-

effective compared to WGBS. RRBS allows for single-nucleotide resolution methylation 

analysis [155]. 

 

Figure 11. Overview of WGBS and RRBS. Adapted and with permission from [157]. 

 

Next-generation Sequencing (NGS) can be used to sequence the whole genome, or regions of 

interest by targeted capture or amplification. There are two methods of NGS for methylation 

detection, which can be classified into indirect and direct methods. Indirect methods such as 

whole-genome bisulfite sequencing (WGBS) which requires amplification [158]. Direct 

method such as Oxford Nanopore sequencing can detect all methylation events in real-time 

without the need for amplification [159].  
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WGBS provides information across the entire genome including low density CpG areas 

[160,161]. Due to the substantial number of potential methylated CpG sites, and the large 

amount generated data, WGBS requires significant financial investment and computational 

resources to process and analyse [160]. Another limitation is bisulfite treatment, which 

converts both 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) to uracil [162]. 

Bisulfite treatment is harsh, it is performed at a low pH and temperatures up to 90°C [163]. 

This condition may lead up to 90% DNA loss [158]. 

In contrast, nanopore sequencing can be applied as a WGBS method, which provide direct 

detection of methylation marks from native DNA. Nanopore sequencing uses tiny pores to 

measure the current in real-time when molecule passes. It could provide insights into both 

CpG and non-CpG methylation with reduced preparation steps and lower costs [159]. The 

long-read capacity of Nanopore also improves the interpretation of genome structural 

variation, which is challenging with short-read WGBS [164]. 

 

1.6.2 Non-coding RNAs  

Non-coding RNAs (ncRNAs) do not appear to have any functions in protein-coding, including 

small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs) [165]. Studies show that 

snoRNAs are involved in rRNA modification [166]. LncRNAs are transcripts longer than 200 

nucleotides including miRNAs, siRNAs, and some snoRNAs [167]. LncRNAs regulate gene 

expression by various mechanisms including transcription, post-transcriptional modifications, 

translation, and post-translational modifications [168–170]. In UC, lncRNAs can participate in 

the innate and adaptive immune responses [171]. Dysregulation of specific lncRNAs has been 

implicated in UC pathogenesis [172]. LncRNAs have been shown to be involved in regulation 

of lipid and atherosclerosis, and T-cell receptor signalling [173]. For example, interferon 

gamma-antisense RNA 1 (IFNG-AS1) was reported as a pro-inflammatory lncRNA that 

regulates the expression of IFNG [174]. Metastasis-associated lung adenocarcinoma transcript 

1 (MALAT1) is an example of a newly discovered lncRNA associated with UC [175].  
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2 Aims 

The pathogenesis of UC is complex and defined by the interplay between genetic and 

environmental factors. The overall research goal of this work was to study the interplay 

between gene expression and DNA methylation in UC. The correlation between gene 

expression and DNA methylation is believed to provide novel specific molecular signatures in 

UC.  

Aim 1: To identify molecular signatures that could predict relapse in UC remission. 

Aim 2: To characterize DNA methylation patterns in UC remission patients.  

Aim 3: To investigate the interplay between methylation and lncRNA expression associated 

 with UC pathogenesis.  

  



 

19 

3 Material and Methods 

3.1 Biopsy collection and study populations 
UC biopsies were taken from an established biobank, approved by the Norwegian Board of 

Health, the Advanced Study of Inflammatory Bowel Disease (ASIB) study biobank at the 

University Hospital of North Norway (UNN) during the period 2004-2014. A standardised 

sampling method was used to collect mucosal biopsies. All studies were approved by the 

Regional Committee of Medical Ethics of Northern Norway, Ref no: 14/2004, 1349/2012 and 

29895/2020. The study participants signed informed and written consent forms. The study 

participant consisted of treatment-naïve UC patients with mild to moderate disease activity, 

UC patients in remission, and control groups (Table 1). The diagnosis of UC was established 

based on the clinical histology and endoscopic criteria as given by the ECCO guidelines [176]. 

The degree of inflammation was established during endoscopy using the UC Disease Activity 

Index (UCDAI) [177]. Control subjects underwent cancer screening, showing normal 

colonoscopy and normal histological examination. The exclusion criteria included serious 

medical conditions, immunological disorders, irritable bowel syndrome (IBS), polyps, cancer, 

or abnormal histology in colonic biopsies. To investigate the degree of UC activity, tumour 

necrosis factor-alpha (TNF-α) mRNA expression levels were quantified by real-time 

polymerase chain reaction (qPCR) [178]. Biopsies from patients with active UC were obtained 

from the active inflammation site and from the sigmoid part of the colon. Biopsies obtained 

from UC patients in remission with zero endoscopic score were included in the study. 

Additional patient information is protected by patient confidentiality. 

Table 1. The patient cohort. 

  Included   Disease severity 
Paper I Normal controls n = 16 -  

Remission n = 26 Remission  
Treatment-naïve UC n = 14 Mild - moderate 

Paper II Normal controls n = 11 -  
Remission n = 20 Remission  

Treatment-naïve UC n = 12 Mild - moderate 
Paper III Normal controls n = 11 -  

Treatment-naïve UC n = 13 Mild - moderate 
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3.1.1 Tissue handling 

Biopsy samples were taken from the sigmoid colon and were preserved in RNA stabilization 

reagent RNAlater (Ambion/ Qiagen). The biopsies in RNAlater were kept at room temperature 

for maximum overnight, then at -20 °C until RNA isolation. 

 

3.1.2 Quantitative polymerase chain reaction (qPCR) 

Quantitative polymerase chain reaction (qPCR) was used to quantify mRNA to measure the 

transcription of TNF-α [178]. The number of copies of a gene reflects the activity of gene 

expression.  

 

3.1.3 Histology 

For histological examination, biopsies were immediately preserved in 10% formalin and 

further evaluated by experienced pathologists. The assessment involved scoring based on the 

Geboes Score [26].  

 

3.2 Library preparation 
The Allprep DNA/ RNA Mini Kit and the QIAcube instrument (Qiagen) were used to isolate 

total RNA and DNA from the same patient sample. The RNA quantity and purity were assessed 

by using the NanoDrop ND-1000 spectrophotometer (ThermoFisher Scientific). The Experion 

Automated Electrophoresis System (Bio-Rad) and the RNA StdSens Analysis Kit (Bio-Rad) were 

used to evaluate RNA integrity. The RNA samples were kept at −70°C unƟl further use. All RNA 

samples used for analyses showed an RNA integrity number (RIN) value between 8.0 and 10.0. 

The DNA methylation libraries were prepared following the methods described by Taman et 

al [127]. The SeqCap Epi CpGiant Enrichment kit (Roche) was used to prepare the DNA 

methylation libraries which has been discontinued in 2022. Briefly, 1 µg of genomic DNA was 

fragmented and ligated with an A-tail and adapters. DNA underwent bisulfite treatment (Zymo 

Research) and a dual-size selection. After a PCR amplification, the products were cleaned and 

then hybridized to the SeqCap Epi libraries. The samples underwent a 72-hour hybridization 
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process at 47°C. Then the samples were cleaned and washed, followed up by a PCR 

amplification step. Finally, the PCR products were cleaned up and the DNA libraries were 

eluted (Figure 12). DNA fragment size was measured, and DNA libraries were assessed with 

Bioanalyzer 2100 and the Agilent DNA 1000 kit (Agilent Technologies). The average fragment 

size of the established libraries was between 322 and 329 base pairs. Before sequencing, 

libraries were diluted prior to pooling. Then libraries were denaturized and diluted to loading 

concentration. PhiX control was diluted to the same concentration as libraries. Libraries were 

combined with PhiX. The final percentage of PhiX was 1%.  

RNA libraries were prepared with the TruSeq Stranded Total RNA LT Sample Prep Kit from 

Illumina. 1μg of total RNA was used as the input material. The quality of the RNA libraries was 

assessed by the Bioanalyzer 2100 and the Agilent DNA 1000 kit (Agilent Technologies). The 

average size of the fragments generated by RNA libraries was 301 bp. Libraries were 

normalized to 10 nM and diluted to 4 nM prior to sequencing.  

DNA and RNA libraries were sequenced on the NextSeq 550 instrument, using a high output 

flow cell 150 cycles (Illumina), according to the manufacturer's instruction. The libraries were 

sequenced using paired-end mode.  

 

Figure 12. SeqCap Epi workflow. With permission from [179]. 
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3.3 Preprocessing of data 
The sequenced data went through a quality scoring check on the on-board computer of the 

Illumina NextSeq 550 instrument, and only sequences with a q-score greater than 30 were 

kept. Adapter trimming was done by the Illumina NextSeq 550 instrument. Illumina 

bcl2fastq software v2.20 was used to demultiplex the output data. The read quality was also 

controlled by multiQC [180]. The RNA-seq FastQ files were aligned to the reference genome 

(GENCODE Human Release 33, Human Genome Assembly GRCh38.p13, 

https://www.ncbi.nlm.nih.gov/grc/human/data) by STAR (Version 2.7.3a) [181]. DESeq2 was 

used to normalize the gene counts [182]. No additional filtering for low counts or low variable 

genes was performed prior to data analysis. 

For methylation data, Illumina NextSeq 550 was used to sequence the bisulfite-converted DNA 

with the same preprocessing steps above. The resulting FastQ files were aligned to the same 

reference genome mentioned above with bowtie 2 [183]. Bismark was used to generate 

methylation counts [184]. Bismark cytosine reports were generated for methylation coverage. 

 

3.4 Data Analysis 
A brief description of the analysis is described below, depicted in Figure 13. 
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Figure 13. The workflow for analysis of DMRs.  

 

The left side of Figure 13 describes the transcriptomic part of the analysis. DESeq2 is used for 

the differential expression analysis of normalized gene count data. Genes that were 

significantly differentially expressed (DEGs) with p adjust< 0.05 were kept. 

The right side of Figure 13 describes the DNA bisulfite sequencing of the analysis. The R 

package dmrseq was used for the processed methylation data to identify differential 

methylation regions (DMRs) [185].  
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3.4.1 Correlating Transcriptome and Epigenome 

The correlation analysis was done by correlating average methylation levels to proximal gene 

expression levels. For each DMR located within the 2 kb upstream region of the transcription 

start site (TSS), sample DMR and DEG were correlated using average DMR methylation and 

DEG expression levels by Kendall correlation [186]. Reference of TSS and promoter regions 

was used from R package TxDb.Hsapiens.UCSC.hg38.knownGene and UCSC known genes 

(GRCh38) [187,188]. Other regulatory features like enhancer and CpG flanking regions used 

ENSEMBL homo sapiens regulatory features release 104 

(https://ftp.ensembl.org/pub/release-104/regulation/homo_sapiens). A negative correlation 

between DMRs and DEGs with a p-value less than 0.1 was kept. A negative correlation means 

that the expression level increases when the methylation level decreases, and vice versa. 

For correlation between methylation and lncRNAs, DMRs located within the 20 kb region of 

the DEGs were considered. Pearson correlation was used to correlate average DMR 

methylation and differentially expressed lncRNA expression levels. To find a correlation 

between lncRNA expression and protein-coding gene expression, lncRNAs were correlated to 

500 kb upstream or downstream of differentially expressed protein-coding genes. 

 

3.4.2 Principal Component Analysis (PCA)  

PCA is a method for analysing complex datasets. This method provides an approximation of 

the original data using several principal components (PCs). Normalization is crucial to PCA for 

ensuring each variable contributes equally to the components. The result of PCA is visualized 

with the first two principal components which are the most variant of all components. PCA is 

unsupervised and without reference to prior information. 

 

3.4.3 COX Proportional Hazard Model 

COX proportional hazard model is used to study the relationship between the covariates and 

the accumulative survival rate [189]. It can estimate the effects of several covariates (genes) 

on the time of event occurrence. The COX model's key assumption is that covariates' impact 

on the hazard ratio is constant over time [190]. 
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3.4.4 Partial Least Square (PLS)  

PLS is like PCA as an analysis that reduces data dimensions to increase readability. PLS finds a 

linear regression model of two variables and projects them to a new space instead of PCA 

maximizing the variance [188]. PLS is a supervised method [191]. 

 

3.4.5 Gene Annotations 

To get functional annotations, genes were enriched through over-representation analysis with 

ReactomePA, PANTHER (www.pantherDB.org) and GO [192,193]. Over-representation 

analysis is a method that determines if the genes are from the predefined gene sets (the 

pathways). This process used R package ReactomePA, and clusterProfiler [194,195]. PANTHER 

was performed through PANTHER with Fisher's exact test on Reactome pathways. 

  

3.4.6 Cell Deconvolution 

Cell fractions were deconvoluted from epigenetic data by EpiDISH [196]. EpiDISH only 

supports Illumina probe IDs. The methylation positions were overlapped to Illumina EPIC 

identifier by genome location. The average methylation levels were converted for each 

overlap with probe intensities (beta values) for each sample. Thus, making it possible for 

EpiDISH to estimate the different fractions in a tissue sample by methylation levels.  

 

3.4.7 Statistical Tests 

Fisher's exact test is a statistical significance test used in the analysis of tables. It is used for 

the investigation of association on categorical data [197]. 

The T-test is a statistical test that compares the averages of two groups to determine if there 

is a significant difference between the two groups [198]. 
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Tukey honestly significant difference test is a one-step multiple comparison procedure based 

on studentized range distribution [199]. This test is used for comparison between three 

groups of cells. 

A p-value less than 0.05 is usually considered significant to reject the null hypothesis. However, 

even a 5% false discovery rate in a large dataset is high enough to draw a false conclusion. To 

avoid this, the p-value needs to be adjusted by multiple correction. Benjamini-Hochberg for 

the p adjust method was used in this study [200]. 

 

  



 

27 

4 Summary of the results 

4.1 Publication 1 
Anti-apoptotic genes and non-coding RNAs are potential outcome predictors for ulcerative 

colitis 

Wei Meng, Kay-Martin Johnsen, Christopher G Fenton, Jon Florholmen, Ruth H Paulssen 

Functional Integrative Genomics, 2023 May 18;23(2):165.  

https://doi.org/10.1007/s10142-023-01099-9 

Currently, there are no known clinical, immunologic, genetic, or laboratory markers that can 

accurately predict relapse. Therefore, there is no clear recommendation for discontinuing 

treatment. The aim of this study was to investigate the possibility of identifying genetic 

markers associated with the duration and outcome of remission by using transcriptional 

analysis combined with COX survival analysis. Data was analysed from whole transcriptome 

sequencing (RNA-seq) on mucosal biopsy samples taken from patients with active treatment-

naïve UC (UC, n = 14), remission (RM, inactive UC, n = 26), and healthy controls (NN, n = 16). 

COX proportional hazard regression analysis was applied to the remission samples using 

remission duration as an event. The COX analysis could distinguish between two different 

patient groups within remission, and the subgroups differed in duration. To ensure the COX 

results were associated with UC, a PCA was performed that included both controls and active 

UC. The patient group with the longest remission duration and no relapse showed an 

increased expression of a set of snoRNAs and anti-apoptotic factors belonging to the MTRNR2-

like gene family. Seven random remission samples not used in the analysis were used to 

validate the results.  
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4.2 Publication 2 
DNA methylation fine-tunes pro-and anti-inflammatory signalling pathways in inactive 

ulcerative colitis 

Wei Meng, Christopher G Fenton, Kay-Martin Johnsen, Hagar Taman, Jon Florholmen, and 

Ruth H Paulssen 

Scientific reports, 2024 March, 14, 6789 

https://doi.org/10.1038/s41598-024-57440-0 

Immunological dysfunction associated with inflammatory bowel disease (IBD) and ulcerative 

colitis (UC) have been linked to DNA methylation. In patient samples with inactive UC 

(remission), variations in DNA methylation and related gene expression may point to possible 

remission-specific regulatory mechanisms. Data obtained by targeted bisulfite sequencing and 

whole transcriptome sequencing from mucosal biopsies of healthy controls (NN, n = 11), 

inactive UC patients (RM, remission, n = 20), and patients with treatment-naïve UC (UC, n = 

14) were analysed. The differentially methylated regions (DMRs) were found using DMRseq. 

Correlation analysis was used to compare DMR methylation levels with the nearest 

differentially expressed genes (DEGs). The correlated genes were then visualized by principal 

component analysis (PCA) to ensure their relevance to UC. Next, DMR-regulated genes were 

annotated functionally. The correlational comparisons revealed 38 genes (correlation p-value 

< 0.1) that have a remission-specific methylation and expression profile. These genes include 

IL1B and STAT3. Both IL1B and STAT3 are implicated in the cytokine and IL-10 signalling 

pathway. DNA methylation events appear to fine-tune both pro- and anti-inflammatory 

processes to maintain a prolonged healing process in inactive UC.   
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4.3 Publication 3  
Methylation-Regulated Long Non-Coding RNA Expression in Ulcerative Colitis 

Christopher G. Fenton, Mithlesh Kumar Ray, Wei Meng, and Ruth H. Paulssen 

International Journal of Molecular Sciences. 2023, 24(13), 10500. 

https://doi.org/10.3390/ijms241310500 

It has been demonstrated that long non-coding RNAs (lncRNAs) are involved in the 

pathophysiology of ulcerative colitis (UC). While lncRNA expression and other epigenetic 

processes like DNA methylation have been extensively researched in UC, the significance of 

their interaction has not yet been thoroughly investigated. It is well known that UC is 

influenced by an interplay between environmental factors and epigenetic mechanisms. In this 

investigation, mucosal biopsies from healthy controls (NN, n = 13) and treatment-naïve UC 

patients (UC, n = 11) were used. Whole-genome bisulfite sequencing (WGBS) and lncRNA 

expression data were evaluated from each sample. To find lncRNAs that may be regulated by 

upstream differentially methylated regions (DMRs), a correlation analysis between lncRNA 

expression and DMRs was performed. Additionally, by comparing their expression, the 

nearest protein-coding genes linked to DMR-regulated lncRNAs were identified. The 

investigation discovered UC-associated lncRNAs that may be controlled by DMRs, including 

MIR4435-2HG, ZFAS1, IL6-AS1, and Pvt1. Genes implicated in inflammatory immunological 

responses, such as SLC15A4, CCL18, and SERPINB1, are located downstream from DMR-

regulated lncRNAs.  
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5 Discussion 

UC is a chronic inflammatory disease with a remission-remitting course thereby placing a 

heavy burden on the healthcare system [32]. Inflammation is necessary for maintaining colon 

homeostasis, which is a balance between pro- and anti-inflammatory processes [201]. 

Homeostasis is significantly affected by environmental, immunological, genetic, and 

treatment factors [73,202]. UC is a chronic disease and difficult to treat. The goal of treatment 

for UC patients is to relieve the symptoms and thereby achieve and maintain a remission state. 

UC patients in remission often face the risk of relapse switching to a pro-inflammatory state 

[203].  There is currently no method to predict if or when a patient will relapse. Therefore, 

characterizing remission is highly recommended. 

Remission is defined as the absence of symptoms. However, current UC assessment 

methodologies have their limitations. Laboratory markers such as TNF-α and C-reaction 

protein (CRP) assess systemic inflammation and are not specific to UC [204]. Clinical, 

histological, and endoscopic scores offer limited insight into the molecular characteristics of 

UC [205]. For example, quiescent inflammation is not detectable by endoscopy but has been 

shown in UC remission patients at a molecular level [206]. This study investigated both gene 

expression and methylation data from active, remission and control samples. Comparisons 

between these three groups allowed the identification of molecular signatures believed to be 

specific to remission. 

Remission status in UC can vary widely between individuals. The variability in remission 

patients includes genetic factors, clinical manifestations, and choice of treatment. All 

remission patients in this study received initially 5-ASA. Some of the patients received 

immunosuppressives in addition to 5-ASA. 5-ASA might influence methylation by increasing 

the expression of DNA methyltransferase 1 (DNMT1), which catalyses the transfer of methyl 

groups to specific CpG sites in DNA [207]. As the active UC patients were all treatment-naïve, 

differences in methylation between remission samples versus active UC may be due to the 

effect of 5-ASA treatment (Paper II). Many UC studies lack proper patient stratification and 

annotation. Therefore, treatment-naïve patients were used to compare active UC and UC 

patients in remission. This allowed us to compare methylation changes without possible 
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treatment effects in active UC as treatments like 5-ASA, steroids and biologics may affect DNA 

methylation [208].  

The overall approach for this study was to relate the methylome and the transcriptome within 

the individual patients. The first step was to investigate the gene expression profiles of active 

UC, remission, and control samples using PCA. The initial PCA showed a clear separation of 

the samples (Paper I, Figure 2), which was consistent with previously published results 

[206,209]. Interestingly, the remission samples separated into two clusters. To help explain 

this separation, the clinical metadata was further investigated. Among the clinical data, 

duration was the most variable (Paper I, Table 1). An initial PLS-COX analysis was performed 

to see if duration could help explain the separation between the remission samples. This PLS-

COX model revealed that there was enough power needed to study remission expression data 

in respect to duration (likelihood test p< 0.05, Paper I, Table S2). PLS reduced the 

dimensionality of the data for simplifying interpretation. A second PLS-COX model was used 

to study the contribution of each gene to the duration of remission. A total of 287 genes were 

shown to have a considerable influence on duration.  

The COX models were only performed on remission samples. A PCA was performed including 

remission COX results. The PCA included both UC and control samples. This ensured that the 

remission COX results were indeed related to UC. The clear separation of UC and control 

samples indicated that these genes are related to UC (Paper I, Figure 3). Furthermore, the PCA 

revealed the separation of remission samples into two clusters. The clusters differed in the 

duration of remission (Paper I, Figure 3). To validate the COX model results, seven samples 

were randomly excluded before the analysis. Of the 287 genes, four mitochondrial genes from 

the excluded samples showed a significant association between their expression and duration 

of remission (Paper I, Figure 8).  

DNA methylation is a dynamic process that can be affected by environmental factors [210]. 

Differences in gene expression between remission, control and active UC may be due to 

different DNA methylation patterns [211]. To study methylation, whole genome bisulfite 

sequencing (WGBS) was used which is currently the golden standard for studying genome-

wide DNA methylation [212]. However, the interpretation of methylation data is difficult as 

there is no consensus on the number or the methylation level of CpG sites needed to have a 
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functional effect [213,214]. Another difficulty is variability due to differences in cell type 

population, and individual characteristics such as age, gender, etc. [215]. Therefore, it is 

important to correlate methylation data with expression data from the same patient. 

There exist two approaches for differential methylation analysis. One approach is to compare 

the methylation levels at individual CpG sites. A second approach is to compare the 

methylation levels of methylated regions (DMRs). Approaches such as methylKit and 

MethylSig can estimate methylation changes at individual CpG sites, although they may be 

limited to predefined regions [216,217]. The difficulty in studying individual CpG sites is the 

sheer number which can lead to an overly harsh multiple correction. Aggregation of CpG 

methylation levels into regions can help reduce the effect of multiple corrections. Biologically, 

there is a strong correlation between the methylation levels of nearby CpGs [218].  

A common problem for bisulfite-treated methylation data is low or missing coverage of CpG 

sites [158]. There are several methods to help overcome low coverage challenges [219,220]. 

These methods may reduce variations between groups through the estimation of missing or 

low coverage values based on neighbouring methylation sites [221]. The analysis of 

methylated regions may exclude the contribution of isolated CpG sites. In this study, 

differential methylation analysis was performed at the region level by dmrseq. Dmrseq uses a 

smoothing method to detect DMRs and control the false discovery rate without the 

requirement of predefined regions [185].  

Most methylation analysis packages do not support multiple comparisons [217]. Therefore, 

three comparisons were performed using dmrseq. Each comparison gave DMRs differing in 

position and length. DMRs from all three comparisons were merged by overlapping genomic 

coordinates. For each overlapped DMR, the average methylation level of control samples or 

active UC samples was compared with remission samples using a t-test. Any DMR that showed 

a significant difference in methylation levels when compared to both control and active UC 

samples were considered specific to remission (Paper II). 

To further assess the possible biological functions of remission-specific DMRs, a paired 

correlation analysis was conducted. The analysis correlated DMR methylation levels with the 

expression levels of the closest differentially expressed genes (DEGs) across all samples. The 
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correlation was limited to DMRs located within the promoter region of the neighbouring DEG 

gene or 2kb upstream of the gene transcription start site (Paper II). DNA methylation within 

the promoter region has been shown to affect gene expression [222,223]. In our study, only a 

negative correlation between promoter DMR methylation level and gene expression level was 

considered. The assumption is that promoter hypermethylation will decrease gene expression, 

and hypomethylation will increase gene expression. Several genes whose expression was 

negatively correlated with upstream DMR methylation levels were identified (Figure 2, Paper 

II). A PCA showing separation between normal, remission and active UC samples suggests that 

the expression of these DMRs regulated genes is related to UC (Figure 4, Paper II).  

Gene expression and methylation profiles are specific in remission patients compared to 

active UC and controls. The analysis of expression profiles across UC, remission and controls 

revealed a distinct separation between the three groups (Figure 2, Paper I). In remission, the 

methylation patterns of several genes related to inflammation were different from the 

controls (Paper II). This finding indicates that the micro-inflammation status may be regulated 

by methylation-regulated gene expression. For instance, short-term remission has an elevated 

expression of inflammatory genes such as carbamoyl-phosphate synthetase 2 (CAD) and 

coiled-coil domain containing 134 (CCDC134). CAD could inhibit intestinal epithelial cells’ 

antibacterial activity [224] CCDC134 promotes CD8+ T-cell activation [225]. The inflammation 

status is also influenced by DNA methylation. Hypermethylated STAT3 and IL1B showed 

decreased expression in remission compared to active UC (Paper II). Yet STAT3 and IL1B 

expression levels could not be restored to control levels. STAT3 could interact with protein 

disulfide-isomerase A3 (PDIA3), which could potentially increase the expression of interleukin 

enhancer binding factor (ILF3) [226]. ILF3 has been identified as a high relapse-risk gene in 

remission (Paper I).  

Mucosal healing is essential in maintaining a functional epithelial and mucosal barrier in the 

colon. Colonic tissue cell types are derived from intestinal stem cells (ISCs) located at the 

bottom of colonic crypts. A hallmark of UC is the destruction of colonic crypts, reducing the 

number of intestinal stem cells (ISCs) [227]. In remission, crypt architecture is believed to be 

restored [228]. In this study, stem cell marker PROM1 was upregulated in the remission group 

as compared to active UC (Figure 6, Paper I), suggesting stem cell differentiation and 
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proliferation are enhanced in the remission group. Stem cell differentiation requires a 

considerable amount of energy [229]. A hypothesis suggests that aetiology and progression of 

UC are related to the altered mitochondrial function [230]. Mitochondria genes of the 

MTRNR2-like family were identified as having a protective effect in remission (Figure 6, Paper 

I). MTRNR2-like genes were not found to be regulated by methylation in remission (Paper II). 

Mitochondrially encoded 16S rRNA (MTRNR2) encodes Humanin, which is a peptide reducing 

inflammatory cytokines such as IL6, IL1B, and TNF-α [231]. These cytokines have an anti-

apoptotic effect. In active UC, an increase in apoptosis may lead to a damaged colonic 

epithelium [232]. Two genes found specifically hypermethylated in remission which are 

associated with the fine-tuning cell apoptosis include: competing endogenous lncRNA 2 or 

microRNA let-7b (CERNA2) and citron rho-Interacting serine/threonine kinase (CIT). MTRNR2-

like genes, along with methylation-regulated CERNA2 and CIT, are involved in reducing 

inflammation, energy production, and apoptosis, all essential processes for epithelial healing 

and maintenance [233,234].  

In addition to the specific protein-coding genes found in remission, an unexpectedly 

considerable number of small ncRNAs (snoRNAs) were found with increased expression in 

long-term remission. Several snoRNAs were found to have a protective effect in remission 

(Figure S2, Paper I). The exception was small nucleolar RNA, C/D Box 101 (SNORD101). A 

function of snoRNAs in remission is the polarization of macrophages which promotes cell 

proliferation and tissue repair through the phosphatidylinositol-3-kinase/protein kinase B 

(PI3K/AKT) pathway [235–237]. This indicates a role for snoRNAs in mucosal healing. However, 

further studies are needed to understand snoRNAs' specific roles and regulatory effects in 

remission. 

MTRNR2-like genes are long non-coding RNAs, and their expression may be important for 

remission duration. Therefore, the study endeavoured to further investigate the effects of 

methylation on lncRNAs, specifically lncRNAs in UC (Paper III). It has been shown that lncRNAs 

may exert their functions by regulating gene transcription and protein expression [238]. 

Methylation events were found associated with lncRNAs, such as AC007750.1 (lnc-SLC4A10-

7), which is considered to regulate inflammation [239]. This implies that methylation-
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influenced lncRNA expression contributes to the regulatory mechanisms in UC pathogenesis, 

particularly in inflammatory immune responses (Paper III). 

Recent research has identified several biomarkers for monitoring the progression of UC. 

Among the most widely studied biomarkers are calprotectin, which has been related to deep 

remission and to the severity of inflammation [240,241]. Those biomarkers are useful to 

observe treatment outcome but do not reflect the disease status at the molecular level. 

Previous transcriptomic sequencing studies have primarily emphasized on differences 

between active UC patients and controls [242–245]. A description of the remission status is 

often missing from these studies. However, three studies concerning remission in UC have 

revealed different gene expression results [206,209,246]. A microarray study which identified 

differentially expressed genes in remission including regenerating family member 4 (REG4), 

S100 calcium-binding protein P (S100P), serpin family B member 5 (SERPINB5), and 

regenerating family member 1 alpha (REG1A) [209]. Mitochondrial-related genes including 

PPARG coactivator 1 alpha (PPARGC1A) were identified by whole transcriptome sequencing 

in a remission study [246]. In another transcriptome study IL1B, TNF-α, STAT3, mucin 5AC 

(MUC5AC) and ADAMTS like 5 (ADAMTSL5) were identified [206]. These findings have shown 

that remission patients have distinct transcriptional profiles with inflammatory signatures. 

The existing of signatures may represent the quiescent inflammation in remission patients. 

These transcriptome profiles implicate several immune-related pathways which are active in 

maintaining remission. In Paper I, we tried to explore the relationship between the 

transcriptomic signatures and remission duration. Longer remission duration is associated 

with changes in the expression of mitochondrial and non-coding genes. The decreased 

mitochondrial gene expression in active UC is consistent with Haberman’s findings [246], 

suggesting a role of restored mitochondrial function in remission. For non-coding genes, the 

results indicated snoRNAs were related to remission. The snoRNAs have been reported in the 

regulation of immune responses and anti-tumour immunity [247,248].  

Previous remission studies have obtained various -omics data from different sources, such as 

blood and/or faecal samples. In blood samples, proteomic analyses have identified IL-10 as a 

potential predictor of relapse [249]. IL-10 is a cytokine with pro- and anti-inflammatory roles 

in IBD [99]. The results presented in Paper II showed that the IL10 pathway may be regulated 
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by methylation and thereby related to remission. Previous studies have shown that long-term 

UC patients have a higher risk of developing CRC [250–252]. This may be due to methylation 

changes and subsequent changes in gene expression, such as APC Regulator of WNT signalling 

pathway (APC), cadherin 13 (CDH13), alanyl aminopeptidase (ANPEP), and CBY1 interacting 

BAR domain containing 1 (CIBAR1/FAM92A1) [253]. Our findings indicate methylation 

regulated genes in remission patients such as AFAP1-AS1 might contribute to CRC 

development [254]. These results suggest maintaining remission may not fully mitigate the 

risk of CRC in UC patients. 

It is hereby noted that the microbiome could regulate methylation through their metabolites 

especially short-chain fatty acids [255]. For example, propionate could induce 

hypermethylation and inhibit expression of DAB Adaptor Protein 1 (DAB1) [256]. In faecal 

samples, the changes in the abundance of Akkermansia muciniphila might serve as a microbial 

marker for predicting relapse [257,258]. Methylation changes in remission observed in Paper 

II may be related to the changes in gut microbiome composition. Therefore, collectively 

integrating multiple -omics data, such as metabolomics, proteomics, and genomics may 

present new opportunities for monitoring disease status.  

 

5.1 Limitations 
Colonic mucosal biopsies contain many different cell types that may have different expression 

profiles [259]. Whole-genome and transcriptome sequencing are not able to measure the 

contribution of gene expression and methylation in cell compositions. Therefore, the different 

cell populations heavily affect the expression level and methylation level. The relationship 

between DNA methylation and gene expression is likely to be cell specific [260]Click or tap 

here to enter text..  

Genome is a dynamic system. A cross-sectional study could be seen as a snapshot of remission 

and UC, which may not be representative of patients at different time points. The cross-

sectional nature of this study may limit the ability to understand the temporal aspects of gene 

expression and epigenetic modifications associated with the transition from active disease to 

remission. Furthermore, all results are from in silico analysis and need experimental validation. 
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5.2 Future Perspectives 
This study identified potential molecular signatures associated with UC. Future studies are 

necessary to validate our results, particularly non-coding RNAs and methylation profiles, by 

using larger patient cohorts. The validation studies should aim to investigate the clinical 

implications of the observed molecular markers. UC is highly heterogeneous disease, where 

single markers may not provide enough information. A system biology approach by integrating 

multi-omics data would provide a more comprehensive view of the UC remission status. 

More research should focus on explaining the functional roles of mitochondrial genes, 

snoRNAs, and lncRNAs in modulating immune responses and epithelial repair processes. Tools 

such as CRISPR/Cas9 could help study the function of the above-mentioned genes. The 

understanding of gene function and networks could identify new therapeutic targets for 

improving treatment strategies. 

Recent new technologies like spatial transcriptomics and single-cell RNA sequencing could be 

used to investigate the micro-environment and cellular heterogeneity in mucosal biopsies 

[261]. Data obtained by these technologies could help in the understanding of this complex 

disease. 
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6 Conclusion 

This study investigates molecular signatures by analysing transcriptomic and methylation 

profiles in UC. Transcriptomic analysis revealed that mitochondrial genes might potentially 

predict the risk of relapse. Several genes and lncRNAs were identified that may be 

methylation-regulated and involved in inflammatory immune responses. Further 

investigations of molecular signatures in UC are necessary to define clinical outcomes and to 

develop treatment strategies and management for UC patients.  
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Abstract
Due to the lack of clinical, immunologic, genetic, and laboratory markers to predict remission in ulcerative colitis (UC) 
without relapse, there is no clear recommendation regarding withdrawal of therapy. Therefore, this study was to investigate 
if transcriptional analysis together with Cox survival analysis might be able to reveal molecular markers that are specific for 
remission duration and outcome. Mucosal biopsies from patients in remission with active treatment-naïve UC and healthy 
control subjects underwent whole-transcriptome RNA-seq. Principal component analysis (PCA) and Cox proportional haz-
ards regression analysis were applied to the remission data concerning duration and status of patients. A randomly chosen 
remission sample set was used for validation of the applied methods and results. The analyses distinguished two different 
UC remission patient groups with respect to remission duration and outcome (relapse). Both groups showed that altered 
states of UC with quiescent microscopic disease activity are still present. The patient group with the longest remission dura-
tion and no relapse revealed specific and increased expression of antiapoptotic factors belonging to the MTRNR2-like gene 
family and non-coding RNAs. In summary, the expression of anti-apoptotic factors and non-coding RNAs may contribute 
to personalized medicine approaches in UC by improving patient stratification for different treatment regimens.

Keywords Ulcerative colitis · Remission · Cox analysis · Biomarkers

Introduction

Ulcerative colitis (UC) is a chronic inflammatory disor-
der which requires long-term treatment in order to achieve 
remission (Ungaro et al. 2017). The inflammation status of 
UC patients is usually determined by endoscopic, histologic, 
and laboratory parameters (Peyrin-Biroulet et  al. 2014; 
Rogler et al. 2013). Different guidelines for medical and sur-
gical treatment of UC are available (Dassopoulos et al. 2015; 
Magro et al. 2017). In general, a step-up approach is rec-
ommended with the goal of obtaining clinical remission 
(Danese et al. 2014). Biological therapy is recommended 
for patients with moderate to severe disease refractory or 
patients dependent on steroid treatment. Side effects of both 
types of medication are common. The current management 
programs for UC aim for induction and maintenance of 
clinical remission to prevent treatment-induced and disease-
related complications.

Today, different scoring systems for UC activity are in use 
to evaluate endoscopic disease activity and activity status, 
but none of the scoring systems have had all criteria fully 
determined (Travis et al. 2011; Rutter et al. 2004). There 
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is no validated current definition of remission, and there-
fore still no consensus on how to define clinical remission 
(Magro et al. 2017). The guidelines from the European Coli-
tis and Crohn’s organization (ECCO) for remission suggest 
the absence of visible mucosal lesions (Mayo endoscopic 
grade 0) in remission (Magro et al. 2013), whereas others 
allow Mayo ≤ 1 including endoscopic grade 1 in remis-
sion (Lamb et al. 2019; Rutgeerts et al. 2005; Schroeder 
et al. 1987). However, it is generally accepted that healed 
mucosa with the absence of mucosal lesions is a treatment 
goal. “Histological” healed mucosa is not included in clini-
cal remission, but there is an increasing focus of includ-
ing histological criteria in healed mucosa (Peyrin-Biroulet 
et al. 2014). It is well known that even in the absence of 
gastrointestinal symptoms as well as normal endoscopic and 
clinical findings, patients may have persisting microscopic 
inflammatory activity even in the absence of gastrointesti-
nal symptoms (Korelitz 2010; Magro et al. 2018; DeRoche 
et al. 2014). This activity can result in progressive accumu-
lation of bowel damage, such as fibrosis, dysmotility, and 
increased risk of colorectal neoplasm (Gupta et al. 2007).

It is self-evident that there is a need for standardization of 
both assessment and validation as well as prognostic values. 
There is still a need to characterize the complex pathogenic 
and healing mechanisms in UC. Due to the lack of clinical, 
immunologic, genetic, and laboratory markers to predict 
remission without relapse, there is no clear recommenda-
tion regarding withdrawal of therapy. Therefore, the current 
study aims to identify molecular signatures in a UC remis-
sion cohort obtained by whole-transcriptome RNA-Seq with 
the intent to provide a better understanding of the molecular 
mechanisms responsible for remission duration and disease 
outcome. Altogether, this knowledge might lead to novel 
personalized therapeutic approaches that will help patients 
to stay in remission.

Materials and methods

Patient material

A standardized sampling method was used to collect mucosal 
biopsies (n = 56) from patients in remission (RR; n = 26). 
For comparison purposes, normal patient biopsies (NN; n = 
16) and biopsies from patients with active UC (UC; n = 14) 
were adapted from an earlier study (Fenton et al. 2021). The 
level of inflammation in UC patients was diagnosed based 
upon established clinical endoscopic and histological criteria 
as defined by the European Colitis and Crohn’s Organiza-
tion (ECCO) guidelines (Magro et al. 2017). A total Geboes 
score was determined for the remission samples (Geboes 
et al. 2000). TNF mRNA levels in biopsies were estimated 
by qPCR (Olsen et al. 2007). TNF-α values of <7000 copies/
ug RNA were considered non-inflamed tissues. Faecal cal-
protectin was measured with the Calprest ELISA kit (Euro-
spital). All patient characteristics are depicted in Table 1. 
All methods were performed in accordance with the Decla-
ration of Helsinki. The study participants signed informed 
and written consent forms. Approvals were granted by the 
Regional Committee of Medical Ethics of Northern Norway, 
Ref no: 14/2004, 1349/2012 and 29895/2020. The samples 
were taken from an established biobank approved by the 
Norwegian Board of Health (952/2006).

RNA isolation

Total RNA was isolated using the Allprep DNA/RNA 
Mini Kit from Qiagen (catalogue number 80204) and 
the QIAcube instrument (Qiagen), according to the 
manufacturer’s protocol. Quantity and purity of the 
RNA were assessed by using the NanoDrop ND-1000 

Table 1  Characteristics of 
patients

*TNF-α copies/μg RNA in 18 patients. £Proctitis/rectosigmoid/left-sided colitis/pancolitis. #5-ASA/ster-
oids/immunosuppressives/biologics. €Average calprotectin levels in 16 patients. ¥Average calprotectin lev-
els in 11 patients. §Data adapted for comparison from Fenton et al. (Fenton et al. 2021)

Characteristics Control§ (n = 16) Remission (n = 26) Treatment-naïve 
active  UC§ (n = 14)

Gender (male/female) 11/5 15/11 9/5
Age (years) mean ± SD 52.5 ± 16.9 48.4 ± 13.4 40.7 ± 13.9
Endo score mean ± SD 0 0 1.79 ±0.43
Geboes score (total) ± SD n.d. 0.36 ± 1.38 6.35 ± 2.93
TNF-α copies/μg RNA ± SD 3663 ± 1973 5060 ± 3047* 15907 ± 9623
Calprotectin (mg/kg) mean ± SD n.d. 23.8 ± 35.7€ 587.5 ± 483.8¥

Extension of  disease£ _ 2/7/8/9 2/9/3
Duration of remission (years) ± SD _ 4.38 ± 4.28 _
Medication# _ 26/0/7/2 _
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spectrophotometer (Thermo Fisher Scientific, Wilm-
ington, DE). The Experion Automated Electrophoresis 
System (Bio-Rad, Hercules, CA) and the RNA StdSens 
Analysis Kit (Bio-Rad, catalogue # 700–7103) were used 
to evaluate RNA integrity. The RNA samples were kept 
at −70 °C until further use. All RNA samples used for 
analyses showed an RNA integrity number (RIN) value 
of between 8.0 and 10.0.

Library preparation and next‑generation 
sequencing

Whole transcriptome libraries of UC remission samples 
were prepared with the TruSeq Stranded Total RNA 
LT Sample Prep Kit from Illumina (Catalogue number 
RS-122–2203). The amount of input material was 1 μg of 
total RNA. The Bioanalyzer 2100 (Agilent Technologies, 
Santa Clara, CA) and the Agilent DNA 1000 kit (Cata-
logue number 5067-1504) were used to assess RNA library 
quality, according to the instruction manual. The libraries 
were normalized to 10 nM and subsequently paired- end 
sequenced with the NextSeq 550 instrument (Illumina) 
according to the manufacturer’s instructions. The average 
number of uniquely mapped reads per sequencing run was 
85 million reads per sample.

Data analysis

The entire design and workflow of the study is depicted 
in Fig. 1.

Data quality assessment and initial principal 
component analysis (PCA)

Quality scoring and base calling were performed on the 
Illumina NextSeq 550 sequencing instrument. The out-
put FastQ file was aligned with reference GENCODE 
Human Release 33 (Human Genome Assembly GRCh38.
p13) (https:// www. ncbi. nlm. nih. gov/ grc/ human/ data) by 
STAR (Version 2.7.3a) with 2-pass mapping and gene 
counts parameters in STAR (Dobin et al. 2013). After 
alignment, the read quality was controlled by multiQC 
(Ewels et al. 2016). The gene counts were analysed and 
log-normalized by DESeq2 (Love et al. 2014); genes with 
an average log2 expression less than 4 were filtered out 
prior to normalization. Seven remission samples were ran-
domly chosen for verification. Initial principal component 
analysis (PCA) was performed based on the top 15,000 
variable genes after normalization.

Processed RNA-Seq data have been deposited in 
NCBI’s Gene Expression Omnibus (GEO, https:// www. 
ncbi. nlm. nih. gov/ geo/) and are accessible through GEO 
series accession numbers GSE128682 and GSE169360.

Cox survival analysis of remission samples

After PCA, the remission patient group was investigated 
with Cox survival analysis in R using plsRcox (Bastien 
et al. 2015). Using remission patient information (Table 1) 
indicating state (relapse or not) and duration (time to 
relapse), a Cox model was created. The Cox model was 
applied on the normalized gene count matrix from remis-
sion patients. The initial Cox model was significant with 
a p < 0.01 in the likelihood ratio test and p = 0.03 in the 
Wald test for all normalized genes in the remission group, 
thus, suggesting that there is enough information in the 
gene matrix to explain patient risk. To further identify 
which genes influence risk for relapse, the R package sur-
vival (coxph) was then applied on each individual gene 
(Therneau 2021). The second analysis revealed 287 genes 
that significantly contribute to risk with a p value< 0.01. 
Those 287 genes were used for PCA analysis and visuali-
zation. Hazard beta-coefficients were calculated for the 23 
selected genes.

Annotations

Genes were manually annotated using GeneCards (https:// 
www. genec ards. org/). EnrichGO of the clusterProfiler R 
package (Yu et al. 2012) was applied to the protein-coding 
genes. Only biological process GO terms for comparisons 
of patient groups with padj < 0.05 were kept.

RNA isola�on
RNA-seq

Normaliza�on
DESeq

COX survival model (plsRcox)  

Tissue samples

COX propor�onal hazard model (Coxph)

Annota�ons

Valida�ons

Fig. 1  Study design. The flow chart depicts the entire workflow of the study

https://www.ncbi.nlm.nih.gov/grc/human/data
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.genecards.org/
https://www.genecards.org/
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Validations

Prior to analysis, seven remission samples were excluded 
from the remission patient cohort for validation. Gene counts 
from the four MTRNR2-like family genes (MTRNR2L6, 
MTRNR2L3, MTRNR2L12, and MTRNR2L8) from the 
validation samples were tested using the plsRcox package 
(Ginestet 2011). The statistics of all the Cox models are 
shown in Table S2.

Data visualization

Heatmaps were generated by ComplexHeatmap (Gu 
et al. 2016). Among 287 genes, protein coding genes and 
non-protein coding genes were ranked by means of each 
gene in the remission samples divided by the sum of means 
of each gene in each group, respectively. The rows were 
clustered for better visualization.

Results

Transcriptomic analysis discriminates different 
states of UC

The whole transcriptome representing treatment-naïve 
active UC (UC; n = 14), UC in remission (RR; n = 19), 
and normal control samples (NN; n =16) was established by 
RNA-seq. Pre-processing of the sequencing data revealed a 
total of 18,783 expressed genes. The normalization of the 
expression of gene matrices for all groups showed no batch 
effects (Table S1). The initial principal component analysis 
(PCA) with 15,000 most variable genes resulted in a clear 
distinction between normal (NN), ulcerative colitis (UC), 
and remission (RR) samples, along the first principal com-
ponent (PC1) with a 30.2% explained variance and an 11% 
explained variance along with the second component (PC2) 
(Fig. 2). Note, that prior to the initial PCA analysis, seven 
remission patient samples were randomly removed from the 
remission data set for validation of a Cox survival model 
(see below).

Cox survival analysis discriminates genes related 
to remission duration and state

PCA alone did not result in a separation of remission sam-
ples, although they differed in terms of remission duration 
and time of relapse. Therefore, an attempt was made to 
distinguish remission samples by using different Cox mod-
els. Using the remission patient characteristics depicted 
in Table 1, a Cox survival model based on partial least 
squares was established using remission duration as sur-
vival time and relapse as an event. The model returned 

a likelihood test and Wald test p < 0.05 (Table S2), thus 
suggesting that there is enough information in the gene 
matrix to explain patient risk.

Remission significant genes obtained by Cox 
analysis

The second Cox analysis for each individual gene of the 
remission gene matrix returned 287 significant genes p 
<0.01 related to risk (Tables S2 and S3). Of the 287 genes, 
188 represented protein-coding genes, 28 small RNAs, 25 
non-coding RNAs, 31 pseudogenes, and 15 miscellaneous 
RNAs, which are all listed in Table S3. Significant genes 
(n = 287) obtained by the remission Cox analysis were 
visualized by PCA with co-normalized normal control 
samples (NN) and UC samples (UC) included. The result 
of the PCA shows that the significant genes from of the 
Cox model can clearly separate the remission samples into 
two groups with 38.1% and 12.9% of explained variances 
for principal component 1 (PC1) and principal compo-
nent 2 (PC2) (Fig. 3). Both remission groups showed clear 
differences with respect to endoscopic, histological, and 
laboratory parameters and were then denominated accord-
ingly RM (remission without relapse) and RL (remission 
with relapse) (Fig. 3 and Table S4). The PCA biplot shows 
both PC scores of samples (dots) and loadings of variables 
(vectors). The further away these vectors are from a PC 
origin, the more influence they have on that PC. Notably, 
the RM samples grouped closer to the normal control sam-
ples, whereas RL samples clustered and in part overlapped 
with UC samples (Fig. 3).

Fig. 2  Principal component analysis (PCA) of remission, ulcerative 
colitis, and normal control patient samples. PCA of remission (RR), 
ulcerative colitis (UC), and normal control patient samples (NN) of 
the 15,000 most variable genes after normalization. Principal compo-
nent (PC1) explained 30.4% of the total variance, and principal com-
ponent 2 (PC2) explained 11% of the total variance
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Genes of the MTRNR2‑like family separate remission 
duration

Two biplots were constructed on the PCA, one includ-
ing all 188 protein-coding genes and one including 99 
non-coding genes indicating the effect of each individual 
gene on the principal components (Figs. S1 and S2). For 
illustrative purposes, twenty-three relevant protein-coding 
genes with high influence were chosen for construction of 
a biplot (Fig. 3). In addition, the expressions of relevant 
30 protein-coding genes and non-coding genes found for 
the different patient groups were visualized in a heatmap 
(Fig. 4).

Genes of the MTRNR2-like family influenced the 
remission samples separation. Solute carrier family 44 
member 5 (SLC44A5), glucagon like peptide 2 receptor 
(GLP2R), prominin 1 (PROM1), NEDD4 like E3 ubiq-
uitin protein ligase (NEDD4L), and methylmalonyl-CoA 
mutase (MMUT) are the main participants for components 
for separation towards the normal control group. Genes 
like interleukin enhancer binding factor 3 (ILF3), carba-
moyl-phosphate synthetase 2, aspartate transcarbamylase, 
and dihydroorotase (CAD), Mal, T cell differentiation pro-
tein (MAL), and granzyme M (GZMM) are influencing the 
separation of UC samples and RL samples.

Hazard values confirm separation and specificity 
of expressed genes

To confirm this finding, a PCA using the 287 genes from the 
remission gene count matrix only was performed (Fig. 5). 
The result confirmed the separation and specificity of the 
expressed genes with 59.1% and 9.8% of explained variances 
for PC1 and PC2 in the remission matrix PCA. Beta-coef-
ficients (hazard values) for selected 23 individual genes are 
shown in Fig. 6. Ten genes including ILF3, mitochondrial 
ATP-dependent protease Lon (LONP1), proteasome 20S 
subunit alpha 3 (PSMA3), and CAD were found to increase 
the chance of relapse which is reflected by negative coef-
ficients. Thirteen genes including MTRNR2 like family, 
PROM1, and NEDD4L decrease the probability of relapse 
which is reflected by positive coefficients. A complete beta 
value list of all genes (n = 287) can be found in Table S5.

Annotation reveals involvement of apoptotic 
and RNA processing pathways

Among the 287 genes, 188 were protein-coding genes. GO 
enrichment of these 188 protein-coding genes is shown 
in Fig. 7. Significantly enriched gene sets revealed bio-
logical processes like negative regulation of the execution 
phase of apoptosis with genes of the MTRNR2-like family 
(MTRNR2L6, MTRNR2L8, MTRNR2L3, MTRNR2L12), 
ribosome biogenesis, rRNA processing, RNA splicing, 
signal transduction by p53 class mediator, and ribonucleo-
protein complex biogenesis. The cellular component preri-
bosome and molecular functions including single-stranded 
RNA binding and receptor antagonist activity were enriched. 
The full enrichment list is shown in Table S6.

MTRNR2‑like genes are predictors for risk of relapse

Seven remission testing samples were used to validate the 
influence of the four MTRNR2-like genes (MTRNR2L6, 
MTRNR2L8, MTRNR2L3, and MTRNR2L12) using the 
Cox model. The correlation between predicted duration and 
actual duration R= 0.641 (Fig. 8). This indicates that the 
MTRNR2-like genes are good predictors for risk of relapse.

Discussion

Today, the recommendations regarding the withdrawal of 
therapy during UC are not clear. Therefore, the current 
study aimed to identify molecular signatures in a UC remis-
sion patient cohort with focus on remission duration after 
treatment and disease outcome. The analysis of transcrip-
tional expression data of UC remission samples obtained 
by RNA-Seq, Cox survival analysis, and downstream PCA 

Fig. 3  Principal component analysis of genes revealed by Cox analy-
sis. Genes revealed from the Cox regression analysis (n = 287) were 
used for principal component analysis (PCA) including remission 
(RR), ulcerative colitis (UC), and normal control patient samples 
(NN). Principal component 1 (PC1) explained 38.1% of the total vari-
ance, and principal component 2 (PC2) explained 12.9% of the total 
variance. The biplot depicts 23 protein-coding genes of 188 protein-
coding genes obtained by Cox analysis. The arrows indicate the genes 
as loading projectiles that differ the group from the direction. The 
length of each arrow represents the effect of genes on the compo-
nents. To improve the visibility, the loadings were multiplied by 25. 
Each arrow is labelled with a gene name as indicated. An entire list of 
genes can be found in Table S3. Figure S1 depicts a biplot including 
all protein-coding genes
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analysis of genes obtained by Cox survival analysis clearly 
revealed a relationship between remission event (duration 
of remission) and remission states (relapse or no relapse). 
Initial PCA analysis (Fig. 2) on the normalized expression 
matrix of all patient samples confirmed similar distribution 
patterns for remission samples found for two independent 
UC remission cohort studies studying the differential expres-
sion of genes, showing a clear distinction between UC in 
remission, normal controls, and active UC samples (Fenton 
et al. 2021; Planell et al. 2013). PCA analysis of the genes 
obtained by Cox analysis could clearly separate remission 
samples into two groups representing UC remission, one 
with relapse (RL) and one without relapse (RM) (Figs. 3 and 
5). The Cox analysis, using the remission gene matrix only, 
showed that the model was independent of the other sample 
groups, UC and NN (Fig. 5). Therefore, it is surprising that 

a clear relationship between selected genes and the UC and 
NN background samples could be observed (Fig. 3).

The obtained molecular signatures did show differ-
ent inflammatory states in the remission groups (Fig. 3, 
Tables S3 and S4). A quiescent inflammation is still pre-
sent in remission which is reflected by the expression of 
interleukin enhancer binding factor 3 (ILF3) which is 
involved in innate immune responses and myeloid den-
dritic cell maturation in IBD (Aitchison et al. 2021). The 
influence shown in the biplot (Figs. 3 and S1) on the first 
principal component and a high beta coefficient found 
for ILF3 confirms inflammatory signals in RL samples 
(Fig. 6 and Table S5). Likewise, increased expression of 
other inflammatory genes like CAD which is involved in 
the inhibition of NOD2 antibacterial function in intesti-
nal epithelial cells (Richmond et al. 2012) and PSMA3 

Fig. 4  Heatmap of selected 
genes of relevance for remission 
status. Heatmaps were gener-
ated by ComplexHeatmap as 
described in the “Materials and 
methods” section. Thirty protein 
coding genes and non-protein 
coding genes were ranked 
by means of each gene in the 
remission samples divided by 
the sum of means of each gene 
in each group, respectively. 
Long-term remission samples 
(RM), short-term remission 
samples (RL), treatment-naïve 
ulcerative colitis samples (UC), 
and normal control samples 
(NN) are depicted and normal-
ized expression levels of a genes 
are indicated
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which is involved in the proteasome-mediated NF-dB 
activation in UC (Goetzke et al. 2021) was observed. 
Recently, a relationship between UC and atherosclero-
sis has been implicated (Weissman et al. 2020; Roifman 
et al. 2009). The reported higher risk of cardiovascular 
events in UC patients may be pertinent in inflammation-
mediated atherosclerosis (Rungoe et al. 2013; Kristensen 
et al. 2013). The mitochondrial matrix protein LONP1 
has been shown to be involved in atherosclerosis mito-
chondrial protein quality control (Hansen et al. 2008; 
Onat et al. 2019) and is a strong risk factor of relapse 
(Fig. 6). All the above-mentioned genes are shown to 
have an influence pointing towards inflammation and 
increased risk of relapse especially for patients in the 
RL group (Figs. 3, 6, and S1).

It is well-known that mitochondrial function in the intes-
tinal epithelium plays a critical role in maintaining intes-
tinal health (Urbauer et al. 2021). A recent paediatric UC 
patient cohort study revealed suppressed expression of mito-
chondrial genes in active UC (Haberman et al. 2019). The 
here observed increased expression of MTRNR2-like genes 
might improve the remission state (Fig. 3, Table S3, Fig. S1). 
Mitochondrial dysfunction and dysbiosis of gut microbiota 
have been shown to be associated with IBD (Jackson and 
Theiss 2020). Therefore, a recovery of the gut-microbiota 
environment and restoring of rectal mitochondrial energy 
functions can be implied for remission without relapse (RM) 
where commensal bacterial-induced mitochondrial signal-
ling potentiates epithelial homeostasis. The specific expres-
sion of MTRNR2-like genes in RM might represent these 
genes as potential molecular markers for disease outcome 
(Figs. 3 and 4, and Table S3). The GO annotations con-
firmed enrichment of genes involved in the regulation of 
execution phase of apoptosis (Fig. 7).

It is interesting to note that MTRNR2 treatment may 
exert beneficial effects in UC by decreasing inflamma-
tory reactions and apoptosis (Gultekin et al. 2017). The 
mitochondrial metabolism in the intestinal stem cell niche 
plays also a pivotal role in regulating intestinal epithelial 
cell homeostasis, including self- renewal and differentia-
tion (Urbauer et al. 2021). The observed expression of stem 
cell marker prominin 1 (PROM1) (Karim et al. 2014) and 
NEDD4 like E3 ubiquitin protein ligase (NEDD4L) points 
to a maintenance of proliferation and differentiation of the 
colonic epithelium in RM (Kimura et al. 2011) (Figs. 3 and 
4). NEDDL4 strongly contributes to a lower risk of relapse 
(Fig. 6). In addition, increased expression of the vitamin 
B12 dependent, mitochondrial MMUT (Park et al. 2021) 
in RM points to a lower B12 deficiency reported for UC 
patients thereby lowering the risk of relapse (Fig. 6) (Battat 
et al. 2014; Mortimore and Florin 2010).

Fig. 5  Separation of UC remission samples by PCA. Separation 
of remission samples by principal component analysis (PCA) using 
287 genes obtained by Cox analysis. The samples separate into two 
groups dependent on remission duration, remission without relapsing 
(RM, blue), and remission with relapsing (RL, yellow). The size of 
the circles represents the duration of remission. Principal component 
1 (PC1) explained 59.1% of the total variance, and principal compo-
nent 2 (PC2) explained 9.8% of the total variance

Fig. 6  Beta-coefficients 
obtained by Cox proportional 
hazards regression analysis. 
Beta-coefficients indicate the 
contribution of each gene to 
the relative risk of relapse in 
the Cox survival analysis for 
23 UC-relevant genes shown 
in Fig. 2. The figure shows 
the beta-coefficient value on 
the X-axis for each gene. Zero 
is marked as a dashed line. 
A negative value indicates a 
protective effect of a gene with 
which it is associated, and vice 
versa
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Top genes with great influences towards normal control 
samples in the PCA are HMGSCS2, BAGALNTT2, and 
GLP2R (Figs. 3 and S1). HMGCS2 encodes a mitochon-
drial protein that belongs to the HMG-CoA synthase fam-
ily and catalyses the first reaction of ketogenesis. Elevated 
expression of HGMCS2 has been reported recently for 
long-duration ulcerative colitis (Low et al. 2019). Here, 
HMGCS2 showed increased expression in both remis-
sion groups when compared to UC and contributes to a 
lower risk of relapse (Table S3 and Fig. 6). However, a 
high expression of HMGCS2 has been associated with the 
development of colorectal cancer (CRC) which is contrary 

to these findings (Chen et al. 2017). Increased expres-
sion of glycosyltransferase B4GALNT2 in RM points to 
a maintenance of the intestinal mucus barrier function 
(Table S3) (Bergstrom et al. 2017). The increased expres-
sion of GLP2R involved in the stimulation of intestinal 
growth, increase of crypt cell proliferation and decrease of 
enterocyte apoptosis by glucagon-like peptides, prevents 
intestinal hypoplasia (Drucker 2003).

Interestingly, nearly all the non-coding genes shown 
in the biplot demonstrate an influence towards RM and 
normal controls in the PCA (Fig. S2). The expression of 
20 small nucleolar RNAs (snoRNAs) (Fig. 4, Table S3, 
and Fig. S2) may be involved in the mediation of cell–cell 
communication and improvement of cell survival in the 
face of stress and/or infection (Rimer et al. 2018), and long 
non-coding RNAs (lncRNAs) have been shown to have rel-
evance for ulcerative colitis pathogenesis (Ghafouri-Fard 
et al. 2020; Yarani et al. 2018; Ray et al. 2022). Functions 
of non-coding RNAs in ribosomal RNA (rRNA) regula-
tion have been recently reported where especially snoR-
NAs and long non-coding RNAs play important roles in 
pre-rRNA transcription, processing, and maturation (Li 
et al. 2013). These pathways are shown to be enriched in 
RM (Fig. 7).

However, the relevance of specific expression of non-cod-
ing RNAs for UC remission duration and outcome needs fur-
ther evaluation. In this context, it is interesting to note that 
synergistic gene regulation by pseudogenes and non-coding 
RNAs has been considered a novel regulatory mechanism 
which might have a role in UC pathogenesis (Li et al. 2013; 
Milligan et al. 2015).

This study is not without limitations and is limited by a 
restricted number of patient samples. Yet, a separation in 
the PCA after Cox analysis was clearly derived (Figs. 3 and 
5). Although several studies present gene expression data 
of UC patients in remission, separate patient samples with 
indicated time of relapse were not available for validation 
of the Cox model. Knowing that the sample number was 
low, the Cox survival model was then validated with 7 ran-
domly chosen remission patient samples and could confirm 
the model (Fig. 8) using four MTRNR2-like genes. In addi-
tion, a patient cohort with the possibility to investigate the 
remission state in the same patients consecutively was not 
available at the time of this study. Nevertheless, the different 
remission groups do not resemble a normal control pheno-
type. Patients in the RM group that have been previously 
treated with anti-TNF therapy (infliximab) until endoscopic 
remission and subsequently been treated with 5-aminosali-
cylic acid (5-ASA) only did not experience relapse (Johnsen 
et al. 2017). Patients in the RL remission group remained in 
remission for up to 8 months with additional immunosup-
pressive treatment but had a relapse at some point during 
the treatment period.
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Fig. 7  Functional annotations of genes revealed by Cox analysis. 
The protein-coding genes were annotated with gene ontology (GO). 
Enriched pathways and genes involved are indicated. The length of 
bars indicates the number of genes involved in the GO terms for bio-
logical process (BP), cellular component (CC), and molecular func-
tion (MF). A complete list of enriched GO pathways annotations can 
be found in Table S6

Fig. 8  Validation of the Cox survival model. The validation of the 
Cox model was tested with seven UC remission samples. The correla-
tion plot depicts the predicted remission time (years) on the X-axis 
and the actual remission time (years) on the Y-axis for a group of 
7 randomly picked patient samples using a gene set including 4 
MTRNR-like genes (MTRNR2L6, MTRNR2L3, MTRNR2L12, 
MTRNR2L8). The correlation between the two parameters is esti-
mated at R= 0.641
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Conclusions

The data clearly demonstrate that remission is an altered 
state of UC with quiescent microscopic disease activity 
still present. This disease activity is independent of remis-
sion duration and outcome. Transcription expression anal-
ysis and Cox survival analysis revealed potential markers 
genes that could be useful to predict disease outcome. 
These markers include mitochondrial MTRNR2-like genes 
and non-coding RNAs. Especially, the expression of anti-
apoptotic factors and snoRNAs may contribute to person-
alized medicine approaches in UC by improving patient 
stratification for different treatment regimens. The data 
presented might be of clinical utility in the future.
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DNA methylation fine‑tunes 
pro‑and anti‑inflammatory 
signalling pathways in inactive 
ulcerative colitis tissue biopsies
Wei Meng 1, Christopher G. Fenton 1,4, Kay‑Martin Johnsen 2,3, Hagar Taman 1,4, 
Jon Florholmen 2,3 & Ruth H. Paulssen 1,4*

DNA methylation has been implied to play a role in the immune dysfunction associated with 
inflammatory bowel disease (IBD) and the disease development of ulcerative colitis (UC). Changes 
of the DNA methylation and correlated gene expression in patient samples with inactive UC might 
reveal possible regulatory features important for further treatment options for UC. Targeted bisulfite 
sequencing and whole transcriptome sequencing were performed on mucosal biopsies from patients 
with active UC (UC, n = 14), inactive UC (RM, n = 20), and non‑IBD patients which served as controls 
(NN, n = 11). The differentially methylated regions (DMRs) were identified by DMRseq. Correlation 
analysis was performed between DMRs and their nearest differentially expressed genes (DEGs). 
Principal component analysis (PCA) was performed based on correlated DMR regulated genes. DMR 
regulated genes then were functional annotated. Cell‑type deconvolutions were performed based on 
methylation levels. The comparisons revealed a total of 38 methylation‑regulated genes in inactive 
UC that are potentially regulated by DMRs (correlation p value < 0.1). Several methylation‑regulated 
genes could be identified in inactive UC participating in IL‑10 and cytokine signalling pathways such 
as IL1B and STAT3. DNA methylation events in inactive UC seem to be fine‑tuned by the balancing 
pro‑ and anti‑ inflammatory pathways to maintain a prevailed healing process to restore dynamic 
epithelium homeostasis.

Keywords Ulcerative colitis, Remission, DNA methylation, Epigenetics

Ulcerative colitis (UC) is a chronic inflammatory disorder of the colon with a relapsing  course1. To achieve 
remission, long-term treatment is often  required2. Multiple factors can cause the disease, and research has 
focused on investigating genetic susceptibility, microbiome communities, environmental factors, and immune 
responses in UC  patients3–5 Current research denotes the importance of interactions between inflammation and 
environmental  factors6–8. Therefore, dynamic processes such as DNA methylation, have been implied to play a 
role in the immune dysfunction associated with inflammatory bowel disease (IBD)9–11 and disease development 
of  UC12–15. DNA methylation in active UC has been reported  recently9,10,12,13. Variations in DNA methylation 
patterns have been associated with homeostasis and defence, immune responses, and progression and develop-
ment of colorectal cancer (CRC)12,13.

However, DNA methylation during UC in remission has not been explored in detail. Long-term treatment of 
UC patients is often necessary to achieve induction and maintenance of clinical  remission16–18. Previous work on 
transcriptional signatures in UC has revealed that UC in remission is a permanently altered state of UC with a 
still ongoing quiescent  inflammation19,20. Therefore, induced epigenetic changes due to long-term treatment can 
be expected. In this study, the genome-wide DNA methylome in a UC remission patient cohort was investigated 
to see if methylation contributes to the expression regulation of specific molecular signatures recently found in 
a patient cohort with different remission  duration21. It is believed that changes in the DNA methylation status 
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in remission patients, when correlated to differentially expressed genes (DEGs), may reveal possible regulatory 
features important for further treatment options for UC patients.

Materials and methods
Patient material
Mucosal biopsies (n = 43) were collected with a standardised sampling method of 12 newly diagnosed, treatment-
naïve UC patients with mild to moderate disease activity, 20 patients with inactive UC (remission) and 11 control 
subjects from a former  study21. Controls were derived from subjects performing a cancer screening, with normal 
colonoscopy and normal colonic histological examination. UC was diagnosed based upon established clinical 
endoscopic and histological criteria as defined by the ECCO  guidelines22. The grade of inflammation was assessed 
during colonoscopy using the UC disease activity index (UCDAI) endoscopic sub-score with 3 to 10 for mild 
to moderate  disease23. TNF-α mRNA expression levels were measured by real-time PCR to determine disease 
activity. All UC patients were initially treated with 5-aminosalicylic acid (5-ASA), in some cases also supple-
mented with immunosuppressive drugs (Imurel, methotrexate (MTX), and Infliximab) until disease remission. 
Patients with achieved clinical and endoscopic remission and normalised TNF-α levels were included in this 
study, with a defined UCDAI score ≤ 2, an endoscopic sub-score of 0 or 1, and TNFα-levels < 7500 copies/μg 
protein. All patient characteristics are depicted in Table 1. The samples were taken from an established Biobank 
approved by the Norwegian Board of Health (952/2006). The study participants signed informed and written 
consent forms. Approvals were granted by the Regional Committee of Medical Ethics of Northern Norway, Ref 
no: 14/2004, 1349/2012 and 29895/2020.

DNA and RNA isolation
Genomic DNA and total RNA was isolated using the Allprep DNA/ RNA Mini Kit from Qiagen (catalogue 
number 80204) and the QIAcube instrument (Qiagen), according to the manufacturer’s protocol. The quantity 
and purity of both DNA and RNA were assessed by using the NanoDrop ND-1000 spectrophotometer (Thermo 
Fisher Scientific, Wilmington, DE). The Experion Automated Electrophoresis System (Bio-Rad, Hercules, CA.) 
and the RNA StdSens Analysis Kit (Bio-Rad, catalogue number 700–7103) were used to evaluate RNA integrity. 
All RNA samples used for analyses showed an RNA integrity number (RIN) value between 8.0 and 10.0. DNA 
and RNA samples were kept at − 70°C until further use.

Institutional review board statement
The study was conducted according to the guidelines of the Declaration of Helsinki. Approvals were granted by 
the Regional Committee of Medical Ethics of Northern Norway, Ref no: 14/2004, 1349/2012 and 29,895/2020.

Informed consent statement
Written informed consent has been obtained from the study participants to publish this paper.

Library preparation and next‑generation sequencing
The libraries were prepared using the SeqCap Epi CpGiant Enrichment Kit (Roche, Switzerland) which enables 
the targeting of selected genomic regions from bisulfite-treated genomic DNA to identify specific regions in the 
genome for methylation variation assessment and as previously  described13. DNA was bisulfite converted using 
the EZ DNA Methylation-lightning Kit (Zymo Research, USA, cat no: D5030) prior to the hybridisation step 
and according to the manufacturer’s instructions. The amount of input material was 1060 ng of genomic DNA 
per sample. DNA library quality was assessed using the Bioanalyzer 2100 and the Agilent DNA 1000 kit (cat no: 
5067–1504, Agilent Technologies, Santa Clara, USA), according to the manufacturer’s instructions. DNA librar-
ies generated fragments with an average size of 322 bp. DNA libraries were diluted to 4nM before sequencing. 

Table 1.  Patient characteristics. *TNF-α copies/µg RNA in 16 patients. £ proctitis/left-sided colitis/
pancolitis. # 5-ASA/steroids/immunosuppressives. ¤Average score of 13 patients. €Average calprotectin levels 
in 15 patients. ¥Average calprotectin levels in 11 patients. ¶ Average score of 16 patients. § Data adapted for 
comparison from Fenton et al.20.  ± SD, Standard Deviation.

Characteristics
Controls
(n = 11)

UC remission
(n = 20)

Active UC§#
(n = 14)

Gender (male/female) 8/3 10/10 9/5

Age (years) mean ± SD 52.2 ± 19.3 50.0 ± 13.5 40.7 ± 13.9

Clinical score ± SD 0 0 7.78 ± 1.52

Endo Score mean ± SD 0 0.25 ± 0.50¶ 1.79 ± 0.43

Geboes score (total) ± SD n.d 0.13 ± 0.70¤ 6.35 ± 2.93

TNF-α copies/µg RNA ± SD 4366 ± 1998 4500 ± 1509* 15,907 ± 9623

Calprotectin (mg/kg) mean ± SD n.d 17.0 ± 53.78€ 587.5 ± 483.8¥

Extension of disease£ _ 2/12/6 2/9/3

Medication# _ 20/0/6 _
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Whole transcriptome libraries were prepared with the TruSeq Stranded Total RNA LT Sample Prep Kit from 
Illumina (cat no: RS-122–2203). The amount of input material was 1μg of total RNA. The Bioanalyzer 2100 and 
the Agilent DNA 1000 kit (cat no: 5067–1504, Agilent Technologies, Santa Clara, USA) were used to assess the 
quality of the RNA libraries. RNA libraries generated fragments with an average size of 301 bp. Libraries were 
normalised to 10 nM and diluted to 4 nM prior to sequencing. DNA and RNA libraries were sequenced on the 
NextSeq 550 instrument, using a high output flow cell 150 cycles (cat no: FC-404–2002, Illumina, USA) and 
according to the manufacturer’s instruction. The libraries were sequenced using paired-end mode.

Data analysis
A flow chart illustrating the downstream analysis process is shown in Fig. 1.

Figure 1.  Flow chart for generating differentially methylated region (DMR) correlated gene patterns for groups 
of inactive UC (RM), active UC (UC), and controls (NN). Processed sequencing data of 45 samples underwent 
Bismark and DMRseq, incorporating three comparisons to identify DMRs (q value < 0.05) and underwent 
DEseq2 for DEGs (p.adj < 0.05). DMRs located within 2000 bp upstream of DEGs were correlated with the 
DEGs. The correlated DMRs were then integrated. Integrated DMRs were grouped based on expression level 
and t-test on methylation level (p < 0.05) to ensure a fit with the pattern conditions.



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6789  | https://doi.org/10.1038/s41598-024-57440-0

www.nature.com/scientificreports/

RNA sequencing
Quality scoring, base calling, and adapter removal were performed on the Illumina NextSeq 550 sequencing 
instrument. The output FastQ file was aligned with reference GENCODE Human Release 33 (Human Genome 
Assembly GRCh38.p13) ((https:// www. ncbi. nlm. nih. gov/ grc/ human/ data) by  Kallisto24. DEseq2 was used to 
generate a list of differential expressed gene transcripts (DEGs)25. DEGs with only p.adj < 0.05 were kept.

Bisulfite converted DNA and DMRSeq
Quality scoring, base calling, and adapter removal were performed on the Illumina NextSeq 550 sequencing 
instrument. The output FastQ file was aligned with reference GENCODE Human Release 38 by Bismark 
with  Bowtie226,27. The output BAM files were then used to generate coverage data and methylation data by 
using Bismark methylation  extractor27. The results of Bismark were further processed with  DMRseq28 to find 
differentially methylated regions. Only differentially methylated regions (DMRs) with a q-value < 0.05 were kept. 
In this context, the q-value served as an adjustment for multiple comparison to control the false discovery rate.

Identification of possible specific DMRs of inactive UC (RM)
DMRseq was performed on three individual comparisons: inactive UC (RM) vs active UC (UC), inactive UC 
(RM) vs controls (NN), and active UC (UC) vs controls (NN) resulting in three sets of DMRs with q < 0.05. The 
resulting DMRs were merged by overlapping genomic locations, and non-overlapping DMRs were discarded. 
To identify inactive UC specific DMRs additional t-tests were performed between the average DMR methylation 
levels of inactive UC samples against both control and active UC samples. DMRs whose p-value was less than 
0.05 in both t-test comparisons were considered as inactive UC specific. The additional t-test ensured that the 
inactive UC group was in fact different from both the active UC and control group.

Identifying DEGs correlated to specific DMRs of inactive UC (RM)
For each DMR located within the 2000 bp upstream region of the transcription start site (TSS), sample DMR and 
DEG were correlated using average DMR methylation and DEG expression levels by Kendall  correlation29. UCSC 
known gene (GRCh38) with R package TxDb.Hsapiens.UCSC.hg38.knownGene were used for TSS sites and 
functional region  reference30. Correlated genes with p < 0.1 were kept based on the correlation coefficient τ < 0.

Annotations and pathway enrichment
Genes associated with transitional methylation patterns, where inactive UC (RM) methylation levels are between 
active UC (UC) and controls (NN) went through enrichment analysis for pathways enrichment using the Panther/
Reactome overrepresentation analysis (Reactome version 77 released 2021–10-01) using the Fisher’s exact  test31. 
For GO annotations of all 38 genes, clusterProfiler was  used32.

Cell deconvolutions
Cell deconvolutions were performed on DMRs that overlapped Illumina Epic array coordinates using the 
EpiDISH R  package33. Average sample relative methylation values for these DMRs were used as input to EpiDISH 
in Robust Partial Correlation (RPC) mode. Differences between groups were calculated using ANOVA and 
Tukey’s range  test34. Cell deconvolutions for the expression data were performed with CIBERSORTx (https:// 
ciber sortx. stanf ord. edu/). The LM22 (22 immune cell types) was selected as a signature matrix. The normalized 
expression matrix was chosen as the input matrix file. The remaining parameters were left at default  values35.

Results
Characterisation of DNA methylation in inactive UC
By combining genome-wide methylation data and whole transcriptome data, insight into the molecular mecha-
nisms of inactive UC was established. Bisulfite sequencing provided DNA methylation levels in patient biopsy 
samples from inactive UC (n = 20), treatment-naïve active UC (n = 12) and non-IBD controls (n = 11). (Table 1). 
The different methylation patterns between inactive UC, active UC and controls were identified by  DMRseq28. 
DMRs were detected in the following comparisons: 313 DMRs were detected in inactive UC vs. controls, 5,316 
DMRs were detected in inactive UC vs. active UC, and 8,262 DMRs were detected in active UC vs. controls. By 
considering all three comparisons, the methylation levels of a total of 3098 DMRs were negatively correlated with 
neighbouring transcript expression. Analysis of the combined DMRs revealed 52 DMRs (38 genes) with specific 
and transitional patterns as depicted in Supplementary Data 1, Fig. 2. Principal component analysis (PCA) with 
the correlated DMRs could discriminate samples of inactive UC, active UC, and controls at the transcriptomic 
level (Fig. 3), with 51.0% and 13.3% variance. An example for detailed comparisons between expression and 
methylation levels are visualised for annexin A11 (ANXA11) (Fig. 4). Here, the presence of DMRs provides valu-
able information regarding the potential regulation positions and overlapping on the promoter region (shown as 
“Prom” in Supplementary data 2). ANXA11 is specifically hypo-methylated in DMRs on chr10.470 compared to 
controls and active UC, thus the expression of ANXA11 in inactive UC is uniquely over-expressed compared to 
controls and UC (upper left panel, Fig. 4). It is hereby noted that the DMRs labels are specific to this study and 
do not represent universal IDs.

Methylation‑regulated gene profiling in inactive UC.
Among the 38 genes, two methylation patterns were found, one which is specific for inactive UC compared to 
controls and active UC, and one where methylation patterns of inactive UC are in transitional state between 
controls and active UC (Fig. 2). Two specific profiles were identified where inactive UC can be further subdivided 

https://www.ncbi.nlm.nih.gov/grc/human/data
https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
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into hyper- and hypomethylated compared to UC and controls. Two different transitional profiles were 
identified where inactive UC shows an intermediate state of methylation in relation to controls and active UC 
(Supplementary Data 1).

Genes with specific methylation patterns that are hyper-methylated in inactive UC include competing 
endogenous lncRNA 1 for mir-4707-5p and mir-4767 (CERNA2), citron rho-interacting serine/threonine 
kinase (CIT), integrin subunit alpha 4 (ITGA4), and zinc finger protein 626 (ZNF626). Genes uniquely hypo-
methylated in inactive UC compared to active UC includes actin filament associated protein 1 antisense RNA 1 

Type Methyla�on pa�erns Profiles Gene symbol
CERNA2
CIT
ITGA4
ZNF626
AFAP1-AS1
ANXA11
HYAL1
MST1R
S100P
ADAM8
CCDC88B
CD80
DENND2D
DMBT1
DUSP10
FAM167A
GALNT2
HIF1A
HIVEP2
IL1B
ISG20
LIMK1
PARP9
PEA15
PFKFB3
PLA2G2D
PPP1R18
PSMB8
RNF166
RUBCN
SBNO2
SGMS1
STAT3
TG
TNFRSF10C
TRIM22
ZC3H12A

NN<RM<UC PRR26

Methyla�on profiles of 38 genes found in inac�ve UC (RM)

Transi�onal

NN>RM>UC

Specific

NN<RM>UC

NN>RM<UC
RM

UCNN

RM

UCNN

RM
UC

NN

RM
UC

NN

Figure 2.  Methylation profiles of 38 DEGs found for inactive UC (RM). DEGs are assigned to specific or 
transitional profiles. All genes have at least one DMR which correlated to the differential expression (p.adj < 0.05) 
with a negative correlation p < 0.1. Patient groups representing inactive UC (RM), active UC (UC) and controls 
(NN) are indicated. Methylation patterns, methylation profiles, and gene symbols are indicated. A complete 
overview is listed in Supplementary Data 1.
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(AFAP1-AS1), annexin A11 (ANXA11), hyaluronidase 1 (HYAL1), macrophage stimulating 1 receptor (MST1R), 
and S100 calcium binding protein P (S100P).

The transitional genes patterns represent genes that have an intermediate methylation status between UC 
and controls (Fig. 2). 28 genes were found to be hyper-methylated in controls compared to active UC, including 
ADAM metallopeptidase domain 8 (ADAM8), coiled-coil domain containing 88B (CCDC88B), CD80, DENN 
domain containing 2D (DENND2D), dual specificity phosphatase 10 (DUSP10), signal transducer and activator 
of transcription 3 (STAT3), and interleukin 1B (IL1B), interferon stimulated exonuclease gene 20 (ISG20) and 
LIM domain kinase 1 (LIMK1). DIP2C antisense RNA 1 (PRR26) is the only gene found to be hyper-methylated 
in active UC compared to controls. A comprehensive list of figures of all methylation-regulated genes can be 
found in Supplementary Data 1.

Methylation‑regulated genes are related to inflammation
The 28 methylation regulated genes in the intermediate state were functionally annotated with Gene Ontology 
(GO) terms with the Panther/Reactome overrepresentation test (Reactome v.77, released 2021-10-01) (Fig. 5). 
Genes like TRIM22, PSMB8, CD80, IL1B, ISG20, HIF1A, STAT3 were all hyper-methylated and downregulated 
to a lesser extent in inactive UC compared to UC. These genes were annotated to the IL-10 pathway and cytokine 
signalling in immune system (Fig. 5).

Functional enrichment revealed 101 immunological and inflammation related signalling pathways 
(p.adj < 0.05), which include interleukin-6 production, CD4-positive, alpha–beta T cell activation and 
lymphocyte differentiation represented by genes like ADAM8, IL1B, ISG20, CD80, STAT3 and ZC3H12A (Fig. 5; 
Supplementary Data 3). Genes in specific patterns including CIT, MST1R, HYAL1, ITGA4 were annotated as 
hyaluronan metabolic process, epithelium migration and phagocytosis. The total of 103 functional GO terms 
are listed in Supplementary Data 3.

Figure 3.  Principal component analysis (PCA). Expression levels of 38 methylation-regulated transcripts with 
specific and transitional patterns. Patient and control samples are indicated as followed: inactive UC (RM; 
blue), treatment-naïve active UC (UC; red), and controls (NN; green). Differential expression showed a 51.0% 
explained variance in PC1 and a 13.3% explained variance in PC2.
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Cell deconvolutions based on DNA methylations discriminate cell fractions
Cell deconvolution was performed by mapping DMR genomic coordinates to Illumina EPIC array  identifiers33. 
The deconvolution results revealed differences in cell fractions for inactive UC (RM), active UC (UC) and 
controls (NN). Epithelial cell fractions were higher in normal and inactive UC than active UC (padj < 0.01). 
The proportion of immune cells is significantly higher in active UC compared to inactive UC and controls 
(padj < 0.01). Similarly, the fibroblast cell fractions in inactive UC and controls are slightly higher than in active 
UC (Fig. 6, Supplementary Data 4). Using CIBERSORTx on the normalized gene expression matrix showed an 
increase in most immuno-derived cells, especially of neutrophils in active UC as compared to inactive UC and 
controls (Supplementary Data 5)35.

Discussion
In a previous work, DNA methylation patterns have been identified for active, treatment-naïve  UC12,13,36. In this 
study, the methylation status in inactive UC (RM) has been explored by determining gene expression regulated 
by global DNA methylation overlapping the promoter region of genes. By correlating DNA methylation data to 

Figure 4.  Correlation between DMRs status and transcriptional levels of ANXA11. The transcript and 
regulatory position of the transcript is aligned with identified DMRs on the top left, showing the regional 
transcript information. The data type is listed on the left: Prom stands for the promoter region in the transcript. 
DMRs are the differential methylated region from DMRseq, named with a chromosome and a tag. The 
differential expression level is shown in the top right as a box plot. The X-axis shows the log2 normalised 
expression levels. The differential methylation level of each region is shown at the bottom. The X-axis is the 
position of methylated sites in the region, and Y-axis is the methylation percentage (from 0 to 1). Each dot is 
one percentage of methylation position in each sample. The linear regression is shown as a line with inactive UC 
(blue), UC (red) and controls (green). The grey area of the line stands for a 95% confidence level. Raw difference 
of methylation level, differential expression level, and correlation value can be found in Supplementary Data 1. 
Figures of all 38 genes can be found in Supplementary Data 2, different transcripts of one gene are indicated if 
multiple transcripts are involved.
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Figure 5.  Gene ontology enrichment of the methylation correlated genes. The bar length shows the number of 
genes enriched in each term (x-axis). The colour stands for the padj value from dark blue to light blue (0 to 0.05, 
respectively). The detailed genes included in each term are listed in Supplementary Data 3.

Figure 6.  Cell deconvolutions. The cell types are shown in X-axis as Epi (epithelium), Fib (fibroblasts) and IC 
(immune cells). The percentages of the cell types are shown on the Y-axis.
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expression levels of genes several regulatory DNA methylation features of relevance for inactive UC could be 
identified and are discussed below.

Long-term treatment of UC patients is often necessary to achieve induction and maintenance of clinical 
 remission16–18. UC medications such as immunosuppressive drugs have been shown to have side effects on 
immune response and can change the DNA methylations  status37,38. Induced epigenetic changes due to long-
term treatment can be expected for 5-ASA which is commonly used as a first-line treatment for UC and might 
therefore have the potential to change the methylation status. This notion is supported by in vitro studies that have 
shown that 5-ASA treatment increases the expression of DNA methyltransferase 1 (DMNT1) which is responsible 
for most of the methylation events occurring on the human  genome39 Therefore, it can be anticipated that the 
observed methylation changes in inactive UC patients might be a result of 5-ASA treatment.

Four genes have been found to be specifically hyper-methylated in inactive UC compared to active UC and 
controls (NN) (Fig. 2), CERNA2, CIT, IGTA4 and ZNF 626 (Supplementary Data 1). The observed specific 
hyper-methylation of CERNA2 in inactive UC compared to UC indicates anti-inflammatory characteristics. 
CERNA2 has been recently reported to play a role in  inflammation40 and has been identified as an independent 
predictor for clinical prognosis of gastric  cancer41. It is notable that the expression of CERNA2 has been shown 
to correlate with poor clinical parameters and an unfavourable prognosis of different cancer patient groups while 
silencing of CERNA2 expression inhibits cancer cell growth and promotes cell  apoptosis42,43. In this context, CIT 
was specifically hyper-methylated in inactive UC. Silencing of CIT has been shown to reduce tumour growth 
in multiple myeloma and breast cancer cells by promoting  apoptosis44,45. Therefore, specific hypermethylation 
of CIT and CERNA2 might play a role in the fine-tuning of the regulation of apoptotic events during inactive 
 UC21. ITGA4 is another specifically hyper-methylated gene in inactive UC compared to UC and is a well-known 
therapeutic target for the treatment of IBD (Fig. 2 & Supplementary Data 2). The observed downregulation 
of ITGA4 expression implies reduced leukocyte infiltration into the GI tract through the interaction with 
MAdCAM‐1 which is expressed on high endothelial venules (HEV) within vessels of mucosal  tissue46–50.

Quiescent inflammation present in inactive UC has previously been  reported20,51,52 and many of the observed 
methylation-regulated expressed genes identified in inactive UC are involved in inflammation. Surprisingly, 
increased levels of a well-known marker for inflammation S100P were observed to a greater extent in inactive 
UC compared to active UC and controls. The observed specific hypo-methylation and upregulation of S100P 
in inactive UC might, in addition to S100P’s inflammatory responses, contribute to the regulation of tissue 
development and regeneration or repair as previously  reported53 (Fig. 2 & Supplementary Data 2).

Chronic inflammation like UC results in dramatic deposition of hyaluronic acid (HA) within affected tissues 
which both precedes and promotes immune cell infiltration, tissue destruction, and  coagulation54. The observed 
increased expression of HYAL1 in inactive UC might lead to decreased levels of HA in active UC, thereby 
modulating the promotion and resolution of the disease by controlling recruitment of immune cells, by release 
of inflammatory cytokines, and by balancing  haemostasis55 (Supplementary Table 2,Fig. 2). Hypo-methylation 
and increased expression of MSTR-1 in inactive UC compared to UC might directly be involved in the wound 
healing process by promoting epithelial cell migration and proliferation, as this innate immune response 
regulates the migration of macrophages increasing the phagocytic  activity56. Increased fractions of epithelial 
cells and decreased fractions of immune cells in inactive UC are in concordance with the results obtained by 
cell deconvolutions (Fig. 6).

Two other specifically hypo-methylated genes in inactive UC of relevance for IBD include ANXA11 and 
lncRNA AFAP1-AS1. ANXA11 has been shown to be a sarcoidosis susceptibility  gene57. An association between 
sarcoidosis and ulcerative colitis has been  reported58. The expression of lncRNA AFAP1-AS1 has been shown 
to promote the progression of CRC 59 and has been acknowledged as a biomarker for diagnosis and prognosis 
estimation of CRC  patients60. However, the potential role of the here observed hypo-methylation of AFAP1-AS 
in inactive UC is still unclear.

Annotations of genes with intermediate methylation patterns for inactive UC revealed two pathways, IL10 
signalling and cytokine signalling in immune system pathways (Fig. 5, Supplementary Data 3). These genes 
were all hyper-methylated and downregulated in inactive UC compared to active UC but to a lesser extent then 
in controls, meaning that normal levels of expression are not completely achieved by hyper-methylation. The 
downregulation of the proinflammatory cytokine IL1B, might reduce T cell immune response by downregulation 
of co-stimulatory molecules such as  CD8061–63. In addition, IL1B production is diminished by the observed 
downregulation of STAT3 expression and implies reduced phosphorylation of IL1B. Hyper-methylation of STAT3 
in inactive UC compared to active UC might be involved in the regulation of adaptive immune responses by 
reducing survival of pathogenic T cells and TNF-α64. The transcriptional coregulator SBNO2 (strawberry notch 
homolog 2) is hyper-methylated in inactive UC compared to UC and contributes to the downstream anti-
inflammatory effects of IL-10 which is dependent on STAT3  activation65.

Compared to controls, ZC3H12A is hypo-methylated in inactive UC which might indicate a modulation 
of the inflammatory response by promoting the degradation of a set of translationally active cytokine-induced 
inflammation-related mRNAs, such as IL6 and  IL12B66. ZC3H12A induces the deubiquitylation of the 
transcription factor HIF1A which is also hyper-methylated in inactive UC compared to active UC, thereby 
positively regulating the expression of proangiogenic HIF1A-targeted  genes67. The decrease of HIF1A expression 
in inactive UC may function as a transcriptional regulator of the adaptive response to hypoxia maintaining 
biological  homeostasis68. In this context, cell deconvolutions revealed epithelial cell fractions in inactive UC were 
comparable to epithelial fractions in control samples (Fig. 6). It is notable that somatic mutations of ZC3H12A 
have been found in UC patients’ epithelium which might have an unknown influence on the DNA methylation 
regulated  expression69. The hypo-methylation of LIMK1 in inactive UC compared to controls could lead to 
reduced T-cell regulation in inactive UC through Rho/Rac pathways. A single nucleotide polymorphism (SNP) 
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rs6460071 in LIMK1 has been reported to be most significantly associated with proximal endoscopic extension 
in CRC and is a predictor of outcome in  UC70.

DNA methylation has been found to influence the regulation of interferon’s antiviral processes mediated by 
TRIM22, IGS20, and DENND2D. The hypermethylation of the interferon-induced antiviral protein TRIM22 
compared to UC might contribute to a decrease in disease development through the NF-κB signalling  pathway71. 
The increased expression of antiviral ISG20 in UC still needs to be confirmed. However, the hypo-methylation 
and increased expression of ISG20 in inactive UC compared to controls may be a potential susceptibility 
biomarker or pharmacological target as has been shown for other inflammatory  conditions72. It is hereby noted 
that a prognostic impact of expression and methylation status of DENN/MADD domain-containing protein 
2D in gastric cancer has been  proposed73–75. GALNT2 catalyses the initial reaction in O-linked oligosaccharide 
biosynthesis and has a broad spectrum of substrates for peptides such as MUC5AC, MUC1A, MUC1B. An 
increase of GALNT2 expression has been recently reported for UC patients in the active stage compared to 
patients in the  remission76. This result might be in part also be explained and confirmed by the observed hyper-
methylation of GALNT2 in inactive UC compared to UC (Supplementary Data 1, Fig. 2).

A limitation of this work is the small sample size and the heterogeneity of tissue samples as it was not possible 
to discriminate inactive UC in terms of remission duration and DNA methylation as has been recently seen for 
gene  expression21. It is important to note that epigenome-wide association studies do not always precede changes 
in transcription as has been recently  reported77.

Conclusions
Several differentially expressed genes involved in IL-10/cytokine signalling pathways may be under the control 
of DNA methylation events which might indicate fine-tuned processes regulating the balance between quiescent 
inflammation and mucosal healing in inactive UC.

Data availability
Processed RNA-seq data are deposited in NCBI’s Gene Expression Omnibus (GEO, https:// www. ncbi. nlm. nih. 
gov/ geo/) and are accessible through GEO series accession numbers GSE128682 and GSE169360. Regarding 
the availability of DNA data, it is hereby noted that, according to the Norwegian Health Research Act §34, the 
processing of health information can only take place in accordance with the consent given. In this case, the 
availability of unprocessed DNA information would not be in accordance with the participants’ consent. All 
data generated or analysed during this study are included in this published article and supplementary data files.
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Abstract: Long non-coding RNAs (lncRNAs) have been shown to play a role in the pathogenesis
of ulcerative colitis (UC). Although epigenetic processes such as DNA methylation and lncRNA
expression are well studied in UC, the importance of the interplay between the two processes has not
yet been fully explored. It is, therefore, believed that interactions between environmental factors and
epigenetics contribute to disease development. Mucosal biopsies from 11 treatment-naïve UC patients
and 13 normal controls were used in this study. From each individual sample, both whole-genome
bisulfite sequencing data (WGBS) and lncRNA expression data were analyzed. Correlation analysis
between lncRNA expression and upstream differentially methylated regions (DMRs) was used to
identify lncRNAs that might be regulated by DMRs. Furthermore, proximal protein-coding genes
associated with DMR-regulated lncRNAs were identified by correlating their expression. The study
identified UC-associated lncRNAs such as MIR4435-2HG, ZFAS1, IL6-AS1, and Pvt1, which may
be regulated by DMRs. Several genes that are involved in inflammatory immune responses were
found downstream of DMR-regulated lncRNAs, including SERPINB1, CCL18, and SLC15A4. The
interplay between lncRNA expression regulated by DNA methylation in UC might improve our
understanding of UC pathogenesis.

Keywords: long non-coding RNAs; DNA methylation; ulcerative colitis; epigenetics

1. Introduction

Ulcerative colitis (UC) is a relapsing chronic inflammatory disease of the colon and one
of the most common conditions of inflammatory bowel disease (IBD) [1]. The development
of UC is influenced by a complex interplay between the host immune system, genetic
variation, intestinal microbiota, and environmental factors [2,3]. The link between environ-
mental factors and the genome is thought to be via epigenetic mechanisms, including DNA
methylation [4], histone modifications [5], and interactions with non-coding RNAs [6].
Methylation can alter the expression of genes associated with UC pathogenesis [7–9].

Long non-coding RNAs (lncRNAs) are transcripts that are longer than 200 nt and
have no protein-coding capacity. LncRNAs have multiple mechanisms to regulate gene
expression including the modulation of transcription, mRNA stability, translation, and
protein subcellular location by interacting with DNA, RNA, or protein to form large
complexes [10]. LncRNAs have been shown to play a significant role in various biological
processes including the regulation of gene expression, epigenetic regulation, and disease
development [10]. Several studies have identified lncRNAs playing a role in the disease
development and pathogenesis of UC [11–17]. DNA methylation is a key regulator of gene
expression and contributes to lncRNA expression [18].

The interplay between DNA methylation and lncRNA expression has been implicated
in various biological processes, including embryonic development, cancer, and neurolog-
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ical disorders [19–21]. The interplay between lncRNAs and methylation is not limited
to promoter methylation but represents part of a complex regulatory network [21]. Like
protein-coding genes, the transcription of lncRNAs can be affected by promoter methy-
lation [22]. LncRNAs may in turn regulate the epigenome by interacting with different
epigenetic factors including DNMTs or other genes involved in chromatin organization [23].
The crosstalk between DNA methylation and lncRNAs has been confirmed by findings
regarding lncRNA promoter methylation and dysregulation in response to methylation
inhibitor treatments [21]. Changes in the promoter methylation state cause the significant
dysregulation of many lncRNAs, including Pvt1, NEAT1, and LINC00261, and play a role
in disease pathogenesis [21,24]. This study focuses on lncRNAs that may be regulated by
differentially methylated regions (DMRs).

This study aims to provide valuable knowledge for future functional studies of lncR-
NAs associated with UC pathogenesis.

2. Results

A schematic overview of the methods and software used to generate the results used
in this study is presented in Figure 1. The study workflow comprised several steps: WGBS
(whole-genome bisulfite sequencing) data were aligned to the human reference genome
using Bismark, and RNAseq fastq files were aligned to the human reference transcriptome
using Kallisto. Differentially methylated regions (DMR) and differentially expressed (DE)
transcripts were identified using DMRSeq and DESeq2, respectively. Using correlation
analysis between lncRNA expression and adjacent DMR methylation levels, potentially
methylation-regulated lncRNAs were selected. Methylation-regulated lncRNA expression
was correlated with adjacent protein-coding transcript expression to predict target protein-
coding genes for selected lncRNAs. The obtained results were visualized using Gviz and
verified with ten other GEO UC datasets.
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Figure 1. Schematic overview of material, methods, and software used in the study.

2.1. Identification of Differentially Expressed Transcripts with DESeq2

DEseq2 was run on the transcript count matrix generated by the Kallisto aligner on
raw Illumina fastq reads, generated from 11 treatment-naïve mucosal biopsy UC samples
and 13 control samples. A total of 1292 lncRNAs had an adjusted p-value less than 0.05 and
an absolute fold change value greater than 0.5.

2.2. Identification of Differentially Methylated Regions (DMRs) with DMRseq

A total of 5796 DMRs were obtained with a q-value < 0.05 in the UC samples (n = 11)
compared with the normal control group (n = 13). The DMRs included 1380 hyperme-
thylated and 4416 hypomethylated regions (Table S1). The average size of the DMRs was
288 bp, and the average number of CpGs in the DMRs was 15.
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2.3. LncRNAs That May Be Regulated by DMRs

LncRNAs that were within 20 kb upstream or downstream of a DMR and whose
expression negatively correlated with DMR methylation levels were considered lncRNAs
that are potentially regulated by a proximal DMR. A total of 254 lncRNAs met the above
criteria. A total of 188 lncRNA were upregulated in UC, and 66 were downregulated in UC
(Table S2).

2.4. Proteins That May Be Influenced by DMR-Regulated LncRNAs

Differentially expressed protein-coding genes that were within 500 kb upstream or
downstream of a DMR-regulated lncRNA were considered for correlational expression
analysis. A total of 244 protein-coding genes were found whose expressions were signifi-
cantly and negatively correlated with lncRNA expression. This discussion focuses on those
genes that may play a role in UC pathogenesis. Of the above proteins, 110 were upregulated
in UC, and 134 were downregulated in UC versus the control. The results are summarized
in Tables S3 and S4. Figure 2 shows an example of a genomic region containing a DMR,
DE lncRNA transcripts, and DE protein-coding transcripts. An example of the correlation
between the DMRs, DE lncRNA transcripts, and adjacent DE protein-coding transcripts is
shown in Figure 3. All genomic regions of interest can be seen in Figure S1.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW  4  of  13 
 

 

 

Figure 2. Example of a genomic region containing a differentially methylated region (DMR) chr3.15 

and  differentially  expressed  (DE)  lncRNA  SH3BP5‐AS1  transcripts.  The  top  transcript  track 

represents  the  regions  found  between  the  DMR,  lncRNA  transcripts,  and  DE  protein‐coding 

transcripts of interest. Transcripts indicated in light blue denote DE protein‐coding transcripts that 

may be influenced by DMR‐regulated lncRNA transcripts, which are shown in brown. Transcripts 

indicated in black are the largest transcripts for each gene found within the region. The LNC track 

denotes the position of the DE lncRNA transcripts; the DMR track denotes the position of the DMR, 

which  is shown  in purple. The CGI  track denotes  the position of known CpG  islands, which are 

shown  in green. The TSS  (transcription  starting  site)  track denotes  the position of known TSSs, 

which are shown in orange. The bottom track of the top panel shows the approximate distance in 

Mb. The bottom panel shows the relative methylation levels for the chr3.15 DMR. Red dots indicate 

the relative methylation values of the UC samples. The relative methylation values from the control 

samples are indicated in green. 

 

Figure  3.  An  example  of  correlations  between  sample DMR methylation  levels,  lncRNA,  and 

adjacent protein‐coding  transcript expressions. On  the  left,  the correlation between differentially 

Figure 2. Example of a genomic region containing a differentially methylated region (DMR) chr3.15
and differentially expressed (DE) lncRNA SH3BP5-AS1 transcripts. The top transcript track repre-
sents the regions found between the DMR, lncRNA transcripts, and DE protein-coding transcripts
of interest. Transcripts indicated in light blue denote DE protein-coding transcripts that may be
influenced by DMR-regulated lncRNA transcripts, which are shown in brown. Transcripts indicated
in black are the largest transcripts for each gene found within the region. The LNC track denotes
the position of the DE lncRNA transcripts; the DMR track denotes the position of the DMR, which
is shown in purple. The CGI track denotes the position of known CpG islands, which are shown
in green. The TSS (transcription starting site) track denotes the position of known TSSs, which are
shown in orange. The bottom track of the top panel shows the approximate distance in Mb. The
bottom panel shows the relative methylation levels for the chr3.15 DMR. Red dots indicate the relative
methylation values of the UC samples. The relative methylation values from the control samples are
indicated in green.
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Figure 3. An example of correlations between sample DMR methylation levels, lncRNA, and adjacent
protein-coding transcript expressions. On the left, the correlation between differentially expressed
(DE) lncRNA transcript SH3BP5-AS1-204 and the mean-sample relative methylation levels of DMR
chr3.15. On the right is the correlation between DE lncRNA transcript SH3BP5-AS1-204 expression
and proximal protein-coding DE BDT transcripts.

2.5. Cell Deconvolution

To estimate types of cell fractions in UC and the normal controls’ mucosal tissues,
the EpiDISH cell deconvolution algorithm was adapted for use with methylation data.
The deconvolution estimated relative fractions of epithelial, fibroblast, and immune cells
present in the tissue samples. A cell-type fraction estimate revealed increased fractions
of immune cells in tissues from UC patients, whereas fractions of epithelial cells and
fibroblasts were increased in the control samples (Figure 4).
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Figure 4. Box plots of fractions of cell types present in normal and UC tissue samples. Each plot
indicates a significant difference in cell distribution between UC and normal samples. The Y-axis
depicts cell fractions of tissue samples ranging from 0 to 1. The X-axis indicate the range of cell
fractions in control (N) and UC samples.
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2.6. Verification of DMR-Regulated lncRNAs and Proximal Proteins

To help verify the correlation between lncRNAs and adjacent protein expression, nor-
malized matrices from 11 datasets were collected: GSE109142, GSE128682, GSE206285,
GSE36807, GSE38713, GSE47908, GSE13367, GSE16879, GSE48958, GSE59071, and GSE73661.
A total of 35 lncRNAs showed a significant correlation with adjacent protein expression in
at least one dataset (Table S5). An overview of the number of samples in each GEO dataset,
as well as sample locations, is shown in Table S6.

3. Discussion

Environmental factors have been implicated in both the incidence of UC and the
likelihood of relapse in UC patients [25] and are thought to have a direct effect on the
epigenome, including the expression of lncRNAs and methylation status [26]. Both lncRNA
and DNA methylation have been shown to regulate the transcription of protein-coding
genes [18]. However, the interplay between DNA methylation, the expression of lncRNAs,
and the expression of protein-coding genes has not been explored in detail in UC.

The focus of this study was to identify lncRNAs that were negatively correlated
with adjacent DMR methylation levels. The implication is that elevated levels of DMR
methylation (hypermethylation) in UC samples should result in lower adjacent lncRNA
expression and vice versa (hypomethylation). To explore the possible cis effects of these
lncRNAs, neighboring DE protein-coding genes whose expression negatively correlated
with lncRNA expression were identified. This ensures that lncRNAs and adjacent protein-
coding genes are unlikely to be regulated by the same DMR. Defining the lncRNA cis-
regulation of gene expression is difficult, as lncRNAs have been shown to regulate the
expression of both proximal and distal genes [27]. Recent reports suggest that the 3D
conformation of the genome guides lncRNAs to distal binding sites [28]. Therefore, several
studies have considered the possible effects of lncRNA expression on genes within 500 kb
of lncRNAs [29,30].

Recent publications have shown that methylation events outside 1–2 kb of the pro-
moter can have effects on gene expression. It has been shown that increasing the range
queried from 5 kb to 20 kb can add an additional ~0.5% of DEGs that associate with the
identified DMRs [31]. Therefore, the influence of methylation on lncRNA expression in
DMRs within 20 kb was considered.

The results identified protein-coding genes and lncRNAs that were previously associ-
ated with UC. Protein-coding genes adjacent to possible DMR-regulated lncRNAs include
chemokine C-C motif ligand 18 (CCL18), potassium voltage-gated channel subfamily B
member 1 (KCNB1), and serpin family B member 1 (SERPINB1). The increased expression
of CCL18, which has been linked to inflammation and the migration of T cells, is correlated
with the expression of lncRNA AC244100.3 [32]. KCNB1 is correlated with DE lncRNA
ZFAS1 and is downregulated in active UC. KCNB1 regulates the cellular K+-efflux neces-
sary for enterocyte apoptosis and has been proposed as a therapeutic target for IBD [33]. In
addition, KCNB1 has been identified in several cancers, including gastric and colorectal
cancers (CRC). KCNB1 is downregulated in both CRC and gastric cancers [34,35]. The
expression of lncRNA GMDS-DT is correlated with the expression of neutrophil elastase
(NE) inhibitor protein-coding gene SERPINB1. In UC, activated neutrophils secrete NE,
which plays a key role in colonic epithelial cell destruction. The increased expression levels
of SERPINB1 might protect colonic epithelial cells by reducing NE activity [36].

Potentially DMR-regulated lncRNAs have been implicated in immunity, inflammation,
and IBD, including AC007750.1 (lnc-SLC4A10-7), SH3BP5 antisense RNA 1 (SH3BP5-AS1),
FOXD2-adjacent opposite strand RNA 1 (FOXD2-AS1), mir4435-2 host gene (MIR4435-
2HG), and cytoskeleton regulator RNA (CYTOR). The expression of AC007750.1 is corre-
lated with DPP-4 (dipeptidyl peptidase-4) expression, which is a potential biomarker for
IBD. DPP-4 stimulates the production and release of cytokines, chemokines, and neuropep-
tides, thereby playing a role in the inflammatory response [37,38]. LncRNA SH3BP5-AS1 is
correlated with biotinidase (BTD). The association between DMR, SH3BP5-AS1, and BTD
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is shown in Figures 2 and 3. Biotin deficiency plays a role in the induction of Th1- and
TH17-mediated proinflammatory responses [39]. The observed downregulation of BTD in
UC may result in the dysfunction of cellular immune responses [40].

A reduction in FOXD2-AS1 expression correlates with an upregulation of PDZK1-
interacting protein 1 (PDZK1IP1) in UC, which may contribute to the inflammatory re-
sponses associated with UC [41].

The dysregulation of MIR4435-2HG in UC might play a key role in the inflammatory
process and has been shown to be associated with CRC [37,42,43]. MIR4435-2HG is cor-
related with the expression of B cell lymphoma 2 (Bcl-2)-interacting protein (BCL2L11),
which is associated with an increase in apoptosis resistance, resulting in impaired epithelial
cell turnover [44]. In addition, BCL2L11 also plays a major role in immune tolerance in
UC [45]. CYTOR plays a role in promoting inflammation and epithelial–mesenchymal tran-
sition, ultimately promoting cellular invasion and CRC progression [46]. The expression
of lncRNA CYTOR is correlated with the expression of FABP1, which is involved in the
intestinal absorption of dietary long-chain fatty acids [47]. The dysregulation of CYTOR
may disrupt FABP1-mediated fatty acid metabolism, which has been implied to contribute
to the pathophysiology of UC [48,49].

Tissue samples are heterogeneous, and DNA methylation is a highly cell-type-specific
event [50]. Therefore, EpiDISH cell deconvolution was adapted for use with methylation
data and used to estimate cell-type fractions in both UC and control samples (Figure 2).
EpiDISH was chosen simply because over 70% of the DMR sites overlapped known Illu-
mina EPIC array sites. EPIC arrays are widely used to study methylation. The distribution
of cell fractions was consistent with previous deconvolution results obtained from tran-
scriptomic analysis of active UC [42]. The reduced epithelial fraction may be indicative of
cell degradation, which is a major characteristic of UC [51].

Our results show several potentially DMR-regulated lncRNAs associated with ep-
ithelial cell proliferation and migration, including HOXA-AS2 and HOXA-AS3 [52,53].
Interestingly, these lncRNAs are under DMR regulation and are downregulated in UC. The
downregulation of HOXA-AS2 and HOXA-AS3 may reduce epithelial cell differentiation
and migration during UC. The increased proportion of immune cells in the colon of pa-
tients with UC is due to the recruitment and activation of these cells in response to ongoing
inflammation in the gut [54]. The epigenetically upregulated lncRNAs ADORA2A-AS1 [55]
and IL6-AS1 [56] may be associated with immune cell infiltration, which is a characteristic
of inflammation. These potentially DMR-regulated lncRNAs may help explain the higher
abundance of immune cells in UC patients. Several of the DMR-regulated lncRNA expres-
sions in this study were found to be differentially expressed in UC in our previous study
(114 of 254) [17].

Verifying results in GEO (Gene Expression Omnibus) is difficult. No independent
datasets with both methylation levels and gene expression levels for UC could be found.
Therefore, an attempt was made to see if significant negative correlations between the
lncRNAs and adjacent expression of protein-coding genes could be found in 11 published
UC GEO datasets. Comparing annotations between GEO datasets is difficult, as recently
annotated lncRNAs such as AL359962 simply do not appear in previously deposited
microarray datasets, leaving approximately 58 lncRNAs that could be found in at least 1 of
the 11 UC–control GEO datasets. Another challenge is that several of the 11 GEO datasets
selected to verify the correlation between lncRNAs and adjacent protein-coding genes were
samples collected from locations other than mucosal biopsies, including the ileum, the
rectum, etc. (Table S6). For 35 lncRNAs, at least 1 GEO set confirmed a significant correlation
between the lncRNA and adjacent protein expression (Table S5). For the 35 lncRNAs, a
significant correlation was found, on average, in 25% of the datasets. Given the diversity of
the GEO datasets, this represents a positive result. The normalized count matrix for this
experiment can be found in Supplementary Table S7.

As a limitation of this work, it is hereby noted that the results presented are derived
from in silico analysis and need experimental validation in the future.
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4. Materials and Methods
4.1. Study Cohort

The study cohort comprised mucosal biopsies from patients with newly diagnosed,
treatment-naïve UC with mild-to-moderate disease (n = 11) and control subjects (n = 13).
Tissue samples from subjects which underwent cancer screening and showed normal
colonoscopy and normal colonic histological examinations, served as controls. UC was
diagnosed based on established clinical endoscopic and histological criteria, as defined
by ECCO guidelines [57]. The grade of inflammation was assessed during colonoscopy
using the UC disease activity index (UCDAI) endoscopic sub-score, with 3 to 10 indicating
mild-to-moderate disease [58]. The biopsies from UC samples showed clinical scores of
8.2 ± SD 1.3 and endoscopic scores of 1.9 ± SD 0.5. The biopsies from the control subjects
showed normal colonoscopies, colon histology, and immunochemistry, with clinical and
endoscopic scores of 0. All biopsies were taken from the sigmoid part of the colon. The age
distribution within the groups was 39 ± SD 12 years in the UC group and 53 ± SD 18 in the
control subjects. The gender distribution was 7 males and 4 females in the UC group and
11 males and 2 females in the control group. The samples were taken from an established
Biobank approved by the Norwegian Board of Health. The participants signed an informed
and written consent form. The study was approved by the Regional Ethics Committee of
North Norway and Norwegian Social Science Data Services (REK Nord 2012/1349). The
raw fastq files of the transcriptomes were generated previously (GSE 128682), and raw
WGBS fastq files from a previously published work were used [7]. However, to obtain
optimal results, only the highest-coverage WGBS samples were included in the cohort of
this study. Both transcriptomic data and data obtained by WGBS were reanalyzed for this
manuscript, with a newer human genome build (GENCODE V38).

4.2. DNA and RNA Isolation

Both DNA and RNA were isolated using the Allprep DNA/RNA Mini Kit from Qiagen
(Cat no: 80204) and the QIAcube instrument (Qiagen, Venlo, The Netherlands) according
to the manufacturer’s protocol. RNA and DNA quantity and purity were assessed as
previously described [7,42]. All RNA samples used for analyses had a RIN value between
8.0 and 10.0. DNA and RNA samples were kept at −70 ◦C until further use.

4.3. Library Preparation and Next-Generation Sequencing

Library preparations and sequencing were conducted as described previously [7,42].

4.4. Preprocessing of Data

The human reference genome hg38 was downloaded from GENCODE and indexed
using Bismark version 0.22.3. The data from each sample were then aligned to the indexed
reference genome using the Bowtie2 aligner within Bismark. The methylation level in
each cytosine was then determined using Bismark with the following parameters: −gzip
–bedGraph—cytosine_report –no_overlap—buffer_size 10 G –paired –ignore 3 –ignore_r2 3
—-ignore_3prime_r2 2. Methylation data output contained read coverage and the percentage
of methylated cytosine at each cytosine position of the genome.

4.5. Identification of DMRs

The R DMRseq package (version 1.4.9) was used to find differentially methylated
regions (DMRs) between UC samples and normal samples from the Bismark output files.
CpG sites with less than 6× coverage were set to 0 prior to DMRseq analysis, and only CpG
sites with a minimum of 6× coverage in 50% of both groups were kept, as recommended by
the software. DMRs with DMRseq q-values of less than 0.05 were considered significantly
differentially regulated regions (Table S1).
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4.6. Cell Deconvolution

To compare methylation with transcriptional cell deconvolution, the EpiDISH package
in R (https://bioconductor.org/packages/release/bioc/html/EpiDISH.html, accessed
on 21 January 2023) was adapted to estimate the relative proportions of different cell
types present in a tissue sample. EpiDISH requires Illumina EPIC array identifiers and
a matrix of beta values. DMRs were given EPIC array identifiers by overlapping DMR
genomic positions with EPIC array positions. Approximately 70% of DMR locations
overlapped within EPIC-array-annotated genomic positions. A matrix of the average
relative methylation value per sample per DMR was used as the beta matrix. The Robust
Partial Correlation (RPC) mode in EpiDISH was utilized to estimate the relative numbers
of epithelial, fibroblast, and immune cells in each sample (UC and control).

4.7. RNAseq

Illumina-generated fastq sequences were aligned with a reference human transcrip-
tome using the Kallisto RNA-seq aligner. The transcript read count table from the Kallisto
output was imported into the DESseq2 R package for identifying differentially expressed
transcripts. The lncRNA catalog was retrieved from GENCODE V38 using the transcript
type “lncRNA”. Only transcripts with a DESeq2-adjusted p-value of < 0.05 and an absolute
foldchange greater than 0.5. were considered differentially expressed DE transcripts. The
vst function of the DESeq2 package was used to create a normalized count matrix in the
correlational analyses.

4.8. Identifying lncRNAs That May Be under DMR Regulation

DMRs located within 20 kb of a DE lncRNA were considered for correlation analysis.
The R cor.test package was used to calculate the correlation and correlational p-value
between the mean-sample relative methylation and DE lncRNA-normalized transcript
counts. Only DE lncRNAs whose transcript expressions were negatively correlated with
DMR methylation levels (correlation p-value of < 0.05) were considered possible DMR-
regulated lncRNAs (Table S2).

4.9. Identifying Proteins That May Be under DMR-Regulated lncRNA Regulation

Only differentially expressed protein-coding transcripts within 500 kb of the DMR-
regulated lncRNAs were considered. The lncRNA expression was then correlated with
the neighboring proteins using the R cor.test package. Only protein-coding transcripts
that significantly negatively correlated (correlation p-value of < 0.05) with DMR-regulated
lncRNA transcripts were considered (Table S3). The R Gviz package was used to help
visualize the relationship between the DMR methylation level, lncRNA transcript expres-
sion, lncRNA-DMR correlation, CpG islands, and TSS (Figure S1). TSS annotation was
downloaded from the refTSS database (http://reftss.clst.riken.jp/reftss/Main_Page, ac-
cessed on 17 December 20222). The CpG island positions of the human genome (hg38) were
downloaded from the UCSC table browser (https://genome.ucsc.edu/cgi-bin/hgTables,
accessed on 17 December 2022).

4.10. Verification of DMR-Regulated lncRNAs and Proximal Partners in Other GEO Datasets

To help verify the DMR-regulated lncRNA and proximal protein results, the normal-
ized matrices of the UC and control samples from 11 UC datasets (GSE109142, GSE128682,
GSE206285, GSE36807, GSE38713, GSE47908, GSE13367, GSE16879, GSE48958, GSE59071,
and GSE73661) were used. Table S5 compares the expression of lncRNAs, and adjacent
proteins found in this study with the above datasets. Specifically, other datasets where
a significant negative correlation between lncRNAs and adjacent protein-coding regions
could be found. Additional information about the mean difference in expression (UC vs.
control) for lncRNAs and adjacent proteins is provided in Table S5. Background informa-
tion about the GEO datasets can be found in Table S6, including the number of UC and
control samples, and their origin.

https://bioconductor.org/packages/release/bioc/html/EpiDISH.html
http://reftss.clst.riken.jp/reftss/Main_Page
https://genome.ucsc.edu/cgi-bin/hgTables
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5. Conclusions

This study suggests a fine-tuned and complex regulatory mechanism between methy-
lation, lncRNAs, and protein expression in UC. The results might open new avenues for
diagnostic or therapeutic strategies.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms241310500/s1.
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