
The Pesto Project
–Goals and Motivation–

Feike W. Dillema and Tage Stabell-Kulø

Technical Report 2001-40

June 2001

1 Introduction

We can say that a personal computer is one that is available to the user when
he wants to use it, while a private computer is one that is never available to
others. We use the term private computing to describe the computational model
which involves small, private, hand-held computers, i.e. Personal Digital As-
sistants (PDAs). In general, a PDA offers its user relatively few resources; a low-
bandwidth user-interface, (relatively) low computational power, and highly
variable communication resources. However, the PDA excels in two aspect:
Trust and Availability.

A PDA that is carried by its owner has great potential to be his private com-
puter, an attractive sanctuary for private data and computations (such as cre-
ating digital signatures). Availability means that the PDA can be used in new
settings, but availability also means physical control over the device. Physical
control is a prerequisite for secure operation of almost any device. With trust
in the private computer itself in place, the challenge of private computing is to
use a PDA as solid ground from where to extend a user’s sphere of control to
distributed and less-trusted resources he cares to use in a variety of different
settings.

The trend towards mobile computing adds the requirement that users should
be able to roam between many different environments. Independent of what
administrative domain they roam into, they want access to their personal re-
sources while using resources available in that domain. As a general rule, we
can say that policies, mechanisms and resources are different in each environ-
ment and system, and a lot of machinery between systems is necessary in or-
der to maintain and achieve important nonfunctional aspects like security and
safety across systems. However, creating this machinery is often impossible
because policies and available mechanisms in the different domains are too
diverse. We believe that ubiquitous computing requires a platform for dis-
tributed systems and applications that makes no assumptions on the environ-
ment the user currently is in.

There are basically two possible ways to support private computing. One
can either build all the required machinery into the applications, or one can
provide the applications with an underlying infrastructure. The latter approach

1



2 DESIGN GOALS

leaves it to the applications to adapt to the system state as presented to them,
rather than letting applications detect this distributed state themselves. Whether
an infrastructure is viable and efficient depends on whether it supports the
least common dominator of the applications’ needs.

We believe that most applications operating in our target environment share
the need for highly available, secure storage of data. We argued in [7] that sys-
tems for private computing should be designed in accordance with the open-end
argument, which states that many of the nonfunctional aspects in a distributed
system can only be reasonably quantified by the user (for example, who and
what to trust). Qualitative assessment of information should be done by users
only, and the system should be designed as to make this feasible for them to do
so.

These observations formed the motivation for the design of the Pesto stor-
age infrastructure. Pesto incorporates basic, but flexible, safety and security
mechanisms. It is designed to be user-centric and to regard the user as the
ultimate source of qualitative assessments and policy decisions.

2 Design Goals

The challenge of private computing is to design a system that allows its users
to span other systems in such way that they retain ownership and control over
their own information, without requiring administrative control over these
systems. To achieve this goal, Pesto separates trust relations from adminis-
trative relations:

• Pesto has facilities that enable a user to control his data and enforce his
real-world ownership. The user is the only one that can specify security
and safety policies and the only one that decides who is trusted to enforce
these. Pesto allows a user to delegate authority to other nodes trusted by
him, but he need not do so. If the user does not authorize some part of
the system to speak on his behalf on a certain matter, Pesto will involve
the user himself in the decision process to resolve questions concerning
it.

• Pesto supports recovery by storing and replicating all authorized updates
and recording who authorized them. Experience shows that users are of-
ten unwilling to pay any non-trivial price for prevention of a risk, for
as long as they have not been negatively affected by it [5]. This is well
documented in the security and safety engineering literature as a very
common cause for security breeches and calamities (see e.g. [1, 6]). In
addition, real-world trust relationship are volatile and may change sud-
denly. We assume that disasters will happen; nodes will fail, trust will be
violated, subtle mistakes will be made and accidents will occur.

• Pesto makes it possible for user Bob to share his content with another
user Alice, regardless of whether Alice is known to Pesto. She does not
need to establish an administrative relationship with his administrative
domain beforehand. He can delegate authority to her in the manner he
feels appropriate, e.g. by using delegation certificates based on public-
key cryptography. However, public-key cryptography is not a funda-

2



mental building block in the system such that delegation of authority in
Pesto does not depend on it. Furthermore, Bob not only defines his access
control policies but also decides who is trusted to enforce these.

• Pesto provides the means for users to share data in different settings. It is
well known that sharing of data in typical file systems is relatively rare,
see e.g. [4, 3]. The more private data is, sharing between different users
is less likely, and one could assume that in private computing sharing
would be close to non-existing. However, Pesto assumes that the same
user, e.g. at different locations, using different machines or in different
rôles, will cause private data to be shared. Also, when data is explicitly
shared between two users, conflicts will indeed be common. All in all,
conflicts will be more common than in traditional systems.

Sharing of data in a distributed system requires some form of consis-
tency control to resolve conflicting concurrent updates. Consistency can
be enforced at the system-level or the application-level. A system-level
implementation would require the user to trust a subset of the system
to run a consistency control protocol on his behalf. Pesto avoids such
requirements by separating replication control from consistency control.

• Pesto separates storage and availability of data (encrypted content) from
accessibility of content. Assume that Alice owns some storage space. She
controls this resource and decides who may make use of it. But when she
grants Bob the right to use some of this storage, the system should not
require of him that he makes the content available to her as well.

Sometimes a user will have no other option however, than to trust an-
other user with some content in order to make use of his resources, even
though there might not be a basis for such trust. For example, a user
roaming into unknown territory carrying merely his PDA may find him-
self lacking enough trusted resources to accomplish his task and his need
to make progress may be greater than his need for privacy for that task.
Editing a file on an untrusted machine should not require trust in other
infrastructure, like the network links between that machine and the user’s
machine at home. In addition, it should not put the privacy of any other
content of the user at risk. Pesto allows a user to put his privacy at risk
in order to make work progress, while minimizing the risk involved.

• Pesto supports both disconnected and semi-disconnected operation by
using asynchronous communication and computation throughout its de-
sign. Disconnected operation remains a common mode of operation for
private machines, regardless of the ever growing network coverage. Also,
low bandwidth and/or relatively expensive communication (like GSM
data) prevails, especially for mobile machines.

3 Separation of Concerns

The design of Pesto carefully separates the different mechanisms a distributed
storage infrastructure must support. Because of this, a user can place respon-
sibility of the different tasks on different machines, possibly governed by a

3



3 SEPARATION OF CONCERNS

variety of administrative domains. In this way, the user is free to set up rela-
tionships he is comfortable with and assign tasks to different parts of the infras-
tructure. As the primary tasks in our system are providing storage, replication
and access to resources, we define the responsible parts of the infrastructure
accordingly:

Trusted Storage Base (TSB): The set of servers a user trusts to store replicas of
data (encrypted content). These servers are the storage service providers
of the user. A user may define a different TSB for different sets of data.

Trusted Replicator Base (TRB): The set of servers that have been given author-
ity over a part of the user’s storage resources. The servers in a TRB are
trusted to enforce a replication policy on behalf of the user. Each mem-
ber of a TRB is responsible for the distribution of replicas to some subset
of servers in a TSB. Together they make up a directed distribution graph
with edges leaving only servers in the TRB and ending in servers in the
TSB. A user may define a different TRB for different sets of data.

Trusted Access Base (TAB): The set of servers that have been given authority
over a part of the user’s content. The members of a TAB are trusted to
enforce an access control policy on behalf of the user. A user may define
a different TAB for different sets of data. Typically, TAB members are also
members of the TRB.

In addition to this separation in space, Pesto also separates tasks in time in
order to support (full and semi) disconnected operation:

Replication: Distribution of replicas is performed using an asynchronous request-
response protocol such that request and response messages may be sep-
arated by a period of disconnected operation.

Access Control: Authorization for access to content and storage can be ac-
quired at a different time than their actual usage, allowing for work progress
when disconnected from the relevant trusted access base.

The infrastructure is assumed to offer best-effort service only. Monitoring and
control of the quality of the actual (storage and replication) service is left to
the user and his (management) applications. The infrastructure is not respon-
sible for consistency control. That task is separated from replication control
and is left to the applications and the user himself. The basic Pesto protocol
is completely asynchronous, but supports so-called guarding of messages as
synchronization primitive for applications to use as building block for their
own consistency control mechanisms. A guarded message lists a number of
other messages as its guards. A message will not be processed by its recipient
untill its guards have been processed. Pesto’s guarding of messages allows for
the construction of consistency protocols (aiming at e.g. quorum-consensus for
updates) on top of the basic Pesto protocol.

During a network partition it is impossible to know from within the system
in the minority partition, whether it is safe to proceed with a task that alters
shared data [2]. Strong consistency requirements are therefore impossible or
very expensive to meet in Pesto’s target environment, where the network may
never be free of partitions. Supporting disconnected operation is essential such

4



REFERENCES

that optimistic replication is the only feasible option for Pesto. Consequence of
this is that merging of conflicting updates may be required upon reconnection.

Whether independent updates represent a conflict is application depen-
dent; e.g. an append-only unordered log will see no conflicts. For application
content, conflict resolution semantics can not be defined by the storage sys-
tem without limiting the range of application requirements that it can support
efficiently. The user, on the other hand, may be able to evaluate the risk of dis-
connected operation and understand the possible consequences of his actions.
It should be his task to decide whether being able to make work progress now
is worth the risk of conflict resolution work later. It is not the task of the storage
system to make such an assessment, and Pesto therefore will not deny a user
service based on some built-in notion of how to preserve correctness. Pesto
allows an application to create an update, while delaying (possibly forever)
storing its content, which can be used to implement advisory locking schemes
that work well even in a semi-partitioned network.

References

[1] R. Anderson. Why cryptosystems fail. Communications of the ACM,
37(11):32–41, November 1994.

[2] D. K. Gifford. Weighted voting for replicated data. In Proceedings of 7th
SOSP, pages 150–62. ACM Press, 1979.

[3] Dorota M. Huizinga and Ken A. Heflinger. Experience with connected and
disconnected operation of portable notebook computers in distributed sys-
tems. In Proceedings of the 1st IEEE Workshop on Mobile Computing Systgems
and Applications, pages 119–23. IEEE, December 1994.

[4] James J. Kistler and M. Satyanarayanan. Disconnected operation in the
Coda file system. ACM Transactions on Computer Systems, 10(1):3–25, Febru-
ary 1992.

[5] Nancy G. Leveson. Safeware; System Safety and Computers. Addison Wesley,
1995.

[6] Peter G. Neumann. Computer Related Risks. Addison Wesley, Reading,
Mass., 1995.

[7] T. Stabell-Kulø, F. Dillema, and T. Fallmyr. The open-end argument for pri-
vate computing. In Proceedings of the First International Symposium on Hand-
held and Ubiquitous Computing, pages 124–136. Springer Verlag, Germany,
1999.

5


