Pesto Flavoured Security

Feike W. Dillema and Tage Stabell-Kulo
Technical Report 2002-42

May 2002

Abstract

Pesto aims at providing highly available and secure storage for long-
lived data to mobile users roaming into untrusted environments.

Security in Pesto encompasses the following three aspects: availability,
safety, and privacy. A mechanism supporting one aspect may adversely
affect another. For example, replication may increase availability but com-
plicates supporting confidentiality, and simply encrypting data for confi-
dentiality may defeat the whole purpose of replication. We show that an
integral approach to these aspects leads to considerable savings in overall
system complexity, and thus to a more secure system.

In Pesto, users may specify different levels of trust in different parts of
the infrastructure. In particular, a user may trust a node to merely store
(encrypted) data, and/or to distribute replicas to other nodes on his be-
half, and/or he may trust a node to enforce access control on his behalf to
his (plaintext) content. This report gives an overview of the main security
mechanisms that makes this separation of concerns possible. We present its
novel encryption framework and its trust management and discuss how it
can be used to build distributed infrastructures with advanced security and
safety properties.

1 Introduction

When users embrace mobile computing, they typically end up with multiple
machines, some stationary and some mobile. As a consequence, they have
a need to share data between these machines. Mobile computing adds the
requirement that users should be able to roam between many different envi-
ronments. Independent of what administrative domain they roam into, they
want access to their personal resources while using resources available in that
domain. As the content and the resources being shared may then belong to
different administrative domains, there is a need to separate the mechanisms
for sharing content and resources. Furthermore, users want to share data with
other users. Such sharing should be possible between any two communicat-
ing users, independent of their current environment and connectivity to other
parts of the infrastructure.

We believe that for a system to be viable in a rapidly diversifying world,
the overall system design can not rely on a common policy being feasible. Not

3

@
S
(il

3

A UIVIb

)

I

2 FILES

a common policy for authentication, not for authorization, and not for the cost
of resources. Furthermore, we believe that the users should be provided with
the means to establish any relationship to service providers as they wish; it is
the goal of Pesto to utilize the relationships the user might have.

The Pesto system aims at providing an infrastructure that meets the needs
of mobile users for distributed, reliable and secure storage. We believe that
the crux of the matter is related to trust, and management of trust relations.
An important part of Pesto is to separate trust relations from administrative
relations, and to separate availability of storage resources from accessibility of
content.

Pesto consists of nodes that communicate with each other using an asyn-
chronous request-response protocol that supports two types of requests; one
to fetch data from a node, and one to store data at a node. A Pesto node is
owned by a user who has authority over its local storage resources. A user
may acquire the right to use storage resources at remote nodes by means of
a service contract, and he may delegate rights to use his resources to others.
All data stored in Pesto is encrypted with a shared encryption key. Access to
storage space, i.e. fetching and storing encrypted data at a node, is thus sepa-
rated from access to content, i.e. access to the encryption key needed to decrypt
that data. Hence, Pesto nodes can share storage resources independently from
actual content.

The collection of nodes in a Pesto system do not offer its users a single
global system view with pre-defined relationships between (subsets of) nodes.
This means, for example, that there is no system-wide trusted computing base.
In general, no special sets of nodes are defined, a priori, to be more reliable,
safer, more secure or more capable of performing any specific task on behalf of
a user. Pesto allows the user to define what nodes may execute specific tasks
on his behalf, based on his personal requirements, beliefs and current needs.
The design of Pesto carefully separates the different mechanisms a distributed
storage infrastructure must support. Because of Pesto’s design, a user can place
responsibility of the different tasks on different sets of machines, possibly gov-
erned by a variety of administrative domains. In this way, the user is free to
set up relationships he is comfortable with and assign tasks to different parts
of the infrastructure accordingly.

2 Files

parent
The Pesto storage system provides distributed storage of
files to its users. Pe§to stores and rgphcates.thg comple’fe
update history of files. More precisely, a file in Pesto is
an initial (empty) version of it, together with all updates

made to that file. As such, any version of a file can be re- parent parent
trieved at any time. An application may choose to store
the actual differences between the current version and [update | [update |

a new one, or it may store the complete new content as
a file update. Actually, Pesto puts no constraints on the
content of a file update at all, and leaves it to applications
to define their own update and access semantics.

A file update is immutable and is identified by a glob-

parent

Figure 1: a file 2

ally unique identifier (GUID) which is a 128-bit random

number. Due to the random selection from an immense

name space, a new GUID can be generated locally with no risk of an identical
name existing anywhere in the system.

Each file update keeps a reference to the previous update to the file, its par-
ent update, such that a file is organized as a file update tree. A file consists
therefor of an ordered set of identifiable updates. An example file is shown in
Fig. 1. The combination of replication and independent, concurrent updates
requires that the issue of consistency must be considered. In general, it is im-
possible to ensure that no concurrent updates occur, unless one is willing to
accept that an update blocks until the global state of the system can be deter-
mined. However, since each update in Pesto has an unique name, the two (or
more) concurrent updates are identifiable. Because they are concurrent, they
will have the same parent, e.g. they are derived from the same version. Hence,
the ordered set of updates that represents a file is actually a tree, and a file is
thus the set of updates, possibly organized as a tree, that together constitutes
its content.

Because each and every update is

uniquely named, any version of a file FI I o

can be retrieved. The details of how
the application chooses to present this
fact to the user does not concern Pesto.
Furthermore, we believe that it should parent :> owner
be left to each and every application,
and ultimately to the user, how to deal
with a concurrent update (a branch in
the version tree). This design-choice im-
plies that the term replication in the con- parent parent :>
text of Pesto merely refers to the activity
of distributing copies of file updates to | [updae | | update |
a user-specified set of nodes. It does in
particular not include consistency con- :> aceess
) parent control
trol. Pesto thus separates replication policy
from consistency control, and the stor-
age system itself only provides replica-
tion; the advantage is a significant sim-
plification in the design.

A replication policy, an access con-
trol policy and an owner are associated
with a file, as shown in Fig. 2 for the example file. A Pesto node maintains a
special file that contains a variety of administrative information about it. This
file describes and represents the node, its owner and its storage resources. Its
GUID is used to identify and address the node in the system. A file references
its owner by the GUID of this file.

Policies are also stored as files. A file references a policy that applies to it, by
the GUID of the file that stores the policy. These policy references are specified
by the user at file creation time and are immutable. A given file can thus never
be associated with a policy identified with another GUID. The content of the
policy files themselves can be changed, of course.

The owner of a file is the Pesto node that created it. The GUID of the owner

policy

Figure 2: file references

replication

3

@
S
(il

3

A UIVIb

)

I

3 SECURITY

is kept with the file and is immutable. This means that ownership of a file is
not transferable from one user to another, other than by making a copy of the
file that has a new GUID. Actually, each file update has a creator associated
with it. This creator is the node that authorized its creation. The owner of a file
is then the same as the creator of its first version/update.

A replication policy specifies the set of nodes the user expects to store a
replica of his file, and it specifies the nodes responsible for the distribution
of the replicas to these nodes (notice the difference). Distribution of replicas
according user specified policies proceeds whenever communication between
source and destination node is possible, i.e. is independent of any synchroniza-
tion with other replicating nodes. As there is no mechanism (protocol request)
for deleting individual files or file updates by GUID, the only way to ask a node
to remove files from its local storage is by removing that node from a replica-
tion policy. Note, however, that such a request will apply to all files that are
governed by that replication policy.

An access control policy specifies what credentials a user deems sufficient
for a request to be granted access to the content encoded by his file (i.e. who is
allowed access to its updates). As the storage resources of a node are described
and represented by a file, a regular access control policy can be used to specify
who should be granted access to these storage resources. In other words, ac-
cess to content and storage resources are separated, but governed by the same
mechanisms.

In short, we can say that Pesto stores the complete update history of content
in files, and it stores all state of the system in such files. References by GUID are
used to associate files and policies with each other.

3 Security

Pesto makes it possible for users to implement any security policy they choose.
In addition, Pesto allows the user to specify who else is trusted to enforce a
security policy that he has defined and thus should be granted the ability to
do so. Pesto itself is designed around a very simple base security policy: all
communication and all stored content is regarded confidential and access is
only granted to the user that created it. In other words, data not properly
encrypted is not accepted by the storage system, and the encryption keys are
initially only available to the user. A user may relax this base security policy
for the files he creates by specifying what other Pesto nodes should be granted
access to the various encryption keys in use. Pesto is responsible for securely
distributing the encryption keys to nodes that the user trusts.

The main application of encryption in Pesto is to create a separation be-
tween access to storage (of encrypted data) and access to content (via encryp-
tion keys). The encryption framework facilitates (and separates) access control
for reads and updates. Using the mechanisms provided by Pesto, it is possible
to delegate authority over access control decisions to others.

3.1 Encryption

The complete update history tree is stored with every file, as a set of file updates.
The content of each file update is encrypted with a different encryption key.

3.2 Update Authorization

A key used to encrypt a single file update is Fl I e
called a Znember key. R}elfd-accesgs controlpis then [menbory]
exercised by controlling who has access to a file’s
member keys. The member keys of a file are sub-
sequently encrypted with the so-called file key. [memberkey

The example file depicted in Fig. 1 thus uses
five member keys and a single file key as shown
in Fig. 3. Each encrypted member key is stored as Lmemberkey | - [memberkey |
part of the file update it belongs to. The file key is
generated when the file is created, at which time
it is made available to the owner of the file. Be-
cause of the way keys are managed, a user who
knows the file key is able to get hold of all mem-
ber keys, which gives him read access to all file
updates (e.g. all versions of the content). Obvi-
ously, by handing out a single member key, read
access is granted for individual file updates. Figure 3: file encryptions

| memberkey |

FileKey

3.2 Update Authorization

Update access (writes) to files is controlled by the same mechanism used to
control read access. When a request to update a file is received in the form of
a new file update, it is considered authorized if the update is encrypted with
a fresh member key, and that key is found encrypted with the file key for that
file. In other words, update access can only be granted by someone that knows
the file key.

A member key is deemed fresh when no (locally) existing file update of its
file is encrypted with that member key. A node that knows the file key can
check the encryption of the file update and the freshness of the member key
used, and decide whether the update is properly authorized.

Anyone who controls the file, i.e. has access to the file key, can properly
encrypt a new member key and hand it to any user (including himself). This
constitutes a delegation of authority over the file for the purpose of a single
update. Notice how this mechanism ensures that a user can be given authority
to update a file one single time, without him learning the file key. Hence, the
authority is not reusable and can not be delegated further.

3.3 Revocation

As a consequence of how authority over updates is implemented, authoriza-
tion to make a file update can be separated in time from the actual injection of
the update into the storage system. There may then sometimes be a need to
revoke this authorization after it has been granted but before it is used. Imag-
ine, for example, situations where users hoard authorizations or try to save
authorizations for use long after the original credentials used to acquire them
expired. A user may find it useful or required to avoid such situations. In or-
der to revoke authorizations, the user that issued the authorization can store
an ‘empty’ file update with the GUID and member key in question himself.
Due to the WORM (Write Once Read Many times) access semantics of file up-

3

@
S
(il

n

Uy,

()

O
X

3 SECURITY

dates stored by Pesto, this effectively renders the authorization harmless and
so revokes it.

3.4 Granularity of Access

The encryption framework presented so far achieves that access control can be
exercised at fine granularity. Both read and update access is based on access to
member keys (respectively to existing and newly created member keys). That
is, the unit of access is the file update. As described in Sec. 2, there are no con-
straints on what the content of a file update actually constitutes. It is left to the
application to specify file update semantics. This also means that applications
can determine the unit of access control, i.e. the granularity of access control.

A straightforward example is a versioning file system application, that stores
each file version as a Pesto file update, such that the unit of access control is a
file version and access to different versions can be controlled independently of
each other. Pesto itself defines somewhat less conventional update semantics
for its administrative and policy files, with as main goal enforcement of access
control at a fine enough granularity. These semantics are largely outside the
scope of this paper, but we want to give a hint of what is possible here using
replication policy files as example.

As described earlier, a replication policy file includes the user-specified list
of replicating nodes. Pesto actually stores each member of this list as a separate
file update to the replication policy file. This way, an access control policy to
this replication policy can be enforced that, for example, prevents one replicat-
ing node to find out about the location of other replicas.

3.5 Access Control Policy

We described in Sec. 2 how each file references an access control policy by the
GUID of the file that stores it. Such an association between a file and its access
control policy needs to be protected by cryptographic means in order to be
useful. To that end, an access control policy file contains two encryption keys.
These keys are called the read access key and the update access key respectively.
The read access key of an access control policy is used to encrypt the member
keys of the files that are governed by the policy. The update access key of an
access control policy is used to encrypt the file key of each file that references
the policy.

A member key encrypted with the read access key is stored and distributed
with its file update. A file key encrypted with the update access key is stored
and distributed with its file. The example file depicted in Fig. 1 thus stores five
member keys encrypted with the file key, five member keys encrypted with
the read access key, and one file key encrypted with the update access key of
its access control policy as shown in Fig. 4.

Basically, we group files under their respective access control policy. We
avoid storing and distributing a potentially very large number of member keys
and file keys with the policy. This is achieved by adding an extra level of cryp-
tographic indirection, i.e. two new keys that encrypt those member keys and
file keys instead. The result is that the (encrypted) member keys and file keys
can simply be replicated together with the files, to increase safety and avail-
ability.

rAccess control policy -

[EI memberkey >

Key

Read Access

| Update Access Key
| Access Control List

FileKey

Figure 4: file encryption

Of course, the requirements for secrecy, safety and availability have moved
from the member keys and file keys to the access keys, i.e. we still need to keep
these two keys safe and secure. However, this is a much simpler problem to
solve. Not only are there far fewer keys to protect, but more important is that
the qualities of these two keys are substantially different from those of the set
of member and file keys. In particular, while the set of member and file keys
will grow over time as new files are created, the set of two access keys does not
change with the number of files they apply to.

As only nodes that hand out member keys to users need to know the access
keys, it will typically be easier to maintain their secrecy. Safety is also easier
to maintain due to the small amount of data involved and because this data
is immutable. It will typically be feasible to replicate the access keys to physi-
cally secure and safe (offline) media, like a smartcard kept in a safety deposit
box of a bank. To achieve availability, we expect the mobile user to carry his
access keys with him on a smartcard or small handheld computer, optionally
protected with a passphrase in addition. Hence, secrecy is achieved without
complicating the implementation of safety and availability requirements.

4 Trust

The design of Pesto carefully separates the different mechanisms a distributed
storage infrastructure must support. Because of this, a user can place responsi-
bility of the different tasks on different machines (nodes), possibly residing in a
variety of administrative domains. The user is then free to set up relationships
he is comfortable with and assign tasks to different parts of the infrastructure.
The trust relation a user has with the (owner/manager of the) node will de-
termine how the user will use the node in his Pesto configuration. Note that
there is really no such thing as a “Pesto system”. There is merely a collection

3

@
S
(il

3

A UIVIb

)

I

4 TRUST

of completely independent Pesto nodes, and each and every user determines
to what extent he trusts a particular node.

A Pesto node can be assigned one or more rdles by any particular user.
A node can be assigned the responsibilities for the tasks of storing files, dis-
tributing files and/or enforcing access control to files on behalf of the user. The
manner in which encryption is applied in Pesto, reduces assignment of such a
role to a node to the exchange of an encryption key. An assignment of respon-
sibility is limited to a user-specified set of files. In other words, different nodes
may be assigned responsibilities regarding different sets of files. As a result,
a user can specify three different sets of nodes for each of his files. These sets
are called the trusted storage base, the trusted replicator base, and the trusted
access base, respectively.

4.1 Trusted Storage Base

The trusted storage base (TSB) of a file is the set of nodes the user trusts to store
an (encrypted) replica of that file. A member of a TSB is only trusted to store
data, it is not trusted with the keys that protect the data. Nodes in a TSB are
thus ‘merely’ storage providers for the user and they perform access control to
their storage resources, not of the content they store.

Users negotiate service contracts with other users in any way they deem
appropriate. We envision that users establish service contracts with other users
in a variety of ways; online storage service providers offering services for a
fee, cooperative users exchange storage for storage, and companies might offer
their employees access to its storage resources. A service contract could take
many different forms, from signed paper contracts to electronic contracts or
verbal agreements, to name just a few. How such contracts are established is
of no concern to Pesto, regardless of the relationship and conditions of use.

Pesto’s only requirement on a service contract negotiation is that somehow
a secret (key) is exchanged as part of it. This secret is subsequently used to
authorize requests to use the negotiated storage resources. Therefor, a user
shares a secret key with each of his storage providers. A request to use the
negotiated storage resources (i.e. store a file update) is considered authorized
if the request is properly encrypted with this shared key, and accounting by
the storage provider (if applied) shows enough negotiated storage resources
are still unused by the user.

If a user wants to act as storage provider for other users, he does so by
specifying an access control policy for his storage resources. How this is im-
plemented is outside the scope of this paper. We only note that access to storage
resources uses the same mechanisms as access to content. Actually, access con-
trol of storage resources is reduced to access control of the file that describes
them. This assists in reducing the complexity of the storage system.

4.2 Trusted Replicator Base

The trusted replicator base (TRB) of a file are the nodes trusted to enforce its
replication policy on behalf of the user; that is, each TRB member is responsible
for the distribution of replicas to some subset of nodes in the trusted storage
base of the file. Together with the TSB, the nodes in a TRB make up a directed
distribution graph with edges leaving only nodes in the TRB and ending in

4.3 Trusted Access Base

:
>

'

. UIVI

g
2

nodes in the TSB. A user shares a secret key with each of his replicators, like he
does with his storage providing nodes.

In order to perform their assigned task, a member of a TRB needs authority
to use storage resources negotiated by the user at the nodes it is expected to dis-
tribute file updates to. A straightforward implementation would support this
by handing the secret key shared between the user and the storage provider
to the replicator node. In Pesto, however, we delegate authority from this key
to a new key which is subsequently installed both at the storage provider and
the replicator. This facilitates easy revocation of such a delegation when a user
removes an individual node from a TRB.

4.3 Trusted Access Base

The trusted access base (TAB) of a file are the nodes that are trusted to enforce an
access control policy on behalf of the user. Actually, two separate trusted access
bases can be specified for a file; one for read-only access one for read /update
access. Members of the former are trusted to handout read access only, and
are handed the read access key in order to enable them to do so. The members
of the latter are trusted to perform both read and update access control and
are handed the update access key associated with the access control policy in
question.

Pesto itself is not responsible for enforcing these user-specified access con-
trol policies, and thus does not prescribe its format and contents. In other
words, the user (with help of his management applications) may specify what
(type of) credentials he finds necessary and sufficient to authorize access of
some kind. The storage system is merely responsible for distributing such poli-
cies, together with the encryption keys required to enforce them, to the relevant
trusted access bases.

4.4 Responsibility and Risk Management

Pesto keeps different responsibilities separate, so that the user can allocate
them to different, but possibly overlapping, parts of the infrastructure. Other
responsibilities than presented here could be defined. For example, consis-
tency control and a ‘trusted consistency base’ could be defined accordingly.
As consistency requirements are highly application dependent, Pesto only pro-
vides a basic synchronization mechanism that applications can use to construct
their own consistency protocols. It is outside the scope of this paper to discuss
consistency control and ways to enhance the security of such protocols (see
eg. [4,7]).

As described, authority is delegated from the user to an encryption key.
This reduces the assignment of responsibilities to a key management problem.
By the scope of a key, we mean the information that is available to a user that
knows the key. For example, the scope of a member key is thus a single file
update, and it has a very limited scope compared to an update access key.
An important aspect of our encryption framework is that each key has a well-
defined and limited scope. This assists the user in assessing the risks of using
potentially untrustworthy machines in order to make progress. Pesto is not de-
signed to deny its users service in cases where a user deems it more important

3

@
S
(il

3

A UIVIb

)

I

5 DISCUSSION

to continue working than to protect the confidentiality of that work. Instead,
Pesto is designed to limit the risk involved in such actions.

5 Discussion

Our design has a user-centric view in that all authority in the system originates
from individual users and not from inside the system itself. The access control
and replication mechanisms do not mandate any hierarchical, fixed or static
structure on administrative domains. This makes Pesto suitable for building
personal ad-hoc infrastructures for sharing between individuals, but it is cer-
tainly not limited to such.

Individual administrative domains can be used as building block to con-
struct larger domains using delegation. This requires cooperation from the
individual users as they cannot be forced by the system to delegate their au-
thority to others. Enforcement of mandatory policies would require all nodes
to be under full control of a single authority. But, even then, users may evade
the mandated controls using channels outside the system. Extending the reach
of the mandated policy to include such channels as telephone and floppy-disks
is infeasible in all but the most restricted environments (like intelligence agen-
cies, the military, criminal organizations).

We believe that the lack of mandatory transfer of authority is not a weak-
ness in our design, but reflects that in most real-world environments, user
cooperation is a requirement to enforce a shared policy. Cooperation from
non-malicious users may possibly be ‘bought” instead, by making the use of
shared resources conditional to such cooperation. For example, a company
could define a storage policy for its file servers that allows only storage of files
of employees, for which it has been delegated the rights to define the TAB,
TRB and/or the TSB. In other words, the file servers will only store files that
reference policies owned by the company. It could, in addition, set up its com-
munication infrastructure such that only the servers under its control may be
reached through it.

5.1 Denial of Service

Our design is well suited for the construction of publication infrastructures
similar to “The Eternity Service” [1] and “The XenoService” [9], that are quite
resilient to denial of service attacks.

Denial of service is targeted at destroying a certain resource or at exhaust-
ing the resources of the service providers. Replication of files together with
logging of all file updates assists in preventing the former. Resilience to re-
source exhaustion attacks can be gained by protecting resource use and/or by
ensuring more resources are available during the attack than an attacker is able
to consume. Resource protection is supported by separating access to storage
from access to content and the asynchronous nature of the protocol used. Ac-
cess decision for content only need to be taken into consideration after access
to storage use has been granted. When the system is flooded with requests for
storage resources, one can simply ignore all these without denying service to
users that were granted access to storage earlier. Graceful degradation during

10

5.2 Key Management

:
<

'

. UIVI

g
2

periods of semi or full disconnected operation limits the damage of a successful
network denial of service attack.

The ability to turn secret members of a TSB into members of a public TAB
with merely the exchange of a single encryption key, can be used to increase
the amount of available resources dynamically during an attack to counter the
resources consumption of the attack.

5.2 Key Management

Pesto has been designed around our so-called ‘Open-End Argument’ design
guideline [8]. According to it, the user should be solely in charge of important
matters such as how identity of users is represented and checked and what
kind of credentials are needed to authorize actions. Pesto does not support
any notion of authentication of “users”.

By leaving to the user to decide what credentials are considered “good
enough”, Pesto does not prescribe the structure and organization of the user
community. For example, a “web of trust” structure constructed with PGP [10]
could be used as well as some kind of certification authority hierarchy. In other
words, the user is free to use any existing infrastructure to realize any means
of authentication and authorization he might fancy.

We use a SPKI based infrastructure ‘on top of” Pesto, as basis for more ad-
vanced authentication, authorization and access control [2, 3, 5]. This infras-
tructure is structured as a client-server architecture. While its complete imple-
mentation consists of about 30.000 lines of Java code, clients have been written
that are small and efficient enough to run on a small hand-held device, like a
Palm Pilot [6].

Because SPKI is very flexible indeed, sophisticated certificate-based ‘ser-
vices” such as on-line verification, revocation, and once-only semantics can be
offered ‘on top of” Pesto. A user performs authentication and authorization
based on chains of SPKI certificates and uses SPKI certificates to construct his
access control policy. Of course, the user will often delegate enforcement of
such a policy to an application that speaks on his behalf and runs on the nodes
of his trusted access bases. Actually, the same application can be used on stor-
age providing nodes to control access to storage. Delegation is, of course, per-
formed by giving the application the relevant access keys that Pesto manages.

6 Conclusions

Pesto is a flexible distributed storage system simple enough to include resource-
poor devices of mobile users. It allows its users to specify what part of the
infrastructure is trusted to perform each specific task on behalf of the user. It
supports incorporation of the personal and business trust relationships into the
system, while not dictating or assuming such relationships as part of the de-
sign itself. Mechanisms to increase safety and availability have been designed
together with privacy protection mechanisms, providing ease of management
and resilience against user error and violation of trust.

Our encryption framework makes read and update access control possi-
ble without relying on public-key cryptography. Public-key cryptography can,

11

3

@
S
(il

n

Uy,

()

O
X

REFERENCES

however, be used for delegation and authorization on top of Pesto’s base secu-
rity mechanisms. A user need only carry a handful of encryption keys with
him on his mobile machine in order to be able to off-load work to nearby,
better-connected machines. This makes Pesto suitable for networks that are
semi-partitioned. Support for acquisition of authorization before actual use of
it provides solid and secure support for disconnected operation.

The encryption framework is designed to limit the risks of and support
recovery from a user’s mistakes, misjudgements and deliberate risky and in-
secure behaviour. Pesto does not deny its users service in cases where a user
deems it more important to continue working than to protect the confidential-
ity and integrity of that work. Pesto limits the risks involved to the work in
question only.

The separation of access to data and content resulted in that safety and
privacy can be addressed separately. The degree of replication can be increased
to obtain better availability without having to consider the trustworthiness or
privacy policy of new storage providers. Aiming at providing good end-to-
end security and safety at the same time, resulted in an elegant design were
the security and safety mechanisms support each other with the addition of a
minimum of complexity.

References

[1] Ross Anderson. The Eternity service. In Proceedings of the 1st International
Conference on the Theory and Applications of Cryptology, 1996.

[2] Carl M. Ellison. SPKI Requirements. RFC 2692, The Internet Society,
September 1999.

[3] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian Thomas,
and Tatu Ylonen. SPKI certificate theory. RFC 2693, The Internet Society,
September 1999.

[4] Maurice Herlihy and J. D. Tygar. How to make replicated data secure. In
Proceedings of Advances in Cryptology, CRYPTO ’87, number 293 in Lecture
Notes in Computer Science, pages 379-391. Springer Verlag, 1988.

[5] Butler Lampson, Martin Abadi, Michael Burrows, and Edward Wobber.
Authentication in distributed systems: theory and practice. ACM Transac-
tions on Computer Systems, 10(4):265-310, November 1992.

[6] Per Harald Myrvang. An infrastructure for authentication, authorization
and delegation. Cand.scient. thesis, Department of Computer Science,
University of Tromseg, Norway, May 2000.

[7] AdiShamir. How to share a secret. Communications of the ACM, 22(11):612—
613, 1979.

[8] Tage Stabell-Kule, Feico Dillema, and Terje Fallmyr. The open-end argu-
ment for private computing. In Hans-W. Gellersen, editor, Proceedings of
the ACM First Symposium on Handheld, Ubiquitous Computing, number 1707
in Lecture Notes in Computer Science, pages 124-136. Springer Verlag,
October 1999.

12

3y 'u"%%

g
2

REFERENCES

[9] Jeff Yan, Stephen Early, and Ross Anderson. The XenoService - A Dis-
tributed Defeat for Distributed Denial of Service. In ISW 2000, IEEE Com-
puter Society, Boston, USA, October 2000.

[10] Phillip Zimmermann. The official PGP user’s guide. The MIT Press, 1995.
ISBN 0-262-74017-6.

13

