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2 Introduction 

Cancer in children is rare. In industrialized countries, only 0.5-1 % of all cancers occur in 

children below the age of 15 years [1]. The annual incidence in Europe was 139 per million 

children for the period 1988-1997 [2]; in Norway, approximately 160 children develop cancer 

each year [3]. The overall chance to survive childhood cancer has increased substantially 

during the last decades, from 54 % for cases diagnosed between 1978-1982, to 75 % for those 

diagnosed 1993-1997 [4]. Highest survival rates in Europe are reported from Western Europe 

and the Nordic countries [5, 6].    

In contrast to adult cancer, which comprises mainly carcinomas in the respiratory, 

gastrointestinal and reproductive organs, cancer in children is rarely manifested in these 

localizations. In addition, the histopathology of pediatric malignancies is remarkably different 

and mainly characterized by immature or embryonal cells from different developmental 

stages – rapidly proliferating and embarrassed to mature [7]. 

Leukemia is the most common pediatric cancer (35-45 % of cancer cases), followed by 

tumors of the central nervous system (around 30 %). The majority of other cases belong to the 

groups of lymphomas, sarcomas, or embryonal tumors like nephroblastoma, hepatoblastoma, 

and neuroblastoma [1].    

2.1 Neuroblastoma 

With an annual incidence of 7-12 new cases per million children [1, 8, 9], neuroblastoma is 

the most frequently diagnosed extra-cranial solid tumor in childhood, accounting for 7-8 % of 

all pediatric malignancies and 15 % of childhood cancer deaths [10, 11]. For patients with 

high-risk tumors, long-term survival rates are still below 40 %, making treatment of 

neuroblastoma to one of the major challenges in pediatric oncology [12-14].  

Neuroblastoma comprises a group of biologically distinct tumors with extremely 

heterogeneous behavior. On the one hand, localized tumors, which are often asymptomatic, 

but even metastasized neuroblastomas in infants can regress completely or differentiate 

spontaneously into benign histological variants without any treatment at all [15-17]. On the 

other hand, metastatic neuroblastomas in children older than 18 months at diagnosis cause 

severe systemic illness and are associated with poor prognosis, despite all modern and 

aggressive multi-modal treatment efforts [18].  
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In 2003, Garrett Brodeur addressed the “enigmatic” nature of neuroblastoma in a state-of-the-

art review and noted that “few tumors have engendered as much fascination and frustration 

for clinical and laboratory investigators as neuroblastoma” [19]. One way to improve 

treatment and hopefully increase survival is to unravel the molecular basis of neuroblastoma 

tumorigenesis. The identification of genes and their regulators, like miRNAs and signaling 

pathways, responsible for the malignant transformation of neuroblastoma cells, will help to 

define patient risk groups on a molecular basis [20-23] and aid to develop new therapeutic 

strategies based on directly targeting these biological pathways [14, 24]. 

2.1.1 Neuroblastoma – a disorder of normal development 

Neuroblastoma belongs to the group of embryonal tumors, neoplasms in which the cell of 

origin physiologically participates in the organogenesis during embryonal development. 

Normal development is characterized by precisely controlled stages of proliferation and 

differentiation, and is dependent upon communication between distinct populations of 

precursor cells. The failure of precursor cells to exit from a proliferative phase and enter the 

differentiation process is a mainstay of embryonal neoplasms [25].  Simplified, embryonal 

tumors can be regarded as a disorder of normal development.  

Neuroblastoma originates from precursor cells of the sympathetic nervous system. During 

neurulation, a developmental step in the embryonic formation of the central nervous system, 

the neural plate, or neuroepithelium, folds in on itself to form the neural tube, a structure that 

will later develop into the brain and the spinal cord (Figure 1). This process of folding brings 

the two outer edges of the plate together to create the transient embryonal structure called 

neural crest. As a consequence, precursor cells from the neural crest then build the dorsal part 

of the neural tube. From this position, a subset of neural crest cells are initiated to undergo an 

epithelial-to-mesenchymal transition (EMT), a process in which cell-cell contacts are 

abrogated, the cytoskeleton is reorganized and cells subsequently acquire a motile phenotype 

[26]. These cells start to migrate along stereotypical migratory pathways, and form a variety 

of diverse cell types, including peripheral neurons, Schwann cells, craniofacial bones, 

melanocytes in the skin, and heart valves, depending on their axial level of origin. Migratory 

neural crest cells from the trunk populate the primordia of the sympathetic ganglia and the 

adrenal gland, and finally differentiate into the sympathoadrenal lineage of sympathetic 

neurons and adrenal chromaffin cells [27, 28].  
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  Figure 1: Border induction and neurulation (from [29], with permission) 

A variety of extracellular signals from the microenvironment (cell-cell and cell-matrix 

interactions) as well as intracellular signaling events induce the complex process of neural 

crest formation, guide the migratory neural crest cells along the migration routes and control 

the sequential process of proliferation and differentiation into the sympathoadrenal lineage 

(reviewed in [29, 30]).  

For example, cells from the non-neural ectoderm or mesoderm secrete Wnt proteins that 

activate Wnt signaling in adjacent cells at the border of the neural plate to initiate neural crest 

formation [31]. In addition, secretion of bone morphogenic protein (BMP), Sonic hedgehog 

(Shh) and fibroblast growth factors (FGFs) are involved in neural crest induction [29, 32]. 

These inductive signals activate genes in neural crest cells known as neural crest specifiers, 

including FoxD3, Snail (Snai1), Slug (Snai2), Sox9 and Sox10 [29]. Neural crest specifiers, in 

turn, are involved in the initiation of the migratory process, e.g. through the repression of 

adhesion molecules like E-cadherin (by Snail [33] and Slug [34]) and the induction of 

Cadherin-7 (by FoxD3 [35]), as well as in the differentiation of post-migratory cells (by Sox9 
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and Sox10 [36]). Differentiation into the sympathoadrenal lineage requires expression of 

BMP family proteins in the neural crest-derived cells [37, 38].  

A strong intracellular stimulus for the ventral migration of neural crest cells is expression of 

the proto-oncogene MYCN. N-myc, the protein encoded by MYCN, is found in moderate 

levels in the nuclei of all trunk neural crest cells before and during migration. After migration, 

cells committed to differentiate into neurons retain high N-myc expression. During neuronal 

maturation, N-myc promotes sympathetic neuronal differentiation in cooperation with other 

intracellular factors (like Mash1 and Phox2b) and extracellular signals (like BMP proteins)[30, 

39, 40]. 

In summary, neural crest cells represent a proliferative cell population that maintains self-

renewal capacity during the migratory course [41]. Disturbances in the spatiotemporally 

precisely controlled processes with consequent inhibition of cell-cycle exit and normal 

differentiation, maintaining proliferation at time points when differentiation is required, can 

initiate the transformation of neural crest cells and, for example, give rise to neuroblastic 

tumors [25]. 

2.1.2 Localization and classification of primary neuroblastic tumors 

The embryonic migration of trunk neural crest cells explains why neuroblastic tumors can 

arise anywhere along the defined migratory routes. The most common sites for neuroblastoma 

are the adrenal medulla (35%), the paravertebral sympathetic ganglia in the abdomen (30-

35%) and mediastinum (20%). Less common sites are the pelvis (3-5%) and the neck (1-5%) 

[42].  

Histologically, the group of neuroblastic tumors consists of several categories that are defined 

according to the maturation degree of the neuroblastic cells and the presence or absence of 

Schwann cell-stromal components in the tumor. The histopathology of neuroblastic tumors 

has been classified in the International Neuroblastoma Pathology Classification (INPC) [43, 

44]. The INPC distinguishes four basic morphologic categories, in which the degree of 

Schwannian stromal development is noted in parenthesis: 

Neuroblastoma (Schwannian stroma-poor) is the most immature variant of neuroblastic 

tumors and consists of small blue round cells with little, if any, features of differentiation 

towards maturing ganglion cells. Neuroblastomas can be further subdivided into 

undifferentiated, poorly differentiated and differentiating tumors. Undifferentiated 

neuroblastomas, in which background neuropil (thin neurite processes) are completely absent, 
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have to be separated by immunohistochemistry from other small blue round cell tumors, like 

Ewing sarcoma/primitive neuroectodermal tumors (PNET), rhabdomyosarcoma, Wilms 

tumors or myeloid sarcoma. The subtype of poorly differentiated neuroblastoma is diagnosed 

when neuropil background is present, but the percentage of cells with ganglion differentiation 

does not exceed 5 %. The subtype of differentiating neuroblastoma is defined as a tumor with 

abundant background neuropil and 5 – 50% of the neuroblasts showing differentiation 

towards ganglion cells.  

On the opposite side of the differentiation scale, the most differentiated category of 

neuroblastic tumors is a ganglioneuroma (Schwannian stroma-dominant). These tumors are 

composed of a dominating Schwann cells stroma with a minor component of ganglion cells of 

different maturation degree. In its completely maturated form, ganglioneuroma lacks any 

neuroblastic component.  

Between the immature neuroblastomas and mature ganglioneuromas, the INPC classifies two 

categories composed of both ganglioneuromatous (“ganglio-“) and neuroblastic components 

(“-neuroblastoma”) and therefore referred to as ganglioneuroblastoma. Neuropil is generally 

abundant. The category of intermixed ganglioneuroblastoma (Schwannian stroma-rich) 

contains well-defined microscopic nests of  “embryonal residues” with neuroblastic cells in 

different maturation stages. The category of nodular ganglioneuroblastoma (composite 

Schwannian stroma-rich/stroma-dominant and stroma-poor) consists of a more heterogeneous 

cell population (“composite”). The neuroblastic cells form nodules in the tumor that are often 

macroscopically apparent and hemorrhagic and contain aggressive malignant cell clones due 

to acquired genetic aberrations or the persistence of malignant clones [43]. 

In a review of 224 neuroblastic tumors [44], the distribution of the INPC categories was as 

following: 190 neuroblastomas (85%), 19 nodular ganglioneuroblastomas (8%), 5 intermixed 

ganglioneuroblastomas (2%), one ganglioneuroma (<1%) and 9 tumors not classifiable (4%). 

2.1.3 Differentiation of neuroblastoma cells 

Although impaired in their physiological differentiation program, most neuroblastoma cells 

retain the capacity to differentiate – spontaneously in vivo, and upon stimulation with various 

agents and growth factors in vitro and in vivo (reviewed in [45]). Spontaneous differentiation 

and regression of neuroblastoma tumors is a peculiar phenomenon in mainly localized tumors 

[15]. These biologically favorable tumors express high levels of the neurotrophic tropomyosin 

kinase receptor A (TrkA), the receptor for nerve growth factor (NGF) [46, 47]. Expression of  
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TrkA appears to mediate either differentiation or apoptosis of neuroblastoma cells, depending 

on the presence or absence of NGF, respectively [48, 49], suggesting that the NGF/TrkA 

pathway is responsible for the differentiation and regression of favorable neuroblastomas [48]. 

Retinoids, like the naturally occurring all-trans-retinoic acid (ATRA) and 9-cis-retinoic acid 

(RA) or the synthetic 13-cis-RA, induce neuronal differentiation and growth arrest of 

neuroblastoma cells both in vitro and in vivo [45]. 13-cis-RA is therapeutically used in 

neuroblastoma treatment ([50], and chapter 2.1.6). Stimulation of the neuroblastoma cell line 

SH-SY-5Y with 12-O-tetradecanoyl phorbol-13-acetate (TPA) induces a strong 

differentiation process, and is used as a model system for mechanistic studies of human 

sympathetic neuronal differentiation. In addition, combinations of growth factors with 

physiologically roles during development of the sympathetic nervous system, like basic FGF 

and insulin-like growth factor 1 (IGF1), induce neuronal differentiation of neuroblastoma 

cells in vitro [45].  Neuroblastoma cell lines generally lack Trk receptors, however, pre-

treatment with retinoids induce Trk expression and sensitize the receptors for their 

neurotrophin ligands (TrkA for NGF; TrkB for brain-derived neurotrophic factor (BDNF) and 

neurotrophin (NTF) -4; TrkC for NTF-3) (reviewed in [45, 49]). Interestingly, the capacity to 

response to exogenous differentiation stimuli is retained even under high MYCN expression 

[51]. Knockdown of MYCN in MYCN-amplified neuroblastoma cells induces neuronal 

differentiation [52]. 

Taken together, the potential of neuroblastoma cells to differentiate, either spontaneously or 

upon distinct triggers, is one of the major neuroblastoma research foci due to fact that 

knowledge about these processes may have direct clinical implication for tumor 

differentiation therapy.  

2.1.4 Molecular aspects in neuroblastoma 

Neuroblastoma is a complex genetic disorder [19, 53, 54]. Acquired somatic aberrations, 

either through segmental chromosomal aberrations like translocations and gene amplification, 

or numerical chromosomal changes, substantially influence tumor biology and clinical 

behavior (see also chapters 2.1.5.3 and 2.1.5.4, and [55]). In addition, several pre-disposing 

germline aberrations have been identified (reviewed in [54]). The following sections will 

review molecular aspects in neuroblastoma, focused on relevance for the papers in this thesis. 
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2.1.4.1 MYCN amplification (MNA) 

Amplification of the human proto-oncogene MYCN is found in approximately 20% of 

neuroblastoma tumors [53]. Due to its profound effect on clinical outcome (see chapter 

2.1.5.3), MYCN-amplification (MNA) is routinely used as a biomarker for treatment 

stratification. The amplification is cytogenetically detectable as autonomously replicating 

double minute chromosomes (dmins), or intrachromosomal homogenously staining regions 

(hsr).  The transcription factor N-myc, which is encoded by MYCN on chromosome 2p24, 

belongs to the Myc-family of DNA binding basic region/helix-loop-helix/leucine zipper 

(bHLHZip) proteins, in which c-Myc, L-Myc and N-myc are the best characterized members 

[56]. The genomic sequences of MYCN and c-MYC share wide structural homology. Both 

genes consist of three exons, where the first exon is untranslated and exon 2 and 3 encode the 

translated regions [57].  N-myc and c-Myc proteins are of similar sizes (464 and 454 amino 

acids, respectively). However, the MYCN mRNA is longer, mainly due to a larger 3'-

untranslated region (3'UTR).  In addition to structural and sequence homologies within the 

Myc-family, the functions of these proteins are closely related. Myc-proteins heterodimerize 

with the bHLHZip-protein Max to a transcription factor complex that binds to specific E-box 

DNA motifs (5'-CANNTG-3') and activates transcription of genes involved in diverse cellular 

functions, including cell growth and proliferation, metabolism, apoptosis and differentiation 

[58-60]. N-myc preferentially binds to the E-box motifs CATGTG and CAACTG. Under 

MNA conditions, however, N-myc becomes less specific and binds additionally to CATTTG 

and CATCTG [61]. In addition to Myc, Max also dimerizes with the bHLHZip-proteins 

Mad/Mnt. These complexes also bind to E-box elements, but repress transcription through the 

recruitment of co-repressors [62]. Through interaction with Sp1 and Miz-1 at promoters, N-

myc has been shown to silence gene expression by recruitment of the histone deacetylase 

HDAC1 [63, 64].  

Dysregulation of Myc activity is an oncogenic hallmark in many human malignancies. Over-

activation of Myc proteins is mainly caused by gene translocations or amplifications, or 

enhanced protein translation or stability, leading to overexpression of a structural normal 

protein [65, 66].  

Given the fundamental role of Myc proteins on cellular processes, their activity in normal 

cells needs to be spatially and timely controlled. While c-Myc is expressed during all 

developmental stages and in a distinct pattern throughout the cell cycle of dividing cells, 

MYCN expression is restricted mainly to the peripheral and central nervous system, kidney, 
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lung and spleen during particular embryonal stages [67]. Expression is controlled at multiple 

levels, including gene transcription through upstream regulators, mRNA turnover, and protein 

activation or decay upon phosphorylation of specific protein residues [56]. In addition, MYCN 

is regulated by microRNAs (see chapter 2.3.10 and paper II).  

The reason why MNA is associated with aggressive tumor biology is still not completely 

understood. Usually, MNA results in overexpression of N-myc protein. Several direct and 

indirect N-myc-targets have been identified, including genes involved in cell cycle regulation 

(e.g. MDM2, MCM7, ODC, and ID2), apoptosis (e.g. TP53), differentiation (e.g. CDC42, 

PAX3), drug resistance (e.g. MRP1) and MYCN stability (Aurora kinase A) (reviewed in [58]). 

In addition, N-myc regulates miRNAs with both oncogenic and tumor suppressor functions 

(see chapter 2.3 and paper I). 

2.1.4.2 Numerical and segmental chromosomal aberrations 

Neuroblastoma tumors harbor numerical chromosomal changes (gains and losses of whole 

chromosomes), segmental aberrations (translocations, amplifications), or combinations of 

both. In a recent study, 224 neuroblastoma tumors were genetically classified according to 

array-CGH profiles to carry either numerical or segmental aberrations alone, in combination, 

or a MNA with or without numerical aberrations (5 groups). Survival dichotomized into 2 

groups: excellent outcome, regardless of stage and age, was found for tumors with solely 

numerical aberrations; segmental aberrations, in contrast, resulted in poor survival. Most 

common segmental alterations were deletions at 1p, 3p and 11q, as well as gains of 1q, 2p and 

17q. Notably, the presence of segmental alterations, whatever their type, was the strongest 

predictor for relapse, regardless of the concomitant MYCN status [55]. The existence of 

tumors with both numerical and segmental changes is indicative for a tumor model in which 

low-grade tumors with numerical changes can secondarily acquire segmental aberrations and 

evolve into aggressive tumors [54]. The fact that the age at diagnosis of mixed profile tumors 

is higher than numerical-only cases, supports the idea of transition, and may be a rationale for 

neuroblastoma mass screening at later ages (see chapter 2.1.7 and [68]).  

2.1.4.3 ALK mutations 

Although chromosomal aberrations are frequent in neuroblastoma, only few mutations in 

typical cancer genes have been reported. In 2008, activating somatic mutations in the 

anaplastic lymphoma kinase (ALK) gene were identified in approximately 6-11% of sporadic 

neuroblastoma tumors [69-73], making ALK to the second major neuroblastoma gene. The 
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oncogenic nature of ALK mutants has been demonstrated in several neuroblastoma in vitro 

systems. Currently, extensive research is ongoing to develop, and clinically evaluate, small 

molecule ALK inhibitors, selectively targeting ALK-mutant neuroblastoma cells (reviewed in 

[74]). 

2.1.4.4 Wnts, the Wnt pathway and DKK3 in neuroblastoma 

The human Wnts are a family of 19 secreted proteins with broad implication in central 

nervous system development [75], including neural crest-derived structures [32, 76], as well 

as many other cellular functions like proliferation, apoptosis, cell adhesion and differentiation 

(reviewed in [77]). Wnt proteins act primarily through the canonical Wnt signaling pathway, 

which finally results in stabilization of the intracellular proto-oncoprotein β-catenin and 

activation of target gene transcription. In detail, but still simplified, Wnt ligands bind to a cell 

surface receptor complex consisting of the proteins frizzled and LRP5 and -6. Binding leads 

to phosphorylation of LRP5/6, which in turn recruits Dishevelled (DVL) proteins to interact 

with frizzled. As a consequence, a destruction complex consisting of APC (adenomatous 

polyposis coli) and axins, which otherwise rapidly degrades β-catenin, is inactivated by 

phosphorylated LRP5/6 and DVL and releases stabilized β-catenin that translocates to the 

nucleus. Here, β-catenin forms a complex with the LEF/TCF transcription factors to activate 

transcriptional targets (reviewed in [78]). 

The identification of proto-oncogenes like c-Myc [79] and N-myc [80] as targets for activated 

Wnt-β-catenin signaling, as well as the detection of mutations in components of the Wnt 

pathway in cancer, broadly connects the Wnt pathway to cancer development (review [81]).  

Mutations in inhibitors of the Wnt signaling pathway are another mechanisms for abnormal 

Wnt signaling contributing to oncogenic transformation. Dickkopf proteins (DKK1-4 and 

soggy) are secreted modulators of the Wnt pathway [82]. DKK1 and -2 antagonize Wnt 

signaling through binding to LRP5/6, which in turn interferes with the receptor´s ability to 

interact with Wnt-bound frizzled. Alternatively, DKKs can interact with the receptor Kremen 

(Krm), leading to endocytosis and destruction of the DKK-Krm-LRP5/6 complex [82].  

The function of DKK3 is more obscure and seems to be dependent on the cell type. DKK3 

acts as an inhibitor of Wnt signaling by blocking β-catenin translocation to the nucleus in 

several cell models, including cancer cell lines [83-85].  In contrast, it has also been shown 

that DKK3 does not interact with LRP5/6, but with Krm. Through internalization of the Krm-

DKK3 complex, the Wnt pathway stays intact and Wnt signaling can be increased [86].  
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DKK3 is a tumor suppressor frequently inactivated by promoter methylation in cancers of the 

cervix [85, 87], liver [88, 89], breast [90], lung [91], mouth [92], and gastrointestinal tract [93, 

94]. In pancreatic carcinoma, high DKK3 expression in tumor vessels was associated with 

favorable outcome and response to cytotoxic treatment [95]. In neuroblastoma, similarly, 

DKK3 expression was higher in prognostic favorable tumors [96]. DKK3 did not seem to 

affect Wnt/β-catenin signaling in neuroblastoma, suggesting other still unknown tumor 

suppressor functions of DKK3 [96]. 

Previous reports have demonstrated that the expression of DKK3 mRNA in neuroblastic 

tumors and neuroblastoma cell lines is inversely correlated to the expression of N-myc [96, 

97]. By modifying MYCN expression with MYCN siRNA or induced MYCN expression, the 

reverse correlation between N-myc and DKK3 mRNA expression was confirmed in several 

neuroblastoma cell lines. However, no direct binding to the DKK3 promoter was identified, 

indicating an indirect regulatory mechanism [96].  

2.1.4.5 Familial neuroblastoma and germline susceptibility genes 

A family history of neuroblastoma can be detected in 1-2% of cases [98]. The majority of 

cases (90%) can be attributed to germ line mutations in either the paired-like homeobox 

PHOX2B gene [99] or the anaplastic lymphoma kinase (ALK) gene [73]. Patients with 

sporadic or familial neuroblastoma in conjunction with other diseases of neural-crest origin, 

like Hirschsprung’s disease and congenital central hypoventilation syndrome, typically have 

PHOX2B mutations. ALK mutations were also found in 5-15% of sporadic neuroblastoma 

cases [71, 73], making ALK to the major neuroblastoma-predisposing gene (see also chapter 

2.1.4.3 and [24]). Genetic testing for ALK or PHOX2B mutations is recommended in patients 

with a family history of neuroblastoma or other disorders of the neural crest to identify 

unaffected siblings with germline mutations who may profit from neuroblastoma screening 

and early diagnosis [53]. 

In addition to mutations in ALK and PHOX2B, several heritable genetic variations (single 

nucleotide polymorphisms, SNPs) in the human genome, identified by genome-wide 

association studies, predispose for the development of sporadic neuroblastomas [24, 53, 100]. 

2.1.5 From histopathology to risk stratification 

The degree of differentiation in neuroblastic tumors, but also other pathological and clinical 

markers like mitosis-karyorrhexis-index (MKI), mitosis rate, stage and age at diagnosis, are 

surrogates for underlying tumor burden and biology [11, 19, 24]. Risk group classification 
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systems incorporating these and other markers attempt to predict the aggressiveness and 

clinical course of an individual tumor. Given the clinical heterogeneity of neuroblastic tumors, 

it is highly relevant for treating physicians to be able to estimate tumor behavior, classify 

patients into risk-groups, and tailor therapy by treatment stratification. In 2009, an 

International Neuroblastoma Risk Group (INRG) Classification System was proposed based 

on a retrospective analysis of 8.800 neuroblastoma patients from North America, Europe and 

Japan [18]. The INRG Classification System (INRGCS) allows assessing risk prior to any 

treatment. The next section will briefly summarize the criteria incorporated in the INRGCS. 

Histological categories and grade of tumor differentiation, both integral parts of the INRGCS, 

have already been discussed in chapter 2.1.2.  

2.1.5.1 Tumor stage 

In 1988 and 1993, an International Neuroblastoma Staging System (INSS) was established 

[101, 102]. The system separated localized (stage 1 and 2) from locoregional (stage 3) and 

metastatic tumors (stage 4). Tumors in infants younger than 1 year with metastases limited to 

the skin, liver or bone marrow, were classified as stage 4S, attributing the fact that these 

tumors have a distinct biology and excellent prognosis with minimal or no treatment due to 

spontaneous regression or maturation (Figure 2). The INSS system is still in use in many 

countries.  

 

Figure 2: The International Neuroblastoma Staging System (INSS) 
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However, a disadvantage of the INSS is that staging is dependent on surgical species, and the 

degree of excision and number of involved lymph nodes may be dependent on the surgeon’s 

expertise and abundance of resected nodes. Therefore, a new staging system (International 

Risk Group Staging System, INRGSS) has recently been proposed [103].  

The INRGSS is based on pre-surgical, radiological characteristics of the primary tumor. 

Through the definition of a set of image-defined risk factors (IDRF), tumors are separated in 

groups with or without IDRFs. Image modalities include CT/MRI and metaiodobenzyl-

guanidine (MIBG) scintigraphy. In addition, bone marrow involvement has to be assessed. By 

these investigations, four disease stages were delineated (Figure 3).  

 

Figure 3: The International Neuroblastoma Risk Group (INRG) staging system 

2.1.5.2 Age at diagnosis 

Age is a strong independent prognostic factor in neuroblastoma. Basically, young children, 

especially under the age of 1 year, have often localized tumors with favorable tumor biology 

and superior prognosis, while the chance for disseminated disease, unfavorable biological 

features and death from refractory disease is continuously increasing in older children [11]. 

Traditionally, the age cutoff for risk classifications in clinical trials has been 12 months.  

However, retrospective data from larger trials revealed that age, as a risk factor, is rather a 

continuum than a binary variable. From statistical and biological standpoints, the optimal 

discriminatory cutoff has been determined to be somewhere between 15 and 19 months [104]. 

The INRG propose 18 months as age cutoff for future risk classifications [18]. 

2.1.5.3 Genetic markers 

The cytogenetic aberration most consistently associated with poor prognosis in neuroblastoma 

is genomic amplification of the proto-oncogene MYCN (see chapter 2.1.4.1). MYCN-

amplification (MNA) in neuroblastoma and its impact on prognosis has been known since 

1984 [105, 106]. MNA correlates strongly with advanced disease and treatment failure [107].  

Hemizygous loss of large segments on chromosome 11q defines another major genetic 
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subtype of high-risk neuroblastoma, and unbalanced deletions of 11q- material are 

independently prognostic for outcome [108]. MNA and loss of 11q are strong inversely 

correlated and can be found in about 70 % of metastatic tumors. Typically, both genetic 

subtypes occur with additional genetic alteration. Loss of chromosome 1p is frequently found 

in MNA tumors, while 11q-loss is significantly associated with gain of 7q and 3p and 4p-loss. 

Gain of 17q-material is frequent in both 11q- and MNA tumors, most often caused by 

unbalanced t(11q;17q) and t(1p;17q) translocations, respectively [54, 109, 110]. Gain of 17q 

is a strong indicator of adverse outcome [111]. 

The MYCN-status and absence/presence of 11q-deletions are risk criteria in the INRGCS [18]. 

The 17q-status was not implemented in the INRG system due to lack of data in the INRG 

study patient cohort [18]. The prognostic value of 1p-deletions is still controversial. Although 

Attiyeh et al. [108] reported 1p-deletions to be independently associated with decreased 

survival in low- and intermediate-risk patients, the INRG data revealed superior overall rates 

at least in low-risk patients regardless of the 1p-status [18]. In the INRGCS, 1p-status is 

therefore not included as a prognostic discriminator. 

2.1.5.4 DNA ploidy 

In general, two main categories of cellular DNA content can be separated in neuroblastoma: 

near-diploid content, or hyperdiploid (often near-triploid) content [112, 113]. DNA content 

(or DNA index) has long been known as a predictor for chemotherapy response for 

neuroblastoma patients < 2 years of age. While hyperdiploidy or near-triploidy was associated 

with long-term survival in these patients, near-diploidy (or tetraploidy) predicted early 

treatment failure [114-116]. Genetic tumor models have suggested that less aggressive 

neuroblastoma cells have mitosis defects, resulting in gains and losses of whole chromosomes 

(numerical chromosomal aberrations) and near-triploid cells. In contrast, aggressive tumors 

are characterized by genomic instability causing unbalanced translocations and chromosomal 

rearrangements (segmental copy number alterations, see also chapter 2.1.4.2) [11, 54, 55, 

112]. The DNA index has been included in the risk assessment of disseminated 

neuroblastoma without MNA in children under 18 months [18].  

2.1.5.5 The International Neuroblastoma Risk Group Classification System (INRGCS) 

In summary, current prognostic factors applied in clinical risk assessment are stage, age at 

diagnosis, histological category and differentiation grade, MYCN- and 11p-status as well as 

tumor DNA ploidy.  
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The pre-treatment risk classification system proposed by the INRG is based on these factors 

and allows the definition of 4 risk groups: very low risk, low risk, intermediate risk and high-

risk (Figure 4). The groups were defined by event-free survival cut-offs (>85% EFS; >75% to 

≤85%; ≥ 50% to ≤75%, or <50%, respectively).  

 

Figure 4: The International Neuroblastoma Risk Group Classification System (INRGCS). Blank field = “any”; 

diploid (DNA index ≤1.0); hyperdiploid (DNA index >1.0, includes near-triploid and near tetraploid tumors); 

GN, ganglioneuroma; GNB, ganglioneuroblastoma; Amp, amplified; NA, not amplified. Modified from [18]. 

The purpose of the INRG classification system is to enable that children diagnosed with 

neuroblastoma in any country of the world can be stratified into homogenous pretreatment 

groups. This will facilitate the comparison of risk-based clinical trials conducted in different 

regions of the world [18]. 

2.1.6 Risk‐adapted treatment and prognosis 

The definition of risk-groups made it possible to conduct cooperative clinical trials with the 

aim to establish, evaluate and optimize risk-adapted treatment of neuroblastoma patients. 

Norway actively participates in the clinical trials designed by the International Society of 

Pediatric Oncology European Neuroblastoma (SIOPEN) research group. Briefly and 

simplified, patients are stratified according to the INRGCS into three treatment protocols: 

Low-risk patients (L1) without MNA are treated according to the LNESG2 protocol by 

surgery alone. L1-patients with MNA, L2- and MS-patients without MNA, and M-patients 

younger than 18 months without MNA were treated according to the LINES protocol. The 
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LINES protocol contains several treatment subgroups in which intensity gradually increases 

from observation alone to combinations of chemotherapy, surgery and irradiation. High-risk 

patients, except those with localized disease, were treated according to the HR-NBL-1 

protocol, one of the most aggressive treatment protocols in pediatric oncology. It combines 

rapid multidrug chemotherapy cycles, tumor surgery, irradiation, high-dose chemotherapy 

with autologous hematopoietic stem cell rescue, and differentiation-inducing treatment with 

13-cis retinoic acid ([50], and chapter 2.1.3). Very recently, immunological targeting of 

residual tumor cells by a combination of subcutaneously injected monoclonal antibodies 

against a neuroblastoma surface antigen (anti-GD2 antibody) and concomitant stimulation of 

the patient’s immune system by interleukin-2 [117] has been implemented into the protocol 

treatment. Immunotherapy against resistant tumor cells either by antibody-based strategies 

[13, 117-120] or haploidentical stem cell transplantation [121] has shown promising results 

for refractory and relapsed disease. 

The 5-year event-free survival (EFS) and overall survival (OS) rates for the complete INRG 

study population of 8.800 neuroblastoma patients was 63% and 70%, respectively [18]. 

Adrenal primary tumor site had significantly worse EFS than other primary sites.  Survival 

rates varied substantially between patients of INSS stages 1,2,3,4S (OS 91% ± 1%) and stage 

4 (OS 42% ± 1%). Disseminated disease with MNA in the tumors showed worst prognosis, 

with OS rates between 22-29%, regardless of age [18]. In contrast, disseminated 

neuroblastomas without MNA in children below the age of 12-18 months have a superior 

prognosis with OS rates exceeding 90 % [18, 122].  

2.1.7 Mass screening  

The dichotomized prognosis of neuroblastoma, with superior survival rates for young patients 

with localized disease contrasted by the poor prognosis for older children with often 

metastasized disease and unfavorable biological features, initiated mass screening studies in 

the 1980-1990s to clarify if long-term survival of high-risk patients can be improved when 

tumors were detected earlier in the course of disease [15, 16, 123, 124]. Mass screening was 

performed by the investigation of urine samples for tumor-secreted catecholamines [123]. In 

fact, screening detected primarily tumors with biological favorable near-triploid DNA content 

that are prone to spontaneous differentiation or can be cured with minimal therapeutic 

interventions [125]. Mass screening at the age of 6 or 12 months increased the incidence of 

neuroblastoma [124], but not long-term survival [16, 17, 126], indicating that aggressive 

tumors either develop de novo at later ages, or have aggressive courses even when detected 
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early. The results from these mass screening studies support the model that neuroblastoma is 

separated into two biological subgroups: favorable tumors in younger children, and tumors 

with unfavorable biology in older children, where the former rarely evolves into aggressive 

types [19]. However, the occurrence of tumors with both numerical and segmental aberrations 

may indicate the possibility for tumor transition (see chapter 2.1.4.2). By now, there is no 

clear indication from prospective studies for population-based mass screening; however, 

screening at the age of 18 months may prove beneficial in prospective studies [68]. 

2.2 MicroRNAs 

MicroRNAs (or miRNAs) are an abundant class of genome-encoded, endogenous, small non-

protein-coding RNA molecules that negatively regulate protein expression in cells [127]. The 

first miRNA, lin-4, was discovered in 1993 in the nematode C.elegans [128, 129]. Since that 

time, miRNAs have been discovered in nearly every organism, from plants and simple 

multicellular organisms to flies, vertebrates and humans. MiRNAs are annotated and 

catalogued in the public-accessible web-based database miRBase (www.mirbase.org)[130-

134], which was founded at the Sanger Institute in England and is now managed by the 

University of Manchester. The current miRBase release 17 (april 2011) annotates 19724 

mature miRNAs in 153 species, including 1719 mature human miRNAs. In humans, the total 

number of annotated mature miRNA sequences has thereby increased by 43% compared to 

the previous release (2010), emphasizing that the complete mapping of all human miRNAs is 

still in progress.  

The biogenesis of miRNAs is a complex multi-step process that starts in the nucleus and ends 

in the cytoplasm of cells (Figure 5; reviewed in [135-138]). Most miRNAs are transcribed as 

long monocistronic or polycistronic primary transcription units (primary miRNA or pri-

miRNA) by RNA polymerase II. Typically, a pri-miRNA is characterized by a hairpin 

structure, containing a double-stranded (ds) RNA stem of ∼33 base pairs (bp), a terminal loop, 

and single-stranded (ss) RNA flanking regions. The stem-loop structure contains the miRNA 

in the 5’ or 3’ half of the stem. The pri-miRNA is cleaved in the nucleus by a protein complex 

(the “microprocessor complex”) consisting of several proteins including the RNase III 

enzyme Drosha and its co-factor DGCR8. DGCR8 functions as a molecular anchor and 

defines the binding site for the microprocessor, while Drosha cleaves the RNA approximately 

11 bp from the ss-dsRNA junction, producing the shorter, ∼ 65-70-nucleotide long hairpin 

pre-miRNA.  
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Following completion of this nuclear processing step, the pre-miRNA is exported from the 

nucleus to the cytoplasm by Exportin-5. Here, the pre-miRNA is cleaved by another RNAse 

III enzyme called Dicer. Dicer cleaves ∼22 nt from the pre-existing end of the pre-miRNA, 

producing ∼22 nt double-stranded RNA molecules. One of the two strands (the guide strand 

or mature miRNA) is, selected upon thermodynamic properties, loaded on an Argonaute 

(Ago) protein, the main constituent of the RNA-Induced Silencing Complex (RISC). The 

other strand (passenger strand) is degraded. The mature miRNA sequence guides the RISC 

complex to recognize and target partial complementary mRNA sequences, primarily within 

the 3’-untranslated region (3’UTR)[136-138]. 

 

Figure 5: Schematic overview over miRNA biogenesis (from [135], with permission) 

Expressional changes of even single miRNAs have profound effects on the protein 

composition in cells [139, 140]. The degree of complementarity between the mature miRNA 

sequence and the target mRNAs determines the mechanism responsible for blocking gene 

expression. Near-perfect pairing, as it is mainly found in plants, causes mRNA destruction 

through Ago-catalyzed mRNA cleavage [141, 142]. In vertebrates, miRNA-mRNA 

interactions are most often through imperfect base pairing [127]. Here, the precise 
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mechanisms behind miRNA-mediated gene silencing is still scientifically debated [143]. 

Destabilization of the mRNA by de-adenylation, de-capping and rapid degradation through 

standard mRNA-turnover processes (“mRNA-destabilization scenario”) seems to be the 

mainstay of miRNA-mediated protein repression [144]. In addition, translational repression 

through blocking translation initiation, or a combination of both mechanisms, is an 

established mechanism to block protein expression [140, 143].  

Different types of miRNA target sites have been identified [145]. In general, target sites are 

characterized by a varying degree of complementarity to the miRNA sequence, and often 

evolutionary conserved between different species (reviewed in [127]).  As shown by studies 

where single nucleotides in miRNA sequences were systematically mutated, sites with as little 

a seven base-pairs of complementarity at the 5’end of the miRNA were sufficient to repress 

the predicted mRNA target in vivo [145]. This complementary sequence at the 5’-position 2-7 

of the miRNA is called “seed”, and is the key determinant for miRNA specificity [146, 147]. 

Four variants of the 6-nt-seed have been identified (Figure 6): the 7mer-m8 site, which 

comprises the seed match supplemented by a match to miRNA nucleotide 8; the 7mer-A1 site, 

which comprises the seed match supplemented by an A across miRNA nucleotide 1; the 8mer 

site, which comprises the seed match supplemented by both the m8 and the A1; and a site 

with only 6 nt perfectly matching (6mer site) [147], resulting in a hierarchy of site efficacy: 

8mer > 7mer-m8 > 7mer-A1 > 6mer [148].  

 

Figure 6: Types of miRNA target sites (adapted from [127, 149]) 

In addition to the seed sequence, complementarity at the 3’-end can both compensate for a 

single mismatch in the seed (3’-compensatory site), as well as increase affinity of the miRNA 

(3’-supplementary sites)[148]. 

The miRNA nomenclature is managed by miRBase and has been slightly changed with up-

coming releases of the database. In general, miRNA names start with a 3-4-letter prefix to 

designate the species (e.g. hsa- for homo sapiens miRNAs). They are further assigned by a 
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three-letter prefix, such as miR- or let-, followed by a sequential number (e.g., miR-1). By 

definition, the mature miRNA is labeled “miR” [132], while the precursor is labeled “mir”; 

however, this discrimination is not stringently used in the literature, and it has been 

recommended to use “mature” or “precursor” when a clear distinction is necessary. Identical 

miRNAs transcribed from different genes are given a numeric suffix, e.g. miR-1–1 and miR-

1–2. Very similar miRNAs (paralogous miRNAs), often sharing the same seed sequence, are 

designated as a “miRNA family” (e.g. mir-29 family) and discriminated by numeric and letter 

suffixes (e.g. mir-29a, mir-29b, mir-29c) [150]. In some cases, two mature miRNAs are 

processed from the same stem-loop precursor, one from each arm, and are accordingly 

designated by an additional suffix “-5p” (for that released from the 5’-arm) and “-3p” (for that 

released from the 3’-arm); e.g., miR-199a-5p and miR-199a-3p. The star-forms (miR*), 

previously used for minor forms, have been “retired” according to the latest nomenclature 

convention [134].  

MiRNA clusters are polycistronic transcription units consisting of several miRNAs located in 

close proximity. In the human genome, more than 85 % of all miRNAs are located within 

intronic regions, while the rest are located within exons [151]. 

As miRNAs tend to target many different mRNAs, and each mRNA may contain several to 

hundreds of different miRNA binding sites, it is obvious that the miRNA-mRNA regulatory 

network is extremely complex. It has been estimated that 30-60 % of all human genes are 

regulated by miRNAs [147, 149]; others suggest that small RNAs, including miRNAs, will 

have the potential to regulate all human genes [137]. A plethora of more than 2.000 review 

articles on miRNA and 20.000 original research papers indexed in PubMed illustrate the 

broad implication of miRNAs in more or less all aspects of cellular function. Established roles 

for miRNAs are their involvement in the development of organisms and organs, in cellular 

processes like proliferation, differentiation, signal transduction and apoptosis, in cell fate 

decisions and immunological defense of viral attacks (reviewed in [138, 152]). As a 

consequence of this broad function, miRNA biogenesis has to be tightly controlled. 

Deregulated miRNA expression has been associated with a diversity of diseases, including 

cancer; a fact attributed in the term “oncomirs” for cancer-related miRNAs. MiRNA 

transcription is regulated by several transcription factors, including oncogenes like c-MYC 

[153, 154] and MYCN (see chapter 2.3), and tumor suppressors like p53 [155].  
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2.3 MicroRNAs, N‐myc and neuroblastoma 

2.3.1 Studying N‐myc and miRNA expression – general aspects 

The two very first studies investigating the role of N-myc on miRNA expression in 

neuroblastoma tumors were published by Chen and Stallings in 2007 [156] and Schulte et al. 

in 2008 [157]. Both studies profiled the miRNA expression in a smaller set of primary tumors 

(18 and 24 tumors including 6 and 7 with MNA, respectively) to define differentially 

expressed miRNAs between the MNA and non-amplified groups. Using miRNA-specific 

real-time PCR, Chen and Stallings profiled 157 known miRNAs and reported mainly down-

regulation of miRNA expression in MNA tumors (26 out of 31 differentially expressed 

miRNAs). In contrast, Schulte et al. used a microarray approach, supplemented by real-time 

PCR validation, to profile 384 miRNAs and found exclusively up-regulation of miRNA 

expression (14 miRNAs) in their MNA tumor samples. Among these were several members 

of the oncogenic mir-17-92 cluster as well as four of the five up-regulated miRNAs reported 

by Chen and Stallings.  

The effect of N-myc on miRNA expression was in both studies further investigated by 

altering MYCN expression in neuroblastoma cell lines. Chen and Stallings used anti-MYCN 

siRNA technology to repress MYCN expression in MNA Kelly cells and reported mainly up-

regulation of miRNA expression. The in vitro experimental system used by Schulte et al. is 

based on ectopic over-expression of MYCN cDNA in non-amplified SH-EP cells (SH-EP 

MYCN-ER). Here, they observed up-regulation of 11 miRNAs, 7 of which were also up-

regulated in their MNA tumor samples. Surprisingly, two miRNAs, mir-92 and let-7b, both 

differentially expressed in the experimental cell line models, were correlated to MYCN 

expression in opposite ways in these studies.   

The discrepancies between these two pioneer studies illustrate general methodological 

challenges when studying miRNA expression in neuroblastoma:  

(1) Tumor sample size. The heterogeneous genetic background of neuroblastoma tumors 

requires large tumor sets to delineate miRNA expression signatures for complex genetic 

subgroups. In one of the largest miRNA profiling studies in neuroblastoma so far, Bray et al. 

profiled 430 miRNAs in a total of 145 primary neuroblastoma tumors, including 36 with 

MNA [158]. They found both up- and down-regulated miRNAs (14 and 23, respectively) 

when MNA tumors were compared to non-amplified tumors. Importantly, they also 

determined large-scale genomic gains and losses in each tumor by array-CGH and correlated 
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the genomic localization of differentially expressed miRNAs to chromosomal gains and 

losses. About 15 % of all detectable miRNAs changed expression as a result of chromosomal 

imbalances in the tumors, highlighting that gains or losses of miRNA encoding regions 

contribute significantly to miRNA dysregulation in neuroblastoma, in addition to N-myc 

overexpression.  

(2) MYCN expression.  Experimental systems using MYCN induction or knockdown do not 

reflect two sides of the same coin, but initiate two distinct biological processes, where the 

former results in cell cycle progression and proliferation, while the latter in differentiation and 

apoptosis.  

(3) Profiling platforms. The nature of miRNAs (small size and base-paired structure) poses a 

challenge for miRNA detection techniques [159]. Different technical platforms, like northern 

blotting, high-throughput real-time PCR-techniques, microarray analyses or next-generation 

sequencing, may therefore generate partially diverging expression profiles, mandating 

confirmation between the platforms. 

(4) Number of miRNAs. The number of investigated individual miRNAs varies between 

studies, especially over time, not least because the overall number of identified miRNAs (and 

other small RNA molecules) in the human genome is still increasing. Profiling studies based 

on ultra-deep next-generation sequencing of the total small RNA transcriptome in 

neuroblastoma [160] have the potential to provide ultra-specific and absolute miRNA 

expression data in future studies.  

(5) Functional confirmation. Differential miRNA expression data should be supported by 

functional studies in vitro and in vivo to prove biological relevance of each individual miRNA.  

2.3.2 N‐myc induces miRNA expression – the mir‐17‐92 cluster 

In 2008, Fontana et al. published the first comprehensive functional study on a MYCN-

regulated miRNA cluster – the mir-17-92 cluster [161].  It is transcribed as a polycistronic 

unit from chromosome 13, and comprises 7 individual miRNAs (mir-17, mir-18a, mir-19a, 

mir-19b, mir-20a, mir-92a). Fontana et al. confirmed the observation made by Schulte et al. 

[157], showing that miRNAs of the mir-17-92 cluster are higher expressed in tumors and 

neuroblastoma cell lines with high N-myc expression. By the use of chromatin 

immunoprecipitation (ChIP), they validated direct binding of N-myc to several E-box motifs 

in the mir-17-92 promoter and demonstrated transcriptional activation in luciferase reporter 

gene assays. Moreover, Fontana et al. shed light on the functional consequences of mir-17-92 
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over-expression in MNA neuroblastoma cells: the tumor suppressor p21 (CDKN1A) was 

shown to be targeted by mir-17, and over-expression of mir-17 in non-amplified cells 

increased proliferation, colony-formation and in vivo tumor growth. Vice versa, inhibition of 

mir-17 by antagomirs in MNA cells decreased proliferation and tumorigenesis, and increased 

p21 expression. Surprisingly, antagomir-17 increased apoptosis in neuroblastoma cells; an 

effect not attributable to increased p21. Instead, mir-17 was found to additionally target BIM 

(BCL2 Interacting Mediator of cell death, or BCL2L11), a pro-apoptotic BH3-only member 

of the BCL2 (B-Cell Lymphoma 2) family. In conclusion, Fontana et al. proposed that mir-17 

functions as a major effector of MYCN-mediated tumorigenesis, by targeting p21 while at the 

same time protecting MNA cells from N-myc induced apoptosis through translational 

inhibition of BIM.  

Other studies have confirmed direct binding of N-myc to the mir-17-92 promoter [162, 163], 

as well as a positive correlation between expression of MYCN and members of the mir-17-92 

cluster in primary tumors and/or neuroblastoma cell lines [22, 158, 160, 162, 164-168]. As 

miRNAs simultaneously target a variety of different mRNAs, it became clear that activation 

of the mir-17-92 cluster enables N-myc to turn multiple cellular processes towards malignant 

transformation. In 2009, Beveridge et al. showed that mir-17 and mir-20a target three 

differentiation-associated genes in neuroblastoma cells; BCL2, MEF2D (Myocyte Enhancer 

Factor-2D) and MAP3K12 [169]. Another differentiation-associated protein, the estrogen 

receptor-α (ESR1), was also recently reported to be a target for miRNAs of the mir-17-92 

cluster [162]. ESR1 is expressed in fetal sympathetic ganglia during human neuronal 

development and has been shown to be inversely correlated to MYCN expression in 

neuroblastoma tumors [162]. Loven et al. demonstrated that mir-18a and -19a target ESR1, 

providing a mechanism on how N-myc regulates ESR1 expression [162]. Notably, Loven et 

al. showed that N-myc also binds to E-boxes of the mir-17-92 paralogous miRNA clusters 

mir-106b-25 (chromosome 7) and mir-106a-363 (chromosome X), enabling a concerted 

action of N-myc-activated miRNAs to synergize N-myc functions.  

In a genome-wide proteome analysis, Mestdagh et al. used a tetracycline-inducible mir-17-92 

expression system in non-amplified neuroblastoma cells (SHEP-TR-miR-17-92) to show that 

144 proteins were down-regulated upon mir-17-92 induction, including multiple key effectors 

along the TGF-β signaling cascade [170]. Both TGF-beta receptor type II (TGFBR2) and 

Smad2/Smad4 were shown to be direct targets of mir-17/20 and mir-18a, respectively. 
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Interestingly, TGF-βresponsive genes include p21 and BIM in gastric cancer [171], both 

targets of mir-17-92 in neuroblastoma [161]. 

These studies illustrate how N-myc is able to regulate multiple steps of oncogenic processes 

through the activation of the mir-17-92 cluster (Figure 7).  

 

Figure 7: N-myc induces expression of the mir-17-92 cluster. Several miRNAs in the cluster have been 

confirmed to target genes involved in proliferation, inhibition of apoptosis and inhibition of differentiation. 

2.3.3 N‐myc induces miRNA expression – mir‐9 

Another functionally characterized miRNA positively correlated to MYCN expression is mir-9. 

This miRNA is highly expressed in the brain and other neural tissues and coordinates the 

proliferation and migration of human neural progenitor cells [172]. Recently, Ma et al. used 

an inducible MYCN expression system and genome-wide ChIP-on-chip analyses to confirm 

that mir-9 (at the mir-9-3 locus) is directly activated by N-myc and that mir-9 targets the 

tumor suppressor E-cadherin (CDH1) [165]. E-cadherin is a ubiquitously expressed 

transmembrane glycoprotein on the surface of epithelial cells, with a pivotal role for cell-cell 

adhesion of adjacent cells. E-cadherin function is frequently lost in epithelial cancers and 

associated with invasion and metastasis. In neural crest development, during the process of 

neurulation, down-regulation of E-cadherin allows the neural crest cell to detach from the 

neural tube and migrate along the migratory pathway [27]. Ma et al. found that mir-9 was 

significantly higher expressed in 23 metastasized neuroblastoma tumors (stage 4, all MNA), 

compared to 22 non-amplified tumors without metastases. They demonstrated that mir-9 
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promotes cancer cell motility and invasiveness through the suppression of E-cadherin. 

Moreover, the decrease in E-cadherin increased expression of the pro-angiogenic factor 

VEGFA through activated β-catenin signaling in the cells. The study by Ma et al. propose 

for the first time a model on how N-myc might be able to contribute to metastasis formation 

through the activation of a single microRNA (Figure 8). 

 

Figure 8: Model for N-myc – mir-9 – E-cadherin pathway involved in neuroblastoma metastasis. 

2.3.4 N‐myc induces miRNA expression – mir‐421 

In 2010, a link between disturbed double-strand break (DSB)-induced DNA damage response 

and an N-myc-activated miRNA was reported by Hu et al. [173]. The authors found increased 

expression of mir-421 co-varied with reduced levels of ATM (ataxia-telangiectasia mutated 

kinase) in MNA neuroblastoma cell lines. With the use of a luciferase reporter assay, mir-421 

was shown to directly target the 3’UTR sequence of ATM.  They further demonstrated that N-

myc binds to the promoter region of mir-421 to enhance its expression. This establishes a 

linear signaling pathway (N-myc – mir-421 – ATM) explaining how N-myc negatively 

regulates ATM expression. ATM is a tumor suppressor that transduces the DSB damage 

signals to down-stream effectors of the DNA repair machinery during cell cycle checkpoints 

at G1-S and intra-S phase. Impaired ATM activity leads, most often through gene mutations, 

to genomic instability and predisposes for cancer transformation, especially after radiation 

exposure [174].  In conclusion, this study showed a new mechanism for ATM dysregulation 

related to neuroblastoma tumorigenesis.  
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2.3.5 N‐myc is predominantly a repressor of miRNA expression 

Although several miRNAs have been documented to positively correlate with MYCN 

expression, there is now growing evidence that N-myc predominantly acts repressive on the 

overall miRNA composition in MNA neuroblastoma cells [22, 156, 158, 167, 168, 175] and 

upon N-myc induction in non-amplified neuroblastoma cells [162]. Lin et al. profiled the 

expression of 162 miRNAs in 66 primary neuroblastoma tumors (including 13 with MYCN-

amplification) and found a nearly global down-regulation of miRNAs in high-risk tumors, 

especially in those with MYCN-amplification [175]. The authors hypothesized that 

dysregulation in Dicer and/or Drosha, key enzymes in the miRNA processing pathway, may 

contribute to the widespread miRNA down-regulation. Indeed, both Dicer and Drosha were 

lower expressed in stage 4 tumors compared to other stages, with the most strikingly 

differential expression between stage 4 and stage 4S. This suggests that repression of 

miRNAs may be involved in tumor progression.  

2.3.6 N‐myc‐regulated tumor suppressor miRNAs in neuroblastoma 

Chen and Stallings found that mir-184 was significantly down-regulated in MNA tumors and 

up-regulated upon MYCN-knockdown in a MNA neuroblastoma cell line [156]. 

Overexpression of mir-184 reduced cell viability of both MNA and non-amplified cell lines 

through the induction of apoptosis and G1 cell cycle arrest. A follow-up study by Foley et al. 

confirmed the inverse correlation between N-myc and mir-184 in primary tumors and showed 

that inhibition of mir-184 by antagomir treatment increased proliferation of neuroblastoma 

cells [176]. Moreover, they demonstrated that mir-184 directly targets AKT2 (Protein kinase 

B beta). AKT2 is a down-stream effector of the phosphatidylinositol 3-kinase (PI3K) pathway, 

one of the most potent pro-survival pathways in cancer. Activation of AKT is associated with 

poor prognosis in neuroblastoma [177]. Finally, Tivnan et al. used an in vivo murine 

xenograft model where mir-184-transfected MNA or non-MNA neuroblastoma cells were 

orthotopically injected into CB-17/SCID mice [178]. Tumors arising from mir-184-

transfected cells were smaller than the controls, and mice survived longer. In summary, these 

comprehensive studies clearly established MYCN–regulated mir-184 as a tumor suppressor in 

neuroblastoma.  

Another tumor suppressor miRNA repressed by N-myc is mir-542-5p.  Several studies have 

shown an inverse correlation between mir-542-5p and MYCN-amplification in primary tumors 

[22, 158, 160, 179]. In a large-scale profiling study of 430 miRNAs in 69 primary tumors, 

Schulte et al. found increased expression of 4 miRNAs in MNA tumors while 35 miRNAs 
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were repressed, including mir-542-5p [22].  Mir-542-5p expression was found to be 

predictive for outcome, with a significantly higher expression in patients with event-free 

survival compared to relapsed patients. Bray et al. profiled the expression of 449 miRNAs in 

145 neuroblastoma tumors and correlated mir-542-5p expression to clinical data [179]. 

Expression of mir-542-5p was non-randomly distributed among tumor genetic subtypes, with 

lowest expression in MNA tumors (77 % completely lacking expression) and highest 

expression in stage 1,2,3 and 4S tumors. Patients with tumors lacking mir-542-5p expression 

had the poorest prognosis, independently of the MYCN status in the tumors [22, 179]. Bray et 

al. further demonstrated that mir-542-5p overexpression in MNA and non-MNA 

neuroblastoma cells reduced invasiveness in vitro, and restricted tumor growth and metastasis 

in vivo when cells were orthotopically injected into mice.  

2.3.7 Genome‐wide analysis of N‐myc‐regulated miRNAs 

So far, only two studies have used a next-generation sequencing approach to analyze 

activation or repression of miRNAs by N-myc on a genome-wide basis [160, 168]. Schulte et 

al. used ultra-deep SOLiD sequencing to compare the total small RNA transcriptome in 5 

unfavorable MNA tumors with 5 favorable non-MNA tumors [160]. Analyzing the absolute 

number of miRNA reads, there was a trend toward a higher proportion of mature miRNAs in 

the favorable patient group, indicating a possible global suppression of miRNA transcription 

in MNA tumors. Expression data of 204 miRNAs were validated by RT-qPCR with good 

correlation between the technical platforms. The SOLiD sequencing data confirmed 

previously data on differential expression in MNA versus non-MNA tumors, including the 

mir-17-92 cluster and mir-181 (positive N-myc-correlation) and mir-542-5p (nearly absent in 

MNA tumors). In total, 76 miRNAs were differentially expressed between MNA and non-

MNA tumors (43 up-regulated and 33 down-regulated). Next-generation sequencing allowed 

the discovery of several new miRNAs in neuroblastoma and revealed insight into miRNA 

editing and distribution of mir-5p/-3p and mir* forms. In addition, cluster analysis was able to 

exactly separate the two clinical outcome groups based on their differential miRNA 

expression, indicating that the miRNA transcriptome reflects tumor aggressiveness [160].  

Very recently, Shohet et al. performed a genome-wide study of N-myc binding sites in 

promoters driving miRNA expression in neuroblastoma [168]. Using a combination of ChIP 

and Massively Parallel Sequencing (ChIP-seq) in a neuroblastoma cell line with inducible N-

myc expression, they identified 20 gene promoters, hosting a total of 30 miRNAs, to which 

N-myc specifically bound to E-box motifs.  The majority of host genes that were correlated 
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with survival were down-regulated by high N-myc levels, suggesting a tumor suppressor 

function for these host genes as well as the co-expressed intronic miRNAs. However, 

functional studies of two MYCN-regulated intronic miRNAs (mir-591 and mir-558) identified 

tumor suppressor functions for mir-591 as expected, while mir-558 was reported to function 

as an oncomir. These data are supportive for the hypothesis that N-myc has to restrain growth 

as well as to promote it during the processes of tumor initiation and tumor transformation 

from neural crest cells to undifferentiated malignant tumor cells [168]. 

2.3.8 C‐myc/N‐myc‐induced miRNAs repress gene networks 

In a large-scale miRNA expression study, Mestdagh et al. profiled the expression of 430 

miRNAs in 95 neuroblastoma tumors and delineated a signature of 50 unique miRNAs 

differentially expressed between MNA and MYCN single-copy tumors (16 up-regulated and 

34 down-regulated miRNAs) [167]. Interestingly, the miRNA signature further delineated 2 

distinct tumor sub-groups within the MYCN single-copy group: tumors with high or low c-

myc expression. The three tumor groups defined by the 50-miRNA signature correlated well 

with the clinical stage and prognosis. Mestdagh et al. concluded that MYCN/c-MYC 

signaling rather than MYCN-amplification alone underlies the differential expression of 

miRNAs in neuroblastoma. To identify mRNA targets down-stream of the MYCN/c-MYC-

regulated miRNAs, they integrated mRNA and miRNA expression data sets from 40 

neuroblastoma tumors and calculated correlations between each of the 50 miRNAs and 

around 15 000 mRNAs. In the group of mRNAs with inverse miRNA correlation, significant 

3’UTR seed enrichment was only found for the 16 N-myc-activated miRNAs, indicating that 

these miRNAs have a widespread effect on differential gene expression in high-risk 

neuroblastoma. One third of the mRNAs were predicted targets of two or more MYCN/c-

MYC-activated miRNAs, indicating a concerted action towards target gene suppression. Low 

expression of predicted mRNA targets in the tumors correlated with a particular poor patient 

prognosis. MYCN/c-MYC-activated miRNAs were predicted to repress several pathways 

known to be involved in neuroblastoma, including integrin signaling.  In summary, the study 

by Mestdagh et al. comprehensively demonstrated widespread transcriptional repression of 

coding genes by MYCN/c-MYC through miRNA induction, serving as an additional 

mechanism of MYCN/c-MYC induced oncogenicity. 

2.3.9 MiRNA expression and neuroblastoma differentiation 

Several studies have used retinoic acid (RA)-treatment of MNA neuroblastoma cells as a 

model system to investigate the role of miRNAs during MYCN knockdown followed by 
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neuronal differentiation [156, 180-184]. During RA exposure of MNA neuroblastoma cells, 

N-myc is immediately down-regulated prior to the onset of morphological differentiation 

([185], and chapter 2.1.3). Several individual miRNAs whose expression is changed during 

RA-induced differentiation have been functionally characterized.  Mir-152 was found to 

target DNMT1 (DNA methyltransferase 1)[180]. Diminished DNMT1 leads to decreased 

promoter methylation, allowing transcriptional activation of target genes like NOS1 (nitric 

oxide synthetase), a pro-differentiation signaling molecule. Strikingly, mir-152 was found to 

be repressed by N-myc in an N-myc-repressible in vitro cell system, consistent with the 

model of RA-induced N-myc repression and consecutively up-regulation of mir-152 during 

the differentiation process. Mir-10a/b was up-regulated during RA-treatment of both MNA 

[181] and non-MNA [186] neuroblastoma cells. Mir-10a/b was shown to target NCOR2 

(nuclear receptor corepressor 2), and both exogenous overexpression of mir-10a/b as well as 

siRNA-mediated knockdown of NCOR2 in MNA neuroblastoma cells resulted in 

phenotypical changes compatible to RA-treatment, including indirect reduction of N-myc 

levels [181].  Mir-9 and mir-125, up-regulated upon RA-treatment, target t-TrkC, a truncated 

form of TrkC (tropomyosin-related kinase C). Truncated-TrkC in turn abrogates the function 

of full-length TrkC whose expression in primary tumors is correlated with good prognosis.  

Thus, in the context of differentiation, mir-9 seems to have onco-suppressive and pro-

differentiation properties. On the other hand, as highlighted before, mir-9 is directly activated 

by N-myc with pronounced oncogenic properties in proliferating neuroblastoma cells [165].  

Laneve et al. demonstrated that during RA-differentiation and consecutively decreasing N-

myc activity, the mir-9 promoter is activated through phosphorylation of CREB and dismissal 

of repressing REST [187]. These studies illustrate that the same miRNA may exhibit 

opposing effects during distinct cellular processes, as a consequence of diverse promoter 

activation and executed by a different set of miRNA targets. 

2.3.10 MYCN is targeted by miRNAs 

Finally, MYCN itself is targeted by miRNAs. The functionally best characterized MYCN-

targeting miRNA is mir-34a [188, 189], which is located at chromosome 1p36, a region 

frequently deleted in MNA neuroblastoma tumors [11]. MiRNA-regulation of MYCN has 

been the topic of paper II and is further discussed in chapter 6.3.  
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3 Aims 
 

As outlined, MYCN-amplification (MNA) has a strong impact on survival in neuroblastoma. 

However, it is still not completely understood how N-myc contributes to the aggressive 

phenotype. MiRNAs are regulators of gene expression and, when deregulated, involved in 

cancer development. Therefore, the thesis addressed the following general questions:  

 

1. How does the proto-oncogene MYCN influence the expression of miRNAs in 

neuroblastoma?  

For this purpose, we used an approach where we transiently down-regulated N-myc 

expression in MNA neuroblastoma cells by anti-MYCN shRNA, and analyzed 

subsequent changes in miRNA expression by miRNA microarray studies. The results 

are published in paper I.  

The establishment of anti-MYCN shRNA is described in a method paper (appendix). 

 

2. Are miRNAs, in turn, regulators of MYCN expression in neuroblastoma?  

For this purpose, the MYCN 3’UTR was systematically screened for miRNA binding 

sites. Validated MYCN-regulating miRNAs were functionally characterized. The 

results are published in paper II.  

 

3. What are targets and cellular functions of N-myc-regulated miRNAs?  

We focused on mir-92, which is regulated by N-myc (paper I) and belongs to the 

oncogenic mir-17-92 cluster, and experimentally investigated its predicted role to 

target the tumor suppressor DKK3. The results are published in paper III.
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4 Material and methods 

4.1 Standard methods 

The following methods are regarded as standard methods in molecular and cellular biology, 

and therefore not discussed in detail in this thesis, but thoroughly described in each paper: 

Cell culture techniques; cloning of expression plasmids; sequencing; transfection of cells with 

Lipofectamin; retroviral transduction of cells; qualitative and quantitative real-time RT-PCR; 

Western blotting; ELISA test; Alamar blue cell proliferation assay; clonogenic assay; 

flowcytometric cell cycle analysis. 

4.2 Cell lines 

The following cell lines were used in paper I, II and III: MNA neuroblastoma cell lines: 

Kelly (N206); SK-N-BE(2); SMS-KCN; SMS-KCNR; SMS-KANR; IMR-32, LAN-5. Non-

MNA NB cell lines: SK-N-AS; SH-SY-5Y; SK-N-SH. 

SH-EP-Tet21N cells are non-MNA neuroblastoma cells stably expressing high MYCN levels 

under the control of a tetracyclin repressor, meaning that the addition of tetracyclin, or its 

more stable homologue doxycycline, to the culture media switches-off MYCN expression 

[190]. 

In paper II and III, the human embryonic kidney cell lines HEK293 was used in luciferase 

reporter assays. 

4.3 Patient tumor samples  

For paper II and III, we received genomic DNA from neuroblastoma tissue samples obtained 

during surgery (biopsy) from neuroblastoma patients treated at the University Hospitals in 

Gothenburg and Stockholm, Sweden. Patient samples did not include patients’ identification, 

but information about the MYCN status in the sample. Use of the material was approved by 

the ethical committees of the institutions (Karoliniska Institute, Gothenborg University).  

4.4 Design of anti‐MYCN shRNA molecules 

The design, cloning, validation and cellular effect of anti-MYCN shRNA is described in detail 

in the appendix paper Henriksen JR, Buechner J, Lokke C, Flaegstad T, Einvik C: Inhibition 
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of gene function in mammalian cells using short-hairpin RNA (shRNA). Methods Mol 

Biol 2011, 703:189-204. In paper I, we used the anti-MYCN shRNA aMN-887. In paper III, 

the retrovirally transduced shRNA aMN-1658 was used [52]. 

4.5 Computational miRNA target prediction 

MiRNAs are only partially complementary to respective target mRNAs. The identification of 

miRNA target sequences in the genome is therefore challenging. For this purpose, several 

bioinformatics algorithms have been developed and build the basis for public available 

miRNA target prediction software programs (reviewed in [191]). Common for all algorithms 

is the inclusion of several known miRNA target site features to recognize miRNA target sites 

in the genome. These features include: seed site characteristics (e.g. 6-8mers, pairing in the 

3’part of the miRNA, see chapter 2.2); site location (e.g. within a 3’UTR structure); 

conservation of the miRNA and the corresponding target site across species; site accessibility 

(e.g. secondary structure of the 3’UTR); the existence of several target sites within the same 

UTR; and plausible correlation between miRNA- and mRNA expression profiles (all 

reviewed in [191]). None of the currently available prediction programs incorporate all these 

features in their algorithms. Therefore, to increase specificity of the prediction, it is 

reasonable to intersect results from one prediction with results from other prediction programs.  

In paper II, we combined three miRNA target prediction programs, TargetScan 5.1 [146] 

(www.targetscan.org), MiRanda [192] (www.microrna.org) and PicTar [193] 

(http://pictar.mdc-berlin.de) to identify MYCN-targeting miRNAs. Predictions from 

TargetScan, which uses site and miRNA conservation across different species as selection 

criteria, were intersected with the predictions from the MiRanda and PicTar programs. In 

paper III, TargetScan was combined with MicroCosm [132] (formerly mirBase target, 

http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5) and Diana MicroT v.3.0 [194] 

(http://diana.cslab.ece.ntua.gr/microT/). 

4.6 MiRNA microarrays 

In paper I, we performed 2 independent miRNA expression studies on SK-N-BE(2) cells 

transfected either with a plasmid containing the anti-MYCN shRNA aMN-887, or a control 

shRNA. As these transfections were of transient nature, cells were harvested three days after 

transfection; a time-point when MYCN expression is knocked down and neuronal 

differentiation becomes morphologically apparent (appendix paper). Total RNA was 
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isolated with the miRVana miRNA isolation kit (Ambion) according to the manufacturer’s 

instructions. The miRNA microarray assay started with 10 ng total RNA.  

We used a commercial miRNA microarray service provider (lcsciences.com) to perform the 

microarray analyses, as this method is not yet established at the University of Tromsø. The 

technical details of the assay, including miRNA enrichment, fluorescent dye labeling and 

hybridization conditions, are described elsewhere [195]. LCSciences uses γParaflo 

Microfluidic Biochips.  Compared to spotted microarrays, microfluidic chips have the 

advantage that the miRNA detection probes are synthesized by photochemistry directly in the 

microchambers that will be flooded with the custom RNA sample (see www.lcscience.com). 

This miRNA synthesis step immediately prior to each array experiment always guarantees the 

latest Sanger miRNA set to be investigated, and allows adding of custom small RNA probes.  

The data analysis of the microarrays was part of the provider service, as this is a complex and 

highly expertise-demanding process, which includes subtraction of the background and a 

normalization step. After normalization, the p-values of the difference between the two 

fluorescent signals were calculated. Differentially expressed miRNAs were those with a p-

value <0.01 in at least 50% of the array replicates (more details in paper I).  

Microarray results were confirmed by miRNA-specific RT-PCR on the same RNA 

preparation as used on the microarray, as part of the provider service.  

4.7 miRNA‐specific real‐time RT‐PCR 

The expression of miRNAs and small RNA control molecules (SNORD38B) in paper I and 

III were measured using the Qiagen miScript SYBRGreen PCR Kit and specific primer sets 

(Qiagen). Results were analyzed using the ΔΔCT method with qBase software [196]. 

4.8 Luciferase reporter assay (LRA) 

This assay was used in paper II and III to investigate if a miRNA binds to the MYCN and 

DKK3 3’UTR structures, respectively. For this purpose, the full-length 3’UTR structures were 

cloned into a firefly luciferase expressing plasmid (pMIR-REPORT) down-stream of the 

luciferase gene. Binding of miRNAs to the 3’UTRs will cause down-regulation of the 

luciferase activity. MiRNAs, the pMIR-3’UTR plasmids, and a plasmid expressing a Renilla 

luciferase (for luciferase normalization) were transfected into HEK293 cells. 48 hours after 

transfection, Renilla and Firefly luciferase activities were analyzed using the Dual Luciferase 
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Assay (Promega). Each miRNA transfection was done in triplets and independently repeated 

at least three times, resulting in at least nine (but up to > 30) LRAs for each individual 

miRNA. Luciferase activities were analyzed in duplicates. Normalization included two steps: 

first, the Firefly luciferase activity was normalized to the Renilla luciferase activity, and 

second, the normalized luciferase activity of transfected NC (pre-mir-346 or Negative Control 

mimic) was set as relative luciferase activity of 1. The PASW Statistics 18 software was used 

for data analyses and boxplot charts. 

4.9 Site‐directed mutagenesis 

Site-directed mutagenesis was used to specifically mutate individual miRNA seed sequence 

of selected miRNAs (paper II and III, as described in detail). Two-base mismatch mutations, 

introduced within position 2-6 of the seed, have been shown to disrupt miRNA-binding 

capacity [197]. LRAs with either wild-type or mutated seed sequences were performed and 

compared. In case of a specific miRNA-mRNA interaction, destruction of the seed will cause 

a rescue in luciferase activity and validate the binding of the miRNA. In non-rescued cases, 

we extended the mutagenesis to include a complete seed mismatch (complete position 2-7).  

4.10 Immunofluorescence confocal laser microscopy  

Morphological changes and in situ N-myc expression were evaluated by immunostaining and 

confocal laser microscopy. Confocal laser microscopy, as compared to wide-filed standard 

immunofluorescence microscopy, has the advantage to serially produce thin optical sections 

through a fluorescent-stained specimen through incremental changes in the microscope fine 

focus mechanism. The serially acquired images can be computationally merged to generate a 

stacked image with a nearly three-dimensional perspective. The specimen can be stained with 

multiple combinations of different primary antibodies and secondary fluorescent antibodies, 

which can be distinguished on the same specimen by the use of filters in the microscope 

excluding unwanted fluorescence wavelengths. As SK-N-BE(2) neuroblastoma cells develop 

long neurite outgrowths during neuronal differentiation (paper I), we had to establish a 

protocol which prevents the detachment of cells and neurites during the repeated steps of 

staining and washing, in addition to prior transfection. We cultured cells on round poly-L-

lysine coated glass slides, transfected them in six well dishes, and fixated three days after 

transfection with 4% paraformaldehyde. After permeabilization with ice-cold MeOH 

and blocking with BSA, cells were incubated with primary antibodies, and covalent bindings 

visualized by fluorescent secondary antibodies. Cell nuclei were stained with Draq5. We used 
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a Zeiss LSM500 confocal microscope, the software LSM Image Browser (Zeiss) and an 

Adobe Illustrator for image processing and preparation. 

4.11 xCELLigence cell proliferation system 

The xCELLigence System (Roche, Mannheim, Germany) monitors proliferation of cells 

continuously in real-time, without the need to incorporate any labels. The system is based on 

the measurement of electrical impedance across interdigitated micro-electrodes integrated on 

the bottom of special tissue culture plates (E-Plates, Roche). The impedance measurement 

provides quantitative information about the biological status of the cells. During proliferation, 

i.e. growth and division of cells, micro-electrodes are increasingly inter-connected, leading to 

changes of electrical impedance. These impedance changes can be calculated as a “cell index” 

that correlates to cell proliferation. An advantage of this method is the continuous, real-time 

documentation of cellular proliferation, which can be displayed as growth curves and make 

comparison of proliferation, or other growth parameters like doubling time, easily visible. As 

a prerequisite for this assay, cell density has to be optimized to insure that the cells do not 

reach confluence during the observation period. 

In paper II, we seeded Kelly cells in 160 µl media (15 000 cells per well) in 16-well E-plates 

and transfected them in triplicates 4–6 h later with 60 µl of a transfection mix containing 0.2 

µl Lipofectamine2000 and 0.6 µl miRNA mimic (20 µM). Proliferation was recorded 

automatically as cell index every 30 minutes for a minimum of 72 h. 
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5 Results 

5.1 Paper I: Brief summary 

Buechner J, Henriksen JR, Haug BH, Tomte E, Flaegstad T, Einvik C: Inhibition of mir-21, 

which is up-regulated during MYCN knockdown-mediated differentiation, does not 

prevent differentiation of neuroblastoma cells. Differentiation 2011, 81:25-34. 

 

In this study, we investigated the role of N-myc on miRNA expression in MYCN-amplified 

neuroblastoma cells. We performed a miRNA profiling study on SK-N-BE (2) cells, and 

determined differentially expressed miRNAs upon MYCN knockdown using anti-MYCN 

short-hairpin RNA (shRNA) technology. 

MYCN knockdown induced strong neuronal differentiation of the SK-N-BE(2) cells, as 

demonstrated by morphology and the expression of neuronal markers. Two independent 

miRNA microarray analyses revealed 23 miRNAs consistently differentially expressed during 

MYCN knockdown-mediated neuronal differentiation. The expression changes were 

bidirectional, with 11 and 12 miRNAs being up- and down-regulated, respectively. Among 

the down-regulated miRNAs, we found several members of the oncogenic mir-17-92 family, 

including mir-92a. Mir-21, an established oncomir in a variety of other cancer types, was 

strongly up-regulated upon MYCN knockdown and subsequent differentiation. This 

observation was therefore further investigated by functional analyses of mir-21 in the MYCN-

amplified cell lines SK-N-BE(2) and Kelly. Neither overexpression of mir-21 in the high-

MYCN neuroblastoma cells, nor repression of increased mir-21 levels during MYCN 

knockdown-mediated differentiation had any significant effects on cell differentiation or 

proliferation.  

In conclusions, we describe a subset of miRNAs that were altered during the MYCN 

knockdown-mediated differentiation of MNA-amplified neuroblastoma cells. In this context, 

N-myc acts as both an activator and suppressor of miRNA expression. Mir-21 was up-

regulated during cell differentiation, but inhibition of mir-21 did not prevent this process. We 

were unable to establish a role for mir-21 during differentiation and proliferation of the two 

neuroblastoma cell lines used in this study. 
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5.2 Paper II: Brief summary 

Buechner J, Tømte E, Haug BH, Henriksen JR, Løkke C, Flægstad T, Einvik C: Tumour-

suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit 

cell proliferation in MYCN-amplified neuroblastoma. Br J Cancer 2011, 105:296-303. 

 

MicroRNAs (miRNAs) regulate expression of many cancer-related genes through 

posttranscriptional repression of their mRNAs. In this study, we investigate the proto-

oncogene MYCN as a target for miRNAs.  

By genomic sequencing of the 3’-untranslated region (3’UTR) of MYCN in 7 MYCN-

amplified neuroblastoma cell lines as well as 39 primary tumors (both MYCN-amplified and 

MYCN single-copy), we found only one single nucleotide polymorphism (SNP) in the 3’UTR 

of MYCN, demonstrating that mutations in the miRNA binding sequence are rare.  

A luciferase reporter assay was used to investigate software-predicted miRNA target sites in 

the MYCN 3’UTR. The miRNAs were overexpressed in the HEK293 cell line by transfection 

of miRNA mimics or miRNA-expressing plasmids. Mutation of the potential target sites by 

site-directed mutagenesis was used to validate the MYCN 3’UTR as a direct target of several 

miRNAs.  

To measure miRNA-mediated suppression of endogenous N-myc protein, as well as effects of 

MYCN-targeting miRNAs on proliferation and clonogenic growth, miRNAs were 

overexpressed in the MNA neuroblastoma cell line Kelly.  

The study showed that MYCN is targeted by several miRNAs. In addition to the previously 

documented mir-34a/c, we experimentally validated mir-449, mir-19a/b, mir-29a/b/c, mir-

101 and let-7e/mir-202 as direct MYCN-targeting miRNAs. These miRNAs were able to 

suppress endogenous N-myc protein in MYCN-amplified neuroblastoma cells. Especially let-

7e and mir-202 were strong negative regulators of MYCN expression. The mir-101 and the 

let-7 family miRNAs let-7e and mir-202 inhibited proliferation and clonogenic growth when 

overexpressed in Kelly cells.  
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5.3 Paper III: Brief summary 

Haug BH, Henriksen JR, Buechner J, Geerts D, Tomte E, Kogner P, Martinsson T, Flaegstad 

T, Sveinbjornsson B, Einvik C: MYCN-regulated miRNA-92 Inhibits Secretion of the 

Tumor Suppressor DICKKOPF-3 (DKK3) in Neuroblastoma. Carcinogenesis 2011, 

32:1005-1012. 

 

Dickkopf-3 (DKK3) is a secreted protein of the Dickkopf family of Wnt regulators. It 

functions as a tumor suppressor in a range of cancers, including neuroblastoma. MYCN was 

recently found to down-regulate DKK3 mRNA. In this study, we investigated if the DKK3 

repression is mediated by MYCN-regulated miRNAs.  

First, we demonstrated that MYCN knockdown in MNA neuroblastoma cell lines increases 

secretion of endogenous DKK3 protein to the culture media.  

We then used miRNA target prediction software to identify MYCN-regulated miRNAs that 

could potentially target the 3’UTR sequence of DKK3. Luciferase reporter assays and seed 

mutagenesis were used to validate miRNA-DKK3-3’UTR interactions.  

Several MYCN-regulated miRNAs were predicted to target DKK3, including mir-92a and 

mir-92b (paper I), and let-7e. Luciferase expression from a reporter vector containing the 

DKK3-3`UTR was decreased when this construct was co-transfected with mir-92a, mir-92b 

or let-7e in HEK293 cells. Site-directed mutation of the mir-92 seed sequence in the 3’UTR 

completely rescued the observed decrease in reporter expression when co-transfected with 

mir-92a and mir-92b.  

Antagomir and miRNA-mimic transfections in neuroblastoma cell lines confirmed that DKK3 

secretion to the culture media is regulated by mir-92s.  

Consistent with reports from other cancers, we found DKK3 to be expressed in the 

endothelium of primary neuroblastoma samples and to be absent in tumors with MNA. 

In conclusion, the study demonstrated that MYCN-regulated miRNAs are able to modulate the 

expression of the tumor suppressor DKK3 in neuroblastoma. 
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6 Discussion 

6.1 Knockdown of MYCN 

MYCN is amplified in a subgroup of neuroblastomas with highly aggressive behavior [18]. 

Our group has previously established an efficient model system to selectively down-regulate 

MYCN expression in MNA neuroblastoma by specific anti-MYCN shRNA molecules 

(appendix paper). This approach allows us to investigate and compare cellular processes in 

both high- and low-MYCN neuroblastoma cells. In particular, this model system can be used 

to study neuronal differentiation in MNA neuroblastoma initiated by specific MYCN 

knockdown, as opposed to induced neuronal differentiation using protocols with RA, TPA or 

various combinations of growth factors (e.g. BDNF, NGF, IGF1, FGF) (see chapter 2.1.3 and 

review [45]). In paper I, we used plasmid-encoded anti-MYCN shRNA to induce transient 

MYCN-knockdown (as described in the appendix paper). In paper III, anti-MYCN shRNA 

was expressed in neuroblastoma cells using a tetracycline-inducible retroviral delivery system. 

This expression system allows us to conditionally repress MYCN expression in MNA 

neuroblastoma cells (as described in [52]).  

6.2 MYCN knockdown alters miRNA expression in MNA cells  

As thoroughly introduced in chapter 2.3, several studies have addressed the role of N-myc on 

the expression of miRNAs in neuroblastoma over the past few years. These studies were 

mainly performed by overexpressing MYCN in non-MNA neuroblastoma cell lines with or 

without the capacity to undergo neuronal differentiation [156-158, 161, 162, 165, 167, 173, 

176, 180], or by comparing miRNA profiles in MNA versus non-MNA neuroblastoma tumors 

[22, 156-158, 160, 161, 164, 165, 167, 170, 175, 176, 198-201]. 

As outlined in chapter 2.3.9, the contribution of miRNAs to the neuronal differentiation 

processes in neuroblastoma has mainly been investigated in SH-SY-5Y cells induced to 

differentiate by the addition of TPA or RA alone, or RA in combination with BDNF [156, 

169, 180-184, 186, 200, 202, 203].  

In paper I, we analyzed the expression of 723 known human miRNAs during the 

differentiation of MNA SK-N-BE (2) cells upon MYCN knockdown. By comparing miRNA 

expression levels in high and low N-myc SK-N-BE (2) cells, we found 23 differentially 

expressed miRNAs. Twelve miRNAs (mir-17, -18a, -20, -24, -25, -92a, -92b, -93, -103, -



 43 

106a, -494 and mir-495) were down-regulated, and 11 miRNAs (mir-21, -22, -126, -137, -

181d, -218, -663, -671, let-7c, let-7d and let-7f) were up-regulated. 

Knockdown of MYCN expression in MNA neuroblastoma cell lines by small RNA molecules 

(siRNA or shRNA) initiates a distinct neuron-like differentiation process characterized by 

morphological (neurite outgrowth) and biochemical (up-regulation of neuronal markers) 

changes [52]. Two studies using anti-MYCN siRNA or shRNA to investigate miRNA 

expression during MYCN knockdown-induced differentiation of MNA neuroblastoma cells 

have been published ([156] and paper I). These studies report complementary rather than 

identical results most likely due to different knockdown techniques and cellular systems. 

While Chen and Stallings used the siRNA approach to confirm a correlation between N-myc 

and miRNAs differentially expressed in MNA versus non-MNA primary tumors, we used 

shRNA to investigate an unbiased pool of 736 miRNAs (paper I). In accordance with our 

data, Chen and Stallings found mir-137, mir-181 and let-7 family members among the up-

regulated miRNAs. 

Both up- and down-regulation of miRNAs was observed upon MYCN knockdown (paper I). 

Among the down-regulated miRNAs, most were members of the oncogenic miRNA clusters 

that constitute the mir-17-92 family. It is well established that N-myc is a transcriptional 

activator by direct binding to the promoter regions of several miRNAs, including the mir-17-

92 family clusters (chapter 2.3.1 - 2.3.4). In addition, miRNAs of the mir-17-92 family 

clusters have been shown to be down-regulated in non-MNA neuroblastoma cells in which 

differentiation was induced by various agents and growth factors [169]. In paper I, we 

showed for the first time that most miRNAs belonging to the mir-17-92 family are down-

regulated upon the MYCN knockdown-mediated neuronal differentiation of MNA 

neuroblastoma cells. In paper III, two of the miRNAs positively correlated to MYCN 

expression (mir-92a and mir-92b) were shown to directly target the tumor suppressor DKK3 

(see chapter 6.4). 

We also observed several miRNAs being up-regulated upon MYCN knockdown in SK-N-

BE(2) cells, and most have previously been linked to a neuronal phenotype, or been shown to 

induce neuronal differentiation. Interestingly, let-7, a miRNA family reported to be involved 

in differentiation of neuroblastoma cells [180-182, 202], directly targets MYCN mRNAs, 

suggesting a feedback mechanism resulting in low N-myc levels during differentiation of 

MYCN-amplified cells (paper II, see below). The let-7 family of miRNAs is highly 
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represented in miRNA populations in mouse, rat and primate brains [204, 205]. Moreover, the 

expression of let-7, mir-218 and mir-137 has been reported to increase during induced 

neuronal differentiation in mouse embryonic stem cells, mouse and human embryonic 

carcinoma cells and mouse neuronal stem cells (mNSC) [206-208]. Additionally, the 

exogenous expression of mir-137 promoted neuronal-like differentiation in several mouse and 

human stem cells [207]. Very recently, mir-663 and mir-22 were reported to be up-regulated 

during ATRA-mediated differentiation of leukemic HL-60 cells [209]. In summary, these 

observations support the idea that miRNAs up-regulated during MYCN knockdown-mediated 

neuroblastoma differentiation are either directly involved in, or are a consequence of, the 

(neuronal) differentiation process. 

Notably, mir-21, a miRNA with established oncogenic functions in other cancers (reviewed in 

[210]), was found prominently up-regulated during MYCN knockdown (paper I) and 

neuroblastoma cell differentiation [180, 181, 202].  We found mir-21 expressed in all 

neuroblastoma cell lines investigated in this study and, interestingly, mir-21 expression was 

correlated to the MYCN mRNA expression in these cell lines. We cannot exclude that the 

expression of mir-21 is also influenced by variations in mir-21 gene dosages, as mir-21 is 

encoded on chromosome 17q which is frequently involved in unbalanced translocations in 

neuroblastoma cell lines [211]. However, an inverse correlation between MYCN and mir-21 

expression was also reported upon MYCN-induction in Tet21N cells [162] and primary 

neuroblastoma tumors [175]. Mir-21 is a miRNA with putative anti-apoptotic and tumor 

promoting activities, expressed in a variety of solid tumors. Experimentally validated mir-21 

targets include several proteins with tumor suppressor functions (reviewed in [210]). 

However, overexpression of mir-21 in SK-N-BE (2) and Kelly cells did not alter proliferation 

of these cell lines (paper I). In addition, mir-21 target genes remained unchanged (paper I). 

Similar to our study, Folini et al. recently reported that changes in mir-21 expression did not 

alter proliferation of prostate cancer cell lines [212]. Over-expression of mir-21 alone did not 

induce neuronal differentiation in SK-N-BE (2) or Kelly cells (paper I). Using antagomir-21 

to reduce mir-21 increase had no effect on differentiation (paper I). These observations 

indicate that the observed increase in mir-21 expression does not directly influence the 

neuronal differentiation process in MNA neuroblastoma cells induced to differentiate by 

MYCN knockdown. We suggest that the increase of mir-21 is a consequence rather than a 

cause for the differentiation process. We were not able to establish a clear function or a target 

for mir-21 in neuroblastoma cells (paper I). 
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In conclusion, paper I fits in a series of several published studies elucidating the effect of N-

myc on miRNA expression in neuroblastoma. The Supplementary tables give a current 

overview over miRNAs reported to be correlated with N-myc expression – both in primary 

tumors (Suppl. table 1) and cell lines (Suppl. table 2). 

6.3 The expression of N‐myc is regulated by miRNAs 

The interaction between N-myc and miRNAs is mutual, as MYCN itself is targeted by 

miRNAs. This is the main finding in paper II. Here, we aimed to investigate how miRNAs 

contribute to MYCN regulation. We systematically investigated the MYCN-3’UTR sequence 

for potential miRNA binding sites. We used luciferase reporter assays to show that the 3’UTR 

sequence is directly targeted by several miRNAs (mir-34a, -34c, -449, -19a, -19b, -29a, -29b, 

-29c, -101, -202 and let-7e). These miRNAs were further shown to decrease N-myc protein 

expression when overexpressed in the MNA neuroblastoma cell line Kelly. Finally, we 

showed that ectopic overexpression of let-7e, mir-101 and mir-202 efficiently inhibit 

proliferation and clonogenic cell growth in Kelly cells. 

It has been reported that certain mutations and SNPs in the 3’UTR of cancer-related genes 

increase cancer susceptibility and may allow the cancer cell to escape miRNA regulation 

[213]. In paper II, we showed that mutations in the MYCN 3’UTR are rare, both in MNA and 

non-MNA neuroblastoma cells, as we detected only a single SNP (rs922) at position 250 

(C250T) of the 3’UTR, which did not impair targeting of the MYCN-regulating miRNAs.  

The functionally best characterized MYCN-targeting miRNA is mir-34a, which is located at 

chromosome 1p36, a region frequently deleted in MNA neuroblastoma tumors [214]. 

Overexpression of mir-34a in MNA neuroblastoma cell lines decreased N-myc levels, 

inhibited proliferation and induced apoptosis. Interestingly, mir-34a is transcriptionally 

activated by p53 [155], implicating that deletion of mir-34a has similar cellular consequences 

as p53 deficiency [189]. In addition to MYCN, mir-34a targets BCL2 [188] and E2F3 [184], 

making mir-34a to a multi-faceted tumor suppressor miRNA in neuroblastoma. Mir-34b and -

34c are co-expressed from a locus at chromosome 11q23, another region commonly 

hemizygously deleted in neuroblastoma [108].  

In paper II, we confirm that mir-34a directly targets the 3’UTR sequence of MYCN. Whereas 

Wei et al. concluded that two mir-34 target sites were required to obtain maximum MYCN 

suppression by mir-34a, we found only one to be responsible for most of the suppressive 
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effect (2008). This result is supported by data from a study performed by Welch et al. [184]. 

We also verified that mir-34c and mir-449, but not mir-34b, target the MYCN 3’UTR similar 

to mir-34a. 

We confirmed, as earlier indicated by Lewis et al. [146], mir-101 as a MYCN-regulating 

miRNA and demonstrated its ability to suppress MYCN expression by binding to two 

predicted target sites. We further showed that mir-101 inhibits proliferation of MNA Kelly 

cells. These data from neuroblastoma extend previous reports showing tumor suppressor 

properties of mir-101 in different other cancer types [195, 215-219].  

Xu et al. have previously shown that mir-29 directly regulates B7-H3, a surface glycoprotein 

of the B7/CD28 family that is expressed on a wide variety of solid tumor cells, including 

neuroblastoma [220]. B7-H3 has immunoinhibitory effects protecting neuroblastoma cells 

from NK-mediated cytotoxicity [221]. In addition, B7-H3 is the target of the monoclonal 

antibody 8H9 [220] that showed promising results when used in compartmental 

radioimmunotherapy (cRIT) in a clinical trial for CNS-relapsed high-risk neuroblastoma 

([118], and chapter 2.1.6). Compared with normal tissue, mir-29 was found significantly 

lower expressed in neuroblastoma cells, contributing to a higher expression of B7-H3 on 

neuroblastoma cell surfaces [220]. It has been suggested that restoration of mir-29 and 

subsequent translational inhibition of B7-H3 might therefore prove therapeutically beneficial, 

both by sensitizing neuroblastoma cells to NK/T-cell-mediated immunotoxicity and by 

protecting B7-H3 expressing normal tissue from 8H9-related toxicity [220]. Our data from 

paper II extend the therapeutical potential of mir-29 as it was shown to directly target MYCN.  

The human let-7 miRNA family consists of 10 different mature let-7 sequences that are 

derived from 13 precursors [222]. Overexpression of let-7 has been shown to inhibit 

proliferation of several cancer cell lines [223-228]. Several important cell cycle regulators, 

including cyclins, cyclin-dependent kinases (CDKs), Ras, HMGA2 and c-Myc have 

previously been confirmed to be targets of let-7 [224-228]. The results from paper II have 

now added the MYCN oncogene to the list of cell cycle regulators targeted by let-7. The 

observed growth-inhibitory effect of let-7e on MNA neuroblastoma cells is most likely 

because of the combined suppression of several let-7 targets involved in cell proliferation. 

In summary, we were able to define a subset of miRNA that are able to regulate MYCN 

expression when overexpressed in MNA neuroblastoma cells. To what extent the N-myc 

protein is regulated by endogenous levels of these miRNAs, and if altered levels contribute to 
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neuroblastoma development, needs to be addressed in further studies. Recent data from 

miRNA profiling studies show that let-7e, mir-29a and mir-29c are significantly lower 

expressed in MNA primary tumors compared with non-MNA tumors [22], supporting the idea 

that they act as endogenous MYCN regulators. 

6.4 N‐myc‐regulated miRNAs target DKK3 

DKK3 is an established tumor suppressor gene that inhibits the proliferation of several 

cancers, including neuroblastoma. Koppen et al. demonstrated that in neuroblastic tumors 

arising from the sympathetic adrenal lineage, increased DKK3 mRNA levels are strong 

markers of differentiation: high DKK3 mRNA expression in differentiated ganglioneuromas 

and low DKK3 mRNA expression in undifferentiated neuroblastomas, correlating with poor 

prognosis [96]. It has also been shown that DKK3 mRNA levels are inversely correlated to 

MYCN mRNA expression in neuroblastic tumors and neuroblastoma cell lines [96, 97]. In 

paper III, we used two MNA neuroblastoma cell lines and induced MYCN-knockdown by 

retrovirally delivered anti-MYCN shRNA. For the first time, we were able to show that 

secretion of endogenous DKK3 protein into the cell culture media was increased upon 

MYCN-knockdown. Similar to the data presented by Koppen et al. [96] and Bell et al. [97], 

we also confirmed that DKK3 mRNA levels are inversely correlated to MYCN repression in 

neuroblastoma cell lines. Despite the well documented inverse correlation between MYCN 

and DKK3 expression, DKK3 does not seem to be transcriptionally down-regulated by N-myc 

promoter binding, as ChIP analysis failed to reveal a direct interaction between N-myc and 

the DKK3 promoter [96]. This suggests an indirect regulatory mechanism. 

To investigate if the DKK3 gene was inactivated by hypermethylation of the promoter region 

as reported from other cancers (see chapter 2.1.4.4), we analyzed the methylation status of the 

DKK3 promoter in 10 neuroblastoma primary tumors and five neuroblastoma cell lines using 

methylation-specific PCR (MSP). The results revealed that neither the primary tumors nor the 

cell lines were hypermethylated at the investigated CpG island of the DKK3 promoter. 

Therefore, we aimed to investigate if MYCN-regulated miRNAs contribute to DKK3 

regulation. In paper I, we demonstrated that mir-92a and -92b are positively correlated to N-

myc expression. The correlation between mir-92a and MYCN expression has also been 

confirmed in neuroblastic tumors [96]. Both mir-92a and mir-92b, in addition to let-7e, were 

predicted by in silico analyses to target the DKK3-3’UTR sequence.  In paper III, we were 

able to show that all three miRNAs efficiently decreased expression of a luciferase reporter 
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containing the 3’UTR sequence from DKK3. The predicted target seed sequence for mir-92a 

and mir-92b in the DKK3-3’UTR sequence was validated by mutagenesis. However, mutation 

of the putative let-7e seed sequences, separately or in combination, could not rescue the let-7e 

luciferase repression. This observation could be explained either by as yet unidentified and 

unpredicted let-7e seed sequences in the DKK3 3’UTR, other targets of let-7e indirectly 

influencing DKK3 expression, and/or off-target effects. By the use of miRNA mimics and 

antagomir treatment, we further demonstrated that both DKK3 mRNA expression and protein 

secretion into the media were inversely correlated to mir-92a, mir-92b and let-7e expression 

in neuroblastoma. 

Mir-92a is a member of the oncogenic mir-17-92 cluster that has been shown to be aberrantly 

expressed and to promote tumorigenicity in neuroblastoma (see chapter 2.3.2). With the 

exception of mir-92a, and to some extent mir-19a and -19b, none of the other mir-17-92 

members reduced expression of the DKK3 3’UTR luciferase reporter. We also reported a very 

robust inverse correlation between mir-92a and DKK3 expression in a series of 95 

neuroblastic tumors. 

DKK3 has been shown to be involved in tumor vessel biology and to be highly expressed in 

tumor endothelium [229]. DKK3 was reported to stimulate vascular growth and increase 

vascular density in tumors. We observed that the expression of the DKK3 protein in 

neuroblastoma vasculature was significantly higher in non-MNA tumors and benign 

ganglioneuroma in comparison to MNA tumors. This is in line with the previous report by 

Koppen et al. [96] demonstrating higher levels of DKK3 mRNA expression in both non-MNA 

neuroblastoma tumors and ganglioneuromas. However, the observation that a pro-angiogenic 

factor is down-regulated in high-stage tumors compared to lower stages is surprising. The 

mir-17-92 cluster has been related to angiogenesis [230]. Recently, it has been demonstrated 

that the in vivo inhibition of mir-92a enhanced blood vessel formation [231]. Our novel 

findings provide one possible explanation for this observation since DKK3 has been shown to 

stimulate angiogenesis [229]. The link between increased mir-92 expression in MNA 

neuroblastoma cells and reduced DKK3 expression in the endothelial cells in the tumor is 

unclear. 

It has been reported that miRNAs not only functions as intracellular regulators, but also as 

secreted effectors with paracrine and endocrine effects [232]. We therefore speculate that the 

tumor endothelial cells could be affected by mir-92 released from MNA tumor cells in 
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aggressive neuroblastomas. It should be investigated whether secreted MYCN-regulated 

miRNAs might be responsible for the low DKK3 expression in the endothelium of most 

aggressive tumors.  

Very recently, De Brouwer et al. published a study similar to paper III in this thesis, 

confirming mir-92a and mir-19 as a DKK3-regulating miRNA [233].  

7 Conclusions 
Neuroblastomas with MYCN-amplification are characterized by aggressive biology and poor 

survival of the patients. To improve future treatment options, it is of fundamental interest to 

understand MYCN’s role in tumorigenesis and determine factors regulating MYCN expression. 

In this thesis, we focused on the interactions between MYCN and miRNAs, a group of 

endogenous small regulatory RNA molecules that can act as both tumor suppressors and 

oncogenes.  

In paper I, we knocked-down MYCN in MNA cell lines by shRNA (appendix paper) and 

performed a miRNA expression profiling study to elucidate miRNAs that are correlated to 

MYCN expression. This approach is different from other studies used to investigate the role of 

N-myc on miRNAs, as MYCN knockdown in addition induces significant neuronal 

differentiation of the cells. We observed both up- and down-regulation of miRNAs. MiRNAs 

with positive correlation to MYCN included members of the oncogenic mir-17-92 cluster. One 

of the most prominently up-regulated miRNAs upon MYCN knockdown was mir-21. 

However, we were not able to establish a functional role for this miRNA during 

differentiation. 

Mir-92a and mir-92b were both positively correlated to MYCN expression. In paper III, we 

demonstrated that both miRNAs target the tumor suppressor DKK3 in neuroblastoma and 

repress secretion of the DKK3 protein.  

 

Finally, we demonstrated in paper II that the interaction between MYCN and miRNAs is 

mutual, as the MYCN mRNA itself is targeted by several miRNAs (paper II). Some of these 

miRNAs showed anti-proliferative properties. Re-establishment of these miRNAs in MYCN-

amplified neuroblastoma may prove to be of therapeutic value.  
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Suppl. Table 1: Differentially expressed miRNAs between MNA and non-MNA primary tumors. 
U=up-regulated in MNA tumors. D=down-regulated in MNA tumors.

Study 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
MIRNA
let-7a-2* U
let-7b U
let-7d
mir-1 U
mir-7-2* U
mir-9 U U U
mir-9* U
mir-15a D
mir-15b U
mir-15b* U
mir-17-5p U U U U U U U U
mir-18a U U U U U
mir-18a* U U U U
mir-19a U U U U U
mir-19b U U U
mir-20a U U U U U U U
mir-20b U U
mir-21 D
mir-22 D
mir-23b D
mir-25 U U U
mir-26a D
mir-26b D D
mir-27a U
mir-27b D U D
mir-28 D
mir-29a D
mir-29c D
mir-30a-5p D D
mir-30a-3p D D
mir-30b D D D D
mir-30c D D D D
mir-30d D
mir-30e D D D
mir-30e-3p D D
mir-34a* U
mir-34b U
mir-92 U U U U U U U
mir-93 U
mir-95 D D D D
mir-98 D
mir-99a U U
mir-99b D
mir-103-2* U
mir-103 D
mir-105 U
mir-105* U
mir-107 D
mir-106a U U
mir-126 D
mir-128a D D D D
mir-128b D

Studies: 1=Chen 2007; 2=Schulte 2008; 3=Afanasyeva 2008; 4=Fontana 2008; 5=Mestdagh 
2009; 6=Evangelisti 2009; 7=Bray 2009; 8=Mestdagh 2009; 9=Loven 2010; 10=Ma 2010; 

11=Foley 2010; 12=Schulte, NAR 2010; 13=Schulte, IJC 2010; 14=Lin 2010; 15=Swarbrick 
2010; 16=Afanasyeva 2011 
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mir-129-5p D
mir-129 D D D
mir-130 U
mir-135a D
mir-135a* D
mir-135b
mir-137 D D D D
mir-140 D D D
mir-142 D
mir-143
mir-146a D D
mir-148a D D D
mir-148b D D
mir-149 D D D D D D
mir-150 D
mir-152 D D
mir-153 D D
mir-181a U U U U U U
mir-181a* U
mir-181a-2* U
mir-181b U U U
Mir-181d U U
mir-184 D D D
mir-186 D D
mir-189 D
mir-190 D D D D D D
mir-192* U
mir-195 D
mir-193b U
mir-194 U
mir-195* U
mir-196a D
mir-197 D D D D
mir-199a U
mir-199a-5p U
mir-199a_AS U
mir-199b-5p U
mir-200a D
mir-214 U U
mir-215 D
mir-221 U
mir-224* U
mir-296-5p D
mir-302a D
mir-323 D D
mir-323-5p D
mir-324-5p D D D D D D
mir-324-3p D
mir-325 U
mir-326 D D
mir-328 D D
mir-329 D
mir-330 D D D D
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mir-331-3p D D
mir-331 D D D D
mir-335 D D
mir-339-3p D
mir-340 D D D
mir-340* D
mir-342
mir-380-5p D
mir-378 U
mir-379 D
mir-379* U
mir-383 U
mir-409-5p D
mir-411* D
mir-431* U
mir-432 D
mir-450a D
mir-455 D
mir-485-5p D D
mir-488 D D D
mir-488* D
mir-491 D D D
mir-494 D
mir-496 D
mir-500 D
mir-501 D
mir-504 D
mir-526b* U
mir-539 D D D
mir-542-5p D D D
mir-543-3p D
mir-550 U
mir-550* U
mir-551b U
mir-565
mir-566 U
mir-572 U U
mir-575 U
mir-576
mir-601 U
mir-610 U
mir-615 D
mir-616 D
mir-627 U
mir-628 D D
mir-628-3p D
mir-628-5p D
mir-641 U
mir-645 U
mir-654 D D
mir-654-5p D
mir-660
mir-665 U
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mir-744 D
mir-766 D
mir-935 U
mir-1179 U
mir-1248 U
mir-1249 D
mir-1259 U
mir-1287 U
mir-1290 U
mir-1308 U
mir-2110 D



Suppl. Table 2: Correlation between miRNA and N-myc expression in neuroblastoma cell lines. 
pos=positive miRNA-N-myc correlation; neg=negative (invers) miRNA-N-myc correlation. 

MYCN=experimental MYCN change

*=binding to miRNA promoter confirmed by ChIP; (*)=binding to host gene promoter (ChIP); h vs l=high- 
MYCN state vs low-MYCN state 

Study 1 2 3a 3b 4 5 6a 6b 6c 7 8 9 10 11 12
MYCN   h vs l  h vs l    nc h vs l     
MIRNA
let-7a neg
let-7b neg pos
let-7c pos neg
let-7d pos pos neg
let-7f pos neg
mir-7 pos
mir-9 neg pos * pos*
mir-15b neg pos *
mir-17-5p pos pos pos* pos* pos pos* pos
mir-18a pos pos* pos* pos pos pos * pos* pos
mir-18a* pos pos *
mir-18b pos*
mir-19a pos pos* pos* pos pos pos * pos*
mir-19b pos
mir-20a pos pos* pos* pos pos pos * pos* pos
mir-20b pos pos no pos*
mir-21 neg neg
mir-22 neg neg neg
mir-23a neg
mir-23b neg neg
mir-24 pos
mir-25 pos pos
mir-26a neg
mir-26b
mir-27a neg
mir-28 neg
mir-29a neg
mir-30b neg
mir-30d pos
mir-31 pos neg
mir-31* neg
mir-92a pos pos pos* pos
mir-92 pos pos pos* pos* pos *
mir-93 pos pos pos* pos
mir-98 neg
mir-99a pos
mir-99b neg
mir-100 pos neg
mir-103 pos
mir-106a pos pos* pos
mir-106b pos*
mir-107 pos
mir-125a-5p neg
mir-125b neg
mir-126 neg
mir-129 neg

Studies: 1=Chen 2007 (Kelly, siRNA); 2=Schulte 2008 (SHEP-MYCN-ER); 3a=Fontana 2008 (SKNAS vs 
SHSY5Y, LAN5, IMR32); 3b=Fontana 2008 (SHEP-Tet21N); 4=Mestdagh, Gen Biol, 2009; 5=Bray 2009 

(SHEP-Tet21N); 6a=Mestdagh, Oncogene, 2009 (SHEP-Tet21N); 6b=Mestdagh 2009 (SHEP-MYCN-ER); 
6c=Mestdagh 2009 (ChIP on 6 cell lines); 7=Hu 2010 (LAN vs CHLA cell lines); 8=Loven 2010 (SHEP-

Tet21N); 9=Ma 2010 (SHEP-MYCN-ER); 10=Foley 2010 (SHEP-Tet21N); 11=Das 2010 (SHEP-Tet21N); 
12=Buechner 2010 (Kelly, shRNA)
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mir-130 neg pos *
mir-135b neg
mir-137 (neg) neg
mir-140 neg
mir-141 neg
mir-142 neg
mir-143 neg
mir-145 (pos)
mir-146b-5p pos
mir-150 neg
mir-152 neg
mir-181a pos *
mir-181d neg
mir-183 pos
mir-184 neg neg
mir-186 (neg)
mir-187 neg
mir-189 neg
mir-190 neg
mir-193a-3p neg
mir-199a/b-3p neg
mir-199a-5p neg
mir-200c neg
mir-214 neg neg *
mir-216 neg
mir-218 neg
mir-221 pos
mir-222 neg
mir-302a pos
mir-320 pos
mir-323 pos
mir-326 neg
mir-330 pos
mir-335 neg
mir-342 pos
mir-374b neg
mir-378 pos
mir-421 pos*
mir-422a pos
mir-494 pos
mir-495 pos
mir-500 pos
mir-501 pos
mir-503 neg
mir-504 neg
mir-526b*
mir-565 pos



Suppl. Table 2: Correlation between miRNA and N-myc expression in neuroblastoma cell lines. 
pos=positive miRNA-N-myc correlation; neg=negative (invers) miRNA-N-myc correlation. 

MYCN=experimental MYCN change

*=binding to miRNA promoter confirmed by ChIP; (*)=binding to host gene promoter (ChIP); h vs l=high- 
MYCN state vs low-MYCN state 

Study 1 2 3a 3b 4 5 6a 6b 6c 7 8 9 10 11 12
MYCN   h vs l  h vs l    nc h vs l     

Studies: 1=Chen 2007 (Kelly, siRNA); 2=Schulte 2008 (SHEP-MYCN-ER); 3a=Fontana 2008 (SKNAS vs 
SHSY5Y, LAN5, IMR32); 3b=Fontana 2008 (SHEP-Tet21N); 4=Mestdagh, Gen Biol, 2009; 5=Bray 2009 

(SHEP-Tet21N); 6a=Mestdagh, Oncogene, 2009 (SHEP-Tet21N); 6b=Mestdagh 2009 (SHEP-MYCN-ER); 
6c=Mestdagh 2009 (ChIP on 6 cell lines); 7=Hu 2010 (LAN vs CHLA cell lines); 8=Loven 2010 (SHEP-

Tet21N); 9=Ma 2010 (SHEP-MYCN-ER); 10=Foley 2010 (SHEP-Tet21N); 11=Das 2010 (SHEP-Tet21N); 
12=Buechner 2010 (Kelly, shRNA)

mir-572 pos
mir-576 pos
mir-601 neg (*)
mir-610 neg neg (*)
mir-615 neg
mir-645
mir-660 pos
mir-663 neg
mir-671 neg
mir-768-3p neg
mir-801 pos
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