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Abstract

Vortex is a new multiprocessor operating system that
is entirely event-driven. The Vortex kernel, as well as
its applications, are structured as stages that commu-
nicate through event passing. Each stage is a small
finite state machine. The event architecture is effi-
cient and allows Vortex to balance load across the
processors automatically.

Vortex uses an FEvent Scheduling Tree (EST) on
each CPU. An EST is a tree of event queues, where
each event queue can be instantiated with its own
scheduling policy. The EST mechanism unifies all
CPU and I/O scheduling and allows for a wide variety
of scheduling policies including weighted performance
isolation between applications.

The paper shows how a high-performance web
server can be supported on Vortex. Compared to run-
ning the same web server on Linux on the same hard-
ware, Vortex can sustain up to 80% higher through-
put. Experiments with running multiple web servers
on Vortex show that we can precisely divide re-
sources between the web servers at low overheads.
Microbenchmarks break down the costs of these over-
heads.

1 Introduction

The last decade has seen a tremendous amount of
work to improve the performance of operating sys-
tem kernels for web servers, and to provide the ability
to do performance isolation in order to provide ser-
vice differentiation between different classes of web
requests (e.g., for use by a web hosting service).
Two aspects of today’s popular operating systems
are problematic for high performance web servers.
One aspect is that data is copied more often than
necessary. Another is that thread management is

costly. These aspects cause inefficient use of CPU and
memory resources. Data copying and thread context
switching waste CPU cycles better used for request
processing, while maintaining multiple copies of data
and contexts for idle threads wastes memory better
used for caching. These problems also result in loss of
data locality and an increased number of TLB misses.

Another problem plaguing today’s systems is that
schedulers give the applications little control over how
to use resources for particular activities. For exam-
ple, web servers need to be able to specify which net-
work connections are more important than others and
provision them accordingly. Today’s schedulers, how-
ever, are designed to provide fair resource sharing be-
tween different processes or users.

Many new mechanisms have been proposed to solve
one or more of these types of problems. For exam-
ple, redundant data copying is addressed by the work
in [9, 10, 13, 21, 22, 23]. Thread overhead is im-
proved by the work in [2, 4, 10, 11, 15, 16, 31]. New
schedulers are proposed in [1, 12, 18, 27, 30]. Other
mechanisms for performance isolation are presented
in [3, 5, 6, 17, 26, 28, 29]. Unfortunately, little of
this work has made it permanently into commercial
operating systems.

We have designed a new multiprocessor operating
system that includes many of these new mechanisms.
Vortez is entirely event-driven. It is made up by so-
called “stages” that each implement a well-defined
functionality, such as a network interface driver, a
network protocol, a file system cache, etc. At the
kernel-level, events run to completion, so each stage is
essentially a small finite state machine. Some stages
have to run in kernel space, but many can run ei-
ther in user or kernel space. Due to unified buffer
handling, data copying can easily be eliminated.

Vortex supports fine-grained scheduling of events.
Each CPU maintains a tree of event queues, called an
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Figure 1: The Vortex Architecture.

“Event Scheduling Tree” (EST). Events are enqueued
at the leaves of an EST. Each node in the tree runs an
event scheduler that moves events towards the root
of the tree. When an event is dequeued from the
root, it is handled by the corresponding CPU. Each
node in the tree can run a different scheduling policy,
such as round-robin or weighted fair queuing. Both
CPU and I/O resources are scheduled through ESTs.
This unification of CPU and I/O scheduling results in
intuitive and precise resource allocation to individual
tasks.

In this paper, we will show that Vortex is both
highly efficient (demonstrated by approximately 80%
better HTTP request throughput for the same web
server running on Linux), and is able to do fine-
grained performance isolation between applications.
The Vortex architecture is surprisingly simple. By
building a new system from scratch with efficient re-
source management in mind, rather than fixing per-
formance and scheduling problems in retrospect, a
much cleaner system results.

In Section 2 we describe the architecture of Vortex
and its resource control mechanisms. Section 3 de-
scribes how a web service can be run on the Vortex
system. We validate the performance of this web ser-
vice in Section 4, both using a web benchmark and
a breakdown of costs, and show the effectiveness of
Vortex’ modular resource management. Section 5 de-
scribes related work, and we conclude in Section 6.

2 Vortex Architecture

The architecture of the Vortex system is shown in
Figure 1. Vortex is mostly written in C, with a
small amount of low-level support in assembly lan-
guage. Vortex currently runs on x86 based multipro-
cessor machines. A small run-time implements in-
terrupt handling, memory allocation, event queuing
and scheduling, and fine-grained spin-locks for syn-
chronization between CPUs. The rest of the system
is implemented within modules called stages. Stages
maintain their own data structures, and communicate
with one another exclusively through events. Each
stage has a procedure that acts as its event handler.
Stages cannot share memory, although pointers to
memory, or objects, owned by one stage can be passed
to another stage through an event. The life-span of
such shared objects is governed by a reference count-
ing mechanism. The events themselves tend to be
small, and start with a well-typed header containing
among other the type of the event and its destination
stage.

Each CPU maintains a single Event Scheduling
Tree (EST). An EST is a tree of event queues. Con-
ceptually, each node in an EST runs a scheduling
strategy to select events from its child nodes and
propagate those events to its parent. Each node
in the EST can support a different scheduling strat-
egy, and Vortex currently supports a variety of poli-
cies, including round-robin and weighted fair queu-
ing (WFQ) [8]. Essentially, an EST is a generaliza-
tion of a prioritized event queue in which multiple
scheduling strategies may be active simultaneously,
and which provides for strategies beyond simple pri-
oritized event handling.

Events communicated between stages must propa-
gate through an EST to the root node before being
handled by the destination stage, and they run to
completion. As there are multiple CPUs, multiple
events may be handled concurrently within a stage.
Synchronization is accomplished through spin-locks.
By subjecting each event to EST scheduling, and as-
sociating each destination stage with a scheduler in
the EST, different load management policies may be
applied to different stages. In Section 4, we will see
how fine-grained performance isolation can be real-
ized by instantiating WFQ schedulers in the ESTs.

Event handlers in user-level stages are serviced
by user-level threads. Such threads are scheduled
through the EST mechanism as well. When a thread
becomes runnable, a thread event is enqueued onto
one of the EST’s leaf nodes. When this event is han-
dled, a fixed amount of CPU time is donated to the



stage nodes

CA node

root node
CPU1

CA nodes

stage nodes

root node

CPU 2

Figure 2: Event Scheduling Trees for a configuration with two CPUs, three stages, two I/O aggregates
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corresponding thread. If the thread has to be pre-
empted at the end of its time slice, a new thread
event is automatically enqueued.

Applications may set up their own ESTs to man-
age load internally in the application. Libraries may
also use an EST internally, which can be mounted on
top of the applications’ ESTs. Conceptually, the root
of an application-level EST is mounted on the leaf
of a kernel-level EST by connection of the user-level
thread servicing the EST.

To support an event-driven design, an application
can request the Vortex kernel to enqueue an event to
a node in one of its ESTs whenever a resource used by
the application enters a particular state, for example
when there is a new incoming TCP connection, when
new data arrives on an input stream, when an output
stream becomes writable, or when an asynchronous
I/0 operation completes.

2.1 Resource Control Mechanisms

Vortex provides applications with two abstractions
for resource control: the I/O Aggregate (IOA), and
the CPU Aggregate (CA). Applications perform I/O
in the context of IOAs, and consume CPU cycles in
the context of CAs. IOAs and CAs are the units to
which the Vortex kernel allots I/O and CPU band-
width.!

Each CA controls a set of application-level threads.
Different CAs can run concurrently on different
CPUs, but a single CA is assigned to one CPU at
a time. An application must use multiple CAs to
exploit hardware parallelism.

LA Memory Aggregate is under development as well, but
in the performance isolation experiments that are presented in
this paper, memory contention did not play an important role.

Similarly, an IOA controls a set of flows. Each flow
has a sink descriptor, such as an output file or an
outgoing TCP stream. By adding source descriptors
to a flow, I/O operations are requested. These are
essentially asynchronous write operations. A source
descriptor points to, for example, an input file, an
incoming TCP stream, or a region of an application’s
address space. For example, in a web server appli-
cation, the web server would add two source descrip-
tors to an outgoing TCP stream in response to an
HTTP request: a source descriptor for the HT'TP re-
ply header in the web server’s address space, and a
source descriptor for the requested file.

Each flow source descriptor is served by a partic-
ular stage. When a source descriptor is added to a
flow, a READ event is sent to the source’s stage. The
source stage may, recursively, use other stages to sat-
isfy the request, or interact with a hardware device.
Source stages respond to a READ event by sending a
WRITE event. Similarly, each flow sink descriptor is
served by a particular stage as well. On receipt of
a WRITE event, a sink stage may use other stages for
processing the request, or interact directly with hard-
ware.

After processing a WRITE event, the sink stage is re-
sponsible for issuing a new READ event to the source
stage. The exchange of READ and WRITE events be-
tween source and sink stages function as a credit
based flow control mechanism. Without this mecha-
nism, it is likely that many events will queue up for
some bottleneck stage.

The data inside READ and WRITE events is encapsu-
lated within IOBufs. IOBufs are similar to IO-Lite’s
buffer aggregates [23] or Unix’s iovecs, and avoid the
need for data copying.



The Vortex kernel uses a three-level EST for each
CPU. An example is shown in Figure 2. The root
has a child node for each CA, and a child node for
each stage. The CA nodes have a child node for each
thread managed by the corresponding CA. Thread
events are enqueued on those child nodes. The stage
nodes have a child node for each IOA. Thus, if there
are n stages, and m IOAs, there are a total of n x m
of such leaf nodes (per CPU). As a flow I/O opera-
tion propagates through the stages using events, each
event is tagged with the IOA corresponding to the
I/O operation. When an event arrives for a stage,
the kernel enqueues the event on the queue of the
leaf node corresponding to the IOA of the event.

Because there is one EST for each CPU, the kernel
has to decide which EST to use for incoming events.
In order to balance load and exploit cache locality,
Vortex selects an EST at random the first time an
event arrives for a particular flow, and ensures that
subsequent events related to that flow use the same
EST. Containing all events related to a flow within
the same EST also avoids the need for mechanisms
to preserve ordering of events within the flow. As
we shall see later, the random selection balances load
well for the applications we have evaluated. Nonethe-
less, a better load balancing strategy may be required
in the future.

2.2 Discussion

The EST mechanism provides a uniform and extensi-
ble architecture for introducing event schedulers be-
tween stages. Conceptually, when a stage processes
an event, it grants a certain share of the resource
it governs. By pooling events belonging to differ-
ent IOAs in separate queues for each stage, the EST
scheduler for a particular stage may enforce a policy
for provisioning of resources between I0As, regard-
less of the type of resource governed by the stage.

In Section 4 we show how to accomplish end-to-
end proportional sharing of I/O bandwidth between
two web servers by installing weighted fair queue-
ing schedulers in stage nodes. Furthermore, different
policies for provisioning of CPU bandwidth between
kernel-level stages and user-level stages may be en-
forced by EST root node schedulers.

3 Example: VHTTPD

Vortex applications are built from a collection of
stages. In this section we will look at a web server
that we implemented (and which is the subject of
evaluation in Section 4). The web server is based on

Stage Description

INTERRUPT handles hardware interrupts
NETDEV _IN receives Ethernet packets
NETDEV_ OUT sends Ethernet packets

IP CTL deals with ARP and ICMP
TCP_IN deals with incoming TCP traffic
TCP_OUT deals with outgoing TCP traffic
AIO 10 handles IOA flows

STREAM IO kernel /user data forwarding
FSCACHE IO  virtual file system

EXT2FS_IO implements ext2fs file system
VOLUME_I0 interacts with disks

Table 1: Vortex stages used in web server application.

the THTTPD server [25], which we modified in order
to use the Vortex API rather than the Unix API.
THTTPD is single-threaded and essentially event-
driven, and therefore the necessary modifications
were relatively minor. The modified THTTPD server
is a user-level stage which handles events just like
any other stage. As the original THTTPD server
did not handle persistent connections, we added sup-
port for this as well. In order to avoid confusion with
THTTPD, we call our modified server VHTTPD, but
the two servers share most of the code base.?

The other stages involved in the web server applica-
tion are listed in Table 1. All these stages currently
run in kernel space, although the ones that do not
deal directly with hardware devices could run in user
space with only small modifications. The main data
flow between these stages is shown in Figure 3. (This
figure does not show the INTERRUPT stage, or the
control flows between the stages, such as file open
requests, etc.)

All device interrupt processing is performed in the
context of the INTERRUPT stage. When an inter-
rupt occurs, a low-level interrupt handler enqueues
an event for this stage. Further interrupt processing
is subject to EST scheduling, making it possible to
enforce scheduling policies and avoid problems such
as receive livelock [19].

The NETDEV _IN and NETDEV _OUT stages deal
directly with NIC devices. The Vortex configura-
tion associates a driver for each NIC with both these
stages. It is responsible for classifying and rout-
ing incoming network packets to appropriate stages.
ICMP and ARP packets are routed to the IP_CTL
stage, while UDP packets are routed to the UDP IO
stage (not used in the web server application). TCP

2 Approximately 1200 of a total of 7500 code lines were
changed, most of which for extending VHTTPD with support
for HT'TP 1.1 request pipelining.
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packets are routed to the TCP _IN stage. The NET-
DEV _IN stage also performs a connection lookup in
the case of TCP packets, to see if they belong to an
existing TCP connection. In that case, it will use
the connection’s associated IOA when enqueuing an
event to the TCP_IN stage. The INTERRUPT and
NETDEV _IN stages are the only stages that perform
work that is not associated to a particular IOA.

The NETDEV _OUT stage is responsible for trans-
mitting network packets using the NIC devices. Net-
work headers are inserted into all packets before
they are transmitted. (To achieve this, the NET-
DEV_OUT stage maintains the ARP cache, which
is updated by events from the IP_CTL stage.) The
NETDEV_ OUT stage receives packet WRITE events
from the TCP_OUT, UDP_IO, and IP_ CTL stages.

The TCP protocol is handled by the TCP _IN and
TCP_OUT stages. Technically, these two should re-
ally be one stage as they share protocol data, but
for development convenience we have separated them
into separate stages. The TCP_IN stage is responsi-
ble for processing incoming TCP packets. Depending
on the type of packet, different actions are performed.
SYN packets are matched to active listen (server)
ports. If such a port exists, the stage immediately
issues a SYN-ACK to the sender and enqueues the
connection in the listen queue of the server port. The
implication of this approach is that the application
may accept a connection that is only half-connected,
unlike in conventional systems where connection es-
tablishment must have been completed before con-
nections are entered into the listen queue. The ad-
vantage of overlapping connection establishment with
connection acceptance is efficiency, but slightly com-
plicates error handling as accepts may fail. The
stage issues READABLE events over connection descrip-
tors and server port descriptors when appropriate (re-

spectively when the connection becomes readable or
the server port becomes acceptable). Such READABLE
events are typically handled by applications.

The TCP_OUT stage is responsible for processing
outgoing TCP packets. Such packets are provided in
WRITE events (containing IOBufs) when a TCP con-
nection is set up as a flow sink. Just like Unix sockets,
a limited amount of data may be buffered on each
TCP connection.’If after processing a WRITE event,
there is room for more data in the connection buffer,
the TCP_OUT stage will respond with a READ event
immediately. If not, the READ event will will be issued
in the context of the TCP_IN stage as soon as there
is buffer capacity. The idea behind this buffering
scheme is to try to overlap sending of pending data
with the retrieval of new data (from a flow source).

The AIO_IO stage is responsible for handling data
flow over IOA source/sink pairs. The stage initiates
data flow from sources by issuing READ events to the
appropriate stages. The stage dispatches WRITE events
(containing IOBufs) from source stages to the appro-
priate sink stage. All maintenance with respect to
keeping track of when a source has been drained, initi-
ating drain of new sources, issuing of FINISHED events
to the application when a source has been drained,
handling of source and sink errors (e.g. source or sink
descriptor closed), etc., is handled by the AIO IO
stage.

The STREAM IO stage is responsible for forward-
ing data to and from an application’s address space.
Applications use two abstractions, the IStream and
the OStream, to transfer data to and from their ad-
dress spaces. In the web server experiments, the
OStream is used only to send HTTP reply headers—
the payload data is transferred directly from the FS-

3The data is not copied into the buffer, but the buffer main-
tains pointers to the data being transmitted.



CACHE IO stage and does not go through the server.
The OStream is set up as a flow source.

The FSCACHE IO stage implements a VFS-like
functionality [14]. In our experiments, files are never
written, and so FSCACHE IO only acts as a flow
source stage. Most Vortex kernel resources and ab-
stractions are made available through a uniform name
space, implemented by the FSCACHE IO stage. For
example, the EXT2 file system is mounted under
“/fs/ext2”, while TCP server port can be accessed
through “/net/tcp _server”. Each mount point refers
to astage in Vortex. FSCACHE IO maintains a cache
of cacheable data objects.

When receiving an OPEN (name) request event on an
object that is not in the cache, the FSCACHE IO
sends a RESOLVE event to the corresponding stage.
This stage (e.g., EXT2FS_I0) performs the ap-
propriate actions to locate the object and sends
a RESOLVE_DONE event back to the FSCACHE IO
stage. Upon receiving a RESOLVE_DONE event, the FS-
CACHE IO stage registers the file in its cache and
completes the request by sending a OPEN_DONE event
to the stage that sent the OPEN request event. Read-
ing and writing of file blocks are handled in a sim-
ilar fashion. When receiving a READ event from the
AIO IO stage (in case the file is a source), the FS-
CACHE IO stage checks its cache to see if the target
blocks are cached. If not, a READ event is issued to
the appropriate file-system stage.

The VOLUME IO stage functions as a uniform in-
terface to all block device drivers. Each block de-
vice (disk) is registered as a volume instance. The
EXT2FS IO stage uses the VOLUME IO stage for
persistent storage.

There are two things particularly interesting to
note about our web server implementation. First,
the VHTTPD server runs on a single CPU, yet the
entire VHTTPD application includes all the kernel
stages as well, events of which are handled on all
CPUs. We have not found the VHTTPD server to be
a bottleneck even in a system with 8 CPUs (see Sec-
tion 4). Second, in the case of retrieval of static web
objects (e.g., HTML files), the contents of the files are
never copied or even mapped into the address space
of VHTTPD. Mapping is common in web servers try-
ing to avoid data copies, but on a multi-processor the
mapping mechanism can still wipe out the contents of
a TLB, while there is no need for the server to actu-
ally inspect the data. (Some socket implementations
have been extended with a send_file() operation
and can obtain the same benefits if file system buffers
and network buffers are integrated [22].)

4 Evaluation

In this section we present a performance study of Vor-
tex using the VHTTPD web server, and compare it to
the performance of web servers running on Linux. We
also provide a breakdown of costs in Vortex. Next,
we show the effectiveness of the modular resource
management mechanisms in Vortex. We close with
a scalability study of these mechanisms, and analyse
the overheads of various scheduling policies.

4.1 Experimental Setup

All performance measurements were taken on an 8-
way SMP 200 MHz Pentium Pro system with 2GB of
RAM (henceforth the System Under Test, or SUT).
The Linux experiments used kernel version 2.4.18.

For comparison, we used three different HTTP
servers on Linux: THTTPD [25], Flash [24] and Ha-
boob [31]. THTTPD uses a single process, event-
driven design based on non-blocking I/0O. Flash uses
much of the infrastructure of THTTPD, but dele-
gates tasks such as file I/O and path name resolu-
tion to a set of helper processes, much improving the
throughput as it turns out these operations block un-
der Linux (and various other Unix variants) even if
non-blocking operations are requested [24]. In Flash
experiments, we set the number of helper processes
to 128. Haboob is written in Java, uses kernel-level
threads, and is based on the SEDA staged computa-
tion model [31]. The server consists of 10 stages, 4 of
which are dedicated to asynchronous I/0.

To avoid unnecessary data copying between user-
and kernel-level, Flash and THTTPD serve requests
for static files from an internal cache of memory
mapped files. The maximum size of this cache was set
to 256 MB. The static page cache of Haboob was set
to 256MB as well. IBM JDK 1.3 was used to compile
and run Haboob.*

Most of our macro-benchmarks wuse the
SPECweb99 suite [7] as a load generator. The
line-speed per simulated client was capped at 100
Kbit/sec, limiting the maximum rate at which
individual clients can download files. In the
HTTP 1.1 persistent connections experiments, each
SPECweb99 client was configured to close TCP
connections after 5 HTTP requests, a configuration
similar to the one used in [31]. 12 machines with
32 processors of a similar configuration were used
as load generation clients. FEach client machine

41t is worth noting that Haboob is quite sensitive to the
type of Java VM used. We found that using Sun’s Java2 SDK
1.4.1 instead of IBM’s Java2 SDK 1.3.1 more than halves the
performance of Haboob.
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was equipped with a 100 Mbit Ethernet interface.
The SUT was equipped with two Gigabit Ethernet
interfaces, each mounted on separate PCI buses.
With Gigabit Jumbo frames disabled, performance
measurements indicate each SUT PCI bus is capable
of sustaining a data transfer rate of approximately
180Mbit. The aggregated data transfer capacity
from the client machines to the SUT does as such
exceed the capacity of the SUT interfaces.

In all experiments, the load generators were config-
ured to balance the offered load equally over the two
SUT interfaces. The client machines and the SUT
were interconnected via a Cisco Catalyst 3500 XL
switch. The SUT was equipped with a 4-disk SCSI-
based storage system in a RAID-5 configuration, us-
ing ext2 as a file system. Both Linux and Vortex
used the same file system.

4.2 Performance

First we compare the performance of VHTTPD
on Vortex with that of THTTPD on Linux. As
THTTPD does not support request pipelining, we
used an HTTP 1.0 workload for these comparisons.
The Vortex ESTs used round-robin schedulers. In
Figure 4 we show the request throughput that is ob-
tained as we grow the number of clients from 64
to 3000. Up to about 1000 clients, VHTTPD and
THTTPD perform approximately the same. At this
point, however, Vortex has still plenty spare capac-
ity left, as the Vortex kernel distributes the I/O and
CPU load on the kernel stages among the 8 CPUs.
As aresult, Vortex can accommodate almost twice as
many clients before saturating.’

5Beyond saturation the throughput drops slightly as the file
system cache is no longer able to contain the working set of
the SPECweb99 load.
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Figure 5: HTTP 1.1 request throughput.

Similarly to VHTTPD, Flash is based on the
THTTPD code base, but Flash includes many op-
timizations. Flash uses a more efficient HTTP re-
quest parsing library, and caches and reuses HTTP
response headers. Because of Linux’ lack of support
of non-blocking disk I/O and non-blocking name res-
olution, Flash makes use of helper processes that per-
form name resolution and touch files in the main pro-
cess’s cache of memory mapped files. However, the
actual request processing and responding still hap-
pens from the main server. As shown in Figure 4, the
optimizations cause Flash to outperform THTTPD
by about 50% on Linux. (Both Flash and THTTPD
are configured as single servers for these measure-
ments.) We expect that improving HTTP parsing
and caching HTTP response headers will also improve
throughput for VHTTPD on Vortex, but we have yet
to determine by how much.

We now turn to comparing the HTTP 1.1 perfor-
mance of VHTTPD on Vortex with Flash and Ha-
boob on Linux. We configured VHTTPD to use a
single server with 8 separate IOAs, and round-robin
schedulers in the ESTs of each of the 8 CPUs. Flash
is configured to use 8 main server processes, one on
each CPU. Haboob, in contrast, uses a concurrency
model that combines threads and events, and lever-
ages kernel-level threads in order to make use of avail-
able CPU parallelism.

Figure 5 shows the HTTP 1.1 request through-
put for the various configurations. Flash outperforms
VHTTPD by approximately 12%. Besides the more
optimal HTTP request handling of Flash, we also
found that the Linux TCP stack performs better than
that of Vortex. In particular, Linux caches and reuses
TCP control information, such as congestion windows
and round trip times for the same destination. The
Vortex TCP stack does not include such optimiza-
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tions, resulting in additional packet exchanges and
retransmissions before proper flow control estimates
have been established.5

In our experiments, Haboob is unable to perform
as well as Flash, contradicting the results reported
in [31]. One difference is that in our experiments
the Flash server was configured to use up to 4096
bits in the select mask, while only 512 bits for the
experiments in [31] where it led to significant TCP
backoff. (Haboob uses poll() and is not affected by
the size of the mask.) Another difference is that the
measurements in [31] used a 4-way rather than an 8-
way system. Our measurements indicate that there
is little idle CPU time left in the SUT when Haboob
is running at maximum performance, while for the
VHTTPD and Flash servers there is still ample CPU
capacity. In order to evaluate the effect of scale, we
conducted additional experiments with only 2 CPUs
in the SUT.

Figure 6 shows the HTTP 1.1 throughput of
VHTTPD, Flash, and Haboob in the case of 2 CPUs,
where for each web server the CPU definitely consti-
tutes a bottleneck. (At 4 CPUs, the performance for
VHTTPD and Flash is not substantially different as
the network, not the CPU, is the bottleneck.) The
relative performance of Haboob is surprising. With
only two CPUs available, Haboob still has approx-
imately 65% of the performance of the eight CPU
configuration, thus the performance of Haboob does
not scale linearly with the number of CPUs avail-
able. This behavior may suggest serialized execution
and/or contention problems in the Java VM.

6We are currently working on improving the Vortex TCP
stack and adding caching of HT'TP reply headers to VHTTPD.
We hope to have updated performance results available for the
final version of the paper.
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Figure 7: Breakdown of CPU usage in the different
stages for a HTTP 1.0 and a HTTP 1.1 load.

4.3 Breakdown of costs

We now provide a breakdown of CPU usage for
VHTTPD. Figure 7 shows the relative amount of
computation time used in the various Vortex stages
for a HTTP 1.0 and HTTP 1.1 run with the same re-
quest throughput (690 requests/s). The data for this
figure was collected by instrumenting the Vortex ker-
nel to account for the CPU cycle usage of each branch
in each EST. The data has been normalized using the
stage with the least CPU time consumption as a ba-
sis. As can be seen from the figure, network related
overhead accounts for a substantial amount of the to-
tal computation time. For HT'TP 1.0, the time spent
handling NIC interrupts, sending and receiving NIC
packets and performing TCP/IP protocol processing,
is approximately 71% of the total computation time.
For HTTP 1.1, this overhead is about 61%. Based on
this data, the computation cost per request (CpR) for
HTTP 1.0 is 2002us, and 1219us for HTTP 1.1.

The data for Figure 7 also reveals that for HT TP
1.0, the VHTTPD stage accounts for 24% of the total
computation time. For HTTP 1.1, the same overhead
is about 36%. These numbers suggest that improve-
ments similar to the ones used in the Flash server may
have a significant impact on overall performance.

In order to quantify how HTTP 1.1 request pipelin-
ing affects server performance, we performed a series
of experiments with a varying number of requests
per connection. The results of these experiments are
summarized in Table 2. The number of requests per
connection is listed in the RpC column. The to-
tal server side cost of serving a request is listed in
the CpR column. The amount of execution time
per request that can be attributed to network re-
lated overhead and VHTTPD is listed in the NET
and VHTTPD column, respectively. As can be seen



[RpC | CpR_ | NET | VHTTPD |

1 2002ps | 1424us 489us
2 1359us | 811lus 477 us
) 1219us | 700us 434us
8 1152ps | 663us 417us
11 1133us | 654us 414pus
14 1117us | 644pus 410pus
17 1114ps | 643us 409us
20 1103us | 637us 407 us

Table 2: Effect of HTTP 1.1 request pipelining.

from the table, VHTTPD’s contribution to RpC is
relatively constant. This is to be expected as the ad-
ditional cost when serving 1 request per connection
rather than n, lies predominantly in the overhead of
accepting and registering the client connection. The
table also shows that the network related overhead of
establishing a new client TCP connection is relatively
high, but there is little performance to be gained go-
ing beyond 8 requests per connection.

4.4 Performance isolation

One of the key features of the Vortex EST mecha-
nism is the ability to install different schedulers in the
EST nodes. In the experiments above, all EST nodes
were configured to use a simple round-robin sched-
uler. We now turn to more advanced EST schedulers,
weighted fair queuing and strict priority in particular,
and show how such schedulers can be used to provide
performance isolation between Vortex applications.

The experimental setup is a scenario in which
two independent but equal-sized SPECweb99 HTTP
1.1 loads are offered to two independent VHTTPD
servers (denoted server A and B) on Vortex. In or-
der to make sure that the peak load is in excess of
the capacity of each VHTTPD server, Vortex is con-
figured to make use of only 2 of the 8 CPUs in the
SUT.

Recall from Section 2.1 that stage nodes have a
child event queue for each I/O Aggregate (IOA).
When an event arrives for a stage, it is enqueued in
the child event queue corresponding to the IOA of the
event. The order in which IOA event queues are ser-
viced is under control of the corresponding stage node
scheduler. In contrast to a round-robin scheduler, a
weighted fair queuing scheduler is able to provide ser-
vice to its clients in proportion to their importance
or weight. Generally, a client with twice the weight
of another client is granted twice the service.
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Figure 8: Server A has twice the I/O resources of
server B.
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Figure 9: Server A has four times the I/O resources
of server B.

The end-to-end dynamics of request throughput
are complicated, however. The chosen scheduling pol-
icy governs almost all of the various resources used
in HTTP request handling, both at kernel and user
level, but not interrupt handling itself nor packet ar-
rival. This is because at the time of these events it is
not yet clear what I/O activity these belong to. This
can be advantageous to clients with a low weight.
On the other hand, clients with a high weight may
be able to make better use of caches due to increased
data and code locality.

Nevertheless, our measurements show that the end-
to-end Vortex behavior is largely governed by the cho-
sen scheduling policy and its parameters. Figure 8
shows request throughput when using WFQ sched-
ulers in the EST stage nodes, where server A’s IOA
(and hence all its IOA queues) has twice the weight
of server B’s IOA. When the aggregate throughput
of the two loads reaches the saturation point of the
SUT, the stage WFQ scheduler ensures that server A



£ Server A JARRE
1400 Server B -
& 1200 £
@
& 1000 F
=}
g
= 800 F
5
£ 600}
(=]
3
2 400
'_
200 F
0 L L ) ...-“\\"‘r-"*---“x““*’---
0 500 1000 1500 2000
Simultaneous connections
Figure 10: Server A has strict priority over Server B.
1800 1800
weighted fair queuein
1600 9 a 9 {1600
1400 .
1400
g 1200f o Stotpiony
S 1000 round-fobin 1200
£ - 3 1000
= 800 -
4 S / no scheéuling
O 600 fr 800
400 600
200
400
0 . . . .
0 2000 4000 6000 8000 10000

Number of EST leaf nodes

Figure 11: Cost of different event schedulers.

is given twice the amount of service as server B in all
stages. Indeed, server A is able to maintain approxi-
mately 50% higher throughout than server B. Figure
9 shows a similar scenario, this time with server A
having four times the weight of B. In this experi-
ment, server A is able to provide approximately four
times the throughput of server B.

Many operating systems only allow users to spec-
ify priorities between processes. Figure 10 shows per-
formance when strict priority schedulers are used in
the EST stage nodes, and server A is given prior-
ity over server B. Although such a policy might be
useful to support “ground-feeder” processes, for web
hosting applications strict priorities do not support
typical performance isolation requirements.

4.5 Scalability of ESTs

In this section, we evaluate the scalability of the EST
mechanism, as well as the cost of different EST sched-
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ulers. We then look at how these low-level costs affect
the throughput in the web benchmarks.

Figure 11 illustrates the scalability and worst-case
relative cost of three different EST schedulers: round-
robin, weighted fair queuing and strict priority. In
this experiment, we used a two-level EST in which
an increasing number of leaf nodes are added to an
EST root node. We measured the cost of issuing one
event over all these leaf nodes. Since each leaf node
is initially empty when each event is enqueued, the
root node scheduler will be invoked in order to reg-
ister that an event is pending on the leaf node. For
the WFQ and strict priority schedulers, we arranged
the priority of the leaf node so as to trigger worst-
case overhead in the root scheduler. Since both these
schedulers rely on an internal heap to maintain the
child node with highest priority, worst-case overhead
is when a new child node has higher priority than all
other pending nodes.

As can be seen from Figure 11, the difference in
cost between a round-robin scheduler and a weighted
fair queuing scheduler is approximately 20%. The
rise in cost as the number of leaf nodes increases is
explained by the memory footprint of the experiment
growing beyond the CPU cache size, and hence be-
coming more memory bound. The flattening in cost
for the weighted fair queuing and strict priority can
be attributed to the logarithmic cost of heap inser-
tions.

Figure 11 includes the cost of enqueuing an event
to a leaf node that is already pending in the parent
node. Under high load, when an event is queued to an
EST leaf node there is a high probability that other
events will already be present in the queue. In such
cases, the parent queue scheduler is not invoked in
Vortex.

Further improvements in overhead are accom-
plished through speculative scheduling. Dequeuing of
an event from an EST involves traversing the EST
from the root and, under the direction of the node
schedulers involved, to a particular leaf node where
the actual event can be found and dequeued. At each
level in the EST scheduling path, the corresponding
scheduler decides which child node should be serviced
and if that child node should be removed from the
scheduler’s list of children with pending events. The
decision to remove the child or not is based on peek-
ing at a load-level estimate associated with the child.

If the child node has a high load-level estimate, it
is likely that the child will have pending events the
next time it is serviced, and immediately re-queuing
the child can therefore be beneficiary to performance.
The implication of such speculative scheduling of
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Figure 12: Request throughput for round-robin ver-
sus weighted fair queuing scheduling policies.

child nodes is that in some cases the EST scheduler
may reach an internal EST node where there are no
pending events, and thus waste cycles by having to
start again from the EST root. However, under high
load we have found speculative scheduling to increase
efficiency, reducing EST scheduling related overhead
by as much as 20%.

Although different event schedulers have different
costs, the impact of these costs depends on the fre-
quency at which the schedulers are invoked, and what
optimizations are effective in practice. In order to de-
termine the run-time impact of event scheduler cost,
we repeated the VHTTPD experiment in Figure 6
using weighted fair queuing schedulers in the EST
nodes instead of round-robin schedulers. The results
of both experiments are shown in Figure 12. Al-
though the worst-case relative difference in cost be-
tween the two schedulers is 20%, the actual run-time
impact is roughly 10%.

5 Related Work

The last decade has seen a tremendous amount of
work to improve the performance of operating system
kernels for web servers, and to provide the ability to
do performance isolation in order to provide service
differentiation between different classes of requests.
This section is subdivided accordingly.

5.1 Performance

In traditional operating systems, data is often
buffered in several subsystems. For example, on an
HTTP request, data may be copied into a disk buffer,
a file system buffer, a user-level library buffer or web
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server buffer, and a network buffer, wasting both
CPU cycles and memory. One of the first projects to
address the data copying problem is Fbufs [9]. Fbufs
are based on immutable buffers that can be concur-
rently shared in multiple protection domains. Fbufs
are intended for I/O streams, and do not support
cached file system data. Fbufs were later generalized
in the IO-Lite system [23], which unified all buffering
and caching in BSD Unix, and resulted in 40 to 80%
performance improvements on web server workloads.
Vortex fully incorporates the IO-Lite mechanisms.

Most popular operating systems support a (de-
fault) blocking API, extending into the kernel where
there is essentially one or more threads per process.
Threads consume memory resources inefficiently, suf-
fer from high context switch overheads and prior-
ity inversion in which an important task may wait
for a low priority task to release a resource. These
problems reduce the performance and scalability of
such systems and the applications that run on them.
In a system that has to be able to manage thou-
sands of clients at the same time, many threads may
be necessary. Scheduler activations [2] provides ef-
ficient kernel support for application-level threads,
but an increased demand on servers have led to
a shift towards event-based programming. Most
commercial servers use a combination of bounded
thread pools and non-blocking I/O. While Windows
NT supports event-based kernel APIs well, the Unix
select () and poll () interfaces, as well as the asyn-
chronous signal interfaces are known to be inefficient
and non-scalable. In [4] and [16] efficient event-
based kernel APIs for Unix are described that solve
the select/poll efficiency problem, but still lack
widespread adoption. The Click modular router [20]
is an event-based, zero-copy infrastructure for rout-
ing packets, but is implemented entirely within the
Linux kernel and not suitable to supporting arbitrary
applications.

In the JAWS Web server [11], the trade-off between
threaded and event-driven concurrency was first ex-
plored, albeit on a small scale. In the Haboob web
server of the SEDA architecture [31], as well as in
the StagedServer project [15], this trade-off was ex-
plored on a much larger scale. All this work, however,
was done entirely within the web server application,
while Vortex extends these ideas throughout the op-
erating system and provides performance isolation.
The Cohort Scheduling technique of [15] could po-
tentially reduce TLB misses in Vortex as well, and
this is under investigation. The Exokernel with its
Cheetah web server [13] goes one step further by let-
ting the web server manage the physical resources



directly. This approach can lead to the best perfor-
mance while maintaining isolation between processes,
but requires radical new implementations of services.

5.2 Performance Isolation

There is increased demand for performance isolation,
as service providers host multiple virtual web servers
on the same machine while desiring to give each vir-
tual web server a share of resources based on, for
example, how much they paid for this service. Perfor-
mance isolation is traditionally a concern only found
in real-time operating systems, but real-time mech-
anisms tend to be too rigid for modern applications
that have a rich mix of real-time and non-real-time
considerations. The capacity reservation paradigm in
RT-MACH [18] is designed to support such a mix,
but only manages user-level CPU cycles. Lottery
Scheduling [30], on the other hand, using a proba-
bilistic strategy that can handle a variety of resources,
both in kernel and user space.

Systems where processes or threads can provi-
sion a fixed or proportional share of underlying re-
sources [21, 12, 28, 5, 3, 27, 26] are typically realized
by attaching schedulers to each physical resource and
carefully accounting kernel-level resource consump-
tion. We complement and extend this work by ap-
plying SEDA’s staged computation architecture [31]
to the kernel-level and demonstrate that an event
scheduling approach gives us good performance iso-
lation properties. In particular, Vortex is able to
schedule all kernel-level activities, something rarely
supported in other systems.

A variety of projects separate the notion of process
as a protection domain from the notion of process as
unit of scheduling, particularly a problem in multi-
processors. Both Reservation Domains in Eclipse [5]
and Software Performance Units [28] group processes
into units of scheduling. However, these approaches
are coarse-grained and do not allow, say, a single
web server to schedule resources internally. The work
in [1] shows that although it is possible to provide dif-
ferentiated levels of service within a web server on a
traditional operating system, there are kernel limita-
tions that present bottlenecks.

Resource Containers [3] separate the notions of pro-
tection domain and resource principal. In particular,
a single process may have multiple resource contain-
ers, for example, one per incoming connection. A
thread may access resources in more than one re-
source container, and is scheduled based on some ag-
gregate of resource consumption in all the resource
containers. This approach extends to CGI process-
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ing, and precise performance isolation is thus possi-
ble. However, this approach fails to consider the ef-
fect of multiple virtual front-end servers sharing the
same back-end service. This problem was addressed
in Virtual Services [26] by tagging each request, much
like in Vortex.

Several systems have attempted to address the
problem of meeting QoS goals by admission control
mechanisms [6, 29]. The Vortex IOA resembles such
admission control, and there is nothing in the Vor-
tex design that precludes a wider adoption of such
complementary approaches.

6 Conclusion

This paper presents Vortex, a new multiprocessor
operating system based on the staged computation
model, in which events are passed between mod-
ules called stages. Vortex avoids the overheads of
data copying and threading, and unifies scheduling
of CPU and I/0 resources using Fvent Scheduling
Trees. These are trees of events queues, in which
each event queue can be instantiated with its own
scheduling policy.

The performance of Vortex is evaluated by apply-
ing high loads to a web server running on Vortex on
an 8-way multiprocessor with two high-speed network
interfaces. Compared to the same web server running
on Linux, the web server on Vortex can sustain up to
80% higher loads. In addition, experiments show
that the modular resource management mechanisms
of Vortex can do precise CPU and I/O resource divi-
sioning between servers.

So far we have only considered requests for static
files. Most web servers also support requests for dy-
namic resources, that is, requests whose responses
are computed on demand. Typically, such responses
are generated by auxiliary CGI processes, in order to
provide fault isolation and modularity. If a CPU is
time-shared between processes, such auxiliary pro-
cesses may be able to consume an excessive share
of the CPU. In Vortex, this resource comsumption
can be controlled elegantly. Recall from Section 2.1
that application-level threads consume CPU cycles
in the context of a CPU Aggregate (CA). Using
WFQ schedulers in the EST root nodes, and assign-
ing weights to stage and CA nodes, the relative CPU
consumption between different CAs and kernel-level
stages can be controlled. Furthermore, using a WFQ
scheduler in a CA node, the relative CPU consump-
tion of different threads belonging to that CA can be
controlled. In Vortex, threads belonging to the same
CA can run in different processes. An application



spanning multiple processes may as such use a single
CA for its threads, and control the amount of CPU
available to those threads individually.

Another application that we are currently develop-
ing is support for large scale event filtering. A server
subscribes to a small number of event streams, such
as stock feeds, news feeds, etc. Clients can upload
small personalized scripts to the server that receives
each of the incoming events, and can send events back
to their clients. The scripts can pass along events of
interest to their clients, or correlate events from mul-
tiple sources. We would like to support thousands
or more of such filters simultaneously on one server.
In overload situations, it is possible that some or all
filters do not obtain all incoming events.

A server will run a variety of different virtual ma-
chines to support scripts coded in various languages.
Ideally, each script receives a guaranteed or fair share
of the resources. Using Vortex, we intend to approx-
imate this using a two-level performance isolation
strategy. First, we assign to each virtual machine
a minimum percentage of the CPU and I/O (and,
eventually, memory) resources in the form of shares.
This sharing is directly under the control of the host
administrator. Next, each virtual machine has the
ability to use its set of shares to schedule internal
tasks in a fair manner.
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