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Abstract

Having to carry input devices can be inconvenient

when interacting with wall-sized, high-resolution tiled

displays. Such displays are typically driven by a clus-

ter of computers. Running existing games on a cluster

is non-trivial, and the performance attained using soft-

ware solutions like Chromium is not good enough.

This paper presents a touch-free, multi-user, human-

computer interface for wall-sized displays that enables

completely device-free interaction. The interface is

built using 16 cameras and a cluster of computers, and

is integrated with the games Quake 3 Arena (Q3A) and

Homeworld. The two games were parallelized using

two different approaches in order to run on a 7x4 tile,

21 megapixel display wall with good performance.

The touch-free interface enables interaction with a

latency of 116 ms, where 81 ms are due to the camera

hardware. The rendering performance of the games

is compared to their sequential counterparts running

on the display wall using Chromium. Parallel Q3A’s

framerate is an order of magnitude higher compared

to using Chromium. The parallel version of Home-
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world performed on par with the sequential, which did

not run at all using Chromium. Informal use of the

touch-free interface indicates that it works better for

controlling Q3A than Homeworld.

Keywords: Display wall, multi-touch, device-free,

parallelized games

1 Introduction

Wall-sized, high-resolution tiled displays are becom-

ing increasingly common in locations ranging from

visualization labs to public spaces. Often, having to

carry input devices around in order to interact with

applications running on a display wall can be incon-

venient. Devices like mice or Nintendo Wiimotes are

easily misplaced, and for public installations there is

the risk of theft. Asking users to wear optical or elec-

tronic markers raises the bar for casual users. Instead,

a completely device-free approach to interacting with

wall-sized displays is necessary.

Display walls provide high resolution by tiling a

set of independent displays in a grid. Each dis-

play is usually driven by a computer in a display

cluster[LCC+00]. The resolution of a typical desktop

display is about 2-3 megapixels, while the resolution

of a display wall ranges from 10 to 100 megapixels

[LCC+00, SW06] and beyond. The display wall used

in this paper is comprised of 28 projectors, each driven

by one computer and arranged in a 7x4 grid, for a total

resolution of 7168x3072 pixels.

For games, high framerates are important [CCD06].

Maintaining high framerates becomes increasingly

difficult as the resolution goes up. Further, the cluster-

based architecture of display walls makes running ex-
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isting games difficult, as very few, if any, games are

written to run on a cluster of computers or use more

than a few displays. Chromium [HHN+02] can be

used to make the display wall appear as a single dis-

play to OpenGL-based applications, but at the cost of

sub-optimal performance. In addition, not all software

works with Chromium.

This paper presents a device- and touch-free multi-

user human-computer interface for display walls.

Users standing in front of such a display wall can in-

teract with applications directly using hand- and arm-

gestures without the need for any devices and with-

out having to wear markers of any kind. The inter-

face has been integrated with two commercial, but now

open-source games1: Quake 3 Arena (Q3A) [iS08]

and Homeworld [Ent08], respectively a first-person

shooter (FPS) and a real-time strategy (RTS) game.

Games were chosen because they generally require

low-latency input to be playable. If the touch-free in-

terface does not provide sufficiently good accuracy or

low latency, the games will become unplayable. The

two games were parallelized in order to run on the dis-

play wall with good performance, and modified to ac-

cept position data from the touch-free interface. Figure

1 shows two persons playing Q3A against each other

on a display wall. The person in the middle is playing

Homeworld.

Figure 1: Two persons playing Q3A and one person

playing Homeworld simultaneously on a 7x4 tile dis-

play wall. Q3A runs on 2x2 tiles to the left and right,

and Homeworld on 3x3 tiles in the middle.

The interface uses 16 cameras and 9 computers to

detect objects in front of the display wall, and is able

to detect multiple objects simultaneously at a rate of

30 Hz. When three or more cameras see the same ob-

1Only the game engines are open source. The data files still

require a license.

ject, triangulation can be used to determine the object’s

position. The interface is referred to as touch-free, as

users can interact with the display wall without actu-

ally touching its canvas. This is an important advan-

tage over existing solutions that require touch to work

[Han05], as the canvas used for our display wall is flex-

ible and thus prone to perturbation when users touch it.

The interface’s main advantage over other approaches,

like the IS-900 tracking system [Int08], is that it is

completely device-free. Users need not wear markers

to accommodate the interface, but can instead walk di-

rectly up to the display wall and start interacting. This

is particularly important for public installations, where

markers or other input devices might easily get lost or

stolen. Even in a lab setting it is easy to misplace in-

put devices, or confuse the different input devices with

each other (“Which mouse/Wiimote is the correct one?

Where did I leave it?”).

Two different approaches were used when paral-

lelizing Q3A and Homeworld. For both Q3A and

Homeworld, a copy of the game runs on each tile.

Each copy’s OpenGL view frustum is modified in ac-

cordance with the tile it runs on to create a coherent,

multi-tile view. For Q3A, the existing client-server

based architecture combined with the concept of spec-

tators was exploited. The server keeps all the clients

in sync, and the spectator-concept enables different

clients to be configured so as to constantly follow a

given player. For Homeworld, a state-synchronizing,

master-slave approach was taken. Each copy shares a

global clock and random number generator seed. The

master distributes all input to the different slaves, with

the purpose of having all copies compute the exact

same game state for each new frame.

Experiments were conducted to measure the latency

of the touch-free interface, as well as the framerate of

the two games. The experiments show that the time

before an object’s position is available to the games

averages 116.7 ms, with the majority of this latency

incurred by the FireWire-based cameras. Game-side

gesture-processing did not incur significant latencies,

due to the simple gestures involved. For Q3A, the

framerate is shown to be as much as an order of mag-

nitude better than using Chromium. Homeworld’s

framerate remains high in the parallel configuration,

and outperforms the single-display configuration when

running on both 2x2 and 3x3 tiles. Homeworld did not

work with Chromium at all.

The main contributions of this paper are (i) a dis-

tributed, device- and touch-free multi-user interface,
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(ii) two approaches to parallelizing games for a dis-

play wall environment, demonstrating how different

aspects of the two games’ existing architectures can

be exploited, (iii) a prototype system for gesture-based

input to games in the FPS and RTS genres, (iv) an eval-

uation of the interface’s responsiveness when used to

interact with two games, and (v) evaluation of three

different approaches for making existing games run on

display walls.

2 Related Work

The Quake-series of games have been popular targets

for modification and extension, both in terms of input

devices and display surfaces. Some examples include

playing Quake using Nintendo’s Wiimote, using eye-

tracking to play Quake, or controlling Quake from a

PDA2. CaveQuake is a limited re-implementation of

Quake II and Q3A for use in a CAVE3, but does not

support all the features of the full games, and for the

Q3A case does not even support playing. In [KLJ04],

the authors present a gesture-based interface to Quake

2. The interface is limited in that only one person may

use it at a time, and differs from the touch-free inter-

face presented in this paper by the use of whole upper-

body gestures. The touch-free interface only enables

hand- and arm-gestures. We are not aware of any work

to integrate new input devices or new display surfaces

for Homeworld.

In [BBH05], a gaming interface based on a com-

mercially available stool, “The Swopper,” is presented.

The stool and a light gun is used to produce joystick

input events to control an FPS game. By shifting the

body weight and rotating on the stool in combination

with aiming and firing the gun, the user can navigate

and interact with the world. The touch-free interface

does not require the use of any external devices, and

the large display wall makes it possible to have multi-

ple players playing side-by-side simultaneously. The

stool-and-light-gun approach is more expressive com-

pared to the gestures recognized by the touch-free in-

terface.

Gesture VR [SK98] is a video-based, hand-gesture

recognition system. The system recognizes three ges-

tures which are used to provide applications with dif-

ferent input events, as demonstrated by controlling

2http://www.youtube.com/watch?v=n1tsXc2RoeM

http://www.youtube.com/watch?v=3pRWYE2LRhk

http://www.youtube.com/watch?v=tNJXjNBgmLs
3http://www.visbox.com/cq3a/

Doom, an FPS game developed by id Software. Their

solution is centralized, using two synchronized cam-

eras connected to a single computer. The touch-free

interface comprises 16 cameras connected to 8 com-

puters, enabling it to cover a larger area at the cost of

a more elaborate hardware setup. The touch-free in-

terface only recognizes simple gestures (2D position

and radius of detected objects), while Gesture VR al-

lows for detection of 3D position and three different

gestures.

In [TGSF06], the authors argue that a digital table is

a conductive form factor for general co-located home

gaming. By combining speech and hand gestures as

input to two commercial games, The Sims and War-

craft III, several persons can interact with the games

running on the tabletop. The touch-free interface is

based on hand- and arm-gestures alone on wall-sized

displays. The physical dimensions of the display wall

enables more than a couple of people to play simul-

taneously, against each other or co-operatively. Fur-

ther, we have modified the source of the two games,

enabling more flexible multi-point interaction. The

games used in [TGSF06] are not open source, requir-

ing that custom wrappers are built that translate touch-

and speech input to mouse and keyboard events. In

[SZP+00], the authors demonstrate a bimodal speech-

and gesture-based interface for interacting with a 3D-

visualization. Apart from the speech-aspect, this sys-

tem differs from the touch-free interface in that it sup-

ports only one user at a time and has a far more limited

area in which interaction can take place.

The authors of [TGSF06] use the Diamond-

touch [DL01] tabletop for multi-touch interaction.

Other technologies for multi-touch interaction include

[Han05], where infrared light is projected into a can-

vas and internally reflected. The internal reflection of

the light is frustrated at points where the user touches

the canvas. The escaping light can be detected us-

ing a camera mounted behind the canvas. The touch-

free interface is based on detecting the presence of

objects directly, and does not require the user to ac-

tually touch the display wall’s canvas. In [Mor05],

the author presents a camera-based solution to detect-

ing and positioning objects in front of a whiteboard

called the “SmartBoard.” The approach is similar to

the touch-free interface, except that the touch-free in-

terface utilizes a distributed approach with 16 com-

modity FireWire cameras connected to a set of com-

puters, whereas the SmartBoard uses custom cameras

with on-chip processing to perform object recognition.
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Chromium [HHN+02] is a system for distributing

streams of rendering commands, allowing many exist-

ing OpenGL applications to run on tiled display walls

without modifications. Chromium works by concep-

tually making the individual tiles of a display wall ap-

pear as a single, logical display to the application. By

making applications use Chromium’s OpenGL library,

Chromium can intercept rendering commands and for-

ward them to remote rendering nodes. Homeworld did

not run using Chromium, and Chromium’s rendering

performance running Q3A did not scale well beyond

2x2 tiles.

In CaveUT [JH02], a set of modifications to Un-

real Tournament is presented that allows it to display

in panoramic theaters. The same principle of using

spectators to support multi-tile rendering is applied

as employed by the parallel version of Q3A. How-

ever, no measurements of the resulting performance

are presented. This paper presents measurements of

the Q3A’s framerate and documents the latency in-

curred by using spectators.

3 Design

Quake 3 Arena [iS08], developed by id Software, is

an open-source first-person shooter designed for mul-

tiplayer gaming. It is based on a client-server architec-

ture where the server maintains the state of the game.

At a fixed rate, independent of the connected clients,

the server updates its game state, before broadcasting

state changes to connected clients. Clients use this

to update their view of the game. A client in Q3A

is either a player or a spectator. A player is a client

that participates in the game. A spectator is a client

that instead of participating, follows one of the players

around and displays that player’s view of the game.

Homeworld [Ent08] is a 3D real-time strategy game

developed by Relic Entertainment. In September

2003, the Homeworld engine was made open source.

Although the Linux version still lacks some of the fea-

tures of the complete game, including software ren-

dering, cut-scene playback and networked multiplayer

support, the game itself is fully playable in single-

player mode. In contrast to Q3A, Homeworld has a

monolithic design, with all code running inside a sin-

gle process.

Figure 2 shows the overall design of the touch-free

interface, and its use with Q3A and Homeworld. Im-

ages are captured and then analyzed to locate objects

in a plane parallel to the display wall’s canvas. The

Figure 2: The design of the touch-free interface, and

its use with Q3A and Homeworld.

Figure 3: Running Q3A and Homeworld on a 7x4

display wall. To the left and right, two Q3A players

control a set of Q3A spectators. In the middle, a sin-

gle Homeworld master synchronizes the rendering and

game simulations of 8 Homeworld slave copies.

positions of these objects are then processed by an ob-

ject detector that yields the object’s 2D position and

radius, before the resulting information is sent to the

two games. The two games process the data individu-

ally, using object positions and radii to detect gestures

and handle them in game-specific ways.

The design of the parallelized Q3A uses a modified

player that receives input from the touch-free inter-

face. The player uses the positions received to rec-

ognize gestures, and converts them to keyboard and

mouse events suitable for the game. The player relays

its actions to the Q3A server, which then updates all

clients with the new game state. This causes the spec-

tators following a given player to update their view.
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(a) Using a “vertical” hand

to control the player’s aim.

(b) Controlling aim and fir-

ing by making the hand flat.

(c) Moving and aiming simultaneously using both

hands.

Figure 4: Gestures for controlling Q3A .

For Homeworld, a single copy is elected as a mas-

ter. The master becomes responsible for accepting and

interpreting input from the touch-free interface. Af-

ter recognizing gestures, the resulting input is handled

and broadcast to the slave copies. Figure 3 shows one

configuration of a 7x4 tiled display wall where two

users can play Q3A against each other, while a third

user simultaneously plays Homeworld. This configu-

ration is identical to the one pictured in Figure 1. Sev-

eral other configurations are also possible.

3.1 Hand- and arm-gestures

When playing an FPS using a mouse and keyboard, the

mouse is used to aim and fire, and the keyboard is used

for movement. In addition, the mouse’s scroll wheel

is often used to switch weapons, and the keyboard

to control other actions the player can take (ducking,

jumping, etc.). The following gestures, summarized

in Table 1, were used for controlling Q3A. When only

one hand is detected by the input system, its position is

used for controlling the player’s aim. When the hand

is tilted (making it flat), it will additionally fire the

player’s weapon. When two hands are detected, the

right hand controls aim and firing, and the left hand is

used to move the player forwards or backwards. Fig-

ure 4 illustrates the gestures.

Action Gesture

Aim Move right/only hand

Fire weapon Flat right/only hand

Move forward Vertical left hand

Move backward Flat left hand

Table 1: The gestures in Q3A that the game recognizes

and maps to actions.

Homeworld uses a different control scheme. When

using a keyboard and mouse, the main controls can

all be accessed with the mouse, and the keyboard is

mostly used for shortcuts for different menu selections

and buttons. When no mouse buttons are pressed, the

mouse simply controls an on-screen cursor. Holding

down different mouse buttons, the user can pan and

zoom the camera, as well as select entities and manip-

ulate them from a contextual menu.

Action Gesture

Control cursor position Move right/only hand

Select/click entities Flat right/only hand

Pan view/contextual menu Flat left hand

Toggle tactical view Vertical left hand

Zoom Flat left and right hand,

distance between hands

control zoom factor

Table 2: Actions in Homeworld and their correspond-

ing gestures.

Table 2 lists the different actions in Homeworld, and

their mapping to gestures. The cursor is controlled us-

ing a one-to-one mapping from hand location to the

display wall. When the right/only hand is flat (like the

fire-gesture in Q3A), the user can select or click items.

The user can enter or leave Homeworld’s tactical view

using a vertical left hand. With a flat left hand, the user

can either invoke Homeworld’s contextual menu (for

moving ships, creating formations, and so on), or pan-

ning the camera (by simultaneously moving the right

hand). Finally, the user can zoom the camera in and

out using a flat left and right hand, varying the distance

between them to control the amount of zoom.
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Figure 5: The architecture of the touch-free interface.

4 Implementation

Figure 5 shows the architecture of the touch-free in-

terface. The interface makes use of 16 FireWire cam-

eras, connected in pairs to 8 Mac minis. The cam-

eras are mounted along the floor, enabling the detec-

tion of objects in a plane parallel to the display wall’s

canvas. The cameras have a 42-degree field-of-view.

Images are captured at 30 FPS with a resolution of

640x480 pixels in 8-bit grayscale. Each image is pro-

cessed by subtracting the background, removing noise

and thresholding the result to identify objects (which

are typically hands or arms). This yields zero or more

pairs of 1D position and radius.

Each Mac mini sends its identified positions and

radii via an event server to a MacBook Pro that de-

termines the position of each object in 2D space using

triangulation (Figure 6). The resulting 2D positions

and radii are sent via the event server to either Home-

world or Q3A. The event server’s role is to distribute

events of different kinds to software used with the dis-

play wall. The software for capturing images, detect-

ing and positioning objects was implemented for Mac

OS X in Objective-C and C, using libdc13944 to com-

municate with the FireWire cameras; more details on

the design and implementation appear in [SHBA08].

Q3A and Homeworld were modified to receive ob-

ject position events from the touch-free interface, and

then interpret them according to the gestures outlined

in the previous section. When a gesture is recognized,

events corresponding to the action associated with the

gesture is injected into the game’s input event stream.

Depending on the relative amount of movement de-

tected, mouse events can be generated, and the object’s

radius is used to determine whether it is interpreted as

a flat hand or a vertical hand.

4http://libdc1394.sourceforge.net/

Figure 6: 16 cameras positioned below the display

wall’s canvas are used to triangulate the position of

different objects.

4.1 Parallelizing Q3A and Homeworld

Running Q3A and Homeworld on a tiled display wall

requires that each tile displays a part of the total view

for each game. To achieve this, the view frustum used

by OpenGL for both Q3A and Homeworld must be

modified in relation to the tile on which the game runs.

The parallel version of Q3A is controlled by config-

uring a set of environment variables, and then reading

them from within the game. The variables control how

the view frustum is configured, as well as whether or

not a client is designated as a player or a spectator,

and which player a given spectator follows. Due to the

client-server architecture of Q3A, this is sufficient to

create a parallel version that will run on the display

wall. Figure 7 shows a player in the upper-left corner,

with four spectators following that player, as it would

appear on a tiled display wall.

Homeworld was parallelized by running several
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Figure 7: Example Q3A configuration on a display

wall. The upper left corner shows the player, while

the remaining four clients are spectators following that

player, with modified view frustums to match the tiles

on which they run.

tightly coupled copies and manually ensuring state

consistency between them. Each copy runs on one tile,

and the Message Passing Interface (MPI) [BDV94] is

used to exchange state information and keep the copies

synchronized. One copy is elected as master, and

the remaining copies become slaves. For each frame,

the master accepts input from the touch-free interface

and broadcasts it to the slaves. Before starting a new

frame, all the copies synchronize at a barrier. This en-

sures that each slave receives the same input during

the same simulation step in the game, and synchro-

nizes the visual display. To ensure that each copy’s

game simulation proceeds identically on all nodes, the

same value is used to seed each copy’s pseudo-random

number generator. Finally, a global clock is shared by

all the copies and controlled by the master.

5 Experiments

Three experiments were conducted. The first experi-

ment was performed to determine the latency involved

in using the touch-free interface, and determine if it is

sufficiently low to play games. The next two experi-

ments measured the rendering performance of the two

games. For Q3A, the results are compared to Q3A run-

ning on the display wall using Chromium; for Home-

world, the results are compared to running Homeworld

on a single display.

The hardware used was (i) a display cluster with

28 nodes (Intel Pentium 4 EM64T, 3.2 GHz, 2 GB

RAM, HyperThreading enabled, NVIDIA Quadro FX

3400 with 256 MB Video RAM, running the Rocks

cluster distribution 4.0) connected to 28 projectors

(1024x768, arranged in a 7x4 matrix), (ii) switched,

Gigabit Ethernet, (iii) 8 Mac minis (1.66 GHz Intel

Core Duo, 512 MB RAM, Mac OS X 10.4.9), (iv) 16

Unibrain Fire-i FireWire cameras, (v) a MacBook Pro

(2.33 GHz Intel Core 2 Duo, 3 GB RAM, Mac OS X

10.4.9). Each Mac mini was connected to two cam-

eras. The MacBook Pro was used to run the object

detection software.

5.1 Latency Measurements

Referring to Figure 5, there are five areas where sig-

nificant latency may be introduced: (1) The time taken

from the camera captures an image, until the image is

available to a Mac mini for processing, (2) the time

taken by the Mac mini to process the image, (3) the

time taken to transfer processed data over the network

to the MacBook Pro, (4) time taken by the MacBook

Pro to detect objects using information gathered from

all the Mac minis, and (5) the time taken to distribute

the resulting object positions to the two games.

For Q3A, there is one additional, latency-inducing

step. This step is the time from a gesture is recog-

nized, until the action caused by the gesture is shown

by the spectators. This latency is caused by the re-

quired round-trip from a Q3A player via Q3A’s server

to the spectators.

5.1.1 Methodology

The camera-induced latency (1) is measured by point-

ing a camera at the screen attached to a computer cap-

turing images from the camera. The computer’s screen

is initially black, before it is turned white. At this

point, a timer starts. The timer stops when the images
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(a) The latency from when the cameras grab images, until positions

of objects are available for processing by either Q3A or Homeworld.

Each measurement represents an average measure of the latency.

(b) The additional latency as input events are delivered

to a Q3A player, sent to the server and finally made

visible by the spectators.

Figure 8: Latency measurements for (a) the touch-free interface and (b) Quake 3 Arena.

captured by the camera show a white screen, with the

resulting latency being the elapsed time since the timer

was started.

The processing-sensitive latencies (2 and 4) are

measured by measuring typical execution times for the

code that respectively performs image processing and

object detection. The network latencies (3 and 5) are

determined by measuring the time taken to send a mes-

sage from one computer via an event server to the tar-

get, and receiving a reply.

To avoid modifying Q3A’s server, the added latency

in Q3A is determined as follows. When the player

fires his weapon, the Q3A engine will cause a weapon-

fire sound to be played. The client-side sound-playing

code was modified to start a timer when that sound is

played. Each spectator reports back to the player when

it plays a weapon-fire sound, yielding an estimate of

the latency from when something happens at the con-

trolling player, until it is visible to the spectators.

5.1.2 Results

The results from the latency measurements are sum-

marized in Figure 8(a). The additional latency in-

troduced through Q3A’s client-server architecture is

shown in Figure 8(b). The average latency before an

object’s position is available to either game is 116.7

ms. The camera-induced latency is the greatest con-

tributor, at 81 ms. Object detection requires 31 ms. For

Q3A, the added latency averaged 87 ms with a stan-

dard deviation of 59 ms over 1287 samples gathered

from 9 spectators.

5.2 Rendering Performance

The metric used to measure the performance of Q3A

and Homeworld is frames per second. For both Q3A

and Homeworld, input events are recorded over a pe-

riod of about 30 seconds. The game is started in a

known state, and the recorded input events are played

back5. During playback, the framerate is logged con-

tinuously.

5.2.1 Methodology

Figure 9: The framerate when running Q3A on 2x2,

3x3 and 7x4 tiles using Chromium, compared to the

parallel version’s framerate running on 7x4 tiles.

The performance of both Homeworld and Q3A was

measured for four different configurations, with 1, 4,

9 and 28 rendering nodes. For Q3A, the framerate

was limited to 500, and the performance measured

both when using Chromium to distribute the render-

ing, and when running the parallel version. The Q3A

server ran locally on the same network. For Home-

world, which did not work with Chromium, the par-

allel version’s framerate was measured, and compared

to running Homeworld on a single display.

5This is similar to measuring Quake performance by running a

timedemo. The timedemo mechanism already in Quake does not

work for the parallel version, as it is designed to run on a single

computer only.
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(a) The framerate when running Homeworld on a single dis-

play, compared to running it on 2x2, 3x3 and 7x4 tiles.

(b) The total number of frames drawn when running Home-

world on a single display, compared to 2x2, 3x3 and 7x4 tiles.

Figure 10: Homeworld performance measurements.

5.2.2 Results

Figure 9 shows the results from measuring Q3A’s

rendering performance. The peak performance with

Chromium on 4 rendering nodes (2x2 tiles) is 148 FPS,

and the average at 73. For 3x3 tiles, the peak FPS is

97 and the average is 47, and for all 7x4 tiles, the peak

is 51 and the average 21 FPS. The figure only lists the

results from the parallel version running on all 28 tiles,

as there were no significant difference in performance

when varying the number of rendering nodes for the

parallel version. The maximum framerate for the par-

allel version was 666, and the average framerate was

398.

Figure 10(a) shows the results from measuring

Homeworld’s framerate, while Figure 10(b) shows the

cumulative number of frames drawn by the game dur-

ing the experiment. The framerate varies much more

compared to the Q3A measurements. The maximum

framerate for Homeworld running on a single tile, 2x2,

3x3 and 7x4 tiles were respectively 311, 353, 250 and

231. The respective average framerates were 168, 183,

169 and 143. Figure 10(b) shows that running Home-

world on both 2x2 and 3x3 tiles performs better than

running it on a single display. The framerate was never

lower than 80 for any of the configurations.

6 Discussion

Our expectations prior to implementing touch-free,

multi-user support in Q3A and Homeworld were that

using gestures to control Q3A would be awkward and

difficult, while gestures for controlling Homeworld

would be more natural as the pace of the game is

slower and the gestures similar to emulating a mouse.

Although we haven’t conducted any formal user stud-

ies, our initial, subjective experiences indicate that the

touch-free interface was more natural when control-

ling Q3A than controlling Homeworld. There are sev-

eral potential explanations, including the characteris-

tics of the touch-free interface and the intrinsics of the

games. For instance, since Homeworld uses a one-to-

one mapping between hand position and cursor posi-

tion, a user might not be able to reach all points on the

display wall. Another observation is that as one plays

the games for extended periods of time, one’s arms be-

come fatigued.

6.1 Latency

In [MW93], the authors investigate the effect of lag

(i.e, latency) on human performance in interactive sys-

tems. As latency goes up, accuracy deteriorates and

time to perform tasks increases. For this reason, it is

important for the touch-free interface to provide input

with as low latency as possible. In [Arm03], the au-

thors show that Q3A players prefer using Q3A servers

where their average ping6 is no more than 150-180

ms. The touch-free interface has a latency of 116.7

ms, and the average latency from the parallelized Q3A

implementation is 87 ms. This gives a total latency of

203.7 ms, 23.7 ms more than the maximum preferred

latency. The latency for Q3A fluctuated with a stan-

dard deviation of 59 ms, which may be an artifact of

the latency measuring experiments, or a result of the

Q3A server experiencing varying loads. Even though

6The latency from a player takes an action until it becomes

observable by other players.
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the average latency using the touch-free interface is

slightly higher than the maximum preferred latency,

the touch-free interface can be improved sufficiently

to perform below the limit.

The touch-free interface’s architecture is currently

bound latency-wise by existing camera-technology,

which are the biggest contributors to the overall sys-

tem latency. As camera technology improves, the in-

trinsic latency of cameras can be reduced, which will

directly affect the latency of the touch-free interface.

Improvements in the I/O bus and OS will reduce this

latency. In earlier work [SHBA07], the latency due

to the cameras was found to be 102 ms. More recent

experiments puts the latency at 81 ms, as shown in

Section 5. We speculate that this reduction in latency

is due to an operating system update, as neither the

computers or cameras changed in between the exper-

iments. The first set of experiments were conducted

using Mac OS X 10.4.8, while the results presented in

this paper were obtained on Mac OS X 10.4.9.

The next-biggest contributor to latency is the object

detector. The detector waits for all the cameras to pro-

vide data before triangulating object positions. This

synchronizes the cameras, and ensures that only fresh

data from each camera is used for the triangulation.

The result is improved accuracy. The cameras all run

at 30 FPS, which corresponds well with the 31 ms av-

erage latency from the object detector. Improvements

in camera technology will also help bring the object

detector latency down. As the image capture rate of a

camera goes up, the resulting latency incurred by the

object detector will go down, as less waiting must be

done in order to ensure that fresh data is in use from all

cameras. For instance, doubling the camera framerate

to 60 FPS, will result in an upper bound on the ob-

ject detector latency of 16 ms. The architecture of the

touch-free interface is scalable, as all image process-

ing is done locally by each computer capturing image

data. This reduces the amount of data required to be

processed by the object detector by several orders of

magnitude.

One problem with the touch-free interface is that its

accuracy for positioning objects decreases as the ob-

jects move faster. This is caused by the use of many

different cameras to capture images. Although each

camera operates at the same framerate, they capture

images at slightly different points in time. For a mov-

ing object, this results in the object appearing at dif-

ferent positions for different cameras. When these po-

sitions are used to triangulate an object’s 2D position,

the result can be inaccurate. These inaccuracies appear

as jitter in the object’s vertical position. The horizon-

tal position is also affected, although not as much as

the vertical position. This problem can be alleviated

by using cameras with higher image capture rates, or

cameras where the image capture can be synchronized.

6.2 Parallelizing games

Q3A’s existing architecture made it possible to rapidly

parallelize the game and make it run on the display

wall’s cluster. In particular, the spectator-concept,

which can be viewed as a single data, multiple view

model, was useful. This model is absent from Home-

world, making the process of parallelizing Homeworld

more laborious. Applications that support this model

should be simpler to parallelize for tiled display wall

environments. The performance penalty from using

spectators in this way is an 87 ms increase in the la-

tency from when a player performs an action until it is

visible on the display wall. This latency is independent

of the input system used (keyboard/mouse or touch-

free interface). Even better results may be achieved by

parallelizing the game from scratch, but at the cost of

a much greater effort.

Homeworld’s architecture made it possible to par-

allelize it by running synchronized copies on the tiles.

However, to determine where to synchronize, the game

engine had to be analyzed to identify all places where

data is used that could impact the game simulation. At

these places the copies must synchronize in order to

use identical data. Finding all these synchronization

points is difficult, and verifying that all places have

been identified requires exercising all possible code-

paths of the engine. One way of doing this would be to

play the entire game from start to finish; to date only

the first level has been completed. Minor bugs and

timing issues can also potentially skew the copies out

of sync. For these reasons, parallelizing Homeworld

required more effort than parallelizing Q3A.

When running Q3A on the entire display wall, the

framerate for the parallel version was an order of

magnitude higher than the framerate achievable using

Chromium. Homeworld outperformed the sequential

version when running on 2x2 and 3x3 tiles. This is

somewhat unexpected, as the simulation itself was not

parallelized. In principle, each copy runs the same

code on the same data, with the addition of synchro-

nization overhead for the parallel version. The fact

that a higher framerate is still achieved for these tile
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configurations, is because the tiles share the render-

ing workload. For the 7x4 configuration, the framer-

ate is lower than for a single display. We hypothesize

that this is due to increased synchronization overhead,

mainly from the MPI barriers used.

7 Conclusion

This paper has introduced a touch-free, multi-user

interface for controlling applications on wall-sized,

high-resolution tiled displays. The interface uses 16

cameras and 9 computers to triangulate the position of

objects in a plane parallel to the display wall’s can-

vas. Input from the touch-free interface is converted

to hand- and arm gestures, which are then interpreted

and injected into Quake 3 Arena and Homeworld as

regular mouse and keyboard events. To run on the dis-

play wall, the two games were parallelized by exploit-

ing different aspects of the two games’ architectures.

For Q3A, the spectator-concept was utilized to follow

each player on several tiles of the display wall. For

Homeworld, a master-slave approach was taken, syn-

chronizing all game state and input.

Players control the games by using one or both

hands. Users do not need to use external devices,

wear gloves or optical markers in order to interact.

In this regard, the interface is not only touch-free, but

also completely device-free. This enables the interface

to work in a public setting where other input devices

might get lost, misplaced or stolen. It also makes in-

teraction more direct, as users no longer must interact

through devices like mice or keyboards.

The responsiveness of the touch-free interface was

measured by determining its end-to-end latency. The

parallel versions of the two games were evaluated by

measuring their framerates in both parallel and se-

quential (unmodified) versions running on the display

wall. The touch-free interface’s latency was 116.7 ms,

with the majority of this latency due to the cameras

used. The parallel version of Q3A consistently out-

performed the sequential version running on the en-

tire display wall, averaging 398 FPS vs sequential’s 21

FPS. The average framerate for Homeworld on a sin-

gle display was 168 FPS, while running Homeworld

on the entire display wall yielded an average framer-

ate of 143 FPS. The high framerates indicate that the

parallelized games will scale to more tiles and higher

resolutions. The framerates are well beyond what is

displayable by a typical LCD panel or projector with a

60 Hz refresh rate.
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