
FACULTY OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

Interactive Visualization on High-Resolution

Tiled Display Walls with Network Accessible

Compute- and Display-Resources

Tor-Magne Stien Hagen

A dissertation for the degree of

Philosophiae Doctor

May 2011

iii

Abstract

The vast volume of scientific data produced today requires tools that can enable
scientists to explore large amounts of data to extract meaningful information. One
such tool is interactive visualization. The amount of data that can be
simultaneously visualized on a computer display is proportional to the display’s
resolution. While computer systems in general have seen a remarkable increase in
performance the last decades, display resolution has not evolved at the same rate.
Increased resolution can be provided by tiling several displays in a grid. A system
comprised of multiple displays tiled in such a grid is referred to as a display wall.
Display walls provide orders of magnitude more resolution than typical desktop
displays, and can provide insight into problems not possible to visualize on
desktop displays. However, their distributed and parallel architecture creates
several challenges for designing systems that can support interactive
visualization. One challenge is compatibility issues with existing software
designed for personal desktop computers. Another set of challenges include
identifying characteristics of visualization systems that can: (i) Maintain
synchronous state and display-output when executed over multiple display nodes;
(ii) scale to multiple display nodes without being limited by shared interconnect
bottlenecks; (iii) utilize additional computational resources such as desktop
computers, clusters and supercomputers for workload distribution; and (iv) use
data from local and remote compute- and data-resources with interactive
performance.

This dissertation presents Network Accessible Compute (NAC) resources and
Network Accessible Display (NAD) resources for interactive visualization of data
on displays ranging from laptops to high-resolution tiled display walls. A NAD is
a display having functionality that enables usage over a network connection. A
NAC is a computational resource that can produce content for network accessible
displays. A system consisting of NACs and NADs is either push-based (NACs
provide NADs with content) or pull-based (NADs request content from NACs).

To attack the compatibility challenge, a push-based system was developed. The
system enables several simultaneous users to mirror multiple regions from the
desktop of their computers (NACs) onto nearby NADs (among others a 22
megapixel display wall) without requiring usage of separate DVI/VGA cables,
permanent installation of third party software or opening firewall ports. The
system has lower performance than that of a DVI/VGA cable approach, but
increases flexibility such as the possibility to share network accessible displays
from multiple computers. At a resolution of 800 by 600 pixels, the system can

iv Abstract

mirror dynamic content between a NAC and a NAD at 38.6 frames per second
(FPS). At 1600x1200 pixels, the refresh rate is 12.85 FPS. The bottleneck of the
system is frame buffer capturing and encoding/decoding of pixels. These two
functional parts are executed in sequence, limiting the usage of additional CPU
cores. By pipelining and executing these parts on separate CPU cores, higher
frame rates can be expected and by a factor of two in the best case.

To attack all presented challenges, a pull-based system, WallScope, was
developed. WallScope enables interactive visualization of local and remote data
sets on high-resolution tiled display walls. The WallScope architecture comprises
a compute-side and a display-side. The compute-side comprises a set of static and
dynamic NACs. Static NACs are considered permanent to the system once added.
This type of NAC typically has strict underlying security and access policies.
Examples of such NACs are clusters, grids and supercomputers. Dynamic NACs
are compute resources that can register on-the-fly to become compute nodes in
the system. Examples of this type of NAC are laptops and desktop computers.
The display-side comprises of a set of NADs and a data set containing data
customized for the particular application domain of the NADs. NADs are based
on a sort-first rendering approach where a visualization client is executed on each
display-node. The state of these visualization clients is provided by a separate
state server, enabling central control of load and refresh-rate. Based on the state
received from the state server, the visualization clients request content from the
data set. The data set is live in that it translates these requests into compute
messages and forwards them to available NACs. Results of the computations are
returned to the NADs for the final rendering. The live data set is close to the
NADs, both in terms of bandwidth and latency, to enable interactive
visualization. WallScope can visualize the Earth, gigapixel images, and other data
available through the live data set.

When visualizing the Earth on a 28-node display wall by combining the Blue
Marble data set with the Landsat data set using a set of static NACs, the
bottleneck of WallScope is the computation involved in combining the data sets.
However, the time used to combine data sets on the NACs decreases by a factor
of 23 when going from 1 to 26 compute nodes. The display-side can decode
414.2 megapixels of images per second (19 frames per second) when visualizing
the Earth. The decoding process is multi-threaded and higher frame rates are
expected using multi-core CPUs. WallScope can rasterize a 350-page PDF
document into 550 megapixels of image-tiles and display these image-tiles on a
28-node display wall in 74.66 seconds (PNG) and 20.66 seconds (JPG) using a
single quad-core desktop computer as a dynamic NAC. This time is reduced to
4.20 seconds (PNG) and 2.40 seconds (JPG) using 28 quad-core NACs. This
shows that the application output from personal desktop computers can be
decoupled from the resolution of the local desktop and display for usage on high-
resolution tiled display walls. It also shows that the performance can be increased
by adding computational resources giving a resulting speedup of 17.77 (PNG)
and 8.59 (JPG) using 28 compute nodes.

Abstract v

Three principles are formulated based on the concepts and systems researched
and developed: (i) Establishing the end-to-end principle through customization, is
a principle stating that the setup and interaction between a display-side and a
compute-side in a visualization context can be performed by customizing one or
both sides; (ii) Personal Computer (PC) – Personal Compute Resource (PCR)

duality states that a user’s computer is both a PC and a PCR, implying that
desktop applications can be utilized locally using attached interaction devices and
display(s), or remotely by other visualization systems for domain specific
production of data based on a user’s personal desktop install; and (iii) domain

specific best-effort synchronization stating that for distributed visualization
systems running on tiled display walls, state handling can be performed using a
best-effort synchronization approach, where visualization clients eventually will
get the correct state after a given period of time.

Compared to state-of-the-art systems presented in the literature, the contributions
of this dissertation enable utilization of a broader range of compute resources
from a display wall, while at the same time providing better control over where to
provide functionality and where to distribute workload between compute-nodes
and display-nodes in a visualization context.

vii

Acknowledgements

This dissertation would not have been possible without the help and support of
many people, to whom I am very grateful.

I would like to thank my advisor Professor Otto J. Anshus for his guidance and
support during my Ph.D. period. Otto has inspired and encouraged me to keep on
researching, developing and refining the systems presented in this dissertation. I
would also like to thank him for his patience and guidance in helping writing the
papers that form the basis for this dissertation.

I would like to thank my co-advisor Associate Professor John Markus Bjørndalen
for his support and guidance, and Professor Tore Larsen for all help and support.
In addition, I would like to thank Professors Kai Li and Olga Troyanskaya for
arranging for me to join them for one year at the Department of Computer
Science at Princeton University.

I thank Dr. Daniel Stødle and Associate Professor Lars Ailo Bongo for
discussions and support, and for all the great moments we have shared together,
both in Tromsø and in Princeton. I would also like to thank Associate Professor
Phuong Hoai Ha for discussions and support. I am also grateful for the
discussions I have had with Espen Skjelnes Johnsen, Åge Kvalnes, Joakim
Simonsson and Elizabeth Jensen. In addition, I would like to thank Eirik Helland
Urke for allowing me to use the 13.3 gigapixel image of Tromsø for one of the
systems developed as part of this dissertation.

I would like to thank my family and friends for supporting me throughout the
work on my Ph.D. I am very grateful for your encouragement and motivation for
these years.

I thank the technical and administrative staff at the Department of Computer
Science at the University of Tromsø: Jon Ivar Kristiansen, Ken-Arne Jensen, Kai-
Even Nilssen, Maria Wulff Hauglann, Svein Tore Jensen and Jan Fuglesteg. You
have all made my work easier through the support you have provided.

I am grateful for the funding I have received from the Norwegian Research
Council as part of the following projects: (i) 159936/V30, SHARE – A
Distributed Shared Virtual Desktop for Simple, Scalable and Robust Resource
Sharing across Computer, Storage and Display Devices, and (ii) 155550/420,
Display Wall with Compute Cluster.

ix

Contents

Introduction .. 1�

1.1� Visualization .. 5�

1.2� Classification of Rendering Models .. 8�

1.2.1� Single Logic Single Rendering (SLSR) 11�

1.2.2� Single Logic Multiple Rendering (SLMR) 11�

1.2.3� Multiple Logic Single Rendering (MLSR) 12�

1.2.4� Multiple Logic Multiple Rendering (MLMR) 12�

1.3� The Visualization Distribution Space .. 13�

1.4� Problem Statement ... 15�

1.5� Scientific Contributions ... 17�

1.5.1� Principles ... 17�

1.5.2� Models and Architectures .. 19�

1.5.3� Artifacts ... 20�

1.5.4� Impact .. 25�

1.6� Summary of Papers .. 26�

1.6.1� Background Papers for Network Accessible Compute- and
Display-Resources ... 27�

1.6.2� Push-Based Network Accessible Compute- and Display-Resource
Papers ... 28�

1.6.3� Pull-Based Network Accessible Compute- and Display-Resource
Papers ... 28�

1.7� Organization .. 29�

x Contents

Display Walls .. 31�

2.1� Display Wall Hardware ... 32�

2.1.1� Display Technology .. 32�

2.1.2� Computer System Technology .. 33�

2.2� Display Wall Software .. 34�

2.2.1� Virtual Network Computing (VNC) ... 35�

2.2.2� Distributed Multihead X (DMX) .. 36�

2.2.3� Chromium ... 37�

2.2.4� Scalable Adaptive Graphics Environment (SAGE) 37�

2.3� The Display Wall at the University of Tromsø 38�

2.3.1� Hardware ... 38�

2.3.2� Software .. 39�

Graphics Processing Units ... 41�

3.1� Introduction to GPUs ... 41�

3.2� The Compute Unified Device Architecture ... 42�

Methodology ... 47�

4.1� Metrics ... 49�

4.1.1� CPU Load .. 50�

4.1.2� Memory Usage .. 50�

4.1.3� Network Bandwidth Usage ... 50�

4.1.4� Frame Rate .. 51�

4.1.5� Latency .. 51�

4.2� Cluster Wide Experiments ... 51�

Network Accessible Resources .. 53�

5.1� Network Accessible Display Resources .. 53�

5.2� Network Accessible Compute Resources .. 54�

Contents xi

5.3� NAD - NAC Interaction .. 54�

5.4� Background for Network Accessible Compute- and Display-Resources
 ... 56�

5.4.1� Gesture-Based Touch-Free Multi-User Gaming on Wall-Sized
High-Resolution Tiled Displays .. 56�

5.4.2� Comparing the Performance of Multiple Single-Cores versus a
Single Multi-Core .. 65�

5.4.3� Experimental Fault-Tolerant Synchronization for Reliable
Computation on Graphics Processors.. 76�

Push-Based NADs and NACs .. 85�

6.1� The NAD System... 85�

6.1.1� Related Work... 86�

6.1.2� Architecture ... 88�

6.1.3� Design ... 90�

6.1.4� Implementation.. 91�

6.1.5� Experiments ... 92�

6.1.6� Conclusions ... 99�

Pull-Based NADs and NACs .. 101�

7.1� WallScope .. 101�

7.1.1� Related Work... 104�

7.1.2� Architecture ... 111�

7.1.3� Design ... 113�

7.1.4� Implementation.. 119�

7.1.5� Experiments ... 122�

7.1.6� Conclusions ... 135�

Discussion .. 137�

Conclusions ... 145�

xii Contents

Future Work ... 149�

References ... 153�

Papers .. 173�

A.1� Gesture-Based, Touch-Free Multi-User Gaming on Wall-Sized, High-
Resolution Tiled Displays ... 175�

A.2� Liberating the Desktop .. 191�

A.3� Comparing the Performance of Multiple Single-Cores versus a Single
Multi-Core ... 199�

A.4� Experimental Fault-Tolerant Synchronization for Reliable
Computation on Graphics Processors .. 211�

A.5� On-Demand High-Performance Visualization of Spatial Data on High-
Resolution Tiled Display Walls ... 223�

A.6� Interactive Weather Simulation and Visualization on a Display Wall
with Many-Core Compute Nodes .. 233�

A.7� A Step towards Making Local and Remote Desktop Applications
Interoperable with High-Resolution Tiled Display Walls 247�

WallScope – Additional Resources ... 263�

B.1� Interactive Visualization of Data Feeds on High-Resolution Tiled
Display Walls .. 263�

CD-ROM ... 319�

xiii

List of Figures

Figure 1.1: The evolution of Intel desktop processors .. 2�

Figure 1.2: A comparison of floating point performance between modern GPUs
and CPUs .. 3�

Figure 1.3: LDSView, one of the visualization systems developed as part of this
dissertation ... 5�

Figure 1.4: The visualization pipeline ... 6�

Figure 1.5: The interactive visualization pipeline ... 7�

Figure 1.6: The visualization process .. 8�

Figure 1.7: The X11 graphics stack .. 9�

Figure 1.8: The visualization distribution space.. 14�

Figure 1.9: Quake 3 Arena and Homeworld being played on the display wall at
the University of Tromsø ... 21�

Figure 1.10: CUDAMandelbrot versus WallCPUMandelbrot 22�

Figure 1.11: Three computers using the NAD system to mirror content from the
local desktop onto a display wall ... 23�

Figure 1.12: The graphical user interface of the demo client from where users
can start and stop demos ... 24�

Figure 1.13: WallGlobe showing a plane after a take-off from Langnes airport,
Tromsø, Norway... 25�

Figure 2.1: Illustration of the display wall lab at the Department of Computer
Science, University of Tromsø ... 31�

Figure 2.2: VNC's traditional client-server model .. 35�

Figure 2.3: VNC in a display wall context .. 36�

xiv List of Figures

Figure 3.1: The Compute Unified Device Architecture 43�

Figure 4.1: Systems research methodology... 47�

Figure 4.2: The relation between idea, architecture, design and implementation.
.. 48�

Figure 5.1: Architecture of the parallel Quake 3 Arena 58�

Figure 5.2: Parallel Homeworld architecture .. 58�

Figure 5.3: The frame rate when running Q3A on 2x2, 3x3 and 7x4 tiles using
Chromium, compared to the parallel version's frame rate running on 7x4 tiles ... 62�

Figure 5.4: The additional latency introduced in Q3A's parallel version 63�

Figure 5.5: The frame rate when running Homeworld on a single display,
compared to 2x2, 3x3 and 7x4 tiles.. 63�

Figure 5.6: The total number of frames drawn when running Homeworld on a
single display, compared to 2x2, 3x3 and 7x4 tiles .. 64�

Figure 5.7: The assignment of the Mandelbrot set for CPUMandelbrot 68�

Figure 5.8: The assignment of the Mandelbrot set for WallCPUMandelbrot
(static) .. 69�

Figure 5.9: The assignment of the Mandelbrot set for WallCPUMandelbrot
(dynamic) ... 69�

Figure 5.10: The assignment of the Mandelbrot set for WallGPUMandelbrot ... 70�

Figure 5.11: The assignment of the Mandelbrot set for CUDAMandelbrot 71�

Figure 5.12: The assignment of the Mandelbrot set for CUDAMandelbrot when
configured to send the output to a set of display nodes .. 71�

Figure 5.13: Speedup factor of the parallel versions compared to
CPUMandelbrot ... 74�

Figure 5.14: The relation between speedup and resolution for the
WallCPUMandelbrot versions compared to CUDAMandelbrot configured to send
the output of each iteration to the display wall cluster ... 75�

Figure 5.15: The arrangement of threads and warps for coalescing memory
access to global memory .. 77�

Figure 5.16: The time used for 30 000 invocations of the RMW object in global
memory compared to atomic support in hardware (global memory) 81�

List of Figures xv

Figure 5.17: The software- to hardware-ratio for the 30 000 invocations 81�

Figure 5.18: The time used for 30 000 invocations of the RMW object in shared
memory compared to atomic support in hardware (global memory) 83�

Figure 5.19: The software- to hardware-ratio for the 30 000 invocations 83�

Figure 6.1: The NAD architecture for single display configurations 89�

Figure 6.2: The NAD architecture for display wall configurations 89�

Figure 6.3: The two phases of the NAD protocol ... 90�

Figure 6.4: The NAD protocol format... 92�

Figure 6.5: Frame rate of the different applications at the three resolutions used
in the experiments .. 95�

Figure 6.6: Breakdown of average time usage for the main functional units of the
NAC ... 96�

Figure 6.7: Breakdown of average time usage for the main functional units of the
NAD ... 96�

Figure 6.8: NAC – NAD network bandwidth usage ... 97�

Figure 6.9: CPU usage on the NAC .. 98�

Figure 7.1: WallScope idea ... 102�

Figure 7.2: WallScope architecture ... 112�

Figure 7.3: The main components of the visualization systems 114�

Figure 7.4: Live data set design .. 116�

Figure 7.5: Speedup when going from 1 to 26 compute nodes 128�

Figure 7.6: The total number of displayed requests .. 129�

Figure 7.7: The total number of completed requests ... 129�

Figure 7.8: The cumulative number of requested, completed, and displayed
requests with full local caches .. 130�

Figure 7.9: The number of completed requests for the full local cache
configuration .. 131�

Figure 7.10: Time to request and simultaneously display 2432 JPG or PNG
encoded image-tiles computed from a 350-page PDF document 132�

xvi List of Figures

Figure 7.11: Speedup factor when requesting and simultaneously displaying
2432 JPG or PNG encoded image-tiles .. 133�

Figure 7.12: Compute node utilization when rasterizing the 350-page PDF
document to PNG images... 133�

Figure 7.13: Compute node utilization when rasterizing the 350-page PDF
document to JPG images .. 134�

xvii

List of Tables

Table 1-1: Flynn’s classification of parallel computers 10�

Table 1-2: Classification of rendering models .. 10�

Table 2-1: The hardware specification of the Tromsø display wall 38�

Table 5-1: Experiment summary ... 61�

Table 5-2: Hardware- and software-platform .. 61�

Table 5-3: Experiment summary ... 72�

Table 5-4: Hardware- and software-platform .. 73�

Table 5-5: Experiment summary ... 79�

Table 5-6: Hardware- and software-platform .. 80�

Table 6-1: Experiment summary ... 93�

Table 6-2: Hardware- and software-platform .. 94�

Table 7-1: Configurations for experiment series 4 to 11 123�

Table 7-2: Experiment summary ... 124�

Table 7-3: Hardware- and software-platform for experiment series 1 to 11 125�

Table 7-4: Hardware- and software-platform for experiment series 12 to 15 ... 126�

Table 7-5: Time used to request 900 512x512-pixel (236 megapixels) image-tiles
(experiment series 1 and 2) .. 127�

Table 7-6: Average latency for a request to complete when using 28 compute
nodes .. 134�

Table 7-7: Time to request and simultaneously display 2432 JPG or PNG
encoded image-tiles requested from the live data set's cache or from the local
cache on each display node .. 134

xix

List of Abbreviations

NAD Network Accessible Display

NAR Network Accessible Resource

NAC Network Accessible Compute

VFB Virtual Frame Buffer

VNC Virtual Network Computing

RFB Remote Frame Buffer

FPS Frames Per Second

FOV Field Of View

CPU Central Processing Unit

GPU Graphics Processing Unit

RAM Random Access Memory

VRAM Video RAM

VGA Video Graphics Array

DVI Digital Visual Interface

TCP Transmission Control Protocol

UDP User Datagram Protocol

RGB Red Green Blue

RGBA Red Green Blue Alpha

xx List of Abbreviations

BGR Blue Green Red

RLE Run-Length Encoding

API Application Programming Interface

m Meter

cm Centimeter

s Second

ms Millisecond

CUDA Compute Unified Device Architecture

LCD Liquid Crystal Display

ILP Instruction Level Parallelism

RAMDAC Random Access Memory Digital-to-Analog Converter

CMP Chip Multi-Processor

GPGPU General-Purpose computation on Graphics Processing Units

GUI Graphical User Interface

SSH Secure Shell

1

 Chapter 1

Introduction

Computational science has led to increasingly amounts of data produced by
several different sources [1]. This has made possible the fourth paradigm of
science1 [1]. A challenge today is to extract valuable information from these large
data volumes [2]. One way of attacking this challenge is to provide a tool that
enables users to explore large volumes of data to extract meaningful information.
One such tool is interactive visualization. Visualizations are critical to humans’
ability to process complex data and an important part of the fourth paradigm for
users to understand how data analyses and queries relate to each other [3].

This dissertation presents Network Accessible Compute (NAC) resources and
Network Accessible Display (NAD) resources for interactive visualization of data
on displays ranging from laptops to high-resolution tiled display walls. A network
accessible display is a display having functionality that enables usage over a
network connection. Network accessible compute resources produce content for
network accessible displays. The workload distribution between NACs and
NADs is determined by the hardware technology on both sides, including the
interconnects. The separation between displaying and computing is motivated by
one of Jim Gray’s informal rules for approaching challenges related to large-scale
scientific data sets. “Bring computations to data, rather than data to the

computations” [2]. Thus by moving computations away from displaying and
close to the data, while at the same time performing compute-side domain
specific production of data for the display-side, future technologies on both sides
can be tracked, and shared interconnect bottlenecks can be reduced.

The last decades the computer industry has seen a remarkable increase in
computing power (figure 1.1). This increase follows Moore’s Law [4], which
projects the number of transistors that fits onto a single die to double every 18th to
24th months. Until early 2000, application performance scaled with transistor
density because CPU frequency increased with advances in manufacturing
technology and because CPU’s were superscalar and exploited instruction level
parallelism with replicated execution units and deep pipelines [5].

1 The fourth paradigm of science is also referred to as the data-intensive paradigm.

2 1 Introduction

Figure 1.1: The evolution of Intel desktop processors2. (Figure inspired by [6]).

However, eventually three walls limited the increase in CPU frequency and
instruction level parallelism [5]. These three walls were the power-wall [7]
(power dissipation beyond the capacity of inexpensive cooling techniques), ILP-
wall [7] (problems finding enough parallelism in instruction streams to utilize the
processor), and the memory-wall [7] (gap between processor and memory speed
making applications scale only with improvements in memory latencies). This
forced CPU vendors into increasing performance by devoting transistors to CPU
cores, inter- and intra-chip communication-systems, and cache- and memory-
systems rather than increasing the frequency on single cores or creating deep-
pipeline superscalar CPUs.

Today modern computers have become both multi- and many-core. State-of-the-
art CPUs such as the TILERA TILE-Gx processor family [8] contains up to 100
cores per chip. Contemporary GPUs such as the NVIDIA GeForce GTX 580 [9]
contains 512 cores. Compared to current commodity multi-core CPUs, the new
generation GPUs is delivering over an order of magnitude the throughput due to
transistors being devoted to data processing rather than control logic (figure 1.2).
This can in some circumstances speed up data-parallel computations with several

2 Data-source: http://www.intel.com

�

��

���

�����

������

�������

���������

���� ���� ���� ���� ���� ���� ���� ���� ����

	
��

�������

�	
���
��
���

������������	
��

�
���	
�
��
����

��
��������
��
�������

��
��������

��
������ �������

���
�������

�	�	������	���

��������

1.1 Visualization 3

orders of magnitude, for instance as presented in chapter 5, section 5.4.2.
(Graphics processing units are described more thoroughly in chapter 3).

Figure 1.2: A comparison of floating point performance between modern GPUs and CPUs.
(Source: NVIDIA CUDA C Programming Guide Version 3.2)3.

The evolution of transistors has not only increased the processing capacity of
multicore chips. Commodity sensors, wireless networks and DNA sequencing
machines are just some of the devices that have benefited from the evolution of
transistors. These kinds of devices combined with computational resources such
as clusters, supercomputers and the widespread use of computers among more
and more people around the world, are now producing data with a rate that has
made possible a doubling of the total amount of data in the world every year [2].
This rapid increase in data size has led to the fourth paradigm of science.

The doubling of data each year is a challenge. There is a gap between the current
data-analysis capabilities and the ability to produce data [2]. Thus, curating,
analyzing, and visualizing data is important for keeping track with the increasing
amounts of data produced. In addition, data might be located on remote locations.

3 The figure has been converted from raster- to vector-graphics.

4 1 Introduction

Thus, network bandwidth becomes a limiting factor for the amount of
computational power that can be applied before being bottlenecked by network
bandwidth and/or latency.

Computer networks are also benefitting improvements in transistor technology
with state-of-the-art Ethernet having a theoretical performance of 10 gigabit/s.
However, while the latest networking technologies can be utilized in local
domains, remote data sets are typically accessed over the Internet where the
latency is higher and bandwidth is lower. In addition, latency (and thus
interactivity) is hard-limited to both physical location and the speed of light. For
example, the round-trip time between the University of Tromsø and NTNU, two
Norwegian Universities, is 14.5 milliseconds. This is within the latency required
for acquiring data at 60 frames per second (16.6 milliseconds). The round-trip
time between University of Tromsø and Princeton University, North-Norway to
East-Cost USA, is 125 milliseconds, and not within this limit.

Visualization is an important tool for gaining insight into large amounts of data.
The amount of data that can be simultaneously visualized on a computer display
is proportional to the display’s resolution. While computer systems in general
have seen a remarkable increase in performance the last decades, display
resolution has not evolved at the same rate. In 1979, the Three Rivers Computer
Corporation sold the PERQ, a computer system with a 768x1024 (0.79
megapixel) bit map display [10]. Today, a computer display typically has a
resolution ranging from one to four megapixels. However, several visualizations
require much more resolution than this to be displayed in full detail. Even a
picture taken with a modern digital camera today cannot be shown in full
resolution on a modern display. For example, a display with a resolution of
2560x1600 pixels (4 megapixels) such as the Eizo ColorEdge CG303W display
[11], can only show 29% of the pixels of an image taken with a Canon Digital
IXUS 130 14.1 megapixel consumer camera [12].

To achieve higher resolution, displays can be tiled in a grid to produce a higher
resolution image. Several displays tiled in such a grid are referred to as a display
wall. Most contemporary graphics cards can drive only a couple of displays.
Therefore, display walls are typically driven by several graphics cards connected
either to a single computer or by a cluster of computers where each computer in
the cluster drives up to a couple of displays. Single computer display walls have
an upper limit on the number of displays that can be connected. In addition, such
systems have a lower combined bus bandwidth compared to a cluster of
computers. However, applications can often be run unmodified since all graphics
cards can be presented as one unified resource.

Display walls allow for visualizations with orders of magnitude higher resolution
than regular desktop displays. This makes them an interesting environment for
visualizing large data sets such as planetary-scale data sets and gigapixel images.
Additionally, regular application domains such as spreadsheet, word-processing
and presentation-style applications can benefit from the resolution offered by a

1.1 Visualization 5

display wall, allowing them to display much more content than they normally
would (figure 1.3).

Figure 1.3: LDSView, one of the visualization systems developed as part of this dissertation,
showing two gigapixel images, one virtual globe and a 350-page PDF document on a 22-
megapixel display wall.

However, the distributed and parallel architecture of a display wall (described
chapter 2) combined with data located on possibly several remote locations, make
it non-trivial for interactive visualizations of data from local and remote data- and
compute-resources. To explain this, the next section elaborates on visualization.

1.1 Visualization

This dissertation employs the definition from McCormick et al. to describe
visualization [13]: “Visualization is a method of computing. It transforms the

symbolic into the geometric, enabling researchers to observe their simulations

and computations. Visualization offers a method for seeing the unseen. It

enriches the process of scientific discovery and fosters profound and unexpected

insights. In many fields it is already revolutionizing the way scientists do

science”. Based on this definition and inspired by [14] this dissertation defines
visualization as the process of transforming data into a visual representation as

pixels.

6 1 Introduction

The different steps data passes through before it ends up as a visual
representation are referred to as the visualization pipeline, shown in figure 1.4.
These steps have been identified and refined by Haber and McNabb in [15].

Figure 1.4: The visualization pipeline.

The first stage of the visualization pipeline is data enrichment/enhancement. This
step operates on raw simulation data and techniques such as interpolation and
smoothing are used to obtain data with desired locations and distribution. The
output of the data enrichment/enhancement stage is referred to as derived data.
This data is passed to the visualization mapping stage where data is mapped to an
Abstract Visualization Object (AVO). The mapping of derived data to AVO
properties is performed using transfer functions. A transfer function interprets
and translates data values to AVO properties such as color values and vertices.
The final part of the visualization pipeline is the transformation of the abstract
visualization object into an image. This is performed in the rendering step.

Rendering is the process of rasterizing data (geometry, textures, materials and
lights) into pixels. The rendering pipeline has been studied and developed during
the last decades. Early approaches did rendering in software on the CPU.
However, today more of the rendering functionality has been moved to the
graphics cards containing specialized hardware for graphics operations.
Operations such as transforming vertices between coordinate systems and
eventually to screen space, transferring textures with high throughput, and
rasterizing groups of vertices into pixels, utilize the specialized parallel
architecture of the graphics card.

The Haber McNabb visualization pipeline does not describe visualization in an
interactive context. Figure 1.5 shows a modified version of this pipeline which
illustrates interactive visualization as defined by this dissertation. In the
interactive pipeline, original data is filtered to get data of interest. This data is
processed and mapped to an abstract visualization object. The abstract
visualization object is passed to the rendering pipeline, which creates pixels
typically shown on a computer display. A user interacts with the output of the
visualization using some kind of interaction device. Depending on the user input,
up to several stages in the visualization pipeline are triggered and data flows
through the pipeline to produce a new image.

1.1 Visualization 7

Figure 1.5: The interactive visualization pipeline (figure inspired by [16]).

In this dissertation, the steps before visualization mapping are referred to as the
computation. The input to the computation is original data. The output of the
computation is processed data, which is mapped to an abstract visualization
object and forwarded to the rendering stage. Rendering produces pixels.
Normally these pixels are stored in the frame buffer of the graphics card. The
frame buffer is a dedicated memory region, usually located in graphic card
memory, which is scanned and output as pixels onto the display by the Random
Access Memory Digital to Analog Converter (RAMDAC).

The cost of producing data at the different stages of the visualization pipeline
varies. For example changing the camera viewing angle can be as simple as
rotating the scene, which only requires feedback to the rendering stage by
changing the viewing transformation matrix. However, moving to an “unseen”
part of the scene could require new data to be processed and thus requested from
possibly several remote locations. Depending on the bandwidth and the
computational power of the system, this can introduce orders of magnitude the
latency compared to a local view change, which can be handled by the local
graphics card.

Figure 1.6 shows the visualization process as defined by this dissertation,
including the stages data passes through before it ends up as pixels in the frame
buffer. Although the visualization pipeline in many cases might be thought of as a
process for transforming scientific data, all applications displaying output to a
display will follow some of the steps in the visualization pipeline. For example,
an XLSX file can be visualized by opening it with a spreadsheet application such
as Microsoft Excel [17] or OpenOffice Calc [18]. Excel and Calc contain, in
combination with the installed software environment and operating system, the
computation and rendering functionality needed for transforming the XLSX file
into pixels.

The output of a visualization depends on the computation, visualization mapping,
and rendering functionality, which varies between operating systems and
software installs. Therefore, sharing pixels is sometimes the only way of making
sure visualizations remain the same over different software platforms.

8 1 Introduction

Figure 1.6: The visualization process.

1.2 Classification of Rendering Models

Figure 1.7 shows the design of a modern X11 [19] graphics stack. Applications
usually use a graphics library such as GIMP Toolkit (GTK) [20] or Qt [21] for
the graphical user interface. GTK uses the GIMP Drawing Kit (GDK) [22] for
drawing basic primitives. These primitives are generated using the rendering
primitives provided by the X server through Device Independent X (DIX) and
Device Dependent X (DDX). The graphics output of the commands from the
device driver is a pixmap with an associated texture binding. These textures are
composited into the frame buffer by the compositing manager using the GPU.

OpenGL [23] applications in X use GLX [24] for sending OpenGL commands to
the graphics card. This can be done in two ways: Indirect or direct. In indirect
rendering, GLX encodes the commands and sends them to the X server for
rendering. The X server receives the commands and forwards them to the server-
side OpenGL implementation (which in many cases is implemented in Mesa [25],
a system supporting both hardware (GPU) and software (CPU) supported
OpenGL). When direct rendering is used, GLX loads a client-side Direct
Rendering Infrastructure (DRI) module that communicates with a kernel Direct
Rendering Manager (DRM) module to bypass the X server and instead
communicate directly with the graphics card hardware. This gives an application
better performance since the extra overhead introduced by the X server is
removed. However, the commands cannot be sent over the network to a separate
X server.

1.2 Classification of Rendering Models 9

Figure 1.7: The X11 graphics stack. Red represents components running on the same computer
as the X server. Blue represents components part of an X client potentially running on a
separate computer. The gray box is the graphics card (figure inspired by [26]).

When distributing a visualization from one to multiple computers, several choices
can be made on where the different parts of the visualization pipeline and
graphics stack are distributed over the available computers. X11 has a networked
design and many visualizations not requiring DRI can be remotely rendered by
utilizing X11. However, for parallel graphics rendering, the X11 rendering
approach can saturate the network since the same display commands must be sent
to several computers [27].

The parallelization approach will in many cases dictate the performance of the
final system. At each step in the visualization process, data of varying size will
pass over interconnects with different bandwidths and latencies. The
parallelization involves finding the place in the visualization pipeline where the
data size to interconnect bandwidth gives a good tradeoff and does not saturate
the computers interconnects.

10 1 Introduction

In 1994, Molnar et al. [28] classified parallel rendering based on where the sort
from object space to screen space occurs. Based on where the sorting of
primitives are done three classes where identified: (i) Sort-first, (ii) sort-middle,
and (iii) sort-last. In sort-first, graphics primitives are distributed early in the
rendering pipeline, during geometry processing. The screen is divided into
disjoint regions and graphics processors are responsible for all rendering
calculations affecting their region. In sort-middle, primitives are redistributed
between geometry processing and rasterization. Arbitrary subsets of primitives
are partitioned between available geometry processors, and rasterizers are
assigned disjoint regions of the screen, as in sort-first. During each frame,
primitives are transformed and classified with respect to screen region boundaries
by geometry processors, and then sent to the rasterizer responsible for that screen
region. In sort-last, the sorting is deferred until all primitives have been rasterized
into pixels. Subsets of primitives are divided between graphics processors
independent of the screen position. The rasterized pixels are then transferred over
a network to compositing processors for pixel visibility resolving.

Because of the strong binding in graphics card geometry processing (where
object space to screen space transformations are tightly coupled with
rasterization), most distributed rendering models are based on a sort-first or a
sort-last method [29].

In 1966, Flynn classified parallel computers into four classes [30]. These were
Single Instruction Single Data (SISD), Single Instruction Multiple Data (SIMD),
Multiple Instruction Single Data (MISD), and Multiple Instruction Multiple Data
(MIMD), shown in table 1-1.

Table 1-1: Flynn’s classification of parallel computers

Single Instruction Multiple Instruction

Single Data SISD MISD

Multiple Data SIMD MIMD

Inspired by Flynn’s classification of parallel computers, this dissertation
categorizes rendering models into Single Logic Single Rendering (SLSR), Single
Logic Multiple Rendering (SLMR), Multiple Logic Single Rendering (MLSR),
and Multiple Logic Multiple Rendering (MLMR), shown in table 1-2.

Table 1-2: Classification of rendering models

Single Logic Multiple Logic

Single Rendering SLSR MLSR

Multiple Rendering SLMR MLMR

1.2 Classification of Rendering Models 11

Based on the visualization pipeline, the graphics stack and the classification of
parallel rendering models, the next sections describe the approaches that can be
taken to distribute a visualization over a set of inter-connected computers, with a
description of the pros and cons of each selected approach.

1.2.1 Single Logic Single Rendering (SLSR)

This rendering model is used by several applications and operating systems
today, with a one-to-one correspondence between application logic and
rendering. Often the application logic and rendering is executed on the same
computer. However, this is not necessarily the case. The X window system [31]
allows the client to be executed on another computer than the X server, which can
be seen by the protocol encode/decode in figure 1.7. This allows the application
logic to be executed on another computer than the rendering, even though there is
a one-to-one correspondence between logic and rendering.

Applications implemented using this model can be distributed over a set of
interconnected computers in three ways. The first way is to resize the frame
buffer to have a resolution corresponding to the total resolution of the frame
buffers of all interconnected computers, and then distribute the rendered content
from this frame buffer to the corresponding frame buffers of each computer. This
approach can be performed without modifying applications, allowing proprietary
systems to be used without requiring any source code modifications. However, in
many cases this approach requires a virtual frame buffer hosted in main memory
because the total resolution is larger than the size that could be hosted on the
graphics card. This implies that the functionality provided by the GPU cannot be
utilized and the CPU must do all graphics operations. Using this configuration the
network and CPU often become bottlenecks since the CPU must do rendering and
compression of pixels, which are then transferred over the network [32].

The second and third approaches involve converting the application to an MLMR
model or modifying the underlying graphics libraries to achieve an SLMR model.
These two approaches are described in section 1.2.4 and section 1.2.2,
respectively.

1.2.2 Single Logic Multiple Rendering (SLMR)

This rendering model involves performing all visualization steps on one
computer, intercepting the rendering commands and distributing the commands
over the network to the computers responsible for rendering them.

There are several approaches for how this rendering model can be realized:

1. Intercept the rendering commands going to the graphics library. (This
approach is used by systems such as Chromium [33], where the user
level bindings to the OpenGL functions are replaced by Chromium’s

12 1 Introduction

modified library for distributing rendering commands over the network
to the responsible rendering nodes).

2. Utilize the design of an already networked windowing system such as
X11 and Distributed Multihead X (DMX) [34] for presenting a set of
networked X servers as a single X server instance to the clients.

3. Intercept the rendering commands going to the display driver and
distribute these to the responsible computers. (Thin-client Internet
Computing (THINC) [35] uses this approach for a remote desktop
system).

In many cases, these approaches need no modifications to the applications
themselves. However, the underlying graphics library or display driver must be
modified. This approach might also generate much network traffic, thereby
saturating the network [27].

1.2.3 Multiple Logic Single Rendering (MLSR)

Several games can be categorized into this rendering model, where the game
logic such as physics, artificial intelligence (AI) and sound processing is
distributed over a set of processors, and a separate processor is responsible for
performing the main rendering based on the global state of the game logic.

Several X clients rendering to a single X server can also be categorized into the
MLSR model. Distributing an application implemented using this model involves
the same approaches as distributing an application implemented using an SLSR
model.

1.2.4 Multiple Logic Multiple Rendering (MLMR)

The MLMR model involves having both distributed logic and distributed
rendering. This model is used by most of the work presented in this dissertation.
For applications not originally designed for distributed rendering, modifying
them to adhere to this model can involve much work, but will often result in good
performance. The reason for this is that the data sent over the network to keep
multiple replicas synchronized often is much less than sending pixels or
rendering commands over the network. For example, sending camera coordinates
(matrix of 16 floats/doubles) and a global clock (1 int/long) requires a maximum
of 136 bytes (16x8 + 1x8) to be transferred over the network per frame. For a
frame buffer with a resolution of 1024x768 pixels, the worst-case scenario
(transferring all pixels) requires 2304 kilobytes ((1024x768x3)/1024) to be
transferred over the network per frame.

One way to modify a single rendering application to use this model is to execute
a replica of the application on each computer and modify the view frustum of

1.3 The Visualization Distribution Space 13

every computer so that they render only their part of the view, relying on the
graphics cards clipping and culling functionality to remove invisible geometry. In
many cases, this configuration will result in good performance [36]. However, it
requires synchronization of the computation and rendering between all computers
and, in addition, can generate much data to the rendering pipeline because every
computer computes and passes all data to the graphics card, which then needs to
clip away the invisible parts. This can be solved by modifying the application to
pass only visible geometry to the graphics card, which can require a formidable
amount of modifications if the original application is not designed for it.

1.3 The Visualization Distribution Space

As described in the previous sections there are several approaches for how to
distribute a visualization over a set of display nodes. Each approach has different
tradeoffs. Some approaches, such as the virtual frame buffer approach, work for
proprietary software solutions, but might result in bad performance. Others, such
as modifications to the applications themselves, can require more work, but might
result in better performance.

The aforementioned approaches to distribute a visualization involves two sides: A
compute-side and a display-side. For SLSR and MLSR applications, where a
sort-last pixel transfer approach is used, the compute-side is the computer
rendering to the (virtual) frame buffer and the display-side is the computers
receiving the rendered pixels. For SLMR approaches, the compute-side is the
computer where the graphics commands are intercepted and the display-side is
the side receiving and rendering these commands. In the MLMR approaches,
there is no compute-side since the entire visualization has been distributed to all
computers. However, a compute-side can be introduced by moving some of the
computational work from the display nodes to back-end compute nodes, such as a
cluster or a supercomputer.

Figure 1.8 shows the solution space for distributing a visualization between a
compute-side and a display-side (including the communication between these
sides). The figure is divided into two parts, compute-side and display-side
processing. Red represents computation, the transition from red to blue represents
the abstract visualization object mapping, blue represents rendering and green
represents rendered pixels (the color representations are the same as in figure
1.6). The layer between compute-side and display-side is communication. The
area marked pre-processed (the gray area) describes data that has been computed
and stored, usually on disk.

14 1 Introduction

Figure 1.8: The visualization distribution space (shown from two different view-points)
describes the possible distributions of a visualization between a compute-side and display-side
(gray represents pre-computed data, red represents computation, the transition between red and
blue represents visualization mapping, blue represents rendering, and green represents rendered
pixels).

1.4 Problem Statement 15

Pixel-based systems like VNC [37] and OnLive [38] are marked in the figure.
These systems perform all application logic on the compute-side and exchanges
pixels and events between the compute-side and display-side. Google Earth
(described in chapter 7, section 7.1.1) uses data that has been pre-processed on
the server-side. The data ranges from images to elevation data, but common for
all is that the compute-side serves this data without processing the data before it
is delivered to the display-side.

Workload distribution between the compute- and display-side is in many cases
pre-determined for each system. For example, several remote desktop systems,
such as VNC, use pixel transfer protocols. The problem with pre-determined
workload approaches is the lack of adaption to the compute- and display-side
hardware. A thin client with limited computational power, such as limited
hardware acceleration for graphics operations, would most likely benefit a remote
rendering approach such as VNC where the compute-side performs all rendering.
However, for a desktop computer with a multi-core CPU, and a many-core GPU,
this approach would most likely not utilize the computational power of the
desktop computer. This dissertation addresses this challenge using a data set
containing data customized for the particular application domain of the display-
side (see chapter 7 for a detailed description of the data set and the systems built
to take advantage of this).

1.4 Problem Statement

Performing interactive visualization on high-resolution tiled display walls is a
challenge. This challenge is caused by several factors.

Firstly, display walls often have a distributed and parallel architecture [39] [40]
[41] [42]. Visualization systems based on distributing graphics output from a
central computer allows for running proprietary software, but have scalability
problems when the number of display nodes is increased [32] [27]. Distributed
visualization systems have better scalability [27] [36], but does not allow for
proprietary software. Thus, one of the challenges with display walls today is to
support proprietary applications with good interactivity.

Secondly, distributed visualization systems require synchronization of state and
display-output in order for a set of display-nodes to appear as one unified
resource. Systems performing visualization using lock-step approaches and/or
barriers [36] [43] [44] introduce multiple points of failure and, based on the
implementation, can have a performance limited to the most heavily loaded node.

Thirdly, supplying visualization systems running on display walls with data from
local and remote data sources often requires orders of magnitude the data
amounts that a visualization system running on a single node does. This can be a
problem when requesting data from remote data sets, where network bandwidth
might be low and latency high. In addition, processing this data on the display

16 1 Introduction

nodes implies duplicate data processing since data might overlap between tiles of
the display wall.

Fourthly, utilizing both local and remote compute resources for computation of
domain specific data for a display wall is a challenge today. Grids and
supercomputers have strict security policies such as the lack of opening outgoing
connections, which complicates distributed access from a set of visualization
clients. Desktop computers are getting more powerful, but there are no simple
ways of integrating them with a visualization system running on display walls to
provide domain specific data.

Finally, interacting with high-resolution wall-sized displays requires visualization
systems that can benefit from several interaction systems. A display wall’s
combination of resolution and size allows users to stand close to the display wall
to look at details. Using a standard keyboard and mouse in these circumstances is
impractical, since a mouse usually needs a table surface to work, and wireless
keyboards are impractical to carry around [45]. The size of a display wall allows
several users to use it at the same time. This approach is not supported using the
traditional single cursor approach. Supporting alternative interaction devices is
therefore integral to interacting with wall-sized high-resolution displays.

The hardware trend in computer architectures indicates a continuing increase in
the number of cores and thereby the computing power. At the same time, more
work is being outsourced to remote internet services in the cloud. One example of
this is the OnLive service [38] where a user’s games are running on remote
servers and pixels are transferred to the user’s computer. This solution has some
positive implications for the user: (i) The user does not need a state-of-the-art
computer to be able to play the latest games, since the CPU- and GPU-intensive
parts of the visualization are running in the cloud; (ii) the user does not need to
own several hardware devices, i.e. Sony Playstation 3 (PS3) and Microsoft Xbox
360 to be able to play the latest games; and (iii) the user does not need to be
involved in setting up the environment or keeping the environment updated to the
same degree as if the games where running locally (i.e. making sure the latest
display driver is installed to get good performance of the GPU). However, the
increase in processing power of personal computers and the outsourcing of CPU
and GPU intensive tasks to remote internet services does not follow the same
track. Instead of moving all computations to the cloud, a more balanced
approached could be used. If the client-side of the cloud is a portable device, then
using remote rendering might be a good approach. However, for a more powerful
workstation the rendering could be handled by the local graphics card, instead of
displaying remotely rendered pixels. Another problem with outsourcing work to
remote services is that some data might be tied to a certain computer because of
compatibility and/or copyright issues. However, processed or selected parts of the
data might not be covered by these limitations. Systems for visualization could
take advantage of this by offering user selected and/or processed data portions to
be shared with the visualization system, while the original data is kept at its main
source.

1.5 Scientific Contributions 17

Displaying output from a computer desktop onto remote computer displays is
problematic. There exists multiple systems for doing this, but none of them
allows for cross-platform sharing of desktop output without making
modifications to the local software install, including opening firewall ports.
Additionally, remote desktop systems are based on a pull-passed architecture.
This complicates using remote screens, especially in display wall contexts, since
the connection must be initiated from the remote screen. In addition, some
systems only allow the entire desktop to be mirrored, and not only user selected
portions of it, leaving no private space for the user to work on the local desktop.
Displaying desktop output from a local computer to a display wall is even harder
because of its distributed and parallel architecture, and the fact that users are
running different operating systems and remote desktop software on their
computers.

Sharing projectors and displays in meeting room environments is another
problem today. Even a single projector in a meeting room can cause problems for
presentations because it may fail to detect input signal from the computer used
for the presentation. For mirroring, the resolution of the local display needs to
match the resolution of the projector. In many cases, the projector’s resolution is
lower than the resolution of the local display. This implies that the resolution of
the local display must be resized to the projectors lower resolution. For some
operating systems such as Windows [46], this will rearrange the desktop icons
and thereby modify the local desktop layout, even after the projector is
disconnected from the computer. In addition, there are no systems for simple
sharing of projectors and displays from multiple computers.

1.5 Scientific Contributions

This section presents the scientific contributions (principles, models and
architectures, and artifacts) researched and developed as part of this dissertation.

1.5.1 Principles

This subsection presents the principles formulated based on the research
conducted as part of this dissertation.

Establishing the end-to-end Principle through customization

The principle of establishing the end-to-end principle through customization
states that the end-to-end principle can be established between a client and a
server by customizing one or both sides. In this dissertation, the principle is used
for the setup and interaction between a display-side and a compute-side in a
visualization context. It involves customizing the compute-side (the producer of
data) by the display-side to produce customized data. By following this principle,

18 1 Introduction

display resources and compute resources will always be compatible, since the
protocol between them is dictated by the display-side.

Several compute-side resources might use a display-side resource simultaneously.
To protect the display-side resource, while at the same time providing a compute-
side resource with information about how to produce data, the customization
process provides the compute-side with the following information:

1. How to produce data.

2. How the display-side resource is shared.

Based on this information the compute-side produces data suitable and
customized for the display-side. The display-side uses this data to produce the
final image written to the frame buffer.

The customization of the compute-side is accomplished in two different ways:

1. Physically (directly executing code on the resource).

2. Virtually (using a third party mapper between customized and compute
resource behavior).

When a compute-side allows for custom software execution, the customization is
done by executing code directly on the compute resource. If not, an intermediate
third party handles the actual mapping of customized behavior, thereby
presenting a virtual customization of the remote resource, leaving the resource
itself untouched.

PC – PCR Duality

The PC – PCR duality principle states that a user’s computer is both a Personal
Computer (PC) and a Personal Compute Resource (PCR). For normal usage, a
user is interacting with a computer using attached input devices such as a
keyboard and a mouse. The output from the applications is written to the frame
buffer, which is scanned out on the attached display(s). In addition to this usage,
personal desktop applications can be used as resources available to other clients.
The production of data utilizes the fact that the desktop computer has a personal
desktop install that can produce customized data from local user-selected data
stored on the computer, or from data that sent to the computer. Clients can use the
personal compute resource to produce compatible data from data that might be
incompatible with the software installed on the client computer. A simple
example involves converting from one image format to another image format.
This illustrates a conversion between two resolution dependent formats. Several
data formats are resolution independent, such as vector graphics. Normally these
formats are constrained to the resolution of the personal computer’s display(s).
However, by decoupling the conversion of vector formats from the local frame

1.5 Scientific Contributions 19

buffer’s resolution (for example by redirecting the rendering to off-screen
textures or by producing tiled output), the produced data becomes independent of
the resolution of the local display. Other examples are conversion between vector
formats, such as DOC/DOCX to PDF, or vector format – vector format – pixel
format conversions such as DOC/DOCX to PDF to image-tiles.

Domain Specific Best-effort Synchronization

The principle of domain specific best-effort synchronization states that for
distributed visualization systems state handling can be performed using a best-
effort synchronization approach, where visualization clients eventually will get
the correct state after a given time period. The principle applies for state handling
when two properties are present in a system:

1. The participants of the state synchronization have established a pre-
agreement on their arrangement (the display’s placement in the display
wall grid).

2. Losing a state synchronization message does not affect the logic.

When these two properties are present in a system, state synchronization can be
handled using a centralized push-based heartbeat mechanism. This approach
enables central control of refresh-rate by suspending participants when waiting
for state heartbeat messages while, at the same time, avoiding multiple points of
failure by not requiring feedback from participants to the provider of the state
messages. In addition to avoiding multiple points of failure, a visualization
system’s load on the hardware can be controlled from a single location by
adjusting the update rate of the heartbeat state messages.

1.5.2 Models and Architectures

This section presents the models and architectures developed as part of the
conduced research.

Network Accessible Display Model

The Network Accessible Display (NAD) model was introduced in [47]. In this
dissertation, the model is refined to create a display with the capability to
customize a compute resource in order for the compute resource to be able to use
the display over a network connection. A two-phase customization protocol
integrates the compute resource with the NAD enabling communication between
the two parties.

20 1 Introduction

Network Accessible Compute Model

The Network Accessible Compute (NAC) model presents a customized view of
compute resources to other clients. Clients only implement a single interface to
the NACs and can thereby utilize existing and additional compute resources
without understanding their internal behavior. The NAC model defines two types
of compute resources: Static and dynamic. Static NACs are compute resources
that are considered permanent once installed in the system. Compute resources in
this category are grids, clusters and supercomputers. Dynamic NACs are compute
resources that are volatile in the sense that they can become a NAC on-the-fly to
provide data for a client-side, and then later remove itself. Compute resources in
this category range from laptops to hand held devices.

Live Data Set architecture

The live data set architecture is a data space architecture used for separating a
display- and compute-side for transparent communication. The live data set
contains data customized for the specific application domain of the display-side.
The live data set architecture is used to realize the NAC model. The live data set
accepts requests from clients, which it translates to compute related messages and
forwards to available compute resources (NACs). From the display-side’s
perspective, the live data set contains multiple data sets, which are a function of
the data that the compute resources can produce. The data appears to the display-
side as pre-computed. However, several compute requests might be performed to
fulfill a client’s request.

1.5.3 Artifacts

Several artifacts have been developed to document and demonstrate the research
conducted in this dissertation. This section gives a summary of these artifacts.

WallQuake

WallQuake (shown in figure 1.9) is an MLMR parallelization of the First Person
Shooter (FPS) game Quake 3. The game was parallelized to run on a display wall
and integrated with a touch-free multi-user interface for device-free interaction,
with the purpose of documenting the performance of using the touch-free
interface with an FPS game. WallQuake was compared with an SLMR approach
to document the performance of two different ways of parallelizing a game for a
display wall.

WallHomeworld

WallHomeworld (shown in figure 1.9) is an MLMR parallelization of the Real-
Time Strategy (RTS) game Homeworld. Similar to WallQuake this game was

1.5 Scientific Contributions 21

integrated with a touch-free multi-user interaction system to document the
performance of using the touch-free interface with an RTS game.
WallHomeworld was compared to a single display version to demonstrate how
the MLMR approach enables the game to scale to several display nodes.

Figure 1.9: Quake 3 Arena and Homeworld being played on the display wall at the University
of Tromsø. The persons at the left and right are playing Quake 3 Arena against each other. The
person in the middle is playing Homeworld.

WallCPUMandelbrot

WallCPUMandelbrot (shown in figure 1.10) is a parallelization of the
embarrassingly parallel Mandelbrot set computation. It comprises a static and a
dynamic workload version, and is designed to run on a display wall. These
versions were created to compare their parallel speedup with a state-of-the-art
GPU.

WallGPUMandelbrot

To speed up the execution of WallCPUMandelbrot, another version was created
to utilize previous generation graphics cards. This version maps the Mandelbrot
set computation to the OpenGL Shading Language (GLSL) API, and executes the
computation in a fragment shader. The purpose of this version is a comparison
between the Mandelbrot set computation running on previous generation graphics
cards on a display wall with a state-of-the-art GPU version.

22 1 Introduction

CUDAMandelbrot

CUDAMandelbrot (shown in figure 1.10) is a GPU parallelization of the
Mandelbrot set computation. It is implemented using the Compute Unified
Device Architecture (CUDA) [48]. This version of Mandelbrot is compared to
both WallCPUMandelbrot and WallGPUMandelbrot to document the
performance of a state-of-the-art GPU.

Figure 1.10: CUDAMandelbrot (displaying on the left screen) versus WallCPUMandelbrot
(running on the display wall).

CUDASync

Several state-of-the-art GPUs do not have the ability to communicate safely intra-
CMP. To investigate this problem CUDASync was created. It is a library for
enabling CUDA GPUs lacking support for communication through global
memory to do so in a fault-tolerant way.

The NAD System

To demonstrate the NAD model a system was developed to support mirroring of
multiple desktop regions from local computers onto remote displays, among
others a 22-megapixel display wall (figure 1.11). By adhering to the NAD model
and the principle of establishing the end-to-end principle through customization,
this system has the following properties:

1.5 Scientific Contributions 23

• Removes the need to have pre-installed matching remote desktop
systems on the client-side and server-side.

• Does not require permanent installation of third party software.

• Removes the need to open firewall ports on computers using the NAD.

• Allows for several user-selected parts of the desktop to be mirrored onto
NADs without being limited to mirror only the entire desktop.

Figure 1.11: Three computers using the NAD system to mirror content from the local desktop
onto a display wall. The computer on the left (Mac PowerBook running OS X) mirrors the
entire desktop (scaled up two times) onto the right portion of the display wall. The center
computer (Fujitsu Stylistic Tablet running Windows XP) mirrors the upper left part of the
desktop (scaled up two times) onto the center of the display wall. The computer at the right
(Dell Precision M90 running Linux Ubuntu) mirrors the entire desktop (no scaling) onto the
upper left part of the display wall.

Demo Framework

The demo framework is a system for demonstrating systems built for the display
wall presented in chapter 2, section 2.3, among others several of the systems built
as part of this dissertation. It is designed around the principle of establishing the
end-to-end principle through customization. A web server and a demo server are
running on the display wall’s front-end. A user can visit the web server through a
web browser to customize the computer, thereby integrating the computer with
the demo server. This integration enables the user to start and stop demos on the
display wall (see figure 1.12 for an illustration of the client-side Graphical User
Interface (GUI)).

24 1 Introduction

Figure 1.12: The graphical user interface of the demo client from where users can start and
stop demos. The demo interface is part of the customization of a user’s local computer.

WallScope

WallScope is a system for interactive visualization of local and remote data sets
on high-resolution tiled display walls. It comprises a set of components:

• WallCompute: WallCompute is the main provider of images in the
system. These images range from regular resolution images to high-
resolution gigapixel images. In addition, WallCompute can compute
maps from vector data, mask satellite images from vector data, and
provide elevation data.

• WallWeather: A supercomputer executes an on-demand weather
forecasting model. Data from this model is processed from a set of other
compute resources to produce domain specific weather visualizations
used by the display-side’s visualization systems.

• Dynamic Compute Resources: Laptops and desktop computers can
register on-the-fly with the system to become compute nodes for the
visualization systems.

• Live Data Set: The Live Data Set (LDS) is an implementation of the live
data set architecture used as a bridge between NADs and NACs.

• WallGlobe: Two virtual Earths, both called WallGlobe, have been
created. The first version was implemented in Java using OpenGL for

1.5 Scientific Contributions 25

rendering. Lessons learned from this implementation were used to create
a new version in C++ also using OpenGL for rendering (figure 1.13). To
support interactive weather forecasting on the display wall, WallGlobe
was extended to support weather visualizations that can be overlaid over
Earth visualizations. This system utilizes several NACs in WallScope
(WallCompute and WallWeather).

• WallView: WallView is a visualization system for interactive
visualizations of gigapixel images. One of the images is a 13.3 gigapixel
image of Tromsø taken from Fløya.

• LDSView: LDSView is a visualization system that combines the latest
version of WallGlobe with WallView. It queries the live data set at
regular intervals to include a visualization of all data that the live data set
contains. This data is a combination of all the data the NACs connected
to the live data set can produce, which might include additional data
from dynamic compute resources that registers on-the-fly with the
system.

Figure 1.13: WallGlobe showing a plane after a take-off from Langnes airport, Tromsø,
Norway.

1.5.4 Impact

The work presented in this dissertation has had impact by contributing to state-of-
the-art parallel and distributed visualization systems through peer-reviewed

26 1 Introduction

publications. In addition, the systems have been deployed and used on a daily
basis at the display wall lab presented in chapter 2, section 2.3, and have been
presented on numerous demos and presentations there, among others for high-
school classes, Dell, Statoil, the supercomputing-day at the University of Tromsø
and the Norwegian branch of the Fulbright Program.

WallScope has been demonstrated to the military at several occasions. WallGlobe
has attracted their attention because of its possibilities for combining data from
several local and remote locations with visualizations of the Earth.

The NAD system has been in daily use since its first prototype. Users and visitors
at the display wall lab that needs to display output from their local computer onto
the display wall have been able to do so by simply clicking a link in a web
browser. Because of this simple approach, the system has become an important
part of the display wall environment. It also enables several proprietary systems
to be used on the display wall without requiring any modifications, by simply
mirroring their output to the display wall. As of this writing, the system has
worked for every user and visitor needing to display output from their local
computer onto the display wall.

WallScope including all visualization systems has been presented on numerous
demos. WallView was presented in a press conference for enabling interactive
visualization of a 13.3 gigapixel image of Tromsø taken from Fløya. This press
conference was also covered by NRK [49], a national TV channel, and several
newspapers. A recording of this system was uploaded to YouTube4. As of this
writing the video has a view count of 137 495 views. The system including the
YouTube video has been covered on numerous online tech articles among others
Engadget [50], SlashGear [51], NRKbeta [52], Hack a Day [53] and Ubergizmo
[54]. WallGlobe has been used to demonstrate the display wall and has appeared
among others in the Nordlys newspaper [55].

1.6 Summary of Papers

This section includes a summary of the papers forming the basis of this
dissertation. The papers are divided into: (i) Background papers, describing some
of the motivations and problems leading to some of the principles and models
behind network accessible compute- and display-resources; (ii) push-based
network accessible compute- and display-resource papers; and (iii) pull-based
network accessible compute- and display-resource papers.

4http://www.youtube.com/watch?v=8bHWuvzBtJo (thanks to Daniel Stødle for recording,
editing and uploading the Gigapix movie to YouTube).

1.6 Summary of Papers 27

1.6.1 Background Papers for Network Accessible

Compute- and Display-Resources

Gesture-Based, Touch-Free Multi-User Gaming on Wall-Sized,

High-Resolution Tiled Displays

This paper presents two different approaches for parallelizing two existing games
(Quake 3 Arena and Home World) based on an SLSR model to run on a high-
resolution tiled display wall. The purpose of the work is to document and
evaluate the performance of the two different parallelization approaches.

Citation: Daniel Stødle, Tor-Magne Stien Hagen, John Markus Bjørndalen, and
Otto J. Anshus. Gesture-based, Touch-Free Multi-User Gaming on Wall-Sized,
High-Resolution Tiled Displays. In Proceedings of the 4th International
Symposium on Pervasive Gaming Applications, PerGames, pages 75–83, June
2007.

Revised: Daniel Stødle, Tor-Magne Stien Hagen, John Markus Bjørndalen, and
Otto J. Anshus. Gesture-Based, Touch-Free Multi-User Gaming on Wall-Sized,
High-Resolution Tiled Displays. Journal of Virtual Reality and Broadcasting,
5(10), November 2008.

Comparing the Performance of Multiple Single-Cores versus a

Single Multi-Core

This paper compares the performance of the embarrassingly parallel Mandelbrot
set computation on four different systems: (i) A single single-core computer; (ii)
a cluster of 28 single-core computers; (iii) a cluster of 28 single-core computers
where the main processing is done on older generation multi-core graphics cards
on each computer; and (iv) a single single-core computer with a modern multi-
core graphics card. The purpose of this paper is a performance evaluation of four
different compute systems and the implications of their hardware architectures.

Citation: Tor-Magne Stien Hagen, Oleg Jakobsen, Phuong Hoai Ha and Otto
Anshus. Comparing the Performance of Multiple Single-Cores versus a Single
Multi-Core. In Proceedings of the 9th International Workshop on State-of-the-Art
in Scientific and Parallel Computing, PARA, 2008.

Experimental Fault-Tolerant Synchronization for Reliable

Computation on Graphics Processors

This paper presents an implementation of a lock-free synchronization mechanism
for graphics cards of CUDA compute capability 1.0 (global and shared memory)
and 1.1 (shared memory, since global memory has hardware support for atomic
operations) that eliminates lock-related problems like the deadlock and, in
addition, can tolerate process crash-failure. This paper addresses the experimental

28 1 Introduction

issues that arise in the implementation of the mechanism and evaluates its
performance on commodity GeForce 8800 graphics cards.

Citation: Tor-Magne Stien Hagen, Phuong Hoai Ha and Otto Anshus.
Experimental Fault-Tolerant Synchronization for Reliable Computation on
Graphics Processors. In Proceedings of the 9th International Workshop on State-
of-the-Art in Scientific and Parallel Computing, PARA, 2008.

1.6.2 Push-Based Network Accessible Compute- and

Display-Resource Papers

Liberating the Desktop

This paper presents the network accessible display model based on the principle
of establishing the end-to-end principle through customization. The purpose of
this paper is to demonstrate how a system built on this model and principle
enables a simple and flexible way to utilize nearby display resources without
requiring permanent installation of new software or opening firewall ports on the
NAC.

Citation: Tor-Magne Stien Hagen, Espen Skjelnes Johnsen, Daniel Stødle, John
Markus Bjørndalen, and Otto Anshus. Liberating the Desktop. In Proceedings of
the First International Conference on Advances in Computer Human Interaction,
ACHI, pages 89-94, February 2008.

1.6.3 Pull-Based Network Accessible Compute- and

Display-Resource Papers

On-Demand High-Performance Visualization of Spatial Data on

High-Resolution Tiled Display Walls

This paper presents the live data set architecture, and demonstrates how a system
built around this architecture enables seamless communication between NADs
and NACs. It also demonstrates how a visualization system can get customized
data from local and remote NACs on-demand, enabling visualization systems to
get data based on the latest version of available remote data sets.

Citation: Tor-Magne Stien Hagen, Daniel Stødle, and Otto Anshus. On-Demand
High-Performance Visualization of Spatial Data on High-Resolution Tiled
Display Walls. In Proceedings of the International Conference on Information
Visualization Theory and Applications, pp. 112–119, May 2010.

1.7 Organization 29

Interactive Weather Simulation and Visualization on a display

Wall with Many-Core Compute Nodes

This paper presents network accessible compute resources used to produce
weather forecasts, and demonstrates how these compute resources can be used
with an existing visualization system to provide interactive visualization of user-
selected weather forecast regions.

Citation: Bård Fjukstad, Tor-Magne Stien Hagen, Daniel Stødle, Phuong Hoai
Ha, John Markus Bjørndalen and Otto Anshus. Interactive Weather Simulation
and Visualization on a Display Wall with Many-Core Compute Nodes. To appear
in the Proceedings of the 10th International Workshop on State-of-the-Art in
Scientific and Parallel Computing, PARA, 2011.

A Step towards Making Local and Remote Desktop Applications

Interoperable with High-Resolution Tiled Display Walls

This paper applies the Network Accessible Compute (NAC) model to personal
compute resources to utilize desktop applications in a display wall context. The
paper defines the two different NAC types, static and dynamic, and demonstrates
how a set of dynamic NACs can be used to produce customized data for a
visualization system running on a display wall.

Citation: Tor-Magne Stien Hagen, Daniel Stødle, John Markus Bjørndalen and
Otto Anshus. A Step towards Making Local and Remote Desktop Applications
Interoperable with High-Resolution Tiled Display Walls. To appear in the
Proceedings of the 11th IFIP International Conference on Distributed Applications
and Interoperable Systems, DAIS, 2011.

1.7 Organization

The remainder of this dissertation is organized as follows. Chapter 2 presents
display walls and details hardware platforms and software systems commonly
found in these environments. Chapter 3 gives an introduction to Graphics
Processing Units (GPUs) and continues with a description of the Compute
Unified Device Architecture (CUDA), NVIDIA’s technology for General
Purpose computations on Graphics Processing Units (GPGPU). Chapter 4 details
the methodology used for the research presented in this dissertation. Chapter 5
presents Network Accessible Resources, in particular, Network Accessible
Compute (NAC) resources and Network Accessible Display (NAD) resources,
and continues with a description on some of the background leading to some of
the principles and models behind NACs and NADs. Chapter 6 details the push-
based network accessible compute- and display-resources built as part of this
dissertation. Chapter 7 presents WallScope, the system realizing pull-based
network accessible compute- and display-resources. Chapter 8 discusses the

30 1 Introduction

research presented in this dissertation, and chapter 9 draws conclusions. Chapter
10 outlines some areas of future research.

Appendix A includes all the papers that this dissertation is based on. Appendix B
includes additional work done with the WallScope system. Appendix C gives an
overview of the content of the accompanying CD-ROM.

31

 Chapter 2

Display Walls

A display wall is a scalable high-resolution tiled display (figure 2.1). High-
resolution implies a resolution that is higher than the resolution found on normal
desktop displays, which is typically between one to four megapixels. It is not
unusual that the resolution is orders of magnitude higher [56]. Tiled means that
the display wall is comprised of multiple displays arranged in a grid. Scalable
implies that more resolution can be provided by adding more displays to the grid.
In the literature, synonyms for display walls are among others display arrays,
tiled displays, display grids and powerwalls.

Figure 2.1: Illustration of the display wall lab at the Department of Computer Science,
University of Tromsø.

The key characteristics of a display wall are: (i) Its size enable several people to
use it simultaneously; (ii) its resolution allows large amounts of information to be
presented, with high fidelity; and (iii) the combination of size and resolution

32 2 Display Walls

enable users to get overviews, at the same time being able to walk up close to
look at details.

In the following sections, hardware- and software-systems for display walls are
presented. Then a description of the display wall used as a basis for much of the
research presented in this dissertation is provided.

2.1 Display Wall Hardware

Display walls are typically built by commodity PC components [57] [58]. In the
following sections, a listing of the technologies comprising display walls is
provided, with a description of the pros and cons of each technology.

2.1.1 Display Technology

There are two common display technologies used to build display walls: (i) LCD
displays; and (ii) projectors. There are tradeoffs between the two technologies,
listed below.

LCD Displays

Pros:

� Easier to align.

� Better color and brightness correspondence.

� Cheaper per pixel.

� Better DPI/PPI.

� Normally do not need external cooling.

� No separate canvas required.

Cons:

� Borders/mullions between displays. (LCD displays have a border around
the visible part of the screen, and thus when tiled, breaks the illusion of a
unified display surface). Borders can make text harder to read.

Projectors

Pros:

� No borders/mullions.

2.1 Display Wall Hardware 33

� Can be moved backward/forward to increase/decrease the size of the
projected area.

Cons:

� Take up space behind the display canvas (projectors are normally rear-
projecting on a display canvas to avoid shadows being casted on the
display when the user covers that region).

� Needs cooling. This adds maintenance cost to the system.

� Lamps only last for a certain period before they must be replaced, adding
additional cost to the system.

� The colors and brightness of the projectors are normally not well
matched compared to LCD displays. This problem becomes worse when
lamps are replaced, because lamps degrade over time. This creates strong
differences in colors when replacing some of the bulbs.

The display technology used for a display wall depends on the requirements for
the infrastructure and users’ preferences. If borders do not pose a problem for
users, LCD displays would probably be the preferred solution. If not, projectors
would be a good alternative.

2.1.2 Computer System Technology

A display wall comprises multiple displays, and thus needs a video signal for
each display. Contemporary graphics cards are usually dual-headed, which means
they can drive up to two displays. However, lately several graphics cards have
been introduced with the possibility to drive more than a couple of displays. For
example, AMD Eyefinity cards [59] can drive up to 6 displays. Depending on
how many displays the display wall comprises the two most widespread
configurations for driving display walls are: (i) One computer, which contains
one to a handful of graphics card that together drives all the displays; and (ii)
multiple computers, where each computer has a single graphics card that drives
up to a couple of displays.

Single Computer Systems

Single computer systems for driving display walls combine the fact that certain
graphics cards can drive several displays, with the possibility of adding multiple
graphics cards within a single system. The result is a single computer having
multiple graphics cards connected to a single motherboard. This configuration
simplifies application development because the operating systems in many cases
can present all graphics cards as one unified resource to the applications running
on the system. Additionally, this solution is cheaper since a graphics card is
cheaper than a complete computer system.

34 2 Display Walls

Although single computer systems maintain the application programming models
for developers, there are some drawbacks to these solutions. These systems will
only have a single motherboard with one/few (multi-core) CPU(s), and thus the
same CPU and I/O processing power as a single desktop computer. Further, the
number of displays that can be driven by the system is hard limited to the number
of graphics cards that can be plugged into the system (the number of AGP/PCI
express slots) multiplied with the number of displays each graphics card can
drive. For small to medium display walls, this might be enough, but for ultra-high
resolution environments [56] it is not. Single computer systems, strictly speaking,
therefore break with the scalable definition of a display wall, since the number of
displays that can be driven by a single computer is fixed.

Distributed and Parallel Systems

When a single computer is not an option for driving a display wall, multiple inter-
connected computers can be used. Each computer typically drives one to a few
displays. Synchronization of the output is achieved using inter-communication.
The total computing and I/O processing power of these systems are higher than
that of a single computer. However, these systems have some disadvantages.
Firstly, this solution requires more hardware and is therefore more expensive.
Secondly, the distributed architecture of the display wall introduces one shared
interconnect, the network. A common networking technology today is 1 gigabit
switched Ethernet. Compared to the interconnects on the north-bridge of a
modern computer’s mainboard this is an order of magnitude less bandwidth.
Finally, most applications today are designed using an SLSR approach and do
therefore not natively support the distributed and parallel architecture of a display
wall. Depending on their design and source code availability, much work might
be required to get them running on the display wall.

2.2 Display Wall Software

This section applies mainly to distributed and parallel systems. For single
computer systems, the software approaches are in many cases the same as for
single desktop computers, because the graphics cards are presented to the
applications as one unified resource.

A challenge for distributed and parallel systems is application compatibility with
existing software. For open source applications, the process of changing them to
an MLMR approach can be time consuming. For proprietary applications, an
SLMR approach can be used. This requires modifications to the underlying
libraries. However, when this modification has been carried out, several other
applications using the same libraries can be run unmodified on the display wall.
Depending on the application type, this configuration can quickly become
bottlenecked by the network.

2.2 Display Wall Software 35

The following sections provide a description of common software that can be
used to drive a display wall.

2.2.1 Virtual Network Computing (VNC)

Virtual Network Computing (VNC) [37] is a remote desktop system based on the
RFB protocol [60]. The server is the computer hosting the main frame buffer and
applications, and the client is the computer showing the remote frame buffer
(figure 2.2). The protocol is pull-based, meaning that the client asks the VNC
server for updates and provides the server with keyboard and mouse events.
These events are inserted into the event queue of the server’s window system.

Figure 2.2: VNC's traditional client-server model.

The VNC server keeps track of all the updates performed to the frame buffer
since the last client request, encodes these updates using a client-server agreed
encoding protocol, and sends them to the client in response to a request for
update. The VNC protocol is extendable and therefore supports a wide range of
encoding protocols. There are many implementations of VNC, among others
RealVNC [61], TightVNC [62], UltraVNC [63] and XVNC [64].

Although the VNC protocol originally was designed for a single client and server,
it can be extended to support a display wall. XVNC is a VNC implementation
where the VNC server creates an X server with a virtual frame buffer, instead of
sharing the frame buffer of an existing X server. This virtual frame buffer is
hosted in main memory. This has two implications: (i) The frame buffer does not
have the same restriction on the resolution as a frame buffer hosted in GPU
memory (this restriction is a hard limit of the texture size of the GPU); and (ii)
rendering to the frame buffer is not hardware (GPU) accelerated, and thus the
CPU must do all rendering in software. By modifying an existing VNC client and

36 2 Display Walls

an XVNC server, multiple clients can be configured to request part of a larger
frame buffer. The XVNC server creates a virtual frame buffer equal to the total
resolution of the display wall. A client is provided with information about its
location in the display wall grid, and based on this information, requests the
pixels affecting its part of the frame buffer from the XVNC server (figure 2.3). In
addition to performance penalties from software rendering and encoding of
pixels, the network between the clients and the server often becomes a bottleneck
using this configuration [32].

Figure 2.3: VNC in a display wall context.

2.2.2 Distributed Multihead X (DMX)

Distributed Multihead X (DMX) [34] is a front-end X proxy server. When used
with Xinerama [34], the front-end X proxy server presents a set of back-end X
servers as one unified screen to its clients. The back-end X servers can be run on
separate physical computers. By using DMX on a display wall existing X clients
can utilize the display wall’s full resolution, since the display wall is presented as
one large display instead of multiple separate tiles. In contrast to the XVNC
based system presented in the previous section, DMX uses both commands and
pixels5 (pixels are typically image surfaces generated using XPutImage) to
generate the final desktop image. When viewing high-resolution images, this
might result in large amounts of raw pixel data to be sent to all back-end X
servers. This might saturate the network at the initial loading of the image.
Informal experiments with DMX indicated that this would be a performance
problem with this system.

5 The X11 protocol description is available at [19]

2.2 Display Wall Software 37

2.2.3 Chromium

Chromium [33] (based on WireGL [65]) is an interactive rendering system
designed for clusters. Chromium uses streaming processing units (SPUs) to
serialize and optionally modify OpenGL stream commands. An SPU takes a
stream as input and produces zero or more output streams. The communication
between SPUs located on different computers is handled by a point-to-point
connection-based networking abstraction. Chromium can be used to redirect
application output from OpenGL based applications to display wall tiles. The
OpenGL library used by the application is replaced by Chromium’s OpenGL
library. This library intercepts all OpenGL commands and forwards them to a
local SPU. A sort-first tile SPU can be used to sort and forward the OpenGL
commands to a set of Chromium servers running on the display wall’s tiles. The
SPU on each tile forwards the commands to the local graphics card. Several other
configurations can be used including a sort-last and a hybrid sort-first sort-last
approach. The drawback to using Chromium to drive a display wall by
intercepting graphics commands from a central computer is the fact that the PCI-
express bus is effectively replaced by a network connection in addition to that the
CPU must sort graphics primitives for the display-side, which in some cases will
limit its scalability [27] [36]. This depends heavily on the configuration used and
the intrinsic of the applications.

2.2.4 Scalable Adaptive Graphics Environment (SAGE)

SAGE [66] is a pixel-based remote rendering system for display walls. In SAGE,
rendering is separated from displaying using a dedicated rendering cluster to
deliver pixels to a set of display nodes. SAGE incorporates a stream windowing
manager allowing streams of pixels to be overlapped, moved and resized on the
display wall. A SAGE Application Interface Library (SAIL) is used on the
rendering-side to capture the output of the application rendering and stream the
output to set of SAGE receivers (one receiver per display node). A FreeSpace
manager communicates with SAIL, SAGE receivers and UI clients to control the
final composition of the streams on the display wall. The drawbacks to SAGE
are: (i) The pixel based protocol which can require high bandwidth links between
render clusters and display nodes (SAGE was originally designed for OptiPuter,
an infrastructure comprising rendering clusters and display walls connected over
optical deterministic high-speed networks); and (ii) the lack of display-side
utilization since the display-side only displays pre-rendered images, and therefore
does not fully utilize the graphics cards rendering capabilities nor the CPUs
computing capabilities.

38 2 Display Walls

2.3 The Display Wall at the University of

Tromsø

This section describes the display wall at the University of Tromsø (illustrated in
figure 2.1). The display wall was built in 2004, and is a used in almost all of the
research presented in this dissertation.

2.3.1 Hardware

The display wall comprises a 7x4 grid of projectors driven by 28 computers. Each
of the projectors has a resolution of 1024x768 pixels, giving a total resolution of
7168x3072 pixels.

The computers driving each projector has an Intel Pentium 4 3.2 GHz
(HyperThreading) CPU, 2 gigabytes of RAM and an NVIDIA Quadro FX3400
Graphics Card with 256 megabytes of Video RAM. All computers are connected
using switched gigabit Ethernet. The projectors and computers are located in a
separate room. Projectors are rear projecting on a 6x3 meter canvas. This canvas
separates the room holding the projectors and computers from the display wall
lab.

There are 16 firewire cameras mounted on the floor in front of the display wall
canvas. These cameras are part of a touch-free interaction system. Cameras are
pair-wise connected to 8 Mac Minis.

Table 2-1 summarizes the display wall’s specifications including the touch-free
interaction system.

Table 2-1: The hardware specification of the Tromsø display wall

Component Specification Quantity Total

Projectors 1024 x 768 7x4 7168x3072

Display Wall
Computers

Dell Precision 370

7x4 28

Intel 925X Express Chipset

Intel Pentium 4, 3.2 GHz
CPU w/HyperThreading

2 gigabytes RAM

NVidia Graphics Card
w/256 megabytes VRAM

2.3 The Display Wall at the University of Tromsø 39

Camera System
Computers

Mac Mini

8x1 8

Intel Core Duo 1.66 GHz
CPU

512 megabytes RAM

Intel GMA 950 w/64 MB
VRAM

Cameras 640x480 16x1 10240x480

Interconnect Switched gigabit Ethernet

2.3.2 Software

The operating system installed on the display wall nodes is Rocks Linux Cluster
Distribution 4.0 32-bit. This distribution is based on Cent OS release 4.2.

The VNC solution presented in section 2.2.1 is used to create a desktop
environment on the display wall. A dedicated computer runs an XVNC server
with a virtual frame buffer of 7168x3072 pixels. VNC clients on every tile
request their part of the frame buffer based on their location in the display wall
grid. Users can display output to the display wall from X applications by setting
the DISPLAY environment variable to the secondary display of this computer.

Shout, an event system created by Daniel Stødle [45], is used to send events
between different providers and listeners running on the display wall. The touch-
free interaction device is a provider of touch-events. The microphones and an
associated snap click system are providers of sound-location events. The Shout
event system has a central server managing the delivery of events between
providers and listeners. New providers and listeners can be created using the
Shout API (which currently has both C/C++ and Python bindings).

The Network File System (NFS) is used on the display wall cluster to provide
unified access to the home folder for every user. The NFS server is hosted by the
front-end of the display wall cluster. The NFS file system must be taken into
consideration when running experiments that reads/writes files, since file location
determines if reads/writes require synchronization over the network to the front-
end computer, or can be done locally without intervention from the NFS server.

41

 Chapter 3

Graphics Processing

Units

Graphics Processing Units (GPUs) have emerged as a promising platform for
highly-parallel compute-intensive, general-purpose computations. This chapter
gives an introduction to GPUs. It continues with a description of the Compute
Unified Device Architecture (CUDA), NVIDIA’s technology and programming
model for General-Purpose computations on Graphics Processing Units
(GPGPU).

3.1 Introduction to GPUs

A GPU is a processor attached to the graphics card (dedicated) or mainboard
(shared). It is used to offload compute intensive tasks such as graphics operations
and other more general SIMD operations from the CPU. While a CPU needs
transistors for among others control logic and data caching, a GPU devotes more
transistors to data processing. This has made the GPU an order of magnitude
faster for problems that can be expressed in a data-parallel fashion. GPUs where
introduced to perform graphics operations for real-time interactive graphics.
Graphics operations are embarrassingly parallel, meaning that graphics primitives
can be assigned to processors without any further communication. Early versions
of graphics cards performed fixed function operations on the graphics primitives
when they flowed through the graphics pipeline. However, as graphics cards
evolved, more flexibility was given to the developers by allowing them to control
two stages in the graphics pipeline: Vertex- and fragment-processing. Fragment
processing is also referred to as pixel processing (for example by Direct3D [67]).
The vertex stage is where vertices (positions, normals, colors and texture
coordinates) are transformed to world space, colored based on lighting
information, and then finally transformed to view space. The fragment stage is
where primitives (connected vertices) are rasterized into pixels. Early approaches
to GPU computing mapped the general-purpose computation to a problem that
could be expressed using the functionality provided in the vertex and/or fragment

42 3 Graphics Processing Units

stage. For example, by uploading the data for the computation to a texture and
then execute the general-purpose program using data from the texture in the
fragment shading stage, before reading back the result from a render texture or
the frame buffer. While this gave speedup for several types of computations, it
had several limitations. The developer needed to learn a graphics API such as
Direct3D [67], OpenGL [23] or Cg [68], and had to map the algorithm to
vertices- and fragment-programs in one of these APIs. Additionally, GPU
memory could not be accessed randomly. A vertex program operates on one
vertex at a time, without knowledge about other vertices connecting the primitive.
A fragment program operates on one pixel at the time and does not expose
information about neighboring pixels. Another problem affecting both graphics
processing and GPGPU computations was that depending on the amount of
geometry and textures in a scene, the GPU could become either vertex
bottlenecked or fragment bottlenecked while the other stage in the pipeline was
not fully utilized. This problem was caused by the fact that the GPUs had one set
of processors for vertex processing and another set of processors for fragment
processing. With the introduction of Direct3D 10.0 this was solved by
introducing a new generation of GPUs having unified processors that could do
both vertex- and fragment-processing, thereby giving better utilization in both
stages. Another feature of the new generation GPUs was the ability to utilize the
GPU without expressing the general-purpose computation using a graphics API.
NVIDIA called the new architecture of their graphics cards the Compute Unified
Device Architecture (CUDA).

3.2 The Compute Unified Device

Architecture

The Compute Unified Device Architecture (CUDA) [69] was introduced by
NVIDIA in November 2006 [48]. This architecture uses a new parallel
programming model and instruction set architecture compared to previous
generation graphics cards. It enables developers to write programs to be executed
on a GPU without first mapping them to a graphics API. CUDA improves
memory access by giving the programmer full read/write support to the entire
device memory with some minor exceptions. From the programmer’s
perspective, the GPU can be seen as a set of highly parallel multi-core processors.
Each processor is capable of running multiple threads in parallel in a SIMD
fashion.

The CUDA memory architecture comprises several memory layers (figure 3.1).
Each processor has 4 different types of on-chip memory:

� Each core has its own set of on-chip registers.

3.2 The Compute Unified Device Architecture 43

� Each processor has on-chip shared memory, which is shared by the
processor cores. Reads and writes to the shared memory are serialized in
case of bank conflicts.

� Each processor has an on-chip read-only constant cache.

� Each processor has an on-chip read-only texture cache.

The processors share device memory, which is divided into global memory,
texture memory and constant memory. Reads from texture and constant memory
are cached using the on-chip, read-only, constant- and texture-cache. Global
device memory is not cached.

Figure 3.1: The Compute Unified Device Architecture (CUDA).

A CUDA compiled program is referred to as a kernel. The kernel is organized as
a grid of thread blocks. These thread blocks are organized into batches and
executed on the processors. A block is processed by only one processor to
maximize the utilization of the shared memory. A block is split into SIMD groups
of threads called warps and each of the threads within the warp is executed on the
processor cores in a SIMD fashion. The warps of a running block are time-sliced
to maximize the utilization of the processor. The way a block is split into warps is
always the same, but the issue order of the different warps is undefined. The
time-slicing is hardware scheduled, yielding little overhead for context switches.
Threads within the same block can communicate using the processors’ on-chip
shared memory.

NVIDIA uses the term compute capability to separate the different architectures
of their CUDA cards. A card’s compute capability is defined by a major revision
number and a minor revision number. Devices of the same major revision number
have the same core architecture. The minor revision number corresponds to minor

44 3 Graphics Processing Units

updates to the core architecture. Currently, there exist cards of compute
capabilities 1.0, 1.1, 1.2, 1.3, 2.0 and 2.1. Cards of compute capability 1.0 do not
have a safe way to communicate through global memory. However, access to
global memory has one property that can be used to create synchronization
primitives. The device is capable of reading and writing 32-bit, 64-bit and 128-bit
words to or from global memory in a memory transaction. This requires the
variable type to be a multiple of 4, 8 or 16 bytes, and the read- or write-
instructions must be arranged so that the memory accesses can be coalesced into
a single contiguous, aligned memory address. This mechanism is used in
CUDASync, presented in chapter 5, section 5.4.3.

CUDA’s instruction set architecture is called PTX (Parallel Thread Execution).
C/C++ code is compiled with NVIDIAs nvcc compiler, which extracts the GPU
code from the CPU code and compiles the GPU code into PTX and/or object
code. Object code is referred to as cubin objects. The CPU code is left to be
compiled by an external tool or by invoking the host complier from nvcc. Code
compiled to PTX assembly code is forward compatible with GPUs of future
compute capabilities, and can be just-in-time compiled by the driver upon
execution. Cubin objects are not portable between GPUs of different
architectures.

By splitting a kernel into blocks containing multiple threads, a program will
automatically scale to future GPUs with more processors without affecting the
underlying program logic. However, this requires that the number of threads
created is enough to keep all processors utilized. In addition, multiple
optimization strategies exist to increase the utilization of the processors and the
high memory bandwidth. Some optimization strategies are (from [48]):

1. Maximize utilization:

a. Application level: Maximize parallel execution between the
host and the device, and the bus connecting the host to the
device (i.e. asynchronous kernel invocations).

b. Device level: Maximize parallel execution between the
processors of a device (i.e. use at least as many threads as there
are processor cores).

c. Processor level: Maximize parallel execution between the
various functional units within a processor (i.e. choose thread
block size based on register and shared memory requirements).

2. Maximize memory throughput

a. Minimize data transfer between host and device.

b. Maximize memory coalescing to global memory.

3.2 The Compute Unified Device Architecture 45

c. Avoid shared memory bank conflicts.

3. Maximize instruction throughput

a. Sacrifice precision for speed when it does not affect the end-
result by using intrinsic function in favor of regular functions.

b. Minimize thread divergence between threads within the same
warp.

c. Reduce the number of instructions, for example by optimizing
out synchronization points.

CUDAMandelbrot (presented in chapter 5, section 5.4.2) is implemented
adhering to the aforementioned optimization strategies to utilize the processing
power and high memory bandwidth of the GPU.

47

 Chapter 4

Methodology

The research presented in this dissertation follows a systems approach. This
approach involves creating and evaluating computer systems. The first stage in
this approach is an idea, which describes the overall goal of the research
intended. To evaluate the idea, a system is created to gain insight into its
implications on real hardware. The first stage towards a realization of the system
is an architecture describing the interaction between the main components of the
system.

���������	��

����
�������
�����

��������
��

����

Figure 4.1: Systems research methodology.

48 4 Methodology

Based on the architecture, a specific design is chosen for the system. The design
describes the realization of each of the components of the architecture. A specific
implementation is developed following the design. The implementation is the
actual realization of the system on hardware.

To get performance measurements in a controlled manner, experiments are
designed and conducted to evaluate and demonstrate the implications of the
overall idea. The results of the experiments are analyzed and conclusions are
drawn. Based on the conclusions, the idea, architecture, design or implementation
is refined and the cycle continues (figure 4.1).

The mapping between idea and architecture is one-to-many, meaning that several
architectures can realize the idea. This also applies to the design and
implementation: Several designs can be chosen based on one architecture, and
several implementations can be made based on one specific design (figure 4.2).

Figure 4.2: The relation between idea, architecture, design and implementation.

The implication of this one-to-many relationship is that even though an
experiment does not give the expected results, it might be a result of the path
chosen towards the actual implementation of the system, which might require
revising the architecture, design or implementation. Nevertheless, the idea, results
and the path chosen is often worthwhile to report on in a scientific paper, because

4.1 Metrics 49

it demonstrates one specific approach to a specific problem and the implications
of the choices made.

The reason that an actual implementation is carried out on real hardware is that
the interplay between software and hardware is so complex that it is difficult to
predict an outcome of a certain idea without creating a system that realizes it.
One concrete example on this is the CUDASync research carried out in chapter 5,
section 5.4.3. The CUDASync results document that synchronization primitives
can be created in global and shared memory of CUDA compute capability 1.0
cards, without the need for synchronization primitive support in hardware, by
using the coalesced memory access intrinsic. Although the algorithm for the
synchronization had been theoretically proven, and the actual implementation
carried out further demonstrated the correctness of the algorithm, a limitation was
discovered. The small size of on-chip memory reduced the amount of
simultaneous threads that could synchronize through shared memory because the
data structures needed for the algorithm exceeded the amount of on-chip memory.
This was not discovered before the experiments were conducted, and
demonstrates the need to carry out implementations to document the actual
performance characteristics and limitations on real hardware.

To demonstrate the advances of a new idea the goal is to compare the proposed
system with a similar system in the literature. However, in many cases this can be
hard if not impossible. Firstly, there might not exist a comparable system.
Secondly, several systems are not open-source and are therefore hard to evaluate.
Thirdly, for those systems that do have a documented performance evaluation,
the hardware configuration is often not the same, making it hard to compare the
systems based on just the performance measurements reported on. Finally, even
though a “similar” system is available and open-source, the system does not
necessarily have the desired functionality, making it necessary to modify the
system to be able to compare them. The modifications made to the system might
not reflect its original design. For example distributing a centralized graphics
application to compare it with a proposed distributed visualization system might
yield a system that is un-optimized because of its centralized design, such as the
lack of view-dependent data selection and strict binding between the different
stages in the visualization pipeline.

4.1 Metrics

In this dissertation, the following metrics are used for performance
measurements: (i) CPU-load; (ii) memory usage; (iii) network bandwidth usage;
(iv) frame rate; and (v) latency.

50 4 Methodology

4.1.1 CPU Load

CPU load is the metric describing the time-period a process has been running on
the CPU divided by the total time elapsed within the measurement period
multiplied by 100. The metric for CPU load is percent. For example, if a process
has been allocated the CPU for 500 milliseconds within a period of 1 second, the
CPU utilization is 50 percent. Processors that have more than a single core can
have a CPU utilization of 100 percent multiplied by the number of cores (this also
includes processors with HyperThreading, where the CPU load can reach 200
percent for a single-core CPU with HyperThreading enabled). The CPU load can
be divided into user-mode load and kernel-mode load. User mode is the time
spent in user space performing non-privileged instructions, while kernel-mode
(sometimes referred to as system-mode) is the time spent inside the kernel on
behalf of the process. There are several ways to monitor the CPU load of a
process. The top utility [70] can be used to get a quick overview of CPU
utilization. On Linux top uses the proc file system for querying this information.
/proc/pid/ contains numerous files describing the statistics of a process.
/proc/pid/stat contains information about the CPU usage. proc is a pseudo
filesystem, meaning it is an interface to kernel data structures and updated each
time a file is read from. By parsing the /proc/pid/stat file, information about the
CPU utilization can be queried. /proc/pid/stat reports CPU utilization in jiffies,
the time elapsed between system timer interrupts.

In this dissertation, the proc file system is used to monitor processes externally.
For internal instrumentation the getrusage() system call is used in combination
with gettimeofday(). The accuracy of the measurements is milliseconds. The
overhead of the instrumentation has been informally measured to be negligible.

4.1.2 Memory Usage

Memory usage is the total amount of memory a process has allocated (stack and
heap). This information can be obtained by using the top utility or by querying
the proc file system directly. /prov/pid/statm contains information about the
process memory status in pages. The combination of /proc/pid/stat and
/proc/pid/statm is used in this dissertation to externally monitor a process’
memory usage.

4.1.3 Network Bandwidth Usage

Network bandwidth usage is the number of sent and received bytes by a process
measured within a given time period. It is reported in (mega/kilo) bits per second.
This information does not include the headers of the underlying protocols used
(such as TCP/IP). The work in this dissertation instruments network bandwidth
usage internally in a process by keeping track of the sent and received bytes over
the sockets used. This information could also be obtained by using an external

4.2 Cluster Wide Experiments 51

processor monitor combined with a low-level packet interception library such as
LIBPCAP [71]. Although, for the experiments conducted in this dissertation
internal instrumentation is the preferred way.

4.1.4 Frame Rate

Frame rate is a metric describing the update rate of the displaying for a graphics
application. It is measured in Frames Per Second (FPS). A frame is the final
image generated by the rendering stage (figure 1.5, chapter 1, section 1.1) of the
visualization pipeline. Ideally, the frame rate should match the refresh rate of the
attached display(s). However, depending on application intrinsic, lower frame
rates can be acceptable.

4.1.5 Latency

Latency is the metric used to describe the delay between two events in a system.
For network communication, the latency is often used to describe the delay
between a sender and a receiver, which is the time to send an empty message
between the two. For interactive visualization, the latency is often used to
describe the time taken from the user initiates an event in the system, usually by
navigating in the visualization, until the data needed for the visualization has
been rendered to the frame buffer. In this dissertation, the events used when
measuring latency are described when this metric is used.

4.2 Cluster Wide Experiments

The experiments conducted as part this dissertation involves up to several clusters
used simultaneously. On a single computer, a user will often have exclusive
access and therefore have complete control over the hardware and software used.
On a cluster, several users might be using the resources simultaneously. If
compute- or I/O-intensive tasks from other users are running during an
experiment, it can, and often will affect the measured results, possibly leading to
the wrong conclusions. To guard against this, most of the experiments are run
during nights and on weekends. Additionally, experiments are conducted at least
two times, including a thorough investigation of the software running on the
cluster before the experiments are started. In addition, the hardware is checked,
for example to make sure that HyperThreading is enabled for all CPUs.

A process monitor has been developed to measure the performance of a range of
processes running on a single computer. The monitor will at regular intervals
record among others total- and per-process-CPU load (system and user) and
memory usage (stack and heap). This information is recorded along with the
process id of each process currently being monitored.

52 4 Methodology

All cluster-wide experiments are designed to start the processes involved in the
experiment before the process monitor is started. The processes are designed to
listen on a socket for an experiment start-signal. This start-signal is sent to all
processes from a central host once the experiment is started, at which point a
timestamp is logged on each process using the gettimeofday function. The
information recorded by the process monitor is redirected to files and collected
post-mortem for analysis.

By comparing the total load on the measured platform with the load generated by
each of the processes that was measured, the performance impact of software
running concurrently with the experiments can be found. This information is used
along with the per-process information when analyzing the results.

53

 Chapter 5

Network Accessible

Resources

This chapter describes network accessible resources, in particular the two
network accessible resources developed as part of the work presented in this
dissertation: (i) Network Accessible Display (NAD) resources; and (ii) Network
Accessible Compute (NAC) resources. This chapter provides an overview of
network accessible display- and compute-resources, and the interaction between
them. The subsequent chapters describe them in depth. This chapter is based on
the following peer-reviewed published papers: [36] [72] [73] [74] [75] [76] [77]
[78], in particular papers [36] [72] [74] [75].

A network accessible resource is an abstraction of a specific hardware resource,
available over a network connection. Examples of existing network accessible
resources are printers and Network Attached Storage (NAS). Network accessible
resources have different properties such as one- or two-way communication
(reading or writing from/to the resource) and support for single or multiple
simultaneous users.

5.1 Network Accessible Display Resources

A Network Accessible Display (NAD) is a display having functionality that
enables usage over a network connection. There are two types of approaches for
using a network accessible display:

1. Push-based: Use a display over a network connection from one or
several network accessible compute resources. One example where such
usage can be beneficial is meeting room environments where users can
share a network accessible projector.

2. Pull-based: Connect the display to one or several network accessible
compute resources to utilize their collective computing power. An

54 5 Network Accessible Resources

example of a pull-based usage is remote desktop systems such as VNC
[37] and Windows Remote Desktop [79].

A typical PC display does not have the necessary functionality for using it as a
network accessible display. However, tethering a normal display from a computer
enables network accessibility, where the combination of the computer, the display
and the software running on the computer makes up the network accessible
display.

For a push-based approach, the display is a server providing one or several
displaying services. A push-based approach might be preferred for settings where
the user is sitting at a local computer and wants to display remote content on
another display.

For a pull-based approach, the display is a client requesting content from one or
several network accessible compute resources. Input to the display can be
achieved using for example touch interfaces built into the display. If input
devices built into a display are not present, more traditional input devices can be
used, such as a keyboard and a mouse.

5.2 Network Accessible Compute Resources

A Network Accessible Compute (NAC) resource is a computational resource
producing content for a network accessible display. As for network accessible
displays, the same two approaches apply for a NAC:

1. Push-based: Produce and push content to network accessible displays.

2. Pull-based: Produce content based on requests from network accessible
displays.

Network accessible compute resources are categorized into static and dynamic
compute resources. A static NAC is a compute resource that is long-lived in a
system once added. A dynamic NAC is a compute resource that is volatile in the
sense that it can register on-the-fly with a system to become a compute resource,
and then, at a later point, leave.

5.3 NAD - NAC Interaction

Push-based network accessible compute resources produce data for displays
based on a push-based approach. The same applies for pull-based network
accessible compute- and display-resources.

5.3 NAD - NAC Interaction 55

The most basic form of service a network accessible display can provide is the
ability to receive and display pixels. In this case, the display is a remote frame
buffer accessible over a network connection. By sending (writing) pixels to the
remote frame buffer, applications running on another computer can show content
on the display. This approach is preferable for cross-platform compatibility since
pixels are the basic primitives of current display technologies. Display sharing
can also happen at the display driver interface, by presenting the display as a
display driver to an external computer. Commands sent to this display driver are
sent over the network to the external display, thus enabling better utilization of
the display resource, since the graphics card on the display-side can render
primitives and not only update its local frame buffer with remotely rendered
pixels. At the next level in the graphics stack is the X11 network approach, where
graphical primitives are sent over a network graphics protocol. This approach is
well suited when modifications to the operating system is not an option. Instead,
applications use a library providing the necessary functionality for forwarding
graphics commands to the remote display.

A common approach for the interaction between NACs and NADs is to use a pre-
agreed protocol between them [37] [79] [31]. Thus, a NAC and a NAD
implementing the same protocol can communicate.

One example of the problems with pre-agreed protocols is remote desktop
systems. Both sides need compatible remote desktop systems to be able to
communicate. A VNC client can talk to a VNC server, but not necessarily to a
RDP server. Thus, a pre-agreed protocol approach complicates usage of network
accessible resources if both parties do not have pre-installed compatible systems.
In addition, updating the protocol requires support for backward compatibility or
alternatively an updated protocol for both parties.

The work presented in this dissertation employs an on-demand customization
mechanism activated at the time of usage of the NAD. Instead of pre-installing
compatible software on both sides, the display-side customizes the compute-side
according to the display-side preferences.

For a push-based approach, the NAC initiates contact with the NAD. The NAD
responds with code that physically customizes the NAC, thereby enabling the
NAC to produce content for the NAD.

For a pull-based approach, the customization phase is either physical or virtual.
For dynamic NACs, the customization phase is physical, as for the push-based
approach. For static NACs the customization is virtual, meaning there is a third
party involved in the customization phase. This third party handles the translation
between NAD custom requests to NAC-side behavior.

56 5 Network Accessible Resources

5.4 Background for Network Accessible

Compute- and Display-Resources

This section presents motivations and problems leading to some of the principles
and models behind network accessible compute- and display-resources.

5.4.1 Gesture-Based Touch-Free Multi-User Gaming on

Wall-Sized High-Resolution Tiled Displays

Games are demanding visualizations because of their requirements for ever-
increasing realism, interactivity and high framerates [80]. This makes them
interesting for gaining insight into characteristics and performance of interactive
visualizations on high-resolution display walls. Several games are designed to run
in a single computer environment, Single Logic Single Rendering / Multiple
Logic Single Rendering (SLSR/MLSR)6 [36]. Moving from a single computer
environment to a distributed parallel environment is challenging because internal
interconnects, such as the PCI express bus, are replaced with network
connections with less bandwidth and higher latencies. Consequently, maintaining
high frame rates becomes increasingly difficult when increasing resolution by
introducing several displays driven by individual computers.

To investigate interactive visualization on high-resolution tiled display walls, two
existing games, Quake 3 Arena (Q3A) [81] and Homeworld [82], were ported to
run on a display wall. In addition, the games were modified to accept input from
a touch-free multi-user interaction system.

Quake 3 Arena is a First-Person Shooter (FPS) multiplayer game developed by id
Software [83]. Homeworld is a popular 3D Real-Time Strategy (RTS) game
developed by Relic Entertainment [84]. Both these games were proprietary when
released. However, later on, the game-engines were open-sourced (although the
game-engines are open-source, the data files needed for the gameplay requires a
license).

In the following sections the architecture, design, implementation and evaluation
of the parallelization and input modifications to these games are presented.

Related Work

The open sourcing of the Quake-series has made them popular targets for
modifications and extensions. Some examples include using the Nintendo’s
Wiimote [85], using eye tracking to play Quake, or controlling quake from a

6 Described in section 1.2.

5.4 Background for Network Accessible Compute- and Display-Resources 57

PDA7. Quake II and Q3A have also been modified to be used in a CAVE8.
However, these versions do not support all the features of the full games, and for
the Q3A case does not even support playing.

It is not only the Quake series that have been ported to large displays. In CaveUT
[86], Unreal Tournament is modified to run in panoramic theaters. The system
uses the spectator functionality of the game to run it on several computers. A
spectator is a virtual camera that follows the same view as a player of the game.
However, no measurements are provided of the resulting performance.

There are multiple other systems that can be used for parallel rendering on
display walls. These are presented in chapter 7, section 7.1.1.

Architecture

Q3A has a client-server architecture, where the server maintains the state of the
game. At a fixed rate, independent of the connected clients, the server updates its
state based on information from the clients, and broadcasts this state to them. A
Q3A client is either a player or a spectator. A player is an entity participating in a
game, while a spectator follows the view of a selected player. Homeworld has a
monolithic architecture, and therefore does not have a clear division of
responsibility between a client-side and a server-side.

The parallelization of the games follows two different approaches. Q3A already
has a client-server architecture. By exploiting this architecture and Q3A’s
spectator functionality, the parallelization is carried out by assigning several
spectators to follow a single player (client-server approach), shown in figure 5.1.
The players send updates to the server, which broadcasts this state to all
connected clients.

Homeworld is parallelized using another approach, where several instances are
run in parallel and the state for these instances are synchronized (master-slave
approach), shown in figure 5.2. A master process is responsible for sending
information to the slaves to keep all instances synchronized. In contrast to the
Quake 3 approach, the parallelization of Homworld requires all clients to receive
the state from the master for each iteration of the main-loop. This is because the
state received from the master contains information for updating the game logic
at a specific frame. The slaves use this information in combination with the state
from the previous frame to calculate the new frame.

7 http://www.youtube.com/watch?v=n1tsXc2RoeM
 http://www.youtube.com/watch?v=3pRWYE2LRhk
 http://www.youtube.com/watch?v=tNJXjNBgmLs

8 http://www.visbox.com/cq3a/

58 5 Network Accessible Resources

Figure 5.1: Architecture of the parallel Quake 3 Arena. Players send their state to a server
which maintain the entire game state. The server sends updated state to all connected clients.

Figure 5.2: Parallel Homeworld architecture. The master gets input, which it broadcasts to
every slave at the start of each iteration of the game’s main-loop. Before the frame buffer is
swapped (at the end of the main-loop) all slaves synchronize through a barrier.

5.4 Background for Network Accessible Compute- and Display-Resources 59

Design

Q3A is modified to use a single player for every user, where each player is
connected to the state server. A player is assigned a set of spectators, which
receive the same updates as the player, but are modified to show their view of the
scene based on the position in the display wall grid. A user interacts with the
spectator part of Q3A, and the input from the user is directed to the player part.

Homeworld is modified to have one process of the game running on each display
wall tile. Every process shows the scene from a view calculated from their
position in the display wall grid. The game logic for each client is synchronized.
The synchronization is done by using a global clock mechanism in addition to
providing all random generators with the same seed. One of the processes is
selected as master. The master is responsible for handling input and propagating
this input to all slaves in addition to the global time.

The input to the games is provided by the multi-user touch-free interaction
system. The input from the interaction system is sent to the player (Q3A) or
master (Homeworld), which in turn detects gestures from the input, and translates
them into mouse and keyboard events. For Homeworld, the master broadcasts the
corresponding events to the slaves and waits at a barrier at the end of the game
loop. The broadcast is implicit in Q3A since clients periodically sends and
receives state from the state server.

Implementation

The modifications to the Q3A game affects two parts of the code: The input
handling in the player code and the view frustum settings used by the spectators.

Q3A is modified to use a set of environment variables, which are read from
within the game. The variables control how the spectator view frustum used by
OpenGL is configured, as well as whether or not a client is designated as a player
or a spectator, and which player a given spectator follows. Due to the client-
server architecture of Q3A, these modifications are sufficient for the parallel
version. The player receives object positions and gestures from the touch-free
input system and interprets them (appendix A, section A.1 gives an explanation
of the gestures used). When a gesture is detected, a corresponding action
associated with the event is inserted into the game’s input stream.

Homeworld is parallelized by running several tightly coupled processes in a
lockstep fashion. Each process runs on one tile, and the Message Passing
Interface (MPI) [87] is used to exchange state information to keep processes
synchronized. One process is elected as master, and the remaining ones become
slaves. For each frame, the master accepts input from the touch-free system and
broadcasts it to the slaves. Before starting a new frame, all processes synchronize
at a barrier. This ensures that each slave receives the same input during the same
simulation step in the game, and synchronizes the frame buffer swap between all

60 5 Network Accessible Resources

processes. In addition to running all processes in lockstep, the same value is used
to seed each process’ pseudo-random number generator to make sure the game
logic stays in sync. Finally, all processes share a global clock controlled by the
master. Using a similar approach to Q3A, the master receives input from the
touch-free system, maps the input to gestures with associated events, broadcasts
these to all slaves, and finally inserts them into the game’s input stream.

The main drawback to the parallelization approach taken by Homeworld is that it
requires great familiarity with the source code in order to guarantee that all the
game simulations end up running identically. If a single branch statement makes
processes diverge, the simulations might get out of sync, resulting in non-
coherent displaying output.

The touch-free interaction device comprises sixteen cameras, eight MAC minis
and a MacBook Pro used for object detection. The cameras detect 1D position of
objects at 30 frames per second. These positions are sent to the MacBook Pro,
which performs object detection and triangulation of the corresponding 2D
positions. These 2D positions along with their corresponding radii are sent to the
games for gesture detection.

Experiments

To evaluate the performance of the games, four experiment series were designed
and conducted.

The purpose of the first experiment series was to measure the rendering
performance of Q3A when using Chromium to distribute the rendering
primitives.

For the second experiment series, the purpose was to measure the rendering
performance of Q3A when using the parallel version.

The purpose of the third experiment series was to measure the extra latency
introduced as a result of the Q3A player-server-spectator approach used.

For the fourth experiment series, the purpose was to measure the rendering
performance of the parallelized Homeworld.

Methodology

The metric used to measure the performance of the parallelized games was
frames per seconds. To assure repeatability over the different configurations used,
input events were recorded over a period of 30 seconds. These events were sent
to the games, which were started in a known state. During this playback, the
frame rate was logged every frame.

Chromium was used to compare the performance with the parallelized version for
Q3A. For the parallelized version of Q3A, the frame rate was limited to 500

5.4 Background for Network Accessible Compute- and Display-Resources 61

(using the built in frame rate limitation already supported by the game).
Homeworld did not run using Chromium.

For Q3A, one additional latency-inducing step is introduced because of the
parallelization approach. This is the time taken from a gesture is recognized in the
player part, until all spectators updates their view from updates received from the
game state server. To be able to measure the additional latency introduced by the
player-server-spectator setup (figure 5.1) the player and spectator code was
modified. When the weapon is fired in the player code, a weapon-fire event is
generated. The modifications involved starting a timer once this event was
detected (by monitoring the event queue). Each spectator reports back to the
player once the same event is detected. This yields a rough estimate of the latency
between when something happens in the player part, until it is reflected in the
spectator part.

A summary of the experiment series, metrics and factors is listed in table 5-1. The
hardware used in the experiment is listed in table 5-2.

Table 5-1: Experiment summary

Experiment

Series
Metric Factor

1 Frame rate (Q3A Chromium)
1 (1x1), 4 (2x2), 9 (3x3) and
28 (7x4) display nodes

2 Frame rate (Q3A parallel)
1 (1x1), 4 (2x2), 9 (3x3) and
28 (7x4) display nodes

3 Latency (Q3A parallel) -

4 Frame rate (Homeworld)
1 (1x1), 4 (2x2), 9 (3x3) and
28 (7x4) display nodes

Table 5-2: Hardware- and software-platform

Display-Side Touch-Free Interaction Device

Type Display Cluster

Unibrain
Fire-I

FireWire
Cameras

Mac Mini
MacBook

Pro

Number of
Nodes

28 16 8 1

62 5 Network Accessible Resources

CPU
Intel Pentium 4
EM64T 3.2 GHz
w/HyperThreading

-
Intel Core
Duo 1.66
GHz

Intel Core
2 Duo 2.33
GHz

RAM 2 GB - 512 MB 3 GB

Graphics
Card

NVidia Quadro
FX3400 w/256 MB
VRAM

-
Intel GMA
950 w/64
MB

ATI X1600
w/256 MB
VRAM

Operating
System

Rocks Linux
Cluster Distribution
4.0

-
Max OS X
10.4.8

Max OS X
10.4.8

Interconnect Switched gigabit Ethernet

Results and Discussion

Figure 5.3 shows the results of experiment series 1 and 2 (Q3A using Chromium
and parallelized).

Figure 5.3: The frame rate when running Q3A on 2x2, 3x3 and 7x4 tiles using Chromium,
compared to the parallel version's frame rate running on 7x4 tiles.

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35

F
P

S

Time (seconds)

Q3A w/Chromium, 2x2 tiles

Q3A w/Chromium, 3x3 tiles

Q3A w/Chromium, 7x4 tiles

Parallel Q3A, 7x4 tiles

Q3A w/Chromium, 2x2 tiles

Q3A w/Chromium, 3x3 tiles

Q3A w/Chromium, 7x4 tiles

Parallel Q3A, 7x4 tiles

5.4 Background for Network Accessible Compute- and Display-Resources 63

When using four rendering nodes (2x2 tiles) the peak FPS using Chromium is
148 frames per second, and the average is 73. For nine rendering nodes (3x3
tiles), the peak FPS is 97 and the average 47. For the 28-node configuration (7x4
tiles) the peak frame rate per second is 51 FPS and the average 21. For the
parallel version, only the 28-node (7x4 tiles) configuration is listed because there
were no significant differences in frame rate when varying the number of display
nodes. For this version, the maximum frame rate is 666, and the average frame
rate 398.

The additional latency introduced by the spectator approach used for Q3A is
shown in figure 5.4. This latency was measured to be 87 ms.

Figure 5.4: The additional latency introduced in Q3A's parallel version.

Figure 5.5: The frame rate when running Homeworld on a single display, compared to 2x2,
3x3 and 7x4 tiles.

Figure 5.5 shows the results from experiment series 4 (Homeworld). The frame
rate for Homeworld was not capped during the experiment, which is why the
frame rate is fluctuating much more compared to the Q3A measurements. To get

 0

 100

 200

 300

 400

 0 5 10 15 20 25 30 35

F
P

S

Time (seconds)

Single display

2x2 tiles

3x3 tiles

7x4 tiles

Single display

2x2 tiles

3x3 tiles

7x4 tiles

64 5 Network Accessible Resources

a better view of the frame rate, figure 5.6 shows the total number of frames drawn
during the experiment.

The maximum frame rate for Homeworld running on a single tile is 311. For the
2x2, 3x3 and 7x4 tiles, the maximum frame rate is 353, 250 and 231. Respective
average frame rates are 168, 183, 169 and 143. Figure 5.6 shows that the frame
rate for the 2x2 and 3x3 configurations are higher than for a single computer. For
all configurations, the performance is never lower than 80 FPS.

Figure 5.6: The total number of frames drawn when running Homeworld on a single display,
compared to 2x2, 3x3 and 7x4 tiles.

Both parallelization approaches used are able to drive the games with frame rates
higher than the refresh rate of the projectors. This indicates that the selected
approaches are both promising ways to design games for parallel rendering on a
display wall. The fluctuation of the frame rates of both games is a result of
different complexity in the scenes, determined by the view of the camera.

Chromium has performance problems when increasing the resolution. For the 2x2
configuration, the average frame rate is higher than the refresh rate of the
projectors. However, for the 3x3 tile configuration, the average frame rate is
slightly lower than the refresh rate of the projectors, and for the 7x4 tile
configuration it is only 21 FPS. This shows that Chromium used in this
configuration has performance problems when increasing the resolution. The

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30 35

N
u
m

b
er

 o
f

fr
a
m

es

Time (seconds)

Single display

2x2 tiles

3x3 tiles

7x4 tiles

Single display

2x2 tiles

3x3 tiles

7x4 tiles

5.4 Background for Network Accessible Compute- and Display-Resources 65

reason for this is the cost of processing and sending graphics commands over the
network, also documented in [27] and [36].

Conclusions

The work presented in this section shows three different approaches for making
games designed using an SLSR approach run on a display wall. Each approach
has different advantages, disadvantages and tradeoffs. Using Chromium is a
quick approach to get output from an application onto the display wall. In
addition, Chromium does not need any application modifications. However, as
demonstrated in the presented results and documented in [27] and [36],
Chromium used in this fashion has performance problems when more rendering
nodes are introduced. The reason for this is that rendering commands needs to be
sorted on the client-side before they are sent over a network connection, which
has an order of magnitude less bandwidth than the PCI Express bus [88] on the
north-bridge [89].

The two parallelization approaches used for transforming the versions into
parallel versions, show that the two games can run with frame rates higher than
the refresh rate between the computers and the projectors. The parallelization
approaches have different tradeoffs. The client-server architecture of Q3A
provides a convenient way of parallelizing the game. However, as measured in
the experiments, this client-server approach leads to a higher latency in the
system versus the sequential version. Homeworld does not have this latency as
the input is immediately broadcasted to every copy in the display cluster. The
main problem with the parallelization approach for Homeworld is
synchronization of game state, learned through several difficulties in the
implementation of the parallelized version. If a single branch in the code makes
processes diverge, the game state will slowly but surely get out of sync. This
problem is hard to address since it requires potentially every branch of the game
logic to be executed to make sure the game stays synchronized. Q3A does not get
out of sync if a message is lost, since the next message will provide the game
state necessary to stay synchronized. The simplicity and robustness of the state
server led to the principle of domain specific best-effort synchronization, used for
the work presented later in this dissertation (pull-based network accessible
display- and compute-resources, chapter 7).

5.4.2 Comparing the Performance of Multiple Single-

Cores versus a Single Multi-Core

The GPU has traditionally been used to offload the CPU from graphics
computations to accelerate the rendering of interactive visualizations such as real-
time graphics used in games. With the introduction of general-purpose computing
environments for GPUs such as CUDA, the data-parallel processing power can
now be utilized for general-purpose computations without having deep
knowledge of graphics APIs and GPUs intrinsic for graphics processing. To

66 5 Network Accessible Resources

investigate the GPU as a general-purpose computing platform and gain insight
into the implications of using GPUs as accelerators for NACs in display wall
contexts, the following work presents a performance comparison of the
embarrassingly parallel Mandelbrot set computation on a CUDA capable GPU,
with the available computational resources of a display wall.

Related Work

The Mandelbrot set computation has been used for several parallel and multi-core
performance studies [90] [91] [92] [93] [94] because of its simplicity and its
embarrassingly parallel nature. There have also been conducted several studies
comparing the performance between GPUs and CPUs, among others in [95] [96]
[97] [98] [99]. However, contrary to most of related work, which has used a
graphics API and vertex and/or fragment shaders for running the application on
one or several graphics cards, the work presented in this section removes much of
the limitations introduced by previous generation GPUs, such as the need for
using a graphics API for executing the code on the GPU. The combination of
CUDA and the Mandelbrot set computation allows the same code to be used for
both CPU and GPU versions with minor changes to specify the mapping of the
computation to the GPU cores. This allows for a more direct comparison between
GPU and CPU implementations. Further, CUDA provides full scatter and gather
memory operations, which is not possible on older generation GPUs. Finally,
some applications running on previous generation cards, have been bottlenecked
by the DRAM memory bandwidth, thereby underutilizing the GPU’s
computational power [100]. While there have been conducted performance
comparison studies between CUDA capable graphics cards and clusters [101],
none have used the embarrassingly parallel Mandelbrot set computation, which
has a very low communication to computation ratio. This allows for focusing on
computational power of different compute architectures while limiting the use of
shared interconnects that might create bottlenecks. In addition, a display wall can
be treated as a large frame buffer where the results can be viewed on each tile,
avoiding transmission of data to a central computer each iteration for displaying.
While some related work have focused on auto-tuning and auto-mapping between
computations and compute cores [91] [102] [103], the work presented in this
section focuses on manual tuning between computations and compute cores.

Architecture

The architectures of the computational platforms used as part of this work are the
Compute Unified Device Architecture (CUDA) and a display wall with
associated display cluster. The architecture of CUDA is described in chapter 3.
Display walls are described in chapter 2. A description of the hardware
comprising both the CUDA capable graphics card and the display wall is
provided in the methodology section.

5.4 Background for Network Accessible Compute- and Display-Resources 67

Design

The requirement for the benchmark used in the experiments is a computation that
requires no communication between compute cores. For this reason, the
Mandelbrot set computation was chosen for the experiments.

The Mandelbrot set is a set of points in a complex plane that are quasi-stable
when computed by iterating a function, usually ���� � ��

� � � (where � � 	 �
�

and � � �
�) [104]. The iterations are continued until the magnitude of z is
greater than 2, or the number of iterations has reached an arbitrary limit. Each
point in the plane can be computed without any knowledge of the surrounding
points. This property makes the Mandelbrot set particularly convenient to
parallelize, as each point can be separately assigned to compute cores without any
further communication between the cores. While the number of points in the
complex plane is known in advance, the number of iterations needed to compute
the result of each point is unknown. Therefore, statically dividing the Mandelbrot
set between compute cores would not result in the same workload-balance.
Dynamic partitioning has been documented to give better performance [92] due
to a more balanced utilization of each compute core. The challenge in using
dynamic partitioning is to find a task size that gives the right balance between
compute core utilization and the overhead introduced by handing out tasks and
collecting results.

Five different versions of the Mandelbrot set computation are developed to
evaluate the different hardware platforms. These versions are divided into CPU-
and GPU-based:

1. CPU-based:

a. A single-process multi-threaded CPU version
(CPUMandelbrot).

b. A statically workload-partitioned multi-process multi-threaded
CPU version (WallCPUMandelbrot (static)).

c. A dynamically workload-partitioned multi-process multi-
threaded CPU version (WallCPUMandelbrot (dynamic)).

2. GPU-based:

a. A statically workload-partitioned multi-process multi-threaded
GPU version (WallGPUMandelbrot).

b. A dynamically workload-partitioned single-process multi-
threaded GPU version (CUDAMandelbrot).

All versions are designed to start at a pre-determined starting-point and, through
several iterations, zoom into a pre-determined end-point.

68 5 Network Accessible Resources

Implementation

The complex plane of the Mandelbrot set is stored as an array of 32-bit integers.
Each entry in the array holds a 32-bit value for the corresponding part of the
Mandelbrot set. This value is a color calculated from the number of iterations
used to compute the result for that point in the complex plane. Each iteration can
be calculated independently of previous iterations by specifying a zoom-box into
the Mandelbrot set.

All the versions developed use the same algorithm for computing the Mandelbrot
set. OpenGL is used for the rendering. For the CPU versions, displaying the result
from iterations require data to be copied from main memory to GPU memory. For
the GPU versions, this copy can be done internally in graphics card memory.

Single-process multi-threaded CPU version (CPUMandelbrot)

The single-process multi-threaded CPU version (figure 5.7) is the baseline for
comparison. The Mandelbrot set is divided into horizontal lines, and each thread
computes points for lines that are multiples of their assigned ids (ids are assigned
to threads incremental, starting at 0). Assigning threads to different parts of the
Mandelbrot set allows for utilization of multi-core architectures. The number of
threads actually used is based on the number of CPU cores.

Figure 5.7: The assignment of the Mandelbrot set for CPUMandelbrot.

Statically Workload-partitioned multi-process multi-threaded CPU
version (WallCPUMandelbrot (static))

This version splits the Mandelbrot set into multiple parts (1 per display node), as
shown in figure 5.8. The parts are divided with respect to the display nodes
placement in the display grid, i.e. the upper left part of the Mandelbrot set is
computed by the upper left display node. The computation of the result uses the
same approach as the single-process multi-threaded version, where threads
compute points from lines that are multiples of their assigned ids.

At the end of each iteration, all nodes synchronize through a barrier, at which
point the result is displayed. The barrier is performed using MPI_Barrier

5.4 Background for Network Accessible Compute- and Display-Resources 69

(LAM/MPI). The communication overhead of this version is low. However, the
time to complete each iteration is limited to the time spent by the most loaded
node.

Figure 5.8: The assignment of the Mandelbrot set for WallCPUMandelbrot (static). The
example illustrates how the Mandelbrot set would have been divided if 4 compute nodes were
used.

Dynamically Workload-partitioned multi-process multi-threaded CPU
version (WallCPUMandelbrot (dynamic))

To better the CPU utilization from the statically workload-partitioned version,
this version uses dynamic partitioning of work tasks to solve the Mandelbrot set
(figure 5.9). A task is a subset of the Mandelbrot set for one node. A separate
dispatcher node keeps track of all tasks. Every node starts out with an initial task,
which is half the height of the node’s part of the Mandelbrot set.

Figure 5.9: The assignment of the Mandelbrot set for WallCPUMandelbrot (dynamic). The
example illustrates how the Mandelbrot set would have been divided if 4 compute nodes were
used, including a separate node used as dispatcher.

The dispatcher keeps track of the remaining tasks for each node. If there is none
left, it selects a task from the node with the most remaining tasks and assigns it to
the requesting node. This node transfers the result to the node responsible for the

70 5 Network Accessible Resources

requested area when finished. When all nodes have completed all assigned tasks,
the dispatcher sends a NOOP-task to all nodes, resets the remaining tasks counter
for all nodes, and increments the zoom-counter. The program terminates when
the zoom-level has been reached.

Statically Workload-partitioned multi-process multi-threaded GPU
version (WallGPUMandelbrot)

This version statically divides the Mandelbrot set between all nodes, and utilizes
the GPU for the computation (figure 5.10). For each iteration, the CPU computes
a new zoom box into the Mandelbrot set. However, instead of computing the
points in the zoom box on the CPU, the parameters of the zoom box are
transferred to the GPU and the result is computed in a GLSL fragment shader.
The parameters are transferred to the fragment shader using uniform variables.
The result of the computation is rendered to an off screen texture located in GPU
memory and scaled to the back-buffer before swapping screen buffers. Dynamic
load balancing is not used for this version, and thus the time for each iteration is
constrained to the most heavily loaded node.

Figure 5.10: The assignment of the Mandelbrot set for WallGPUMandelbrot. The example
illustrates how the Mandelbrot set would have been divided if 4 compute nodes were used.

Dynamically Workload-Partitioned Single-process multi-threaded GPU
version (CUDAMandelbrot)

This version uses CUDA to solve the Mandelbrot set (figure 5.11). The
Mandelbrot set is divided into multiple tasks, and each task is processed by one
thread. The processors can process 8 SIMD threads in parallel, and additionally a
hardware thread scheduler periodically switches between warps of threads to
maximize the utilization of the processor’s cores and hide global memory
latencies. To accommodate the massively parallel architecture of the graphics
card and the low overhead of creating new threads, the Mandelbrot set is divided
into a minimum of 10 000 thread tasks, depending on the Mandelbrot set
resolution. Thereby, the automatic load balancing provided by the CUDA

5.4 Background for Network Accessible Compute- and Display-Resources 71

architecture through the use of over-decomposition in combination with hardware
thread scheduling is utilized.

Figure 5.11: The assignment of the Mandelbrot set for CUDAMandelbrot.

Since each of the points in the Mandelbrot set can be computed individually,
there is no need for communication between processor cores within each
iteration. Each thread writes the result of their task to global device memory,
which has a latency of 400 – 600 clock cycles. Since each task only requires one
global memory operation, the hardware thread scheduler should hide the memory
latency to a certain extent. After each iteration, the CPU calculates a new zoom
box into the Mandelbrot set, which it passes to the graphics card for a new
iteration. CUDAMandelbrot can also be configured to divide and send the result
of each iteration to a number of display clients (figure 5.12). If this configuration
is enabled, the result of the computation is copied from device memory (VRAM)
to host memory (main-memory) and sent to each corresponding display client. No
compression is used.

Figure 5.12: The assignment of the Mandelbrot set for CUDAMandelbrot when configured to
send the output to a set of display nodes.

72 5 Network Accessible Resources

Experiments

To evaluate the performance of the different implementations, 15 experiment
series were conducted.

Methodology

The factor for each experiment series was the resolution of the Mandelbrot set.
This factor had the following values:

1. 1024x1024

2. 2048x2048

3. 4096x4096

The performance (time for a predefined number of iterations to complete) of the
single-core CPU version was used as the baseline of the experiments. This
version used 4 threads (found to be the best number of threads through
experimentation) for computing the Mandelbrot set. For the multi-process
versions 4, 9, 16 and 28 compute nodes were used. These also used four threads
per process for computing the Mandelbrot set. For the single-process multi-
threaded CUDA version, the Mandelbrot set was computed on a single node
using all the compute cores of the graphics card. For all experiments, the
maximum number of iterations for each point of the Mandelbrot set was set to
100.

A summary of the experiments is listed in table 5-3. The hardware used in the
experiment is listed in table 5-4.

Table 5-3: Experiment summary

Experiment

Series
Description Factor (Resolution)

1 CPUMandelbrot
1024x1024, 2048x2048
and 4096x4096

WallCPUMandelbrot (static)

2 4 nodes

1024x1024, 2048x2048
and 4096x4096

3 9 nodes

4 16 nodes

5 28 nodes

5.4 Background for Network Accessible Compute- and Display-Resources 73

WallCPUMandelbrot (dynamic)

6 4 nodes

1024x1024, 2048x2048
and 4096x4096

7 9 nodes

8 16 nodes

9 28 nodes

WallGPUMandelbrot

10 4 nodes

1024x1024, 2048x2048
and 4096x4096

11 9 nodes

12 16 nodes

13 28 nodes

CUDAMandelbrot

14 Standard configuration

1024x1024, 2048x2048
and 4096x4096

15
Configured to send the resulting
output from each iteration to the
display wall

Table 5-4: Hardware- and software-platform

 Compute Nodes CUDA Capable GPU

Type Display Cluster Desktop Computer

Number of
Nodes

28 1

CPU
Intel Pentium 4 EM64T 3.2
GHz w/HyperThreading

Intel Pentium 4 EM64T 3.2
GHz w/HyperThreading

RAM 2 GB 2 GB

Graphics
Card

NVidia Quadro FX3400
w/256 MB VRAM

Bliss GeForce 8800GT PCX
w/1024 MB VRAM

74 5 Network Accessible Resources

Operating
System

Rocks Linux Cluster
Distribution 4.0

Linux Ubuntu 7.04

GCC version 3.4.4 4.1.2

Compiler
options

-O2 -O2

Interconnect Switched gigabit Ethernet

Results AND Discussion

Figure 5.13 shows the speedup factor of the parallel versions compared to
(divided by) CPUMandelbrot for a resolution of 4096x4096. The x-axis is the
number of nodes and the y-axis is the speedup factor. Different resolutions did
not have any significant impact on the performance and therefore only the
speedup graph for the highest resolution is shown.

Figure 5.13: Speedup factor of the parallel versions compared to CPUMandelbrot.

The figure indicates a linear increase in speedup when increasing the number of
display nodes. CPUMandelbrot (dynamic) is faster than the statically partitioned
version. WallGPUMandelbrot is the fastest of the cluster versions with a
performance increase of 85.3 using 28 nodes. The performance increase using the

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 0 5 10 15 20 25 30

S
p

ee
d
u
p

 f
a
ct

o
r

Number of nodes

WallCPUMandelbrot (static)

WallCPUMandelbrot (dynamic)

WallGPUMandelbrot

CUDAMandelbrot

5.4 Background for Network Accessible Compute- and Display-Resources 75

GeForce 8800GT PCX card is higher than all versions. Compared to the single-
process multi-threaded version (CPUMandelbrot) it is almost 190 times faster.
Compared to the parallel versions computing on the CPU, the 8800GT PCX is
almost an order of magnitude faster. Compared to the multi-process multi-
threaded GPU version computing on previous generation graphics cards
(WallGPUMandelbrot), the 8800GT PCX is over twice as fast.

Figure 5.14 shows: (i) The resulting performance when sending the output of
each iteration from the GeForce 8800GT PCX card to the display wall cluster; (ii)
the performance of WallCPUMandelbrot (static); and (iii) the performance of
WallCPUMandelbrot (dynamic). The x-axis is the resolution for the Mandelbrot
set in megapixels, and the y-axis is the speedup factor. As the figure shows, it is
faster to compute the Mandelbrot set on the 8800GT PCX card, and send the
output of each iteration to the display cluster, than to compute the result locally
on each cluster node, even for the load-balanced version.

Figure 5.14: The relation between speedup and resolution for the WallCPUMandelbrot
versions compared to CUDAMandelbrot configured to send the output of each iteration to the
display wall cluster (speedup is calculated based on CPUMandelbrot).

The high performance increase using the 8800GT PCX card can be explained by
the high data-parallelism, extreme thread-level parallelism and the high memory
bandwidth of the graphics card. Combining small task sizes with a large number
of threads utilizes zero-overhead thread creation [48], limits thread divergence
and utilizes the hardware thread scheduler, which again results in increased

 0

 10

 20

 0 5 10 15

S
p

ee
d
u
p

 f
a
ct

o
r

Resolution (megapixels)

WallCPUMandelbrot (static)

WallCPUMandelbrot (dynamic)

CUDAMandelbrot (Output Sent to Display Wall)

76 5 Network Accessible Resources

utilization of the high GPU global memory bandwidth. This occurs despite the
fact that the result needs to be copied from GPU memory to main memory and
sent over the network to each cluster computer for each of the iterations.

Conclusions

The new generations of GPUs promise new possibilities in scientific computing.
The combination of unified access to the GPU compute cores and memory, and
the fact that the GPU can be programmed using simple C extensions open new
possibilities in high performance computing. Experiments show that a single
graphics card can outperform an entire cluster of computers by almost an order of
magnitude, due to the GPU’s high level of data-parallelism and extreme level of
thread-parallelism. In fact, for a cluster of 28 nodes (Pentium 4 3.2 GHz CPUs)
interconnected with gigabit Ethernet, it is faster to compute the Mandelbrot set on
a GeForce 8800GT PCX graphics card and send the result to the cluster nodes,
than to divide and compute the Mandelbrot set locally on each node.

The work presented in this section has shown that for certain types of
visualizations and computational resources, it can be beneficial to move compute
intensive tasks to nearby network accessible compute resources. This is the
concept of NADs and NACs and the visualization distribution space introduced
in chapter 1, section 1.3. Depending on the technologies available, it can be
beneficial for a visualization system to allow parts of the visualization process to
be moved to available compute resources, depending on the computational power
of the compute resources, the local display resources and the network connecting
these.

5.4.3 Experimental Fault-Tolerant Synchronization

for Reliable Computation on Graphics Processors

Graphics processors are, as documented in the previous section, a promising
platform for SIMD computations. However, many existing CUDA capable GPUs,
including some of the Tesla [105] cards (compute capability 1.0) aimed at high-
performance computing, do not support any strong synchronization primitives
like test-and-set and compare-and-swap, which are usually used in constructing
fault-tolerant synchronization primitives [106]. The lack of synchronization
primitives for global and shared memory is a limitation for using a CUDA
capable GPU as a NAC, because most parallel applications need some
synchronization mechanism to synchronize their concurrent processes [106].

The following work presents a study of fault-tolerant synchronization
mechanisms for CUDA capable GPUs. A wait-free synchronization mechanism
[107] is implemented that eliminates lock-related problems like deadlock and, in
addition, can tolerate process-crash failure.

5.4 Background for Network Accessible Compute- and Display-Resources 77

Architecture

The computed unified device architecture is described in chapter 3, section 3.2.
The feature of this architecture, used to create synchronization primitives, is the
ability to read and write multiple 32-bit, 64-bit and 128-bit words to and from
global memory in one memory transaction. This requires the variable type to be a
multiple of 4, 8 or 16 bytes, and the read or write instructions must be arranged so
that the memory accesses can be coalesced into a single contiguous aligned
memory address [48], shown in figure 5.15.

Figure 5.15: The arrangement of threads and warps for coalescing memory access to global
memory.

Design

The synchronization primitives are based on an algorithm developed in [106].
The algorithm is based on a long-lived consensus [106], which is used to achieve
an agreement between concurrent processes. From the properties of the long-
lived consensus [106] a Read-Modify-Write (RMW) object [106] is constructed
that encapsulates a memory region through which participants can communicate.

The operation RMW(X, f), where X is a shared variable and f is a mapping, is

defined to be equivalent to the indivisible execution of the following function

[108]:

function RMW(X,f)

begin

 temp � X;

 X � f(X);

 return temp;

end

The RMW object is realized by combining the LongLivedConsensus presented in
[106] with a round numbering scheme. A participant that invokes an operation on

78 5 Network Accessible Resources

the RMW object is assigned to a round. If more than a single participant invokes
the RMW object within the same round, the RMW algorithm [106] ensures that all
participants will agree upon a common sequence of accesses, and thereby ensure
the integrity of the RMW object. Each of the participants belonging to the same
round suggests an order of accesses in that round. The LongLivedConsensus

algorithm is used to achieve an agreement on the order to use.

Implementation

For global memory, the property of coalesced memory access is utilized to
establish an agreement between warps (potentially running in different blocks).
By arranging warp writes as described in the LongLivedConsensus (shown in
figure 5.15), an agreement on a common winner can be established among warps.
For shared memory, the writes do not need to fulfill the requirement of coalesced
memory access, but memory writes do need to be arranged according to the
LongLivedConsensus.

The RMW object is implemented as a CUDA function encapsulating a shared
memory region. The function and arguments of each warp that invokes the RMW

object is written to the warp’s part of a shared memory location. This memory
location is readable from all warps that invoke the RMW object. Each warp reads
the function and parameters from all other warps that participate in the same
round, calculates a value of the RMW object based on its own sequence of the
functions, and then writes the result to a known memory location that can be read
by every participating warp. The warp then invokes the LongLivedConsensus

using the memory location of its proposal. For global memory, five threads of a
half-warp in each block write to global memory in one coalesced memory
operation. For shared memory, the first sixteen threads of a warp (the first half-
warp) write to shared memory. After the writes, each memory entry is compared
to the others in order to find the warp that wrote first. This is done using an
Ordering algorithm [106] in combination with a RoundCheck algorithm [106].
After the execution of the Ordering algorithm, the warp that wrote first will be
known for all warps participating in the same round. Since each of the warps
executes one function on the RMW object at a time, functions are ordered
according to both the round they participate in and the order agreed upon by
warps in the same round.

The current implementation of the algorithm supports wait-free synchronization
between five warps using global memory (limited by the memory segment size
for coalesced memory access), and fifteen warps using shared memory (limited
by the algorithm (2M-2 half-warps for M=16 banks)), and in addition supports
cards of any compute capability. However, the actual number of warps
synchronized through shared memory is limited to five, because the data
structures that encapsulate the RMW object consume too much on-chip memory
(over 16 kb) when the number of warps exceeds this limit. This will be optimized
for future implementations. The algorithm is designed for an asynchronous

5.4 Background for Network Accessible Compute- and Display-Resources 79

memory model. For CUDA, the access speed to shared memory is the same as for
registers if no bank conflicts occur [100]. For this reason, the shared memory
version contains several duplicates that can be removed in future optimizations of
the implementation. However, the duplicates are kept for the current
implementation to achieve a literal implementation of the algorithm.

The RMW object supports any read-modify-write operation such as the atomic
operations in graphics cards with compute capability 1.1 and up. That is: ADD,
SUB, EXCH, MIN, MAX, INC, DEC and CAS. In addition, the RMW object
supports atomic operations on floating point numbers.

Experiments

To evaluate the implementations of the RMW object for both global and shared
memory, two experiment series were conducted.

Methodology

The atomic operation atomicAdd was used to evaluate both hardware and
software support. For both experiment series this operation was invoked 30 000
times. The performance of the operation was measured by recording a timestamp
before the CUDA kernel was started, and another timestamp when the kernel was
finished.

The first series of experiments was conducted to determine the overhead of
software synchronization in global memory. For these series of experiments, the
RMW object was invoked 30 000 times. The factor was the number of blocks,
which was increased from 1 to 5, each block having 16 threads belonging to the
same warp (the first half-warp). Each experiment was repeated 10 times.

The second series of experiments was conducted to compare software support in
shared memory to hardware support in global memory. The RMW object was
invoked 30 000 times and the time to complete all invocations was recorded. The
factor was the number of warps used, which was increased from 1 to 5 warps.
Each of the experiments was repeated 10 times. The experiment series are
summarized in table 5-5. The hardware used in the experiments is listed in table
5-6.

Table 5-5: Experiment summary

Experiment

Series
Description Factor

One

Software synchronization in global
memory versus hardware support
for the same operation in global
memory

1-5 blocks

80 5 Network Accessible Resources

Two

Software synchronization in shared
memory versus hardware support
for the same operation in global
memory

1-5 warps

Table 5-6: Hardware- and software-platform

CUDA 1.0 Card CUDA 1.1 Card

Type Dell Precision 370 Dell Precision 370

Number of
Nodes

1 1

CPU
Intel Pentium 4 EM64T 3.2
GHz w/HyperThreading

Intel Pentium 4 EM64T 3.2
GHz w/HyperThreading

RAM 2 GB 2 GB

Graphics
Card

Bliss GeForce 8800GT PCX
w/1024 MB VRAM

Bliss GeForce 8800GTS
w/640 MB VRAM

Operating
System

Linux Ubuntu 7.04 Linux Ubuntu 7.04

GCC
Version

4.1.2 4.1.2

Compiler
Options

-O2 -O2

Interconnect Switched gigabit Ethernet

The GeForce 8800GT PCX card was used as a performance baseline for the
atomicAdd in hardware. Both graphics cards were used in the performance
measurements of the global and shared software implementations.

Results and Discussion

Figure 5.16 shows the time used to invoke the RMW object in global memory
compared to hardware support for the same operation.

Figure 5.17 shows the ratio between software and hardware support in global
memory. The values are calculated by dividing the time for software
synchronization by the time used for hardware support.

5.4 Background for Network Accessible Compute- and Display-Resources 81

Figure 5.16: The time used for 30 000 invocations of the RMW object in global memory
compared to atomic support in hardware (global memory).

Figure 5.17: The software- to hardware-ratio for the 30 000 invocations (software support in
global memory divided by hardware support in global memory).

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5

T
im

e
(s

ec
o

n
d
s)

Number of blocks

atomicAdd GeForce 8800GT PCX

RMW(add) GeForce 8800GT PCX

RMW(add) GeForce 8800GTS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5

S
o
ft

w
a

re
 -

 h
a

rd
w

a
re

 r
a

ti
o

Number of blocks

RMW(add) GeForce 8800GT PCX

RMW(add) GeForce 8800GTS

82 5 Network Accessible Resources

As figure 5.16 illustrates, hardware support is an order of magnitude faster than
software support. For 1 block, the atomic operation in hardware uses 0.0124
seconds to complete. For the GeForce 8800GT PCX card, the time to invoke the
RMW objects is 0.89 seconds and the GeForce 8800GTS card uses 0.935
seconds. For 5 blocks, atomic operation in hardware takes 0.062 seconds for
30 000 iterations. For software support, the time is 2.38 seconds for the 8800GT
PCX card and 2.56 for the 8800GTS card. The figure indicates a linear increase
in time for both software and hardware support as the number of blocks increases.

For 1 block, hardware support is 72.16 times faster than software support for the
8800GT PCX card and 75.45 seconds faster for the 8800GTS card (figure 5.17)
However, for 5 blocks this factor has decreased to 38.33 for the 8800GT PCX
card and 41.17 for the 8800GTS card. The graph shows that the software- to
hardware-ratio decreases as the number of blocks increases.

Figure 5.18 shows the time used to invoke the RMW object in shared memory
compared to the time to invoke the same operation using hardware support in
global memory.

Figure 5.19 shows the ratio between software support using shared memory and
hardware support in global memory. The values are calculated by dividing the
time used for software support in shared memory by the time used for hardware
support in global memory.

Figure 5.18 shows that synchronization using hardware support is faster in global
memory than software support in shared memory. For 1 warp, the hardware
supported atomic operation uses 0.01239 seconds to complete compared to 0.303
seconds for the 88800GT PCX card and 0.396 seconds for the 8800GTS card. For
5 warps, the atomic operation in hardware uses 0.0621 seconds and the shared
memory version uses 1.07 seconds for the 8800GT PCX card and 1.471 seconds
for the 8800GTS card. The time to do synchronization in shared memory is
greater than hardware support in global memory for all warp configurations. This
indicates that the computational steps of the RMW object is the factor limiting
the speed of the software synchronization, as accessing shared memory is two
orders of magnitude faster than global memory.

For 1 warp, the factor between hardware support in global memory and software
support in shared memory is 24.46 for the 8800GT PCX card and 31.95 for the
8800GTS card (figure 5.19). For 5 warps, this factor has decreased to 17.22 for
the 8800GT PCX card and 23.67 for the 8800GTS card. As opposed to software
synchronization in global memory, software synchronization in shared memory
seems to flatten out between four and five warps.

5.4 Background for Network Accessible Compute- and Display-Resources 83

Figure 5.18: The time used for 30 000 invocations of the RMW object in shared memory
compared to atomic support in hardware (global memory).

Figure 5.19: The software- to hardware-ratio for the 30 000 invocations (software support in
shared memory divided by hardware support in global memory).

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5

T
im

e
(s

ec
o

n
d
s)

Number of warps

atomicAdd GeForce 8800GT PCX

RMW(add) GeForce 8800GT PCX

RMW(add) GeForce 8800GTS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5

S
o
ft

w
a

re
 -

 h
a

rd
w

a
re

 r
a

ti
o

Number of warps

RMW(add) GeForce 8800GT PCX

RMW(add) GeForce 8800GTS

84 5 Network Accessible Resources

Conclusions

This section has presented an experimental evaluation of a Read-Modify-Write
(RMW) object for CUDA capable graphics cards. The RMW object implemented
enables CUDA cards of any compute capability (as defined by NVIDIA in [48])
to communicate through global and shared memory. The current version of the
RMW object implemented in global memory supports five warps running in
different blocks, and the synchronization is wait-free for up to four failing warps.
For the shared memory version, the synchronization primitive has a limit of
fifteen warps. However, the amount of on-chip shared memory reduces the actual
number to five.

The experiments conducted indicate that the performance bottleneck of the RMW
object is the computational steps needed to ensure consensus between the
participating warps. The hardware implementation is an order of magnitude faster
than the software implementation. However, as the number of warps increases
from one to five, the performance gap between software and hardware is reduced
from 72.16 times to 38.33 times for global memory, and 24.46 times to 17.22
times for shared memory.

The work presented in this section has shown that CUDA GPUs of compute
capability 1.0 can support atomic operations through global and shared memory
by utilizing the memory intrinsic of the graphics cards. This shows that future
NACs based on cards of this compute capability, such as some of the Tesla cards,
can support parallel applications that require synchronization through both global
and shared memory.

85

 Chapter 6

Push-Based NADs and

NACs

Network accessible compute- and display-resources are categorized into push-
based and pull-based. This chapter describes the push-based network accessible
compute- and display-resources built as part of the work presented in this
dissertation. The chapter is based on the following peer-review published paper:
[73].

6.1 The NAD System

A number of problems are introduced when connecting a display or a projector
directly to a computer by a DVI/VGA cable:

1. Detecting the video signal between a computer and a projector might
fail.

2. The resolution of the desktop display is often inconveniently reduced to
the resolution of the external display.

3. The entire mirrored or extended desktop is displayed, instead of giving
the user a finer control of what to display.

4. There is limited support for using multiple projectors and displays from a
single computer.

5. When connecting a computer to a projector the projector may be
reconfigured to a sub-optimal configuration.

6. Multiple users cannot simultaneously share the same projectors and
displays.

86 6 Push-Based NADs and NACs

For presentations, an in-room projector-computer rig running all programs and
presentations can be used. However, this approach may cause problems because
of missing applications or application being incompatible with the data formats
used.

Another approach is to use an in-room projector-computer rig running a remote
desktop system, from where the user can bring the displaying output of the local
computer. However, this requires compatible remote desktop systems on the
user’s computer and the projector-computer rig. If this is not present, compatible
remote desktop systems must be installed. This often requires the firewall on the
user’s computer to be opened, since contact is initiated from a remote computer
to a server running on the user’s computer. In addition, there are trust issues,
since several remote desktop systems require the username and password to be
submitted in order to access the computer.

The idea behind the NAD system is to customize a NAC in order for the NAC to
use a NAD. This solution follows the principle of establishing the end-to-end
principle through customization. The purpose of this idea is a simple and flexible
way to use nearby display resources without requiring permanent installation of
software or opening firewall ports on the NAC.

To overcome the aforementioned problems a system is built to realize the
presented idea. The system adheres to the NAD model, which enables displays to
be used by customized NACs as if they were physically connected.

To following requirements are integral to the presented system:

1. The NAC software and the NAD software should be cross-platform and
available for Windows, Linux and Mac OS X.

2. The customization of the NAC should be transparent to the user.

The following sections describe the NAD system, as well as the experiments
designed and conducted.

6.1.1 Related Work

Some of the functionality provided by the system presented in this section can be
achieved using a remote desktop system. A remote desktop system is a system
that enables a user to view and interact with the desktop of one computer from
another computer. One such system is VNC [37]. The protocol used by VNC is
extendable and has been adopted by several systems. Some of these are RealVNC
[61], TightVNC [62] and UltraVNC [63]. Windows Remote Desktop [79] is
another popular remote desktop system shipped with a selection of the Microsoft
Windows operating systems. In addition to VNC and Window Remote Desktop,
there are multiple other remote desktop systems. All share a common goal: Bring

6.1 The NAD System 87

the content from the desktop of a remote computer to a computer display where
the user is located.

Remote desktop systems have a number of drawbacks when users want to share
information on a common display/projector to demonstrate programs on-the-fly
(some already mentioned in the previous section). Some of the systems are
platform dependent. This is inconvenient in meeting room environments because
attendees need to have matching remote desktop systems. Another problem with
remote desktop systems is that the users in some cases must install third party
software that permanently alters the local install, for example by requiring users
to open firewall ports or by installing third party libraries in system folders of the
operating system.

The main problem with remote desktop systems when used to give presentations
on remote display/projectors and in meeting room contexts is their pull-based
architecture, which implies that users must initiate the contact from a remote
computer. If several people want to display output on a common display, this
requires all users to share a common keyboard and mouse. In addition only one
user can control the appearance of the window of his/her remote desktop.

There are systems that enable a push-based remote desktop approach. One such
system is the TightProjector [109]. TightProjector enables a user to multicast the
desktop of a Microsoft Windows computer to other computers in the same local
area network. However, the system is only available for Windows, and users still
needs to manually download and start a binary. There are other systems that
enable a push-based remote desktop approach. Some of these are The 22
Megapixel Laptop [47] (the work that inspired the creation of the NAD system),
MaxiVista [110], ZoneScreen [111] and ScreenRecycler [112]. However, these
systems require installation of third party software, and some alter the software at
the kernel level [47]. In addition, for these systems, the focus is on extending the
desktop to the remote screens, where in the NAD system, the focus is to enable
mirroring of content from the local desktop.

A Windows Network Projector [113] is a network accessible projector running
Windows Remote Desktop (RDP) software. The software is only available for
selected windows installs, and requires the user to open up the local firewall for
incoming connections.

The X Window System [31] enables an X client to send the display commands
over a network to a remote X server. X can therefore be used to forward windows
from the local desktop onto remote displays. However, X is not available on
every operating system natively. For example, Microsoft Windows does not
natively support the X Window System. There are other problems concerning the
X Window System in this context [37], but the main problem is that X generally
is not available on all operating systems.

88 6 Push-Based NADs and NACs

The inSpace Projector [114] is a system that enables users to mirror their desktop
to multiple displays over a network connection. Although one user can use
several displays, several users cannot share the same display. In addition, there is
no support for user-selectable regions, the user cannot interact with the desktop
from the remote display, and the system’s performance is not documented.

Virtually shared displays and input devices [115] are abstractions sharing
characteristics with the NAD system. The idea is to use remote displays as
extensions to the local displays over a network connection. However, while
virtually shared displays allows for display sharing at the window level, the
sharing is implemented using a VNC-based pixel-transfer system that needs to be
installed on the computers in advance. In contrast, the NAD system uses
customization to seamlessly integrate NACs and NADs. Consequently, for
meeting room and presentation style contexts, the NAD systems can be used
immediately by participants by clicking on a link in a browser, instead of
manually obtaining and installing the necessary software to be able to use the
external display(s).

The customization applied by the NAD system shares common characteristics
with Universal Plug and Play (UPnP) [116]. UPnP is a collection of network
protocols that enable different types of devices to communicate over a network
(typically a user's home network). UPnP contains functionality for enabling
devices to join networks, obtain IP address, convey capabilities, and learn about
the present and capabilities of other devices [116]. While UPnP enable devices to
share media content such as audio and video, it has to the author's knowledge not
been used for sharing display content between computers and display devices.
UPnP could potentially be used by future versions of the NAD system to enable
seamless discovery of display devices from a NAC, instead of the current
approach used where a user must know the address of the device in advance.
However, customization still needs to be applied to integrate the NAC with the
NAD.

6.1.2 Architecture

The architecture of the system is based on a client-server model, where the client
is the network accessible compute resource and the server the network accessible
display (figure 6.1). Display walls are treated as one coherent display surface and
accessible as a single network accessible display with a resolution equal to the
total resolution of all display nodes comprising the display wall (figure 6.2). The
choice of using a single front-end for NADs comprising multiple displays is
twofold: (i) The front-end has central control over the shared resource, and can
such easily control among others the z-ordering of the windows (the order on
which remote windows are overlapping on the display wall); and (ii) from the
NACs perspective the architecture remains the same independent of whether it is
using a single display or a distributed display wall.

6.1 The NAD System 89

Figure 6.1: The NAD architecture for single display configurations.

Figure 6.2: The NAD architecture for display wall configurations.

90 6 Push-Based NADs and NACs

6.1.3 Design

A NAC is customized by code downloaded from a NAD. This customization
code needs to be transferred to the NAC once it contacts the NAD. To
accomplish the integration of the NAC with the NAD, a two-phase protocol is
used. In phase one, the NAC is customized by code downloaded from the NAD.
In phase two, the integration phase, the whole display or user-selected regions of
it are mirrored onto the NAD. The two phases are illustrated in figure 6.3.

The NAD runs a web server, which is the initial entry point for a NAC. A user
wishing to use a NAD contacts it by accessing the web server through a web
browser. A page is presented containing information about the NAD such as
resolution and location, in addition to a button to launch the NAC software.
When the user pushes the button, the software is downloaded to a temporary
directory on the user’s computer and is then launched.

Figure 6.3: The two phases of the NAD protocol; (i) The NAC is customized by code
downloaded from the NAD; and (ii) the customization enables mirroring of user-selectable
regions onto the NAD.

The NAC software enables the user to select multiple regions (using the mouse
cursor) of the desktop to be mirrored onto the NAD. These mirrored regions are
read from the frame buffer of the local computer, encoded and transferred over to
the NAD using a custom pixel transfer protocol. This protocol also allows for
events to be transferred from the NAD back to the NAC for remote control.

A graphical user interface enables the user to scale and position the mirrored
regions from the desktop computer. The GUI also contains a checkbox to accept
remote events from the NAD. By selecting this checkbox, the user can enable

6.1 The NAD System 91

interaction with the mirrored regions from the NAD through connected
interaction devices. These events are encoded and sent from the NAD to the NAC
and inserted into the NAC’s event queue. For display walls, the VNC system
presented in chapter 2, section 2.2.1 is used for transferring the content from the
front-end running the NAD system to the computers of the display wall.

6.1.4 Implementation

The core components of the NAD system are implemented in Java 2 Standard
Edition [117]. Java was chosen because of the initial requirements to the system
(cross-platform and transparent two-phase protocol). Java is cross-platform and
contains a mechanism for launching applications from a web browser using the
Java Web Start technology [118]. These properties were important for supporting
the flexibility required for the system. The two main arguments against using
Java are performance cost against machine code [119] (although for some
platforms this gap is small [119]), and the fact that users must have the Java
Runtime Environment (JRE) installed. Based on informal experience from using
the NAD software on the display wall lab presented in chapter 2, section 2.3,
every visiting user has had the JRE installed on their computer.

The integration phase is based on a protocol for transferring pixels from the NAC
to the NAD and, optionally, for bringing events back to the NAC from user
interaction at the NAD. The NAC software reads the frame buffer at regular
intervals, encodes pixels, and sends them to the NAD. The protocol combines
run-length encoding [120] with caching using an in memory copy of the previous
frame, in order to reduce network traffic. The pixels have a 24-bit color-depth
requiring 3 bytes per pixel. The NAC software iterates over the pixels captured
from the frame buffer and encodes them to an encoding buffer using the
following algorithm:

1. If one or more succeeding pixels exist in the cache, a SKIP header is
added to the encoding buffer, describing the number of pixels to skip.

2. If two or more consecutive pixels have the same value, an RLE header is
appended to the encoding buffer, describing the number of pixels
followed by the color value (3 bytes).

3. If pixels do not satisfy the two preceding conditions, a RAW header is
appended to the encoding buffer, describing the number of raw pixels
followed by the color value of each proceeding pixel (3 bytes each).

Headers are 1 byte, where the two most significant bits are used to describe the
type (SKIP, RLE, RAW or EXT). The remaining 6 bits are used as a pixel
counter (figure 6.4). The EXT type is used to extend a header if the pixel count
cannot be encoded using 6 bits by prepending it before the main header.
Additionally, several EXT headers can be prepended to encode as much pixel
data as needed.

92 6 Push-Based NADs and NACs

Figure 6.4: The NAD protocol format. The above example shows an RLE message containing
5 consecutive black pixels.

The encoded pixels along with other properties (mouse coordinates, scaling and
position of the remote image) are sent over the network to the NAD. The NAD
decodes the pixels and updates its mirror of the desktop. If the user has allowed
remote control, the NAD propagates input events back to the NAC when events
occur over the mirrored regions. The NAC receives the events, and inserts them
into the local event queue of the window system.

Initial measurements on the NAC indicated that frame buffer capturing as well as
performing the encoding protocol is CPU intensive. Since the NAC might be a
battery-powered laptop, the frequency of these two operations needs to be kept to
a minimum. To accommodate this situation the customization code of the NAC
employs a frame-rate limitation mechanism. If the number of updated pixels in a
frame is under a user-configurable threshold, the frame buffer capturing and
change detection frequency is reduced. Otherwise, it is increased. This
mechanism avoids unnecessary updates when the content rendered to the NAC
frame buffer is mostly unchanged, for example when showing a slide show
presentation. For regular usage, the lower frame rate of this mechanism is set to 5
FPS. The upper limit is set to 25 FPS by default. The upper and lower limit
settings can be controlled from the graphical user interface.

6.1.5 Experiments

The developed system is evaluated by conducting 10 series of experiments. The
frequency and size of graphical updates produced by an application affects the
performance of the system. The content of the updated pixels affects the
compression ratio. For these reasons, the experiment series were designed using
four different applications with different graphical output characteristics.

Methodology

The four different types of applications used to evaluate the system were:

1. A slideshow presentation changing slides every fifth second.

2. Scrolling through a PDF document with a constant speed.

3. A video.

6.1 The NAD System 93

4. An application developed to produce predetermined output patterns to
the frame buffer to give best- and worst-case update scenarios.

The best-case scenario is when updates are small, and the content of the updates
are regular. The worst-case scenario is when the updates are big and the content
of the updates are irregular. For each experiment the average frame rate, average
bandwidth usage, CPU load, and time spent in the main parts of the system were
measured. The factor for the experiments was the resolution of the mirrored
region, which had the following values:

1. 800x600

2. 1024x768

3. 1600x1200

Table 6-1 summarizes all experiment series. The hardware and software used in
the experiments are listed in table 6-2.

Table 6-1: Experiment summary

Experiment

Series
Description Factor (Resolution)

Frame rate limitation off

1 Best-case application

 800x600 (0.48 megapixels)

 1024x768 (0.78 megapixels)

1600x1200 (1.92 megapixels)

2 Slideshow presentation

3 PDF Scroll

4 Video

5 Worst-case application

Frame rate limitation on

6 Best-case application

 800x600 (0.48 megapixels)

1024x768 (0.78 megapixels)

1600x1200 (1.92 megapixels)

7 Slideshow presentation

8 PDF Scroll

9 Video

10 Worst-case application

94 6 Push-Based NADs and NACs

Table 6-2: Hardware- and software-platform

NAC Side NAD Side

Type Laptop Desktop

Number of Nodes 1 1

CPU
Intel Centrino Duo 2.16

GHz
Intel Pentium 4 EM64T 3.2
GHz w/HyperThreading

RAM 1 GB 2GB

Graphics Card
NVidia Quadro FX2500M
w/512 MB VRAM

NVidia Quadro FX3400
w/256 MB VRAM

Operating System Linux Ubuntu 7.04
Rocks Linux Cluster
Distribution 4.0

Interconnect
Both computers interconnected over switched gigabit
Ethernet

Results and Discussion

Figure 6.5 shows the frame rate achieved for the first five experiment series
(frame rate limitation off). The y-axis is the achieved frame rate and the x-axis is
the number of megapixels that are mirrored.

As shown in figure 6.5 the frame rate is affected by the size and content of the
mirrored region. The best-case application has a frame rate of almost 160 FPS for
a region size of 0.48 megapixels, close to 100 FPS for 0.78 megapixels, and 50
FPS for the largest region size of 1.92 megapixels. For the worst-case application,
the frame rate is 27.2 FPS for the lowest regions size of 0.48 megapixels, 16.77
FPS for the region size of 0.78 megapixels and 6.82 FPS for the largest region
size of 1.92 megapixels. For the video, the resulting frame rates are 38.6 FPS,
27.9 FPS and 12.85 FPS. If a target frame rate of 25 FPS is acceptable, all data
points except for the worst-case application’s two largest region sizes and the
video’s largest region size fall within this refresh limit. The graph indicates an
inversely proportional relationship between the resolution and the frame rate.

6.1 The NAD System 95

Figure 6.5: Frame rate of the different applications at the three resolutions used in the
experiments (frame rate limitation off).

Figure 6.6 shows the time spent in the main components of the NAC software.
The y-axis is the average number of milliseconds spent in the main functional
tasks (communication, encoding and frame buffer capturing) and the x-axis
shows the applications and resolutions used.

Figure 6.7 shows the average time spent in the main functional units of the NAD-
side software (communication, decoding and rendering). The y-axis is the time in
milliseconds and the x-axis shows the applications and resolutions used.

As figures 6.6 and 6.7 illustrate the iteration time (the time used to perform frame
buffer capturing, encoding and communication for the NAC, and communication,
decoding and rendering for NAD) for both the NAC and the NAD increases with
the resolution, frequency and size of the graphical updates produced by the
applications. All functional parts are executed sequentially and the total iteration
time is therefore the sum of all these parts added together.

From both figures 6.6 and 6.7, it can be seen that the time spent on
communication is not equal on both sides, which is an effect of the synchronous
communication protocol and the measurement methodology. If the NAD is
waiting for updates from the NAC, the waiting time is reflected in the
communication part of the iteration time. Therefore, where there is a difference in
communication time between the NAD and NAC, the real time spent sending
data over the link is the lowest one.

0

20

40

60

80

100

120

140

160

180

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

F
P

S

Size of mirrored region (megapixels)

Worst-Case

PDF Scroll

Video

Slideshow

Best-Case

96 6 Push-Based NADs and NACs

Figure 6.6: Breakdown of average time usage for the main functional units of the NAC (frame
rate limitation off).

Figure 6.7: Breakdown of average time usage for the main functional units of the NAD.

0

20

40

60

80

100

120

140

160

6
4
0

x
4

8
0

1
0
2
4

x
7
6
8

1
6
0

0
x
1
2

0
0

6
4
0

x
4

8
0

1
0
2

4
x
7
6

8

1
6
0

0
x
1
2

0
0

6
4
0

x
4

8
0

1
0
2

4
x
7
6

8

1
6
0

0
x
1
2

0
0

6
4
0

x
4

8
0

1
0
2

4
x
7
6

8

1
6
0

0
x
1
2

0
0

6
4
0

x
4

8
0

1
0
2

4
x
7
6

8

1
6
0

0
x
1
2

0
0

Best-Case Slideshow PDF Scroll Video Worst-Case

M
il

li
se

co
n

d
s

Other

Communication

Encoding

Frame Buffer Capturing

0

20

40

60

80

100

120

140

160

6
4
0

x
4

8
0

1
0
2

4
x
7
6

8

1
6
0

0
x
1
2

0
0

6
4
0

x
4

8
0

1
0
2

4
x
7
6

8

1
6
0

0
x
1
2

0
0

6
4
0

x
4

8
0

1
0
2

4
x
7
6

8

1
6
0

0
x
1
2

0
0

6
4
0

x
4

8
0

1
0
2

4
x
7
6

8

1
6
0

0
x
1
2

0
0

6
4
0

x
4

8
0

1
0
2

4
x
7
6

8

1
6
0

0
x
1
2

0
0

Best-Case Slideshow PDF Scroll Video Worst-Case

M
il

li
se

co
n

d
s

Communication

Decoding

Rendering

6.1 The NAD System 97

Figure 6.8 shows the average bandwidth usage of each application. The y-axis is
the number of megabits per second and the x-axis is the number of megapixels
mirrored.

Figure 6.8: NAC – NAD network bandwidth usage.

Reducing the iteration time to increase the frame rate requires the time of at least
one of the functional parts to be reduced. The frame buffer copying is hardware
accelerated and uses DMA for memory transfer. The time of this part is mostly
determined by the pixel read-back speed, which is constrained to the hardware
used.

For pixel encoding/decoding and networking there is a tradeoff between the time
used to encode/decode data and the network bandwidth available. The chosen
run-length encoding/decoding algorithm requires only one pass over the captured
frame buffer, which reduces CPU usage at the expense of network bandwidth
usage. Using other compression algorithms might yield better compression ratios.
However, for the chosen experiment the network is not a bottleneck, which can
be seen by figure 6.8. The worst-case application uses one third of the available
bandwidth, which shows that the network is not a bottleneck for increasing the
frame rate using the current compression algorithm.

Since the functional units of the code utilize different hardware components
(graphics card, CPU and network card), pipelining them could give increased

0

50

100

150

200

250

300

350

0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

M
b

it
/s

Size of mirrored region (megapixels)

Video

PDF Scroll

Slideshow

Best-Case

Worst-Case

98 6 Push-Based NADs and NACs

frame rate. A pipeline approach would potentially give an iteration time equal to
the largest iteration time of the functional units. Generally, the longest part is the
encoding/decoding part. For the video application for example, this part is half of
the iteration time, which would yield a potential speedup of two when mirroring
the output from this application. However, for the worst-case application the
largest part is decoding at the NAD-side, which constitutes a much larger part,
and would therefore not give the same improvement.

Figure 6.9 shows the effect of the frame rate limiter on CPU load. The y-axis is
the CPU load in percent and the x-axis shows the applications and resolutions
used.

Figure 6.9: CPU usage on the NAC.

For several of the applications the frame rate limiter reduces the CPU load
considerably. The applications that benefits this the most, is the applications that
are not producing frequent updates (best-case, slideshow, and PDF scroll). These
applications do not require frequent change detections, as the content shown is
more or less static. For the video and the worst-case application, the frame rate
limiter detects the frequent changes and therefore does not cap the rate of the
frame buffer capturing and change detection. This also increases the CPU load on
the NAC.

0

10

20

30

40

50

60

70

80

90

100

6
4
0

x
4

8
0

1
0
2

4
x
7
6

8

1
6
0

0
x
1
2

0
0

6
4
0

x
4

8
0

1
0
2

4
x
7
6

8

1
6
0

0
x
1
2

0
0

6
4
0

x
4

8
0

1
0
2

4
x
7
6

8

1
6
0

0
x
1
2

0
0

6
4
0

x
4

8
0

1
0
2

4
x
7
6

8

1
6
0

0
x
1
2

0
0

6
4
0

x
4

8
0

1
0
2

4
x
7
6

8

1
6
0

0
x
1
2

0
0

Best-Case Slideshow PDF Scroll Video Worst-Case

P
er

ce
n

t

Frame Rate Limitation Off

Frame Rate Limitation On

6.1 The NAD System 99

6.1.6 Conclusions

This chapter has presented the NAD system, a system for cross-platform desktop
mirroring of user-selectable regions from one or several compute resources onto
nearby network accessible projectors and displays. The system is based on a
push-based NAC - NAD approach and the principle of establishing the end-to-
end principle through customization. This enables a flexible use of nearby
network accessible display resources, without requiring: (i) Separate usage of a
DVI/VGA cable; (ii) permanent installation of third party software; and (iii)
opening firewall ports on the local computer.

A user wishing to use a NAD can contact the NAD through a web browser, where
he/she is presented with a button to launch the NAC software. By clicking on the
button, a two-phase customization protocol is started. In phase one, the NAC is
customized by non-intrusive software downloaded from the NAD. In phase two,
the integration phase, the whole display or user-selected regions of it, is mirrored
onto the NAD. Phase two supports propagation of events from the NAD back to
the NAC, enabling remote control of mirrored regions.

At a resolution of 800 by 600 pixels, the system can mirror dynamic content
(video) between a NAC and a NAD at 38.6 FPS. At 1600x1200 pixels, the
refresh rate is 12.85 FPS. For static content such as images and slideshow
presentations, the system’s bandwidth usage is within the capacity of an 11
Mbit/s wireless network. For dynamic content such as movies and games, the
system requires at least a 100 Mbit/s connection. The bottleneck of the system is
frame buffer capturing and encoding/decoding of pixels. Pipelining the main
parts of the NAC-side and NAD-side software would most likely give a frame
rate increase in all cases, and by a factor of two in the best case.

101

 Chapter 7

Pull-Based NADs and NACs

This chapter describes the pull-based NADs and NACs that have been created as
part of the work presented in this dissertation. In contrast to push-based
resources, where the NAC initiates and provides content to the NAD, pull-based
NACs waits for requests from NADs, which are responsible for initiating the
request. This chapter is based on the following peer-reviewed published papers:
[76] [77] [78].

7.1 WallScope

WallScope is a system developed to document pull-based NADs and NACs, and
several of the principles and models presented in this dissertation. It comprises
several components that collectively enable high-performance interactive
visualization of data on high-resolution tiled display walls.

WallScope adheres to:

1. Principles:

a. Establishing the end-to-end principle through customization.

i. Physical and virtual customization.

b. PC – PCR duality.

c. Domain specific best-effort synchronization.

2. Models:

a. Network accessible compute model

3. Architectures:

a. Live data set architecture

102 7 Pull-Based NADs and NACs

The overall idea of WallScope is to separate display resources from compute
resources using a data set containing data customized for the particular
application domain of the display resource’s visualization systems. An illustration
of the idea is shown in figure 7.1.

Figure 7.1: WallScope idea.

The implication of the separation of displaying and computing is twofold: (i) The
computational power of the system is not constrained by the number of display
nodes; and (ii) the display-side can access data processed in a customized format
allowing a tradeoff between data size, display-side functionality and display-side
utilization.

The visualization systems request data from the data set. The data set is live in
that it translates these requests into compute messages and forwards them to
available network accessible compute resources. The data produced by the
compute resources is returned to the visualization systems for the final rendering.

Compute resources are categorized into static and dynamic. A static compute
resource is a compute resource that is considered permanent to the system once
added. Static compute resources are virtually customized by the live data set,
meaning that the compute resources are unmodified and the live data set
translates between the requests received from the visualization systems to the
specific protocol used by the compute resources. Static compute resources are
computational resources such as clusters and supercomputers. These compute
resources typically have strict underlying security and access policies (software
running on a supercomputer is often prohibited to make outgoing connections).

A dynamic compute resource is a compute resource that is volatile in the sense
that it can register with the system on-the-fly to become a compute node in the
system, and then at a later point leave. A dynamic compute node is customized by
the live data set on-the-fly to produce data for the system. Examples of dynamic
compute resources are laptops and desktop computers. A computer can become a

7.1 WallScope 103

dynamic compute resource in the system by registering with the live data set to
become customized. The customization enables the compute resource to provide
information about the type of requests that it can process and what data it will
share with the system. Once this information has been provided, the compute
node waits for requests from the live data set.

The main components of WallScope are:

1. Display-side components:

a. WallGlobe

i. Visualization system supporting virtual globes.

b. WallView

i. Visualization system supporting high-resolution
images.

c. LDSView

i. Visualization system combining the functionality of
WallGlobe and WallView.

d. The live data set

i. The coordinator between the display-side and the
compute-side.

2. Compute-side components:

a. WallCompute

i. System for computing images, elevation data and maps
for the display-side.

b. WallWeather

i. System for computing weather forecasts and high-
resolution weather forecast images for the display-side.

c. Dynamic compute resources

i. System for transforming personal computers into
personal compute resources for the display-side.

104 7 Pull-Based NADs and NACs

7.1.1 Related Work

WallScope shares characteristics with several visualization and data processing
systems.

Two such visualization systems are Google Maps and Google Earth. Google
Maps [121] is a web mapping service application accessed through a web
browser. Users can view street-maps, satellite images, traffic and much more.
Other objects may be retrieved from various sources and rendered by the client as
overlays. An extensive API [122] is available for third parties to create custom
applications using the mapping services provided by Google.

Google Earth [123] is a stand-alone client for exploring the Earth in 3D. It
enables a user to navigate anywhere in the world to explore satellite images of
varying resolution mapped onto a virtual globe. Later versions include the ability
to explore the universe and go underwater. There are three different versions of
Google Earth: (i) A free version allowing users to “fly” anywhere on the Earth to
view images, maps, etc.; (ii) a pro version for commercial use extending the free
version with more functionality and better performance; and (iii) an enterprise
version which allows corporations and government agencies to view their data on
Google’s globe database, or alternatively, host Google Earth internally on their
own servers and data sets.

The server-side of Google Maps and Google Earth uses Google’s BigTable [124]
to store data. BigTable is a distributed storage system for managing structured
data, described by the authors as a sparse, distributed, persistent multi-
dimensional sorted map. BigTable uses the Google File System (GFS) [125] to
store log and data-files. For Google Maps and Google Earth, one table is used to
pre-process data, and a different set of tables are used for serving client data. The
pre-processing pipeline uses MapReduce [126] over BigTable to transform data.
The client service system uses one table to index data stored in GFS. This table
requires low latencies, and is therefore hosted across hundreds of servers.

WallScope’s main difference from Google Map and Google Earth is the use of
on-demand computation of data. An implication of this on-demand computation
model is that clients can get customized data from the compute-side. For
example, compute servers can remove objects from images on-the-fly (remove
oceans, show only rivers, show only mountains, etc.), or do re-projection of data
fetched from external data sets not natively supported by the display-side’s
visualization clients. Google has pre-processed the data and can therefore not do
this easily. In some cases, this is a drawback, as the server-side can have
available processing power. Since WallScope clients can offload parts of the
visualization process to the server-side, the architecture allows for load-balancing
between clients and servers. Another advantage of the architecture is that clients
may instruct the server to do speculative pre-computation of data by specifying a
request script, thereby giving some of the same performance benefits as Google’s
pre-computed data sets.

7.1 WallScope 105

In [127] is a blog showing images of Google Earth running on a tiled display
wall. The author is using Chromium [33] to distribute the rendering primitives
from one central computer running Google Earth, to a set of rendering nodes
running on each computer connected to the display wall. The author does not
document any performance numbers of the resulting system. The advantage of
this solution is the fact that very small changes are needed to run OpenGL
programs with Chromium. However, as mentioned in chapter 2, section 2.2.3 and
documented in [27] [36], Chromium has scalability issues as the network can
become a bottleneck.

Another project using Google Earth is HiPerWall [128]. In lack of the source
code, their solution uses Google Earth’s API to control one or more instances of
Google Earth running on each display node. A controller node accepts input from
the user and propagates this input to a set of controller nodes running on each
display node. This solution differs from WallScope in all the aforementioned
differences to Google Earth.

Liquid Galaxy [129] is a Google 20 percent project, which has evolved into
becoming an official part of Google Earth. This project extends Google Earth to
be set up for multiple displays. However, the system still lacks the on-demand
computation model used by WallScope. In addition, the system only supports
interaction methods predefined by the application, limiting the use of external
input from alternative input devices such as the touch-free interaction system
used by all of WallScope’s visualization systems.

The Bing Maps Platform [130] is the next evolution of the Microsoft Virtual
Earth platform. It consists of set of APIs that allows easy integration of map
functionality into users’ applications. The 3D part of Bing Maps [131], which
allows the user to navigate the Earth to view satellite images mapped onto a
virtual globe, requires installation of additional software, which is only available
for Microsoft Windows based operating systems. There are to the author’s
knowledge not any projects using Bing Maps on tiled display walls.

World Wind [132] is an open source virtual globe originally developed by
NASA. The original World Wind was implemented in C# [133] using Direct3D
[67] for the rendering. Another version [134] has been implemented in Java [117]
using OpenGL for the rendering. There are also other forks and clones of the
original World Wind project [135] [136]. World Wind uses the Blue Marble
[137] data sets for the lowest resolutions. Additional high-resolution data sets
(among others Landsat7 [138]) are loaded as the user zooms in. There are to the
author’s knowledge not any projects using World Wind on tiled display walls.

ArcGis Engine [139] is a collection of components that can be used to create
custom GIS solutions. In [140] is a description of a system using ArcGIS Engine
to do parallel map rendering on a tiled display wall. This system uses a master
node and six rendering nodes, all running ArcGIS Engine and connected to a
back-end GIS database. The master shows the full scene of the data set and takes

106 7 Pull-Based NADs and NACs

control input from the user. The rendering nodes retrieve layer data from the
back-end and viewing information form the master. However, this solution has no
separate compute resources. The architecture of WallScope enables load-
balancing between display nodes and compute nodes. Therefore, the processing
power of WallScope is not limited to the number of display nodes. In addition,
the ArcGIS components are only available for Windows.

In [43] a real-time terrain rendering system for tiled displays is presented. The
system uses several techniques similar to WallGlobe. These are sort-first
retained-mode parallel rendering, a Level-Of-Detail (LOD) algorithm for tiled
rendering, view-frustum culling, and out-of-core data management. However, the
data is pre-processed and replicated over the visualization nodes. Therefore, the
system does not support on-demand computation of data from external data
sources, and the computational power of the system is limited by the number of
display nodes.

Active Data Repository (ADR) [141] is an object-oriented framework providing
support for applications employing user-defined mapping and aggregation
operations on large-scale multi-dimensional data sets. The ADR back-end
comprises customized compute resources that communicate directly with the
clients. This limits the system’s computational power to compute resources that
allows for custom code execution. Further, data sets are distributed over the local
disks on the back-end compute cluster, which implies manual synchronization
between remote data sets and back-end disks. Finally, the system does not store
processed data, and the experiments only document performance results for
output to 512x512 pixel images, which are orders of magnitude smaller than the
resolution of a display wall.

DataCutter [142] is a framework designed to enable exploration and analysis of
scientific data sets in distributed and heterogeneous environments. DataCutter
uses a filter-stream programming model. Components of applications are
decomposed into filters (potentially executed on different computers) that
communicate via uni-directional stream pipes. The filters require an application
binary that implements the filter specification on every host, in addition to an
application daemon to start the filtering service. This limits the execution of
filters to compute resources that can run custom code. Further, filters
communicate through uni-directional pipes, which require the compute resource
to open outgoing socket connections for bi-directional communication, an
operation that is not allowed by some computational resources such as
supercomputers. Finally, filters do not cache results, which could be inconvenient
in virtual globes and mapping applications where queries can be repetitive.

In [143] the authors investigate multi-query workload optimization using active
semantic caching. The active semantic cache comprises a transformation
framework with operators that expose how a data product was generated and how
it relates to other data products. This information allows for active transformation
in case of partial reuse opportunities. WallScope does not use active semantic

7.1 WallScope 107

caching because clients follow a strict tiling pattern, combined with the fact that
navigating visualizations of the Earth often involves requesting data with
increasing level of detail, yielding limited use of transformation operations.

Scalable Parallel Visual Networking (SPVN) [144] is an application framework
for visualization of large data sets. The architecture comprises application servers
that receive data from a database manager. Data is rendered to pixels and sent to
display servers running on the computers driving the displays. In contrast to
SPVN, WallScope uses both local and remote compute resources to provide
display clients with domain specific data, which can be rendered to pixels using
the clients’ graphics hardware. In SPVN, this must be done by placing the
application servers on the same machine as the display servers, which limits the
computational power of the resulting system to the number of display nodes.
Placing the application servers on dedicated clusters require sending pixels over
the network, which for lossless encoding can introduce bottlenecks [32].

ParVox [145] is a parallel volume rendering system for supercomputers. It can
render structured and unstructured grids into images, which are sent to a user’s
workstation. ParVox assumes that the user has a limited function workstation,
that the user has access to a supercomputer, and that the data is located on the
supercomputer’s disk. This is not a requirement for WallScope. In contrast, the
WallScope architecture comprises both local and remote compute- and data-
resource that can be transparently utilized by the display-side. Further, WallScope
caches data to avoid unnecessary re-computation. Finally, the domain specific
data is not restricted to pixels (compressed or uncompressed), but can be any type
of data customized for the display-side.

In [146] a grid-based visualization framework for spatial data sets is presented.
The system assumes an active storage model where data sets are local to the
CPUs. This is in contrast to WallScope that can utilize both local and remote
data- and compute-resources. Further, the compute resources communicate
directly with the clients. Finally, in contrast to the system presented, WallScope
uses caching to avoid re-computation of processed data.

The Digital Light Table (DLT) [147] is a tool for visualizing large data sets. DLT
comprises multiple graphics engines that read tiled images and digital elevation
files from disk, and renders them as terrain. DLT is run on the Silicon Graphics
(SGI) Reality Engine with multiple graphics pipes. A later version Multi-Surface
Light Table (MSLT) [147] has been developed for commodity PCs. Both of these
rendering systems use pre-computed images loaded from disk and have no
separate data processing system to provide the visualization system with on-
demand domain specific data.

The Remote Interactive Visualization and Analysis system (RIVA) [148] is a
system for interactive data exploration and visualization of large data sets using a
supercomputer. A low-resolution copy of the data set is loaded in a RIVA data
navigator residing on an SGI workstation, where the user can navigate and select

108 7 Pull-Based NADs and NACs

desired views. The viewpoint is transmitted to the supercomputer via a network
interface program, where an image is rendered using the full data set. In contrast
to RIVA, WallScope renders the final image on the display-side, thereby utilizing
both the compute- and graphics-capabilities of the display nodes. Further, the
domain specific data is not rasterized from the current camera viewpoint, yielding
better possibilities for tiling and caching. In addition, the domain specific data
output is not restricted to be pixels. Finally, WallScope does not need a lower
resolution sample of the original data set for out-of-core rendering.

The Scalable Adaptive Graphics Environment (SAGE) [66], based on TeraVision
[149] and TeraScope [150], is a middleware for streaming pixels in real-time
from remote rendering and storage clusters to high-resolution tiled display walls.
SAGE requires each rendering application to be linked with a client-side library.
This limits the computational power of the system to compute resources that can
run custom code. Further, the middleware is based on streaming pixels over the
network, which can require high-bandwidth links between rendering- and
display-nodes. In addition, the display nodes receive and decompress pre-
rendered pixel streams, thereby not utilizing their compute- and rendering-
capabilities.

Tellurion [151] is a planetary visualizer with real-time data-manipulation
capabilities. Using a GPU centric approach, the system is able to combine
disparate planetary-scale data sets to produce a uniform composite visualization
of them. The visualizer has been ported to several display walls. Although the
visualizer has real-time capabilities for blending data sets with different
projections, the data sets have to be downloaded to disk in advance. WallScope
uses on-demand downloading and revalidation of data. The implication of this is
that WallScope can download data from remote data sets once they are updated,
for example to include a visualization of the latest images available from real-
time image feeds. In addition, WallScope supports blending image data sets using
layers with transparency, and can also choose where to blend images: At the
display-side or at the compute-side.

OptiStore [152], based on TeraScope [150], is and on-demand data processing
middleware for extremely large-scale visualization applications in the context of
the OptiPuter [153]. OptiPuter is a research project where distributed storage,
computational resources and visualization resources are connected using optical
deterministic high-speed networks. The OptiStore framework uses several
techniques and mechanisms to achieve overall utilization. These are load-
balancing data partition and organization, multi-resolution analysis, view-
dependent data selection, runtime data pre-processing and dedicated parallel data
filtering. OptiStore is similar to WallScope in that both are using on-demand
processing of data and separate data sets, compute resources and display
rendering. However, there are some important differences between these two
systems. OptiStore is based on an architecture where data is separated from
compute resources and visualization systems initiates contact directly with the
compute nodes. In addition, compute nodes are required to run the OptiStore

7.1 WallScope 109

software, and visualization clients must be compiled and linked with a client-side
library. WallScope, on the other hand, separates visualization systems from
compute systems using a live data set containing data customized for the
particular application domain of the visualization systems. WallScope does not
put any architectural limits on the compute-side of the system nor requires any
custom code to be running on the compute nodes. Thus, WallScope support both
computational resources that can be installed code on, and computational
resources that are available for data processing, but do not allow for execution of
custom code. Additionally, the live data set allows applications to perform their
own speculative pre-fetching, in contrast to OptiStore where pre-fetching is done
by the servers from view-information passed from the clients.

In [154] the authors present OptiPuter middleware technologies supporting real-
time collaborative visualizations of 3D multi-gigabyte Earth science data sets.
However, the system does not have computational resource for separate data
processing before data is sent to the visualization nodes, thereby reducing the
computational power of the system to the number of visualization nodes.

The dynamic compute nodes in WallScope shares common characteristics with
public (global) computing, where the idea is to use the world’s computing power
and disk space to create virtual supercomputers capable of solving problems and
conduct research previously infeasible. There are a number of projects focusing
on public computing, among others SETI@home [155], Predictor@home [156],
Folding@home [157], and Climateprediction.net [158]. These projects use the
BOINC (Berkley Open Infrastructure for Network Computing) [159] platform.
The overall goal of BOINC is to make it easy for scientists to create and operate
public-resource computing projects. A user wanting to participate in the BOINC
project downloads and installs a BOINC client, which is used to communicate
with the server-side. While there are similarities between the dynamic NACs and
BOINC, there are some important differences. Firstly, in BOINC the focus is to
make it easy to utilize available computational resources. For the dynamic
compute nodes, the focus is to utilize desktop applications for domain specific
computation of data for a set of visualization clients. Secondly, in BOINC, each
client requests jobs from the servers that host the projects. This is in contrast to
WallScope where the live data set sends compute messages to compute nodes on-
demand. BOINC clients choose from what projects they will compute for based
on some local policy, where in WallScope the live data set has central control and
chooses which compute resource will get the compute message based on a global
view. Further, the customization phase for dynamic compute nodes in WallScope
requires no permanent installation of software on the compute node, and the code
is completely removed from the compute node when the user quits the NAC
service. In addition, users have complete control over what data is shared, and
can choose this data from their personal computer on a per data-element basis, for
example only page 1 and 3 of a 10 page document. This also includes complete
control over the output format such as pixels, PDF, original source, etc. Finally,
the live data set supports local and remote compute resource like clusters and

110 7 Pull-Based NADs and NACs

supercomputers, which are not supported by BOINC focusing exclusively on
public computing.

Condor [160] focuses on distributing work tasks to idle workstations. However,
the system is batch oriented and does therefore not support the on-demand
computation model used by WallScope.

XtremWeb [161], another platform supporting global computing, uses a set of
XtremWeb root servers to host binaries for the clients (workers). Workers register
with a root server, get a vector of available servers that host tasks, and request
jobs from these servers. Similar to WallScope, XtremeWeb has pre-compiled
binaries hosted for the workers (XtremWeb) / compute resource (WallScope).
However, in contrast to XtremWeb, which uses one compute thread per
computer, WallScope’s dynamic NAC-software supports several compute
processes per computer. This has some important advantages: (i) The current
trend is towards more CPU cores per computer; and (ii) some APIs are not thread
safe, and thus running these in separate address spaces avoids race conditions.
Further, the live data set sends compute requests to compute resource on-demand,
instead of having workers requesting jobs. Finally, the use of a live data set,
which has the ability to adapt to the protocol used by a compute resource, allows
for both local and remote compute resources without requiring any custom code
to be running on this type of compute resources.

XtremWeb-CH [162] is an upgraded version of XtremWeb. It comprises two
versions called XWCH-sMs, which uses a centralized communication method,
and XWCH-p2p, which allows nodes to communicate without central
coordination. XWCH-sMs uses a coordinator similar to the live data set used in
WallScope. However, this version only supports what is referred to as dynamic
compute nodes in WallScope. In WallScope, the live data set adapts to the
protocols used by compute resources that the system cannot install software on,
and can therefore support supercomputers, grids and other compute systems that
accept job requests, but are protected by strict security policies, such as the ability
to establish outgoing connections.

In [163] and [164] job distribution middlewares for P2P environments is
described sharing some of the characteristics as XWCH-p2p. While P2P allows
for decentralized control and therefore removes some of the potential bottlenecks
and components that can cause a single point of failure, a centralized scheduler
allows for distributing tasks with a global view, which in WallScope is preferred
over a decentralized model.

WallScope also shares characteristics with Minimum Intrusion Grid (MIG) [165].
However, while MIG focuses on making it easy for users to utilize available
computational resources, WallScope focuses on domain-specific computation of
data for a set of visualization clients running on resources ranging from laptops to
high-resolution tiled display walls.

7.1 WallScope 111

In addition to the data-processing and rendering systems already presented in this
section, there exists several cluster-based parallel rendering systems for display
walls. Several remote rendering systems exists in addition to the ones presented
earlier in this section, among others Chromium Renderserver [166], OpenGL
Vizserver [167], HP Remote Graphics Software [168] and ThinAnywhere [169].
These systems utilize the rendering capabilities of remote clusters, but not the
graphics capabilities of the computers receiving the rendered pixels. There are
several systems that can utilize the local rendering capabilities of a display wall.
These include Chromium [33] (based on WireGL [65]), Equalizer [170], VR
Juggler [171], ClusterJuggler [172], NetJuggler [173], Garuda [174], OpenGL
Multipipe SDK [175], and CGLX [176]. In addition to these general frameworks,
there has been conducted much research on visualization and parallel rendering
on display walls among others in [177] [178] [179] [180] [181] [182] [183] [184]
[185] [186] [187] [188] [189] [190] [191] [192] [193]. However, these systems
mainly focus on distributing, parallelizing and synchronizing the data and
rendering workload between the display nodes. WallScope extends this by
utilizing a live data set to provide visualization systems with domain specific data
from local and remote data- and compute-resources, transparent to the display-
side of the system.

7.1.2 Architecture

This section describes the architecture of WallScope. The architecture is a
realization of the main idea behind WallScope: Separate compute resources and
display resources using a data set containing data customized for the particular
application domain of the display-side’s visualization systems. The architecture
of WallScope is shown in figure 7.2.

A visualization client runs on each display node (the NAD comprises the
combination of a physical node and the visualization client). A separate state
server provides each client with view state. By combining the view received from
the view-state server with the position in the display grid, a visualization client
requests the content needed to display its part of the view from the live data set. If
previous requests for the same data have been performed, and the data is not
outdated, the live data set returns a cached copy of the content for the request.
Otherwise, a message for processed data is sent to a network accessible compute
resource for domain specific data generation for the visualization client.

The display-side of the system can query the live data set to get meta-data. The
meta-data describes all the data the network accessible compute resources can
produce on behalf of the display-side. From the visualization nodes point of view,
the live data set contains all the data pre-processed. However, the live data set
will only actually contain data that has been processed, and all requests for data
that has not been processed will be sent to a compute node that can produce this
data. This is done transparently to the display-side, and thus hides all
computations to the visualization clients.

112 7 Pull-Based NADs and NACs

Figure 7.2: WallScope architecture.

7.1 WallScope 113

As mentioned in the introduction, compute nodes are divided into static and
dynamic. The static compute nodes are compute resources that are considered
permanent to the system once added. A local compute cluster (WallCompute) is
set up as the main provider of images, maps and elevation data. The compute
nodes in the cluster uses data requested from a cache of pre-processed data and
from an edge cache of original data. The edge cache is the compute resources
entry point to the outside data sets. Each compute node in the local cluster has a
local cache for the cache of pre-processed data and for the cache of original data.

A super computer (part of the remote compute resources) is running
WallWeather’s simulation for on-demand weather forecasts.

The dynamic compute nodes are compute resources that can be dynamically
integrated with the system. This class comprises workstations, laptops, etc. These
compute resources are dynamic in the sense that they can register on-the-fly with
the live data set to become compute nodes in the system. The dynamic compute
nodes can be used to provide resolution independent display-side-friendly
formats for the visualization clients, for example to enable visualization of a large
number of pages from a word document.

7.1.3 Design

Display-side Components

The display-side components of WallScope are the network accessible display
resources and the live data set.

The network accessible display resources are responsible for performing the final
visualization that is output to the physically connected display(s). The state of
these visualizations is provided by a separate state server, which broadcasts this
state at a configurable number of times per second. Based on this state and a
visualization client’s position in the display grid, a client requests the data needed
to complete the visualization from the live data set.

Three display-side visualization systems have been developed. These are
WallGlobe, WallView and LDSView. The visualization systems follow the same
internal software design. The main internal software components of the
visualization systems are the rendering engine, the request queue, and the request
threads (shown in figure 7.3).

The rendering thread executes at a configurable number of iterations per second.
For multi-resolution data sets, a tile-based representation is used to describe each
data set. Each tile has a list of data that comprises that tile. This data is configured
at the initial loading of the visualization system or discovered through queries to
the live data set. For each new level of detail, tiles are divided into four. The
result is a quad tree where the visible tiles can be calculated by iterating the tree.

114 7 Pull-Based NADs and NACs

The algorithm for calculating the visible parts of the quad tree is as follows [194]:
Starting at the lowest level of detail, view-frustum clipping and back-face culling
are performed. If the details of the layers comprising a tile is too low for the
current camera view (for example the textures comprising the tile have too low
resolution to be written to the frame buffer without being scaled), and the tile is
inside the view-frustum and passes the back-face culling test, the tile is divided
into four new sub-tiles and the same test is performed recursively. If a tile passes
the view-frustum clipping and back-face culling, and have enough details for the
layers it comprises, it is marked for rendering and no further sub-tiles of that tile
are processed. A tile that does not pass the view-frustum clipping or the back-face
culling is marked as not visible, and no more sub-tiles of that tile are processed.

When a tile is marked for rendering, the rendering thread checks if the data for
the tile is available. If the data for the tile is not available, the rendering engine
requests data for the tile through the request queue. Request threads fetch
requests from this queue and invoke a request handler, which performs the actual
request. Each request has an associated flag which tells the rendering thread when
the data is available. When the request is completed, the request thread indicates
this by setting this flag to true. The rendering thread checks the flag every
iteration of the rendering loop (every frame). If it is set, the rendering thread
loads the requested data into the selected layers of the tile. The number of request
threads is configurable.

Figure 7.3: The main components of the visualization systems. The render thread requests data
through a request queue. Request threads fetch data from this queue, and perform the actual
request.

7.1 WallScope 115

WallGlobe

WallGlobe is a system for visualizing planets. The data used by WallGlobe is
requested from NACs through the live data set. Currently there are two different
data types used by WallGlobe: (i) Elevation data (discrete values organized into a
grid, describing the height-level in relation to the ocean), and image data (satellite
and aerial photography).

The rendering engine supports alpha blending between layers, and can render
layers at different height levels. This functionality is used to augment WallGlobe
with functionality for weather forecast renderings. Clouds, wind and other data
layers can be superimposed the regular satellite images at different height levels.
This functionality is used to render data requested through the live data set from
the WallWeather NACs.

WallView

WallView is a system for visualizing high-resolution images. The system
supports both tiled and regular images. These are requested from the available
NACs through the live data set. WallView follows the previously described
design.

LDSView

LDSView is a system for visualizing the entire content of the live data set. It
combines WallGlobe and WallView to create a system able to visualize virtual
globes, gigapixel images, and other content produced for the display-side.
LDSView requests meta-data from the live data set to learn its content. This
meta-data includes a description of the resolutions of each of the data sets, and
the elements they comprise.

Live Data Set

The live data set is the display-side’s entry-point to the compute resources. It
comprises data set elements that the visualization clients can request. A
visualization client can query the live data set for the data set elements it
comprises. An element in the live data set is not actually stored in the live data set
unless it has recently been requested and cached. An element represents a
computation.

The live data set comprises two main components:

1. The front-end cache.

2. The back-end logic.

These two components are running in separate address spaces as shown in figure
7.4.

116 7 Pull-Based NADs and NACs

Figure 7.4: Live data set design.

When a request for an element is made, the front-end cache checks the request
against the locally cached data. If the data for the request is cached and has not
expired, the data is returned back to the requesting client. Otherwise, the request
is forwarded to the back-end logic. The front-end cache can be configured to
directly load-balance requests to a set of available back-end compute nodes
without going through the back-end logic.

When a request is forwarded to the back-end logic, the request is inspected by a
thread in a web server to find a compute resource that can produce the data for
the requested element. The live data set contains a list of all connected NACs and
the data they can produce. This list is searched to find a NAC that can fulfill the
request. Once an available NAC is found, a request is posted to a queue from
where a NAC handler responsible for that NAC can read, translate and perform
the actual request.

For static NACs, each NAC is assigned a queue and a number of threads for the
actual communication. Threads fetch requests from this queue and request
content from the NAC. The maximum number of threads per NAC, and thus the
maximum number of communication channels to the NAC, is pre-assigned.
Therefore, the live data set will not violate a communication protocol for NACs
that might have an upper bound for the number of simultaneous connections
accepted. The threads communicating with the NAC is responsible for converting
the unified request from the web server to a NAC-specific request, including
performing the actual request over the NAC-specific communication protocol.
The functionality for doing this is pre-configured for each thread. However, such

7.1 WallScope 117

functionality could also be added using for example configuration files. Since this
complexity is handled by the live data set, the visualization systems developed
can have unified data access logic.

Dynamic NACs are customized by the live data set. The live data set contains
customization code hosted through a web server. This code is downloaded to a
dynamic NAC once it connects. The customization code enables the production
of customized data on the NAC, and integrates the NAC with the live data set.
After the integration, the NAC is ready to accept requests from which it can
produce customized data based on its installed software environment. This is
achieved by hosting a set of plugins on the live data set that is transferred to the
NAC in the customization process. As part of the integration process, the NAC
validates each plugin and reports to the live data set which plugins are supported.
In addition, a dynamic NAC reports to the live data set what data it will share
with the system. This data can be a subset of data found on the NAC, including
subsets of files. This assures that the NAC can share data at a fine-grained level,
at the same time not touching files that the user wants to keep private. Dynamic
NACs are handled by a server executing in a separate thread. This server accepts
incoming connections from dynamic NACs. Once a connection is made, the
server handles the initial handshake where parameters such as number of
connections to the NAC, the data shared with the system, and compute
capabilities are negotiated. This information is written to a list describing all
NACs connected to the live data set. When this information has been updated, the
server accepts input from the number of connections negotiated, and new threads
are created from each new connection made. All these threads pick requests from
a shared queue. If a request for an element residing on a dynamic NAC is made to
the live data set, the request is put on the NAC’s queue, and one of the threads
waiting on the queue picks it up and performs the actual request to the dynamic
NAC, at which point the thread handling the request from the client is suspended.
Once data is received, the location for the data received is passed to the client
thread handler, which in turn returns the content from the request to the client.

Compute-side Components

The compute-side components of WallScope are the static and dynamic network
accessible compute resources.

The static network accessible compute resources are compute resources that are
permanently available to the display-side. No code from the display-side is
physically installed on these compute resources. Instead, the customization for
the display-side is done virtually in the live data set based on the compute
resources’ access protocols. Compute resources in this category are clusters, grids
and supercomputers.

Two compute systems have been developed as part of the static NACs. These are
WallCompute and WallWeather.

118 7 Pull-Based NADs and NACs

WallCompute

WallCompute is the main provider of image data in the system. These images
range from regular resolution images to high-resolution gigapixel images. In
addition, WallCompute can compute maps from vector data, mask satellite
images from vector data, and provide elevation data. WallCompute comprises
three main components:

1. Caches of pre-processed data.

2. Caches of original data.

3. A compute system computing processed data using data from the
aforementioned caches.

The interplay between the main components is shown in figure 7.2. A single edge
cache of original data is used for the following reasons:

1. To make the system appear as one single entity to the outside world.

2. To limit the number of outgoing connections to prevent external servers
from being overloaded or banning WallScope due to excessive resource
usage.

3. To authenticate and keep track of external session state required by
external servers.

WallWeather

WallWeather is the system used for weather forecasting in WallScope. This
system can create high-resolution weather forecast images from user-selected
regions on-demand. The system is comprised of two different types of NACs.
The first type of NAC is responsible for doing the main weather forecast
simulation for user-selected regions. The results are used by another type of
NAC, which processes the simulation data and creates images at varying
resolutions for the visualization systems. WallGlobe is integrated with
WallWeather to enable on-demand weather forecasts (such as wind-arrows and
clouds) projected onto the Earth.

Dynamic Compute Resources

A user wanting to register a computer as a dynamic compute resource can do so
by contacting the live data set through a web browser. A web page is presented
containing a button for launching the NAC-side software. By pressing the button,
a two-phase customization phase is started. In the first phase, customization code
is downloaded to the computer and launched. In the second phase, the
customization code enables usage of the computer as a network accessible
compute resource. The second phase also includes plugin validation, where all

7.1 WallScope 119

plugins developed for the system are validated against the software install on the
local computer. The plugins developed for the system are available for different
computational resources, operating system platforms and installed software in
general. Plugins are run in a separate address space to utilize multiple CPU cores
and support non-thread-safe APIs. Based on the type of plugins the compute node
supports, a list of supported data types is generated and sent to the live data set,
which then stores the compute node and associated data types for future requests
from visualization clients. The last step of the second phase is user-selection of
data that will be shared with the system. The user selection of data happens at a
sub-file level, meaning a user can select parts of a file for sharing, leaving the rest
of the file untouched. For example, a user can select only certain slides of a
presentation for sharing with the visualization systems, leaving the rest of the
presentation private.

7.1.4 Implementation

Display-side Components

As detailed in the design section, visualization clients use a single thread for
rendering and a variable number of request threads for communication with the
live data set. A single rendering thread avoids race conditions with graphics
libraries such as OpenGL.

The state server that provides the visualization systems with view state is
implemented in C++. This state server receives events from the Shout event
system (described in chapter 2, section 2.3.2), translates these events in to view
state and broadcasts this state to the visualization systems. The sources for the
events are different interaction systems (such as the device-free multi-touch
interaction system presented in chapter 2, section 2.3).

WallGlobe

WallGlobe has been implemented in two different versions. One version is
implemented in Java. Lessons learned from this implementation were used to
create a new version in C++. Both implementations follow the same internal
software design. The current versions of WallGlobe have 10x5 tiles for the first
level of detail. Every planet has a description of the layers that comprises the
planet, and at which level of detail these layers are active. Information about
layers can be loaded from files or directly specified in the source code. At the
lowest level of detail, each tile is 36 degrees in latitude and longitude.

WallView

WallView is implemented in C++. It can render images ranging from regular
images (PNG, JPG, BMP), to high-resolution gigapixel images. Images are
subject to the same view-frustum clipping algorithm as described in the design
section. For regular images, the bounding box of the image is used for view-

120 7 Pull-Based NADs and NACs

frustum clipping. For gigapixel images, the image is divided into several tiles.
Each of these tiles uses the quad-tree algorithm detailed in the design section.

LDSView

LDSView is based on WallView and the C++ version of WallGlobe. It uses the
same software design, with a single rendering thread, a request queue, and
multiple request threads for applying the rendering thread with data from the live
data set. LDSView also includes a data set element discovery thread, which is
used to provide LDSView with updates from the live data set. This element
discovery thread supplies the rendering engine with the state of the live data set.
This state comprises the elements that are present in the live data set. Based on
the state of the live data set (all the data sets available), the rendering engine
requests elements that are visible in the current view.

Live Data Set

As mentioned in the design section, the live data set comprises a front-end
caching system and a back-end system for communication with the compute
resources. The front-end cache is implemented using Squid [195], an existing
caching system. Squid was chosen for several reasons: (i) It is open-source; (ii) it
is cross-platform; and (iii) several Squid servers can be configured to cooperate in
various cache hierarchies.

A request to the live data set is first handled by Squid to check if the element has
been recently cached. If it has, Squid handles the request and responds with the
cached element. If the request is not in the cache, or has expired, the request is
forwarded to the back-end logic.

The back-end logic is implemented in C++. This logic handles the
communication with the NACs, and the input from the cache system. The logic
comprises a lightweight web server, and a number of threads, which handles the
actual communication with the NACs as described in the design section.

Compute-side Components

WallCompute

WallCompute comprises a cache of pre-processed data, a cache of original data,
and a compute system for computing processed data from the aforementioned
caches.

The cache of pre-processed data is realized using memory-mapping and the
Network File System [196]. The cache of original data is realized using the Squid
caching system in combination with a Java-based system used for accessing
remote data sets requiring authentication. A local version of the caches can be run
on each compute node if a single instance of each cache becomes a bottleneck in

7.1 WallScope 121

the system. However, for data requested from remote data sets, the caches still
need to go through the central edge cache of original data to avoid overloading
the remote data sets.

The mapping system of WallCompute is implemented in Common Lisp9 [197].
The system providing images (both regular images and gigapixel images) and
elevation data is implemented in C++. Each system is executed as a separate
process on every compute node dedicated for WallCompute. Both systems accept
HTTP requests from the live data set. The mapping system of WallCompute
memory-maps the cache of pre-processed data over NFS when initially started.
This cache cannot be updated when the system is executing. The Squid cache is
accessed over HTTP by both systems. Elements from this cache can be updated
when the system is running (for example as a consequence of elements being
updated at the remote data sets). WallCompute requests elevation data, images,
and vector data from the two caches, and uses this data to generate processed data
for the visualization systems.

WallWeather

WallWeather comprises two different types of NACs. The first type is
responsible for running the weather simulation. This type executes an
implementation of the Weather Research and Forecasting (WRF) model [198].
Two different NACs implement this type: (i) A supercomputer [199]; and (ii) a
cluster. These two NACs can generate weather simulations for user-selected
regions, on-demand. The second NAC type is responsible for generating images
of the results produced by the first NAC type. These images are used by the
display-side’s visualization systems. (Further details about WallWeather can be
found in appendix A, section A.6).

Dynamic Compute Resources

The dynamic compute resources are implemented in Java 2 Standard Edition.
Java was chosen to enable transparent code transfer from the live data set to the
dynamic compute nodes and for cross-platform NAC software compatibility.

The first phase of the customization protocol is handled by Java Web Start. The
live data set contains a Java JAR file that contains the code needed for a dynamic
compute resource to communicate with the live data set, as well as all the plugins
developed for the system. A user initiates the customization of a compute node by
clicking on a link in a browser. Once the code (the JAR file) is downloaded and
started, the plugin validation is started. The JAR file includes a set of executable
files (plugins) that can be used to compute data for processing by the NAC
software. The plugin validation phase executes these plugins to find the ones
compatible for the current operating system and install. Some of the plugins

9 The Mapping part of WallCompute was implemented by Espen Skjelnes Johnsen.

122 7 Pull-Based NADs and NACs

implemented are plugins to compute processed data from DOC, DOCX, XLS,
XLSX, PPT, PPTX, PDF and various 3D formats. These plugins utilize the
desktop applications already installed on the computer, for example using
Microsoft Component Object Model (COM) [200] to orchestrate a document
conversion to a format that can be processed by the NAC software. The processed
data ranges from image-tiles and PDFs to 3D models that the visualization clients
can load. Since the dynamic resources initiate contact with the live data set, the
compute resources are available to the system even though they might be behind
Network Address Translation (NAT) or a firewall.

7.1.5 Experiments

To evaluate WallScope, 15 series of experiments were designed and conducted.
The first 11 experiment series were conducted to evaluate the static NACs of the
system and the cache system. The last 4 experiments were conducted to evaluate
the dynamic NACs in the system, also including the cache system.

Methodology

For experiment series 1 to 3, a custom Java application was developed. The Java
application was designed to perform 900 (512x512-pixel) image requests. This
corresponds to 236 megapixels, in total 31.84 megabytes of JPG image data. In
addition, the application was designed to enable/disable decoding of the
requested images. Each image-tile had the Landsat [138] data set as the base layer
with the ocean masked with data from the Blue Marble [137] data set. The
original data sets that comprised the processed images were pre-fetched to the
edge-cache of original data. The vector data used in the masking of the ocean was
replicated from the cache of pre-processed data to every compute node.

For the first experiment series, the purpose was to measure the effect of caching
in the system. The custom Java application described in the previous paragraph
was used, and the time to perform the 900 image requests was measured. The
factor was whether images were cached in the live data set or if they had to be
computed by a single static compute node.

For the second series of experiments, the time used to request the same 900
image-tiles from a local cache residing on the same computer was measured. The
factor for the experiment series was whether images were decoded or not. The
purpose was to determine the time used to decode data at a display node versus
the time used to only request this data from the local cache.

The third series of experiments measured the speedup when adding compute
nodes to the system. The same 900 image requests were performed (caching
disabled). The factor was the number of compute nodes used to produce
processed data. This factor was varied from 1 to 26 with a step of 2. The purpose
was to document the scalability of the live data set and the static compute

7.1 WallScope 123

resources. (Load-balancing was done in the front-end cache system, bypassing
the live data set back-end logic). All requests were divided between the compute
nodes in a round-robin fashion.

Experiment series 4 to 11 (inclusive) used the WallGlobe visualization system
(the Java version) and a camera trace to measure WallScope’s performance under
different configurations and loads. The trace consisted of a set of waypoints. A
waypoint is given by the position and rotation of the camera. The camera’s
position and rotation was then interpolated over a spline curve calculated between
the waypoints. The factor for each experiment series was the time used to
interpolate between the waypoints. The trace started with the entire Earth visible
in the view frustum, and then zoomed into a specific part of the Earth. All
waypoints were picked in such a way that the camera only visited new tiles of the
Earth. The time spent interpolating between waypoints was 30, 25, 20, 15, and 10
to 1 second. The state server was configured to multicast the global state derived
from the camera trace to each of the WallGlobe clients 50 times per second
(matching the refresh rate of the projectors). The total number of requests
generated by the trace was 8585. 5111 (59.53%) of these requests were requests
for images and 3474 (40.47%) were requests for elevation data. All the image-
tiles had a resolution of 512x512 pixels. This corresponds to approximately 1340
megapixels of image updates. The different cache- and compute-configurations
used for these experiments are listed in table 7-1.

Table 7-1: Configurations for experiment series 4 to 11

Experiment

Series
Cache (Local) Cache (Live Data Set)

Compute

Nodes

4 Disabled Disabled 1

5 Disabled Disabled 2

6 Disabled Disabled 4

7 Disabled Disabled 8

8 Disabled Disabled 16

9 Disabled Disabled 26

10 Disabled Containing All 0

11 Containing All Disabled 0

Experiment series 12 to 15 (inclusive) measured the time used to load and
simultaneously display a 350-page PDF document with the purpose of
documenting the performance of the dynamic compute nodes and the cache

124 7 Pull-Based NADs and NACs

system. The 350-page PDF document was rasterized into image-tiles on the
compute-side. Each tile had a size of 512x512 pixels and every page of the
document comprised six such tiles. This yields a total resolution of 550
megapixels for the 350 pages. The load-time is the time from the first request is
performed from a display node until all requests have been completed by all
display nodes. The total number of requests generated for all experiments was
2432. This number is larger than the number of tiles that comprised the
document, and is caused by some of the image-tiles overlapping between displays
and thus are requested at least 2 times. Image-tiles overlapping between display
corners are requested by 4 display nodes.

For experiment series 12 and 13, the factor was the number of compute nodes
used (caching disabled). This number was 1, 2, 4, 8, 16 and 28. For experiment
series 12, PNG was used as the image-tile format. Experiment series 13 used JPG
as the image format. Each of the compute nodes had 4 compute processes running
to utilize all the cores (not including HyperThreading). Every display node was
configured to perform 4 simultaneous requests to the live data set (allowing the
display nodes to utilize all the 28x4 cores of the compute-side). The requests
were load-balanced on the available compute nodes by the live data set. The
purpose of these two experiment series was to document the speedup when
adding dynamic compute nodes to the system.

For experiment series 14 and 15, the time used to request the PNG/JPG image-
tiles from the caches was measured. The factor was the location of the cache from
where the image-tiles were requested from (live data set or local). The purpose of
these experiment series was to document potential bottlenecks in the cache
system and the network bandwidth between the live data set and display nodes.

Table 7-2 summarizes all experiment series. The hardware platform for
experiment series 1 to 11 is listed in table 7-3. The hardware platform for
experiment series 12 to 15 is listed in table 7-4.

Table 7-2: Experiment summary

Experiment

Series
Description Factor

900 image requests from a single display node using a custom Java application

1
Requesting from two
different locations

Location (live data set’s cache
or from a single compute node)

2 Requesting from local cache Decoding (on/off)

3
Requesting from the
compute nodes

Number of compute nodes used
(1, 2, 4, 6, 8, 10, 12, 14, 16, 18,
20, 22, 24 and 26)

7.1 WallScope 125

Playback of a WallGlobe camera trace on 28 display nodes

4 1 compute node

Time between camera trace
waypoints (30, 25, 20, 15, and
10 to 1 seconds)

5 2 compute nodes

6 4 compute nodes

7 8 compute nodes

8 16 compute nodes

9 26 compute nodes

10
All data available in the live
data set’s cache

11
All data available in the local
cache

Load-time of a 350-page PDF document rasterized into 550 megapixels of
image-tiles

12 PNG image-tiles
Number of compute nodes used
(1, 2, 4, 8, 16 and 28)

13 JPG image-tiles

14 PNG image-tiles
Location of the cache (live data
set or local)

15 JPG image-tiles

Table 7-3: Hardware- and software-platform for experiment series 1 to 11

NAC-Side NAD-Side

Type Compute Cluster Display Cluster

Number of
Nodes

26 28

CPU
Intel Pentium 4 EM64T 3.2
GHz w/HyperThreading

Intel Pentium 4 EM64T 3.2
GHz w/HyperThreading

RAM 2 GB 2GB

126 7 Pull-Based NADs and NACs

Graphics Card -
NVidia Quadro FX3400
w/256 MB VRAM

Operating
System

Rocks Linux Cluster
Distribution 4.0 (64-bit)

Rocks Linux Cluster
Distribution 4.0 (32-bit)

Interconnect

Display cluster nodes were connected to a front-end over
switched gigabit Ethernet. Compute cluster nodes were
connected to another front-end over switched gigabit
Ethernet. Front-ends were connected over switched gigabit
Ethernet.

Table 7-4: Hardware- and software-platform for experiment series 12 to 15

NAC-Side NAD-Side

Type Cluster of desktop computers Display Cluster

Number of
Nodes

28 28

CPU
Intel Xeon Processor E5520 8
MB Cache 2.26 Ghz, 4 Cores
w/HyperThreading

Intel Pentium 4
EM64T 3.2 GHz
w/HyperThreading

RAM 2.5 GB 2GB

Graphics Card
NVidia Quadro FX 580 w/512
MB VRAM

NVidia Quadro FX3400
w/256 MB VRAM

Operating
System

CentOS release 5.5 (32-bit)
Rocks Linux Cluster
Distribution 4.0 (32-bit)

Interconnect

Display cluster nodes were connected to a front-end over
switched gigabit Ethernet. Desktop computers were group
wise connected to gigabit switches (6 compute nodes per
group). These switches were connected to a gigabit switch
connected to a router providing the link to the display
cluster front-end

The specification for the computer running the state server and the live data set
was the same as for the NAD-side display cluster nodes.

7.1 WallScope 127

Results and Discussion

Table 7-5 shows the measured times for experiment series 1 and 2. The first
column gives the location of the requested data. The second column shows the
time used to complete all the 900 requests. The third column shows the mean
time per request. Decoding of JPG images on the display node was measured to
be CPU-bound.

Table 7-5: Time used to request 900 512x512-pixel (236 megapixels) image-tiles (experiment
series 1 and 2)

Data Location Total Time Used
Mean Time Per

Request

Compute Node 296.238 s 329.2 ms

Live data set 1.411 s 1.6 ms

Local cache 0.716 s 0.8 ms

Local cache (with decoding) 13.850 s 15.4 ms

From table 7-5 it can be seen that the time to request data from the local cache is
twice as fast as requesting data from the live data set. However, the time used to
request and decode images on one node is 13.85 seconds. This is over 9 times
slower than just requesting the images from the live data set, and therefore
contributes to a much larger part of the overall time, compared to local versus
central storage. Requesting data stored in the live data set is two orders of
magnitude faster than computing the data on one compute node. For each
processed image-tile, the compute node must request the original images tiles that
comprise the processed image-tile. This requires data from at least on image-tile
from the Landsat data set and one image-tile from the Blue Marble data set.
Further, the compute node must create a raster surface matching the specification
from the client request (512x512 pixels) and fill the raster surface with data from
both data sets based on the meta-information from the vector shape data. The
results show the importance of caching in WallScope to reduce the latency for
data that is frequently used.

Figure 7.5 shows the result of experiment series 3. In the figure, the actual
speedup is plotted against a linear (1:1) speedup.

128 7 Pull-Based NADs and NACs

Figure 7.5: Speedup when going from 1 to 26 compute nodes.

From 1 to 6 compute nodes, the system has a near linear speedup. However,
when the number of nodes increases beyond 6, the speedup is slightly reduced.
This is caused by the round-robin work distribution. Because each data request
has varying amounts of ocean to mask, the workload for each work request
varies. Work is handed out in a round-robin fashion without any feedback
mechanism. Therefore, some of the nodes will get more work than others, which
is why the performance does not increase linearly with the number of compute
nodes added.

During experiment series 4 to 11 all WallGlobe clients were measured to have the
same frame rate as the refresh rate between the computers and the displays. This
shows that the sort-first rendering approach use by running a separate client on
each computer is sufficient for driving the 22-megapixel display wall.

Figure 7.6, 7.7, 7.8 and 7.9 show the result of experiment series 4 to 11. Figure
7.6 shows the displayed requests. A “displayed request” is a request that was
loaded in memory and displayed at least one frame during the experiment. The y-
axis is the number of requests that were displayed during the experiment. The x-
axis is the seconds used between waypoints. The upper bold line is the total
number of requests generated by the trace. The shaded are on the figure is where
the expected performance of the system would be using all compute nodes with
caching enabled. Different cache replacement policies will result in a system
performance that will fall within this area. The data-points marked by an A in the
upper right corner are shown in detail in figure 7.8.

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16 18 20 22 24 26

S
p

ee
d
u
p

Number of compute nodes

Actual Speedup

Linear (1:1) Speedup

7.1 WallScope 129

Figure 7.6: The total number of displayed requests (the number of requests that were loaded
into memory and contributed to at least one frame). The shaded area marks the expected
performance of the system using all compute nodes with caching enabled.

Figure 7.7: The total number of completed requests (the displayed and non-displayed
requests). This graph does not include the shaded area shown in figure 7.6 because a completed
request does not imply a request that was actually displayed.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 5 10 15 20 25 30

D
is

p
la

ye
d
 r

eq
u
es

ts

Seconds between waypoints

Total Requests

1 Compute Node

2 Compute Nodes

4 Compute Nodes

8 Compute Nodes

16 Compute Nodes

26 Compute Nodes

Live Data Set Local Cache A

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 5 10 15 20 25 30

C
o

m
p

le
te

d
 r

eq
u

es
ts

Seconds between waypoints

Total Requests

1 Compute Node

2 Compute Nodes

4 Compute Nodes

8 Compute Nodes
16 Compute Nodes

26 Compute Nodes

Live Data Set Local Cache B

130 7 Pull-Based NADs and NACs

Figure 7.7 shows the number of completed requests. This is the sum of the
displayed requests and the requests that were downloaded and decoded but not
displayed because the Earth’s source tile for the request was outside the view-
frustum at the time the data was available. This figure does not include the
shaded area used in figure 7.6 because a completed request does not imply a
request that was actually displayed during the experiment. The data-point marked
by a B in the upper right corner is shown in detail in figures 7.8 and 7.9.

Figure 7.8 shows the requested, completed and displayed requests for the full
local cache configuration using one second between waypoints. This graph was
included to show a detailed trace for the configuration with the best performance
for the highest load (the graph shows a detailed trace of the data-points marked
by an A in the upper right corner of figure 7.6 and a B in the upper right corner of
figure 7.7). The y-axis is the number of requests accumulated and the x-axis is the
time in milliseconds.

Figure 7.8: The cumulative number of requested, completed, and displayed requests with full
local caches. The time between each waypoint is 1 second.

Figure 7.9 shows the completed requests of the same trace stacked in intervals of
50 milliseconds. This graph is a detailed trace of the data-point marked by a B in
figure 7.7.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000

R
eq

u
es

ts
 a

cc
u

m
u

la
te

d

Milliseconds

Total (Images + Elevation Data)

Images

Elevation Data

Requested

Completed

Displayed

7.1 WallScope 131

Figure 7.9: The number of completed requests for the full local cache configuration using 1
second between each waypoint. The requests are stacked in 50 milliseconds intervals.

From both figures 7.6 and 7.7 it can be seen that the main bottleneck of the
system is the computation of customized data, illustrated by the difference
between the graphs when everything is computed and the graphs when everything
is stored in the live data set’s cache or the local cache. As the graphs illustrate,
the system benefits from increased number of compute nodes. The figures also
show that the difference between local caching on each node and central caching
using the live data set on one node is small. Thus, neither the network nor the live
data set is a bottleneck of the system.

From 8 to 1 seconds the system does not display all requests, despite that fact that
they are stored in the local cache (figure 7.6). This is explained by the time used
to decode JPG images to create OpenGL textures, and the time used to parse
elevation data to create geometry in the WallGlobe clients. From figure 7.8 it can
be seen that around 8000 milliseconds the trace generates more requests than the
WallGlobe clients are able to display, illustrated by the graphs showing displayed
requests for both images and elevation data. When request threads cannot keep up
with the frequency of the updates (because they are CPU bound decoding data),
the amount of displayed data decreases. At 8000 milliseconds, the completed
(decoded) requests peak at 132 requests (figure 7.9). This corresponds to 2640
requests per second (132 x (1000 ms / 50 ms)). Of these 132 requests, 79 are
requests for images corresponding to a peak rate of 1580 images per second
(414.2 megapixels/s), the equivalent of 18.83 updates per second on the 22-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000

C
o

m
p

le
te

d
 r

eq
u

es
ts

Milliseconds

Total (Images + Elevation Data)

Images

132 7 Pull-Based NADs and NACs

megapixel display wall. As decoding of JPG images and parsing of elevation data
is performed in separate request threads, the system will benefit from multi-core
CPUs.

Figures 7.10 and 7.11 show the time and speedup factor for experiment series 12
and 13. This time includes the rasterization of the 350-page PDF document into
image-tiles on the compute-side, including the time spent encoding images to
PNG or JPG, the transfer of these image-tiles from the compute-side, through the
live data set, to the display-side, and the loading and rendering of the image-tiles
on the display nodes.

Figures 7.12 and 7.13 show the per-node and average node utilization on the
compute-side for experiment series 12 and 13.

Table 7-6 shows the average latency for one request in the system when using all
28 compute nodes. Table 7-7 shows the result of experiment series 14 and 15.
The load-time using the LDS cache includes the time used to request data from
the cache, the transfer of the images over the network from the computer running
the LDS to the display nodes, and the local time at the display nodes used to
decode and render the images. The load-time for the local cache includes the
times used to request the tiles from the local cache, including the time to decode
the images and render them.

Figure 7.10: Time to request and simultaneously display 2432 JPG or PNG encoded image-
tiles computed from a 350-page PDF document residing at the compute-side. (Compute nodes
are increased from 1 to 28).

74.66

37.65

20.23

11.07

6.65
4.20

20.66

11.26

5.99
3.74 2.53 2.40

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30

S
ec

o
n

d
s

Nodes (4 cores / connections per node)

PNG

JPG

7.1 WallScope 133

Figure 7.11: Speedup factor when requesting and simultaneously displaying 2432 JPG or PNG
encoded image-tiles computed from a 350-page PDF document when going from 1 to 28
compute nodes.

Figure 7.12: Compute node utilization when rasterizing the 350-page PDF document to PNG
images.

1.00

1.98

3.69

6.75

11.23

17.77

1.00

1.84

3.45

5.52

8.16
8.59

0

5

10

15

20

0 5 10 15 20 25 30

S
p

ee
d

u
p

Nodes (4 cores / connections per node)

PNG

JPG

3.95 3.94 3.74
3.61

3.27

3.21

0

1

2

3

4

0 5 10 15 20 25 30

N
o

d
e

u
ti

li
za

ti
o

n

Nodes (4 cores / connections per node)

Per-node utilization

Average node utilization

134 7 Pull-Based NADs and NACs

Figure 7.13: Compute node utilization when rasterizing the 350-page PDF document to JPG
images.

Table 7-6: Average latency for a request to complete when using 28 compute nodes

Image Type Display-side Live Data Set Compute-Side

PNG 0.1521 s 0.1456 s 0.1445 s

JPG 0.0856 s 0.0574 s 0.0533 s

Table 7-7: Time to request and simultaneously display 2432 JPG or PNG encoded image-tiles
requested from the live data set's cache or from the local cache on each display node

Image Type Load-Time LDS Cache Load-Time Local Cache

PNG 1.694 s 0.908 s

JPG 1.305 s 0.923 s

As can be seen from both figures 7.10 and 7.11, the system benefits from
increased number of dynamic compute nodes. When using PNG as the image
format, the total load-time is 74.66 seconds using 1 compute node. When using

3.89

3.72
3.64

3.26

2.88

2.03

0

1

2

3

4

0 5 10 15 20 25 30

N
o

d
e

u
ti

li
za

ti
o
n

Nodes (4 cores / connections per node)

Per-node utilization

Average node utilization

7.1 WallScope 135

all nodes this time is reduced to 4.2 seconds, which translates to a speedup of
17.77. When using JPG as the image format the time to load the entire document
using one compute node is 20.66 seconds. This time is reduced to 2.4 seconds
using all compute nodes, translating to a speedup of 8.59. However, as both
figures show, the load-time and speedup factor does not translate with a linear
one-to-one factor with the use of additional compute nodes. In addition, for JPG,
the speedup is approximately half of the speedup of PNG when using all nodes,
and only increases with 0.43 when going from 16 to 28 nodes. This indicates a
bottleneck in the system. When the produced image-tiles are located in the live
data set’s cache, the time used to load and display the document on the display-
side is 1.694 seconds for PNG and 1.305 seconds for JPG (table 7-7). The reason
that the compute system cannot produce data with this rate is a combination of
the latency introduced by computing the image-tiles on the compute-side and the
number of connections that are established from every node on the display-side.

During experiment series 11 to 15 (inclusive), every display node had 4 request
connections. For PNG the average latency per request is 0.1521 seconds. When
using 4 connections, this translates to a total average of 3.3 seconds per display
node (((2432 / 28) / 4) x 0.1521). However, the compute nodes are idle some of
this time. The result of this can be seen from figures 7.12 and 7.13. The
utilization decreases as the number of nodes increases. When using PNG as the
image format, the CPU core utilization is 3.95 using 4 cores on one node. This
value is reduced to 3.21 using all nodes. For JPG the CPU core utilization using 1
node is 3.89, which is reduced to 2.03 using all nodes. To solve this situation the
display-side could be configured to use more than 4 connections to the live data
set. However, there is a tradeoff between the number of connections established
from the display-side and the performance of the rendering engine. Request
threads are responsible for decoding the data to the rendering engine. Decoding
of images is CPU-bound and request threads will therefore compete with the
rendering engine for CPU cycles on a single-core computer. This will in turn
affect the frame rate of the visualization. However, this problem can be solved in
several ways: (i) Separate request functionality from decoding functionality; (ii)
pipeline requests; or (iii) use multi-core computers on the display-side with a
dedicated core for the rendering engine. In addition to the display-side
modifications, the connections between the live data set and compute nodes
should allow for pipelining of requests to increase the node utilization and mask
latency. The suggested improvements are all part of future updates to the system.

7.1.6 Conclusions

This chapter has presented WallScope, a pull-based NAD-NAC system, enabling
interactive visualization of large-scale data sets on high-resolution tiled display
walls. WallScope is based on a live data set architecture where display resources
are separated from compute resources using a data set containing data customized
for the particular application domain of the display-side’s visualization systems.
The live data set receives requests from visualization systems, translates these

136 7 Pull-Based NADs and NACs

into compute messages and forwards them to available compute nodes. The
results of the computations are used as part of the visualization clients’ final
rendering.

Compute resources of the system are categorized into static and dynamic. Static
compute resources are considered permanent to the system once added. Examples
of such compute resources are clusters, grids and supercomputers. These compute
resources are accessed according to their security policies and access protocols.
Dynamic compute resources are volatile in the sense that they can register with
the live data set on-the-fly to become compute nodes in the system, and then at a
later point leave. Examples of dynamic compute resources are laptops and
desktop computers.

Experiments conducted document that the sort-first rendering approach taken by
the visualization systems implemented as part of WallScope, combined with a
simple state server, enables each visualization client to keep the same frame rate
as the refresh rate between the computers and their attached displays.

When visualizing the Earth by combining data from the Landsat data set with
data from the Blue Marble data set, the bottleneck of the system is the merging
process of the data sets on the static compute nodes. However, the time used to
combine data sets decreases by a factor of 23 when increasing the number of
compute nodes from 1 to 26. When all data is cached, the bottleneck of the
system is decoding of JPEG images to create OpenGL textures and creating
geometry from elevation data. WallGlobe, one of the visualization systems of
WallScope, can decode 414.2 megapixels of image updates per second, resulting
in 19 decoded frames per second when visualizing the Earth. The decoding
process is multi-threaded, and higher frame rates are expected using multi-core
computers. This tracks the current hardware trend towards more CPU cores.

The dynamic compute nodes in the system can be utilized in parallel to increase
the overall performance of the system, improving the load-time of a PDF
document from 74.66 to 4.2 seconds (PNG) and 20.66 to 2.4 seconds (JPG) when
going from 1 to 28 compute nodes. This yields a resulting speedup of 17.77
(PNG) and 8.59 (JPG) using 28 compute nodes. These experiments show that the
application output from personal desktop computers can be made interoperable
with high-resolution tiled display walls, width good performance and without
being limited to the resolution of the local desktop and display. The main
bottleneck using the dynamic compute resources is the compute-side of the
system combined with the number of connections that can be established from the
display-side.

137

 Chapter 8

Discussion

This chapter presents a discussion of the contributions presented in this
dissertation.

Three principles (chapter 1, section 1.5.1) have been formulated:

1. The principle of establishing the end-to-end principle through

customization states that the end-to-end principle can be established
between a client and a server by customizing one or both sides. For
client-server communication, the normal way of establishing the end-to-
end principle is to use pre-agreed protocols. In this dissertation, the end-
to-end principle is established by having the display-side customizing the
compute-side. The customization is accomplished in two different ways:

a. Physically (customized behavior is accomplished by physically
downloading code to the compute resource).

b. Virtually (customized behavior is accomplished by using a third
party for mapping between customized and compute resource
behavior).

2. The PC – PCR duality principle states that a user’s computer is both a
personal computer and a personal compute resource. For normal usage, a
user is sitting in front of the computer’s display and applications are
rendering to the frame buffer of the computer’s graphics card. However,
applications can also be instructed to produce output for visualization
clients running on other computers without any modifications to the
applications themselves. Thus, the computer is used as a personal
compute resource for domain specific computation of data to extend the
functionality of external visualization systems based on a user’s custom
software install.

3. The principle of domain specific best-effort synchronization states that
for distributed visualization systems running on tiled display walls state
handling can be performed using a best-effort synchronization approach,

138 8 Discussion

where visualization clients will eventually get the correct state after a
given period of time. Best effort synchronization has been researched in
other contexts such as in [201]. However, this dissertation applies this
principle for synchronization of visualization systems running on tiled
display walls, which introduces properties that provide robustness for
such visualization systems, such as removing multiple points of failure.

The principle of establishing the end-to-end principle through customization is
used as a basis for all network accessible resources presented in this dissertation.
In this dissertation, the principle implies that a display-side provides a compute-
side with the information and software needed to communicate with it. This setup
is inspired by and extends upon existing approaches for initiating rendering
setups. For example, an X client using OpenGL for rendering to an X server
needs to accept a frame buffer configuration for setting up an OpenGL context.
The server provides the client with a set of frame buffer configurations that the
client can choose from. If a valid configuration is not chosen, an OpenGL context
cannot be created. This is comparable to the approach taken in the NAD system,
where the NAD customizes the NAC by software that is uploaded from the NAD
to the NAC. If the NAC accepts the software providing customized behavior
(which is part of the two-phase customization protocol) output from the NAC’s
desktop can be mirrored onto the NAD. If not, the setup is aborted and the NAD
cannot be used. For high-resolution tiled display walls, the choice of having a
display-side customizing a compute-side comes from the shared aspect of the
display wall. A display wall is a resource potentially shared by multiple
simultaneous users, and thus requires that the compute resources that use the
display wall respect a set of rules that protects the shared aspect of the resource.

Customization in a NAD – NAC context is handled in two ways, either physically
by uploading customization code directly to the compute resource, or virtually by
using a third party to handle the translation between NAD-side and compute
resource behavior. By physically customizing a compute resource with uploaded
software, the production of data can be customized without any intervention from
a third party. However, the customization introduces trust and security concerns
for users of the NAD, since the customization of the NAC requires execution of
potentially untrusted code. A NAC downloads and executes software hosted by a
potentially untrusted third party, the NAD. This dissertation approaches this
problem using sandboxing in combination with code signing. The software
uploaded from the NAD to the NAC is executed in a Java virtual machine, which
is a sandboxed environment. In addition, the code is signed with a key
authenticating the third party. Nevertheless, there are several contexts where a
user could be reluctant to participate using the selected approach. For example, in
meeting room contexts where a user needs to trust the person(s) responsible for
maintaining the software hosted on the network accessible display(s).

The current way virtual customization has been carried out does not modify the
processed data produced by a virtually customized resource. This is a limitation
because the customization is limited to the presentation of the resource and not

8 Discussion 139

the content of the data it produces. For example, the live data set presents
computations as data sets to other visualization clients. However, the content of
the data set is not customized since it would require processing the content before
it is sent to the visualization clients. Processing the content in the live data set is
not an option in the current architecture, since the role of the live data set is as an
orchestrar of computations, rather than a compute resource. However, another
approach that could be taken is to use other compute resources to further compute
the content delivered from a virtually customized compute resource. This
approach has not been fully investigated and such provides a promising path for
future research in the WallScope system.

The PC – PCR duality principle states that a user’s computer is both a personal
computer and a personal compute resource. For normal usage, a user is situated in
front of the computer’s connected display(s), using input devices such as a
keyboard and a mouse to interact with the computer. In addition to this usage,
desktop applications on a user’s computer can produce data for other clients in a
system. The display-side can use the personal compute resource to produce
compatible data from data that might be incompatible with the software installed
on the display-side. This principle has been realized through the dynamic network
accessible compute resources presented. The environment on a personal computer
contains software and data installed that can complement a visualization system
that lacks the necessary functionality for viewing the data. The visualization
systems developed as part of this dissertation are simple compared to a complete
desktop install. Consequently, the dynamic compute resources allow a broader
variety of content to be shown on the display wall, while keeping the
visualization clients simple.

The principle of domain specific best-effort synchronization is applied in this
dissertation for handling state synchronization in distributed visualization systems
running on tiled display walls. This principle requires the following two
properties to be present in a system:

1. The participants of the state synchronization have established a pre-
agreement on their arrangement (their position in the display wall grid).

2. Losing a state synchronization message does not affect state logic.

The principle allows for centralized control of frame rate, meaning the frame rate
of every client in a distributed visualization system can be controlled from a
single location. A consequence of this centralized push-based state
synchronization is that a visualization system’s load on a display wall can be
controlled by throttling up or down the rate at which a state server broadcasts
heartbeat messages. Another consequence of the principle is the effect an
overloaded client will have on the performance of the entire visualization system.
Other approaches, such as presented in [36] [43] [44], require synchronization
through a barrier before the display is updated. This approach will in principle
make all the visualization clients appear more harmonious, since each display of

140 8 Discussion

the entire display wall is updated at the same time (within the overhead of
performing the barrier). However, depending on the implementation of the
barrier, the performance of the system is often limited by the most heavily loaded
node. In contrast, the state synchronization approach used for most of the work in
this dissertation does not require an explicit barrier between all clients between
iterations, and thus every client can update the view based on their own initiative.
Informal experience on the perceived impact of this does not indicate that it is a
problem that makes the distributed visualization systems appear unharmonious.
In addition, the approach removes the multiple point of failure a system using a
barrier has. If a single node crashes or has performance problems, the rest of the
visualization system can continue to work, and as such the crashed node does not
have any impact on the other nodes.

The centralized state server realizing the best-effort synchronization principle
simplifies the integration of visualization systems with various interaction
devices. The single server broadcasts the state of the visualization, and the state
abstracts away the type of interaction device used. For example, WallGlobe
clients are not aware if the resulting viewing output is a consequence of
interaction using a touch-free interaction device or a keyboard and a mouse. This
enables a range of different input devices to be used with the visualization
systems without affecting their implementation. In this regard, this approach
adheres to the orthogonal interaction principle presented in [45].

WallScope has provided valuable experience for visualization of data from local
and remote compute resources. Informal experience using the display wall with
existing solutions for delivery of data, such as existing Web Map Services
(WMS) [202] and Web Feature Services (WFS) [203], indicates that the order of
magnitude more resolution provided by a display wall require data amounts that
is beyond the processing capacity of these compute services. For this reason, pre-
fetching data to the live data set has proven useful by providing the visualization
systems with data close enough (both in terms of latency and bandwidth) to
enable interactive performance. For some of the external systems used for data
delivery in WallScope, the difference between having processed data cached or
not, is waiting times within a couple of seconds instead of over 20 minutes.

The choice of using the HTTP protocol and the Squid cache system internally in
WallScope could have resulted in bottlenecks being introduced. HTTP is a
heavyweight protocol and as such using it in a high-performance system might
seem counter-intuitive. However, experiments conducted have shown that neither
the HTTP protocol nor the Squid cache system is a bottleneck in the system. In
fact, the choice of using an existing highly available protocol significantly
reduced the time used for testing and finding bugs in the system. WallScope is a
complex system with several different components interacting to solve a common
goal: Transforming data into a visual representation in form of pixels at
interactive frame rates. Thus, a single component having bugs introduced from
race conditions and/or timing issues could be hard to debug. Informal experience
indicates that using existing systems such as web browsers and command line

8 Discussion 141

HTTP tools can reduce the time to find these bugs compared to using
experimental systems for the same purpose. The Squid caching system did not
introduce any bottlenecks in the system, and in addition reduced the effort of
debugging components in WallScope.

Experiments conducted using Squid did not document the performance of the
system for different cache replacement policies. This is outside the scope of this
dissertation. Instead, experiments have been conducted with and without caching
enabled (using caches containing all requested data), to document the best- and
worst-case performance scenarios. Different cache replacement policies will
result in a system performance falling within this limit. Consequently, a mapping
of the entire performance spectrum of the system has been presented, which can
be used to predict the resulting performance of different application usages and
cache- and compute-configurations.

The WallScope system and its associated static and dynamic NACs have been
evaluated through a series of experiments. These experiments have documented
the performance when integrating relatively static content into WallScope. A
question that has not yet been addressed is how well the system will behave when
visualizing data that requires frequent updates. For example, it is not clear if the
current design could be used to stream video content. Such content will not
benefit the cache to the same degree as static content. In addition, the shared links
between the compute-side and the display-side would probably experience more
traffic, and thus, it is not known whether the selected architecture and design
could support the resulting load. There is also a question whether the centralized
live data set will become a bottleneck for more dynamic content.

A problem with having a centralized live data set, that initially introduced bugs in
the system caused by refused connections, is the number of simultaneous sockets
that could be allocated by a single process. Using a centralized live data set
simplifies the binding between the display-side and the compute-side since all
requests and data to and from the display-side have to go through the same
central location. However, the problem presented, combined with the fact that a
centralized live data set introduces a bottleneck for the potential network
bandwidth that could be used by having multiple display nodes, indicates that
approaches for distributing the live data set to several computers should be
investigated (a display wall comprising 28 computers could potentially transfer
28 gigabits per second with switched gigabit Ethernet technology). While the
current version of the live data set has been implemented on a single computer,
there are no limitations in the architecture for using more than a single computer
running the live data set. One way of extending the live data set beyond a single
computer is to use a single front-end, which transparently redirects requests from
visualization clients to live data set nodes that are responsible for handling the
content from a specific range or type of compute resources. For example, one live
data set can be responsible for relaying video streams from a set of back-end
video-transcoding compute services. Load-balancing could for example be done
using techniques such as DNS load-balancing [204].

142 8 Discussion

A limitation for the current design and implementation of WallScope is the fact
that all visualization systems are consuming content from the static and dynamic
network accessible compute resources, but none of the visualization systems
update the original data sets. For example, a dynamic NAC can be used to show a
Microsoft Word document on a display wall, by generating display friendly
formats for the display-side visualization clients, such as image-tiles or PDFs.
However, the selected approach does not yet support editing the original source
for these image-tiles or PDFs. Thus, the current approach for visualization in
WallScope enables interactive exploration of data from local and remote data
resource, but does not yet give users any tools for modifying the original data
sources. This would require a feedback mechanism to the NACs.

One problem that arises when adding functionality for updating local and remote
data sources is how to update documents hosted by several NACs. As
demonstrated in chapter 7, section 7.1.5, multiple NACs can be used in parallel to
reduce the load-time of a PDF document. If a display-side visualization system
would initiate a request for changing the content of a document, this would have
to be taken care of by the system to make sure the document remains consistent
between all NACs holding the document. Another issue that needs to be
addressed in this regard is to equip users providing compute services through
dynamic NACs with mechanisms to control what data is editable and what data is
read only.

Another limitation for the current dynamic compute resources of WallScope is
the fact that they require application support for using existing desktop
applications to produce data that can be transformed into display-side friendly
formats by the NAC software (for instance using Microsoft Component Object
Model with Word or Excel). This requirement limits the number of applications
that can be used to produce content for the display-side. One approach that can be
taken as a last effort for applications that do not support this requirement is to
invoke the applications and use a combination of input events and frame buffer
captures to read the content from the applications as pixels, which then can be
delivered to the visualization systems. This would require exclusive access to the
computer where the applications are executed. In addition, it would be difficult to
use more than a single process (and thus CPU core), and the output is limited to
pixels. However, as a last effort approach it could still be used for applications
that do not natively support other mechanisms.

The NAD system has been used on the display wall lab since the first prototype
was developed. This system has enabled all users that wanted to mirror selected
regions of the local desktop onto the display wall to do so without permanently
installing third party software or opening firewall ports. This has been made
possible by the customization phase that removes the need to have pre-installed
software on the compute resource in order to utilize the display-side. There is a
hidden assumption to the current version of the system, which also applies for the
dynamic network accessible compute resources. Both systems need a Java
Runtime Environment (JRE) installed. Since a JRE is not guaranteed to be

8 Discussion 143

available for all software installs, it is possible that a user cannot use a NAD
because the software needed for the customization phase is not present. From
informal usage over almost three years, there has not been one incident where a
user did not have the Java runtime environment installed. However, for users that
do not have Java installed, the argument of not installing third party software
does not hold. Another approach to this is to use binary files compiled for
different operating systems, which can be manually downloaded by the user.
However, this removes the sandboxing and transparent customization. A web
browser with an extension would be a good approach for achieving transparent
integration with a NAD. A web browser is included on every modern desktop
install, and therefore would be a good approach for achieving customization in a
NAD/NAC context. However, this would require frame buffer access from the
web browser.

Another limitation of the current version of the NAD system is the lack of
extending the resolution as a result of the increased resolution offered by a
separate network accessible display. This has been successfully done in [47]
where the desktop of a laptop has been extended up to 22 megapixels. However,
currently there exists no way of extending a desktop cross-platform without
modifying software in kernel space [47], including rebooting the computer to get
access to the changes. Compared to the current approach used, such approaches
are more intrusive. One way of achieving increased resolution with the current
system, is to mirror the content from multiple NACs (potentially used by a single
user) to a high-resolution NAD such as a display wall, and then interact with
mirrored content from the NAD. Using this approach, the NAD can be thought of
as a shared desktop (having multiple mirrored desktops) and the NAD would set
the upper limit for the actual resolution that can be used.

The performance study of graphics processors conducted as part of this
dissertation is based on the embarrassingly parallel Mandelbrot set computation.
The study has shown how a modern graphics card can outperform an entire
cluster of 28 computers computing on the CPUs and on previous generation
GPUs. In fact, compared to the CPU versions of the Mandelbrot set computation,
the single GPU could compute the entire data set and transfer the result to the
cluster faster than computing the entire Mandelbrot set directly on the display
nodes. However, the Mandelbrot set computation is limited in that it only
benchmarks the performance of a computation that requires low amounts of data
input (just the bounding box of the Mandelbrot set), does not consume much
memory and can be fully distributed over all compute cores. Thus, the potential
bottlenecks introduced by the bus connecting the graphics card with the CPU, the
less memory available, and the impact of Amdahl’s law [205] do not impose a
huge penalty on the resulting performance. Consequently, the performance results
presented gives an indication of the expected results for computations that share
characteristics with the Mandelbrot set computation (low data input-size
requirements, low memory profile, and embarrassingly parallel). Additionally,
the computers used for the display wall were three years older than the GPUs
used, and thus do not reflect state-of-the-art within CPU technologies.

144 8 Discussion

One particular aspect that has not been addressed in this dissertation is security.
The focus of this dissertation is not security, and thus security mechanisms have
not been given much attention. The reason that security has not been explicitly
addressed for the systems developed is that not all possible domains for the
systems are known in advance. Understanding the domains require working
prototypes, at which point domain specific security mechanism can be
investigated. Nevertheless, security mechanisms are important for the presented
systems for instance if used in a public context. The approach taken to security in
this dissertation is to use existing mechanisms when security is needed. For
example, the NAD system communicates with the NAC using a protocol based
on pixels and events. A third party could easily get access to the pixels and
keystrokes through eavesdropping. However, by tunneling the connection
between the NAC and the NAD through SSH, the connection from the client to
the server is secure and no explicit actions are needed in the protocol itself. The
same applies for securing the communication channels between the components
of the other systems developed.

The experiments conducted as part of this dissertation document the performance
of the systems presented. No attempt is made on documenting their usability. The
usability could be documented by designing a set of user-studies where users
report their perception of the system(s) with respect to one or several factors (did
the system make it easier to perform a certain task compared to other approaches?
Was there any difficulties in using the system?). However, because of the systems
methodology used throughout this dissertation this research direction has not
been further pursued.

145

 Chapter 9

Conclusions

This dissertation has presented Network Accessible Compute (NAC) resource
and Network Accessible Display (NAD) resources for interactive visualization of
data on displays ranging from laptops to high-resolution tiled display walls. A
network accessible display is a display having functionality that enables usage
over a network connection. Network accessible compute resources produce
content for network accessible displays.

Several systems have been developed and evaluated based on push-based and
pull-based network accessible compute- and display-resources. The idea,
architecture, design, implementation and evaluation of the systems have resulted
in three principles for interactive visualization on high-resolution tiled display
walls. These are: (i) Establishing the end-to-end principle through customization,
stating that the setup and interaction between a display-side and a compute-side
in a visualization context can be achieved by customizing one or both sides; (ii)
Personal Computer (PC) – Personal Compute Resource (PCR) duality, stating
that a user’s computer is both a personal computer and a personal compute
resource, implying that desktop applications can be utilized locally using attached
interaction devices and display(s), or remotely by other visualization systems for
domain specific production of data based on a user’s personal desktop install; and
(iii) domain specific best-effort synchronization stating that for distributed
visualization systems running on high-resolution tiled display walls, state
handling can be performed using a best-effort synchronization approach, where
visualization clients will eventually get the correct state after a given period of
time.

One push-based NAC-NAD system has been developed enabling users to mirror
multiple user-selected regions from their local computer’s desktop onto nearby
network accessible displays. The system is based on the principle of establishing
the end-to-end principle through customization. This enables usage of nearby
network accessible display resources without requiring: (i) Usage of DVI/VGA
cables; (ii) permanent installation of third party software; and (iii) opening
firewall ports.

146 9 Conclusions

The push-based system has been evaluated by measuring its performance when
mirroring content from a desktop at different resolutions with applications
exhibiting different output characteristics. At a resolution of 800 by 600 pixels,
the system supports mirroring of dynamic content at 38.6 FPS. At 1600 by 1200
pixels, the refresh rate is 12.85 FPS. For static content such as images and
slideshow presentations, the system’s bandwidth usage is within the capacity of
an 11 Mbit/s wireless network. For dynamic content such as videos and games,
the system requires at least a 100 Mbit/s connection. The bottleneck of the system
is frame buffer capturing and encoding/decoding of pixels. Pipelining the main
parts of the NAC-side and NAD-side software would most likely give a frame
rate increase in all cases, and by a factor of two in the best case.

One pull-based system, WallScope, has been developed comprising a range of
visualization- and compute-systems, enabling interactive visualization of local
and remote data sets on high-resolution tiled display walls. WallScope separates
display resources from compute resources using a live data set containing data
customized for the particular application domain of the display-side’s
visualization systems. The live data set receives requests from the display-side,
translates these into compute messages and forwards them to available compute
resources. Results of the computations are used as part of the final rendering on
the display-side. The compute resources of the system are categorized into static,
such as clusters, grids and supercomputers, and dynamic, such as laptops and
desktop computers. Static compute resources are accessed according to their
security policies and access protocols. Dynamic compute resources are
customized on-the-fly, to become compute resources in the system.

Experiments conducted document that the sort-first rendering approach taken by
the visualization systems implemented as part of WallScope, combined with a
simple state server, enables each visualization client to keep the same frame rate
as the refresh rate of their attached displays.

When visualizing the Earth by combining data from the Landsat data set with
data from the Blue Marble data set, the bottleneck of the system is the merging
process of the data sets on the compute nodes. However, the time used to
combine data sets decreases by a factor of 23 when increasing the number of
compute nodes from 1 to 26. When all data is cached, the bottleneck of the
system is decoding of JPEG images to create OpenGL textures and creating
geometry from elevation data. The visualization system can decode 414.2
megapixels per second, resulting in 19 decoded frames per second. The decoding
process is multi-threaded, and higher frame rates are expected using multi-core
computers. This tracks the current hardware trend towards more CPU cores.

The dynamic compute nodes in the system can be utilized in parallel to increase
the overall performance of the system, improving the load-time of a PDF
document from 74.66 to 4.20 seconds (PNG) and 20.66 to 2.40 seconds (JPG)
when going from 1 to 28 compute nodes. This translates to a resulting speedup of
17.77 (PNG) and 8.59 (JPG) using 28 compute nodes. This shows that the

9 Conclusions 147

application output from personal desktop computers can be made interoperable
with high-resolution tiled display walls, with good performance and without
being limited to the resolution of the local desktop and display. The main
bottleneck using the dynamic compute resources is the compute-side of the
system combined with the number of connections that can be established from the
display-side.

The work presented in this dissertation has resulted in several contributions for
solving challenges related to interactive visualization on high-resolution tiled
display walls.

Synchronization of display nodes are handled according to the principle of best-
effort state synchronization, implemented using a state server and a push-based
heartbeat protocol. Compared to systems using lock-step approaches and/or
barriers [36] [43] [44], the presented approach has several advantages: (i)
Centralized state control, allowing the state of a visualization to be computed
using the same clock, less likely resulting in divergence between visualization
clients; (ii) centralized load control, allowing for easy control of load from a
single location; (iii) avoiding multiple points of failure; and (iv) avoiding global
slowdown constrained by the most heavily loaded node.

Display nodes and compute nodes follow the principle of establishing the end-to-
end principle through customization. This principle has enabled utilization of
network accessible displays from different types of compute nodes (such as
desktops and laptops) without requiring pre-installed pre-configured systems.
Combined with a live data set the principle allows for separating domain specific
computations from visualization systems, keeping each client of a distributed
visualization system simple, while implementing domain specific functionality at
the compute-side.

The principle of PC – PCR duality has enabled usage of existing desktop
applications by visualization systems running on tiled display walls, by
decoupling the application output from the resolution of the local desktop and
display. This allows for visualization on displays with potentially much higher
resolutions, without requiring modifications to the local applications or the
operating systems. The principle has been realized by the dynamic compute
resources in WallScope. In combination with the live data set architecture, this
allows for utilization of desktop applications from distributed visualization
systems running on tiled display walls.

Compared to state-of-the-art systems presented in the literature, the contributions
of this dissertation enable utilization of a broader range of compute resources
from a display wall, while at the same time providing better control over where to
provide functionality and where to distribute workload between compute-nodes
and display-nodes in a visualization context.

149

 Chapter 10

Future Work

This section outlines some of the possible future directions that can be researched
based on the current status of the work presented in this dissertation.

The push-based NAD system presented enables users to mirror content from their
local desktop onto nearby network accessible displays. This work has focused on
a simple way of displaying the content of a desktop on a remote display, as well
as interacting with the local desktop from the remote location. However, a
direction that has not yet been fully investigated is sharing of content between
remote displays. This usage might not be obvious on stand-alone displays and
projectors. However, on high-resolution tiled display walls, multiple desktops can
be simultaneously mirrored to the same display surface. Sharing content between
these desktops could be useful, for example, by dragging a file from one desktop
to another, thereby copying the file between the computers. This could be a
promising research direction for future work.

WallScope and its associated visualization systems comprise a platform that can
be used for future research. The current version of WallGlobe and WallScope has
already been used to conduct research on interactive weather forecasting. This
can be extended to include other type of visualizations, such as earthquakes,
avalanches, and other weather-related simulations.

Incorporating “live” objects into WallScope is another research direction that
could be investigated. Data feeds describing objects in the real world has already
been incorporated in WallGlobe (this work is included in appendix B). This work
has documented how object state can be separated from the visualization of the
objects, allowing multiple object-state servers to be used for state tracking. The
work presented outlines some interesting future research directions that could be
investigated, among others per-visualization node object state tracking. In
addition, adding physics using both CPU and GPU (such as PhysX [206])
approaches could be investigated in this context.

The network accessible compute resources developed as part of this work
produce customized data for the visualization systems. The use of separate
compute resources allows for more computational power to be added if needed,

150 10 Future Work

but most importantly allows the visualization systems to be kept simple by
incorporating functionality for transforming data on the compute-side. In this
sense, the functionality of the visualization systems heavily depends on the
functionality of the compute resources. Thus, more functionality can be added to
WallScope by adding this to the static or dynamic compute resources.

The dynamic network accessible compute resources have demonstrated how the
application output from local desktop applications can be made independent of
the resolution of the local desktop and display by transforming desktop
computers into compute services accepting requests for content such as vector
data or tiled output, that can utilize the resolution of high-resolution tiled display
walls. More plugins can be implemented to support a wider range of desktop
applications. The current version contains among others functionality for
transforming office documents into display friendly formats for visualization
systems running on display walls. Other formats could be added as well.

A research direction that has not yet been investigated is to use dynamic compute
resources to provide further computations on data returned from virtually
customized compute resources. For example, a virtually customized compute
resource might provide data that still needs processing before it can be used on
the display-side. Instead of performing this computation on the display-side, a
physically customized compute resource could perform the computation before
sending the processed data to the requesting display-side visualization system.

The number of connections that can be established from the display-side without
affecting the performance of the rendering engine has been demonstrated to
introduce lack in compute-side utilization. Thus, one future research direction
that could be investigated is separating decoding and requesting of data. By
separating decoding functionality from requesting functionality, more
connections can be established from the display-side without affecting the
performance of the rendering engine caused by having decoding threads
competing with the rendering engine for CPU cycles. For multi-core compute
nodes, this performance decrease can be controlled by assigning the rendering
engine to run on a separate core. However, the display wall presented in chapter
2, section 2.3 have single core CPUs (with HyperThreading) and thus would
benefit an approach where requesting and decoding are separated.

A research direction that has not been fully investigated is streaming of dynamic
content from the compute resources to the visualization systems. The current
version could support a similar approach by requesting new content from the
compute nodes at regular intervals, an action that has been documented to support
a refresh rate of 19 frames per second at the display-side. However, other
approaches could be investigated for displaying videos and other content that
have dynamic update characteristics.

With the recent trends in GPU hardware architectures and based on performance
measurements conducted among others as part of this dissertation (chapter 5,

10 Future Work 151

section 5.4.2), GPUs have been demonstrated as promising devices for data-
parallel computations. One possible research direction that could be further
investigated is using GPUs as NACs (both static and dynamic).

153

References

[1] Gordon Bell, Tony Hey, and Alex Szalay, "Beyond the Data Deluge,"
Science, vol. 323, no. 5919, pp. 1297-1298, 2009.

[2] Tony Hey, Stewart Tansley, and Kristin Tolle, The Fourth Paradigm:

Data-Intensive Scientific Discovery.: Microsoft Research, 2009.

[3] Peter Fox and James Hendler, "Changing the Equation on Scientific Data
Visualization," Science Magazine, vol. 331, no. 6018, pp. 705-708,
February 2011.

[4] Intel Corporation. (2011, February) Excerpts from A Conversation with
Gordon Moore: Moore’s Law. [Online].
ftp://download.intel.com/museum/Moores_Law/Video-
transcripts/Excepts_A_Conversation_with_Gordon_Moore.pdf

[5] Angela C. Sodan, Jacob Machina, Arash Deshmeh, Kevin Macnaughton,
and Bryan Esbaugh, "Parallelism via Multithreaded and Multicore CPUs,"
Computer, vol. 43, no. 3, pp. 24-32, March 2010.

[6] Spiral. (2007, April) Evolution of Intel Platforms. [Online].
http://www.spiral.net/graphics/evolution.gif

[7] John L. Manferdelli, Naga K. Govindaraju, and Chris Crall, "Challenges
and Opportunities in Many-Core Computing," Proceedings of the IEEE,
vol. 96, no. 5, pp. 808-815, May 2008.

[8] Tilera. (2011, February) TILE-Gx Processor Family. [Online].
http://www.tilera.com/sites/default/files/productbriefs/PB025_TILE-
Gx_Processor_A_v3.pdf

[9] NVIDIA. (2011, February) Geforce GTX 580. [Online].
http://www.nvidia.com/object/product-geforce-gtx-580-us.html

[10] Atlas Computing Division Rutherford Laboratory. (2010, June) PERQ
History. [Online]. http://www.chilton-
computing.org.uk/acd/sus/perq_history/part_1/c3.htm

[11] EIZO. (2011, February) ColorEdge CG303W. [Online].
http://www.eizo.com/global/products/coloredge/cg303w/index.html

154 References

[12] Canon. (2011, February) Digital Compact Cameras. [Online].
http://www.canon.com/camera-museum/camera/dcc/data/2009-
2010/2010_ixy_400f.html?p=2

[13] Bruce H. McCormick, Thomas A. DeFanti, and Maxine D. Brown,
"Visualization in Scientific Computing," Computer Graphics, vol. 21, no.
6, November 1987.

[14] Nahum Gershon, Stephen G. Eick, and Stuart Card, "Information
visualization," Interactions, vol. 5, no. 2, pp. 9-15, March 1998.

[15] R. B. Haber and D. A. McNabb, "Visualization Idioms: A Conceptual
Model for Scientific Visualization Systems," in Visualization in Scientific

Computing, Bruce Shriver, Ed. Los Alamitos, CA, USA: IEEE Computer
Society Press, 1990, pp. 61-73.

[16] Roy S. Kalawsky, "Gaining Greater Insight through Interactive
Visualization: A Human Factors Perspective," in Trends in Interactive

Visualization, Lakhmi Jain et al., Eds.: Springer London, 2009, pp. 1-36,
10.1007/978-1-84800-269-2_6.

[17] Microsoft. (2011, April) Excel. [Online]. http://office.microsoft.com/en-
us/excel/

[18] Oracle. (2011, February) OpenOffice.org Calc. [Online].
http://www.openoffice.org/product/calc.html

[19] X.org Foundation. (2011, January) Documentation for the X Window
System Version 11 Release 7.6 (X11R7.6). [Online].
http://www.x.org/releases/X11R7.6/doc/

[20] (April, 2011) GIMP Toolkit. [Online]. http://www.gtk.org

[21] Nokia Corporation. (2011, April) Qt. [Online]. http://qt.nokia.com/

[22] The GNOME Project. (2011, April) GDK 2 Reference Manual. [Online].
http://developer.gnome.org/gdk/

[23] Khronos Group. (2011, April) OpenGL - The Industry's Foundation for
High Performance Graphics. [Online]. http://www.opengl.org/

[24] Silicon Graphics Inc. (2011, April) OpenGL Graphics with the X Window
System. [Online].
http://www.opengl.org/documentation/specs/glx/glx1.4.pdf

References 155

[25] Brian Paul. (2007, June) Mesa. [Online]. http://mesa3d.sourceforge.net/

[26] Matthias Hopf. (2010, June) compiz: The Next Generation Desktop.
[Online]. http://www.vis.uni-
stuttgart.de/~hopf/pub/LinuxTag2007_compiz_NextGenerationDesktop_Sl
ides.pdf

[27] Oliver G. Staadt, Justin Walker, Christof Nuber, and Bernd Hamann, "A
survey and performance analysis of software platforms for interactive
cluster-based multi-screen rendering," in Proceedings of the workshop on

Virtual environments, New York, NY, USA, 2003, pp. 261-270.

[28] Steven Molnar, Michael Cox, David Ellsworth, and Henry Fuchs, "A
Sorting Classification of Parallel Rendering," IEEE Computer Graphics

and Applications, vol. 14, no. 4, pp. 23-32, July 1994.

[29] Jorge Luis Williams, "Sort-middle stream-based real-time rendering on
commodity clusters," University of Idaho, Moaxcow, Ph.D. 3347517,
2009.

[30] Michael J. Flynn, "Some Computer Organizations and Their
Effectiveness," IEEE Transactions on Computers, vol. C-21, no. 9, pp.
948-960, September 1972.

[31] Robert W. Scheifler and Jim Gettys, "The X window system," ACM

Transactions on Graphics, vol. 5, no. 2, pp. 79-109, April 1986.

[32] Yong Liu and Otto J. Anshus, "Improving the performance of VNC for
high-resolution display walls," in Proceedings of the 2009 International

Symposium on Collaborative Technologies and Systems, Washington, DC,
USA, 2009, pp. 376-383.

[33] Greg Humphreys et al., "Chromium: a stream-processing framework for
interactive rendering on clusters," in Proceedings of the 29th annual

conference on Computer graphics and interactive techniques, New York,
NY, USA, 2002, pp. 693-702.

[34] (2004, June) Distributed Multihead X Project. [Online].
http://dmx.sourceforge.net/

[35] Ricardo A. Baratto, Leonard N. Kim, and Jason Nieh, "THINC: a virtual
display architecture for thin-client computing," in SOSP '05: Proceedings

of the twentieth ACM symposium on Operating systems principles, vol. 39,
New York, NY, USA, 2005, pp. 277-290.

156 References

[36] Daniel Stødle, Tor-Magne Stien Hagen, John Markus Bjørndalen, and Otto
J. Anshus, "Gesture-Based, Touch-Free Multi-User Gaming on Wall-
Sized, High-Resolution Tiled Displays," Journal of Virtual Reality and

Broadcasting, vol. 5, no. 10, November 2008.

[37] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper, "Virtual
Network Computing," IEEE Internet Computing, vol. 2, no. 1, pp. 33-38,
January 1998.

[38] OnLive Inc. (2011, February) OnLive. [Online]. www.onlive.com

[39] Calit2. (2011, February) HIPerWall. [Online].
http://hiperwall.calit2.uci.edu/?q=node/1

[40] Doug Ramsey. (2008, July) UC San Diego Unveils World's Highest-
Resolution Scientific Display System. [Online].
http://www.calit2.net/newsroom/release.php?id=1332

[41] Thomas A. DeFanti et al., "The OptIPortal, a scalable visualization,
storage, and computing interface device for the OptiPuter," Future

Generation Computer Systems, vol. 25, no. 2, pp. 114-123, 2009.

[42] Doug Ramsey. (2008, September) California scientists demonstrate how to
use advanced fiber-optic backbone for research. [Online].
http://www.universityofcalifornia.edu/news/article/18717

[43] Ping Yin, Xiaohong Jiang, Jiaoying Shi, and Ran Zhou, "Multi-screen
Tiled Displayed, Parallel Rendering System for a Large Terrain Dataset,"
The International Journal of Virtual Reality (IJVR), vol. 5, no. 4, pp. 47-
54, 2006.

[44] Sungwon Nam et al., "Multi-Application Inter-Tile Synchronization on
Ultra-High-Resolution Display Walls," in Proceedings of the first annual

ACM SIGMM conference on Multimedia systems, New York, NY, USA,
2010, pp. 145-156.

[45] Daniel Stødle, "Device-Free Interaction and Cross-Platform Pixel Based
Output to Display Walls," Department of Computer Science, Faculty of
Science, University of Tromsø, Tromsø, Ph.D. Dissertation 2009.

[46] Microsoft. (2011, February) Windows. [Online].
http://www.microsoft.com/windows/

[47] Daniel Stødle, John Markus Bjørndalen, and Otto J. Anshus, "The 22

References 157

megapixel laptop," in Proceedings of the 2007 workshop on Emerging

displays technologies, New York, NY, USA, 2007, pp. 1-4.

[48] NVIDIA. (2011, February) CUDA C Programming Guide (Version 3.2).
[Online].
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/doc
s/CUDA_C_Programming_Guide.pdf

[49] Thomas Sørensen. (2010, March) NRK Nordnytt - Verdens største iPhone?
[Online]. http://fil.nrk.no/nyheter/distrikt/troms_og_finnmark/1.6911043

[50] Vlad Savov. (2010, March) engadget - Tromso students put together the
best interactive display wall we've seen yet. [Online].
http://www.engadget.com/2010/03/24/tromso-students-put-together-the-
best-interactive-display-wall-w/

[51] Chris Davies. (2010, March) slashgear - 22MP Display Wall for gigapixel
images created. [Online]. http://www.slashgear.com/22mp-display-wall-
for-gigapixel-images-created-video-2378652/

[52] Øyvind Solstad. (2010, March) NRKbeta - Verdens største
multitouchskjerm er norsk. [Online]. http://nrkbeta.no/2010/03/23/verdens-
stoerste-multitouchskjerm-er-norsk/

[53] Caleb Kraft. (2010, March) HACK A DAY - Massive no-touch physically-
interfaced display. [Online]. http://hackaday.com/tag/gigapixel/

[54] (2010, March) Ubergizmo - Monstrous physical interactive display
requires no touch at all. [Online].
http://www.ubergizmo.com/2010/03/monstrous-physical-interactive-
display-requires-no-touch-at-all/

[55] Daniel Stødle, Bård Fjukstad, and Otto Anshus. (2010, September)
Nordlys - Morgendagens spåkuler. [Online].
http://www.nordlys.no/kronikk/article5325750.ece

[56] Falko Kuester et al. (2011, February) The Highly Interactive Parallelized
Display Space project (HIPerSpace). [Online].
http://vis.ucsd.edu/mediawiki/index.php/Research_Projects:_HIPerSpace

[57] K. Li et al., "Building and Using A Scalable Display Wall System," IEEE

Computer Graphics and Applications, vol. 20, no. 4, pp. 29-37,
July/August 2000.

[58] Grant Wallace et al., "Tools and Applications for Large-Scale Display

158 References

Walls," IEEE Computer Graphics and Applications, vol. 25, no. 4, pp. 24-
33, July 2005.

[59] AMD. (2011, April) AMD Eyefinity Technology. [Online].
http://www.amd.com/us/products/technologies/amd-eyefinity-
technology/Pages/eyefinity.aspx

[60] Tristan Richardson. (2010, November) The RFB Protocol. [Online].
http://www.realvnc.com/docs/rfbproto.pdf

[61] RealVNC Limited. (2011, February) RealVNC. [Online].
http://www.realvnc.com/

[62] (2011, February) TightVNC. [Online]. http://www.tightvnc.com/

[63] UltraVNC. (2011, February) UltraVNC. [Online]. http://www.uvnc.com/

[64] (2009, April) Xvnc - the X VNC server. [Online].
http://www.realvnc.com/products/free/4.1/man/Xvnc.html

[65] Greg Humphreys et al., "WireGL: a scalable graphics system for clusters,"
in Proceedings of the 28th annual conference on Computer graphics and

interactive techniques, New York, NY, USA, 2001, pp. 129-140.

[66] Byungil Jeong et al., "High-performance dynamic graphics streaming for
scalable adaptive graphics environment," in Proceedings of the 2006

ACM/IEEE conference on Supercomputing, New York, NY, USA, 2006,
pp. 24-24.

[67] Microsoft. (2011, February) Direct3D Graphics. [Online].
http://msdn.microsoft.com/en-us/library/bb153256%28v=VS.85%29.aspx

[68] NVIDIA. (2011, April) Cg Toolkit. [Online].
http://developer.nvidia.com/cg-toolkit

[69] NVIDIA. (2011, April) CUDA Zone. [Online].
http://www.nvidia.com/object/cuda_home_new.html

[70] (2011, April) TOP. [Online].
http://www.linuxmanpages.com/man1/top.1.php

[71] Luis Martin Garcia. (2011, March) TCPDUMP & LIBPCAP. [Online].
http://www.tcpdump.org/

[72] Daniel Stødle, Tor-Magne Stien Hagen, John Markus Bjørndalen, and Otto

References 159

Anshus, "Gesture-based, Touch-Free Multi-User Gaming on Wall-Sized
High-Resolution Tiled Displays," in Proceedings of the 4th International

Symposium on Pervasive Gaming Applications, 2007, pp. 75-83.

[73] Tor-Magne Stien Hagen, Espen Skjelnes Johnsen, Daniel Stødle, John
Markus Bjørndalen, and Otto Anshus, "Liberating the Desktop," in First

International Conference on Advances in Computer Human Interaction,

ACHI, 2008, pp. 89-94.

[74] Tor-Magne Stien Hagen, Oleg Jakobsen, Phuong Hoai Ha, and Otto
Anshus, "Comparing the Performance of Multiple Single-Cores versus a
Single Multi-Core," in Proceedings of the 9th International Workshop on

State-of-the-Art in Scientific and Parallel Computing, PARA, 2008.

[75] Tor-Magne Stien Hagen, Phuong Hoai Ha, and Otto Anshus,
"Experimental Fault-Tolerant Synchronization for Reliable Computation
on Graphics Processors," in Proceedings of the 9th International

Workshop on State-of-the-Art in Scientific and Parallel Computing, PARA,
2008.

[76] Tor-Magne Stien Hagen, Daniel Stødle, and Otto Anshus, "On-Demand
High-Performance Visualization of Spatial Data on High-Resolution Tiled
Display Walls," in Proceedings of the International Conference on

Information Visualization Theory and Applications, 2010, pp. 112-119.

[77] Tor-Magne Stien Hagen, Daniel Stødle, John Markus Bjørndalen, and Otto
Anshus, "A Step towards Making Local and Remote Desktop Applications
Interoperable with High-Resolution Tiled Display Walls," to appear in the

Proceedings of the 11th IFIP International Conference on Distributed

Applications and Interoperable Systems, DAIS, 2011.

[78] Bård Fjukstad et al., "Interactive Weather Simulation and Visualization on
a Display Wall with Many-Core Compute Nodes," to appear in the

Proceedings of the 10th International Workshop on State-of-the-Art in

Scientific and Parallel Computing, PARA, 2011.

[79] Microsoft. (2011, February) Remote Desktop Protocol. [Online].
http://msdn.microsoft.com/en-us/library/aa383015(VS.85).aspx

[80] Dean Macri, "The Scalability Problem," Queue, vol. 1, no. 10, pp. 66-73,
2004.

[81] id. (2011, March) id Software. [Online]. http://www.idsoftware.com/

[82] Relic Entertainment. (2010, October) HomeworldSDL.org. [Online].

160 References

http://www.homeworldsdl.org/

[83] id Software. (2011, March) ioquake3. [Online]. http://ioquake3.org/

[84] Relic Entertainment. (2011, March) Relic Entertainment. [Online].
www.relic.com

[85] Nintendo. (2011, February) Wii Controllers. [Online].
http://www.nintendo.com/wii/console/controllers

[86] Jeffrey Jacobson and Zimmy Hwang, "Unreal tournament for immersive
interactive theater," Communications of the ACM - Internet abuse in the

workplace and Game engines in scientific research, vol. 45, no. 1, pp. 39-
42, January 2002.

[87] (2010, January) Message Passing Interface Forum. [Online].
http://www.mpi-forum.org/

[88] Intel. (2011, March) Intel® Developer Network for PCI Express
Architecture. [Online].
http://www.intel.com/technology/pciexpress/index.htm

[89] Intel. (2005, March) Intel® E8500 Chipset North Bridge (NB). [Online].
http://www.intel.com/assets/pdf/datasheet/306745.pdf

[90] Anton Lokhmotov, Alan Mycroft, and Andrew Richards, "Delayed Side-
effects Ease Multi-core Programming," in Proceedings of the 13th

International Euro-Par Conference, Rennes, France, 2007, pp. 641-650.

[91] Jason Mcguiness, Colin Egan, Bruce Christianson, and Guang Gao, "The
Challenges of Efficient Code-Generation for Massively Parallel
Architectures," in 11th Asia-Pacific Conference on Advances in Computer

Systems Architecture, Shanghai, China, 2006, pp. 416-422.

[92] Felix Putze, Peter Sanders, and Johannes Singler, "MCSTL: the multi-core
standard template library," in Proceedings of the 12th ACM SIGPLAN

symposium on Principles and practice of parallel programming , New
York, NY, USA, 2007, pp. 144-145.

[93] A. Corradi, L. Leonardi, and F. Zambonelli, "Dynamic load distribution in
massively parallel architectures: the parallel objects example," in
Proceedings of the First Conference on Massively Parallel Computing

Systems, Ischia, Italy, 1994, pp. 318-322.

[94] V. Drakopoulos, N. Mimikou, and T. Theoharis, "An overview of parallel

References 161

visualisation methods for Mandelbrot and Julia sets," Computers &

Graphics, vol. 27, no. 4, pp. 635-646, 2003.

[95] Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanne Yoakum-Stover, "GPU
Cluster for High Performance Computing," in Proceedings of the 2004

ACM/IEEE conference on Supercomputing, Washington, DC, USA, 2004,
pp. 47--.

[96] Hsi-Yu Schive, Chia-Hung Chien, Shing-Kwong Wong, Yu-Chih Tsai,
and Tzihong Chiueh, "Graphic-Card Cluster for Astrophysics (GraCCA) -
Performance Tests," New Astronomy, vol. 13, no. 6, pp. 418-435, August
2008.

[97] Nolan Goodnight, Cliff Woolley, Gregory Lewin, David Luebke, and Greg
Humphreys, "A multigrid solver for boundary value problems using
programmable graphics hardware," in Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, Aire-
la-Ville, Switzerland, 2003, pp. 102-111.

[98] Isaac Rudomín, Erik Millán, and Benjamín Hernández, "Fragment shaders
for agent animation using finite state machines. Simulation Modelling
Practice and Theory," Simulation Modelling Practice and Theory, vol. 13,
no. 8, pp. 741-751, November 2005.

[99] Manuel Ujaldon and Joel Saltz, "The GPU on irregular computing:
Performance issues and contributions," in Proceedings of the Ninth

International Conference on Computer Aided Design and Computer

Graphics, vol. 0, Washington, DC, USA, 2005, pp. 442-450.

[100] NVIDIA. (2011, February) NVIDIA CUDA Compute Unified Device
Architecture (Version 1.0). [Online].
http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA
_Programming_Guide_1.0.pdf

[101] Joshua A. Anderson, Chris D. Lorenz, and A. Travesset, "General purpose
molecular dynamics simulations fully implemented on graphics processing
units," Journal of Computational Physics, vol. 227, no. 10, pp. 5342-5359,
May 2008.

[102] S. Williams, J. Carter, L. Oliker, J. Shalf, and K. Yelick, "Lattice
Boltzmann simulation optimization on leading multicore platforms," in
IEEE International Symposium on Parallel and Distributed Processing,
Miami, FL, USA, 2008, pp. 1-14.

[103] B. Franke and M.F.P. O'Boyle, "A complete compiler approach to auto-

162 References

parallelizing C programs for multi-DSP systems," IEEE Transactions on

Parallel and Distributed Systems, vol. 16, no. 3, pp. 234-245, March 2005.

[104] Paul K. Sherard, "Julia sets and quasi-stable orbits in the complex plane,"
Computers & Graphics, vol. 17, no. 2, pp. 175-184, March 1993.

[105] NVIDIA. (2011, March) CUDA GPUs. [Online].
http://www.nvidia.com/object/cuda_gpus.html

[106] Phuong Hoai Ha, Philippas Tsigas, and Otto J. Anshus, "Wait-free
Programming for General Purpose Computations on Graphics Processors,"
in 22nd IEEE International Symposium on Parallel and Distributed

Processing, IPDPS, Miami, Florida, USA, 2008, pp. 1-12.

[107] Maurice Herlihy, "Wait-free synchronization," ACM Transactions on

Programming Languages and Systems (TOPLAS), vol. 13, no. 1, pp. 124-
149, January 1991.

[108] Clyde P. Kruskal, Larry Rudolph, and Marc Snir, "Efficient
synchronization of multiprocessors with shared memory," ACM

Transactions on Programming Languages and Systems (TOPLAS), vol.
10, no. 4, pp. 579-601, October 1988.

[109] TightVNC Group. (2011, February) TightProjector. [Online].
http://www.tightvnc.com/projector/

[110] Bartels Media GmbH. (2011, March) MaxiVista. [Online].
http://www.maxivista.com/

[111] Vasily Tarasov. (2011, February) ZoneOS. [Online].
http://www.zoneos.com/zonescreen.htm

[112] Patrick Stein. (2010, November) ScreenRecycler. [Online].
http://www.screenrecycler.com/ScreenRecycler.html

[113] Microsoft. (2011, February) Windows Network Projector Overview.
[Online]. http://msdn.microsoft.com/en-us/library/aa934598.aspx

[114] Aras Bilgen and Keith W. Edwards, "inSpace Projector: An Accessible
Display System for Meeting Environments," in Workshop on Usable

Ubiquitous Computing in Next Generation Meeting Rooms: Design,

Architecture, and Evaluation. Ubicomp Conference, 2006.

[115] Grant Wallace and Kai Li, "Virtually shared displays and user input
devices," in 2007 USENIX Annual Technical Conference on Proceedings

References 163

of the USENIX Annual Technical Conference, Berkeley, CA, USA, 2007,
pp. 1-6.

[116] UPnP Forum. (2008, October) UPnP - Device Architecture Document.
[Online]. http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-
v1.1.pdf

[117] Oracle. (2011, February) Java. [Online]. http://www.java.com/en/

[118] Oracle. (February, 2008) Java Web Start Technology. [Online].
http://java.sun.com/javase/technologies/desktop/webstart/

[119] J. M. Bull, L. A. Smith, L. Pottage, and R. Freeman, "Benchmarking Java
against C and Fortran for scientific applications," in Proceedings of the

2001 joint ACM-ISCOPE conference on Java Grande, New York, NY,
USA, 2001, pp. 97-105.

[120] Thomas J. Lynch, Data compression: techniques and applications,
0534034187th ed. Belmont, CA, USA: Lifetime Learning Publications,
1985.

[121] Google. (2011, February) Google Maps. [Online]. http://maps.google.com

[122] Google. (2011, February) Google Maps API Family. [Online].
http://code.google.com/apis/maps/index.html

[123] Google. (2011, February) Google Earth. [Online].
http://www.google.com/earth/index.html

[124] Fay Chang et al., "Bigtable: a distributed storage system for structured
data," in Proceedings of the 7th USENIX Symposium on Operating

Systems Design and Implementation, Berkeley, CA, USA, 2006, pp. 205-
218.

[125] Sanjay Ghemawat, Howard Gobioff, and Shun T. Leung, "The Google file
system," in Proceedings of the nineteenth ACM symposium on Operating

systems principles, vol. 37, New York, NY, USA, 2003, pp. 29-43.

[126] Jeffrey Dean and Sanjay Ghemawat, "MapReduce: Simplified Data
Processing on Large Clusters," in Proceedings of the 6th conference on

Symposium on Opearting Systems Design & Implementation, Berkeley,
CA, USA, 2004, pp. 137-150.

[127] Chris Williams. (2007, June) Display Wall with Google Earth on Mac OS
X. [Online]. http://blog.irisink.com/2007/06/14/display-wall-with-google-

164 References

earth-on-mac-os-x/

[128] University of California. (2011, February) Google Earth on HIPerWall.
[Online]. http://hiperwall.calit2.uci.edu/?q=node/5

[129] Google. (2011, February) Liquid Galaxy. [Online].
http://www.google.com/earth/explore/showcase/liquidgalaxy.html

[130] Microsoft. (2011, February) Bing Maps APIs, SDK, and application
development tools. [Online]. http://www.microsoft.com/maps/

[131] Microsoft. (2011, February) Bing Maps 3D. [Online].
http://www.bing.com/maps/help/ve3dinstall/

[132] NASA. (2011, February) World Wind. [Online].
http://worldwind.arc.nasa.gov/download.html

[133] Microsoft. (2011, February) Visual C# Developer Center. [Online].
http://msdn.microsoft.com/en-us/vcsharp/default

[134] NASA. (2011, February) World Wind Java SDK. [Online].
http://worldwind.arc.nasa.gov/java/

[135] Geosoft Inc. (2011, February) Dapple. [Online]. http://dapple.geosoft.com/

[136] Inc. The Institute for the Application of Geospatial Technology at Cayuga
Community College. (2011, February) SERVIR Viz. [Online].
http://www.iagt.org/downloads.aspx/

[137] NASA. (2011, February) Blue Marble next generation. [Online].
http://earthobservatory.nasa.gov/Features/BlueMarble/

[138] NASA. (2011, February) The Landsat Program. [Online].
http://landsat.gsfc.nasa.gov/

[139] esri. (2011, February) ArcGis Engine. [Online].
http://www.esri.com/software/arcgis/arcgisengine/index.html

[140] Hong Liang, Raj Arangarasan, and Larry Theller, "Dynamic visualization
of high resolution GIS dataset on multi-panel display using ArcGIS
engine," Computers and Electronics in Agriculture, vol. 58, no. 2, pp. 174-
188, September 2007.

[141] Tahsin Kurc, Ümit Çatalyürek, Chialin Chang, Alan Sussman, and Joel
Saltz, "Visualization of Large Data Sets with the Active Data Repository,"

References 165

IEEE Computer Graphics and Applications, vol. 21, no. 4, pp. 24-33, July
2001.

[142] Michael D. Beynon et al., "Distributed processing of very large datasets
with

[143] Henrique Andrade, Tahsin Kurc, Alan Sussman, and Joel Saltz, "Active
semantic caching to optimize multidimensional data analysis in parallel
and distributed environments," Parallel Computing, vol. 33, no. 7-8, pp.
497-520, August 2007.

[144] Wagner T. Correa, James T. Klosowski, Chrisopher J. Morris, and Thomas
M. Jackmann, "SPVN: a new application framework for interactive
visualization of large datasets," in ACM SIGGRAPH 2007 courses, New
York, NY, USA, 2007.

[145] Peggy Li, "Supercomputing Visualization for Earth Science Datasets," in
Proceedings of 2002 NASA Earth Science Technology Conference,
Pasadena, CA, USA, 2002.

[146] M. Thiebaux, H. Tangmunarunkit, K. Czajkowski, and C. Kesselman,
"Scalable Grid-based Visualization Framework," USC/Information
Sciences Institute, Technical report ISI-TR-2004-592, 2004.

[147] Daniel S. Katz et al., "Accessing and Visualizing Scientific Spatiotemporal
Data," in 16th International Conference on Scientific and Statistical

Database Management, Washington, DC, USA, 2004, pp. 107 - 110.

[148] P. Peggy Li, William H. Duquette, and David W. Curkendall, "RIVA: A
Versatile Parallel Rendering System for Interactive Scientific
Visualization," IEEE Transactions on Visualization and Computer

Graphics, vol. 2, no. 3, pp. 186-201, September 1996.

[149] Rajvikram Singh, Byungil Jeong, Luc Renambot, Andrew E. Johnson, and
Jason Leigh, "TeraVision: a distributed, scalable, high resolution graphics
streaming system," in IEEE International Conference on Cluster

Computing, 2004, pp. 391-400.

[150] Chong Zhang, Jason Leigh, Thomas A. DeFanti, Marco Mazzucco, and
Robert L. Grossman, "TeraScope: Distributed visual data mining of
terascale data sets over photonic networks," Future Generation Computer

Systems, vol. 19, no. 6, pp. 935-943, August 2003.

[151] Robert Kooima, "Planetary-scale Terrain Composition," Computer
Science, Graduate College of the University of Illinois, Chicago, Ph.D.

166 References

Dissertation 2008.

[152] Charles Zhang, "OptiStore: An On-Demand Data Processing Middleware
for Very Large Scale Interactive Visualization," Computer Science,
Graduate College of the University of Illinois, Chicago, Ph.D. Dissertation
2007.

[153] Larry L. Smarr, Andrew A. Chien, Tom DeFanti, Jason Leigh, and Philip
M. Papadopoulos, "The OptIPuter," Communications of the ACM, vol. 46,
no. 11, pp. 58-67, November 2003.

[154] Nut Taesombut et al., "Collaborative data visualization for earth sciences
with the OptIPuter, Future Generation Computer Systems 22 (8," Future

Generations Computer Systems, vol. 22, no. 8, pp. 955-963, January 2006.

[155] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan
Werthimer, "SETI@home: An Experiment in Public-Resource
Computing," Communications of the ACM, vol. 45, no. 11, pp. 56-61,
November 2002.

[156] (2006, February) Predictor@Home. [Online]. http://www.boinc-
wiki.info/Predictor@Home

[157] Ian Baker et al., "Atomistic protein folding simulations on the
submillisecond time scale using worldwide distributed computing," Peter

Kollman Memorial Issue, Biopolymers, vol. 68, p. 2003, 2003.

[158] David Stainforth et al., "Climateprediction.net: Design principles for
public-resource modeling research," in 14th IASTED International

Conference Parallel and Distributed Computing and Systems, Cambridge,
MA, USA, 2002, pp. 32-38.

[159] David P. Anderson, "BOINC: A System for Public-Resource Computing
and Storage," in GRID '04: Proceedings of the 5th IEEE/ACM

International Workshop on Grid Computing, Washington, DC, USA,
2004, pp. 4-10.

[160] M. J. Litzkow, M. Livny, and M. W. Mutka, "Condor-a hunter of idle
workstations," in 8th International Conference on Distributed Computing

Systems , San Jose, CA, USA, 1988, pp. 104-111.

[161] Gilles Fedak, Cecile Germain, Vincent Neri, and Franck Cappello,
"XtremWeb: A Generic Global Computing System," IEEE International

Symposium on Cluster Computing and the Grid, pp. 582-587, May 2001.

References 167

[162] Nabil Abdennadher and Regis Boesch, "Towards a Peer-To-Peer Platform
for High Performance Computing," High Performance Computing and

Grid in Asia Pacific Region, International Conference on, vol. 0, pp. 354-
361, July 2005.

[163] Thomas Fischer, Stephan Fudeus, and Peter Merz, "A Middleware for Job
Distribution in Peer-to-Peer Networks," in Applied Parallel Computing.

State of the Art in Scientific Computing, 2008, pp. 1147-1157.

[164] Luigi Gallo and Antonio Coronato, "Pervasive distributed volume
rendering in a lightweight multi-agent platform," in Proceedings of the 2nd

International Conference on Interaction Sciences: Information

Technology, Culture and Human, New York, NY, USA, 2009, pp. 750-
755.

[165] Brian Vinter, "The Architecture of the Minimum intrusion Grid (MiG)," in
The 28th Communicating Process Architectures Conference, Amsterdam,
2005, pp. 189-201.

[166] Brian Paul et al., "Chromium Renderserver: Scalable and Open Remote
Rendering Infrastructure," IEEE Transactions on Visualization and

Computer Graphics, vol. 14, no. 3, pp. 627-639, May 2008.

[167] Silicon Graphics Inc. (2007) OpenGL Vizserver. [Online].
http://www.sgi.com/

[168] Hewlett-Packard. (2011, January) HP remote Graphics Software. [Online].
http://h20331.www2.hp.com/hpsub/cache/286504-0-0-225-121.html

[169] Mercury International Technology. (2011, May) 3D ThinAnywhere.
[Online]. http://www.thinanywhere.com/

[170] Stefan Eilemann, Maxim Makhinya, and Renato Pajarola, "Equalizer: A
Scalable Parallel Rendering Framework," IEEE Transactions on

Visualization and Computer Graphics, vol. 15, no. 3, pp. 436-452, May-
June 2009.

[171] Allen Bierbaum et al., "VR Juggler: A Virtual Platform for Virtual Reality
Application Development," in Proceedings of the Virtual Reality 2001

Conference (VR'01) , Washington, DC, USA, 2001, pp. 89-96.

[172] Eric Charles Olson, "Cluster Juggler - PC cluster virtual reality," Iowa
State University, Iowa, Master Thesis 2002.

168 References

[173] Jeremie Allard, Valérie Gouranton, Loïck Lecointre, Emmanuel Melin,
and Bruno Raffin, "Net Juggler and SoftGenLock: Running VR Juggler
with Active Stereo and Multiple Displays on a Commodity Component
Cluster," in Proceedings of IEEE Virtual Reality Conference, Orlando, FL
, USA, 2002, pp. 273-274.

[174] Nirnimesh, Pawan Harish, and P.J. Narayanan, "Garuda: A Scalable Tiled
Display Wall Using Commodity PCs," IEEE Transactions on

Visualization and Computer Graphics, vol. 13, no. 5, pp. 864-877,
September-October 2007.

[175] Praveen Bhaniramka, Philippe C.D. Robert, and Stefan Eilemann,
"OpenGL Multipipe SDK: A Toolkit for Scalable Parallel Rendering," in
IEEE Visualization, vol. 0, Minneapolis, MN, USA, 2005, p. 16.

[176] Kai-Uwe Doerr and Falko Kuester, "CGLX: A Scalable, High-
Performance Visualization Framework for Networked Display
Environments," IEEE Transactions on Visualization and Computer

Graphics, vol. 17, no. 3, pp. 320-332, March 2011.

[177] N.K. Krishnaprasad et al., "JuxtaView - a tool for interactive visualization
of large imagery on scalable tiled displays," in Proceedings of the 2004

IEEE International Conference on Cluster Computing, vol. 0, Washington,
DC, USA, 2004, pp. 411-420.

[178] Wagner T. Corrêa, James T. Klosowski, and Cláudio T. Silva, "Out-of-
core sort-first parallel rendering for cluster-based tiled displays," in
Proceedings of the Fourth Eurographics Workshop on Parallel Graphics

and Visualization , Aire-la-Ville, Switzerland, 2002, pp. 89-96.

[179] Steven Molnar, John Eyles, and John Poulton, "PixelFlow: high-speed
rendering using image composition," ACM SIGGRAPH Computer

Graphics, vol. 26, no. 2, pp. 231-240, July 1992.

[180] John S. Montrym, Daniel R. Baum, David L. Dignam, and Christopher J.
Migdal, "InfiniteReality: A Real-time Graphics System," in SIGGRAPH,
Los Angeles, CA, USA, 1997, pp. 293-302.

[181] Greg Humphreys and Pat Hanrahan, "A distributed graphics system for
large tiled displays," in Proceedings of the conference on Visualization

'99: celebrating ten years, Los Alamitos, 1999, pp. 215-223.

[182] Rudrajit Samanta, Jiannan Zheng, Thomas Funkhouser, Kai Li, and
Jaswinder Pal Singh, "Load balancing for multi-projector rendering
systems," in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS

References 169

workshop on Graphics hardware, New York, NY, USA, 1999, pp. 107-
116.

[183] Carl Mueller, "The sort-first rendering architecture for high-performance
graphics," in Proceedings of the 1995 symposium on Interactive 3D

graphics, New York, NY, USA, 1995, pp. 75-84.

[184] Rudrajit Samanta, Thomas Funkhouser, Kai Li, and Jaswinder Pal Singh,
"Hybrid sort-first and sort-last parallel rendering with a cluster of PCs," in
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on

Graphics hardware, New York, NY, USA, 2000, pp. 97-108.

[185] Daniel R. Schikore et al., "High-Resolution Multiprojector Display Walls,"
IEEE Computer Graphics and Applications, vol. 20, no. 4, pp. 38-44, July
2000.

[186] Kai Li, Matthew Hibbs, Grant Wallace, and Olga Troyanskaya, "Dynamic
Scalable Visualization for Collaborative Scientific Applications," in
Proceedings of the 19th IEEE International Parallel and Distributed

Processing Symposium (IPDPS'05), Washington D.C., USA, 2005, p. 225.

[187] Visualization and MultiMedia Lab, "Two Methods for driving OpenGL
Display Walls," Department of Informatics, University of Zürich, Zürich,
White Paper 2008.

[188] Shalini Venkataraman, Werner Benger, Amanda Long, Byungil Jeong, and
Luc Renambot, "Visualizing Hurricane Katrina - Large Data Management,
Rendering and Display Challenges," in Proceedings of the 4th

international conference on Computer graphics and interactive techniques

in Australasia and Southeast Asia, New York, NY, USA, 2006, pp. 209-
212.

[189] Kunihiro Nishimura, Tomohiro Tanikawa, and Michitaka Hirose, "Human
Genome Data Visualization Using a Wall Type Display," in Proceedings

of the 8th Asia-Pacific conference on Computer-Human Interaction, Seoul,
Korea, 2008, pp. 175-182.

[190] Zhenni Li, "Building a High-Resolution Scalable Visualization Wall,"
Auburn University, Auburn, Alabama, USA, Master Thesis 2006.

[191] Moohyun Cha, Jaikyung Lee, and Soonhung Han, "A Distributed
Visualization Module and its Applications Using Tiled Display Wall," in
Proceedings of the 9th ACM SIGGRAPH Conference on Virtual-Reality

Continuum and its Applications in Industry, New York, NY, USA, 2010,
pp. 63-66.

170 References

[192] So Yamaoka, Kai-Uwe Doerr, and Falko Kuester, "Visualization of high-
resolution image collections on large tiled display walls," Future

Generation Computer Systems, vol. 27, no. 5, pp. 498-505, May 2011.

[193] Sebastian Thelen, "Advanced Visualization and Interaction Techniques for
Large High-Resolution Displays," in Visualization of Large and

Unstructured Data Sets - Applications in Geospatial Planning, Modeling

and Engineering (IRTG 1131 Workshop), Dagstuhl, Germany, 2011, pp.
73-81.

[194] James H. Clark, "Hierarchical geometric models for visible surface
algorithms," Communications of the ACM, vol. 19, no. 10, pp. 547-554,
October 1976.

[195] (2011, April) squid-cache.org - Optimising Web Delivery. [Online].
http://www.squid-cache.org/

[196] S. Shepler et al. (2003, April) Network File System (NFS) version 4
Protocol. [Online]. http://tools.ietf.org/html/rfc3530

[197] (2011, February) Steel Bank Common Lisp. [Online]. http://www.sbcl.org/

[198] (2011, April) WRF - The Weather Research & Forecasting Model.
[Online]. http://www.wrf-model.org

[199] notur. (2011, April) stallo - Resource description. [Online].
http://docs.notur.no/uit/stallo_documentation/user_guide/key-numbers-
about-stallo

[200] Microsoft. (2011, March) COM: Component Object Model Technologies.
[Online]. http://www.microsoft.com/com/default.mspx

[201] Chris Olston and Jennifer Widom, "Best-effort cache synchronization with
source cooperation," in Proceedings of the 2002 ACM SIGMOD

international conference on Management of data, New York, NY, USA,
2002, pp. 73-84.

[202] Open Geospatial Consortium Inc. (2011, April) Web Map Service.
[Online]. http://www.opengeospatial.org/standards/wms

[203] Open Geospatial Consortium Inc. (2011, April) Web Feature Service.
[Online]. http://www.opengeospatial.org/standards/wfs

[204] T. Brisco. (2011, February) DNS Support for Load Balancing. [Online].

References 171

http://tools.ietf.org/html/rfc1794

[205] Gene M. Amdahl, "Validity of the single processor approach to achieving
large scale computing capabilities," in AFIPS '67 (Spring) Proceedings of

the April 18-20, 1967, spring joint computer conference, New York, NY,
USA, 1967, pp. 483-485.

[206] NVIDIA. (2011, March) PHYSX. [Online].
http://www.nvidia.com/object/physx_new.html

[207] Microsoft. (2011, February) Understanding the Remote Desktop Protocol
(RDP). [Online]. http://support.microsoft.com/kb/186607

173

Appendix A

Papers

In this section, all papers that the research presented in this dissertation is based
on are included. All papers have been peer-reviewed and accepted for publication
in international conferences and journals. For conference papers that later have
been published in journals, only the journal paper is included. However, citations
for both papers are shown.

175

A.1 Gesture-Based, Touch-Free Multi-User

Gaming on Wall-Sized, High-Resolution

Tiled Displays

Citation: Daniel Stødle, Tor-Magne Stien Hagen, John Markus Bjørndalen, and
Otto J. Anshus. Gesture-Based, Touch-Free Multi-User Gaming on Wall-Sized,
High-Resolution Tiled Displays. In Proceedings of the 4th International
Symposium on Pervasive Gaming Applications, PerGames, pages 75–83, June
2007.

Revised: Daniel Stødle, Tor-Magne Stien Hagen, John Markus Bjørndalen, and
Otto J. Anshus. Gesture-Based, Touch-Free Multi-User Gaming on Wall-Sized,
High-Resolution Tiled Displays. Journal of Virtual Reality and Broadcasting,
5(10), November 2008.

Abstract

Having to carry input devices can be inconvenient when interacting with wall-
sized, high-resolution tiled displays. Such displays are typically driven by a
cluster of computers. Running existing games on a cluster is non-trivial, and the
performance attained using software solutions like Chromium is not good
enough.

This paper presents a touch-free, multi-user, human-computer interface for wall-
sized displays that enables completely device-free interaction. The interface is
built using 16 cameras and a cluster of computers, and is integrated with the
games Quake 3 Arena (Q3A) and Homeworld. The two games were parallelized
using two different approaches in order to run on a 7x4 tile, 21 megapixel display
wall with good performance.

The touch-free interface enables interaction with a latency of 116 ms, where 81
ms are due to the camera hardware. The rendering performance of the games is
compared to their sequential counterparts running on the display wall using
Chromium. Parallel Q3A’s framerate is an order of magnitude higher compared
to using Chromium. The parallel version of Homeworld performed on par with
the sequential, which did not run at all using Chromium. Informal use of the
touch-free interface indicates that it works better for controlling Q3A than
Homeworld.

191

A.2 Liberating the Desktop

Citation: Tor-Magne Stien Hagen, Espen Skjelnes Johnsen, Daniel Stødle, John
Markus Bjørndalen, and Otto Anshus. Liberating The Desktop. In Proceedings of
the First International Conference on Advances in Computer Human Interaction,
ACHI, pages 89-94, February 2008.

Abstract

We report on a system supporting cross-platform mirroring of user-selectable
regions from one or multiple computer desktops onto nearby network accessible
projectors and displays (NADs). The purpose is a simple and flexible use of
nearby display resources requiring no permanent installation of new software on
the desktop computer.

The NAD system architecture consists of a NAD side and a desktop side. The
desktop software is downloaded to the desktop computer on demand, from a web
server running on the NAD. The desktop and NAD software handle the
integration of user-selectable desktop regions and remote control between the
desktop computer and the NAD. The system is implemented in Java 1.6.

At a resolution of 800 by 600 pixels the system supports mirroring of dynamic
content at 38.6 FPS. At 1600 by 1200 pixels the refresh rate is 12.85 FPS. For
static content such as images and slideshow presentations the system’s bandwidth
usage is within the capacity of a 11 Mbit/s wireless network. For dynamic content
such as videos and games the system requires at least a 100 Mbit/s connection.

223

A.5 On-Demand High-Performance

Visualization of Spatial Data on High-

Resolution Tiled Display Walls

Citation: Tor-Magne Stien Hagen, Daniel Stødle, and Otto Anshus. On-Demand
High-Performance Visualization of Spatial Data on High-Resolution Tiled
Display Walls. In Proceedings of the International Conference on Information
Visualization Theory and Applications, pp. 112–119, May 2010.

Abstract

Visualization of large data sets on high-resolution display walls is useful and can
lead to new discoveries that would not have been noticeable on regular displays.
However, exploring such data sets with interactive performance is challenging.
This paper presents live data sets, a scalable architecture for visualization of large
data sets on display walls. The architecture separates visualization systems from
compute systems using a live data set containing data customized for the
particular visualization domain. Experiments conducted show that the main
bottleneck is the compute resources producing data for the visualization side.
When all data is cached in the live data set, the main bottleneck (decoding images
to create OpenGL textures and constructing geometry from raster data) is on the
visualization side. On a 22 megapixel, 28 node display wall, the visualization
system can decode 414.2 megapixels of images (19 frames) per second. However,
the decoding is multi-threaded, and increased performance is expected using
multi-core computers.

233

A.6 Interactive Weather Simulation and

Visualization on a Display Wall with Many-

Core Compute Nodes

Citation: Bård Fjukstad, Tor-Magne Stien Hagen, Daniel Stødle, Phuong Hoai
Ha, John Markus Bjørndalen and Otto Anshus. Interactive Weather Simulation
and Visualization on a Display Wall with Many-Core Compute Nodes. To appear
in the Proceedings of the 10th International Workshop on State-of-the-Art in
Scientific and Parallel Computing, PARA, 2011.

Abstract

Numerical Weather Prediction models (NWP) used for operational weather
forecasting are typically run at predetermined times at a predetermined resolution
and a fixed geographical region. The period between each run is a function of
waiting for observational data and the availability of compute resources. The
resolution is a function of the geographical region, the available processing power
and operational forecasting time constraints. The geographical region is defined
by being a region with known need or interest for forecasts. These characteristics
make it hard to interactively produce and visualize on-demand high-resolution
forecasts for a small and arbitrarily located region. This paper documents a
system achieving this, using a high-resolution tiled 22 mega pixel display wall, a
16 node PC cluster and a HP BL 460c blade server with two quad core
processors. We document the performance characteristics experimentally. The
results show that using 10 km resolution background data, the system produces a
6 hour forecast for a 117 x 123 km small region with 3 km resolution, in 3
minutes. Visualizing the forecast takes between 3 - 75 seconds. An informal
survey among operational forecasters indicate that the majority is willing to wait
up to minutes for higher resolution forecasts. This paper identifies and documents
some of the bottlenecks and computational challenges created by combining
interactivity and traditional batch oriented computing. The main bottlenecks in
the system are identified as the execution time of the NWP and the preparation of
data for visualization.

247

A.7 A Step towards Making Local and

Remote Desktop Applications Interoperable

with High-Resolution Tiled Display Walls

Citation: Tor-Magne Stien Hagen, Daniel Stødle, John Markus Bjørndalen and
Otto Anshus. A Step towards Making Local and Remote Desktop Applications
Interoperable with High-Resolution Tiled Display Walls. To appear in the
proceedings of the 11th IFIP International Conference on Distributed Applications
and Interoperable Systems, DAIS, 2011.

Abstract.

The visual output from a personal desktop application is limited to the resolution
of the local desktop and display. This prevents the desktop application from
utilizing the resolution provided by high-resolution tiled display walls.
Additionally, most desktop applications are not designed for the distributed and
parallel architecture of display walls, limiting the availability of such applications
in these kinds of environments. This paper proposes the Network Accessible
Compute (NAC) model, transforming personal computers into compute services
for a set of display-side visualization clients. The clients request output from the
compute services, which in turn start the relevant personal desktop applications
and use them to produce output that can be transferred into display-side
compatible formats by the NAC service. NAC services are available to the
visualization clients through a live data set, which receives requests from
visualization nodes, translates these to compute messages and forwards them to
available compute services. Compute services return output to visualization nodes
for rendering. Experiments conducted on a 28 nodes, 22 megapixel, display wall
show that the time used to rasterize a 350 page PDF document into 550
megapixels of image-tiles and display these image-tiles on the display wall is
74.7 seconds (PNG) and 20.7 seconds (JPG) using a single computer with a quad
core CPU as a NAC service. When increasing this into 28 quad core CPU
computers, this time is reduces to 4.2 seconds (PNG) and 2.4 seconds (JPG). This
shows that the application output from personal desktop computers can be made
interoperable with high-resolution tiled display walls, with good performance and
independent of the resolution of the local desktop and display.

263

Appendix B

WallScope – Additional

Resources

This appendix includes a special curriculum based on and extending upon the
WallScope system. It shows how the system can be extended to visualize data
feeds describing objects in the real world. None of the work presented in this
section has been presented or used in this dissertation.

B.1 Interactive Visualization of Data Feeds

on High-Resolution Tiled Display Walls

Abstract

High-resolution tiled display walls provide orders of magnitude more resolution
than regular desktop displays. The combination of size and resolution enables a
person to get overviews by looking at the display wall from a distance, while at
the same time being able to walk up close to look at details. This makes a display
wall a promising device for usage in control room / surveillance contexts.

The work presented in this document extends WallScope, a system for interactive
computation and visualization of data, and WallGlobe, a visualization system in
the WallScope system, to support interactive visualization of local and remote
data feeds describing objects in the real world. The system supports among others
AISSAT, a system for surveillance of maritime activities in the High North. The
high resolution of a display wall enables visualizations of data collected from
data feeds with much higher fidelity than what is possible with a normal
resolution display; instead of simply marking a boat’s location on the map, it can
be visualized using a high resolution graphical model.

The architecture of the system comprises a display-side and a compute-side. The
display-side comprises a set of visualization clients, a set of state servers and a
live data set. The state servers provide the visualization clients with view, time
and object state. Based on the visualization clients’ view, and the state provided
by the state servers, visualization clients request data from the live data set, which
is then used as part of the final rendering. The data set is live in that it accepts

264 B WallScope – Additional Resources

client requests, which it translates into compute related messages and forwards to
local and remote compute resources.

By separating state handling from the actual visualization, and using client-side
interpolation of object transformations, the system is able to include new data
feeds without any modifications to the visualization systems, while at the same
time keeping network usage lower than a corresponding server-side state
interpolation approach.

With an acceptable lower limit frame rate of five frames per second, the system is
able to manage and display between 21 600 and 350 000 static objects, depending
on the number of visible objects. When animating 22 500 objects the frame rate
drops about one frame per second compared to displaying the same number of
static objects. The system supports updating 14 516 objects per second from a
single state server. The bottleneck in propagating object updates is the underlying
centralized event system.

ISBN xxx-xx-xxxx-xxx-x

