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Abstract 

Regulation of gene expression is essential for all bacteria to function and survive. The 

expression of genes into proteins is dependent on a number of steps, each of which can be 

subjected to regulation. In the literature, much emphasis has typically been placed on 

transcriptional regulation, but gene regulation at the post-transcriptional level has also 

gained much attention during recent years. One contributing factor to this shift in 

knowledge is the accumulating amount of genomic data that has become available, and 

computational methods now play important roles in mapping genomic features, such as 

promoters and transcription factor binding sites.  

In the present work, the Gram-negative fish pathogen Aliivibrio salmonicida has 

been used as a model for computational genome-wide predictions of transcription factor 

binding sites and small regulatory RNAs. In Paper 1, a bioinformatical search for Ferric 

uptake regulator transcription factor binding sites resulted in the identification of several 

genes previously not known to be regulated by the Ferric uptake regulator. The prediction 

and validation of genes that encode small regulatory RNAs in Paper 2 increased the 

knowledge on the non-coding RNA pool of our model system. Paper 3 and Paper 4 

provide in-depth studies on two of the identified small regulatory RNAs from Paper 2, 

the Spot 42 homolog and the novel VSsrna24.  

Overall, the results from these studies have increased our general understanding 

on gene regulation in A. salmonicida. In addition, the work has generated a number of 

good starting points for future experiments. 
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I. Introduction 

 

1. Regulation of bacterial gene expression 

In order to function and survive, all bacteria need to sense and respond to changes in their 

environment (Boor, 2006). Through regulation of gene expression, the cells are able to 

adapt to changing growth conditions and new surroundings. Complex regulatory 

networks make the cells capable of converting environmental stimuli into fine-tuned 

global changes in gene expression (Beisel and Storz, 2010). These important changes 

allow bacteria to efficiently utilize available nutrients and to resist chemical and 

biological harmful substances that are present in their surroundings.  

The expression of genes into products requires several steps, all of which in 

bacteria are exploited to exercise control of gene expression. Regulation of transcriptional 

initiation is the “classical” example of how genes are turned on and off and serves as an 

important and efficient regulatory step that controls the transcription of genes into RNA 

(reviewed by Browning and Busby, 2004). However, during recent years, post-

transcriptional gene regulation has attracted more attention as it has become evident that 

a significant part of the total expression regulation takes place at the RNA level (i.e., 

post- transcriptionally). 

 

1.1. Transcriptional regulation 

Transcriptional regulation affects the production of RNA transcripts from specific DNA 

transcriptional units (TUs). In a bacterial genome, a TU constitutes a regulatory region, a 

transcription start site, one or more open reading frames (ORFs), and a transcription 

termination site (Balleza et al., 2009). The TU might be monocistronic or polycistronic, 

i.e., depending on if they contain one or more ORFs, respectively. In prokaryotes, the 

regulatory region of the TU can be up to 400 base pairs in length and contain cis elements 

such as promoters and transcription factor binding sites (TFBSs) (Collado-Vides et al., 

1991).  During transcription initiation in bacteria, an RNA polymerase, in association 

with a sigma factor, is required for proper promoter recognition (Maeda et al., 2000). 

Binding of this complex to the promoter region might be modulated by transcription 
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factors (TFs) bound to TFBSs (Browning and Busby, 2004). To function as regulatory 

switches, the TFs require the ability to both interact with TFBSs and to function as a 

signal sensor by ligand-binding or protein-protein interactions (Goulian, 2004). Negative 

regulators typically bind inside the promoter regions, thereby interfering with RNA 

polymerase, whereas the positive regulators bind upstream of the promoter regions to 

promote RNA polymerase binding (Collado-Vides et al., 1991; Madan Babu and 

Teichmann, 2003). Regulations by TFs are complex and dependent on many factors. For 

example, the regulatory region of a TU can be occupied by several TFBSs, different 

TFBSs are able to recruit the same TF, different TFs can recognize similar sites, and 

regulation is dependent on TF concentration and TF-TFBS affinity (Balleza et al., 2009). 

Generally, global TFs are less specific and must be expressed at higher levels compared 

to local TFs (Lozada-Chavez et al., 2008; Martínez-Antonio et al., 2008). 

 

1.2. Classes of RNA and post-transcriptional regulation 

Since the beginning of this millennium, it has become evident that important gene 

regulatory steps take place post-transcriptionally (Nogueira and Springer, 2000), i.e., at 

the RNA level. The world of RNAs can be separated into two main classes: messenger 

RNAs (mRNAs) serving as the protein coding template responsible for carrying 

information from the genes to the ribosomes and the non-protein coding RNAs (ncRNA) 

involved in different cellular processes. Bacteria contain a diverse set of ncRNAs 

transcribed from 10-15 percent of their compact genomes (Westhof, 2010). rRNAs, 

tRNAs, RNaseP, and tmRNA serve “housekeeping” functions in the cell, CRISPR RNAs 

acts as a prokaryotic immune system protecting the cell from viruses and plasmids 

(Horvath and Barrangou, 2010), whereas other classes of ncRNAs act as regulators of 

gene expression. 

Riboswitches are cis-encoded RNA regulators located in the 5´ untranslated 

region (UTR) of mRNAs that change the expression of the corresponding mRNA by 

binding to small metabolites (Roth and Breaker, 2009). Some regulatory RNAs are 

located on the opposite strand of protein coding regions (i.e., anti-sense RNAs), whereas 

other regulatory RNAs are transcribed in trans from separate transcription units located 

in the intergenic regions (IGRs) (the region in between genes) of the genome. 
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1.2.1. Bacterial small regulatory RNAs (sRNAs) 

The trans-encoded regulatory RNAs in bacteria are small in size (generally 50-200 nt 

(Huang et al., 2009) – hence the name small RNAs, or sRNAs) and modulate the 

expression of their targets (Gottesman, 2005; Waters and Storz, 2009). They have been 

reported to affect cellular processes like iron homeostasis (Massé and Gottesman, 2002), 

quorum sensing (Hammer and Bassler, 2007), sugar metabolism (Vanderpool, 2007), 

oxidative stress (Altuvia et al., 1997), and virulence (Romby et al., 2006). The first 

sRNAs were discovered in Escherichia coli three decades ago (Griffin, 1971; Ikemura 

and Dahlberg, 1973), but their abundance and important functional roles have been 

accepted only recently. By the end of the last century, only 10 sRNAs were known in E. 

coli, but this number quickly increased when a number of systematic genome-wide 

searches were started (Argaman et al., 2001; Rivas et al., 2001; Wassarman et al., 2001; 

Chen et al., 2002). These initial pioneering studies led to a series of similar works in 

other, mostly pathogenic, species, resulting in a growing list of sRNAs or potential 

sRNAs. The studied species include, e.g., Bacillus subtilis (Irnov et al., 2010), Vibrio 

cholerae (Livny et al., 2005; Liu et al, 2009), Pseudomonas aeruginosa (Livny et al., 

2006), Staphylococcus aureus (Pichon and Felden, 2005), and Listeria monocytogenes 

(Mandin et al., 2007). According to the sRNAMap database (Huang et al., 2009), 79 

sRNAs have been identified in E. coli strain K12 MG1655 (87 in all E. coli), and a total 

of 397 sRNAs have been identified in 28 bacterial species as of May 2011. Several new 

approaches, such as bioinformatic predictions, microarray, RNA-seq, Hfq co-

immunoprecipitation, and RNomics, have shown to be valuable tools in genome-wide 

sRNA searches (Sharma and Vogel, 2009), giving future studies the possibility to 

discover even more sRNAs. 

 

1.2.2. sRNA regulations 

Most characterized sRNAs act as regulators by targeting mRNAs by imperfect sequence 

complementarities, generally at the 5’ UTR, causing either a repression or activation of 

translation (Storz et al., 2004; Gottesman, 2005; Waters and Storz, 2009). Repression can 

either be caused by a nuclease-mediated cleavage of the mRNA, e.g., RNase E cleavage 
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of RyhB-sodB complex during regulation of iron homeostasis (Massé et al., 2003), or by 

blockage of ribosome entry, e.g., Spot 42 binding to galETKM causing discoordinate 

expression of the genes in the operon (Møller et al., 2002a). Activation can be caused by 

a change in the secondary structure, e.g., DsrA binding rpoS mRNA changes the mRNA 

structure leading to exposure of the ribosome binding site (Majdalani et al., 1998). 

sRNAs can also bind directly to proteins, thereby modulating the activities of the proteins 

directly, e.g., CsrB and CsrC binding to CsrA, antagonizing its activity (Liu et al., 1997, 

Weilbacher et al., 2003). In addition, many sRNAs require the bacterial conserved RNA 

chaperone Hfq to function (Valentin-Hansen et al., 2004). Hfq resembles eukaryotic Sm 

proteins in structure and function by stabilizing RNA-RNA interactions (Zhang et al., 

2003). It has been proposed that Hfq binds an A/U rich stretch within the sRNA and 

target mRNA (Møller et al., 2002b; Zhang et al., 2002). Interestingly, Wadler and 

Vanderpool (2007) have reported a dual function ncRNA encoding both an sRNA and a 

protein. The sRNA SgrS, involved in the repression of glucose transporters of the 

phosphoenolpyruvate phosphotransferase system (PTS), also encodes a small protein, 

SgrT, which inhibits glucose transport by another mechanism than its sRNA precursor. 

 Hfq-sRNA complexes are involved in many regulatory networks in E. coli (Beisel 

and Storz, 2010). Typically, the networks include a protein TF directly sensing a 

biological signal or a two-component system responding to environmental stimuli. The 

sRNA component(s) of the regulon might be expressed during conditions such as 

anaerobic growth [Fnr activates FnrS (Boysen et al., 2010; Durand and Storz, 2010)], 

oxidative stress [OxyR activates OxyS (Altuvia et al., 1997)], glucose availability [CRP 

represses Spot 42 (Polayes et al., 1988)], iron availability [Fur represses RyhB (Massé 

and Gottesman, 2002)], and osmotic imbalance [EnvZ-OmpR activates MicF 

(Takayanagi et al., 1991)]. Most of the Hfq-binding sRNAs act through a single input 

module to repress genes in response to a particular environmental stimulus (Beisel and 

Storz, 2010). Such regulations involve a single regulator which co-ordinately modulates 

the expression of multiple genes, with none of the target genes regulating each other. The 

effect of the sRNA can often reverse the relationship between the protein TF sensing a 

biological signal and its target mRNA(s). This can be seen in the regulation of iron 

homeostasis where the sRNA RyhB turns the TF Ferric uptake regulator (Fur) into an 
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indirect activator (Beisel and Storz, 2010). RyhB negatively regulates the expression of 

many iron-containing proteins and is itself repressed by Fur. The net outcome is positive 

regulation when iron is abundant. 

 

1.2.3. Computational sRNA predictions 

During the last decade, a number of larger screens for sRNAs have been carried out in 

bacteria. These studies have resulted in a still growing list of sRNA candidates with a 

variety of different functions and mechanisms of work (reviewed by Backofen and Hess, 

2010). Up to 2001, only 10 sRNAs were known in E. coli (Wassarmann et al., 1999), but 

from then, a number of genome-wide searches, both in E. coli and other bacteria, have 

led to a large increase in potential transcripts. It has been proposed that enterobacteria 

with 4-5 Mb genomes contain around five percent sRNAs compared to protein-coding 

genes, corresponding to 200-300 sRNA genes (Vogel and Wagner, 2007). In E. coli, the 

80 identified sRNAs make up ~2 percent of the number of protein-coding genes, but this 

number has been suggested to represent only half of the actual sRNAs present in the 

genome (Zhang et al., 2004; Tjaden et al., 2006; Vogel and Wagner, 2007). 

 The first genome-wide sRNA searches were carried out at the start of the 

millennium using systematic bioinformatic approaches (Argaman et al., 2001; Rivas et 

al., 2001; Wassarman et al., 2001; Chen et al., 2002). Current approaches usually utilize a 

combination of conserved features from known sRNAs, including location (most sRNAs 

identified so far are located in the IGRs of the genome), putative promoters (e.g., sigma 

factors), TFBSs, transcription terminators, conservation of sequence, conservation of 

synteny of flanking genes in closely related species, and conservation of secondary 

structure motifs. 

Compared to computer-based identification of protein-coding genes, 

computational prediction of sRNA genes involves a number of challenges. The sRNAs 

are shorter and their primary structure is usually not as important for the function as their 

secondary structure (Huttenofer et al., 2005), leaving the sRNA genes difficult to predict 

solely based on sequence similarities (Livny and Waldor, 2007). In general, the sRNA 

genes are reasonably conserved between closely related species, but they might be absent 

or more divergent in sequence between distantly related species. Another issue is that the 
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sRNAs are not translated into peptides and are therefore lacking features usually utilized 

in prediction of protein-coding genes (i.e., start and stop codons, open reading frames, 

etc.). Studies of promoters and TFBSs are usually restricted to E. coli, making the results 

difficult to apply to distantly related bacteria which usually require species-specific 

consensus sequences. 

 

1.3. Regulation of major cellular processes occur both at the transcriptional and 

post-transcriptional levels: Two examples from the literature 

The existence of all living organisms is dependent on availability of iron and 

carbohydrates. Bacteria have developed tightly regulated systems for the uptake and 

utilization of these substances, and regulation of iron homeostasis and uptake and 

metabolism of carbohydrates serve as excellent examples of regulons that use both 

transcriptional regulation and post-transcriptional regulation of gene expression as part of 

their regulation circuits. Both examples have been investigates in detail during this study, 

and central gene regulation steps will therefore be described in further detail in the 

following sections. 

 

1.3.1. Regulation of carbohydrate metabolism 

Bacteria that utilize organic compounds both as a source for carbon and energy are 

categorized as chemoheterotrophs. Faced with an environment where multiple carbon 

sources are available, bacteria will effectively select preferred sugars over non-preferred. 

This regulation is termed carbon catabolite repression (CCR) and affects as many as 5-10 

percent of all bacterial genes (reviewed by Görke and Stülke, 2008). Glucose is the 

preferred carbon source in the majority of model bacteria. When present in the immediate 

surroundings, the bacterium will metabolize glucose, while genes that enable utilization 

of secondary substrates are not expressed and therefore inactive (Contesse et al., 1969). 

The ability to select the carbon source which will allow fast growth is important for 

bacteria in order to compete for limited resources in natural environments (Görke and 

Stülke, 2008). 

An important part of CCR relies on the phosphoenolpyruvate (PEP)-dependent 

PTS system, a major mechanism for uptake of carbohydrates in bacteria. First described 
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in E. coli by Kundig et al. (1964), the PTS system consists of a membrane-bound sugar 

specific permease, enzyme II (EII), which together with two cytoplasmic general 

components, enzyme I (EI) and histidine phosphocarrier protein (HPr), make up the PEP-

driven uptake and concomitant phosphorylation of numerous carbohydrates. The sugar 

specificity of the PTS system resides in EII, and bacteria usually contain a whole set of 

EIIs. At least 15 EIIs have been found in E. coli, and a similar number is present in B. 

subtilis (Deutscher et al., 2006; Deutscher et al., 2002; Reizer et al., 1999). The EII 

complexes are either a single multidomain protein or are formed by distinct proteins. The 

main role of the three PTS components is to transfer a phosphoryl group from PEP to the 

carbohydrates taken up by the cell. 

In E. coli, the PTS general components, EI and HPr, are encoded by ptsI and 

ptsH, respectively (reviewed by Deutscher et al., 2006). The glucose specific EII complex 

is made up by two distinct proteins, the crr-encoded cytoplasmic EIIAGlc and the ptsG-

encoded membrane-bound EIIBCGlc. ptsI, ptsH, and crr together make up an operon (de 

Reuse et al., 1985). EIIAGlc functions as the master regulator of CCR in 

Enterobacteriaceae through interplay between CRP (cAMP regulatory protein), 

adenylate cyclase, and cAMP (Deutscher et al., 2006). When glucose is available as a 

carbon source, EIIAGlc is predominantly dephosphorylated (Hogema et al., 1998). 

Dephosphorylated EIIAGlc interacts with several non-PTS permeases to inhibit their 

activity in a process called inducer exclusion (Nelson et al., 1983; Osumi and Saier, 

1982; Dills et al., 1982; Sondej et al., 2002). In addition, adenylate cyclase catalyses the 

conversion of ATP into cAMP and is activated by phosphorylated EIIAGlc (Feucht and 

Saier, 1980; Reddy and Kamireddi, 1998). Thus, glucose growth leads to low 

intracellular concentration of cAMP.  
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ribozyme play part in post-transcriptional regulation of sugar uptake and metabolism 

(reviewed by Görke and Vogel, 2008). 

Bacteria use several systems for sugar transport into the cell. In addition to the 

major PTS system, ATP-driven systems involving periplasmic binding proteins (Ames, 

1986; Davidson and Nikaido; 1991; Richarme et al., 1993) and ion-coupled symport 

systems using coupling ions as H+ and Na+ are in use (Wright et al., 1986; Kaback, 1986; 

Tsuchiya et al., 1977; Tsuchiya and Wilson, 1978; West, 1970). Facilitated diffusion of 

glucose in Zymomonas mobiis (Dimarco and Romano, 1985) and Streptococcus bovis 

(Russell, 1990) has also been reported. Halophilic (“salt loving”) bacteria live in a Na+ 

rich environment and utilize the high Na+ concentration for transport of various nutrients. 

In Vibrio alginolyticus, most amino acid transport systems (Tokuda et al., 1982; Tokuda 

and Unemoto, 1982) and the sucrose transport system (Kakinuma and Unemoto, 1985) 

are dependent on Na+. Vibrio parahaemolyticus has been shown to possess a PTS system 

for the transport of glucose into the cell (Kubota et al., 1979), but a Na+/glucose symport 

system is present as well (Sarker et al., 1994). 

Inside the cell, the carbohydrates undergo catabolism releasing its energy as high-

energy compounds like ATP (adenosine triphosphate) and NADH (reduced nicotinamide 

adenine dinucleotide). Carbohydrate breakdown is initiated by glycolysis, a central 

metabolic pathway that appeared early in the evolution of life, which splits glucose into 

pyruvate with subsequent release of energy (Mathews et al., 1999; Canback et al., 2002). 

The 10 reactions are highly conserved across almost all living organisms and can proceed 

during both anaerobic and aerobic conditions (Mathews et al., 1999; Commichau et al., 

2009). During aerobic conditions, pyruvate is usually prone to cellular respiration and is 

oxidized to acetyl-CoA and carbondioxide by the pyruvate dehydrogenase complex 

(PDH) (Patel and Roche, 1990). This reaction is also known as the link reaction as it 

links glycolysis to the tricarboxylic acid cycle (TCA). Acetyl-CoA enters TCA in 

reaction with oxaloacetic acid forming citric acid. Through an eight-step process 

involving 18 enzymes, the cycle ends up with four-carbon oxaloacetic acid, ready to react 

with acetyl-CoA to start a new cycle (Mathews et al., 1999). Following TCA, the electron 

transport chain (ETC) and oxidative phosphorylation take place at the bacterial cell 

membrane. ETC establishes a proton gradient across the inner membrane through 
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oxidizations of NADH (Mitchell and Moyle, 1967). ATP synthase utilizes the proton 

gradient to drive the phosphorylation of ADP to ATP, using exogenous oxygen as the 

final electron acceptor. 

Glycolysis-formed pyruvate can also be oxidized using an endogenous electron 

acceptor in a process known as fermentation. This usually occurs during anaerobic 

conditions, but some microorganisms prefer fermentation to oxidative phosphorylation in 

aerobic conditions with readily available sugars (Kruckeberg and Dickinson, 1999). 

Under anaerobic conditions, fermentation is important to maintain the production of ATP 

through glycolysis. Pyruvate is oxidized to waste products like lactic acid or ethanol, 

leaving the electron carriers available for another round to glycolysis. This partly 

oxidation of pyruvate is less efficient than oxidative phosphorylation (Mathews et al., 

1999). Microorganisms, primarily prokaryots living in an environment without oxygen, 

can also go through respiration using an inorganic electron acceptor in a process known 

as anaerobic respiration (Lovley and Coates, 2000). This process still uses ETC, but 

instead of oxygen, it utilizes exogenous inorganic compounds like sulphate, nitrate, or 

sulphur as the final electron acceptor. 

 

1.3.2. The Fur regulon and iron homeostasis 

Iron is required by almost all life forms and plays an important role in diverse biological 

processes, such as oxygen transport, electron transfer, and DNA synthesis. The iron is 

often found as incorporated into proteins or as iron-sulphur clusters or heme groups. Iron 

has a wide range of oxidation-reduction potentials and exists under physiological 

conditions at two stable valences, +2 and +3. In neutral or alkaline environments, iron is 

poorly soluble, which makes the concentration of iron in vertebrate hosts too low for 

normal bacterial growth to occur (Schaible and Kaufmann, 2004). The eukaryotic hosts 

keep iron solubilised in proteins with high affinity for iron in the serum, lactoferrin stored 

in the macrophages, or deposited at sites of infection. Inside a eukaryotic host, pathogenic 

bacteria can use highly developed iron sequestering systems to excrete siderophores with 

high affinity and specificity for Fe3+ to “steal” iron from the host (Griffiths, 1991; 

Collins, 2003). Such systems are important for virulence in several fish pathogenic 

bacteria, including Vibrio anguillarum (Crosa, 1980), Vibrio vulnificus (Amaro et al., 
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1994), Aliivibrio salmonicida (Colquhoun and Sørum, 2001), and Photobacterium 

damselae ssp. Piscicida (Magarinos et al., 1994). As reported by McHugh et al. (2003), 

E. coli, in which iron metabolism is well understood, contains at least 35 genes encoding 

seven iron-acquisition systems, including four systems of which are siderophore based. 

 During aerobic conditions, excessive iron can convert hydrogen peroxide into 

hydroxyl radicals through the Fenton reaction, which makes free iron ions toxic to the 

bacteria. (Touati, 2000). To balance the uptake of iron (whenever it is available) to its 

cytotoxic properties, the cells contain highly developed iron-responsive regulatory 

systems. Regulation of iron homeostasis is in most studied bacterial species taken care of 

by the TF Fur (Hantke, 2001). At high intracellular levels of soluble iron, Fur normally 

binds Fe2+ and acts as a homodimer to negatively regulate genes involved in iron 

acquisition and iron storage by binding to a conserved TFBS, termed the Fur box. The 

Fur binding site is located inside the promoter region of genes part of the Fur regulon. 

The sequence 5´-GATAATGATAATCATTATC-3´ has been suggested as a consensus 

sequence for the E. coli Fur box (de Lorenzo et al., 1987; Griggs and Konisky, 1989). 

However, DNase I footprint studies show that the region protected by Fur is larger than 

the Fur box itself (Butterton et al., 2000; Watnick et al., 1998). The Fur binding region 

often consists of two or more overlapping or adjacent Fur boxes, which makes the Fur 

binding site extend up to 100 bp (Escolar et al., 2000), possibly by binding multiple Fur 

dimers wrapped around the double helix in a screw-like manner (de Lorenzo et al., 1988; 

Frechon and Le Cam, 1994). In addition to fur acting as the “classic” Fe+-bound 

repressor, it has been shown to be involved in both positive and negative regulation in 

absence and presence of iron (for a review on Fur, see Carpenter et al., 2009). 

During the last century, a number of studies have used microarray analyses of 

wild-type and fur deletion mutants in response to iron availability to identify genes that 

are part of the Fur regulon. These studies have been performed in various bacteria, such 

as E. coli (McHugh et al., 2003), V. cholerae (Mey et al., 2005a), P. aeruginosa (Ochsner 

et al., 2002), Yersinia pestis (Zhou et al., 2006), Helicobacter pylori (Ernst et al., 2005), 

B. subtilis (Baichoo et al., 2002), Neisseria meningitides (Grifantini et al., 2003), and 

Campylobacter jejuni (Holmes et al., 2005). In addition to genes directly involved in iron 

metabolism, these studies revealed Fur involvement in cellular processes as varied as 



Introduction 

13 
 

DNA metabolism, energy metabolism, redox-stress resistance, chemotaxis, metabolic 

pathways, bioluminescence, swarming, and production of toxins and other virulence 

factors, making Fur a true global regulator (Escolar et al., 1999; Hantke, 2001; McHugh 

et al., 2003; Wyckoff et al., 2007). 

In addition to the important role of Fur as a repressor of iron acquisition genes at 

high intracellular levels of iron, a number of genes involved in iron storage, iron 

metabolism, and antioxidant defence seem to be positively regulated by Fur and iron 

(Niederhoffer et al., 1990; Park and Gunsalus, 1995; Quail et al., 1996; Tseng, 1997; 

Dubrac and Touati, 2000; Massé and Gottesman, 2002). Direct activation of gene 

expression by Fur has been reported (Delany et al., 2001; Delany et al., 2004), but most 

cases of positive regulation includes the involvement of the sRNA RyhB. RyhB has been 

reported to down-regulate at least 18 operons in E. coli. (Massé and Gottesman, 2002). 

The sRNA normally acts as a negative post-transcriptional regulator on a number of 

genes, and because ryhB itself is under control of a Fur box and is negatively regulated 

by Fur, the net outcome is positive regulation when iron is replete. However, RyhB itself 

has also been found to act as a positive regulator (Prévost et al., 2007). 
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gastroenteritis (V. paraheamolyticus), and septicemia (V. vulnificus) (Chakraborty et al., 

1997). Vibrios are highly abundant in aquatic environments, including marine habitats, 

and are associated with a wide range of organisms. The non-pathogenic Aliivibrio fischeri 

and Aliivibrio logei may be found in symbiotic relationships with fish and squid 

(Haygood, 1993; Ruby and McFall-Ngai, 1999), whereas V. anguillarum, A. salmonicida, 

and V. vulnificus are significant fish pathogens, and Vibrio harveyi causes disease in 

shrimps (Thompson et al., 2004). 

The vibrios have a curved rod appearance and are polarily flagellated and highly 

motile. They require NaCl for growth and have a facultative fermentative metabolism 

(Thompson et al., 2004). Their optimum growth temperature range from 7 to 40 ºC 

(Raguénès et al., 1997), thereby exposing them to psycrophilic and mesophilic growth 

conditions. Currently, there are 22 complete vibrio genomes in the NCBI Genomes 

database, including the model organism of our research group, A. salmonicida, whereas 

65 and 24 have status as “Assembly” and “In progress”, respectively. 

(http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi). All the complete genomes possess 

two circular chromosomes, one being larger than the other, with a total size ranging from 

4-6 Mb. Some of the environmental strains, like A. salmonicida, A. fischeri, V. harveyi, 

and V. vulnificus, also contain one or more plasmids. 

 

2.1. sRNA studies in Vibrionaceae 

The majority of knowledge on sRNAs from Vibrionaceae originates from V. cholera. 

sRNAs have mainly been identified using computational predictions (mainly in IGRs), 

microarray experiments, shotgun cloning of cDNA libraries, cloning of abundant small 

RNAs, and co-purifications with proteins like Hfq, CsrA, and RNA polymerase 

(Huttenhofer and Vogel, 2006; Vogel and Sharma, 2005; Silveira et al., 2010). 

Experimentally verified vibrio sRNAs include the iron-regulated RyhB, shown in V. 

cholerae to be involved in regulation of multiple cellular processes like iron homeostasis, 

motility, chemotaxis, and biofilm formation (Davis et al., 2005; Mey et al., 2005a, 

2005b), CsrB/CsrC/CsrD and CsrB1/CsrB2 in V. cholerae and A. fischeri, respectively, 

targeting the CsrA protein (Lenz et al., 2005; Kulkarni et al., 2006), Qrr regulating 

mRNAs involved in quorum sensing in V. cholera, V. parahaemolyticus, V. vulnificus, V. 
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harveyi, A. fischeri, and V. anguillarum (Lenz et al., 2004; Tu & Bassler, 2007; 

Miyashiro et al., 2010; Weber et al., 2008), MicX negatively regulating an outer 

membrane protein and the periplasmic component of a peptide ABC transporter in V. 

cholera (Davis and Waldor, 2007), VrrA modulating colonization and affecting release of 

outer membrane vesicles in V. cholerae (Song et al., 2008), TarA regulating the 

expression of ptsG, encoding a major glucose transporter, in V. cholerae (Richard et al., 

2010), and MRB RNA I regulating plasmid replication in marine bacteria (Le Roux et al., 

2010). In addition, characterization of a V. cholera hfq deletion mutant suggests that 

growth inside the intestine requires additional sRNAs (Ding et al., 2004). In 2005, a 

global computational sRNA search independent of TFBSs in V. cholerae identified nine 

out of 10 putative or known at that time V. cholerae sRNAs and 32 novel candidates, six 

of which were verified experimentally (Livny et al., 2005). Another study in V. cholera 

using direct cloning, depletion of 5S/tRNA, and parallel sequencing, identified all 20 

known V. cholerae sRNAs, all of which were verified experimentally (Liu et al., 2009). 

In addition, 500 new putative sRNAs located in IGRs and 127 putative antisense sRNAs 

were predicted, of which seven and nine, respectively, were verified by Northern blot 

experiments. Preliminary functional characterization suggested one of the IGR-located 

sRNAs, IGR7, to be involved in carbon metabolism. Recently, a computational study 

exploring the ncRNA diversity in four sequenced environmental vibrio species, V. 

alginolyticus 40B, Vibrio communis 1DA3, Vibrio mimicus VM573, and Vibrio 

campbellii BAA-1116, resulted in 31-38 putative ncRNAs per specie (Silveira et al., 

2010). Of the 38 predicted ncRNAs in V. campbellii, 21 were experimentally validated by 

microarray analyses. 

 

2.2. Studies on Fur regulons in Vibrionaceae 

While specific genes and parts of the Fur regulon have been the focus of various studies 

in many members of the Vibrionaceae family, whole-genome studies of the iron and Fur 

regulon have mainly been performed in V. cholerae. In a microarray study by Mey et al. 

(2005a), gene expression in wild-type strain O395 grown in presence or absence of iron 

was compared with a fur deletion mutant. The study identified 65 genes that were 

repressed under low iron conditions and in the fur deletion mutant, 14 of which were 
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novel and negatively regulated by iron and Fur. The identified genes encode products 

with function in vibriobactin synthesis, siderophore transport, heme transport, TonB 

systems, iron storage, regulatory proteins, stress response, and several of unknown 

function. The study also identified genes involved in other regulatory patterns, including 

positive regulation of gene expression by iron and Fur, regulation by iron independent of 

Fur, and vice versa. Several of the identified genes were also predicted to have a potential 

Fur box located in their promoter region. 

 In contrast to E. coli where Fur is negatively auto-regulated under iron-replete 

conditions (deLorenzo et al., 1988), a Fur box has not been identified in the promoter 

region of several vibrios (Litwin et al., 1992; Yamamoto et al., 1997; Colquhoun and 

Sørum, 2001; Mey et al., 2005a). However, the level of Fur mRNA increases two folds in 

iron-replete conditions (Lee et al., 2003), possibly by positive regulation by Fur binding 

to an AT-rich sequence (Lee et al., 2007).   

  

2.3. A. salmonicida and cold water vibriosis 

The Gram-negative A. salmonicida is shaped as a curved rod and contains up to 10 polar 

flagella (Holm et al., 1985). These features make the bacteria highly motile. Moreover, A. 

salmonicida is psycrophilic with an optimum growth temperature ranging from 10-15 ºC 

(Colquhoun et al., 2002) and moderate halophilic requiring 0.5-4.0 percent NaCl for 

growth (Egedius et al., 1986). A. salmonicida is the disease causing agent of cold-water 

vibriosis (aka. Hitra disease or hemorraghic syndrome) in Atlantic salmon (Salmo salar 

L.), captive Atlantic cod (Gadus morhua L.), and farmed rainbow trout (Salmo Gairdneri 

R.) (Egedius et al., 1981; Egedius et al., 1986; Jørgensen et al., 1989). The disease is 

observed in most North Atlantic countries part of the fish farming industry, such as 

Scotland (Bruno et al., 1985), Iceland and the Faroe isles (Dahlsgaard et al., 1988), and 

Canada and USA (O’Halloran et al., 1993; Griffiths and Salonius, 1995).  

Cold-water vibriosis is, as its name implies, normally seen at low water 

temperatures (i.e., below 10 ºC; Enger et al., 1991), and upon infection, the fish 

experiences tissue degradation, hemolysis, and sepsis. The disease is currently under 

control by a vaccination program using formalin fixated whole bacterial cells (Holm and 

Jørgensen, 1987; Lillehaug, 1990), but information regarding the molecular mechanisms 
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of the different stages of the disease is still limited. However, observed pathology of 

infected fish suggests A. salmonicida to secrete exotoxins and cytolytic enzymes, as seen 

in other fish pathogens (Toranzo and Barja, 1993). Colquhoun and Sørum (2001) 

reported that siderophore production was only observed at temperatures below 10 ºC, 

suggesting the iron acquisition systems to play a role in A. salmonicida virulence. The 

same study also identified three high-molecular weight outer membrane proteins that 

were up-regulated under iron-restricted growth at low temperatures (6 and 10 ºC) but not 

at higher temperatures (15 ºC). Moreover, the production of hydrogen peroxide has been 

suggested as a possible virulence factor in A. salmonicida (Fidopiastis et al., 1999), and 

fish skin mucus supplemented growth showed an upregulation of flagellar proteins and 

proteins involved in oxidative stress responses (Raeder et al., 2007). As reported in 

Hjerde et al. (2008), several protein secretion systems and two haemolysins might play 

central roles in the virulence of A. salmonicida. The genomic analyses also revealed three 

tonB systems and one heme uptake system which are usually found to play part in iron 

acquisition. 

 

2.4. A. salmonicida as a model bacterium for gene regulation studies 

The lack of information on the mechanisms of cold-water vibriosis inspired us to use A. 

salmonicida as a model to study global gene regulation and perhaps use the results as 

basis to better understand the disease. The complete genome sequence of A. salmonicida 

strain LFI1238 was recently published (Hjerde et al., 2008). It revealed that the genome 

follows the consensus from the other Vibrionaceae members and harbours two 

chromosomes, one larger than the other (3.3 and 1.2 Mb), and four plasmids of 83.5, 

30.8, 5.4, and 4.3 kb. Phylogenetic studies of 16S rDNA have suggested A. salmonicida 

to be closest related to A. fischeri and A. logei (Wiik et al., 1995; Fidopiastis et al., 1998), 

which are both known for their luminous behaviour. When comparing all the protein 

coding sequences of A. salmonicida to those of the other published genomes of the 

Vibrionaceae familiy, the highest number of orthologous genes was shared with A. 

fischeri (70 percent), whereas the other Vibrionaceae members had on average 55-60 

percent shared orthologs (Hjerde et al., 2008). 
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II. Aims of the study 

 

Main objective 

The main objective of this study was to use genome-wide prediction and transcriptome 

approaches to achieve a better understanding of gene expression regulation in the Gram-

negative fish pathogen A. salmonicida. 

 

Secondary objectives 

(1) Identify all Fur-regulated genes and operons in vibrios and increase the 

knowledge about the Fur regulon by genome-wide predictions. 

 

(2) Gain further insights into of post-transcriptional regulation by sRNAs on a 

genome-wide scale, using both computer-based and experimental-based methods.  

 

(3) Generate detailed knowledge on selected sRNAs. 
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III. Summary of papers 

 

Paper 1 

Rafi Ahmad, Erik Hjerde, Geir Åsmund Hansen, Peik Haugen, Nils-Peder Willassen 

(2008). Prediction and Experimental Testing of Ferric Uptake Regulator Regulons 

in Vibrios. J Mol Microbiol Biotechnol. 16:159-68. 

 

The intracellular levels of iron are carefully regulated in bacteria and are mediated by the 

ferric uptake regulator (Fur) in many bacterial species. During conditions of high 

intracellular iron, Fur represses expression of genes involved in iron acquisition and iron 

storage through binding of a conserved sequence motif, termed the Fur box, located 

within the promoter region. Knowledge into unique members of the Fur regulon in 

vibrios can potentially provide insights into virulence and pathogenesis. In this study, we 

have constructed a vibrio-specific alignment matrix based on Fur binding sites from the 

literature, which resulted in a Fur box consensus sequence of 5´-

AATGANAATNATTNTCATT-3´. Five published vibrio genomes and the draft genome 

of Vibrio salmonicida were included in a Fur box prediction using Patser software. Fur 

binding motifs were identified in front of 50–61 single genes and 16–20 operons in each 

genome. In addition, eight single genes and four operons previously not described as 

regulated by Fur where predicted in all six vibrio genomes. Interestingly, a plasmid-

encoded iron ABC-transporter operon unique to Aliivibrio salmonicida was identified. A 

subset of the predicted Fur-regulated genes was experimentally tested using Northern blot 

analysis. Expression data from six previously not described Fur-regulated genes showed 

increased mRNA levels during iron-restrictive conditions. The results also suggested a 

correlation between the iron responsiveness of genes with the number of Fur boxes and 

their Patser score. 
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Paper 2 

Rafi Ahmad, Geir Åsmund Hansen, Hilde Hansen, Erik Hjerde, May Liss Julianne 

Nyrud, Nils-Peder Willassen, Peik Haugen (2010). Prediction, microarray, and 

Northern blot analyses identify new intergenic small RNAs in Aliivibrio salmonicida.  

PLoS ONE. Under revision. 

 

Bacterial small RNAs (sRNAs) are typically transcribed in trans from separate promoters 

in the intergenic regions and act by binding mRNA by short sequence complementarities, 

thereby changing the expression of the corresponding protein. Some well-characterized 

sRNAs serve critical steps in the regulation of important cellular processes, such as 

quorum sensing (Qrr), iron homeostasis (RyhB), oxidative stress (OxyS), and carbon 

metabolism (Spot 42). However, there are still many sRNAs to be found, and the work of 

identifying functional roles of most sRNAs has just started. For example, in 

Vibrionaceae, many hundreds candidate sRNAs have been predicted, but a functional 

role is only known for nine. In this work, we have used computational and experimental 

methods to identify intergenic non-coding RNAs (mostly sRNAs) in the marine 

bacterium Aliivibrio salmonicida. A computational search for non-coding RNAs limited 

to the intergenic regions of the 4.6 Mb genome identified a total of 252 potential 

ncRNAs, 233 of which were putative sRNAs. In total, we identified 50-80 putative 

ncRNAs, depending on the set threshold value for fluorescence signal in our microarray 

approach. Twelve of these, including nine novel sRNAs, were verified by Northern blot 

analysis.  
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Paper 3 

Geir Åsmund Hansen, Rafi Ahmad, Erik Hjerde, Christopher G. Fenton, Nils-Peder 

Willassen, Peik Haugen (2011). Expression profiling of a spf deletion mutant suggests 

biological roles and mRNA targets for Spot 42 in the fish pathogen Aliivibrio 

salmonicida. Submitted to RNA Biology. 
 

The small regulatory RNA (sRNA) Spot 42, encoded by the spf gene, was identified in 

Escherichia coli nearly 40 years ago. Its function and targets remained obscure until it 

was shown to cause discoordinate expression of the galactose operon. Recently, Spot 42 

has also been reported to be involved in the regulation of the central and secondary 

metabolism. The spf gene is ubiquitous in the Vibrionaceae family of gamma-

proteobacteria. A member of this family, the fish pathogen Aliivibrio salmonicida, 

encodes a Spot 42 homolog with 84 percent identity to E. coli Spot 42 (spf). In this study, 

we have generated a A. salmonicida spf deletion mutant and used trancriptome analyses 

to provide insights into the biological roles of Spot 42 in this bacterium, using microarray 

and Northern blot analyses to monitor expression. During conditions of glucose growth, a 

surprisingly large number of genes were ≥2 folds up-regulated and several major cellular 

processes were affected, such as carbohydrate metabolism and transport, motility and 

chemotaxis, iron homeostasis, and quorum sensing. Interestingly, a gene encoding a 

pirin-like protein (VSAL_I1200) responded to presence/absence of glucose in an on/off 

expression pattern, suggesting Spot 42 to regulate the important switch between 

fermentation and respiration in central metabolism. In addition, in a global search we 

identified another sRNA, named VSsrna24, encoded immediately downstream in the 

same intergenic region as spf. Expression of VSsrna24 is highly dependent on glucose, 

and it is expressed in an opposite expression pattern compared Spot 42. Our hypothesis is 

that this novel sRNA works in concert with Spot 42 to regulate carbohydrate metabolism 

and uptake. 
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Paper 4 

Geir Åsmund Hansen, Rafi Ahmad, Nils-Peder Willassen, Peik Haugen (2011). Aliivibrio 

salmonicida encodes a small RNA immediately downstream of spf: Microarray 

analysis and potential roles in carbohydrate transport and metabolism. Manuscript 

(for submission to PLoS ONE). 

 

Bacterial small regulatory RNAs (sRNAs) are involved in the regulation of important 

cellular processes, such as stress responses, metabolism, quorum sensing, motility, and 

more. In addition, sRNA regulation plays key roles in virulence, for example in the gene 

regulation associated with formation of biofilms. With a lot of accumulating sRNA data, 

the work of mapping their biological roles in bacteria has just started. In this study, we 

have searched for potential biological roles of the recently reported sRNA in Aliivibrio 

salmonicida, VSsrna24. We have construction a VSsrna24 deletion mutant and monitored 

transcriptome changes using microarray and Northern blot analyses. In presence of 

glucose, a large number of genes were differentially expressed (≥2 folds), including 

genes involved in the regulation of cellular processes such as carbohydrate metabolism 

and uptake, motility, and chemotaxis. Two NagE homologs, VSAL_I0831 and 

VSAL_II0721, were up-regulated in the VSsrna24 deletion mutant. We hypothesise that 

these genes are involved in the uptake of glucose into the cell. Interestingly, several up-

regulated genes in the VSsrna24 deletion mutant correspond to up-regulated genes in the 

previously reported Spot 42 knock-out mutant. In addition, several genes involved in 

motility and chemotaxis were found to be down-regulated in the VSsrna24 deletion 

mutant. This is opposite of what was reported in the Spot 42 knock-out mutant where a 

large number of genes from the same category were up-regulated. 
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IV. Discussion 

This project started out with a computational genome-wide prediction of sRNAs and Fur 

binding sites, followed by a subsequent experimental validation of these predictions. 

Next, more detailed experimental studies were performed using gene deletion technology 

and transcriptome analyses on two selected sRNAs, i.e., the Spot 42 homolog and the 

novel VSsrna24 in A. salmonicida. This part of the thesis will include some of the main 

findings from the papers and a general discussion on three selected topics. First, the use 

of sRNAs instead of transcriptional regulators in regulatory networks will be discussed. 

The studied regulatory networks of iron homeostasis and uptake of carbohydrates will 

serve as examples. Second, prediction of TFBSs and the Fur box in particular will be 

discussed. This section will also include a discussion on sRNA predictions and the 

importance of antisense RNAs. Finally, potential co-regulation of genes by Spot 42 and 

VSsrna24 will be discussed in detail. 

 

1. Regulations by sRNAs compared to transcriptional regulators 

Bacteria have evolved to include sRNAs as part of their regulatory networks (Beisel and 

Storz, 2010). Even though the signal transduction in most cases could have been achieved 

by other regulators, including transcription factors, regulations at the RNA level play an 

important role. It has been suggested that these conserved regulatory RNAs are relics 

from the “RNA world” (Gilbert, 1986; Jeffares, 1998), and that at least one sRNA plays 

part in the regulation of each major adaptive stress responses (Gottesman, 2004; 

Backofen and Hess, 2010). However, regulations through sRNAs provide some unique 

advantages over protein regulators. For example, the sRNAs are small in size and are not 

translated, giving their action a very short response time and potentially a low metabolic 

cost (Mizuno et al., 1984; Altuvia et al., 1997; Massé and Gottesman 2002; Beisel and 

Storz, 2010). Also, the sRNAs act post-transcriptionally and work independent of and 

epistatic to any transcriptional signals for their target mRNAs (Gottesman, 2004; 

Gottesman, 2005). Furthermore, one sRNA can simultaneously regulate many genes 

independent of the inducing signals for each of the genes, and multiple sRNAs, each 

transcribed under different conditions, might regulate a single target under different 

cellular conditions (Gottesmann, 2004). 
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1.1. The CRP/Spot 42 regulatory network 

Results from Paper 3 identify players in a regulatory network in A. salmonicida that 

involve both a transcriptional regulator and an sRNA, i.e., regulations by CRP and Spot 

42. In E. coli, the expression of spf, the gene encoding Spot 42, is negatively regulated by 

a cAMP-CRP complex, which binds to a CRP box in the promoter region (Møller et al., 

2002a). A CRP box is also identified upstream of the A. salmonicida Spot 42 homolog, 

and expression of the sRNA is responding to cAMP and glucose in a similar manner as in 

E. coli, suggesting A. salmonicida CRP to regulate Spot 42 similar as in E. coli. In Beisel 

and Storz (2011), E. coli Spot 42 was reported to participate in a feed-forward loop 

together with CRP, thereby down-regulating genes involved in the uptake of non-

preferred sugars. To play part in a feed-forward loop, both regulators, in this case CRP 

and Spot 42, must regulate the same gene, and one of the regulators must regulate the 

other, such as CRP regulation of Spot 42 expression.  

In A. salmonicida, six, eight, one, and three genes involved in PTS, anaerobic 

respiration, glycolysis, and electron transport (cytochromes and redox), respectively, 

were significantly (≥2 folds) up-regulated in the spf deletion mutant (Paper 3). At least 

two of these PTS genes [i.e., two gluconate permease homologs (VSAL_I2593 and 

VSAL_II0665)] have a potential CRP box in their promoter region. VSAL_I2593 and 

VSAL_II0665 have possible CRP boxes of 5´-CACTTTGTGCATCTACACAATA-3´ 

and 5´-TAATCTGAGCGAGATCTCATTT-3´ that are located 123 and 143 bp, 

respectively, upstream of predicted translation start. These CRP boxes are differing 12 

and six bp, respectively, compared to the 22 bp CRP consensus sequence of 5´-

AATTGTGATCTAGATCACATTT-3´ (Zhang et al., 2005). Two CRP boxes are also 

identified in front of the E. coli gluconate permease gntP (Zheng et al., 2004). Given that 

the genes in A. salmonicida are also regulated by CRP, then they could potentially be 

regulated by a feed-forward loop mechanism together with Spot 42. Feed-forward loops 

with CRP activating target genes and Spot 42 repressing the same genes have been shown 

to reduce leaky expression during repressing conditions, i.e., in presence of glucose 

(Beisel and Storz, 2011). The same study also reported that Spot 42 caused a delay in 

target protein levels when CRP is activated, i.e., in the absence of glucose, and a faster 
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decrease when CRP is inactivated, i.e., during growth with added glucose. This ability 

has not been associated with feed-forward loops comprised of only transcription factors, 

suggesting a potential advantage of sRNAs over proteins (Beisel and Stroz, 2010).  

In summary, a potential role of Spot 42 in A. salmonicida is to reduce leaky 

expression of uptake systems for other carbon sources than glucose during glucose 

growth, possibly in a feed-forward loop together with CRP. In a biological context, this 

makes sense as Spot 42 down-regulates the uptake systems for gluconate during glucose 

growth and allows the bacteria to adapt more rapidly when introduced to glucose. 

 

1.2. The Fur/RyhB regulatory network 

In Paper 1, another regulatory network which includes both a protein transcriptional 

regulator and an sRNA was studied in detail, i.e., the Fur/RyhB regulatory network. As 

reported in the study, Fur boxes were predicted in front of 60 single genes and 20 

operons, of which eight genes/operons were validated experimentally. In addition, an AT-

rich Fur binding site was predicted in front of fur, possibly involved in positive self-

regulation of the gene. One of the validated Fur targets was the sRNA RyhB. In E. coli, 

the TF Fur represses expression of the sRNA RyhB when intracellular levels of iron are 

high. In contrast, when iron is scarce, Fur cannot repress expression of RyhB, and the 

sRNA down-regulates operons encoding iron-using proteins involved in various cellular 

processes, such as TCA, dismutation of superoxide radicals, and iron storage (Massé and 

Gottesman, 2002). The reason for having an sRNA as part of this regulatory network 

could potentially be because RyhB is short in length and requires no translation, thereby 

having the ability to react very fast to changes in the concentration of intracellular iron. 

Another reason is the ability of RyhB to turn Fur into an indirect activator (Beisel and 

Storz, 2010). The genes within the Fur regulon are generally repressed at high 

intracellular iron concentrations, but this does not apply to the genes down-regulated by 

RyhB, thereby switching Fur from a repressor into an indirect activator.  

Fur and RyhB have also been suggested to regulate genes by feed-forward loops 

(Beisel and Storz, 2011). The sdh operon (making up the succinate dehydrogenase 

complex) is reported to be directly regulated by RyhB in E. coli, and the operon contains 

a predicted Fur binding site (Massé and Gottesman, 2002; Zhang et al., 2005). However, 
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the Fur box prediction in Paper 1 did not identify any Fur binding sites in front of the sdh 

operon in A. salmonicida.  

 

2. Prediction of TFBSs and sRNAs 

With the constantly growing amount of available genomic data, especially complete 

genome sequences, comparative genomics play an important role in the work of mapping 

genomic features, such as promoters and TFBSs. Transcription of both protein coding 

genes and sRNAs are dependent on promoters (e.g., sigma factors) and/or TFBSs (e.g., 

Fur boxes) located in their promoter region. Prediction of such elements in bacteria is a 

challenging task that usually requires species-specific consensus sequences. 

Unfortunately, only a few promoters and TFBSs are experimentally validated in bacterial 

species other than E. coli.  

 

2.1. Determination of a Fur box consensus sequence 

Although Fur regulons have been thoroughly studied in several organisms, the consensus 

sequence of the Fur box and determination of which residues that are directly involved in 

the Fur-DNA binding have not been completely clarified. In Paper 1, a vibrio Fur box 

consensus sequence was generated. It was based on 66 experimentally verified or 

proposed Fur binding sites of known Fur-regulated genes. The Fur boxes were aligned 

manually and automatically, and both methods resulted in an identical 19 nt palindromic 

consensus sequence (i.e., 5´-AATGANAATNATTNTCATT-3´). 

 The Fur box consensus sequence from Paper 1 is offset by three nucleotides 

when compared to the classic E. coli consensus [5´-GATAATGAT(A/T)ATCATTATC-

3´ (de Lorenzo et al., 1987, 1988)] and nearly identical to the consensus in B. subtilis [5´-

TGATAATTATTATCA-3´ (Fuangthong and Helmann, 2003)] and Y. pestis [5´-

AATGATAATNATTATCATT-3´ (Zhou et al., 2006)]. Recently, the predicted vibrio 

and Y. pestis Fur box consensus have been experimentally verified to bind Fur in vitro 

(Pedersen et al., 2010; Gao et al., 2008).  

 Several models that explain how Fur binds to DNA have been suggested. The 

classic model was suggested to bind a single Fur dimer by a 19 bp inverted repeat 

centered on an A or T (de Lorenzo et al., 1987). The classic 19 bp consensus has also 
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approaches are based on a combination of conserved features from known sRNAs, 

excluding sRNAs that do not fulfill the chosen criteria. A limitation in almost all of the 

computational approaches so far is restricting the search only to the IGRs of the genome. 

The majority of known sRNAs have been found in IGRs. However, by ignoring all other 

genomic regions, this approach excludes potential sRNA genes within protein coding 

regions. Moreover, predictions have been limited to a subset of genomic transcriptional 

elements and/or conservation in closely related species (Argaman et al., 2001; 

Wassarman et al., 2001). Rivas et al. (2001) were the first to include conservation of 

RNA secondary structure rather that primary sequence in their predictions. However, 

comparative studies are dependent on sRNAs being conserved among species, possibly 

missing out species-specific sRNAs. 

The A. salmonicida whole genome sRNA prediction study performed in Paper 2 

utilized a combination of different strategies in the search for sRNA genes. The search 

was limited to the IGRs of the genome. Predictions of promoter recognition sites for 

sigma 70, 54, and 38 and the Fur TFBS identified in Paper 1 were included. Sigma 70 

binding sites are associated with “housekeeping” genes, sigma 54 controls motility, 

biofilm formation, luminescence, and colonization in A. fischeri (Wolfe et al., 2004), and 

sigma 38 is involved in transcription of genes associated with starvation and stationary 

phase. A search for Rho-independent terminators located ≥50 nt downstream of and in 

the same orientation as promoters/TFBSs was also included. The extracted IGRs from A. 

salmonicida were used to search for homologous IGRs in six other members of 

Vibrionaceae (V. cholerae, A. fischeri, V. parahaemolyticus, two V. vulnificus strains, 

and Photobacterium profundum) and subsequently to search for homologous putative 

sRNAs and conservation of gene synteny. To search for known homologs, the program 

cmsearch (Nawrocki et al., 2009) and Rfam database of non-coding RNA families 

(Gardner et al., 2009) were used. 

 Recently, a study by Liu et al. (2009) performed an unbiased experimental 

method exploring the pool of RNA by direct cloning and parallel sequencing, i.e., RNA-

seq (aka. deep-sequencing). The study reported 500 new candidate sRNAs encoded in the 

IGRs and 127 candidate antisense sRNAs in V. cholerae. Of these, seven and nine, 

respectively, were validated experimentally through Northern blot analyses. In addition, 
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over one-third of the candidate sRNA reads corresponded to open reading frames, 

representing possible functional sRNAs, small peptides, or mRNA degradation products. 

With 64 percent of the total candidate sRNAs being encoded in the IGRs, representing 

only 12 percent of the V. cholerae genome, the RNA-seq results suggest that the IGRs are 

enriched for sRNAs over other regions of the genome. 

The results from Liu et al. (2009) and RNA-seq studies in L. monocytogenes 

(Mraheil et al., 2011) and Salmonella enterica serovar Typhimurium (Sittka et al., 2008) 

also suggest that a significant number of candidate sRNAs genes are encoded antisense 

to, or within, protein coding genes. Yachie et al. (2006) combined predictions for ncRNA 

genes encoded in the IGRs with genes encoded antisense of coding regions in E. coli. The 

study identified 87 sRNA and 47 antisense RNA candidates, of which eight and four 

candidates, respectively, were experimentally validated. However, the used approach was 

less suitable for prediction of antisense RNAs compared to IGR sRNAs (Backofen and 

Hess, 2010). In a study by Georg et al. (2009), four different methods were used to 

identify antisense RNAs in cyanobacterium Synechocystis sp. PCC 6803. Of the total 73 

identified antisense RNAs, 11 were computationally predicted based on identification of 

Rho-independent terminators.  

To summarize, these studies suggest that the majority of sRNA genes are encoded 

in the IGRs of the genome. However, there are potentially a significant number of sRNA 

genes encoded antisense to, or within, coding regions to be discovered if searches are 

expanded to include protein coding regions. In addition, unbiased experimental methods 

such as RNA-seq are important to complement and validate existing sRNA prediction 

techniques. 

 

3. A. salmonicida Spot 42 and VSsrna24 are involved in the same 

regulatory network 

Rather than being constitutively expressed, the majority of sRNAs have been suggested 

to accumulate under different stress conditions (Vogel and Wagner, 2005). For example, 

the presence or absence of glucose in immediate surroundings of bacteria has the 

potential to trigger stress responses. In E. coli, accumulation of intracellular glucose-6-

phosphate induces expression of the sRNA SgrS, which subsequently mediate 
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degradation of the glucose-specific PTS permease (PtsG) mRNA (Wadler and 

Vanderpool, 2007). In absence of glucose or other carbon sources, the bacteria may 

experience starvation stress responses. Genes expressed during starvation stress are often 

under control of the rpoS-encoded alternative sigma factor S. Interestingly, rpoS is itself 

regulated post-transcriptionally by at least four sRNAs, i.e., DsrA (Majdalani et al., 

1998), RprA (Majdalani et al., 2002), ArcZ (Papenfort et al., 2009), and OxyS (Altuvia et 

al., 1997). 

 

3.1. Spot 42 and VSsrna24 work in concert 

Paper 3 and Paper 4 identify hundreds of genes that are differentially expressed in spf 

and VSsrna24 deletion mutants, respectively. Strikingly, the microarray studies reveal 

that a large number of the differential expressed genes are found in both datasets. For 

example, of the 19 and 29 differentially up-regulated genes in the Spot 42 and VSsrna24 

mutants, respectively, that belong to the classes “Carbohydrates, organic acids and 

alcohols; PTS” and “Energy metabolism, carbon”, 16 genes were found in both mutants. 

In addition, the microarray results and subsequent Northern blots suggested that the 

expression of VSsrna24 was dependent on Spot 42, i.e., VSsrna24 was not expressed in 

the spf deletion mutant. However, this could be caused by a change in the transcriptional 

regulation by knocking out Spot 42, and further studies are required to prove or disprove 

these assumptions. 

The two studied sRNAs are located in the same IGR, and the expression of both 

sRNAs is responding to glucose. Moreover, expression of spf, but not VSsrna24, 

responds to cAMP. Expression studies reveal that spf is expressed in the presence of 

glucose, whereas VSsrna24 is expressed in the absence of glucose. Therefore, we assume 

that Spot 42 plays a physiological role in presence of glucose, whereas VSsrna24 acts in 

conditions without glucose. The genomic location, expression patterns, and results from 

the microarray studies suggest that the two sRNAs play a role in the same regulatory 

networks under different conditions, working in concert with each other.  

To further investigate potential co-regulation between Spot 42 and VSsrna24, the 

two sequences were bioinformatically aligned (figure 5). Of the 37 nt from VSsrna24 

(excluding the terminator), 20 were identical to Spot 42 from both A. salmonicida and E. 
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Bates Utz et al., 2004) has been suggested to be regulated by two sRNAs, OmrA and 

OmrB (Tjaden et al., 2006). In an attempt to identify potential common sRNA-mRNA 

binding, a computational binding prediction between the -100/+50 (relative to translation 

start) sequences of the two gluconate permeases and the conserved Spot 42 and VSsrna24 

regions was performed using RNA hybrid (Krüger and Rehmsmeier, 2006). Figure 6A 

shows the binding potential between VSAL_II0665 mRNA and Spot 42 and VSsrna24. 

Both sRNAs have the potential to bind VSAL_II0665 mRNA mRNA in the same 26 nt 

area covering translation start. Based on the alignment in figure 5, six of the nucleotides 

involved in binding are identical in Spot 42 and VSsrna24. For VSAL_I2593 mRNA, the 

area of binding potential for both Spot 42 and VSsrna24 is seven nt located 41 nt 

upstream of translation start (figure 6B). Three of these nucleotides are identical in Spot 

42 and VSsrna24. The potential of Spot 42 and VSsrna24 to bind to same region in the 

two gluconate permeases suggests that the mRNAs might be regulated by both sRNAs. 
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cholera, the sRNA TarA, regulated by the major virulence gene activator ToxT, down-

regulates PtsG during infection.  

Interestingly, we have so far not been able to show expression of the ptsG 

homolog in A. salmonicida. In Northern blot experiments, two radio-labelled probes that 

cover different regions of the gene did not result in any bands, neither in presence or 

absence of glucose. However, the amino acid sequences of NagEI (VSAL_I0831) and 

NagEII (VSAL_II0721) in A. salmonicida have a global identity and similarity of 65 and 

84 percent, respectively, and they both share a ~36 and ~66 percent identity and 

similarity to the PtsG amino acid sequence.  In E. coli, the NagE N-acetylglucosamine 

PTS permease is homologous to PtsG/Crr, the glucose-specific PTS enzyme II (Peri and 

Waygood, 1988), and it has been proposed that the two transport and phosphorylation 

systems have evolved from a common ancestral gene (Rogers et al., 1988). Moreover, a 

PtsG homolog has not been found in Vibrio furnissii, but its NagE has shown the ability 

to translocate both glucose and N-acetylglucosamine (Bouma and Roseman, 1996). A. 

salmonicida NagEI and NagEII have 85 and 68 percent identity and 91 and 82 percent 

similarity with query coverage of 98 and 99 percent, respectively, to V. furnissii NagE. 

These results support that NagEI and NagEII are involved in the uptake of glucose in A. 

salmonicida. In addition, figure 7 shows that VSsrna24 has the potential to bind both 

nagEI and nagEII mRNAs close to translation start. The downregulation of 

NagEI/NagEII by Vssrna24 in A. salmonicida in absence of glucose suggests that the 

PTS uptake system for N-acetylglucosamine, and possibly glucose, is not expressed 

during such conditions. This assumption makes biological sense because the bacteria do 

not require uptake systems for glucose when it is not present in the surroundings. 
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4. Concluding remarks 

In its natural habitats, A. salmonicida is faced with environments of changing nutritional 

composition. To cope with these changing environments, the bacteria need to regulate 

their gene expression accordingly. For example, during an infection, the bacteria express 

another set of genes than outside the host. Inside a host, the availability of, e.g., iron and 

glucose differ compared to the outside. The bacteria are exposed to high iron 

concentrations during an infection, but the iron is bound to compounds inside the host 

and therefore not available. Results from Paper 1 identified a number of genes 

differentially expressed under iron-restrictive conditions. By studies of the A. 

salmonicida Fur regulon, we were able to identify genes under control of Fur. Under 

iron-restrictive conditions, i.e., inside a host, the bacteria down-regulate iron-using genes 

and express sequestering systems to steal iron from the host. An sRNA identified in 

Paper 2, RyhB, is under control of Fur and plays a role in the post-transcriptional 

regulation of the Fur regulon. 

sRNAs accumulate and play important roles in post-transcriptional gene 

regulation under specific (often stress) conditions (Vogel and Wagner, 2005). The whole-

genome sRNA prediction in Paper 2 focused on IGR-encoded sRNA genes expressed 

under different conditions and experimentally verified nine novel sRNAs. As reported in 

Paper 3 and Paper 4, the expressions of the A. salmonicida Spot 42 homolog and novel 

VSsrna24, respectively, both respond to glucose. During an infection, the bacteria are 

exposed to high glucose concentrations. The Spot 42 and VSsrna24 expression patterns 

indicate that Spot 42 is expressed at high glucose concentration, i.e., during an infection, 

whereas VSsrna24 is expressed at low glucose concentrations, i.e., outside a host. 

Results from Paper 3 propose Spot 42 to down-regulate genes involved in uptake 

of other carbohydrates than glucose in a CCR-like manner and to repress genes involved 

in motility and chemotaxis. During an infection, the uptake systems for other 

carbohydrates than glucose are not required, and the bacteria do not require to be motile 

in order to swim towards glucose. In Paper 4, VSsrna24 is suggested to down-regulate 

uptake systems for glucose and other carbohydrates in conditions without glucose and to 

up-regulate genes involved in motility and chemotaxis.  
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In summary, Spot 42 and VSsrna24 are suggested to work in concert to regulate, 

directly or indirectly, a number of the same genes under different conditions. Under the 

high glucose conditions during an infection, Spot 42 is expressed to down-regulate 

uptake systems for other carbohydrates than glucose. Spot 42 also down-regulates genes 

required for motility and chemotaxis as the ability to swim is not required. VSsrna24 is 

expressed in conditions outside a host to down-regulate the PTS system in conditions of 

low carbohydrate concentrations in the environment. Outside a host, VSsrna24 up-

regulates genes for motility and chemotaxis, which the bacteria utilize in their search for 

a carbon source.  

To follow up the work from this project, a number of potential experiments to 

shed further light on selected topics are being planned or have been started. Firstly, an 

extended whole-genome sRNA prediction which spans the complete genome, not only 

the IGRs, might identify sRNA genes located antisense to, or within, protein coding 

regions. Such a study should preferably be complemented by an unbiased trancriptome 

analysis method, such as RNA-seq. To gain further insight into the A. salmonicida sRNA 

pool, RNase E and Hfq deletion mutants could be included in such studies. An rne 

(encoding RNase E) deletion mutant is hypothesised to result in accumulation of sRNAs 

that normally are degraded in an RNase E-dependent manner. Deleting hfq from the 

genome might produce a strain with reduced sRNA-mRNA stability. Secondly, predicted 

binding partners of the studied sRNAs Spot 42 and VSsrna24 should be verified 

experimentally. sRNA-mRNA binding can be validated by gel mobility shift assays of in 

vitro transcribed sRNAs and predicted binding partners in presence of Hfq, fusion-

reporter assays, structure probing, and/or site directed mutagenesis. Finally, additional 

predicted and experimentally verified Fur binding sites should continuously be added to 

the vibrio alignment matrix to help create new and improved Fur box predictions. 
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