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Abstract

A large class of linear recursive queries compute the bill�of�materials
of database relations�

This paper presents a novel algorithm that computes the bill�of�
materials of its argument�s �database� relation� The algorithm uses a
special join operation that accumulates the cost of composite parts�
without constructing the transitive closure of the argument relation�
thus saving time and space�

We argue that this algorithm outperforms existent algorithms in
the order of the diameter of the graph represented in the argument
relation� This is made possible by exploiting knowledge of the level
each tuple of the argument relation belongs to�

Moreover� this algorithm in contrast to transitive closure based
processing� produces data at a very early stage of the processing which
renders it suitable for pipelined distributed data processing�

� Introduction

Given a transitive closure operator denoted � that does not eliminate re�
dundant paths� and the relations de�ned by the following relational schema�

Uses � Relation��part � oid� subpart � oid� level � integer�	

Base � Relation��part � oid� cost � real�	


where Uses is transitively de�ned and has a tuple for each �part� subpart�
relationship� A composite part may be involved in many such tuples� The
Base relation has a tuple for each base part �i�e� a part which is not composed
of any other parts��
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To compute the Bill�Of�Materials �BOM� in a system that provides a
transitive closure primitive� one normally submits a query that is equivalent
to the following ��algebraic �Agra
�	� expression�

Y

Uses�Part�C

�GroupByUses�Part�C�sum�Cost��Base onBase�Part�Subpart ���Uses����

An execution strategy for the above expression that is based on evaluating
each operation in the �above� strict nested order incurs very high execution
cost� This high cost is due to the intermediate construction of the transitive
closure of Uses�

We argue that any execution strategy for BOM algorithms that con�
structs the transitive closure of its argument is a bad strategy� in particu�
lar when that closure is much larger than the given relation� Moreover� in
pipelined processing systems one is in need of algorithms that produces data
as soon as possible� The strict nested�order evaluation of the above query
does not produce any data until after the evaluation of the transitive closure
of the argument relation�

In �KhEB��	 we presented a BOM algorithm that avoid the evaluation
of the transitive closure operator� and produces data at a very early stage
�compared to the transitive closure processing�� The algorithm combines
some of the operations mentioned above into one specialized join operation�
called CJOIN � The CJOIN operation does not use any knowledge about
the level of the tuples in Uses�

In this paper we present a BOM algorithm �called OBOM� which is very
similar to the one in �KhEB��	� except that the CJOIN operation of the
new algorithm implicitly exploits level knowledge�

The OBOMalgorithm is superior to the algorithm of �KhEB��	 in the
order of the diameter of the graph represented in the Uses relation�

The implementation of the OBOM algorithm is based on the Uses tuples
being grouped on part� and then the groups being sorted on level� Using
such an order OBOM computes BOM in only one call to CJOIN � as we
shall show�

��� Related Work

A transitive closure operator for database queries was �rst proposed by Zloof
in �Zloo��	� Since then it has been shown that linear recursive queries can
be expressed by such an operator �JaAN
�� ChHa
�	� and an extension of
relational algebra that includes a transitive closure operator called ��algebra
has been proposed in �Agra
�	�
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Furthermore� Agrawal �Agra
�	 �as well as many others� proposed that
specialized algorithms that exploit the knowledge of the physical database
can be built into the database system to e�ciently implement the transitive
closure operator and some frequent applications of it�

Bill�of�materials �and similar� computations constitute a large class of
linearly recursive database computations that occur frequently in database
systems environments containing transitive relations� When such queries
are applied to very large relations� their e�cient processing become vital
�e�g� for users that are highly dependent on them�� Although all such
computations can be expressed using the transitive closure operator �as has
been illustrated above�� evaluating the transitive closure is not necessary for
the evaluation of such computations� Since such an evaluation often incurs
a very high cost in terms of time and space� we would like to avoid it� This
is very similar to avoiding the evaluation of the cross�product when join
is being evaluated �SmCh��� Ullm

b	� Moreover� in pipelined processing
system one tends to avoid processing algorithms and strategies that produces
data very late� That is due to the tremendous amount if waiting such
algorithms impose on the operators that consume their output�

Many e�cient transitive closure algorithms have been developed for
di�erent computing environments �Tarj
�� AgJa
�� Lu
�� BiSt

� IaRa

�
AgJa

� VaKh

a� VaKh

b� AgDJ��� ChDe��� HoAC��� Jian��� Jako���
DaJa��	� However for large data volumes� where the graph representation
of these data is very complex� generating the transitive closure for such data
may be very costly� Whenever generating such a closure can be avoided it
should be� In �KhEB��	� we proposed closure�based BOM algorithms that
avoid generating the transitive closure of the argument relation� This results
in better performance� both in terms of time and space�

Combining the execution of many operations into one has been �rst
proposed by Smith et al� �SmCh��	� and since then has been adopted by
nearly everyone working with query processing and optimization �JaKo
��
Ullm

b	� The combined join �CJOIN� algorithm is the core of our BOM
algorithms since it combines the accumulation of �intermediate partial� cost
for composite parts using the cost of their subparts� with the binary match�
ing normally applied in join operations� to avoid the intermediate construc�
tion of the transitive closure of the input relation�

In section � we present the IBOM algorithm from �KhEB��	� then in
section � the OBOM algorithm is presented and analyzed�

Finally� in section � we present the experimental results of the two algo�
rithms� and analyze their results�
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� The Iterative BOM Algorithm

To compute the bill�of�materials for all the composite parts present in the
Uses relation� it is not necessary to perform the transitive closure operation
present in the BOM expression above� since we are not interesting in the
all�pairs transitive closure of the graph represented by the Uses relation�

Additionally� many of the operations involved in the above query� can
be done in a combined join operation �called CJOIN�� The operation tries
to match the subpart attribute of each tuple in the Uses relation with the
part attribute of each tuple in the Base relation� If a match occurs it
partially performs the sum operation by accumulating the cost of a Uses
composite part that have a subpart that match a base tuple� The cost for
each part is accumulated in the cost attribute of the corresponding tuple of
the temporary relation Accum� which states the identity and cost accumu�
lated so far for each �composite� part� The relational schema of Accum is
Relation��part � oid� cost � real�	


When analyzing the composition relationship we found that some parts
are not composed �i�e� they are atoms or base parts�� some parts are com�
posed only of base parts �we will call them �st level parts�� some parts are
composed only of base �i�e� ��level� and �st parts �we call them �nd level
parts�� some parts are composed only of ��level� �st level� and �nd level parts
�we call them �rd level parts�� and in general ith level parts are composed
only of parts from the levels below� i�e� ��level� �stlevel� �ndlevel� � � � � and i�
� level� Notice that the sets of parts from the di�erent levels are disjoint�

Based on the above observation� the iterative BOM algorithm �IBOM�
starts by computing the total cost for �st level parts� then the total cost
for �nd level parts� and so on� In general� computing the total cost for
parts from the ith level� will be completed only after the total cost for all
parts from all the levels below �i�e� i� �� i� �� � � � � �� have been computed�
Therefore� a run of the iterative BOM algorithm consists of the subsequent
phases �� �� � � � �D� where D denotes the diameter of the directed acyclic
graph �DAG� as represented by Uses� In each phase the total costs for the
parts from the corresponding composite level are computed� That is� in
phase i the total costs for all the parts from level i are computed� and phase
i �for i � �� is preceded by phase i � � and is followed by phase i � � �for
i � D�� Such a BOM algorithm terminates after the Dth phase�
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��� Implementation of CJOIN

In this section we develop the CJOIN operation used in the IBOM al�
gorithm speci�ed below� This operation takes as input three argument
relations Accum�Uses� and Base� and delivers as output three relations
Accum�Uses� and NewBase�

The tuples of Uses are grouped by the part attribute� and those of Base
and Accum are hashed on their part attributes�

The following four operations are needed to implement the CJOIN op�
eration� The signatures and informal semantics of these operations are given
below�

� match � oid�Base� TupleOf�Base�
match takes a part identity as its �rst argument and the current Base
relation as it second argument� and returns the Base tuple correspond�
ing to its �rst argument�

� accumulate � real� oid�Accum�
the Accum tuple corresponding to its second argument is looked up�
and its cost attribute is incremented by the value of the �rst argument�
If such a tuple does not exist� it is created and inserted into Accum
and its cost attribute is initialized to the value of the �rst argument�

� mark del � TupleOf�Uses�� Uses�
this function puts a deletion mark on the Uses tuple corresponding to
its �rst argument� This operation shrinks the volume of Uses�

� move �NewBase � oid� real� Accum�NewBase �
this operation is called when the total cost for a composed part has
been computed completely� It increments the cost attribute of the
Accum tuple corresponding to its �rst argument by its second argu�
ment� and moves it to NewBase� This is the operation that inserts the
base tuples of the next phase �of the IBOM algorithm� into NewBase�

The above operations are implemented on top of hash�based structures on
Base and Accum� Hash�based structures and algorithms have been designed
mainly to speed up the join operation involved in the IBOM algorithm
�Brat
�� Kits
�	�

The CJOIN algorithm performs the join of Uses and Base� reduces
and reconstructs all its arguments relations� and partially computes the
aggregate function sum� all in one run through the tuples of Uses� Base�
and Accum�
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The notations we use to specify our algorithms are self�explanatory�
However� the following elaborations may be helpful�

� Tupleof�Relation��T�� � � � � TN �	 is an instance of T� � � � �� TN �

� All types has an element denoted �� that stands for �unde�ned value��

� Any text following ��� in a line is a comment� and

� A group � Uses stands for the sequence of tuples having identical part
identities�

Algorithm ��� The combined join algorithm� CJOIN

CJOIN�Accum�Uses�Base� �
VAR�

u � TupleOf�Uses�
 b � TupleOf�Base�

u�Base � bool
 � false� if some tuples in a group are not deleted
acost � real
 � the cost accumulated so far� for current group

Program�
For group � Uses Do� for each group in Uses

u�Base� true

For u � group Do� for each tuple in current group

b� match�u�subpart�Base�

If b 	� � � is there a match �
acost� acost� b�cost

mark del�u�Uses�
 � delete the tuple

Else

u�Base� false

If u�Base
move �NewBase�u�part� acost� Accum�NewBase�


Else If acost 	� �
accumulate�acost� u�part� Accum�


acost� �
Return�Accum�Uses�NewBase�


��� Notations and assumptions

In the sequel we will use the following notations and assumptions�
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� jUsesj � N � denotes the number of tuples of the Uses relation


� jUsesij � N i� denotes the number of �remaining� tuples in Uses at
the end of the ith phase


� I is the number of distinct part identities that occur in the part at�
tribute of Uses
 i�e� the number of groups in GroupBypart�Uses�


� jBasej � M � denotes the number of tuples initially in Base


� jBaseij � M i� denotes the number of tuples in NewBase at the end
of the ith phase


� The auxiliary operations match� move �NewBase� and accumulate
have a constant cost� denoted by C�� while the others have a negligible
cost� C� actually denotes the cost of accessing a tuple in Base or
Accum


� C� denotes the cost of accessing a Uses tuple


A simplifying assumption that otherwise has no major implication is the
following�

Assumption ��� �Uniform CJOIN behavior� The complexity of CJOIN
behavior at the di�erent D phases is uniform� That is� the same number of

tuples are added to new Base� and Accum and the same number of tuples

are deleted from Uses� at each phase�

��� Implementation of the iterative BOM algorithm

The iterative BOM algorithm can be seen as a loop of joins between the
Base and the Uses relations� each of which corresponds to a phase� as
de�ned above� In each iteration the contents of the two relations will be
changed� as explained in the sequel� Initially� the base parts will be those
in Base� and Uses will have all the tuples representing the �part� subpart�
relation�

In the �rst iteration the total cost for all parts from �st level will be
computed� the cost for all other parts that have some base subparts will be
accumulated in Accum� every tuple in Uses that has a base subpart will
be �marked� deleted� and the �st level parts together with their total costs
comprise the new Base �denoted Base�� of the next phase�

In the second iteration� the total cost for all parts from �nd level will be
computed as above� and in general� in the ith iteration the total cost of all
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parts from the ith level will be computed� the cost of all other �i�e� higher
levels� parts that have some base part components will be accumulated in
Accum� every tuple in Uses that has a Basei�� subpart will be �marked�
deleted� and the ith level parts together with their cost comprise the new
Base of the next phase �denoted Basei��

The IBOM algorithm depicted below constructs in each iteration �i� a
new logically separated relation �fragment� to contain the new base tuples�
and is called Basei� That is� the base fragment Basei is constructed at the
ith iteration and corresponds to the Base relation of iteration i� �� Basei

contains a tuple for each of the ith level part which has a part attribute
corresponding to that ith level part and a cost attribute whose value is the
total cost of that part� Base� corresponds to the initial Base relation which
is used in the �rst iteration�

The temporary relation Accum will at the end of each iteration i contain
the cost for each jth level �j � i� part which have some subpart from the
levels below i� Within the ith iteration� when the total cost for a level i part
is computed� the Accum tuple corresponding to that part� is moved from
Accum to Basei�

Finally� the Uses relation will at the end of each iteration i� have no
tuple with a subpart from level i or any level below�

Algorithm ��� An Iterative BOM algorithm

IBOM�Uses�Base�� �
VAR�

Accum� result � Relation��part id � oid� cost � real�	

i � integer
 � a phase counter

Program�
i� �

result� Base�

While�Usesi 	� 
� Do
�Accumi� Usesi� Basei�� CJOIN�Accumi��� Usesi��� Basei���

result� result �Basei

i� i� �


Return�result�







��� The Cost Formula of IBOM

The cost formula for CJOIN is de�ned as follows�

CFCJOIN � N � C� �N �C� � �I � I�D�� C� � �I�D�� C�

In the above formula� the �rst and second terms denote the cost of the hash�
based join operation� That is� the cost of accessing the tuples of Uses and
Base�

The third term� �I � I�D� � C�� corresponds to the �worst case� cost
of accessing the Accum tuples in order to accumulate the cost of their cor�
responding parts� The fourth term �I�D� � C� corresponds to the cost of
restructuring Accum and NewBase�

Notice that the number of tuples in Accum will never exceed the number
of groups in Uses �i�e� I� minus the number of groups for which a total cost
is emerging �i�e� I�D�� Moreover� the number of tuples in NewBase will
never exceed I� in average it will be I�D�

Since N � I is always true� the above formula is rewritten to�

CFCJOIN � N � �C� � C�� � I �C�

� N�C� � �C��
���

The cost formula for the iterative BOM algorithm can be expressed by
using the cost formula previously developed for CJOIN � as follows�

CFIBOM � �D
i��Ni�C� � �C��

� �C� � �C���
D
i���Ni�

���

The above formula is derived simply from the fact that in a run of IBOM
there is an CJOIN call �whose cost is de�ned by equation �� for each of
the D levels in the DAG represented by Uses�

The term C� � �C� in CFIBOM involves only constants and therefore
cannot be reduced further� However� using assumption ���� we may set
Ni � N � �i� ��N�D� The term �D

i���Ni� can then be reduced as follows�

�D
i���Ni� � N�D � ���� ���

Finally� by substituting equation � into equation � �i�e� N�D � ���� for
�D
i���Ni�� we get�

CFIBOM � �C� � �C���D � ��N�� ���
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� The OBOM algorithm

This section presents our new and very e�cient algorithm �called OBOM�
which is developed by implicitly using the knowledge of the level to which
a tuple belongs�

The database schema consists of the following�

Uses � Relation��part � oid� subpart � oid� level � integer�	

Base � Relation��part � oid� cost � real�	


The algorithm assumes that the tuples of Uses are grouped using the part
attribute� and then the groups are sorted based on the level attribute� This
ordering results in having all the groups of parts belonging to the �rst level to
be located at the start of Uses� followed by all the groups of parts belonging
to the second level� and so on until the end of Uses where all the groups
of parts belonging to level D are located� That is� the group of tuples
determining the cost of each part from a level j are grouped together and
occur �in Uses� before any group from any level k � j� and after any group
from any level �i j��

Moreover� Base is hash�structured and contains initially a tuple for each
part from level ��

The OBOM algorithm is very similar to CJOIN but much simpler
as a result of the knowledge it implicitly possesses about the ordering of
tuples in Uses� The algorithm uses two routines� match which has the same
functionality as in CJOIN � and hash insert which inserts a new base tuple
into Base�
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Algorithm ��� A very e�cient BOM algorithm� OBOM

OBOM�Uses�Base� �
VAR�

u � TupleOf�Uses�
 b � TupleOf�Base�

acost � real


Program�
For group � Uses Do� for each group in Uses

For u � group Do� for each tuple in current group
b� match�u�subpart�Base�

acost� acost� b�cost


hash insert��u�part� acost�� Base�

acost��


Return�Base�


Algorithm � starts by computing the total cost of parts from the �rst
level� and since all their subparts are �from level � and therefore already� in
Base� match will never fail to match a corresponding base tuple� After the
cost of a part is computed it is inserted into Base� Consequently� when the
costs of all parts from the �rst level are computed� they are stored in Base�
hence computing the costs of parts from the second level can start� and so
on� In general� when OBOM starts computing the costs of parts from level
j� Base already contains the total costs of all parts from all levels i � j�
When the total costs of all parts from level D are computed� the algorithm
reaches the end of Usesand terminates� and Base contains the costs of all
parts�

��� Complexity of OBOM

This algorithm accesses each tuple in Uses only once� thus it is optimal with
regard to its access to Uses� Because any BOM �or any transitive closure�
algorithm will have to access the tuples of each group in order to compute the
cost of their corresponding part� On the other hand� the algorithm accesses
each tuple of Base �not only the initial Base� a number of time equivalent
to its frequency as a subpart in Uses� But that is also the minimum number
of accesses needed to compute the cost of all parts� Since� a cost of a part
is determined by the cost of its subparts� there is a need to access Basefor
each subpart in order to compute the total cost�

One way to optimize the accesses to Base� is to cluster all the Uses
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tuples having the same subpart� but then we may have destroyed the access
structure imposed on Uses and that made this algorithm possible� Moreover�
a need for temporary accumulation will arise� as in IBOM �

In IBOM each invocation i of Cjoinattempt to match each Uses tuple
that is not marked deleted with a base tuple� to extract the cost of the
subpart of that tuple of Uses� Such a match will fail for all Uses tuples
that have a subpart that is not currently in Base�i�e� a subpart that belongs
to a level j �� i��

The complexity of the OBOMalgorithm is de�ned as follows�

�N � C�� �N � C� � N � �C� � C��

which is superior to IBOM in the order D�
For many environments in which BOM computations are critical and

vital to their operation� it seems to us worth to maintain the knowledge of
the level of parts in Uses� Maintaining such knowledge can be done very
e�ciently and in an incremental manner� hence enabling the application of
this new algorithm�

� Experimental results and their analysis

This section presents the results of a lab experiment which tries to infer a
correspondence between the results of the theoretical analysis and empirical
facts� In other words� we looked for empirical facts to refute the result of
the theoretical analysis� That is� if the performance of OBOM is actually
superior to IBOM in the order of D�

��� The lab environment

We implemented the IBOM and OBOM algorithms in C�Unix� We ran
the IBOM and OBOM programs on a HP�UX ������
� �C����� machine�
having ��
 Mb memory and � Gb disk space� It should be noted that the
compilation of the programs did no optimization for this architecture� That
is� the performance results �i�e� response time for the various runs� should not
be perceived as being the best results obtainable on this architecture� This
is acceptable since we are conducting a comparative study of two algorithms�
rather than trying to �nd the best time achievable by these algorithms on
a speci�c architecture�

The IBOM or OBOM program ran on the system alone� i�e� there were
no concurrent user processes on the system�
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��� The construction of test data

A program called mk�graph constructs the data for the experiment� This
program takes � arguments
 the number of parts in the graph �denoted
N�� the number of levels in the graph �denoted L�� the minimal number of
subparts in each composite part �denoted C�� and the minimal number of
parts a part is a subpart of �denoted P ��

The program constructs both Uses and Base� It constructs Uses by
virtually building a directed acyclic graph �DAG� having�

� D levels�

� each part at any level �except level D� is engaged as a subpart in at
least P tuples in Uses� and

� each part at any level �except level �� is engaged as a composite part
in at least C tuples in Uses�

The program assigns N�D parts to each level as follows� It assigns the parts
����N�D� to level �� then the parts ��N�D� � ������N�D� to level �� and so
on until �nally the parts �D � ��N�D��N are assigned to level D � ��

The construction of Base is much simpler� mk�graph constructs a tuple
for each part of level �� and attaches to it a cost value which is chosen
pseudo�randomly�

In this way the program can control the volume of data in the graph �i�e�
the number of parts� and its complexity �i�e� the number of Uses tuples a
part is engaged in as a composite part or as a subpart��

��� The tests and their analysis

We want to test the hypothesis that the OBOM algorithm is superior to the
IBOM algorithm in the order of D� Since we are addressing large database
processing� we also want to test the impact of large data volumes and large
number of levels on the performance of these algorithms�

In our experiment� both N and D varies� while P and C remain un�
changed having the value �� throughout the whole experiment� The size of
a Uses tuple also remains unchanged� Thus� neither the impact of graph
complexity nor that of the tuple size is considered directly� The reason for
this being that our analysis shows that these factors merely increase the
size of the data� Testing the impact of the size of data on the performance
of the algorithms should therefore prove su�cient� Figure ��a� depicts the
performance results of IBOM � The �gure depicts the response time for a
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Figure �� IBOM and OBOM performance

series of runs of IBOM that are performed for di�erent number of levels
and di�erent number of parts�

From �gure ��a� we conclude �rst� that the response time of IBOM
increases in a linear proportion to the size of data� Second� that the number
of levels in the graph has a major impact on the performance of IBOM �
There is a linear increase in response time proportional to the number of
levels�

Figure ��b� depicts the performance results of OBOM � The �gure de�
picts the response time for a collection of runs of OBOM � performed using
di�erent values of N and L�

Based on the data shown in �gure ��b� we conclude �rst� the performance
of OBOM is completely independent of the number of levels� and second� a
very weak linear increase in response time is observed as the volume of data
increases�

��� Conclusion

By comparing the performance results of IBOM to those of OBOM � we �nd
that OBOM is superior to IBOM in the order of D� Thus� our theoretical
hypothesis �i�e� the result of the complexity analysis� corresponds to the
empirical facts�

However� the correspondence is only inferable as long as the whole result
of OBOM can be contained in main�memory� Recall that IBOM needs to

��



store in memory only a fragment of Base� �i�e� the fragment that have been
produced in the previous call to Cjoin� whileOBOM stores the entire Base�
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