
An E�cient Bill�Of�Materials Algorithm

Ahmad Khalaila� Frank Eliassen

Department of Computer Science

The University of Troms�

���� Breivika� Norway

fahmad�frankgcs�uit�no

April� 	���

Abstract

A large class of linear recursive queries compute the bill�of�materials
of database relations�

This paper presents a novel algorithm that computes the bill�of�
materials of its argument�s �database� relation� The algorithm uses a
special join operation that accumulates the cost of composite parts�
without constructing the transitive closure of the argument relation�
thus saving time and space�

We argue that this algorithm outperforms existent algorithms in
the order of the diameter of the graph represented in the argument
relation� This is made possible by exploiting knowledge of the level
each tuple of the argument relation belongs to�

Moreover� this algorithm in contrast to transitive closure based
processing� produces data at a very early stage of the processing which
renders it suitable for pipelined distributed data processing�

� Introduction

Given a transitive closure operator denoted � that does not eliminate re�
dundant paths� and the relations de�ned by the following relational schema�

Uses � Relation��part � oid� subpart � oid� level � integer�	

Base � Relation��part � oid� cost � real�	

where Uses is transitively de�ned and has a tuple for each �part� subpart�
relationship� A composite part may be involved in many such tuples� The
Base relation has a tuple for each base part �i�e� a part which is not composed
of any other parts��

�

To compute the Bill�Of�Materials �BOM� in a system that provides a
transitive closure primitive� one normally submits a query that is equivalent
to the following ��algebraic �Agra
�	� expression�

Y

Uses�Part�C

�GroupByUses�Part�C�sum�Cost��Base onBase�Part�Subpart ���Uses����

An execution strategy for the above expression that is based on evaluating
each operation in the �above� strict nested order incurs very high execution
cost� This high cost is due to the intermediate construction of the transitive
closure of Uses�

We argue that any execution strategy for BOM algorithms that con�
structs the transitive closure of its argument is a bad strategy� in particu�
lar when that closure is much larger than the given relation� Moreover� in
pipelined processing systems one is in need of algorithms that produces data
as soon as possible� The strict nested�order evaluation of the above query
does not produce any data until after the evaluation of the transitive closure
of the argument relation�

In �KhEB��	 we presented a BOM algorithm that avoid the evaluation
of the transitive closure operator� and produces data at a very early stage
�compared to the transitive closure processing�� The algorithm combines
some of the operations mentioned above into one specialized join operation�
called CJOIN � The CJOIN operation does not use any knowledge about
the level of the tuples in Uses�

In this paper we present a BOM algorithm �called OBOM� which is very
similar to the one in �KhEB��	� except that the CJOIN operation of the
new algorithm implicitly exploits level knowledge�

The OBOMalgorithm is superior to the algorithm of �KhEB��	 in the
order of the diameter of the graph represented in the Uses relation�

The implementation of the OBOM algorithm is based on the Uses tuples
being grouped on part� and then the groups being sorted on level� Using
such an order OBOM computes BOM in only one call to CJOIN � as we
shall show�

��� Related Work

A transitive closure operator for database queries was �rst proposed by Zloof
in �Zloo��	� Since then it has been shown that linear recursive queries can
be expressed by such an operator �JaAN
�� ChHa
�	� and an extension of
relational algebra that includes a transitive closure operator called ��algebra
has been proposed in �Agra
�	�

�

Furthermore� Agrawal �Agra
�	 �as well as many others� proposed that
specialized algorithms that exploit the knowledge of the physical database
can be built into the database system to e�ciently implement the transitive
closure operator and some frequent applications of it�

Bill�of�materials �and similar� computations constitute a large class of
linearly recursive database computations that occur frequently in database
systems environments containing transitive relations� When such queries
are applied to very large relations� their e�cient processing become vital
�e�g� for users that are highly dependent on them�� Although all such
computations can be expressed using the transitive closure operator �as has
been illustrated above�� evaluating the transitive closure is not necessary for
the evaluation of such computations� Since such an evaluation often incurs
a very high cost in terms of time and space� we would like to avoid it� This
is very similar to avoiding the evaluation of the cross�product when join
is being evaluated �SmCh��� Ullm

b	� Moreover� in pipelined processing
system one tends to avoid processing algorithms and strategies that produces
data very late� That is due to the tremendous amount if waiting such
algorithms impose on the operators that consume their output�

Many e�cient transitive closure algorithms have been developed for
di�erent computing environments �Tarj
�� AgJa
�� Lu
�� BiSt

� IaRa

�
AgJa

� VaKh

a� VaKh

b� AgDJ��� ChDe��� HoAC��� Jian��� Jako���
DaJa��	� However for large data volumes� where the graph representation
of these data is very complex� generating the transitive closure for such data
may be very costly� Whenever generating such a closure can be avoided it
should be� In �KhEB��	� we proposed closure�based BOM algorithms that
avoid generating the transitive closure of the argument relation� This results
in better performance� both in terms of time and space�

Combining the execution of many operations into one has been �rst
proposed by Smith et al� �SmCh��	� and since then has been adopted by
nearly everyone working with query processing and optimization �JaKo
��
Ullm

b	� The combined join �CJOIN� algorithm is the core of our BOM
algorithms since it combines the accumulation of �intermediate partial� cost
for composite parts using the cost of their subparts� with the binary match�
ing normally applied in join operations� to avoid the intermediate construc�
tion of the transitive closure of the input relation�

In section � we present the IBOM algorithm from �KhEB��	� then in
section � the OBOM algorithm is presented and analyzed�

Finally� in section � we present the experimental results of the two algo�
rithms� and analyze their results�

�

� The Iterative BOM Algorithm

To compute the bill�of�materials for all the composite parts present in the
Uses relation� it is not necessary to perform the transitive closure operation
present in the BOM expression above� since we are not interesting in the
all�pairs transitive closure of the graph represented by the Uses relation�

Additionally� many of the operations involved in the above query� can
be done in a combined join operation �called CJOIN�� The operation tries
to match the subpart attribute of each tuple in the Uses relation with the
part attribute of each tuple in the Base relation� If a match occurs it
partially performs the sum operation by accumulating the cost of a Uses
composite part that have a subpart that match a base tuple� The cost for
each part is accumulated in the cost attribute of the corresponding tuple of
the temporary relation Accum� which states the identity and cost accumu�
lated so far for each �composite� part� The relational schema of Accum is
Relation��part � oid� cost � real�	

When analyzing the composition relationship we found that some parts
are not composed �i�e� they are atoms or base parts�� some parts are com�
posed only of base parts �we will call them �st level parts�� some parts are
composed only of base �i�e� ��level� and �st parts �we call them �nd level
parts�� some parts are composed only of ��level� �st level� and �nd level parts
�we call them �rd level parts�� and in general ith level parts are composed
only of parts from the levels below� i�e� ��level� �stlevel� �ndlevel� � � � � and i�
� level� Notice that the sets of parts from the di�erent levels are disjoint�

Based on the above observation� the iterative BOM algorithm �IBOM�
starts by computing the total cost for �st level parts� then the total cost
for �nd level parts� and so on� In general� computing the total cost for
parts from the ith level� will be completed only after the total cost for all
parts from all the levels below �i�e� i� �� i� �� � � � � �� have been computed�
Therefore� a run of the iterative BOM algorithm consists of the subsequent
phases �� �� � � � �D� where D denotes the diameter of the directed acyclic
graph �DAG� as represented by Uses� In each phase the total costs for the
parts from the corresponding composite level are computed� That is� in
phase i the total costs for all the parts from level i are computed� and phase
i �for i � �� is preceded by phase i � � and is followed by phase i � � �for
i � D�� Such a BOM algorithm terminates after the Dth phase�

�

��� Implementation of CJOIN

In this section we develop the CJOIN operation used in the IBOM al�
gorithm speci�ed below� This operation takes as input three argument
relations Accum�Uses� and Base� and delivers as output three relations
Accum�Uses� and NewBase�

The tuples of Uses are grouped by the part attribute� and those of Base
and Accum are hashed on their part attributes�

The following four operations are needed to implement the CJOIN op�
eration� The signatures and informal semantics of these operations are given
below�

� match � oid�Base� TupleOf�Base�
match takes a part identity as its �rst argument and the current Base
relation as it second argument� and returns the Base tuple correspond�
ing to its �rst argument�

� accumulate � real� oid�Accum�
the Accum tuple corresponding to its second argument is looked up�
and its cost attribute is incremented by the value of the �rst argument�
If such a tuple does not exist� it is created and inserted into Accum
and its cost attribute is initialized to the value of the �rst argument�

� mark del � TupleOf�Uses�� Uses�
this function puts a deletion mark on the Uses tuple corresponding to
its �rst argument� This operation shrinks the volume of Uses�

� move �NewBase � oid� real� Accum�NewBase �
this operation is called when the total cost for a composed part has
been computed completely� It increments the cost attribute of the
Accum tuple corresponding to its �rst argument by its second argu�
ment� and moves it to NewBase� This is the operation that inserts the
base tuples of the next phase �of the IBOM algorithm� into NewBase�

The above operations are implemented on top of hash�based structures on
Base and Accum� Hash�based structures and algorithms have been designed
mainly to speed up the join operation involved in the IBOM algorithm
�Brat
�� Kits
�	�

The CJOIN algorithm performs the join of Uses and Base� reduces
and reconstructs all its arguments relations� and partially computes the
aggregate function sum� all in one run through the tuples of Uses� Base�
and Accum�

�

The notations we use to specify our algorithms are self�explanatory�
However� the following elaborations may be helpful�

� Tupleof�Relation��T�� � � � � TN �	 is an instance of T� � � � �� TN �

� All types has an element denoted �� that stands for �unde�ned value��

� Any text following ��� in a line is a comment� and

� A group � Uses stands for the sequence of tuples having identical part
identities�

Algorithm ��� The combined join algorithm� CJOIN

CJOIN�Accum�Uses�Base� �
VAR�

u � TupleOf�Uses�
 b � TupleOf�Base�

u�Base � bool
 � false� if some tuples in a group are not deleted
acost � real
 � the cost accumulated so far� for current group

Program�
For group � Uses Do� for each group in Uses

u�Base� true

For u � group Do� for each tuple in current group

b� match�u�subpart�Base�

If b 	� � � is there a match �
acost� acost� b�cost

mark del�u�Uses�
 � delete the tuple

Else

u�Base� false

If u�Base
move �NewBase�u�part� acost� Accum�NewBase�

Else If acost 	� �
accumulate�acost� u�part� Accum�

acost� �
Return�Accum�Uses�NewBase�

��� Notations and assumptions

In the sequel we will use the following notations and assumptions�

�

� jUsesj � N � denotes the number of tuples of the Uses relation

� jUsesij � N i� denotes the number of �remaining� tuples in Uses at
the end of the ith phase

� I is the number of distinct part identities that occur in the part at�
tribute of Uses
 i�e� the number of groups in GroupBypart�Uses�

� jBasej � M � denotes the number of tuples initially in Base

� jBaseij � M i� denotes the number of tuples in NewBase at the end
of the ith phase

� The auxiliary operations match� move �NewBase� and accumulate
have a constant cost� denoted by C�� while the others have a negligible
cost� C� actually denotes the cost of accessing a tuple in Base or
Accum

� C� denotes the cost of accessing a Uses tuple

A simplifying assumption that otherwise has no major implication is the
following�

Assumption ��� �Uniform CJOIN behavior� The complexity of CJOIN
behavior at the di�erent D phases is uniform� That is� the same number of

tuples are added to new Base� and Accum and the same number of tuples

are deleted from Uses� at each phase�

��� Implementation of the iterative BOM algorithm

The iterative BOM algorithm can be seen as a loop of joins between the
Base and the Uses relations� each of which corresponds to a phase� as
de�ned above� In each iteration the contents of the two relations will be
changed� as explained in the sequel� Initially� the base parts will be those
in Base� and Uses will have all the tuples representing the �part� subpart�
relation�

In the �rst iteration the total cost for all parts from �st level will be
computed� the cost for all other parts that have some base subparts will be
accumulated in Accum� every tuple in Uses that has a base subpart will
be �marked� deleted� and the �st level parts together with their total costs
comprise the new Base �denoted Base�� of the next phase�

In the second iteration� the total cost for all parts from �nd level will be
computed as above� and in general� in the ith iteration the total cost of all

�

parts from the ith level will be computed� the cost of all other �i�e� higher
levels� parts that have some base part components will be accumulated in
Accum� every tuple in Uses that has a Basei�� subpart will be �marked�
deleted� and the ith level parts together with their cost comprise the new
Base of the next phase �denoted Basei��

The IBOM algorithm depicted below constructs in each iteration �i� a
new logically separated relation �fragment� to contain the new base tuples�
and is called Basei� That is� the base fragment Basei is constructed at the
ith iteration and corresponds to the Base relation of iteration i� �� Basei

contains a tuple for each of the ith level part which has a part attribute
corresponding to that ith level part and a cost attribute whose value is the
total cost of that part� Base� corresponds to the initial Base relation which
is used in the �rst iteration�

The temporary relation Accum will at the end of each iteration i contain
the cost for each jth level �j � i� part which have some subpart from the
levels below i� Within the ith iteration� when the total cost for a level i part
is computed� the Accum tuple corresponding to that part� is moved from
Accum to Basei�

Finally� the Uses relation will at the end of each iteration i� have no
tuple with a subpart from level i or any level below�

Algorithm ��� An Iterative BOM algorithm

IBOM�Uses�Base�� �
VAR�

Accum� result � Relation��part id � oid� cost � real�	

i � integer
 � a phase counter

Program�
i� �

result� Base�

While�Usesi 	�
� Do
�Accumi� Usesi� Basei�� CJOIN�Accumi��� Usesi��� Basei���

result� result �Basei

i� i� �

Return�result�

��� The Cost Formula of IBOM

The cost formula for CJOIN is de�ned as follows�

CFCJOIN � N � C� �N �C� � �I � I�D�� C� � �I�D�� C�

In the above formula� the �rst and second terms denote the cost of the hash�
based join operation� That is� the cost of accessing the tuples of Uses and
Base�

The third term� �I � I�D� � C�� corresponds to the �worst case� cost
of accessing the Accum tuples in order to accumulate the cost of their cor�
responding parts� The fourth term �I�D� � C� corresponds to the cost of
restructuring Accum and NewBase�

Notice that the number of tuples in Accum will never exceed the number
of groups in Uses �i�e� I� minus the number of groups for which a total cost
is emerging �i�e� I�D�� Moreover� the number of tuples in NewBase will
never exceed I� in average it will be I�D�

Since N � I is always true� the above formula is rewritten to�

CFCJOIN � N � �C� � C�� � I �C�

� N�C� � �C��
���

The cost formula for the iterative BOM algorithm can be expressed by
using the cost formula previously developed for CJOIN � as follows�

CFIBOM � �D
i��Ni�C� � �C��

� �C� � �C���
D
i���Ni�

���

The above formula is derived simply from the fact that in a run of IBOM
there is an CJOIN call �whose cost is de�ned by equation �� for each of
the D levels in the DAG represented by Uses�

The term C� � �C� in CFIBOM involves only constants and therefore
cannot be reduced further� However� using assumption ���� we may set
Ni � N � �i� ��N�D� The term �D

i���Ni� can then be reduced as follows�

�D
i���Ni� � N�D � ���� ���

Finally� by substituting equation � into equation � �i�e� N�D � ���� for
�D
i���Ni�� we get�

CFIBOM � �C� � �C���D � ��N�� ���

�

� The OBOM algorithm

This section presents our new and very e�cient algorithm �called OBOM�
which is developed by implicitly using the knowledge of the level to which
a tuple belongs�

The database schema consists of the following�

Uses � Relation��part � oid� subpart � oid� level � integer�	

Base � Relation��part � oid� cost � real�	

The algorithm assumes that the tuples of Uses are grouped using the part
attribute� and then the groups are sorted based on the level attribute� This
ordering results in having all the groups of parts belonging to the �rst level to
be located at the start of Uses� followed by all the groups of parts belonging
to the second level� and so on until the end of Uses where all the groups
of parts belonging to level D are located� That is� the group of tuples
determining the cost of each part from a level j are grouped together and
occur �in Uses� before any group from any level k � j� and after any group
from any level �i j��

Moreover� Base is hash�structured and contains initially a tuple for each
part from level ��

The OBOM algorithm is very similar to CJOIN but much simpler
as a result of the knowledge it implicitly possesses about the ordering of
tuples in Uses� The algorithm uses two routines� match which has the same
functionality as in CJOIN � and hash insert which inserts a new base tuple
into Base�

��

Algorithm ��� A very e�cient BOM algorithm� OBOM

OBOM�Uses�Base� �
VAR�

u � TupleOf�Uses�
 b � TupleOf�Base�

acost � real

Program�
For group � Uses Do� for each group in Uses

For u � group Do� for each tuple in current group
b� match�u�subpart�Base�

acost� acost� b�cost

hash insert��u�part� acost�� Base�

acost��

Return�Base�

Algorithm � starts by computing the total cost of parts from the �rst
level� and since all their subparts are �from level � and therefore already� in
Base� match will never fail to match a corresponding base tuple� After the
cost of a part is computed it is inserted into Base� Consequently� when the
costs of all parts from the �rst level are computed� they are stored in Base�
hence computing the costs of parts from the second level can start� and so
on� In general� when OBOM starts computing the costs of parts from level
j� Base already contains the total costs of all parts from all levels i � j�
When the total costs of all parts from level D are computed� the algorithm
reaches the end of Usesand terminates� and Base contains the costs of all
parts�

��� Complexity of OBOM

This algorithm accesses each tuple in Uses only once� thus it is optimal with
regard to its access to Uses� Because any BOM �or any transitive closure�
algorithm will have to access the tuples of each group in order to compute the
cost of their corresponding part� On the other hand� the algorithm accesses
each tuple of Base �not only the initial Base� a number of time equivalent
to its frequency as a subpart in Uses� But that is also the minimum number
of accesses needed to compute the cost of all parts� Since� a cost of a part
is determined by the cost of its subparts� there is a need to access Basefor
each subpart in order to compute the total cost�

One way to optimize the accesses to Base� is to cluster all the Uses

��

tuples having the same subpart� but then we may have destroyed the access
structure imposed on Uses and that made this algorithm possible� Moreover�
a need for temporary accumulation will arise� as in IBOM �

In IBOM each invocation i of Cjoinattempt to match each Uses tuple
that is not marked deleted with a base tuple� to extract the cost of the
subpart of that tuple of Uses� Such a match will fail for all Uses tuples
that have a subpart that is not currently in Base�i�e� a subpart that belongs
to a level j �� i��

The complexity of the OBOMalgorithm is de�ned as follows�

�N � C�� �N � C� � N � �C� � C��

which is superior to IBOM in the order D�
For many environments in which BOM computations are critical and

vital to their operation� it seems to us worth to maintain the knowledge of
the level of parts in Uses� Maintaining such knowledge can be done very
e�ciently and in an incremental manner� hence enabling the application of
this new algorithm�

� Experimental results and their analysis

This section presents the results of a lab experiment which tries to infer a
correspondence between the results of the theoretical analysis and empirical
facts� In other words� we looked for empirical facts to refute the result of
the theoretical analysis� That is� if the performance of OBOM is actually
superior to IBOM in the order of D�

��� The lab environment

We implemented the IBOM and OBOM algorithms in C�Unix� We ran
the IBOM and OBOM programs on a HP�UX ������
� �C����� machine�
having ��
 Mb memory and � Gb disk space� It should be noted that the
compilation of the programs did no optimization for this architecture� That
is� the performance results �i�e� response time for the various runs� should not
be perceived as being the best results obtainable on this architecture� This
is acceptable since we are conducting a comparative study of two algorithms�
rather than trying to �nd the best time achievable by these algorithms on
a speci�c architecture�

The IBOM or OBOM program ran on the system alone� i�e� there were
no concurrent user processes on the system�

��

��� The construction of test data

A program called mk�graph constructs the data for the experiment� This
program takes � arguments
 the number of parts in the graph �denoted
N�� the number of levels in the graph �denoted L�� the minimal number of
subparts in each composite part �denoted C�� and the minimal number of
parts a part is a subpart of �denoted P ��

The program constructs both Uses and Base� It constructs Uses by
virtually building a directed acyclic graph �DAG� having�

� D levels�

� each part at any level �except level D� is engaged as a subpart in at
least P tuples in Uses� and

� each part at any level �except level �� is engaged as a composite part
in at least C tuples in Uses�

The program assigns N�D parts to each level as follows� It assigns the parts
����N�D� to level �� then the parts ��N�D� � ������N�D� to level �� and so
on until �nally the parts �D � ��N�D��N are assigned to level D � ��

The construction of Base is much simpler� mk�graph constructs a tuple
for each part of level �� and attaches to it a cost value which is chosen
pseudo�randomly�

In this way the program can control the volume of data in the graph �i�e�
the number of parts� and its complexity �i�e� the number of Uses tuples a
part is engaged in as a composite part or as a subpart��

��� The tests and their analysis

We want to test the hypothesis that the OBOM algorithm is superior to the
IBOM algorithm in the order of D� Since we are addressing large database
processing� we also want to test the impact of large data volumes and large
number of levels on the performance of these algorithms�

In our experiment� both N and D varies� while P and C remain un�
changed having the value �� throughout the whole experiment� The size of
a Uses tuple also remains unchanged� Thus� neither the impact of graph
complexity nor that of the tuple size is considered directly� The reason for
this being that our analysis shows that these factors merely increase the
size of the data� Testing the impact of the size of data on the performance
of the algorithms should therefore prove su�cient� Figure ��a� depicts the
performance results of IBOM � The �gure depicts the response time for a

��

0

1000

2000

3000

4000

5000

0 200000 400000 600000 800000 1e+06

tim
e

in
 s

ec
on

ds

number of parts

performance results of ibom

10 levels
20 levels
30 levels
40 levels
50 levels

�a� IBOM

0

1000

2000

3000

4000

5000

0 200000 400000 600000 800000 1e+06

tim
e

in
 s

ec
on

ds

Number of parts

Performance results for obom

10 levels
20 levels
30 levels
40 levels
50 levels

�b� OBOM

Figure �� IBOM and OBOM performance

series of runs of IBOM that are performed for di�erent number of levels
and di�erent number of parts�

From �gure ��a� we conclude �rst� that the response time of IBOM
increases in a linear proportion to the size of data� Second� that the number
of levels in the graph has a major impact on the performance of IBOM �
There is a linear increase in response time proportional to the number of
levels�

Figure ��b� depicts the performance results of OBOM � The �gure de�
picts the response time for a collection of runs of OBOM � performed using
di�erent values of N and L�

Based on the data shown in �gure ��b� we conclude �rst� the performance
of OBOM is completely independent of the number of levels� and second� a
very weak linear increase in response time is observed as the volume of data
increases�

��� Conclusion

By comparing the performance results of IBOM to those of OBOM � we �nd
that OBOM is superior to IBOM in the order of D� Thus� our theoretical
hypothesis �i�e� the result of the complexity analysis� corresponds to the
empirical facts�

However� the correspondence is only inferable as long as the whole result
of OBOM can be contained in main�memory� Recall that IBOM needs to

��

store in memory only a fragment of Base� �i�e� the fragment that have been
produced in the previous call to Cjoin� whileOBOM stores the entire Base�

� Acknowledgment

We wish to thank !Age Kvalnes� Espen Skoglund and Kjetil Jacobsen for
their e�orts in writing a Perl script that generated the result data� Ken
Hirsch for his interest in BOM computation which inspired the development
of this new and e�cient algorithm� and Gaute Nessan for very interesting
discussions on computer systems in general and Unix in particular� He also
helped �nd some C bugs�

References

�Agra
�	 Agrawal� R�� �Alpha� An extension of Relational Alge�
bra to Express a class of Recursive Queries�� Proc� �rd
Int"l Conf� on Data Engineering� February ��
��

�AgJa
�	 Agrawal� R�� Jagadish� H�V���Direct Algorithms for
Computing the Transitive Closure of database rela�
tions�� in Proc� ��th Int"l Conf� on VLDB� ��
��

�AgJa

	 Agrawal� R�� Jagadish� H�V���Multiprocessor Transitive
Closure Algorithms�� in Proc� Int"l Symp� on Databases
in Parallel and Distributed Systems� Austin� Texas� Dec�
��

� pp� ������

�AgDJ��	 Agrawal� R�� Dar� S�� Jagadish� H�V�� �Direct Transi�
tive Closure Algorithms� Design and Performance Eval�
uation�� in ACM Trans� on Database Systems� ������
Sept� �����

�Banc
�	 Bancilhon� F�� �Naive Evaluation of Recursively De�ned
Relations�� TR� DB�����
�� MCC� Austin� Texas� ��
��

�BiSt

	 Biskup� Stiefeling� � Transitive Closure Algo�
rithms for Very Large Databases�� TR� Hochschule
Hildesheim���

�

�Brat
�	 Bratbergsengen� K�� �Hashing Methods and Relational
Algebra Operations�� Int"l Conf� on VLDB� Singapore�
Aug� ��
��

��

�ChDe��	 Cheiney� J�� De Maindreville� C�� � A Parallel Strat�
egy for the Transitive Closure Using Double Hash�based
Clustering�� in Proc� Int"l Conf� on VLDB� aug�� �����

�ChHa
�	 Chandra� A�K�� Harel� D�� �Horn clauses and the �x�
point query hierarchy�� Proc� �st Symp� Principles of
Database Systems� ��
�� pp� ��
�����

�Codd��	 Codd� E�F�� �A relational model of data for large shared
data banks�� CACM� vol� ��� June ����� pp� �����
��

�Codd��	 Codd� E�F�� �Relational completeness of database sub�
languages�� DataBase Systems� R� Rustin� Ed� Engle�
wood Cli�s� NJ�Prentice�Hall� ����� pp� ����
�

�DaJa��	 Dar� S�� Jagadish� H�V�� �A Spanning tree Transitive
Closure Algorithm�� in Proc�
th Int"l IEEE Conf� on
Data Engineering� �����

�Graf��	 Graefe� G�� �Query Evaluation Techniques for Large
Databases� ACM Computing Surveys �� ���� June �����

�Gutt
�	 Guttman� A�� �New Features for Relational Database
Systems to Support CAD Applications�� Computer Sci�
ence Dept�� Univ� of California� Berkeley� June ��
��
Ph�D� Dissertation�

�HoAC��	 Houtsma� M�� Apers� P�� Ceri� S�� � Distributed Tran�
sitive Closure Computation� the Disconnection Set Ap�
proach�� in Proc� ��th Int"l Conf� on VLDB� Aug�� �����

�IaRa

	 Ioannidis� Y�E�� Ramakrishnan� R�� �E�cient Transi�
tive Closure Algorithms�� in Proc� ��th Int"l Conf� on
VLDB� ��

�

�Ioan
�	 Ioannidis� Y�E�� �On the Computation of the Transitive
Closure of Relational Operators�� Proc� ��th Int"l� Conf�
on Very Large Date Bases� August ��
�� pp� ��������

�JaAN
�	 Jagadish� H� V�� Agrawal� R�� Ness� L�� �A Study of
Transitive Closure as a Recursion Mechanism�� Proc�
ACM�SIGMOD ��
� Int"l Conf� on Management of
Data� May ��
��

��

�JaKo
�	 Jarke� M�� Koch� J�� �Query optimization in database
systems�� ACM Computing Surveys� ������ pp ��������
June ��
��

�Jako��	 Jakobsson� H�� �Mixed�approach Algorithms for Transi�
tive Closure�� in Proc� of ACM Symp� on PODS� Den�
ver� Co�� May� �����

�Jian��	 Jiang� B�� � A Suitable Algorithm for Computing Partial
Transitive Closures in Databases�� in Proc� IEEE Conf��
on Data Engineering� �����

�Khal��	 Khalaila� A�� �Partial Evaluation and Early Delivery�
Adapting the Pipeline Processing Strategy to Asyn�
chronous Networks�� PhD Dissertation� The University
of Tromsoe� �����

�KhEB��	 Khalaila� A�� Eliassen� F�� Beeri� C�� �E�cient Bill�
Of�Materials Algorithms�� Technical Report ������ The
University of Troms#� Sept� �����

�Kits
�	 Kitsuregawa� M�� et al�� �Applications of Hash to Data
Base Machine and Its Architecture�� in New Generation
Computing� vol� �� ��
��

�Lu
�	 Lu� H�� � New Strategies for Computing the Transitive
Closure of Database Relations�� in Proc� ��th Int"l Conf�
on VLDB� ��
��

�SACLP��	 Selinger� P� G�� Astrahan� M�M�� Chamberlin� D�D�� Lo�
rie� R� A�� Price� T�G�� �Access Path Selection in a Rela�
tional Database Management System�� ACM�SIGMOD
�����

�SmCh��	 Smith� J�M�� Chang� P�Y�� �Optimizing the Performance
of a Relational Algebra Database Interface� CACM
�
����� October �����

�Tarj
�	 Tarjan� �Fast Algorithms for Solving Path Problems��
Journal of the ACM� �
���� ��
��

�Ullm

a	 Ullman� J�D�� Principles of Database and Knowl�
edge Base Systems� Vol� I� Computer Science Press�
Rockville� Md�� ��

�

��

�Ullm

b	 Ullman� J�D�� Principles of Database and Knowl�
edge Base Systems� Vol� II� Computer Science Press�
Rockville� Md�� ��

�

�VaKh

a	 Valduriez� P�� Khosha�an� S�� �Transitive Closure of
Transitively Closed Relations�� �nd Int"l Conf� on Ex�
pert Database Systems� L� Kerschberg �ed��� Menlo
Park� Calif�� Benjamin�Cummings� ��

� pp� ��������

�VaKh

b	 Valduriez� P�� Khosha�an� S�� �Parallel Evaluation of
the Transitive Closure of a Database Relation�� Int"l
Journal of Parallel Programming� Vol� ��� No� �� Feb��
��

�

�Zloo��	 Zloof� M�M�� �Query�By�Example� Operations on the
Transitive Closure�� RC ����� IBM� Yorktown Hts� New
York� �����

�

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

