ReflecTS;
A Reflective Transaction Service Framework
for Open Applications

Anna-Brith A. Jakobsen and Randi Karlsen
{annab,randi}@cs.uit.no

Computer science department, University of Tromsg, 9037 Tromsg, Norway

Abstract. Transactional middleware platforms must accommodate an increasingly diverse
range of requirements from both applications and the underlying systems. It is clear that
applications have characteristics and requirements that vary a lot, and that transactional
middleware must be able to support the potential variety in transaction execution require-
ments. In this paper we describe ReflecTS, a reflective platform for transaction services
that will meet the diverse needs of applications. The platform, which is composed of com-
ponents and component frameworks, supports concurrently running transaction services
and exposes the ability to configure and reconfigure the services by adopting the principles
of reflection.

1 Introduction

Middleware has evolved as a standard way to implement distributed applications. Middle-
ware infrastructures, for instance CORBA [22], Java RMI [35] and DCOM/.Net [15], represents
a software layer between the application and the underlying operating system, hiding distri-
bution and heterogeneity for the above layer. Transactional middleware supports the execution
of distributed transactions running on heterogeneous, distributed hosts. Present implemen-
tations of transactional middleware, like CORBA’s Object Transaction Service (OTS)[2] and
Enterprise JavaBeans’ Java Transaction Service (JTS) [43], provides mainly support for the tra-
ditional flat transaction model while preserving the ACID (atomicity, consistency, isolation and
durability) properties.

The traditional flat transaction concept is generally not applicable within advanced appli-
cations like workflow, cooperating work, multimedia and mobile applications, where charac-
teristics and transactional requirements goes beyond the ACID properties. We are in this paper
particulary concerned with applications that goes even a step further and exhibits character-
istics and properties that can vary over time or be dependent on the situation the applica-
tions are used in. Such applications appears to us as open application domains. Open application
domains are characterized by unpredictability and major variations in transactional require-
ments, which also may lead to new and demanding requirements.

To oblige unpredictability and requirements from open application domains, we propose
in this paper a highly adaptable and flexible transactional middleware platform. The platform
will meet the varying transactional requirements by offering a number of concurrently running
transaction services each providing different transactional guarantees, and by applying qualities
to configure and reconfigure transaction services.

We design the platform using components, component frameworks and reflection, which are the
general means to achieve configurability and reconfigurability within middleware today. The
platform will be composed of components throughout the whole platform. Domain-specific
component frameworks will constrain the design space and the scope for evolution of the
platform. By deploying an extensible set of transaction services within the framework, we
argue that our approach considerably will improve the support of varying transactional re-
guirements of applications.

This work is a part of the Arctic Beans project[5], which is funded by The Research Council
of Norway. The primary goal of the Arctic Beans project is to provide a more open and flexi-
ble enterprise component technology, with support for configurability and re-configurability,
based on the principles of reflection.

In the remainder of this paper we first, in section 2, discuss the motivation for this work.
Section 3 will give necessary background information on global transaction processing, com-
ponents, component frameworks and reflection. Then a specification and a overall design of
the flexible transactional middleware platform follows in section 4. Section 5 gives presents an
architecture for an implementation and lists issues that follows in the wake of an implementa-
tion. Section 6 presents related work. Finally, section 7 draws conclusions and presents current
and future work.

2 Motivation

In traditional database systems, the transaction concept is related to the flat transaction model
and the key to success is the traditional ACID properties. However, new applications have
varying characteristics and transactional requirements, and the traditional transaction model
is generally not applicable. Many advanced applications, within for instance workflow, mo-
bile, multimedia and cooperating application domain, execute long-running transactions where
strict ACID properties are not particularly suitable. Strict atomicity would, for long-running
transactions, imply too much work to be undone in case of failure, and strict isolation prevents
concurrency and co-operation.

To meet requirements from advanced applications, a number of advanced transaction mod-
els [18, 39] have been proposed during the last decades. They address specific transactional
requirements, such as relaxed atomicity and isolation requirements, and offers thereby some
flexibility. They do, however, not support the required flexibility in a principled way, and are
neither implemented nor used in any commercial product.

Advanced applications embrace a huge number of very different types. For some of them
we see a heed for adaptivity, as the applications exhibits characteristics and properties that
vary over time and from situation to situation. Such open applications may need to execute
transactions with different properties, and the transaction management system must adapt
accordingly. Some open applications initially requires only a single set of transactional prop-
erties. This set may change during runtime, for instance from the ACID properties to proper-
ties where semantic atomicity, relaxed isolation and/or timely constraints are included. Other
open applications may concurrently execute transactions that require different properties. We
assume that open applications are under constant evolution and that new requirements may
emerge over time. Transactional requirements are thus not fully known at application design
time.

A medical information systems is an example of an application with dynamically changing
transactional requirements. Within these systems, information of different types; for instance
patient journals, radiographs and spoken reports are stored over a number of sites. A variety of
different applications may work towards these sites. For instance, user A works with updates
of patient journals, and initiates the execution of traditional flat transactions which requires
the ACID properties. User B works with statistical data, and preferably initiates long-running
transactions that will scan a number of patient journal databases searching for specific infor-
mation. This transaction may not follow the traditional ACID properties as statistical data can
be indicated truth rather than exact truth. User C wants to access a centrally stored patient
journal while driving to a patient, so transaction processing in this setting must take into ac-
count mobility issues as well as transactional guarantees. User D is on a place of loss needing
important information from a patient journal. User D does not have much time available, so
he will typically ask for immediate response on his request. User A and user D do issue the
same kind of transaction; reading and possibly updating information from a patient journal.
However, they have different expectations and requirements to the transaction. User E, also

on a place of loss, is equipped with a PDA and sensor- and recording devices. User E commu-
nicates with for instance a hospital to where he wants to transfer multimedia information in
real-time. Such transactions requires quality of service guarantees.

The picture drawn above can be more complex and the transactions more structured. For
instance, compensating transactions may be necessary, and sub-transactions can be specified
as optional, contingent, with retry options, or with dependency on the outcome of other trans-
actions. What we do have seen is that different user groups and different applications can issue
different types of transactions, from simple to complex. This literally means that the different
types of transactions can be described using different transaction models, either models that
are already described [18, 39][17][3], or models that can be described.

Even though different transaction models exist, none of them alone offer the required flex-
ibility in open applications. We therefore argue that transactional middleware must support
the varying needs from open applications by providing a transactional framework where a
number of concurrently running transaction services can serve the different transactions.

At application design time, there may be a need to decide upon a transaction service for
the application. If the required transaction service does not exist within the pool of available
transaction services, the application designer may want to configuration a suitable transaction
service for the particular application. An application can change its needs during run-time. It
may either be that new needs arises, or that the application designer where not aware of all
transactional needs at initialization time. This initiate a reconfiguration of an existing transac-
tion service or a configuration of a new service. Due to this we argue that a flexible transactional
middleware also must expose the ability to configure and reconfigure transaction services.

3 Background

Global transaction processing has been an issue in multidatabase systems for many years. As
the requirements to transaction processing has evolved from being static to variable and flex-
ible, building transaction processing systems requires technology that can oblige them. In the
following, we first give an overview of global transaction processing, and thereafter we give
information about technology to support the development of flexible transaction processing
systems.

3.1 Global Transaction Processing

Most advanced applications today requires access to a number of various distributed and het-
erogeneous data sources; for example a database, a file or a printer, which are managed by
resource managers (RM). Systems that facilitate the local integration of local data sources are
called multidatabase systems (MDBS) [10]. A MDBS is a layered architecture built on top of
a number of resource managers (RMs). Access to data in local data sources are accomplished
through for instance transactions. A MDBS supports two types of transactions; 1) Local trans-
actions are executed by the local RMs, outside of MDBS control; 2) Global transactions are exe-
cuted under MDBS control. A global transaction consists of a number of subtransactions, each
of which is an ordinary local transaction executed at a local DBMS. Within a MDBS system,
a global transaction manager (GTM or only TM) coordinates distributed transaction processing
and submits global transaction operations to the local RMs.

Figure 1 depicts an overview of global transaction processing within a traditional multi-
database system.

3.2 Reflection, Components and Component Frameworks

Reflection is based on the idea of open implementation [32], which is about designing reusable
software modules. Reflection is the principled means to achieve open implementations as re-
flection is a technique applied for “opening up” a system to support inspection and adapta-
tion of internal structure and behaviour [34][31]. Aspects of the system are available through

Global Transactions
Ti
Tj

vy

Global Transaction Processing

Local
transactions

RM | RM

Fig. 1. Global Transaction Processing

offered meta-interfaces (or meta-object protocols, MOP). A meta-interface will typically pro-
vide operations to inspect the internal details of the platform (introspection) and to change the
underlying middleware (adaptation). More generally, there are two styles of reflection : Struc-
tural reflection to inspect and change the underlying structure of the system, and behavioural
reflection to inspect and change the activity in the underlying system [7].

Component technology has come to be the most widely adopted technique to construct
configurable software systems. According to Szyperski [44], a component can be viewed as:

"a unit of composition with contractually specified interfaces and explicit context dependencies,
and in this context, a component can be deployed independently and is subject to third-party
composition™.

Components adds flexibility to software systems. Components implement strong inter-
faces and encapsulates implementation details, which enable systems to be easily adapted
by adding, removing or replacing components. A number of component models, both com-
mercial and research based, are available. Enterprise JavaBeans [36] and CORBA Component
Model [23] are heavy-weight enterprise components. Java Beans [35] has provided support
for reflection (introspection and specialization). Microsoft’s Component Object Model (COM)
[14] is a model performing more efficiently than Java Beans, but provides no reflective capa-
bilities. The .NET [15] framework from Microsoft provides another component model where
reflective capabilities are fully available to introspect metadata and components. OpenCOM
[13] is a lightweight, efficient and reflective component model built upon the core concepts
of COM (i.e. uniquely specified and discoverable interfaces), omitting higher-level features
such as distribution, persistence, transactions and security. Reflective features for introspec-
tion and adaptation are added to OpenCOM, making it an ideal component model to build
reflective middleware upon. OpenCOM was designed specifically for the implementation of
the OpenORSB reflective middleware [9].

An open and reflective middleware infrastructure build upon components, are subject to
dynamic changes. The importance of enforcing architectural constraints on a dynamically
evolving platform is considerably, as we require integrity to be preserved at any time. To
achieve integrity preservation, the component framework (CF) technology is applied. A CF is
defined by Szyperski [44] as:

"a collection of rules and interfaces that govern the interaction of a set of components plugged
into them™.

A component framework enforces architectural principles on the components it supports,
preserving integrity and constraining the design space and the scope of evolution. Compo-
nent frameworks applies to specific domains, which means that integrity maintenance are
closely related to the characteristics of the domain. For example, a transaction service component

framework will contain specific rules for the architecture of a transaction service. A compo-
nent framework will also simplify the assembling of components. To do this, it maintains an
architecture consisting of a component graph and its constraints.

There are few component frameworks available for commercial use. OpenORBJ[9] and
ReMMoC [20] are implemented using OpenCOM components, and creates their own com-
ponent framework model atop OpenCOM. Other component frameworks are OpenDOC [27]
and BlackBox [28].

4 Design of ReflecTS; A Reflective Transactional Middleware Platform

4.1 Introduction

This section describes our current activities in order to meet the goals described introductorily.
While transactional middleware like OTS and JTS assures the ACID properties for distributed
transactions, our work is designed to meet varying transactional requirements imposed by
open applications. We design an architecture called ReflecTS (Reflective Transaction Service
middleware platform). ReflecTS will provide support in the deficiencies identified within cur-
rent transactional middleware by adopting the following approaches:

1. ReflecTS will provide both initial and run-time configuration of transaction services

2. ReflecTS will provide run-time reconfiguration of transaction services

3. ReflecTS will offer concurrently running transaction services guaranteeing a variety of trans-
actional requirements

The underpinning key technologies of ReflecTS are components, component frameworks
and reflection. Components, the main building-blocks of the platform, as they are self-contained,
reusable, replaceable architectures with strong interfaces; Component frameworks for con-
straining the scope of evolution, configuration and reconfiguration of the components forming
the platform; And reflection as a general mean to open up the system and achieve configura-
bility and reconfigurability.

The base functionality of ReflecTS, the TSenvironment [30, 29] represents a model for an
adaptable transactional system and is briefly described below.

4.2 Model for an Adaptable Transactional System

The Transaction service execution environment (TSenvironment) [30, 29] is an architecture for a re-
flective transactional system. Within the TSenvironment, transaction services can be deployed,
modified and used concurrently according to the needs of the applications. The TSenviron-
ment includes a Transaction service manager (TSmanager) controlling transaction service deploy-
ment and modification, and guarantees consistent use of different transaction services. An
overview of TSenvironment is given in figure 2.

A transaction service, TS is a self-contained software component that is independently de-
veloped and delivered to a transactional environment. A TS may be composed of a number
of smaller components (service components), which are assembled to form a complete and con-
sistent TS. Service components represent well-defined tasks within a transaction service, for
instance commit, recovery and concurrency control.

Component deployment: The TSmanager handles deployment of transaction service com-
ponents. The TSmanager also stores information about the components as provided in ac-
companying component descriptors, holding relevant information about the component (e.qg.
transaction management properties, service composition, conditions for using the component,
and component compatibility).

Service assembly: A component deployed in the TSenvironment can, as described, either
represent a complete TS or a service component that must be assembled with other services to
form a complete service. Assembling of service components are based on information from a

TSenvironment

transaction
service 2
- TSmanager
transaction transaction 4 =
service 1 service 3 SCinstaller o - poﬂe‘“
c
tran, ~
o Sagtioy -
ecugj, T

e\l
"8quegy \‘ TSactivator ‘—‘ TSassembler ‘ e ice]
ipWo

‘ descti®

3

% information
base

Fig. 2. Overview of TSenvironment

component descriptor. A complete TS is registered in the TSenvironment, and the descriptor
stored in an information base.

Service activation: When transaction execution is requested, the TSmanager i) determines
the proper TS to use, and ii) allows the TS to start execution when this does not violate cor-
rectness.

Based on information from user, available system resources and underlying systems, a
suitable TS will be determined from the pool of available services. The selected TS may be
either active or inactive. An active service is currently managing at least one transaction, while
an inactive service is currently not used by any transaction. Compatible transaction services do
not interfere with each other and can be active at the same time. Two services are incompatible
if the transactional properties of either one of them cannot be guaranteed when they are active
at the same time.

4.3 Overview ReflecTS Platform

The ReflecTS platform is composed of components and component frameworks (CF). The plat-
form itself is represented as a CF; ReflecTS CF, which contains a number of components; TSAc-
tivate, TSInstall and InfoBase, and a CF; TS Framework. TS Framework is further configured by
plugging in a number of different transaction service implementations. Both complete trans-
action services (TS) and service components (SC) can be deployed. A complete TS implemen-
tation can consist of a number of components, each implementing a welldefined task of the TS.
The component frameworks in the platform implements policies for constraining the architec-
ture and the scope of evolution of its constituents. The components implements administrative
tasks. ReflecTS CF will provide interfaces to for instance applications and transaction service
designers (which can be exposed from plugged in components). An overview of the ReflecTS
platform is given in figure 3.

The TSActivate component implements an interface through which it will receive transac-
tional requests (i.e. start-transaction) from applications and implement management routines
for handling these requests. If an start-transaction request is issued TSActivate selects an ap-
propriate TS and activates it if it is compatible with already active TSs. The transaction will be
handed over to the selected TS where the execution of will be controlled.

The TSlInstall component implements an interface through which it will receive requests
for TS and SC deployment and TS configuration and reconfiguration from transaction service
designers. Service components or complete transaction services, descriptors and compatibility
information will be provided along with the requests. Descriptors and compatibility informa-
tion will be stored at the InfoBase component before the tasks will be performed and controlled
by the TS Framework.

The InfoBase component will contain information about deployed transaction services, trans-
action service descriptors, service component descriptors and transaction service compatibil-
ity. A transaction service descriptor contains information about the transactional guarantees
the service provides and how to use it. A service component descriptor contains information

O O Interfaces to Applications and TS Designers

.
TSActivate

(O Information
Base

ReflecTS Component FramaNo)’k/ ’
@) o)
ogo| 0% | O

Fig. 3. Overview of the ReflecTS platform

.
TSinstall ‘

o O

TS implementations

TSFra‘/néNp\rk\ KA N

about how a service component can be assembled with other components to form a complete
service. Transaction service compatibility information, both vertical and horizontal compatibility
is stored as a part of the descriptor. TS’s that can be concurrently active without causing any
inconsistencies are determined as horizontally compatible. Vertical compatibility is present
if transactional protocols (commit, recovery, global concurrency control) in a TS matches the
corresponding protocols in the current underlying RMs. More information about transaction
service compatibility can be found in section 4.5. Information stored by the InfoBase compo-
nent will be used both by the TSActivate and the TSInstall component.

The reflective capabilities of the ReflecTS platform is suggested achieved by equipping the
CFs with a meta-interface for inspection and reconfiguration as implemented in OpenORB [9]
and ReMMoC [21]. We consider two types of reflection, structural and behavioural. Structural
reflection on ReflecTS CF involves for instance adding new functionalities to a component (i.e.
update information in the InfoBase or replace the TSActivate component) or to add or remove
components from the ReflecTS CF. Structural reflection on TS Framework involves configura-
tion and reconfiguration of TS implementations. Behavioural reflection on TS Framework is
represented by the ability to select between TS implementations.

The properties of the ReflecTS platform are given by the TS implementations deployed
within the platform. Structural reflection on TS Framework will change the properties of the
platform. Behavioural reflection will not. Structural reflection on ReflecTS CF will not change
the properties of the platform, only change the way the management components behave.

ReflecTS is presented as a self-contained and freestanding solution to transactional middle-
watre. Its ability to be incorporated into a middleware infrastructure providing other functional
and non-functional properties, will not be discussed in this paper. An example of ReflecTS in
a global setting is presented in figure 4.

4.4 ReflecTS; Design and Responsibilities

This section will give an overview and state the responsibilities of the component frameworks,
ReflecTS CF and TS Framework, and the transaction service implementations.

ReflecTS Component Framework The ReflecTS CF conform to the following responsibilities:

. Act as an access point for transaction service configuration and reconfiguration

. Act as an access point for transactional requests

. Provide the ability to change the internals of the ReflecTS CF

. Assure that configuration and reconfiguration of its plug-ins conforms to a valid architec-
ture

A wWpN -

ReflecTS CF meets its first responsibility by exposing an interface provided by the TSInstall
component, see figure 3. This interface will be available for transaction service designers, and

Global Transactions
Ti

Tj

Middleware Infrastructure
Transacti 0”?1 |__Transaction
Middleware; | @/ Services
ReflecTS

Loca

transactions

RM | e RM

Fig. 4. Transaction Processing within ReflecTS

will contain methods for configuring and reconfiguring TSs. Requests on this interface are
managed by the TSInstall component, but are actually performed by the TS Framework where
the TSs are deployed.

ReflecTS CF meets responsibility number two by exposing an interface provided by the
TSActivate component. This interface will be available for applications and contain methods
for starting and committing transactions. Requests on this interface are managed by the TSAc-
tivate component before they are actually controlled and performed by a TS within TS Frame-
work.

ReflecTS CF provides the ability to change its internals by implementing a meta-interface
with methods for introspection and reconfiguration. Reflection on ReflecTS CF is achieved via
this meta-interface, and is basically represented by the ability to change the components or
the component structure within it. This is actually performed on a graph of the components,
which is maintained by ReflecTS CF.

ReflecTS CF performs integrity maintenance and assures that its constituents conform to
a valid architecture. Every change to a transaction service configuration is compared against
a set of pre-defined valid architectures. The set of architectures is specific to ReflecTS’ do-
main. It is not static, but can change according to new needs. For example, the architecture
of the present version of ReflecTS CF describes how the three specific components, TSActi-
vate, TSInstall and InfoBase, and the component framework, TS Framework, is related to each
other. Changes within ReflecTS CF are constrained to match this architecture. If an additional
component joins ReflecTS, a new architecture must be described and added to the set of valid
architectures.

TS Framework The TS Framework contains an extensible set of transaction service imple-
mentations and conform to the following responsibilities:

1. Receive and route transactional requests

2. Provide reflection in order expose the possibility to configure and reconfigure transaction
services

3. Assure that configurations and reconfigurations of transaction services conforms to valid
services and valid architectures

To respond to its first requirement, TS Framework exposes an interface provided by the de-
ployed TS implementations. This interface contains methods for transactional requests; such
as Trans_Begin() and Trans_Commit. Methods are requested by applications via the TSActivate
component. The transactional requests are routed by TS Framework to the correct TS imple-
mentation where it is actually performed.

To address the second responsibility, TS Framework provides a meta-interface facilitating
the tasks of configuration and reconfiguration of transaction services. This interface contains

methods for introspection and reconfiguration of the component graph maintained by the
framework. Activity on this interface is initiated by a Transaction Service Designer, via the TSIn-
stall component.

To meet responsibility number three, TS Framework implements policies for constraining
the scope of configuration and reconfiguration of transaction services. TS Framework main-
tains a graph of its constituents. When there are changes to the graph, TS Framework as-
sures that the new configuration conforms to a valid architecture. This is done by comparing it
against a set of pre-defined valid architectures. A valid architecture also implies a valid service
as the architecture constrain not only the number of, but also the type of components (com-
mit, recovery or GCC) that can reside in the graph. New valid architectures can be added to
the set when necessary. Besides checking a new structure for validity, TS Framework assures
that reconfigurations to a TS are made when the TS is inactive. Otherwise, the results could be
compromised or lost.

TS Implementations In general, the responsibility of a TS implementation is to execute trans-
actions according to its guaranteed properties. A TS implementation provides an interface for
transactional requests which is exposed by the TS Framework and activated by applications
via the TSActivate component.

Traditionally, a transaction service is managed as a single component implementing global
commit, recovery and global concurrency control (GCC) mechanisms [45][10]. As an alterna-
tive to a 'one-component TS’, we suggest composing TS’s using a number of components.
The main motivation for this is the improved ability to modify the TS by manipulating one
its constituents rather than the whole TS. A TS in the ReflecTS platform can consist of one
component, or a number of components. Depending on the transactional guarantees provided
by a TS and the autonomy of the underlying resource managers (RMs), different versions of
global commit, recovery and GCC can be combined. A global commit procedure deals with
commit of distributed transactions. Global commit is generally easier when the underlying
RM’s provide a prepare-to-commit state as specified in the X/Open XA-specification [24]. A
recovery procedure basically deals with transactions that are active when a system crashes.
The job of a recovery procedure is to bring the databases back to a consistent state. Depend-
ing on the atomicity requirement belonging to the transaction, the system will manage to bring
the databases completely back to origin. Different recovery procedures uses different methods:
different way of logging or checkpoints. GCC deals with assuring serializability and correct
behaviour of concurrent transactions using schedulers. This is basically possible when the un-
derlying RM’s makes visible its serialization protocol. However, global concurrency control is
not always a necessary constituent of a transaction service.

The commit/recovery and GCC procedures must be matching procedures. For instance, a
commit protocol supporting an open, nested transaction model where sub-transactions com-
mit before their top-level transaction commit, will match a recovery protocol using compen-
sating transactions during recovery.

TS implementations within TS Framework may for instance consist of global commit, re-
covery and GCC, or only commit and recovery procedures. We suggest adding a control com-
ponent to the structure making the component graph of a TS implementing commit, recovery
and GCC look like the one in figure 5.

4.5 Transaction Execution Request

Requests for transaction execution are maintained by the TSActivate component before they
are eventually executed by a TS implementation. As a start transaction request raises a lot of
interesting questions regarding compatibility, it will be examined in the following.

Start_Transaction() Information about the transaction and its transactional requirements
is provided along with the request. We assume there exists a programming model for applica-
tions, giving the ability to formally specify transactional requirements.

10

@

Fig.5. An example of a TS implementation

The formally specified transactional requirements will be used by a Selection Procedure to
select a suitable TS. Descriptions about deployed TSs will be gathered from the InfoBase com-
ponent, and compared with the transactional requirements. A matching TS will be selected to
control the current transaction. If a suitable TS cannot be found, the Selection Procedure can
for instance implement one of the following options: 1)Return without a TS, which means that
the transaction will not be executed, 2)Return with a TS that at least provides stronger guar-
antees than what is required, 3)Negotiate with either the application designer or the user in
order to agree on alternative transactional requirements so that one of the available TSs can be
suitable. Figure 6 gives an overview of the selection procedure when option 3) is chosen.

Trans. ‘ TS Descriptions ‘
Requirements

~

N Selection
negogiate Procedure
requirements

Yes

Fig. 6. Overview of the Selection Procedure

After selecting a TS, its compatibility with transactional procedures in involved resource
managers (databases, file systems, etc) must be determined. This compatibility, which we refer
to as "Vertical Compatibility" is present if the transactional protocols (commit, recovery, global
concurrency control) in the selected TS matches the corresponding protocols in the underlying
resource managers (RM). Information for use when determining vertical compatibility can be
gathered from the InfoBase component.

If vertical compatibility is present, the TS can be activated (if not already active). If the TS is
not active, its compatibility with other active TSs must be determined. We refer to this as ""Hor-
izontal Compatibility". Horizontal compatibility is only an issue if there are intersecting datasets
between the current transaction and active transactions; i.e. transactions are working towards
the same dataset. If there are no intersecting datasets, TS can be activated. Determining hor-
izontal compatibility is related to the transactional guarantees provided by the active TSs. A
Synchronize TS Activation procedure within TSActivate will determine intersecting datasets,
check for horizontal compatibility, and control the TS activation. Executing a transaction is the
last action in the Start_Trans() operation. The transaction is handed over to the selected TS
deployed within the TS Framework where it will be executed by invoking an operation at one
of TS Framework’s provided interfaces.

TSActivate will implement the following algorithm when ’Start Transaction’ is issued:

11

Start_Transaction(TransInfo;, Req;):

TSj = Selection_Procedure(Req)

If Check_Vertical_Compatibility(Transinfoj, TS;j) = 0K Then
Synchronize_TS_Activation(Transinfo;, TS;)
Start_Transaction(Transinfo;j, TS;)

Else
Return <Error Message>

End

Synch_TS_Activation(TransInfo;, TS;):
If TS;j € List_0f_Active_TSs Then
Return OK
While TS; ¢ List_0f_Active_TSs Then
Intersection_DataSet = Current_DataSet ﬂ Active_DataSets
If Intersection_DataSet = () Then
<Insert TS into List_0f_Active_TSs>
Else
If Check_Horiz_Compatibility(TS;j, Intersection_DataSet) = 0K Then
<Insert TS into List_Of_Active_TSs>
End
End

This version a Synch_TS_Activation tries to activate a TS for an infinite period of time. To
guarantee that a TS will be activated within an acceptable time period, other methods that can
be replaced to hinder TS starvation and deadlock are discussed in [29].

The TSActivate component and its bindings (connections) to other components is illus-
trated in figure 7. An arrow from TSActivate to an interface provided by InfoBase means the
TSActivate will issue requests on this interface.

TS Info

Activate O Base
TS Framework
—=0-q4---- @_‘

TSImplementations

Fig. 7. The TSActivate component and its bindings

4.6 Configuration and Reconfiguration

Requests for configurations and reconfigurations of TS implementations are handled by the
TSInstall component before they eventually are performed by the TS Framework where the TS
implementations are deployed.

Modification of a transaction service can either involve a total replacement or a modifica-
tion of one of its constituents. For ReflecTS, we suggest that modifying a part of a TS involves
a replacement of the involved component(s). By this means, a reconfiguration of a TS simply
involves removing and inserting service components.

The procedures undertaken by the TSInstall component will then be to deploy and remove
service components (SC) and transaction services (TS), and to assemble TSs with deployed
SCs. The TSInstall component with its bindings (connections) is depicted in figure 8.

12

TS Info
Install O Base
TS Framework
o [a]

TSImplementations

Fig. 8. The TSInstall component and its bindings

DeployTS() Firstly, TSInstall issues a request to the meta-interface provided by the TS
Framework in order to deploy the TS. TS Framework assures that the TS conform to a valid
architecture. Secondly, TSInstall invokes an interface provided by the InfoBase component to
store the transaction service descriptor and compatibility information.

Deploy_TS(TS;, TSDescr;):

If TS_Framework.Deploy(TS;) = OK
InfoBase.Store_TS_Descr(TSDescr;)

Else Return(Msg : InvalidTS;)

RemoveTS(). Removing a TS can only be done if it is not in use by any transaction. Several
alternative situations must be considered when implementing this task. 1) The TS is in use
and a queue of transactions are pending for it. If another TS is to be deployed as a substitute,
the queue of waiting transactions can be transferred to the new TS or they can be finished by
the old one. The new TS will be deployed and activated, and the old one removed. 2) The TS
is in use. No new TS will substitute the old one. The TS can only be removed when pending
transactions are completed. 3) The TS is not in use by any transaction so it can be removed.

The evaluation of a new TS as a substitute for an old one, can for instance be performed by a
transaction service designer. This paper will not investigate that particular task. Regarding the
task of waiting until a TS is inactive before deleting it, can be more refined and sophisticated
than the one presented in the following. The following algorithm implements RemoveTS().

Remove_TS(TS;, T):
While TSj € ActiveTS Wait (Period)
TS_Framework.Remove_TS(TS;)
InfoBase.Delete_TS_Descr (TSDescr)

DeploySC() and RemoveSC() are operations used in accordance with TS configuration or
reconfiguration. As we have suggested, a TS reconfiguration involves the replacement of one
or more of its constituents. Consider for instance replacing a commit protocol. When the TS
is inactive, the old service component is removed using RemoveSC() and the InfoBase up-
dated. A new commit protocol is inserted issuing InsertSC(). The TS Framework assures that
the reconfigured TS conforms to a valid configuration. Then the InfoBase is updated with in-
formation about the newly inserted SC and the reconfigured TS.

AssembleTS() is an operation for composing TSs using deployed service components. In-
formation about the service components, stored in the InfoBase, are used in the composition
process. After composing a new TS, the InfoBase component is updated.

5 Implementation; Architecture and Issues

This section presents an architecture for a prototype implementation of ReflecTS which we are
currently working on. The implementation uses OpenCOM components [13] and the ReM-
MoC component framework model [19] as its building blocks. The OpenCOM component

13

model is build upon COM with added support for reflection via provided meta-interfaces.
This makes OpenCOM an ideal building block for reflective middleware, which so far has
been shown in the OpenORB [9] and the ReMMoC [21] implementations. Both OpenORB and
ReMMoC describes component framework models which are suitable for configurable and re-
configurable component systems. The ReMMoC component framework is however the most
generic one, offering a complete meta-interface for architectural reflection (inspection and dy-
namic adaptation) and a domain-specific method for constraining the scope of evolution. The
meta-interface provided by a ReMMoC CF, the ICFMetaArchitecture interface, see appendix
A, has shown sufficiently for configuration and reconfiguration of TS implementations as pro-
posed in this paper. We have also shown the possibility of switching between TS implementa-
tions.

ReMMoC CF provides integrity maintenance in the face of dynamic changes. After config-
uring or reconfiguring a CF it must be checked to ensure that it provides the correct function-
ality. To to this, each CF provides a connection to a Accept component into which developers
can plug in their own checking implementation. We have explored this technology to specify
architectures for valid TS implementations. This has so far been successful, and changes to the
architecture which are not valid are rejected. Integrity maintenance also assures that changes
are performed at appropriate times. Therefore, each component framework provides a read-
ers/writers lock to access the local CF graph. Any call to change the configuration of the CF,
accesses the lock as a writer.

Figure 9 gives an overview of the ReflecTS platform.

o Exposed interfaces Q
i i
T T
i i

| (o) |
‘ S |
TSinstall [lInfoBase } [TSActivaIe}
TS Framework
aro—
ICFMetaArchitectur

Fig. 9. Overview the ReflecTS platform

ReflecTSCF

5.1 Implementation Issues

An implementation of ReflecTS must take into consideration a lot of problems and decisions
raised by the applications, the middleware layer and the underlying system. We will in the
following present some of them shortly.

Interface between Applications and Transactional Middleware Traditionally, applications
conforms to the X/Open standard and uses the TX-interface [25] which is a standard interface
between applications and GTM/transactional middleware. Some investigation has to be done
in order to uncover whether the TX-interface is adequate enough within an extendible and
flexible transactional middleware model or whether a new interface should be described.

Specifying Global Transactions Some information must be provided along with the issue of
a transaction. Work has to be done in order to decide what kind of information and how to

14

describe it. The information can for instance include a specification of the transaction structure,
the transactional requirements and directions for which resource managers to use.

Specifying Transactional Requirements Applications needs a programming model for spec-
ifying transactional requirements. Transactional properties ACID and other properties must
be gradually refined into more specialized properties. [47] refines the ACID properties using
temporal logic, and the refined properties then serve to characterize the behavior of various
transaction models. [16] introduces the definition of atomicity spheres to capture a variety of
notions of atomicity. Specifying requirements can also be done by using a xml-file, a specific
language, or temporal logic as proposed in [47][48].

Composing Transaction Services Within the ReflecTS platform we suggest composing TS’s
using a number of components. The first question that arise is how to split a TS into adequate
components. Thereafter, composing a TS presupposes a set of rules constraining the compo-
sition to assure a valid TS. For instance, when composing a TS using commit, recovery and
global concurrency control, those protocols must be matching in order for a TS to be valid.

Describing Transaction Services Deployed transaction services must be described in order
to distinguish between them. This must be done in accordance to the way transactional prop-
erties are described so that the selection process can perform the merging process. Describing
transaction services can be done using for instance ACTA [12, 11] or XML.

Transaction Service Selection Given the description of transaction services and a formal spec-
ification of transactional properties, a selection procedure selects a TS for a given transaction.
The procedure accepts a set of transactional requirements and verifies whether they are sup-
ported by existing transaction services, TSs. This procedure depends on formal descriptions of
transactional requirements and transaction services.

TS Selection; Vertical Compatibility A TS implements transactional mechanisms (commit,
recovery and global concurrency control (GCC)), which must be vertically compatible with
corresponding mechanisms in present underlying RMs. Protocols used for concurrency con-
trol, commit and recovery in underlying RMs must be "localized" in one way or another so
that "matching" protocols can be implemented in a TS. GCC and commit/recovery for global
transactions in heterogeneous multi-database systems [45][10] are problematic issues related
to both heterogeneity and autonomy. Combining different concurrency and commit/recovery
schemes must be done carefully. [4] addresses the issue of compatibility among atomic commit
protocols when different sites in a distributed environment uses different protocols. Assuring
global serializability when local DBMSs uses different concurrency control protocols is also
problematic, as global serializability can only be guaranteed when the different sites runs the
same protocol.

TS Activation; Horizontal Compatibility Activating a TS depends on its compatibility with
other active TSs. We refer to this as horizontal compatibility as we are talking about compatibil-
ity between services at the same level. Determining horizontal compatibility is only necessary
if concurrent transactions are working towards the same dataset. Horizontal compatibility be-
tween TSs depends on their provided transactional guarantees, which TS was activated first,
and the applications perception of consistency (i.e. what is consistent for one application may
not be consistent for another one) [29].

15

TS Configuration and Reconfiguration Configuration and reconfiguration of a TS must con-
form to a valid configuration. Validation can be performed by either checking the TS towards
a set of valid configurations or by manually interacting with a transaction service designer. Re-
configuration of transaction services must also be done at appropriate times, which preferable
means when the TS is inactive. Otherwise, the results could cause inconsistencies.

Interface between TS and RMs Traditionally, the X/Open XA-specification [24] defines the
standard interface between transaction manager and RM’s. X/Open XA provides a prepare-
to-commit event to simplify the execution of distributed commit. The X/Open XA-interface
contains methods that can capture a broad range of transaction management even though
the interface is statically defined. For instance, a variety of different commit-protocols per-
forms satisfactorily by using the XA-interface. Some work has to be done in order to uncover
whether the XA-interface is sufficient for a transaction processing environment characterized
by flexibility and unpredictability.

Advertising Transaction Services Advertising changes within the pool of transaction services
is a task not affected by this work. Knowledge of new, updated, or deleted transaction services
can be obtained manually by the application or the application designer either on a need-to-
know basis or feeded in. Alternatively this can be done with the help of a publish-subscribe
protocol.

6 Related Work

While the concept of reflection was originally introduced in the area of programming language
design [41], it is now a concept used in different areas to "open up" systems. Reflection is for
instance used in operating systems [1], distributed systems [42], middleware [8], and now also
in transactional systems [6, 46].

Emerging reflective middleware platform utilize the concepts of open implementation and
reflection to get access to the underlying virtual machine. A number of such platforms have
been developed, including OpenORB [9], Dynamic TAO [40], Open CORBA [33], and Flex-
inet [26]. These platforms offer great flexibility in terms of meeting the needs of application
domains. However, they do not provide transactional services.

In [6] a Reflective Transaction Framework is described, that implements extended trans-
action models on top of TP-monitors. The framework uses transaction adapters on the meta
level to extend TP-monitor behaviour. The adapters, which include the transaction manage-
ment logic for an extended model, are given the control over transaction processing at certain
transactional events.

[46] describes how Reflective Java can be used to implement a flexible transaction service.
It allows application developers to provide application-specific information to a container so
that this can be used to customize the transaction service. The framework enables a container
to change its functionality by pluggingZunplugging its metaobjects, and thus be customized
to meet new application requirements or changing environment conditions.

Besides the related work on reflective transaction services, our work also relates to research
on dynamic combination and configuration of transactional and middleware systems. The
work of [47, 38, 37, 11] recognizes the diversity of systems and their different transactional re-
qguirements, and describes approaches to how these diverse needs can be supported.

In [47] a formal method to synthesis transactional middleware is specified. The work de-
scribes an approach that takes transactional requirements for a given system as input, selects
available service components and composes a transactional middleware customized to the
needs of the system. [38] argue the necessity to allow both design time and runtime specifi-
cation of transaction models. Transaction model elements are organized such that parts of the
specification can be done before transactions are executed, while the remaining parts can be

16

specified during runtime. Runtime specification of transaction executions are done by users.
[37] proposes an extension of the transaction concepts in EJB, called Bourgogne transactions,
that adds a set of advanced transactional properties allowing some flexibility in transaction
executions. In [11] the ACTA framework is used as a tool to support the development and
analysis of new extended transaction models. However, implementing a model specified in
ACTA is up to the developer.

Our work on a reflective transactional system contrasts previous work on two matters:
Firstly, we focus on how to guarantee correctness for the reflective transactional system. The
close relationship between different transaction service modules (for instance commit-, recovery-
and global concurrency control), makes it necessary to control correctness of the transaction
service if the internals of the service is manipulated. Secondly, we allow the use of a hum-
ber of concurrently active transaction services, and must guarantee consistent use of possibly
incompatible services.

7 Conclusion

In this paper we have argued that transactional middleware must meet an increasingly diverse
range of requirements from open applications. To accommodate these requirements, we have
designed ReflecTS, a Reflective Transaction Service platform, providing configurability, recon-
figurability and concurrently running transaction services. To our knowledge, this problem
has not been addressed by previous works.

ReflecTS is designed using reflection, components and component frameworks as the un-
derpinning technologies. The ReflecTS platform provides: concurrently running transaction
services, policies for assuring correctness for concurrently running transaction services; meta-
interfaces for inspection and adaptations of the internals of the platform; policies for constrain-
ing the scope of configurability and reconfigurability of transaction services.

We are currently working on a prototype implementation of ReflecTS, using OpenCOM
components [13] and the ReMMoC component framework model [19] as presented in section
5. At the present time the synchronization protocol and the compatibility issues are further ex-
plored. A programming model to classify and specify transactional requirements will also be
included. Our work continues and will be extended to include solutions to some of the issues
listed in section 5.

Appendix A

17

A ReMMoC CF implements the ICFMetaArchitecture interface to achieve access to internal
structure (reflection) for configuration and reconfiguration. The table below lists operations
provided by the ICFMetaArchitecture interface.

Operations for Inspection

Description

get_internal_components

Returns a list of the identifiers of the components that
constitute the base-level configuration

get_bound_components

Returns a list with information of all components bound to the one
identified as the argument

get_internal_bindings

Returns a list with ids of all binding objects that are part of
the base-level composition

Operations for Reconfiguration

Description

local_bind

Establish a local binding between the two identified interfaces

break_local_bind

Break the local binding between the two interfaces

insert_component

Create and insert a component into the base-level configuration
with the given name and in the specified location (given by zero
or more interfaces to which the new component should be
bound, if zero interfaces, the new component is left unbound)

remove_component

Delete the component from the configuration, re-binding
the adjacent interfaces of neighboring components, if appropriate
and according to the given mapping of interfaces to be rebound

replace_component

Replace an existing component with a new component of the
given type (deleting the old component)

Expose_Interface

Map the interface of an internal component as a new
interface of the composite CF

UnExpose_Interface

Remove an exposed interface

Expose_Receptacle

Map the receptacle of an internal component as a new receptacle
of the composite component

UnExpose_Receptacle

Remove an exposed Receptacle

ReplaceConfiguration

Replace the current graph of components with a new graph

init_arch_ransaction

Start the transaction for architecture reconfiguration

commit_arch_transaction

Completes the reconfiguration

rollback_arch_transaction

Rolls back any changes made during an architectural transaction

References

n

The Apertos Reflective Operating System: The Concept and Its Implementation, October 1992.

Corba services, transaction service specification, v1.1, 1997.

Robert K. Abbott and Hector Garcia-Molina. Scheduling real-time transactions: a performance eval-
uation. ACM Trans. Database Syst., 17(3):513-560, 1992.

Yousef J. Al-Houmaily and Panos K. Chrysanthis. Atomicity with incompatible presumptions. pages

306-315, 1999.

18

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.
28.

29.

30.

31.
32.

33

. A. Andersen, G. Blair, V. Goebel, R. Karlsen, T. Stabell-Kulg, and W. Yu and. Arctic beans, config-
urable and re-configurable enterprise component architectures. In IFIP/ACM International Conference
on Distributed Systems Platforms, Heidelberg, Germany, 2001. Middleware.

R. Barga and C. Pu. Reflection on a legacy transaction processing monitor, 1996.

Gordon S. Blair, G. Coulson, P. Robin, and M. Papathomas. An architecture for next generation
middleware. In Proceedings of the IFIP International Conference on Distributed Systems Platforms and
Open Distributed Processing, London, 1998. Springer-Verlag.

Gordon S. Blair and Geoff Coulson. The case for reflective middleware. Distributed Multimedia
Research Group Report MPG-98-38, Distributed Multimedia Research Group, Lancaster University,
1998.

Gordon S. Blair, Geoff Coulson, Anders Andersen, and Lynne Blair et.al. The design and implemen-
tation of open orb 2. DSOnline, 2(6), 2001.

Yuri Breitbart, Hector Garcia-Molina, and Abraham Silberschatz. Overview of multidatabase trans-
action management. VLDB Journal: Very Large Data Bases, 1(2):181-293, 1992.

Panos K. Chrysanthis and Krithi Ramamritham. Synthesis of extended transaction models using
acta. ACM Transactions on Database Systems, 19(3):450-491, 1994.

Panos K. Chrysanthis and Krithi Ramaritham. Acta: A framework for specifying and reasoning about
transaction structure and behavior. In Proccedings of the 1990 ACM SIGMOD international conference
on Management of data, May 1990.

Michale Clarke, Gordon S. Blair, Geoff Coulson, and Nikos Parlavantzas. An efficient component
model for the construction of adaptive middleware. In Middleware, Heidelberg, Germany, 2001.
Microsoft Corporation. The component object model specification, version 0.9. Technical report,
October 1995.

Microsoft Corporation. The .net framework, 2000.

W. Derks, J. Dehnert, P. Grefen, and W. Jonker. Customized atomicity specification for transactional
workflows. Tehnical Report TR-CTIT-00-24, University of Twente, 2000.

Margaret H. Dunham, A. Helal, and S. Balakrishnan. A mobile transaction that captures both the
data and movement behaviour. ACM-Baltzer Journal on Mobile Networks and Applications (MONET),
2(2), 1997. Kangaroo transactions.

Ahmed K. EImagarmid, editor. Database Transaction Models for Advanced Applications. Morgan Kauf-
mann Publishers, 1992.

Paul Grace. Overcoming Middleware Heterogeneity in Mobile Computing Applications. PhD thesis, Lan-
caster University, 2004.

Paul Grace, Gordon S. Blair, and Sam Samuel. Interoperating with services in a mobile environment.
Technical Report MPG-03-01, Lancaster University, 2003.

Paul Grace, Gordon S. Blair, and Sam Samuel. A marriage of web services and reflective middleware
to solve the problem of mobile client interoperability. In In Proceedings of Workshop on Middleware
Interoperability of Enterprise Applications (MIEA), Dublin, Ireland, September 2003.

Object Management Group. The common object request broker: Architecture and specification. Tech-
nical Report Tech. Report 96.3.4 (Revision 2.0), Object Management Group, July 1995.

Object Management Group. CORBA Component Model, V30, 2004.

The Open Group. The x/open cae specification. distributed transaction processing: The xa specifica-
tion. x/open document number: Xo/ca/91/300, December 1991.

The Open Group. X/open cae distributed transaction processing: The tx specification, December
1995.

R. Hayton. Flexinet open orb framework. Acm technical report 2047.01.00, APM Ltd, Poseidon
House, Castle Park, Cambridge, UK, 1997.

Apple Computer Inc. Opendoc: White paper. Technical report, Appel Computer Inc., 1994.

Oberon Microsystems Inc. Blackbox developer and blackbox component framework. Technical re-
port, Oberon Microsystems Inc., 1997.

Randi Karlsen. An adaptive transactional system - framework and service synchronization,. In
International Symposium on Distributed Objects and Applications (DOA), Catania, Sicily, November 2003.
Randi Karlsen and A. B. A. Jakobsen. Transaction service management an approach towards a re-
flective transaction service. In 2nd International Workshop on Reflective and Adaptive Middleware, Rio de
Janeiro, Brazil, June 2003.

Gregor Kiczales, J. des Rivieres, and D. Bobrow. The Art of the Metaobject Protocol. MIT Press, 1991.
Gregor Kiczales, John Lamping, Cristina Videira Lopes, chris Maeda, Anurag Menedhekar, and Gail
Murphy. Open implementation design guidelines. ACM, 1997.

. T. Ledoux. Implementing proxy objects in a reflective orb, 1997.

34.
35.
36.
37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.
48.

19

Pattie Maes. Concepts and experiments in computational reflection. In Proceedings of the Conference
of Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), oct 1987.

Sun Microsystems. The java beans specification 1.01, 1997.

Sun Microsystems. Enterprise javabeans specification version 2.0, final release, 2001.

Marek Prochazka. Advanced transactions in Enterprise Java Beans. Lecture Notes in Computer Science,
1999:215-??, 2001.

Heri Ramampiaro and M. Nygaard. Cagistrans: Providing adaptable transactional support for co-
operative work. In Proceedings of the 6th INFORMS conference on Information Systems and Technology
(CIST2001), 2001.

K. Ramamritham and P.K. Chrysanthis. Executive briefing: Advances in concurrency control and transac-
tion processing. IEEE Computer Society Press, Los Alamitos, California, 1997.

M. Roman, F. Kon, and R. Campbell. Design and implementation of runtime reflection in communi-
cation middleware: the dynamictao case, 1999.

B.C. Smith. Procedural Reflection in Programming Languages. PhD thesis, MIT, MIT Computer Science
Technical Report 272, Cambridge, 1982.

Robert Stroud. Transparency and reflection in distributed systems. ACM SIGOPS Operating Systems
Review, 27, 1993.

Allarmaraju Subhramanyam. Java transaction service, 1999.

Clemens Szyperski. Component Software, Beyond Object-Oriented Programming. Addison-Wesley, 1997.
Gerhard Weikum and Hans-Jorg Schek. Concepts and applications of multilevel transactions and
open nested transactions. In Database Transaction Models for Advanced Applications, pages 515-553.
1992.

Zhixue Wu. Reflective java and a reflective component-based transaction architecture. In OOPSLA
workshop, 1998.

A. Zarras and V. Issarny. A framework for systematic synthesis of transactional middleware, 1998.
A. Zarras and V. Issarny. Imposing transactional properties on distributed software architectures,
1998.

