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Abstract

It has been shown that every linearly recursive database query can be expressed as a transitive

closure� possibly preceded and followed by relational algebraic operations� A large class of such

queries computes the bill�of�materials of database relations�

This paper presents e�cient sequential and distributed algorithms that compute the bill�of�

materials of a database relation� These algorithms use a special join operation that accumulates the

cost of composite parts� without constructing the transitive closure of the argument relation� thus

saving time and space�

Moreover� the distributed algorithm is very e�cient in terms of communication complexity� The

number of tuples exchanged between the sites is neither dependent on the size of the argument

relation nor on the size of its transitive closure of that relation� That number is simply equal the

number of di�erent parts in the argument relation� For the distributed setting we develop both

a synchronous and an asynchronous algorithms and their analysis� We conclude that partially

synchronous algorithms seem to be superior to both of them�

� Introduction

Given a transitive closure operator denoted BAG � TC that does not eliminate redundant paths� and
the relations de�ned by the following relational schemes�

Uses � �part � oid� subpart � oid��

Base � �part � oid� cost � real��

where Uses is transitively de�ned and has a tuple for each �part� subpart� relationship	 A composite
part may be involved in many such tuples	 The Base relation has a tuple for each base part �i	e	 a part
which is not composed of any other parts�	

�part of this work was done while Khalaila A� was �nanced by The Royal Norwegian Research Council
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To compute the Bill�Of�Materials �BOM� we evaluate the expression�
Y

Uses�Part�sum�Cost�

�GroupByUses�Part�sum�Cost��Base onBase�Part�Subpart �BAG � TC�Uses����

An execution strategy for the above expression that is based on evaluating each operation in the �above�
strict nested order incurs very high execution cost	 This high cost is due to the intermediate construction
of the transitive closure of Uses	 We argue that any execution strategy for BOM algorithms that
constructs the transitive closure of its argument is a bad strategy� in particular when that closure is
much larger than the given relation	

In this paper� we present BOM algorithms that avoid the evaluation of the transitive closure operator�
and combine some of the operations mentioned above into one specialized join operation� called CJOIN	

Based on this combined join algorithm we develop three BOM algorithms� an iterative one� a synchronous
distributed one� and an asynchronous distributed algorithm	 We also �informally� prove their correctness�
and analyze their complexity

Some improvements to both the synchronous and the asynchronous algorithms are proposed� as a result of
their complexity analysis	 We conclude that a partially synchronous algorithm will in general outperform
both the synchronous and the asynchronous algorithms	

The distributed algorithms assume the availability of a network broadcast capability	 However� an idea
is presented at the end on how to make these algorithms independent of such a capability	

��� Related Work

It is a widely known fact that query languages based on relational algebra or calculus 
Codd��� Codd���
are limited in their expressive power especially in expressing recursive queries 
Ullm��a�	

A transitive closure operator for database queries was �rst proposed by Zloof in 
Zloo���	 Since then it
has been shown that linear recursive queries can be expressed by such an operator 
JaAN��� ChHa����
and an extension of relational algebra that includes a transitive closure operator called ��algebra has
been proposed in 
Agra���	 Furthermore� Agrawal �as well as many others� proposed that specialized
algorithms that exploit the knowledge of the physical database can be built into the database system to
e�ciently implement the transitive closure operator and some frequent applications of it	

Bill�of�materials computations constitute a large class of linearly recursive database computations� that
occur frequently in database systems environments containing transitive relations	 When such queries
are applied to very large relations� their e�cient processing become vital �e	g	 for users that are highly
dependent on them�	 Although all such computations can be expressed using the transitive closure oper�
ator �as has been illustrated above�� evaluating the transitive closure is not necessary for the evaluation
of such computations	 Since such an evaluation often incurs a very high cost in terms of time and space�
we would like to avoid it	 This is very similar to avoiding the evaluation of the cross�product when join
is being evaluated 
SmCh��� Ullm��b�	

Many e�cient algorithms have been developed for di�erent computing environments 
Tarj�
� AgJa���
Lu��� BiSt��� IaRa��� AgJa��� VaKh��a� VaKh��b� AgDJ��� ChDe��� HoAC��� Jian��� Jako�
� DaJa���	
In this paper we propose closure�based �BOM� algorithms that avoid constructing the transitive closure
of the argument relation	 This results in better performance� both in terms of time and space	

Traditionally� the optimizer in a query processing system starts by algebraic manipulations that optimize
the query tree	 Then methods implementing the various operations in the query tree are chosen using
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cost estimation and the current access paths existing in the physical database 
SmCh��� SACLP���	
Combining the execution of many operations into one has been �rst proposed by Smith et al	 
SmCh����
and since then has been adopted by nearly everyone working with query processing and optimization

JaKo��� Ullm��b�	 The combined join �CJOIN� algorithm is the core of our BOM algorithms since
it combines the accumulation of �intermediate partial� cost for composite parts using the cost of their
subparts� with the binary matching normally applied in join operations� to avoid the intermediate con�
struction of the transitive closure of the input relation	

��� Organization

The presentation is organized in two main parts	 The �rst one� which is presented in section �� is
concerned with the implementation� correctness and complexity analysis of the CJOIN and the iterative
algorithm	 The second part� which is presented in section �� is concerned with the data partition�
implementation� correctness� and complexity analysis of the distributed algorithms	

In section �� we propose a number of improvements to the distributed algorithms� and discuss some
future work� while section � concludes	

� The Iterative BOM Algorithm

To compute the bill�of�materials for all the composite parts present in the Uses relation� it is not
necessary to perform the transitive closure operation present in the BOM expression above� since we are
not interesting in the all�pairs transitive closure of the graph represented by the Uses relation	

Additionally� many of the operations involved in the above query� can be done in a combined join
operation �called CJOIN�	 The operation tries to match the subpart attribute of each tuple in the Uses
relation with the part attribute of each tuple in the Base relation	 If a match occurs it partially performs
the sum operation by accumulating the cost of a Uses composite part that have a subpart that match a
base tuple	 The cost for each part is accumulated in the cost attribute of the corresponding tuple of the
temporary relation Accum� which states the identity and cost accumulated so far for each �composite�
part	 The relational schema of Accum is

Accum � �part � oid� cost � real��

When analyzing the composition relationship we found that some parts are not composed �i	e	 they are
atoms or base parts�� some parts are composed only of base parts �we will call them 
st level parts�� some
parts are composed only of base �i	e	 ��level� and 
st parts �we call them �nd level parts�� some parts are
composed only of ��level� 
st level� and �nd level parts �we call them �rd level parts�� and in general ith

level parts are composed only of parts from the levels below� i	e	 ��level� 
stlevel� �ndlevel� � � � � and i �

 level	 Notice that the sets of parts from the di�erent levels are disjunctive	

Based on the above observation� the iterative BOM algorithm �IBOM� starts by computing the total
cost for 
st level parts� then the total cost for �nd level parts� and so on	 In general� computing the
total cost for parts from the ith level� will be completed only after the total cost for all parts from
all the levels below �i	e	 i � 
� i � �� � � � � 
� have been computed	 Therefore� a run of the iterative
BOM algorithm consists of the subsequent phases 
� �� � � � � D� where D denotes the diameter of the
directed acyclic graph �DAG� as represented by Uses	 In each phase the total cost for the parts from
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the corresponding composite level are computed	 That is� in phase i the total cost for all the parts from
level i are computed� and phase i �for i � 
� is preceded by phase i � 
 and is followed by phase i � 

�for i � D�	 Such a BOM algorithm terminates after the Dth phase	

��� Implementation of CJOIN

In this section we develop the CJOIN operation used in the IBOM algorithm speci�ed below	 This
operation takes as input three argument relations Accum�Uses� and Base� and delivers as output three
argument relations Accum�Uses� and NewBase	

The tuples of Uses are grouped by the part attribute� and Base and Accum are hashed on their part
attributes	

The following �ve operations are needed to implement the CJOIN operation	 The signatures and informal
semantics of these operations are given below�

� match � oid�Base� TupleOf�Base�
match takes a part identity as its �rst argument and the current Base relation as it second
argument� and returns the Base tuple corresponding to its �rst argument	

� accumulate � real� oid� Accum�
the Accum tuple corresponding to its second argument is looked up� and its cost attribute is
incremented by the value of the �rst argument	 If such a tuple does not exist� it is created and
inserted into Accum and its cost attribute is initialized to the value of the �rst argument	

� mark del � TupleOf�Uses�� Uses�
this function puts a deletion mark on the Uses tuple corresponding to its �rst argument	 This
operation shrinks the volume of Uses	

� move �NewBase � TupleOf�Uses�� Accum�NewBase�
this operation is called when the total cost for a composed part has been computed completely	
It moves the Accum tuple corresponding to its �rst argument to NewBase	 This is the operation
that extracts the base tuples of the next phase of the IBOM algorithm� and inserts them into
NewBase	

The above operations are implemented on top of hash�based structures on Base and Accum	 Hash�based
structures and algorithms has been designed mainly to speed up the join operation involved in the IBOM
algorithm
Brat��� Kits���	

The CJOIN algorithm performs the join of Uses and Base� reduces and reconstructs all its arguments
relations� and partially computes the aggregate function sum� all in one run through the tuples of Uses�
Base� and Accum	

Algorithm CJOIN
Input� Uses�Base�Accum�
Declare�

u � TupleOf�Uses��
b � TupleOf�Base��
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p � TupleOf�Accum��
u�Base � Bool�

f This �ag indicates if the total cost of u has been computed� or not	g
Begin

Foreach group � GroupBYpart�Uses� Do
u�Base� True�
Foreach u � group Do

b� match�u�subpart� Base��
If b �� � Then

Begin

accumulate�b�cost� u�part� Accum��
mark del�u� Uses��

End�
Else

u�Base� False�
Od� f Foreach u g
If u�Base Then

move �NewBase�u�Accum�NewBase��
Od� fForeach group 			g
Return�Accum�Uses�NewBase��

End	

��� Notations and assumptions

In the sequel we will use the following notations and assumptions�

� jUsesj � N � denotes the number of tuples of the Uses relation�

� jUsesij � N i� denotes the number of �remaining� tuples in Uses at the end of the ith phase�

� I is the number of distinct part identities that occur in the part attribute of Uses� i	e	� the number
of groups in GroupBypart�Uses��

� jBasej � M � denotes the number of tuples initially in Base�

� jBaseij � M i� denotes the number of tuples in NewBase at the end of the ith phase�

� The auxiliary operations match� and move �NewBase have a constant cost� denoted by C�� while
the others have a neglectable cost	 C� actually denotes the cost of accessing a tuple in Base or
Accum�

� C� denotes the cost of accessing a Uses tuple�

� C� denotes the cost of broadcasting a tuple of Base�

A simplifying assumption that otherwise has no major implication is the following�

Assumption ��� �Uniform CJOIN behavior� The complexity of CJOIN behavior at the di�erent D
phases is uniform� That is� the same number of tuples are added to new Base� and Accum and the same
number of tuples are deleted from Uses� at each phase�
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��� The Cost Formula for CJOIN

The CJOIN algorithm consists of two loops� one through the di�erent groups in Uses and the other
through the tuples of these groups	 By assumption� there are I di�erent groups in Uses corresponding
to the I di�erent composite parts in Uses	 Each of these groups has in average N�I tuples	 Therefore
the total number of tuple accesses to Uses is N 	 The maximum number of accesses to Base is N � and the
number of actual Accum accesses is equivalent to the number of tuples deleted from Uses �in the same
phase�� which is approximately N�D �based on our previous assumptions�	 The number of accesses to
NewBase is equivalent to the number of new Base tuples which is approximately I�D	 Consequently�
the cost formula for CJOIN is de�ned as follows�

CFCJOIN � N � C� � N � C� � �N�D�� C� � �I�D�� C�

In the above formula� the �rst and second terms denote the cost of the hash�based join operation	 The
third term� �N�D��C�� correspond to the cost of accessing the Accum tuples in order to accumulate the
cost of their corresponding parts	 The fourth term �I�D�� C� corresponds to the cost of restructuring
Accum and NewBase	

Notice that the number of tuples in Accum will never exceed the number of groups in Uses which is
equivalent to I � however the number of tuple accesses to Accum can be much higher than I 	 Moreover�
the number of tuples in NewBase will never exceed I � in average it will be I�D	

Since N � I is always true� the above formula is rewritten to�

CFCJOIN � N � �C� � C�� � ��N�D�� C�

� N�C� � C� � �C��D�
�
�

��� Implementation of the iterative BOM algorithm

The iterative BOM algorithm can be seen as a loop of joins between the Base and the Uses relations�
each of which corresponds to a phase� as de�ned above	 In each iteration the contents of the two relations
will be changed� as explained in the sequel	 Initially� the base parts will be those in Base� and Uses will
have all the tuples representing the �part� subpart� relation	

In the �rst iteration the total cost for all parts from 
st level will be computed� the cost for all other
parts that have some base subparts will be accumulated in Accum� every tuple in Uses that has a base
subpart will be �marked� deleted� and the 
st level parts together with their total costs comprise the
new Base �denoted Base�� of the next phase	

In the second iteration� the total cost for all parts from �nd level will be computed as above� and in
general� in the ith iteration the total cost of all parts from the ith level will be computed� the cost of
all other �i	e	 higher levels� parts that have some base part components will be accumulated in Accum�
every tuple in Uses that has a Basei�� subpart will be �marked� deleted� and the ith level parts together
with their cost comprise the new Base of the next phase �denoted Basei�	

The IBOM algorithm depicted below constructs in each iteration �i� a new logically separated relation
�fragment� to contain the new base tuples� and is called Basei	 That is� the base fragment Basei is
constructed at the ith iteration and corresponds to the Base relation of iteration i� 
	 Basei contains a
tuple for each of the ith level part which has a part attribute corresponding to that ith level part and a
cost attribute whose value is the total cost of that part	 Base� corresponds to the initial Base relation
which is used in the �rst iteration	
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The temporary relation Accum will at the end of each iteration i contain the cost for each jth level
�j � i� part which have some subpart from the levels below i	 Within the ith iteration� when the total
cost for a level i part is computed� the Accum tuple corresponding to that part� is moved from Accum
to Basei	

Finally� the Uses relation will at the end of each iteration i� have no tuple with a subpart from level i
or any level below	

Algorithm IBOM
Input� Accum�Uses�Base�
Begin

i� 
�
result� Base�

While�Usesi �� 	� Do
�Accumi� Usesi� Basei� � CJOIN�Accumi��� Usesi��� Basei����
result� result 
 Basei�
i� i � 
�

Od

Return�result��
End	

��� Correctness of IBOM

To prove the correctness of the above algorithm we have to show that it computes the total cost for
all parts� and then terminates	 That is� the total cost for all parts from level 
� �� � � � � D� and that the
algorithm terminates after computing the total cost for all level D parts� because at that point Uses
become empty	

Our argument follows the informal operational speci�cation of the algorithm given above	 That is� in
a run of the algorithm there are D phases	 In the �rst phase the total cost of all parts from the �rst
level are computed� and these parts together with their total cost constitutes Base�	 In general in the
ith phase the total cost of all parts from the ith level are computed� and these parts together with their
total cost constitutes Basei	 Finally in the last phase D the total cost of all parts from the Dth level
are computed� and these parts together with their total cost constitutes BaseD	

Notice that after each phase i the total cost of all parts from all levels up to the ith have been computed	
When the Dth phase is completed the total cost of all the parts from all levels up to the Dth level have
been computed� and the union of the base fragments will constitute the result of our BOM computation�
i	e	 the result returned by the IBOM algorithm is

D�

i��

Basei

The above arguments �informally� prove the so�called partial correctness of the algorithm� but it does not
prove total correctness	 To prove the total correctness of the algorithm we have to prove its termination
property� which is a liveness property	 This requires that the underlying �concurrent� system that
executes the algorithm is fair	 Here� we just assume the underlying system to be fair� for a comprehensive



�

treatment of fairness see 
Fran���	 To prove that IBOM terminates when phase D is completed� it is
su�cient to prove that Uses become empty at that point	 That is because it is obvious from the above
speci�cation of the algorithm that it terminates when Uses is empty	

Let us now look at how Uses shrinks at each phase	 As mentioned early� in each phase i every Uses
tuple that have a Basei�� part as a subpart is �marked� deleted	 Since a run consists of the consecutive
phases 
� �� � � � � and D� the tuples that are still in Uses after the ith phase are only the tuples from the
levels above i	 That is� after phase D is completed the only tuples in Uses will be those from level k � D	
Since D is the diameter of the graph represented in Uses then it has no tuple from any level above D	
Consequently� when IBOM completes phase D and tries to go into a new phase� it will terminate since
Uses become empty	

��� The Cost Formula of IBOM

Intuitively� the cost of the join operation of the ith iteration is cheaper than that of all the preceding
iterations� because that cost is strongly dependent on the number of tuples in Uses �i	e	 N�� and N is
reduced in each call to CJOIN by N�D	

The cost formula for the iterative BOM algorithm can be expressed by using the cost formula previously
developed for CJOIN� as follows�

CFIBOM � �D
i��Ni�C� � C� � �C��D�

� �C� � C� � �C��D��D
i���Ni�

���

The above formula is derived simply from the fact that in a run of IBOM there is an CJOIN call �whose
cost is de�ned by equation 
� for each of the D levels in the DAG represented by Uses	

The term C��C���C��D in CFIBOM involves only constants and therefore cannot be reduced further	
However� exploiting assumption �	
� we may set Ni � N � �i� 
�N�D	 The term �D

i���Ni� can then be
reduced as follows�

�D
i���Ni� � N� � � � � � ND

� N � �N �N�D� � �N � �N�D� � � � � � N � �D � 
�N�D

� ND � ��N�D � �N�D� � � �� �D � 
�N�D�

� ND � �
 � � � � � � � �D � 
��N�D

� ND � ��D � 
��
 � �D � 
�����N�D

� ND � �D � 
�N��

� N�D � �D � 
����

� N�D � 
���

���

Finally� by substituting equation � into equation � �i	e	 �N�D�
���� for �D
i���Ni�� we get�

CFIBOM � �C� � C� � �C��D��D � 
�N�� ���

� The Distributed BOM Algorithms

The distributed bill�of�materials algorithms �DBOM� presented here� are in concept based on the same
ideas developed for the iterative algorithm	 However� these algorithms are motivated by di�erent as�
sumptions concerning the system model and its �normal� behavior	
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��� System Model

The system consists of a collection of n autonomous �database server� sites� denoted P � fp�� p�� � � � � png�
interconnected by a communication network with a broadcast capability	 For the time being we will
assume both the sites and the network channels to be reliable �i	e	 fault�free�	

The DBOM algorithms presented here are symmetric� i	e	 the same module is running at the di�erent
sites� but with di�erent site identities� and di�erent sets of data	 Moreover� all the sites send di�erent data
but receive the same data	 A DBOM algorithm consists of the modules DBOM�� DBOM�� � � � � and DBOMn�
where DBOMi is the module running at site pi� and is capable of communicating �by broadcast� with
all the other modules located at the other sites in the system	

����� Data Distribution

The data distribution is based on group partitioning of Uses� and replication of the Base tuples for each
level at each iteration	 This strategy has been chosen in order to enable a site to determine if the total
cost for a part has been computed or not� without any communication with other sites	 This is possible
since the whole group of Uses tuples that de�nes all the subparts of that part are located at the same
site	

We assume the distribution of the groups in Uses is based on a hash function on the part attribute�
that distributes the tuples uniformly among the sites involved	 We also assume the Accum relation
being distributed according to the same hash function applied on the part attribute	 However� this last
assumption is not strictly needed	 Recall that Accum is a temporary relation which is initially empty
and will also be empty when the computation terminates	 The �nal result will be constructed by taking
the union of all the fragments of the Base relation	

����� Intuition for DBOM

The data distribution described above locates disjunctive subsets of the groups in
GroupBypart�Uses� at the di�erent sites	 Recall that each such group of tuples de�nes the subparts
involved in producing the part that �owns� that group	 Each site pi will be responsible for computing
the total cost for the �owners� parts located at that site	 To do that� site pi may have to get the total
cost of some subparts of that owner part from other sites� where their groups are located	 The above
implies that each site will be computing the cost for a subset of parts that is completely disjunct from
the subsets of parts for which the total cost is computed at the other sites	

����� Assumptions

Below� we state � assumptions	 The main objective of putting forward the �rst assumption is to ease
our analysis� understanding� and development of the algorithms and their complexities	 However� the
remaining assumptions have a major impact on the execution of the algorithms� which will be discussed
later	

Assumption ��� �Uniform distribution among groups� The Uses tuples are �approximately� uniformly
distributed among the di�erent groups in GroupBy�Uses��
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Assumption ��� �Uniform distribution among sites� The Uses relation is partitioned and distributed
uniformly among the sites in the system� thus each site has approximately the same number of Uses
groups �and tuples��

Assumption ��� �Uniform diameter among sites� Groups of parts from all the levels of the DAG� are
attached in a uniform manner to each site� That is� each site has the same number of part groups from
each level of the DAG represented in Uses�

����� Complexity

In the preceding sections� when developing the cost formula of the CJOIN and iterative BOM algorithms�
the focus is on the number of tuple accesses to each relation involved in a run of the algorithm	

For the distributed setting� in addition to the number of tuple accesses involved� the communication
complexity in terms of the number of tuples exchanged between the sites over the network channels� and
the number of communication phases in a run� must be taken into account	

The communication complexity assumes that the communication cost among di�erent channels in the
network is uniform	

��� Synchronous DBOM Algorithm

Similar to the IBOM algorithm� a run of the synchronous DBOM �SDBOM� algorithm consists of D
phases� in each of which the total costs for all the parts from the corresponding level are computed� i	e	
in phase i the total costs for all the parts from the ith level are computed	

Recall that Base� is replicated at all the sites� which implies that each site p can now carry out its �rst
phase to compute the total cost for all the local �rst level parts	

Generally� in the ith phase the total cost for all local ith level parts are computed� the cost of all other
local parts that have some Basei�� components will be accumulated in the local Accum	 Every tuple
in the local Uses that has a Basei�� subpart will be �marked� deleted� and the local ith level parts
together with their total cost �Baseip� comprise a fragment of Basei used in the next phase by all the

sites	 Thus Baseip is broadcast by DBOMp	 Moreover� all the Basei fragments broadcast by the other

sites are received at p so that Basei contains all the second level parts in the entire system� and then
the next �i � 
� phase can start	

����� Implementation of the synchronous DBOM Algorithm

In our implementation each SDBOMp will in the ith phase perform the following actions�

Cjoinip� a call to CJOIN in phase i by site p �denoted Cjoinip� computes the total cost for all local ith level

parts� accumulates the cost for all other local parts that have some Basei�� subparts in the local
Accum� and every tuple in the local Uses that has a Basei�� subpart will be �marked� deleted	

The Cjoinip event produces a relation �fragment� Baseip which contains a tuple for each ith level
part consisting of its identity and its cost	







Bcastip� the Baseip produced by Cjoinip is a fragment of Basei which comprise the base tuples of the next

phase and is going to be used by all the sites	 Therefore SDBOMp broadcasts Baseip to all sites

by a call to Broadcast which generates the Bcastip event	

RecvAllip� all Basei fragments broadcast by the other sites are received by p so that Basei contains all the ith

level parts in the entire system	 RecvAllip results in the receipt of Baseip� � Base
i
p�
� � � � � and Baseipn 	

It calls the action Receive�P� for each remote site r � P to receive Baseir� and it will wait until
Baseip for all remote sites p have been received	 This is implemented by the Do � � � Receive � � �
Until statement in the SDBOM algorithm depicted below	

This action leads to the synchronous nature of the algorithm� because all sites will wait until they
receive all the Base fragments produced at all the other sites before they go on with the next
phase	

Since the algorithm imitates behavior of the IBOM algorithm� a run of SDBOM terminates after D
phases	 However� some sites may not have parts from any level above some k� where k � D� so the BOM
computation at these sites terminates after k phases	

In the rest of the paper� we will assume that all sites have parts from all levels up to D	 This is necessary
to avoid that runs of the algorithm get stuck waiting for some base fragments that do not exist	 Notice
that this could alternatively be solved by having each site p that has produced an empty Baseip send a

dummy message indicating that Baseip is empty	

A site p that has completed its computation �i	e	 when the total cost for all its parts have been computed�
informs the other sites by issuing a Broadcastp�Terminated� action	 Such a terminated site will be
excluded from the set of active sites P 	

Algorithm SDBOMp

Input� Accump� Usesp� Base�
Begin

i� 
�
T P � P
While�Usesip �� 	� Do

�Accumi
p� Uses

i
p� Base

i
p� � CJOIN�Accumi��

p � Usesi��p � Basei����
Broadcastp�Baseip��
Basei � Basei 
 Baseip�
Do

�r� Baseir� � Receive�T P��
Basei � Basei 
 Baseir�
T P � T P � r

Until T P � 	�
i� i � 
�
T P � P

Od�
Broadcastp�Terminated��

End	




�

����� Correctness for SDBOM

In each phase i of an SDBOM execution� CJOIN i is performed at each site and a new set of Basei tuples
�to be used in the next phase� is produced and broadcast to all other sites	 Each site will then receive
all the new set of Base tuples produced at all the other sites in this phase� which union constitutes the
Base used in the next phase	

The phase i in a typical run of SDBOM will look like

Cjoinip� �Bcastip� � � � � �Cjoinipn �Bcastipn �RecvAllip� � � � � �RecvAllipn �

If we take the computational projection of the above schedule� which will consists only of the compu�
tational events �i�e� communication events are discarded from a schedule to obtain its computational
projection�� the schedule will look like

Cjoinip� � � � � �Cjoinipn �

The computational projection of SDBOM in a phase i is computationally equivalent to the CJOIN i of
the iterative BOM algorithm� and they both compute the total cost for all ith level parts� accumulate
the cost for all other parts that have some Basei�� subparts in Accum� and every tuple in Uses that has
a Basei�� subpart will be �marked� deleted	 Both will also form a relation Basei which contains a tuple
for each ith level part consisting of its identity and its cost	 However� in SDBOM the local fragments of
Basei are exchanged among the sites �by the communication events� before it is formed	

The correctness argument for the synchronous DBOM algorithm follows along the same lines as those for
the iterative BOM algorithm� because both of them are based on D consecutive phases� in each of which
the total cost for all the parts from the corresponding level are computed	 However� the underlying
system for the distributed setting is much more complicated than that of the iterative one	 We have
actually eliminated a great deal of complexity by assuming and designing the computational phases to
be synchronous� and assuming the reliability of the sites and the network	

��� Complexity Analysis for SDBOM

The cost formula for the synchronous DBOM algorithm denoted CFSDBOMp
� is based on the fact that

the executions of the di�erent phases and the exchange of their results are �approximately� synchronous	
This implies that a run of SDBOM is a series of phases of length D �as for the iterative case�	 The
SDBOM run fragment corresponding to phase i looks as follows�

Cjoinip� �Bcastip� � � � � �Cjoinipn �Bcastipn �RecvAllip� � � � � �RecvAllipn �

Notice that the events in the above run fragment are partially ordered according to two rules� First� a
Cjoinip event always precede a Bcastip event� and secondly� a RecvAllip is always preceded by a Cjoinip
and Bcastip events for all sites in the system� in other words� a Cjoinip event will always precede a

RecvAlliq event� and also a Bcastip event will always precede a RecvAlliq event� for any site�s� p� q� and

any phase i	 The Cjoinip and Bcastip events of di�erent sites may occur simultaneously	

A complete SDBOM run looks as follows�

Cjoin�p� �Bcast�p� � � � � �Cjoin�pn �Bcast�pn �RecvAll�p� � � � � �RecvAll�pn �
			

CjoinDp� �BcastDp� � � � � �CjoinDpn �BcastDpn �RecvAllDp� � � � � �RecvAllDpn �
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The partial order rules speci�ed above still apply� in addition to the rule stating that any Cjoinip� Bcastiq�

or RecvAllir event always precede any Cjoini��p � Bcasti��q � or RecvAlli��r event� for any site p� q� or r�

and any phase i � D	 That is� any event of the ith phase precedes any event of phase i � 
	

Each row of the above run roughly represents the actions that occur at all sites in a speci�c phase� where
the ith row corresponds to the ith phase	 The cost formula for the SDBOM algorithm at a site p denoted
by CFSDBOMp

� is stated by the following equation�

CFSDBOMp
� �D

i���C� � C� � �C��D�Ni�n

� �C� � C� � �C��D��n�D
i��Ni

� ��C� � C� � �C��D��n�N�D � 
���

� ��C� � C� � �C��D��D � 
�N��n

���

The right hand side of the above equation speci�es the cost of all the executions of CJOIN occurring at
site p� which is de�ned in terms of number of tuple accesses	

There is no need for further analysis or reduction of the �rst �multiplicative� term	 We just observe that
the cost speci�ed by this term is equal the cost of the iterative algorithm divided by n �i	e	 the number
of the sites�	 That is a consequence of our assumptions about uniformness and synchrony	

The total cost of SDBOM is the sum of the costs at all sites� while the response time is measured by the
maximum of these costs	

The communication complexity for SDBOM denoted by CCFSDBOMp
is de�ned as follows�

CCFSDBOMp
� �D

i��C��M i
p�

� C��D
i���M i

p�

� C��I�n�

���

The above formula stands for the cost of sending all the new base tuples generated at site p� to all the
other sites	 Since a broadcast capability is assumed� the cost of sending a message to all sites in the
network is a constant C� independent of the number of sites	

The last reduction is based on the observation that the number of new base tuples generated at �and
broadcast by� a site is equal to the number of groups resident at that site	 Moreover� our assumption
concerning the uniform distribution of groups to sites imply that each site has I�n groups� therefore the
last reduction to C��I�n�	

In a run of the algorithm at all sites� a new base tuple is generated for each group only once	 Thus� the
total number of base tuples to be broadcast in a complete run of the algorithm is equal to I 	 This is a
very interesting result� because it shows that the communication complexity of the SDBOM algorithm
is dependent only on the number of groups and not on the number of tuples in Uses	

When analyzing the above formula� we notice that whenever the number of groups in Uses is very low
relative to its cardinality� and a uniform distribution among the sites and the levels is achieved� a speed
up of nearly n is possible for BOM computations by distribution	

����� Disadvantage of synchronous control

The synchronous DBOM algorithm can perform well when the actual processing and communication
involved in each of the di�erent phases are approximately synchronous� otherwise the synchronous nature
of SDBOM can cause long blocking time intervals in the execution at various sites	
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The synchrony hoped for above is not guaranteed at all	 Actually the inherent asynchrony of a distributed
computing environment may often make the synchronous DBOM algorithm speci�ed above to wait for
long periods of time at each phase until all the results �i	e	 Base� produced by the other sites in that
phase to be delivered by the communication subsystem	 To avoid such exhaustive waiting while there
are much work that could be done� the following asynchronous DBOM algorithm is suggested	

��� An asynchronous DBOM algorithm

The asynchronous DBOM �ADBOM� algorithm is similar to the synchronous one except for the part
dealing with the receipt of the Base fragments	 While each site in the synchronous algorithm waits �i	e	
delays the start of its next phase� until it receives all the Base tuples produced in the current phase by
every site� each site in the asynchronous algorithm collects the Base tuples that have already arrived
and does not wait unless no Base tuples has been produced locally in the current phase� and none has
yet arrived from the other sites	 Notice that such waiting occurs only when there is still some tuples in
the local Uses� for which the total cost have not yet been computed	

The ADBOM algorithm simulates the same behavior as that of the synchronous one� when the compu�
tational phases and the exchange of their results are synchronous	 That is� when at all sites and for all
phases the result of the previous phase from a site r arrives at a site p before p performs its �rst Receive
action	

The intuition behind the well�functioning of the asynchronous DBOM algorithm lies in the fact that the
total cost for a part from level i are only dependent on the total cost of some few parts from the levels
below	 Hence the availability of the total cost for some parts from the levels below may often enable
the computing of the total cost for some parts of the level above	 This will on the average speed up the
overall computation	 This e�ect may be strengthened if the disjunctive groups of tuples located at the
di�erent sites are highly independent	

��� Implementation of the asynchronous DBOM algorithm

The implementation of the ADBOM algorithm di�ers from that of the SDBOM in the manner the Base
fragments are received from other sites	

In the SDBOM implementation the RecvAllip action blocked the execution at site p waiting for the

delivery of Baseir for each remote site r in the system	 In this implementation� we will be using the
action RecvAvip which receives all the Baseir fragments available locally at the moment this action is

called �and before it terminates�	 A Baseir fragment is made available at site p if it has been delivered
by the underlying communication subsystem before next phase starts	 This is implemented by the
statements labeled by �� � and � in the algorithm depicted below	

The implementation is based on an asynchronous I�O routine called Select that is capable of simulating
both blocking and nonblocking I�O behavior	 The Select operation used here takes two arguments� the
�rst is a list of site identities and the second is a time value determining the waiting period for some
data to arrive from some sites	 If this time value is zero� no waiting will take place	 Select returns the
site identity from which some data has arrived� or � when No WAIT �i	e	 � � and no data arrived from
any site	 When a site identity is returned� Receive is called to fetch the data that has arrived from that
site	
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Algorithm ADBOMp

Input� Accump� Usesp� Base�
Begin

i� 
�
While�Usesip �� 	� Do


� �Accumi
p� Uses

i
p� Base

i
p� � CJOIN�Accumi��

p � Usesi��p � Basei����
�� Broadcastp�Baseip��
�� Basei � Baseip�
�� If�Usesip � 	� Then

Goto Terminate�
�� If Baseip �� 	 Then

aport� Select�P � NO WAIT ��
Elsefwait when there is no new base tuples g

aport� Select�P �WAIT ��
�� While�aport �� �� Do

�aport� Baseiaport� � Receive�P��
Basei � Basei 
 Baseiaport�
aport� Select�P � NO WAIT ��

Od� fThere is no more base fragments availableg
i� i � 
�

Od� f while Usesip is not empty g
Terminate� Broadcastp�Terminated��

End	

The ADBOM algorithm speci�ed above breaks with our previous understanding of a phase which was
established for the iterative BOM and the synchronous DBOM algorithms� i	e	 it breaks the correspon�
dence between a computational phase i �i	e	 Cjoini�� and computing the total cost for all ith level parts	
However� for the �rst phase the correspondence still hold� i	e	

Cjoin�p� �Bcast�p� �RecvAv�p� � � � � �Cjoin�pn �Bcast�pn �RecvAv�pn �

The di�erence between this and the �rst phase of the SDBOM is that RecvAv will try to receive the
base tuples sent by remote sites� if they are already delivered locally �i	e	 available�� otherwise it returns
immediately when there is some base tuples produced locally	 It will block only when there is no new
base tuples produced locally� and no base tuple has yet arrived from some remote sites	 This means
Cjoin�pj could be performed only on a subset of the base tuples �from the �rst level�� and in fact a call
of Cjoin may be needed for each of the base fragments sent by remote sites and received and processed
locally in a serial manner	

For further analysis see the complexity analysis of ADBOM	

����� Correctness of the ADBOM algorithm

At �rst sight� it seemed nearly impossible to prove the correctness of such an asynchronous algorithm	
That is due to the tremendous increase in the number of possible executions for the algorithm� caused by
its asynchronous nature	 Fortunately� it turns out that we can carry an informal proof for the ADBOM
algorithm in a manner very similar to that we used for the synchronous algorithm� but with a slight
di�erence	
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The �rst phase computes the total cost for all the parts of the �rst level� and these parts together
with their total cost are broadcast to all the sites in the system	 Consequently each site will eventually
compute the total cost for all its local second level parts� and broadcast them	 That is� each site will
eventually receive all the second level parts in the entire system together with their total cost	 Again�
this implies that each site will eventually compute the total cost for all its local third level parts� and
broadcast them	 We can carry on with this argument until we approach level D parts� which prove that
any �fault�free� execution of ADBOM will compute BOM for all the parts in the system	

We need now to prove that the algorithm will terminate after it has computed the total cost for all the
parts from level � upto D	 It follows from the above argument that each site p will compute the total
cost for all its local parts and broadcast to all the other sites	 This implies that the local Usesp will be
empty after p has computed the total cost for all the local parts from level � upto D	 Hence� ADBOMp

will terminate properly	

Notice that the eventuality argument from above assumes fairness of the underlying system	

��� Complexity Analysis for ADBOM

In a run of ADBOM� the �rst phase will always consist of the same set of action occurrences� in which
each site p performs the sequence of events

CJOIN�
p �Bcast�p�RecvAv

�
p�

which is partially the same as in the synchronous case	

The ADBOM algorithm will always generate a run fragment similar to the following with the actions
of the di�erent sites occurring in any order� and the actions of the same sites are totally ordered as the
following fragment shows�

Cjoin�p� �Bcast�p� �RecvAv�p� � � � � �Cjoin�pn �Bcast�pn �RecvAv�pn �

The above fragment corresponds to the execution of the �rst phase at all the sites in the system	

For comparison� an SDBOM run fragment that corresponds to the �rst phase looks as follows�

Cjoin�p� �Bcast�p� � � � � �Cjoin�pn �Bcast�pn �RecvAll�p� � � � � �RecvAll�pn �

When we compare the two run fragments above� we observe that an RecvAv�p action may occur before
any Cjoin�q action� where p �� q� when Bcast�p �� 	� while a RecvAll�p action could never precede a Bcast�q
�or a Cjoin�q� action � for any q and p	

In the �rst phase of ADBOM each site produces all its local �rst level Base tuples� and disseminates
them �by broadcast� to all sites� which is very similar to what happens in the �rst phase of SDBOM	

In the second phase however the situation is di�erent� because each of the n Base fragments sent in the
previous phase �i	e	 a Base�pi is sent for each pi � P� may be received at a site p so asynchronously that
for each of them there is a fragment of execution at p consistent of the following�

Cjoin��pp �Bcast��pp �RecvAv�p�
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The ADBOM execution fragment at site p that is computationally equivalent to the second phase of an
SDBOM execution� may look as follows�

Cjoin��pp �Bcast��pp �RecvAv��p�p �
Cjoin��p�p �Bcast��p�p �RecvAv��p�p �

			

Cjoin
��pn��
p �Bcast

��pn��
p �RecvAv��pnp �

Cjoin��pnp �Bcast��pnp �RecvAv�p�

where an Cjoin��pip event is enabled by the receipt of Base�pi � which is the result of the RecvAv��pip event	
We denote the call to CJOIN by Cjoin��pip to indicate that this join involve only a fragment of the base
tuples involved in the previous phase� and this fragment is the one produced and broadcast by site pi	
An RecvAv��pip event denotes the receipt of the base fragment produced and broadcast by site pi in the
previous phase �i	e	 Base�pi�	

The above schedule is very bad because we are paying the price of performing a join for each base
fragment and not only one join for the union of all fragments �as in the synchronous case�� and the cost
of this join is strongly dependent on the size of the local Uses relation	 Unfortunately the situation
can be much worse by the fact that for each Base fragment �also the one produced locally� a series of
D phases could occur before the next Base fragment is received as shown by the following execution
fragment at site p�

Cjoin�p�Bcast
�
p�RecvAv

�
p�

Cjoin�p�Bcast
�
p�RecvAv

�
p�

			
CjoinDp �BcastDp �RecvAvDp �

In the above execution fragment� no base fragment is received from a remote site� i	e	 all the RecvAvip
events returns immediately without receiving anything	 Such an execution fragment is enabled by the
fact that each of the Cjoinip events produced a local base fragment� and no base fragment was received
while the execution was going on	

Such an execution fragment could occur for each base fragment produced in the system irrespective
where it has been produced	 However� the time period between two subsequent deliveries of �remote�
base fragments have to be long enough for such an execution fragment to occur	 The following execution
fragment simulates the above execution fragment for each of the base fragments produced in the �rst
phase�

Cjoin�p�Bcast
�
p�RecvAv

�
p�

Cjoin�p�Bcast
�
p�RecvAv

�
p�

			
CjoinDp �BcastDp �RecvAvD�p�p �

Cjoin��p�p �Bcast��p�p �RecvAv��p�p �
			

CjoinD���p�p �BcastD���p�p �RecvAvD���p�p �
CjoinD�p�p �BcastD�p�p �RecvAvD�p�p �

			

Cjoin
D�pn��
p �Bcast

D�pn��
p �RecvAvD�pnp �
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Cjoin��pnp �Bcast��pnp �RecvAv��pnp �
			

CjoinD���pnp �BcastD���pnp �RecvAvD���pnp �
CjoinD�pnp �BcastD�pnp �RecvAvD�pnp �

In the above execution fragment most of the RecvAvp events do not succeed in receiving any Base
fragment	 Actually only the following events receive a fragment sent in the �rst �old� phase�

RecvAvD�p�p � RecvAvD�p�p � � � � � RecvAvD�pnp

By analyzing the above fragment� we realize that each of the n Base fragments produced and broad�
cast in the �rst phase can be engaged in D � 
 phases of the new sort� in each of which the events
Cjoin�Bcast� and RecvAv occur	 The Cjoin in each of these new phases may produce a new Base
fragment� which is then broadcast by Bcast� and �nally an attempt to �asynchronously� receive some
Base fragments produced and broadcast by other sites� is carried out by the RecvAv event	

A maximum total of n�D � 
� Base fragments can be produced �in the second phase� of which �n �

��D�
� are received by each site in the third phase �each site need not receive the fragments produced
locally and which have already been locally processed completely�	

As mentioned earlier� we have broken with our notion of phases as created by the synchronous DBOM
algorithm� because parts of all the subsequent phases are executed in the second phase� as shown in the
schedule above	 What is special about the new perception of a phase is that in ADBOM phase i the cost
for all parts of level i are computed completely� and for all the Base fragments received in this phase
a chain of Cjoin and Bcast events may occur for each fragment up to the last level i � D for which a
new nonempty Base fragment is created	

The third ADBOM phase consists of the asynchronous receipt of �n � 
�D Base fragments� each of
them triggering an execution fragment similar to the one above but having one less level� because the
total cost for all parts from level � have been computed completely in the previous �i	e	 second� phase	
Consequently� the third phase will produce �n�
�D�D�
� Base fragments� where each site will receive
�n� 
�D�D � 
� of them	

Below we state for each ADBOM phase the number of Cjoin �or Bcast� that can take place in an
ADBOM execution�

phase produced by each site received by each site in next phase

 D �n� 
�D
� �n� 
�D�D � 
� �n� 
��n� 
�D�D � 
�
			
i �n� 
�i��D���D � i�� ��n� 
�i�D���D � i��
			
D �n� 
�D��D� �n� 
�DD�

The cost formula for such an ADBOM execution at site p �which is the worst case that can occur� is
expressed in terms of the number of Cjoin events�

CFADBOMp
� �D

i���n� 
�i��D���D � i�� ���

This is an extremely high cost� since the cost of CJOIN is strongly dependent on the size of Uses	
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To derive the communication complexity of the worst case execution of ADBOM� recall that an Bcast
event follows each of the Cjoin event generated by an ADBOM execution� thus the maximal number
of Bcast events is equivalent to that for Cjoin	 Fortunately however� the communication complexity
in terms of the number of base tuples exchanged among the sites are the same as for the SDBOM
algorithm� i	e	 I base tuples will be exchanged in ADBOM executions irrespective of the number of
Cjoin or Bcast events in an execution	 Later on� we will show how to make the number of Bcast events
in ADBOM executions �xed �independent of the number of Cjoin events�� and in fact often less than
that for SDBOM executions	

��� Data distribution and the impact of execution timing

It is relatively trivial to satisfy the condition stated in assumption �	�� while the condition in assumption
�	� is very hard to satisfy	

The assumptions �	� and �	� above are important in a synchronous system� or when approximately
synchronous executions �i	e	 runs of the algorithm� occur� because they achieve a uniform distribution
of the workload at the various sites involved	 This is in contrast to asynchronous systems� where there
are cases �i	e	 possible executions� in which a non�uniform distribution of the data will be preferred	
That is� if the sites having more groups of tuples� also have higher processing capacity than those having
fewer tuples� a better distribution than the uniform one is achieved �	 Unfortunately� this can not be
guaranteed to occur	 The opposite situation could also occur� i	e	 sites having higher processing capacity
have fewer tuples than those having lower processing capacity� which leads to bad performance� since
the slowest processor determines the response time	

When taking load variation into account� the processing capacity of a site is a function of processor speed
and system load for that site	 The higher speed and lower load a site has� the more processing capacity
it has	 There is no guarantee that the data distribution will be such that the workload is distributed
among the di�erent sites along the di�erent phases	 In fact the worst case occurs when the groups of
tuples from di�erent levels are located at di�erent sites� resulting in a performance of our algorithm
that will be worse than a sequential algorithm� because the resulting computational and communication
activities at the various sites will be strictly ordered in time	 Moreover� the synchronous algorithm will
not function properly for such a distribution	

However� by using a random distribution function� an approximate satisfaction will be achieved with
high probability	

Although parallelism is inherent in distributed computing systems� its exploitation is not a straight�
forward matter	 The problem at hand and the design of its solution must allow for parallel execution	
However� there is no guarantee that the logically independent activities that are scheduled by the solution
to execute in parallel are actually executed in parallel by the underlying distributed system	

In both the synchronous and the asynchronous distributed BOM algorithms the danger of strictly se�
quential execution of computation and communication activities is always present� i	e	 there may never
be simultaneous activities at di�erent sites	 Although the danger is there� strict sequential execution
rarely occurs	

�we speak here of the processing capacity throughout a whole run� and not at any speci�c moment through that run
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� Further DBOM analysis� improvements� and future work

In this section we will discuss a number of improvements to both the SDBOM and the ADBOM algo�
rithms	 These improvements will be presented and discussed one by one	 However� they can be combined
into a single �improved� ADBOM or SDBOM algorithm	

From equation �� we see that a very large number of Cjoin events could occur in an ADBOM execution	
However� in ADBOM they are carried out when an SDBOM execution will be blocked while waiting for
all the base tuples produced in the previous �SDBOM� phase to be available locally	

Each of these Cjoin events has the potential of reducing Uses and producing new base tuples that are
broadcast by a subsequent Bcast event� hence making them available for sites having parts with cost
dependent on these base tuples	 This early availability of the base tuples made possible by the ADBOM
algorithm can improve the performance and overall throughput of these sites	 The ADBOM algorithm
enables a better progress in the computation	 Some sites may be able to compute the total costs for
all their local parts based on the receipt of some �recently computed� base parts from other sites� while
SDBOM may be blocking such progress	 This is based on the assumption that the sub�DAGs at the
di�erent sites does not involve all the parts in the system �in a subpart role�	

The ADBOM algorithm avoids blocking and enable the early delivery of base tuples at the cost of
increased number of Cjoin events� which will potentially improve the response time of the algorithm
at the cost of increasing its total cost	 However� since the cost of a Cjoin event is strongly dependent
on the current cardinality of Uses� this large number of Cjoin events will most probably decrease the
overall system performance and throughput to an unacceptable level	

��� Minimizing the cost of CJOIN

Our �rst step to improve the performance of ADBOM is to redesign CJOIN to make it strongly dependent
on M � the cardinality of current Base� and weaken its dependency on N � the cardinality of current Uses	

When the available base tuples �i	e	 the tuples that were in the recently delivered Base fragments� to
be engaged in the next Cjoin event are very few compared to the number of tuples currently in Uses
�which is very typical for ADBOM�� ADBOM will use another combined join algorithm than CJOIN�
when carrying out an Cjoin event	 This other algorithm �from now on called DJOIN� di�ers from
CJOIN in that it is strongly dependent on M and not as strongly dependent on N as CJOIN	 Since
M is much less than N � a call to DJOIN costs much less than its corresponding call to CJOIN� hence
improving the e�ciency �i	e	 response time and total cost� of ADBOM	

This DJOIN algorithm requires an index to be built on Uses� based on the subpart attribute� in addition
to the structures required by CJOIN on Uses� Base� and Accum	 The DJOIN algorithm is very similar
to CJOIN except that instead of engaging all the tuples of Uses it engages only those Uses tuples that
have as its subpart one of the currently engaged Base tuples	

Notice that a base tuple could be engaged� as a subpart� in many tuples �hence data blocks� of Uses� and
many base tuples could be subparts of the same part� hence retrieving the same data block of Uses from
disk could satisfy many base tuples	 This implies that a large Base �engaged in a join event� results in
fewer disk accesses needed in performing the join event	 Therefore we should minimize the number of
join events to enlarge the Base relation involved in them	
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��� Minimizing the number of joins	 a dynamic approach

To minimize the number of join events involved in a run of ADBOM� we restrict the degree of nondeter�
minism �i	e	 asynchrony of computational phases� found in such a run �or weaken the phase synchrony
of SDBOM� i	e	 increasing its nondeterminism�	 This restriction is materialized by some amount of wait�
ing	 That is� the algorithm waits for the results �i	e	 base fragments� of at least K sites to be delivered
locally before going on with the next join event �i	e	 phase�	 However� this waiting must be restricted
by 
�c times the amount of time it takes a join event to be carried out� for a suitable c � 
	

Both K and c can be dynamically adjusted by the current system load as follows� When there is high
load �i	e	 many other activities are going on simultaneously with our BOM computation� it is bene�cial
to wait �i	e	 make K large and c small� otherwise do not wait much	 Such a dynamic synchrony�adjusting
mechanism depending on system load has the potential of increasing system throughput	 It remains to
be shown what e�ect such a mechanism will have on the response�time of our BOM computation	

In future work� intensive experimental activities have to be carried out to measure the �real� impact of
K� c and the dynamic synchrony�adjusting mechanism on a number of data and topological settings	

��� Restricting the size of Base to available memory

Since the cost of each Cjoin event is dependent on the current cardinality of Uses� i	e	 jUsesj � N � and
not the current cardinality of Base� i	e	 jBasej � M �� it is bene�cial to make the Base relation that is
engaged in a Cjoin event as large as possible �even by some waiting�	 This will increase the number of
base tuples produced by Cjoin� and increase the reduction rate for Uses� which again make subsequent
Cjoin events cheaper	 However� if the size of Base gets larger than available memory� it is more e�cient
to execute many Cjoin events than having to apply even the most e�cient non main memory hash join
algorithm� i	e	 hybrid hashing 
Ullm��b� Graf���	 The cost of hybrid hash join which is applied when
non of the argument relations �ts into memory is ��M � N�� while the cost of a main memory hashing
algorithm �which is applied when at least one of the argument relations �ts into available memory� is
max�N�M�	

That is� in addition to the current system load the amount of available memory has a major impact on
the actual �gures of K and c	

��� When broadcast is not necessary

Using broadcast to disseminate messages of base tuples to all sites in the broadcast domain� is bene�cial
when all the sites are interested in these messages	 It is often the case that some sites are not interested
in all the messages� because their base tuples are not engaged with any local part	 Since these sites
cannot know beforehand when the base tuples of a message are needed or not� they have to receive them
and handle them in the same manner as if they were interested in them	

When the degree of independence between the subsets of groups located at the various sites is very high
�i	e	 the base tuples produced locally are seldom needed by other sites�� it is a great waste of resources
to use broadcast� since a broadcast will unnecessarily engage all the sites� even those having nothing to
do with our BOM computation	

�provided that it �ts into main memory



��

Fortunately� in such cases it is possible to avoid broadcast and use simple point�to�point communication�
but there is a need to know which sites are dependent on the cost of which remote parts �i	e	 parts
located at a remote site�	 The solution to this problem is simple� since the partition scheme is a priori
known to each site� then the owner sites of parts are globally known	 Therefore� at the start of each
run� each site sends to sites �on which parts it is dependent� the set of parts identities it is interested
in getting their total cost	 And� further in the run� when a site produces the base tuples of its current
phase it only sends a subset of the base parts to the sites that have submitted request for them	 When
the subsets of groups at the various sites are totally independent� no site ever sends any base tuple to
any other site	

The above idea is also applicable for synchronous BOM algorithms� and for point�to�point networks	

��� Pipelining

Using the pipelining strategy in distributed data�processing� a site disseminates the base tuples recently
produced locally at that site as soon as they are produced	 This strategy is space e�cient� disperses
the transfer of bulk data over a large period� and increases parallelism in the system� hence increasing
the throughput of the communication subsystems	 Most importantly� it increases the amount of parallel
activities among the sites and the network channels� hence improving the response time of the compu�
tation and the overall throughput of the processing system	 For a comprehensive analysis of pipelining
in distributed data processing systems see 
Khal���	

� Conclusions

Linearly recursive database queries can be expressed as a combination of a transitive closure and rela�
tional algebraic operations	 In this paper we have presented e�cient and distributed algorithms for an
important class of such queries� called bill�of�materials �BOMs�	 A BOM query can be expressed as a
combination of transitive closure and aggregate functions	

The presented algorithms use a special join operation that avoids the evaluation of the transitive closure
but rather combines the accumulation of the closure with the binary matching of the join into a more
e�cient algorithm	

For the distributed setting we presented two algorithms� a synchronous and an asynchronous one� and
suggested some improvements to both of them	 The synchronous algorithm consists of a small number
of phases �i	e	 join events� but at the potential cost of long waiting at the end of each phase	 While the
asynchronous algorithm eliminates waiting �while there is some work to be done� at the potential cost
of a greater number of phases	 The worst case scenario for the asynchronous algorithm can involve a
very large number of join events� which may decrease system performance tremendously	

As a consequence of the above analysis� it seems to us that a partially synchronous approach that is
adaptive to the actual execution environment may be the best solution to avoid the two stated problems�
i	e	 long waitng caused by synchronous phases� and the large number of join events caused by asynchrony	
Moreover� a redesign of the join algorithm was proposed to minimize the dependence of the execution
cost on the number of join events	 That is in addition to some other proposed improvements	

The experimental veri�cation of these claims is the topic of our immediate future work	
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