The Longcut Wide Area Network Emulator: Design
and Evaluation

Lars Ailo Bongo
Department of Computer Science
University of Tromsg
Norway
Email: larsab@cs.uit.no

Abstract— Experiments run on a Grid, consisting of clusters
administered by multiple organizations connected by shared wide
area networks (WANSs), may not be reproducible. First, traffic
on the WAN cannot be controlled. Second, allocating the same
resources for subsequent experiments can be difficult. Longcut
solves both problems by splitting a single cluster into several
parts, and for each part having one node emulating a WAN link
by delaying messages sent through it. The delay is calculated
using latency and bandwidth measurements collected using the
Network Weather Service and a parallel application monitor. We
evaluate the precision, usability for WAN collective operation
research, and scalability of Longcut.

I. INTRODUCTION

A Grid consists of clusters administered by multiple organi-
zations connected by shared wide area networks. Two factors
make system research difficult in such an environment. First,
experiments may not be reproducible since the traffic on shared
WANSs cannot be controlled [8]. Second, allocating exclusive
access, at the same time, to several clusters is usually not
supported by Grid middleware. To avoid these problems a large
cluster (or several small cluster) at a single site can be used
with emulated WAN links.

As input to the emulator we use latency and bandwidth
traces of real WAN links collected using the Network Weather
Service (NWS) [16] and the EventSpace parallel application
monitor [2].

The reaming of this paper proceeds as follows. Section 1l
describes related work. Section Il describes the design and
implementation of the Longcut WAN emulator. The trace col-
lection tools are described, and the collected traces evaluated,
in section IV. Longcut is evaluated in section V, by doing
experiments measuring the precision, scalability, and usability
for WAN collective operation research of the collected traces.
Finally section VI concludes.

Il. RELATED WORK

The design of Longcut is inspired by the Panda WAN
emulator [8]. Both use sub-cluster gateway nodes to run
WAN emulation code. Also, both are closely integrated with
the communication system. Our experiments differ from the
distributed work queue experiments in [8], in that we use
applications with higher communication frequency.

Other emulators are Netbed [15]. Dummynet [13], nse [7],
Trace Modulation [10] and ModelNet [14]. Most use low-level

rerouting which requires adding a module to the operating
system. Longcut runs unmodified applications on unmodified
operating systems.

Alternatives to emulation are simulation [5], [17] and live-
network experimentation. Simulation provides a controlled,
easy to change, and repeatable environment. However, higher
level abstraction must be used due to the scale of the system;
thus accuracy is lost. Live-network experimentation using
environments such as PlanetLab [11] is most realistic, but
often these are not designed for performance experiments. For
example PlanetLab uses virtualization to share resources and
protect services from each other, which makes it difficult to
control the load on resources.

There are several network monitoring tools [6], [9], [16] that
can be used to collect the traces used by Longcut. However,
most of the existing traces do not have the high sample rate
required for our experiments.

I11. DESIGN AND IMPLEMENTATION

In many clusters a gateway node provides the single entry
point to the compute nodes, to the benefit of cluster users and
administrators.

The design of Longcut is similar to the Panda WAN
emulator [8]. A cluster is split into several sub-clusters. For
each sub-cluster we select one node to act as a gateway.
All communication to the sub-cluster is routed through its
gateway, which delays messages to emulate the higher latency
of WAN connections.

To implement Longcut, we need to change the communica-
tion paths used by applications, such that messages are routed
through the gateway where the emulation code is run. Being a
research tool, Longcut should be extensible such that users can
add their own emulation code, and configurable such that the
emulated topology can be easily changed. Our communication
system, PATHS [1], supports all this.

PATHS provide configurable paths though the communi-
cation system. A path consists of several wrappers that can
run arbitrary code. Figure 1 shows how we reconfigure a path
between two nodes to include a gateway node which runs the
emulation code in form of a wrapper. Extending Longcut with
other emulation approaches requires writing a new wrapper
(consisting of 3 functions).

Node A Gateway Node Node B
Application -: -thread.:l :_ thread :l
Communication @ @
0S/HW e L/ N\ |]..-/
. e
without emulation
Fig. 1. Communication path with WAN emulation wrapper.

All communication paths used by an application are spec-
ified in a pathmap [2], which is created using three data
structures: cluster topology, application communication infor-
mation, and a mapping of application threads and communi-
cation buffers to the clusters. To re-route messages the cluster
topology is changed. To add emulation wrappers, scripts are
run that reconfigure the pathmap.

We have implemented two types of WAN emulation where
the delay is calculated using: (i) constant WAN latency-, and
bandwidth, and (ii) latency and bandwidth time series read
from trace files. The first type is useful for simple experiments
where different topologies are evaluated. The tools used to
collect the traces are described in the following section.

On the gateway there is one thread per TCP/IP connection.
In our initial implementation the threads waited either by
blocking (by calling usleep) or spinning. Spinning had to be
used since it was not possible to sleep for less than 30 ms.
This approach does not scale well, since gateways emulating
many WAN links can have many threads spinning at the same
time causing loss of accuracy (as reported in [4]).

To make sure only one thread spins at a time, we reimple-
mented the delay code as shown in figure 2. Threads block if
there is already one thread spinning. Threads are unblocked
when the currently spinning thread exists, or when they are
done waiting. The scalability of Longcut is evaluated in section
V.

1V. TRACE COLLECTION

Five cluster gateways were monitored:

VVgW.cs.uit.no : Pentium 4 3.2GHz in Tromsg,
Norway.

. dual Pentium Il 300MHz in
Tromsg, Norway.

: dual Athlon MP 1.6GHz in
Trondheim, Norway.
roadrunner.imada.sdu.dk : Pentium Il 1.4GHz in Odense,
Denmark.

. dual-CPU Pentium Il 733 MHz
in Aalborg, Denmark.

The topology, ping latency and link bandwidth of the WANSs
between the monitored nodes are shown in figure 3.

psgw.cs.uit.no

clustis.idi.ntnu.no

benedict.aau.dk

A. Monitoring Tools

1) Network Weather Service: A widely used network mon-
itoring tools is the Network Weather Service (NWS) [16].

done_tine = current _tinme() + wait_time;
i f (somebody spinning)
/1 signal ed by spinning thread
condition_ wait();

while (1) {
current _time = tinmestanmp();
if (current_time() > done_tine) {
if (thread bl ocked)

/'l unbl ocked thread will do the
/1 spinning
condition_signal ();

br eak;

}

for (each bl ocked thread)
if (current_tinme() > thread done_tine)
/1 unbl ocked thread will exit
condition_signal ();

/'l allow others to run
yield();

Fig. 2. Pseudo code for the delay function.

100Mbp/s
LAN

VVgW.cs.uit.no

Tromsg

4
<-f"
100-155 Mbit/s

WAN
Uninet

Tromsg

143 ms
2-way
latency

| clustis.idi.ntnu.no | Trondheim

6.8 ms
2-way
latency

2.5 Gbit/s
WAN
Uninet

*EL» Oslo
A

7.8 ms
2-way
latency

2.5 Gbit/s
WAN
Nordunet

622 Mbit/s
WAN

Forskningsnettet Iy
benedict.aau.dk <«
7.1ms £

Alborg 2-way
latency

Copenhagen

3.1ms
2-way
latency

622 Mbit/s
WAN
Forskningsnettet

roadrunner.imada.sdu.dk |

Odense

Fig. 3. The monitored topology (all intermediate routers are not shown).

TABLE |
NWS TWO-WAY LATENCY IN MILLISECONDS.

benedict | clustis | psgw | roadrunner | vvgw
benedict 22.43 | 36.70 7.11 | 36.52
clustis 22.14 17.88 18.81 | 14.88
psgw 36.71 | 15.03 34.84 0.31
roadrunner 7.03 18.83 | 34.00 32.95
vvgw 36.29 | 14.52 0.54 32.82

TABLE Il
NWS MEAN BANDWIDTH IN MBITS/SEC.

benedict | clustis | psgw | roadrunner | vvgw
benedict 3.15 2.58 8.60 2.32
clustis 3.50 5.57 3.96 5.63
psgw 2.28 4.85 258 | 81.73
roadrunner 6.27 2.70 1.67 1.87
vvgw 2.28 4.78 | 79.64 2.56

NWS has low monitoring overhead, and has been shows
to provide measurements accurate enough to predict future
TCP/IP latencies and bandwidth [16]. It is easy to install and
use, but three ports need to be opened on firewalls.

Latency is measured by sending a four byte message.
Bandwidth is measured by sending four 16 Kbytes messages
using a socket buffer size of 32 Kbytes each 60th second. We
tried using a shorter sample period (1 second), but the rate
was too high for the monitored WAN connections.

2) EventSpace: Using the EventSpace monitoring tool [2]
we can trace the latencies of TCP/IP connections as used
by a communication system for WANs. EventSpace allows
low-overhead monitoring of the actual communication rate
of the applications we are interested in. However, installing
EventSpace can be difficult due to a large number of libraries
used (e.g. Python). Also, firewalls need to be opened for the
PATHS server ports.

We collected traces for two benchmarks. The first was
collected for a collective operation micro-benchmark run on
a multi-cluster (the experiment is described in [3]). As only
small message were used, we do not report bandwidth results.
In the second experiment, we used a benchmark designed
for latency and bandwidth measurements. For each iteration
it sends an eight byte message, followed by two 32 Kbytes
messages. Sends were blocking, hence one must complete
before a new one can be initiated.

We did one experiment were the Nagle algorithm was
disabled on all TCP/IP connections, to ensure that even small
messages are sent immediately, but it did not significantly
reduce the latency.

B. Collected Traces

Tables I, 111 and 1V shows the mean two-way TCP/IP latency
measured for the different links (in both directions). The NWS
trace has smaller mean latencies for small latency links than
the EventSpace traces. Tables Il and V shows the TCP/IP
throughput. The EventSpace trace has higher bandwidth than
the NWS trace.

TABLE Il
EVENTSPACE COLLECTIVE OPERATION TRACE TWO-WAY LATENCY
(MILLISECONDS).

benedict | psgw | roadrunner
benedict 35.76 9.16
psgw 32.49
roadrunner 32.35

Increasing the sample rate lowers the observed variation
both in bandwidth and latency. Also, the bandwidth differs in
two directions, while the latency usually does not. Conclusions
should not be drawn from the above results since we have only
collected one trace for each link.

V. EXPERIMENTS

For the experiments we use a cluster with 44 nodes, each
with a single-CPU Pentium 4 3.2 GHz with Hyper-threading
(2-way SMT) enabled. The nodes are connected using Gigabit
Ethernet, and all run Linux with kernel version 2.4.21. We use
NPTL threads for the experiments. On all TCP/IP connections
the Nagle algorithm was disabled and default socket sizes
were used. The delay is implemented with the single-thread-
spinning approach described above.

A. Precision

To investigate the precision of Longcut, we measured ap-
plication level ping-pong latency and bandwidth between a
cluster in Tromsg and Trondheim using PingPong from the
Pallas Microbenchmark suite (PMB) [12] (ported to PATHS).
We also traced the link by using EventSpace to monitor the
latency-bandwidth micro-benchmark, and used the captured
trace to emulate the link on our cluster. Each experiment was
repeated twice. For most message sizes the real and emulated
links have similar latency and bandwidth (figure 4).

We also measured how different traces influence the la-
tency and bandwidth of PingPong. Two traces were used;
the NWS and EventSpace latency-bandwidth microbenchmark
traces presented in section IV. Also we did one experiment
with constant latency and bandwidth values (means from the
EventSpace trace).

Figure 5 shows the difference in latency and bandwidth for
the WAN link between Odense and Aalborg. The PingPong
results differ for the NWS and EventSpace traces since the
NWS trace has lower latency and lower latency than the
EventSpace trace. However, using constant values does not
differ significantly from using the EventSpace trace, even if it
has smaller variation. We have similar results for other links.

We also measured how the different traces influence the
performance of collective communication using Allreduce
from PMB. The cluster was split into four parts with 10 nodes
in each part in addition to the node selected as gateway. The
four clusters were emulated to be in Tromsg (behind vvgw),
Trondheim, Odense and Aalborg. The difference between the
constant value trace and the EventSpace trace is smaller than
for PingPong (figure 6). However, the difference in NWS

tlusec]

tlusec]

EVENTSPACE LATENCY-BANDWIDTH MICROBENCHMARK TRACE LATENCY (MILLISECONDS). STANDARD DEVIATION IN PARENTHESIS.

TABLE IV

EVENTSPACE LATENCY-BANDWIDTH MICROBENCHMARK TRACE BANDWIDTH (MBITS/SEC). STANDARD DEVIATION IN PARENTHESIS.

benedict clustis psgw roadrunner vvgw
benedict 23.18 (3.31) | 37.19 (1.66) | 12.70 (27.03) | 36.98 (1.48)
clustis 22.82 (3.41) 14.80 (2.47) | 23.87 (30.67) | 14.91 (3.84)
psgw 37.13 (1.57) | 15.00 (1.17) 36.90 (28.51) 1.81 (1.52)
roadrunner 9.85 (4.02) | 20.43 (3.12) | 33.93 (3.75) 34.02 (4.38)
vvgw 36.95 (1.46) | 15.00 (1.19) 1.84 (1.34) | 36.49 (26.84)
TABLE V

benedict clustis psgw roadrunner vvgw
benedict 8.80 (0.45) 5.75 (0.66) | 10.60 (3.22) 3.19 (0.08)
clustis 4.97 (0.50) 9.74 (3.01) 6.76 (2.35) 7.78 (0.69)
psgw 3.18 (0.10) | 12.73 (0.75) 4.86 (1.64) | 44.49 (10.99)
roadrunner | 10.08 (1.28) 8.18 (2.30) 5.49 (1.48) 3.46 (0.26)
vvgw 3.19 (0.09) | 12.79 (0.76) | 51.50 (9.68) 4.75 (1.63)
1le+07 T 10 T
WAN1 —— WAN1 ——
WAN 2 —--x--- WAN 2 —--x---
Emulated 1 ---%--- Emulated 1 ------
Emulated 2 3 Emulated 2
1e+06 4 1t 4
g
100000 e 0.1+ 4
10000 s s s s s s 001 s s s s s s
1 10 100 1000 10000 100000 1e+06 1le+07 1 10 100 1000 10000 100000 1e+06

bytes

(a) Latency

Fig. 4.

1le+08

1e+07 |-

1e+06 |-

100000 |

10000 [e s e e

T
Constant —+—
W

1000 L L L
1 10 100 1000

bytes

(a) Latency

Fig. 5.

10000 100000

1le+06 1le+07

bytes

(b) Bandwidth

Measured and emulated PingPong latency and bandwidth between nodes in Tromsg and Trondheim.

1le+07

10

Mbytes/sec

0.1

Constant ———
WS

N
EventSpace ---%---

1000 10000
bytes

(b) Bandwidth

100000

Emulated PingPong latency and performance using different traces for Odense and Aalborg link.

1le+06

le+07

1le+08 T T T T T

T
Constant —+—
NWS ---x---
EventSpace ------

1e+07 |

1e+06 |

tlusec]

100000

10000
1 10 100 1000 10000 100000 1le+06 1e+07
bytes
Fig. 6. Emulated Allreduce latency using different traces.
le+07 T T T T T T
2 links —+—
4 links ---x---
8 links ---%---
16 links —&
32 links —-u-
40 links - -
1e+06 |- 4
o
17
e
100000 B
10000 A‘V ol 1 1 1 1 1
1 10 100 1000 10000 100000 1e+06 1e+07

bytes

Fig. 7. Longcut scalability measured using PingPong with increasing number
of emulated connections per gateway.

and EventSpace latency and bandwidth do influence Allreduce
performance.

B. Scalability

To evaluate the scalability of Longcut, we measured the
number of TCP/IP connections each gateway can emulate
without loss in precision. The cluster was divided into two
parts with 20 nodes in each part, and we run several instances
of PingPong, all communicating over emulated WAN links
(Aalborg—Qdense). For each instance of PingPong each gate-
way handles two TCP/IP connections. Figure 7 shows the
maximum latency observed for each experiment. PingPong
latency does not differ when emulating 2 and 40 connections.

C. Usability

In our final experiment, we measure the execution time of an
application kernel. The kernel is Successive Over-Relaxation
(SOR). We use a Red-Black checker pointing version of SOR,
with a matrix size of 48000 x 48000. The cluster was divided
into four parts as described above. Each worker-process is
assigned 1200 rows, and each updates all its red points and

TABLE VI

SOR PERFORMANCE WITH DIFFERENT TRACES.

Trace Exec. time | Slowdown |
Constant 383.8 sec.

EventSpace 390.3 sec. 2%
NWS 461.9 sec. 17%

then exchanges red border point values by sending a 19800
bytes message to each neighbor. Then black points are updated
and the communication is repeated. At the end of each iteration
the global change in the system is calculated using allreduce
(with and 8 byte message). For the problem size chosen about
70% of the execution time is spent communicating when using
the NWS trace. Table VI shows the execution time, and the
slowdown compared to the constant value trace.

VI. CONCLUSION

We have described the design and implementation of the
Longcut WAN emulator, shown the emulation precision using
traces collected by different tools, and evaluated the scalability
of Longcut.

We learned the following lessons:

o For most traces, bandwidth differs in two directions,
while latency does not.

o Traces with finer granularity have higher latency.

« The difference for point-to-point communication perfor-
mance does not significantly differ when using constant
and traced latency and bandwidth values.

« For synchronizing collective communication, such as
allreduce, there are small differences between using
latency-bandwidth traces and constant values.

The collected traces are available at
http://www.cs.uit.no/~larsab/longcut/.

ACKNOWLEDGMENTS

Thanks to Brian Vinter for providing us access to the
clusters in Denmark. Also thanks to Josva Kleist and Gerd
Behrmann for allowing us to use the cluster in Aalborg, and
Anne C. Elster for allowing us to use the cluster in Trondheim.
Thanks to Otto J. Anshus, John Markus Bjgrndalen and Espen
S. Johnsen for discussions, and to the MNF-8000 students who
were referees for this paper.

REFERENCES

[1] BJ@RNDALEN,J. M. Improving the Speedup of Parallel and Distributed
Applications on Clusters and Multi-Clusters. PhD thesis, Department
of Computer Science, University of Tromsg, 2003.

[2] BonGo, L. A., ANSHUS, O., AND BJBRNDALEN, J. M. EventSpace
- Exposing and observing communication behavior of parallel cluster
applications. In Euro-Par (2003), vol. 2790 of Lecture Notes in
Computer Science, Springer, pp. 47-56.

[3] BonGo, L. A., ANSHUS, O., BJZRNDALEN, J. M., AND LARSEN,
T. Extending collective operations with application semantics for
improving multi-cluster performance. In ISPDC/HeteroPar (July 2004),
IEEE Computer Society, pp. 320-327.

[4] BonGo, L. A., ANSHUS, O. J., AND BJBRNDALEN, J. M. Low over-
head high performance runtime monitoring of collective communication,
2005. To appear in Proc. of ICPP’05.

[5]

(6]

[71
(8]

[9]
[10]

[11]

[12]
[13]
[14]

[15]

[16]

[17]

BRAKMO, L. S., AND PETERSON, L. L. Experiences with network
simulation. In SGMETRICS '96: Proceedings of the 1996 ACM
S GMETRICS international conference on Measurement and modeling
of computer systems (1996), ACM Press, pp. 80-90.

DINDA, P., GRoSS, T., KARRER, R., LOWEKAMP, B., MILLER, N.,
STEENKISTE, P., AND SUTHERLAND, D. The architecture of the Remos
system. In Proc. 10th IEEE Symp. on High Performance Distributed
Computing (2001).

FAaLL, K. Network emulation in the vint/ns simulator. In In Proc. IEEE
ISCC 99 (1999).

KIELMANN, T., BAL, H. E., MAASSEN, J., VAN NIEUWPOORT, R.,
EYRAUD, L., HOFMAN, R., AND VERSTOEP, K. Programming envi-
ronments for high-performance grid computing: the Albatross project.
Future Generation Computer Systems 18, 8 (2002), 1113-1125.
Network performance tools. http://www.caida.org/tools/taxonomy/.
NOBLE, B. D., SATYANARAYANAN, M., NGUYEN, G. T., AND KATZ,
R. H. Trace-based mobile network emulation. In SGCOMM ’'97:
Proceedings of the ACM SSGCOMM '97 conference on Applications,
technologies, architectures, and protocols for computer communication
(1997), ACM Press, pp. 51-61.

PETERSON, L., CULLER, D., ANDERSON, T., AND ROSCOE, T. A
blueprint for introducing disruptive technology into the internet, 2002.
PMB - Pallas MPI Benchmarks, http://www.pallas.com/e/products/pmb/.
Rizzo, L. Dummynet and forward error correction. In In Proc. of the
1998 USENIX Annual Technical Conf (June 1998).

VAHDAT, A., YocuM, K., WALSH, K., MAHADEVAN, P., KosTIc,D.,
CHASE, J., AND BECKER, D. Scalability and accuracy in a large-scale
network emulator. In In Proc. 5th OSDI (Dec 2002).

WHITE, B., LEPREAU, J., STOLLER, L., Riccl, R., GURUPRASAD,
S., NEwBOLD, M., HIBLER, M., BARB, C., AND JOGLEKAR, A.
An integrated experimental environment for distributed systems and
networks. In Proc. of the Fifth Symposium on Operating Systems Design
and Implementation (December 2002), pp. 255-270.

WoLskl, R., SPRING, N. T., AND HAYES, J. The network weather
service: a distributed resource performance forecasting service for meta-
computing. Future Generation Computer Systems 15, 5-6 (1999).
ZENG, X., BAGRODIA, R., AND GERLA, M. Glomosim: a library
for parallel simulation of large-scale wireless networks. In PADS
'98: Proceedings of the twelfth workshop on Parallel and distributed
simulation (1998), IEEE Computer Society, pp. 154-161.

