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SUMMARY 

 

The introduction of new hosts into new habitats can bring along hitchhiking parasites, i.e. parasites 

being introduced with the host. This in particular can be an important dispersal mechanism for 

autogenic parasites that are otherwise restricted by the natural movement of their fish hosts. 

  

In this study, the effect of a local introduction of three-spined sticklebacks (Gasterosteus aculeatus) 

was examined by comparing the macroparasite communities of the introduced and founder 

population in two subarctic lakes. Seasonal variation and inter-lake difference in abundance was 

also described, and integrated in the analysis. 120 three-spined sticklebacks were sampled in each 

lake during three sampling periods in June, August and October 2010. With the exception of the 

few rare parasite taxa, the parasite communities in the two lakes were highly similar. A total of 14 

macroparasite species or taxa were recovered from the sticklebacks, including eight cestodes, one 

monogenean, one nematode and four digeneans. The parasite communities were dominated by 

generalist parasite taxa and with an equal number being auto- and allogenic. Ten of these parasite 

taxa were present in both populations, while four was not. As expected, due to limited dispersal 

abilities, the non-shared parasite taxa were all autogenic. None of these however, were stickleback 

specialists, but generalists or specialists infecting sympatric salmonids and showed low infections in 

the sticklebacks. A gyrodactylid monogenean and a proteocephalan cestode were the only autogenic 

stickleback specialists and were, as they were present in both populations, assumed to have been 

introduced with the stickleback. 

 

Cestode and digenean larvae were the most abundant parasites in the sticklebacks in both lakes, 

with diplostomid metacercaria being by far the most numerous. Other abundant parasite groups 

were diphyllobothrids and encysted metacercaria. Inter-lake differences in abundance were highest 

between the two introduced stickleback specialists, as they were more abundant in the founder 

population. In general, abundances were higher in the founder population, and likely a reflection of 

higher fish host densities. Many of the parasites exhibited seasonal variation in abundance with 

peak levels in August and lower levels in June and October, reflecting an increase in new infections 

during early summer, and reduction due to mortality of the oldest and most heavily infected 

sticklebacks in late summer.  
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The present study suggests that many of the mechanisms otherwise influencing parasite 

communities are of lesser importance on a local scale due ecosystems being highly similar. 

Accordingly it shows that local scale fish introductions are more likely to bring along hitchhiking 

parasites, than introductions on a larger geographical scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Front cover picture: One of the sampled three-spined sticklebacks infected with two plerocercoid larvae of the 

cestode Schistocephalus solidus.   
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1. INTRODUCTION 

 

Host introductions may have important consequences for both the native free-living community of 

organisms and on the structure of parasite communities of the involved host species (Williamson 

1996). Fish have been introduced on global and local scales, both deliberately and accidentally 

(Kolar and Lodge 2002; Garcia-Berthou et al. 2005) and, as many fish species harbour numerous 

parasite species, these can inevitably and unknowingly be introduced as hitchhikers (i.e. parasites 

being introduced with the host and colonising the new habitat). Some of these introduced parasites 

may have devastating effects on native host populations or ecosystems (Daszak et al. 2000; 

Cleaveland et al. 2002). Though many studies have focused on the introduction of exotic species 

(Poulin and Mouillot 2003; Kelly et al. 2009; Lymbery et al. 2010; Roche et al. 2010), few have 

addressed the effects of local-scale introductions of native fish species. A successful introduction of 

new parasite species is dependant on a number of factors allowing for dispersal and colonisation. 

These factors of both abiotic and biotic character are important in structuring parasite communities 

(Poulin 2007; Kennedy 2009) and can be expected to lead to greater similarity on a local scale. In 

the present study, the effects of a local-scale host introduction were examined in three-spined 

stickleback (Gasterosteus aculeatus). The parasite communities of this host species were compared 

between a founder and an introduced population in two lakes in subarctic northern Norway. 

 

Parasites of freshwater fish represent a well studied area within parasitology, and study systems are 

often well defined and it is simple to obtain sufficiently large sample sizes. Previous studies have 

sought to identify patterns of variation in parasite communities (Poulin 2007; Kennedy 2009), and 

describe the different factors determining the abundance and distribution of freshwater fish 

parasites. In ecological parasitology, parasites are defined in space and time and classified at 

different levels according to the unit of study. At the highest level, the supra-community includes 

all species of parasites in all their hosts, as well as all free-living stages. The component-community 

includes all species of parasites in one host species population. Lastly, the infra-community refers to 

all species of parasites in one single host individual. A parallel level of classification is applied to 

parasite populations, but then just referring to a single parasite species (Bush et al. 1997). In the 

present study, parasite communities were compared on component- and infra-community levels, as 

well as on a component-population level.  
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Individual parasite species are classified further with regard to dispersal modes and host specificity. 

The mode of  dispersal of parasites of freshwater fishes is termed autogenic when the lifecycle is 

completed within a water body and fish are final hosts, and allogenic when the parasite exploit 

mammalian or avian final hosts and thus have part of its lifecycle outside a water body (Esch et al. 

1988). Autogenic parasites have therefore limited dispersal abilities compared to allogenic parasites 

in which avian or mammalian hosts can disperse parasite eggs over large distances. Host specificity 

varies between individual species, and parasites can be classified as either being a generalist or 

specialist. Specialists infect only a single host species, while generalists are capable of infecting a 

larger range of host species. However, host specificity is usually defined with respect to a specific 

stage in a parasites lifecycle, as a parasite can be a specialist in one stage and a generalist in the 

next. For example, the characteristic stickleback cestode, Schistocephalus solidus (see front cover 

picture) is a specialist in the stickleback intermediate host, but a generalist in the adult stage where 

it infects a large range of piscivorous birds (Hoffman 1999). 

 

A parasite species is dependent on both successful dispersal and colonisation to be found in a given 

host population. Dispersal enables a parasite to reach a given habitat and colonisation is the 

establishment of new infections in that habitat. The success of both dispersal and colonisation 

depends on whether a range of conditions are met or not. Holmes (1987, 1990) defined a series of 

different filters, or factors that determines the structure of parasite communities leading from 

dispersal to colonisation. The parasites that are geographically available to infect a given host 

population is determined by biogeography and can also be affected by host introductions. 

Thereafter, the environmental factors in the habitat of both an abiotic and biotic character must 

allow for colonisation of a given parasite species. As many parasite species have complex lifecycles 

as well as free living stages, they are often dependent on specific environmental conditions and the 

presence of several different host species. Therefore, if a parasite species is regionally available in 

the species pool, and the biotic and abiotic demands are met within the habitat, the parasite will be 

present in the local parasite community. Secondarily, a range of factors working both at the 

population and individual level of the hosts further affect the structure of the parasite community. 

These factors are of ecological, physiological and phylogenetic characters and include host 

behaviour and physiology as well as phylogenetics, specificity and even interactions among 

parasites. All these factors lead from the local parasite fauna available to the establishment of a 

realised component-community and the different infra-communities within a host population. 
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Biogeography has been well studied for different fish parasites (Marcogliese 1992; Morand and 

Krasnov 2010; Poulin et al. 2011b). As parasites are inextricably linked to and dependent on its 

host, the geographical range of suitable hosts sets the boundaries for a parasite species’ expansion 

range, and, also link parasite diversity closely to host diversity (Krasnov et al. 2004; Thieltges et al. 

2011). The biogeography of parasites in general has been reviewed by Morand and Krasnov (2010) 

and Poulin et al. (2011b), for fish by Carney and Dick (2000), and specifically related to parasites 

of the three-spined stickleback by Poulin et al. (2011a). Numerous studies have shown that parasite 

communities differ (increased similarity decay) with increasing geographical distance (Poulin and 

Morand 1999; Poulin 2003; Pérez-del-Olmo et al. 2009; Thieltges et al. 2009). Also host specificity 

and mode of dispersal have been found to explain geographical similarity decay in parasite 

communities (Fellis and Esch 2005; Poulin 2010; Poulin et al. 2011b). Host specificity affects a 

parasite’s chance to colonize new habitats. Generalists that are able to infect a greater range of hosts 

are more likely to encounter suitable hosts, and are as such better colonizers and less prone to local 

extinction. Specialists, on the other hand, are dependent on the presence of specific host species, 

and thus more likely to become locally extinct (Bush and Kennedy 1994; Poulin and Morand 2004). 

In addition to natural dispersal, species introductions is one way in which parasite species, 

otherwise restricted in dispersal, can be introduced to new host populations. Parasite introductions 

most often occur through introduction of infected intermediate or final host species (Kennedy 

1976). Introduced fish species are often found to have depauperate parasite communities, because 

many of the host parasites are either not brought along with the introduction, or fail to establish in 

the new habitat, termed “missing the boat” or “drowning on arrival”, sensu Macleod (2010) 

(Torchin et al. 2002; Torchin et al. 2003). Still the number of parasite species infecting introduced 

hosts has been found to rival that of the initial founder population, but often with a change from 

specialist to generalist parasite species (Kennedy and Bush 1994). Marcogliese and Cone (1991) 

also found that differences in parasite species richness were best explained by sympatric fish 

species, and generally sympatric fish species are found to share many of the same parasites 

(Baldwin and Goater 2003; Lymbery et al. 2010). Despite the importance of sympatric host species 

and their associated parasites in explaining parasite communities, they are often neglected in such 

studies (Fernandez et al. 2010). Whether new parasite species are introduced with its host or not, a 

host introduction may also indirectly alter structures in parasite communities through its effect on 

local ecological interactions (Dunn 2009; Kelly et al. 2009). 
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Following initial dispersal, naturally or by introduction, a parasite must colonise the host population 

in the new habitat by establishing new infections. Colonisation however, is only possible if 

requirements for biotic and abiotic factors are fulfilled. Abiotic factors may include e.g. salinity 

(Poulin et al. 2011a) or pH (Marcogliese and Cone 1996), i.e. factors that that may directly affect 

free living stages and ectoparasites. Important biotic factors are, in addition to suitable fish hosts, 

the presence of required intermediate or final hosts needed for a specific parasite to complete its 

lifecycle. Abiotic factors may also work indirectly in affecting the presence of intermediate hosts 

required, as for example pH-levels are correlated with the abundance of molluscs utilised as 

intermediate hosts by digeneans (Marcogliese and Cone 1996). If a parasite species manage to 

colonise a new habitat, there are further ecological factors affecting its distribution and abundance 

within the ecosystem. It is apparent that ecological factors affecting the host species will indirectly 

have an effect on the parasite species that are dependent on this specific host. Host behaviour, 

especially with respect to foraging is important in determining parasite communities as there is a 

direct link between foraging behaviour and the acquisition of trophically transmitted parasites 

(Knudsen et al. 2004; Valtonen et al. 2010). However, trophic interactions alone can not explain the 

infection patterns of trophically transmitted parasites, since host specificity is clearly also a limiting 

factor (Lagrue et al. 2011). Host population dynamics also affects parasite communities, 

particularly through population density, and generally a positive relationship exists between host 

population densitities and both parasite abundances (Dobson 1990) and species richness (Morand 

and Poulin 1998; Takemoto et al. 2005), acting by increasing transmission rates. Increase in 

transmission with host density is more important for directly transmitted parasites, while parasites 

with indirect lifecycles in addition are dependent on the densities of intermediate and or final hosts 

(Anderson and May 1978). 

 

Numerous parasitological studies have focused on three-spined sticklebacks as they are suitable 

study objects; they often occur at high population densities, are easy to catch and have a 

widespread, circumpolar distribution (Wootton 1984). In a review, Barber (2007) sums up a total of 

122 macroparasite species recorded from the three-spined stickleback worldwide, including both 

saltwater, brackish and freshwater habitats. In Norway, a total of 19 macroparasites have been 

recorded from sticklebacks in freshwater populations (Levsen 1992; Sterud 1999). The local 

parasite component-communities consist of only a fraction of this due to the aforementioned factors 
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leading from dispersal to colonisation. In subarctic northern Norway, three-spined sticklebacks 

were introduced from Sagelvvatn (the suffix -vatn = lake) to the nearby Takvatn 60 years ago 

(Klemetsen et al. 2002), altering the food web topology (Amundsen et al. 2009) and possibly also 

introducing hitchhiking parasites (Amundsen et al. 2011). In Takvatn, seven species of  

macroparasites have previously been recorded from the three-spined stickleback (Hope 1992; 

Amundsen et al. 2009). It is likely that the stickleback introduction has brought along hitchiking 

parasite species, but how this have affected the parasite communities of the stickleback population 

and how it can be explained are questions yet to be addressed. 

 

The main objective of the present study was therefore to conduct a comparative analysis of the 

macroparasite communities of the three-spined stickleback populations in Sagelvvatn and Takvatn, 

thereby studying the effect of the host introduction and reveal potential differences in parasite 

species richness and abundance between the founder and the introduced population. Great similarity 

was expected as the study lakes due to geographical proximity, share the same regional species 

pool. Similarities should further be enhanced by highly similar ecosystems, and hence similarities in 

biotic and abiotic factors. Minimising the influence of such factors, allows for a study isolating the 

mechanisms of parasite dispersal. Allogenic parasite species, being easily dispersed between lakes, 

are expected to have successfully colonised both stickleback populations. Autogenic parasite 

species however, being restricted in dispersal, is dependent upon the movement of its fish host to 

colonize a new habitat. Therefore are eventual differences in parasite species richness are most 

likely explained by autogenic parasites. Through the introduction of the three-spined stickleback, 

new hitchhiking parasites could have been able to colonize Takvatn directly with the introduction of 

their host. However, it is possible that some of these potentially hitchhiking parasite species have 

been “missing the boat”, sensu MacLeod (2010). With respect to abundances of the different 

parasite species, the general pattern was likewise expected to be similar, but possibly related to 

differences in environmental factors. Seasonal variation in parasite abundances was also explored, 

expecting that seasonal variation, likewise due to great similarities, follows the same patterns in 

both lakes with an increase in abundances through the season due to the accumulation of parasites 

(Brassard et al. 1982; Gaten 1987). 

 

On this background, the following hypotheses with regard to the parasite communities of the 

founder and introduced stickleback populations were investigated: 
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1) Due to similarity in biotic and abiotic factors, and geographical proximity, the structures of 

the parasite communities are similar in the two stickleback populations. 

 

2) The same allogenic parasite species are present in both lakes, while potential inter-lake 

differences in species richness are explained by autogenic parasite species. 

 

3) The parasite community in the introduced Takvatn population is less species rich than in the 

founder Sagelvvatn population, due to parasites being lost during the host introduction. 

 

4) Large differences in host densities between the two lakes will result in differences in 

parasite abundances, with highest abundances in the lake with highest host densities. 

 

5) The seasonal variation in parasite abundances is similar in the two lakes, with an increase 

through the season due to the accumulation of parasites. 
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2. MATERIALS AND METHODS 

 

2.1. The study lakes 

 

Sagelvvatn and Takvatn are two oligotrophic, dimictic lakes located in subarctic northern Norway 

(69°11`N, 19°05`E and 69°07`N, 19°05`E, respectively). The lakes are usually ice covered from 

November to June, and are located in different catchment areas approximately four kilometres 

apart. Takvatn is situated 214 m above sea level, has a surface area of 14.2 km2 and a maximum 

dept of ca. 80 m. Sagelvvatn is situated 91 m above sea level, has a surface area of 5.1 km2 and a 

maximum depth of ca. 70 m. The drainage areas are dominated by birch forests and farmland, but 

Sagelvvatn is surrounded by farmland to a greater extent, and likely subject to slightly higher 

nutrient inputs from agricultural runoff. Sagelvvatn can be considered as being slightly more 

productive, reflected by a lower Secchi depth (Sagelvvatn = 8 m, Takvatn=12-14 m) (Primicerio 

and Klemetsen 1999; Dahl-Hansen et al. 2011). 

 

Takvatn and Sagelvvatn support exactly the same fish communities comprised of arctic charr 

(Salvelinus alpinus) and brown trout (Salmo trutta) along with the three-spined stickleback. While 

Sagelvvatn has experienced a postglacial invasion of all three species, only brown trout was 

originally present in Takvatn. However, overexploitation of the brown trout led to the introduction 

of arctic charr from nearby Fjellfroskvatn around 1930 in an attempt to improve the fish catches 

(Klemetsen et al. 2002). Around 1950, three-spined sticklebacks were introduced from Sagelvatnet 

(Jørgensen and Klemetsen 1995) as an attempt to provide a prey item to boost growth rates within 

the fish community, now dominated by a stunted arctic charr population. In the 1980’ies, an 

intensive fishing programme was carried out, and succeeded in decreasing the number of small 

grown arctic charr, improving growth (Amundsen et al. 2007; Persson et al. 2007) and reducing 

parasite loads, especially among copepod transmitted cestodes (R. Knudsen et al., unpublished 

data). 

 

2.2. Fish collection and parasite screening 

 

120 three-spined sticklebacks were collected from each lake in late June (n=30), mid August (n=60) 

and mid October (n=30) 2010. Fish were caught with bottom gillnets (mesh sizes 6 – 10 mm) in the 
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littoral zone at 1 – 8 m depth. In October in Takvatn, and in June in Sagelvvatn, 29 and one fish, 

respectively, were collected in baited minnow traps as gillnet catches were low. Following capture, 

each fish was killed by a blow to the head and immediately placed individually in glass jars 

containing lake water. In the field lab, fish were measured (fork-length to nearest mm) and a 

complete macroparasite screening was conducted using a stereomicroscope. The skin and fins of 

each fish was first examined for ectoparasites (ciliates and monogeneans). The different organs and 

tissues were then dissected and intestine, stomach, eyes, body cavity, liver and swim bladder 

examined separately for endoparasites. 

 

All macroparasites of each species or taxonomic group were counted. Microparasites (ectoparasitic 

ciliates) were only noted as present or absent, and not included in the statistical analysis. Species for 

further taxonomic analysis were preserved in 96% ethanol. Parasite species common to the study 

systems were classified based on external morphology, based on prior knowledge. Most parasites 

were determined to genus or species, but others were grouped as follow (see Appendix B for a 

complete parasite list): The group Diphyllobothrium spp. are small (1-5mm), newly established 

plerocercoids (likely Diphyllobothrium ditremum as larger specimens of Diphyllobothrium 

dendriticum were rare). Encysted metacarcaria in the eye and body cavity, probably of the genus 

Apatemon as these have been found encysted in the eyes of sticklebacks (Blair 1976), the two might 

be the same or different species. The proteocephalan cestodes termed Proteocephalus sp1. is likely 

the stickleback specialist P. filicollis commonly found in stickleback (Scholz 1999; Scholz et al. 

2007) although this was not confirmed. Proteocephalus sp2. is thought to be a brown trout or arctic 

charr specialist (P. exiguous or P. neglectus) (Sterud 1999). The genus Diplostomum spp. likely 

includes both the generalist D. spathaceum and the stickleback specialist D. gasterostei, but these 

were quantified to genus only. 

 

 

2.3. Terms used and statistical analyses 

 

In the statistical analysis and presentation of results, the different species, genus or taxon, under 

which the different parasites were quantified, are treated as a species and referred to as such. Terms 

used to describe parasite communities and populations are applied according to the definitions of 
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Bush et al. (1997), and data and results are presented following the recommendations of that paper 

and Rózsa et al. (2000). 

 

Component-community parameters are based on total abundance data, i.e. the total number of each 

parasite taxa from each population, including all months. As measures of diversity, the component-

community species richness (CCR, Norton et al. 2003), Simpson index (1/D) and Simpson 

Evenness measure (E1/D) (Magurran 2004) are used. The Simpson index is calculated as:  

1/D = 1/∑ pi
2  

where p is the proportion of species i in the community. It is a diversity index sensitive to changes 

in the most abundant species and gives lower weight to changes in rare species (Krebs 1999; 

Magurran 2004). The Simpson evenness is calculated as:  

E1/D = (1/D)/S  

where S is the number of species in the sample (CCR). It provides an index (0-1) of how evenly the 

different parasite species are presented in the component community (Magurran 2004; see also 

Smith and Wilson 1996). Percentage similarity (or Renkonens Index, Krebs 1999) was used to 

compare the two parasite component-communities directly and is calculated as: 

P = ∑(minimum, p1i, p2i) 

where p1i is the percentage of species i in community 1, and p2i is the percentage of species i in 

community 2.  

 

Infra-community diversity is based on individual abundance data, each fish being the sample unit. 

Infra-community species richness (ICR) and number of parasites per fish is used here as measures 

of diversity. The parasite component-populations are each summarised by prevalence (proportion of 

hosts infected), mean intensity (mean number of parasites in infected hosts), mean abundance 

(mean number of parasites in all hosts examined) (Bush et al. 1997), and by the variance/mean ratio 

to provide a measure of dispersion. 

 

A canonical correspondence analysis (CCA) was applied to allow for a multivariate testing of the 

parasite abundances in the infra-communities as a function of the predictor variables month, 

population, sex and length. CCA is a direct ordination method, and produce dimensions that are 

linear combinations of the environmental variables (population, month, sex, length), using the chi-

square distance as a distance measure. The CCA is useful for analyzing count data and in particular 
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zero inflated data (Legendre and Legendre 1998). A CCA was applied to the full data set, and the 

best CCA model was selected based on the Akaikes Information Criterion (AIC).  

Nonmetric multidimentional scaling (NMDS), based on Bray-Curtis dissimilarity (Krebs 1999) of 

log-transformed data, was used to visualize differences in the parasite infra-communities in relation 

to the population and month variables. The NMDS is a robust, indirect, non-parametric ordination 

method that is useful for revealing structures of similarities/dissimilarities in various multivariate 

data (Legendre and Legendre 1998). The Bray-Curtis dissimilarity measure gives higher weight to 

more abundant species (Krebs 1999), but through log-transforming, the measure is directed towards 

a more species richness like effect by decreasing the influence of the most abundant species. The 

NMDS was used here only as an explorative tool to investigate trends and correlations, and no 

statistical testing or estimation was applied. One NMDS was run and plotted for the full data set to 

investigate inter-lake variation, and one for each population separately to investigate the seasonal 

variation. As applied here, the NMDS depicture the individual infra-community as relative to all the 

other infra-communities. The fit of a NMDS is given by the term stress, a percentage of how well 

the actual distance between samples (fish) are represented in the two dimensional bi-plot.  

 

At the component-population level, the individual abundance of each parasite taxa was fitted with a 

generalised linear model (GLM). Models were fitted with negative binomial errors to account for 

the large degree of overdispersion exhibited by most of the parasite species (Appendix C). In 

addition, infra-community species richness (ICR) and total number of parasites per fish were tested 

with the same models. These modelling efforts were done to adjust for the confounding effects of 

sex and length. Individual model selection was based on the AIC, and the simpler model was 

selected even if the removal of a term caused a small increase in AIC (AIC<2). Model fit was 

examined by inspecting the residuals and checking for any trends. The GLMs fitted for each 

parasite ranged from simple models including only main interactions, to complex models involving 

three-way interaction terms. The fitted GLMs were then analysed with an analysis of deviance with 

chi-square tests, to test for the main effects. Testing was done both on the total dataset (n=240) to 

test for the inter-lake differences, and on the two population datasets (n=120) individually, to test 

for seasonal variation separately within each population. 

 

Statistical analysis was conducted using the software R version 2.12.0 (http://www.r-project.org/). 
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3. RESULTS 

 

3.1. The stickleback populations 

 

The density of sticklebacks in terms of catch per unit effort (CPUE; i.e. number of fish caught per 

gillnet placed for 24 hours) varied both between populations and months. Catches were highest in 

Sagelvvatn, with a CPUE of 16 in August, as opposed to only 6 in Takvatn. In both lakes CPUE 

peaked in August and had lower levels in June and October (Table 1). Stickleback length ranged 

from 43 to 70 mm (Table 1) with a mean of 57 mm for all samples. Lengths did not differ between 

populations (Mann-Whitney U-test, P=0.306). Seasonal variation in length was found in the 

Takvatn population (Kruskal-Wallis test, P=2.565*10-7), but not in Sagelvvatn (Kruskal-Wallis test, 

P=0.299). The overall sex distribution was 86 % females and 14 % males and did not differ 

significantly between populations (Chi-squared test, P=0.368), or between months within either of 

the two populations (Pearson Chi-squared tests, P-values > 0.274). 

 

Table 1. Summary of the three-spined stickleback samples according to population and 

month including sample size, mean fish length including standard deviation (S.D.), and 

catch per unit effort (CPUE; i.e. number of fish caught per gillnet placed for 24 hours). 

Population Month Sample size Mean fish length mm (±S.D.) CPUE
Sagelvvatn June 30 58.1 (±5.8) 1.0

August 60 57.7 (±3.8) 16.4
October 30 57.5 (±4.6) 6.7

Takvatn June 30 61.7 (±4.3) 2.2
August 60 54.8 (±5.0) 5.6
October 30 56.6 (±3.8) 0.2   

 

 

3.2. The parasite communities 

 

A total of 14 macroparasite species, or taxonomic groups, were recovered from different tissues of 

the three-spined sticklebacks (parasite list Appendix B; pictures Appendix A). The parasite 

communities were dominated by cestodes and digeneans, and included eight cestodes, one 

nematode, one monogenean and four digeneans. There was an equal number of auto- and allogenic 

parasite taxa and a near equal number of specialists and generalists. Gyrodactylus arcuatus, 

Schistocephalus solidus, Proteocephalus sp1. and were the only stickleback specialists. Two other 
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specialists were Cystidicola farionis and Eubothrium sp., being specialists of arctic charr and brown 

trout. The majority of the parasite taxa were trophically transmitted, with only G. arcuatus and the 

three digeneans; body cavity metacercaria, eye metacercaria and Diplostomum spp., being directly 

transmitted (Appendix B). 

 

The various parasite taxa showed large variations in their distributions, with intensities ranging 

from one to 450 and prevalences from two to 100 % (Appendix C). Variance to mean ratios ranged 

from near one in S. solidus, to 177 in Proteocephalus sp1. which showed the highest degree of 

overdispersion (Appendix C). 

 

Both the effect of month (P=0.010) and population (P=0.005) proved significant in the CCA, i.e. 

month and population proved to account for the differences in parasite abundance at the infra-

community level, while sex and length did not. However, only 13.4% of the inertia was accounted 

for by these two variables, and thus, a lot of the variation in the data remains unexplained. The fact 

that there was no significant population-month interaction (P=0.36) indicates that the temporal 

variation was similar in the two lakes. 

 

 

3.3. Inter-lake variation  

 

Of the 14 parasite taxa recorded, 10 were present in both stickleback populations and component-

community richness was 11 for Sagelvvatn and 13 for Takvatn (Table 2). Proteocephalus sp2. was 

found only in Sagelvvatn, and Eubothrium sp., Crepidostomum sp. and C. farionis was found only 

in Takvatn. However, Eubothrium sp. was only found in one single fish and therefore abundances 

did not differ significantly between populations (P=0.2376, Appendix E). The parasite taxa not 

present in both populations, were all autogenic and specialists of brown trout or arctic charr 

(Appendix B). The remaining autogenic parasite taxa, the stickleback specialists G. arcuatus and 

Proteocephalus sp1. and the generalist Cyathocephalus truncatus were present in both lakes (Figure 

1). The Simpson index indicated higher diversity in the Sagelvvatn stickleback population, and also 

higher evenness (Table 2). However, these values were very similar. Percentage similarity between 

the two component-communities was 82 % (Table 2). 
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Table 2. Parasite component-community and infra-community parameters for the three-spined stickleback 

populations of Sagelvvatn and Takvatn. Data pooled across months (n=240). CCR is component- and ICR 

is infra-community species richness. 

  Component-community       Infra-community 

Population CCR 

  
Total number of 

parasites   
Simpson 

(D-1) 
Evenness 

(D^-1) 
Percentage 
similarity 

Parasites per 
fish (range) 

ICR 
(range) 

Sagelvvatn 10 924 11 2.6 0.24  87 (9-598) 4.9 (1-9) 
     82   

Takvatn 6 999 13 2.1 0.16   61 (9-237) 4.7 (2-9) 

  
 
The total number of parasites was highest in the Sagelvvatn stickleback samples with 10 891 

compared to 6 534 in Takvatn (Table 2). The digenean Diplostomum spp. was by far the most 

abundant in both populations with a total abundance of 6 371 and 4 635 for Sagelvvatn and 

Takvatn, respectively (Figure 1). The remaining parasite taxa varied in total abundance from one to 

1 436, many being rare. Overall, all but two parasite taxa (body cavity metacercaria and eye 

metacercaria) had significantly higher total abundances in Sagelvvatn (Figure 1; Appendix E). The 

largest inter-lake differences were found between the two autogenic stickleback specialists G. 

arcuatus and Proteocephalus. sp1., which both had higher abundances in Sagelvvatn (Figure 1). 

The total number of Proteocephalus sp1. was 1 242 in the sample from Sagelvvatn as opposed to 

only 7 in Takvatnet, and the abundance of G. arcuatus was 1 436 in Sagelvvatn and 67 in Takvatn. 

Encysted metacercaria were more abundant in Takvatn, eye metacercaria with 168 and 391, and 

body cavity metacercaria with 101 and 172, in Sagelvvatn and Takvatn, respectively (Figure 1). In 

addition, abundances of the diphyllobothrids (i.e. D. ditremum, D. dendriticum and 

Diphyllobothrium spp.) were slightly higher in Sagelvvatn (Figure 1). The four non-shared species 

all had low abundances in the sticklebacks and a total abundance ranging from one to 16. The only 

exception was C. farionis which had a total abundance of 45 in the Takvatn stickleback population 

(Figure 1). 
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Figure 1. Total abundance of each parasite taxa in the component-communities of sticklebacks from Sagelvvatn and 

Takvatn. Data pooled across months. Sample sizes are similar (n=120) per lake, allowing for direct comparison. 

Parasites marked “*” indicate a significant difference in abundances between the individual component-populations, 

according to Appendix E. 

 

Infra community richness did not differ between the two lakes (Appendix E), with mean levels of 

ca. 5, ranging from 1 to 9 parasite taxa per fish. Parasite infections were highly aggregated, ranging 

in intensities from 9 to 598 parasites per fish, and differed between the two populations with a mean 

number of 87 and 61 for Sagelvvatn and Takvatn, respectively (Table 2; Appendix E). 

 

The nonmetric multidimentional scaling (NMDS) plot of the total parasite abundance data shows, 

despite some overlap, a segregation of the two stickleback populations (Figure 2). The overlap is 

due to a great amount of shared species, and the fact that most of the non-shared species are very 

rare. The non-shared species Eubothrium sp., C. farionis, Crepidostomum sp. and Proteocephalus 

sp2. are all located in the perimeter of the bi-plot along with a few other species since they were 

found in just a few of the fish, i.e. few fish were characterised as having these parasite taxa in their 

infra-community. The Sagelvvatn infra-communities were containing higher proportions of G. 
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arcuatus, Proteocephalus sp1, diphyllobothrids and C. truncatus whereas the Takvatn infra-

communities in contrast were containing higher proportions of digeneans (eye and body cavity 

metacercaria and Diplostomum spp.) and S. solidus. 
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Figure 2. Parasite infra-community composition of the three-spined stickleback populations from Sagelvvatn and 

Takvatn. NMDS bi-plot of Bray-Curtis dissimilarity on log-transformed parasite abundances of the total data (n=240), 

stress=12.7%. Points represents each fish, and are color coded according to population. Parasite taxa abbreviations: 

Dip=Diplostomum spp., Di=Diphyllobothrium ditremum, De= Diphyllobothrium dendriticum, D=Diphyllobothrium 

spp., Ga=Gyrodactylus arcuatus, Pr1=Proteocephalus sp1., em=eye metacercaria, bm=body cavity metacercaria, Ss= 

Schistocephalus solidus, Cf= Cystidicola farionis, Ct=Cyanthocephalus truncatus, Cr=Crepidostomum sp., 

Pr2=Proteocephalus sp2., Eu= Eubothrium sp. 
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On a component-population level, significant inter-lake difference in abundance was found between 

10 of the 14 parasite taxa. The only ones that did not differ were S. solidus, Eubothrium sp., C. 

truncatus and D. ditremum (Appendix E). There were no large differences in the prevalence and 

intensity trends (Figure 3, exact values Appendix C), as low intensity, with a few exceptions, 

coincided with low prevalence. G. arcuatus and Proteocephalus sp1., however, had significantly 

higher prevalence and intensity in Sagelvvatn, whereas the eye and body cavity metacercaria stood 

out as having higher intensity and prevalence in Takvatn. 
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Figure 3. Mean intensity (A) and prevalence (%) (B), of the parasite taxa infecting the three-spined stickleback populations 

in Sagelvvatn (x-axes) and Takvatn (y-axes). Data is pooled across months (n=240). The broken line is the line of equal 

values between the populations i.e. x = y. 
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3.4. Seasonal variation 

 

Considering the NMDS bi-plots (Figure 4), the seasonal variation revealed a similar pattern in the 

two lakes although this was more pronounced in Sagelvvatn. In both lakes, the composition of the 

infra-communities in August was linked to higher relative abundance of the diphyllobothrids (D. 

ditremum, D. dendriticum and, Diphyllobothrium spp.), G. arcuatus and C. truncatus. In October 

and June there were higher abundances of digeneans (eye metacercaria, body cavity metacercaria 

and Diplostomum spp.). In June, especially in Sagelvvatn, the parasite infra-populations were 

intermediate relative to August and October, with no specific parasites dominating the infra-

communities. Infra-community richness (ICR) showed to vary significantly between months in both 

stickleback populations. Number of parasites per fish also varied between the months, but only 

significantly so in Sagelvvatn (Appendix E). Both ICR and number of parasites per fish showed a 

seasonal pattern of variation with peak levels in August and lower levels in June and October 

(Figure 5). 

 

Significant seasonal variation in abundance was found in 11 of the 14 parasite component-

populations, however for some of them only in one of the lakes (Appendix E). For Eubothrium sp., 

eye metacercaria and body cavity metacercaria, there was no significant seasonal variation in either 

of the lakes. The general pattern of seasonal variation consisted of peak abundance in August and 

lower abundance in June and October. This pattern was most clear for the Sagelvvatn component-

populations, while for Takvatn, this pattern was only observed among some of the parasite taxa 

(Figure 5). Exceptions to this pattern were C. truncatus in Sagelvvatn and C. farionis in Takvatn, 

which both declined in mean abundance through the season (Figure 5). Also, D. ditremum in 

Takvatn stood out, by increasing in abundance through the season. Also many of the rare parasites 

showed no significant seasonal variation (Figure 5; Appendix E). 

 

Prevalences and mean intensities (Appendix F) mostly coincided, and also showed peak levels in 

August. In some cases, prevalence and intensity did not coincide, as intensities increased while the 

prevalence decreased (Proteocephalus sp1., Sagelvvatn) or vice versa (body cavity metacercaria, 

Sagelvvatn). The microparasites, sessile ciliate and Trichodina sp., had overall high and similar 

prevalences and intensities (personal observation) through the seasons in both lakes. Only the 

sessile ciliate showed lower prevalence in June (Appendix F). 
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Figure 4. Parasite infra-community composition of the three-spined stickleback populations from (A) Sagelvvatn 

(n=120) and (B) Takvatn (n=120), showing the seasonal variation. NMDS bi-plot of Bray-Curtis dissimilarity on log-

transformed parasite abundances, stress=19%. Points represent each fish, and are color coded according to month. For 

parasite abbreviations, see Figure 2. 
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3.5. Sex and length effects 

 

Inter-sex differences in parasite abundance were found only in the newly established 

diphyllobothrids Diphyllobothrium spp. but in both stickleback populations (Appendix E). Seven of 

the parasite taxa exhibited significant variation in abundance with fish length, although not in all 

cases in both stickleback populations (Appendix E). The abundances of C. truncatus, D. ditremum, 

Diphyllobothrium spp., Crepidostomum sp., Diplostomum spp. and body cavity metacercaria 

correlated positively with fish length whereas S. solidus showed a negative correlation (Derived 

from effect size of length in the GLMs). Also the number of parasites per fish varied with length in 

both populations (Appendix E), with a positive correlation (derived from GLM). There was no 

effect of length on ICR in either population (Appendix E). 
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4. DISCUSSION 

 

The present study revealed a very high similarity between the parasite component-communities of 

the introduced and founder stickleback populations, with only subtle differences in community 

structure. As expected, all of the allogenic parasite taxa recorded were present in both communities, 

while all of the autogenic were not. Contrary to the expectation, the introduced Takvatn population 

had a more species rich parasite community than that of the founder Sagelvvatn population. These 

subtle differences in species richness, however, can be explained by rare infections in the 

sticklebacks of parasite taxa infecting sympatric salmonids. Also, two stickleback specialists had 

been introduced with the sticklebacks into Takvatn thereby further increasing the similarity of the 

two parasite communities. Parasite abundances were somewhat higher in Sagelvvatn and likely a 

reflection of higher densities of both main and intermediate hosts. Both species richness and in 

particular abundances were very high in the two parasite communities compared to similar studies 

on three-spined sticklebacks (Chappell 1969; Pennycuick 1971b; Kalbe et al. 2002). The 

abundances varied with season among most of the parasite taxa, and with a few exceptions this 

seasonal variation was similar in the two stickleback populations. Abundances generally peaked in 

August and were lower in June and October. 

 

As expected, the similarity of the two parasite communities was high, and reflected in both the 

presence and abundance of the different parasite taxa. The Simpson indexes and Simpson evenness 

values were slightly higher for the Sagelvvatn component-community indicating the lower presence 

of rare species. The high percentage similarity underlines the great similarity of the parasite 

communities, as it indicates that the most common parasite taxa had similar relative abundance in 

the two communities. Since the two study lakes are situated in geographical proximity to each 

other, the regional pool of parasites available for colonisation of the two stickleback populations is 

identical. Furthermore biotic and abiotic factors are assumed to be very similar in the two lakes, 

adding to increased similarity through supporting equal possibilities for colonisation of a given 

parasite species. However, as no two lakes are totally alike, small inter-lake variations in biotic 

factors probably exist with respect to e.g. intermediate host presence and densities, and foraging 

behaviour of both fish and avian hosts, and these can help explain the observed differences between 

the two parasite communities. 
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As expected, all the allogenic parasite taxa recorded were present in both stickleback populations, 

and accordingly the difference in species richness was explained by autogenic parasite taxa. This is 

a reflection of the greater dispersal abilities of allogenic parasite species (Kennedy 1976; Esch et al. 

1988; Fellis and Esch 2005), and it is evident that parasite eggs can be easily dispersed between 

Sagelvvatn and Takvatn by piscivorous birds utilizing both lakes as habitats. Furthermore, all the 

allogenic parasite taxa found have low host specificity in the adult stage, infecting a large range of 

piscivorous birds (Chappell 1995; Hoffman 1999). S. solidus and Diplostomum gasterostei (a 

stickleback specialist likely included in Diplostomum spp.) is the only species that may have been 

easily dispersed to Takvatn, but only could managed to colonize it following the introduction of 

their obligatory stickleback host. The other autogenic parasite taxa were generalists infecting other 

fish species and they were most likely well established in Takvatn before the stickleback 

introduction. Lastly the generalist C. truncatus could possibly have been introduced with the 

stickleback but is, as it is commonly infecting brown trout and arctic charr, assumed to have been 

present in Takvatn before the introduction. Furthermore, its low prevalence in the sticklebacks in 

the present study indicates that it is very unlikely to have been introduced as a hitchhiker. 

 

 

4.1. Inter-lake differences in parasite species richness 

 

Contrary to other studies on introductions (Torchin et al. 2002; Torchin et al. 2003; MacLeod et al. 

2010; Roche et al. 2010), the introduced stickleback population in Takvatn was found to harbour a 

more species rich parasite component-community than the founder Sagelvvatn population. The 

discrepancy is best explained by the successful introduction of the two hitchhiking parasites and to 

differences in the parasite faunas of sympatric fish species. The present finding is however in line 

with Ondrackova et al. (2010) and Francova et al. (2011) who studied parasite communities of 

round goby (Neogobius melanostomus) in native and non-native ranges. They also found the 

introduced populations to have a slightly more species rich parasite community and the non-

common parasite species to have low abundances. They concluded that the local-scale (the Danube 

River) had led to high similarity of the parasite communities, and that differences were best 

explained by ecological differences in the habitats. In the present study ecological differences are 

however small, and many factors that may potentially affect species richness are deemed 

insignificant. 
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The two parasite species Proteocephalus sp1. and G. arcuatus were both autogenic and stickleback 

specialists which means that they must have colonised Takvatn as hitchhikers with the introduction 

of their stickleback host. Further, these two species were the only autogenic stickleback specialists 

present in the founder stickleback population and are therefore restricted to dispersal with their 

stickleback host. The high prevalence and abundance of these two species in the founder population 

in Sagelvvatn have likely increased the probability of a successful introduction, assuming that they 

were similarly high at the time of the introduction. The microparasites Trichodina sp. and the 

sessile ciliate were also found in both populations, but whether these were introduced with the 

stickleback or not is difficult to asses as these protozoan parasites have low and variable host 

specificity in addition to a difficult taxonomy (Lom and Dyková 1992). It is therefore possible that 

they already were present in Takvatn parasitizing arctic charr and brown trout before the 

introduction of the stickleback. That parasites were not lost during the stickleback host introduction 

is attributed to the high similarity in environmental factors and the geographical proximity. In 

addition, the presence of only two autogenic stickleback specialists in the local parasite fauna, have 

increased similarity in species richness. If there had been a higher numbers autogenic stickleback 

specialists present in the founder population, then more parasite species could potentially be lost 

during the introduction of the stickleback host. 

 

Common to the parasite taxa that were not recorded in both stickleback populations 

(Proteocephalus sp2., Crepidostomum sp., Cystidicola farionis and Eubothrium sp.) was in addition 

to being autogenic that they were specialists of brown trout and, or arctic charr. Further, all had low 

infections in the sticklebacks, indicating that they were only accidental infections. Parasite species 

richness can to a large extent be explained by the occurrence of sympatric fish species (Marcogliese 

and Cone 1991; Fernandez et al. 2010), and this seems to be the case in the present study. As the 

lakes both have the exact same fish communities, the results strongly suggest that these sympatric 

host species support different parasite communities. It is thus the inter-lake difference in parasite 

fauna of the sympatric fish species that is reflected in the parasite communities of the sticklebacks. 

It cannot be ruled out, however, that some of these parasites, while not detected in the sticklebacks, 

are not present in the parasite communities of the sympatric fish species. It is possible that they are 

not found among the stickleback samples simply due to low abundances in the sympatric fish 

populations. With regard to C. farionis, however, it is likely not present in Sagelvvatn as it has not 
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been recorded from its artic charr host in the lake (P-A. Amundsen, personal communication, 

November 2011). In addition, when it is present it often occurs at high densities (Knudsen and 

Klemetsen 1994) and should therefore be expected to be present in the sticklebacks. Since most of 

these non-common parasites are non-stickleback specialists and occur at low prevalences in the 

sticklebacks, it is highly unlikely that they could have been introduced as hitchhikers with the 

stickleback introduction.  

 

In general, ecological factors otherwise leading to differences in species richness were found to 

have no effect on species richness in the present study, including fish densities (Arneberg et al. 

1998; Takemoto et al. 2005), lake productivity (Esch 1971; Poulin et al. 2003), foraging behaviour 

(Knudsen et al. 2004; Valtonen et al. 2010) and intermediate host availability (Marcogliese and 

Cone 1991). While Sagelvvatn had both higher fish densities and slightly higher productivity, this 

was not reflected in higher species richness. Since the differences in host densities and especially 

productivity were only small, they are regarded as being insufficient in determining parasite species 

richness. Further, the importance of these mechanisms, are likely reduced due to great ecosystem 

similarity. The majority of the parasite taxa were trophically transmitted either by amphipods, 

Gammarus lacustris (C. truncatus, C. farionis, and Crepidostomum sp.) or copepods (the remaining 

cestode species), and marked differences in foraging behaviour between the two stickleback 

populations on these prey items could affect the species richness (Knudsen and Klemetsen 1994; 

Valtonen et al. 2010). However, the role of foraging behaviour in determining species richness also 

work in conjunction with differences in presence of, and infection levels in the intermediate hosts. 

Differences in feeding behaviour are assumed to be minor as the same intermediate host species are 

assumed to be present in both lakes.  

 

In conclusion it seems that mechanisms that may otherwise contribute to dissimilarity in species 

richness between parasite communities are of minor importance on a local scale due to high 

ecosystem similarity. The primary cause of differences in species richness between the two 

stickleback populations appears to be differences in the parasite communities of the sympatric fish 

species. Furthermore, the successful introduction of the autogenic stickleback specialists increased 

similarity, and in addition the fact that there were few autogenic stickleback specialists present in 

the local parasite fauna that could be lost during the introduction.  
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4.2. Inter-lake differences in parasite abundance 

 

The overall higher abundances of most of the parasite taxa in Sagelvvatn points however, to some 

differences between the two lakes. The higher parasite abundances in Sagelvvatn are likely caused 

by higher densities in the fish populations. Both the density of sticklebacks and sympatric fish 

species (A. Moe, personal communication, October 2011) were higher in Sagelvvatn, and this could 

be of great importance in determining inter-lake differences in abundance, as higher densities of 

both sticklebacks and sympatric fish species would increase parasite transmission rates (Anderson 

and May 1978; Dobson 1990; Arneberg et al. 1998). As many of the most abundant parasite taxa 

are generalists, the abundances of these may especially be affected by the density of the sympatric 

fish populations. Other studies have also shown parasite abundances to be positively correlated with 

productivity (Wiśniewski 1958; Esch 1971), but the differences between the lakes are minor, and 

the slightly higher productivity in Sagelvvatn is however thought to be related to higher densities of 

main and intermediate hosts in the lake. In addition, copepod densities were more than twice as high 

in Sagelvvatn than in Takvatn in August (Skoglund 2011), and as copepods are the intermediate 

host of all the cestode parasites (Appendix B) this can help explain the higher densities of these in 

Sagelvvatn. Avian hosts are characterised as harbouring many parasites (Kennedy et al. 1986; 

Poulin and Morand 2000), and as the stickleback is a central prey item in the lakes (Amundsen et al. 

2009) bird densities are of large importance in determining parasite abundances (Marcogliese et al. 

2001). The higher parasite densities in Sagelvvatn are thereby thought also to be related to higher 

densities of piscivorous birds. 

 

The largest inter-lake differences in abundance were found between the two hitchhikers, the 

autogenic stickleback specialists Proteocephalus sp1. and G. arcuatus, and can be related to the 

effects of stickleback and intermediate host densities. The higher copepod abundances can help 

explain the higher abundance of Proteocephalus sp1., as this parasite species utilise copepods as 

intermediate host. As G. arcuatus is directly transmitted, its higher abundances in Sagelvvatn is 

directly related to the higher host densities (Scott and Anderson 1984; Bakke et al. 1996) and to a 

lesser extent affected by other factors. That the largest inter-lake differences were found among 

these two species can also be explained partly in their mode of dispersal and host specificity. By 

being stickleback specialists, their abundances are affected by population dynamics or behaviour of 

other host species to a lesser extent. Being autogenic means that they are not dispersed by birds 
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utilizing both habitats. Thereby are inter-lakes similarities in abundances not maintained by a likely 

high dispersal rate between the lakes in these two parasite species. 

 

An exception to the general pattern of higher parasite abundances in Sagelvvatn was recorded for 

the encysted metaceraria in the eye and body cavity, which both had highest abundance in Takvatn. 

As both the Diplostomum spp. and the encysted metacercaria utilize lymnaeid snails as their 

intermediate hosts (Blair 1976; Chappell 1995; Hoffman 1999), the inter-lake differences cannot be 

explained by differences in intermediate host densities. Neither can it be explained by differences in 

densities of piscivorous birds. Differences could however be related to differences in habitat use of 

intermediate and main hosts and is likely a reflection of local variations within each lake. 

 

Lastly, differences in stickleback foraging behaviour may partly explain differences in the 

abundances of trophically transmitted parasites (Knudsen et al. 2004; Valtonen et al. 2010). If one 

ignores the non-shared parasite taxa, there was no difference in abundance in the amphipod 

transmitted parasites. However, the abundance of all the copepod transmitted parasites was higher 

in the Sagelvvatn parasite community, which corresponds well to the higher density of this 

intermediate host in the lake. Whether the observed differences in abundance were caused by 

differences in intermediate host densities, or in foraging behaviour, is difficult to infer as both 

factors influence the acquisition of parasites. Food preference vary with food availability as prey 

items (and intermediate hosts) of higher densities are selectively preyed upon by the three-spined 

stickleback (Visser 1982), thereby linking foraging behaviour closely to intermediate host densities. 

 

 

 

4.3. Seasonal variation in parasite abundance 

 

The abundances of the parasite component-populations changed with the sampling periods, and 

hence did also the composition of the infra-communities. With a few exceptions, the seasonal 

changes in parasite abundances were similar in the two stickleback populations, however more 

pronounced in Sagelvvatn. An explanation to the general trend is an accumulation due to new 

infections throughout the season and a decrease due to host mortality in late summer. 
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Parasites accumulate over time (Morand 2000) and endoparasites persist in the stickleback host 

following infection with exception of those residing in the intestine (Appendix B) as they dislodge 

following reproduction. The total number of parasites per fish correlated positively with fish length, 

as has been documented in other studies (e.g. Fellis and Esch 2004), and the higher number of 

parasites in longer fish is a result of accumulation over time as length correlates with age. 

Accumulation is further enhanced by increasing food consumption rates in larger and older fish, and 

thus increased exposure to trophically transmitted parasites (Morand and Poulin 1998; Fellis and 

Esch 2004; Poulin and Leung 2011). The accumulation of parasites in the sticklebacks in the 

present study was reflected in that some of the parasite component-populations and the total number 

of parasites per fish correlated positively with fish length. 

 

The amount of new infections vary depending on exposure to infective stages (Esch and Fernández 

1993; Sandland et al. 2001), and this exposure vary with differences in biotic and abiotic factors. 

Abiotic factors includes temperature, and as release of digenean cercaria from snail intermediate 

hosts increases at higher temperatures (Fried et al. 2002), this would lead to a peak in new 

infections in mid summer. Of further importance are biotic factors such as intermediate and final 

host densities. In Takvatn, copepod densities decline through the summer (Primicerio and 

Klemetsen 1999) and this could affect the amount of newly established cestodes utilising copepods 

as intermediate hosts, and be reflected in the newly established diphyllobothrids Diphyllobothrium 

spp. Also the densities of main fish and avian hosts affects transmission rates through a higher 

release of parasite eggs. Foraging behaviour will also effect the exposure to infective stages, and in 

general an increase in abundances in summer is likely enhanced by higher food consumption at 

higher temperatures (Östlund-Nilsson et al. 2007). Higher food consumption in summer might be of 

particular importance in the present study, as northern ecosystems have shorter growth season, 

which could enhance the seasonal effects. 

 

In the short lived three-spined stickleback mortality rates are high (Wootton 1984) and often 

induced by parasites, especially by the cestode S. solidus (Pennycuick 1971a; Tierney et al. 1996; 

Bagamian et al. 2004; Barber and Scharsack 2010). Reduction in fitness in the fish host has also 

been documented among diplostomids (Brassard et al. 1982; Owen et al. 1993), diphyllobothrids 

(Bylund 1972; Rahkonen et al. 1996) and encysted metacercaria (Apatemon gracilis, Gordon and 

Rau 1982). Upon dissection of the sticklebacks, some of the most heavily infected specimens were 
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observed to have very low liver volume and hence energy reserves in line with observations by 

Arme and Owen (1967), supporting that heavy parasite infections have a negative effect on 

stickleback fitness in the present study. It is therefore reason to believe that a positive correlation 

between host mortality rates and parasite intensities exists, and that this in large part explains the 

observed lower parasite abundances in the autumn. This increased mortality among the most 

heavily infected fish is further supported by a decrease in the variance-mean ratio in October 

recorded for many of the most overdispersed parasite taxa (Gordon and Rau 1982; Knudsen et al. 

2002). Sticklebacks stagnate in growth after reaching maturity, and based on the length data from 

previous studies of the Takvatn stickleback population (Pedersen 1987) all fish samples included 

specimens of both 2, 3 and 4 year old fish. The proportion of older fish (3 and 4 years) in the 

samples can be assumed to decrease throughout the summer due to the higher mortality rates among 

older fish. The decrease in abundances in late summer can thereby be explained by a decrease in the 

proportion of the oldest individuals with high intensities of accumulated parasites. 

 

In Takvatn, more parasite component-populations departed from the general pattern of higher 

abundances in August or showed no significant seasonal variation. This was also reflected in 

smaller variations in the infra-community composition. An explanation to these differences may be 

found among differences in both the frequency of new infections and stickleback mortality rates. It 

is likely that higher host densities and higher parasite abundances have led to higher mortality rates 

in the Sagelvvatn stickleback population. In general, an increase in accumulated parasites with 

season was only observed early in summer, and the decrease in late summer is best explained by an 

increase in host mortality rates. The seasonal variation in the infra-community composition revealed 

by the nonmetric multidimentional scaling (NMDS) bi-plots can also be seen in relation to the high 

late summer host mortality. Apart from S. solidus, the trematodes dominated the October infra-

communities, and as these are all smaller and less pathogenic they dominate in the surviving 

sticklebacks. The parasites dominating in August in both lakes are the larger diphyllobothrids which 

probably have a stronger negative effect on host survival than the other parasite taxa. With regard to 

the highly pathogenic S. solidus, however, the parasite induced mortality in sticklebacks is highest 

in autumn (Pennycuick 1971b), and the time of the October sampling assumed to have coincided 

with high infection levels. Due to the high pathogenicity many of the S. solidus infected fish will 

most likely die out during the autumn.  
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The seasonal variation in the stickleback parasite abundances in the present study was a reflection 

of both the acquisition and accumulation of new parasites during the season and high host mortality 

rates in late summer. The affect of accumulation of parasites and host mortality, and sampling on 

different age classes however, can be difficult to tell apart. The results suggests that parasite 

accumulate through the season, but that high mortality rates and the sampling on younger age 

classes with fewer accumulated parasites are of major influence in explaining the late summer 

decrease in parasite abundances. 
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5. CONCLUSION 

 

The study revealed high similarity in the parasite communities of the introduced and founder 

stickleback populations. The high similarity was explained by the geographical proximity and high 

similarity of the ecosystems, and hence biotic and abiotic factors. Similarity was further enhanced 

by the successful introduction of two hitchhiking parasites. The stickleback introduction had in 

addition allowed for the further colonisation of the introduced population by two other parasite 

species from the founder stickleback population, through dispersal by avian hosts. The high 

similarity of the parasites communities was further enhanced by the presence of few stickleback 

generalists in the founder population that could potentially be lost during the host introduction. The 

subtle difference in species richness between the two parasite communities could be explained by 

accidental infections by parasite species of sympatric fish hosts, underlining the importance of 

sympatric host species and their parasite faunas in determining parasite species richness.  

 

One observed difference between the ecosystems was in fish host densities, which is suggested as 

the primary cause of the difference in parasite abundance between the two stickleback populations. 

The seasonal variation was partly an effect of the accumulation of parasites, but it seem strongly 

affected by an increase in host mortality among the most parasitized sticklebacks in late summer, 

and due to sampling on different age classes. 

 

In general, the great ecosystem similarity and the local scale allowed for a study less confounded by 

a large range of factors otherwise increasing dissimilarity in parasite communities. This resulted 

thereby in a more specific study on the effects of dispersal mechanisms and host introductions. The 

main conclusion is that many of the mechanisms otherwise influencing parasite communities are of 

lesser importance on a local scale. Accordingly it shows that local scale fish introductions are more 

likely to bring along hitchhiking parasites. 
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8. APPENDIXES 

 

Appendix A. A selection of  the different parasites (groups or species) collected from the Sagelvvatn and Takvatn 

three-spined sticklebacks: a) larger Diplostomum sp., b) encysted metacercaria from eye (similar to those found in 

the body cavity), c) smaller Diplostomum sp., d) Proteocephalus sp1., e) Schistocephalus solidus, f) 

Cyanthocephalus truncatus attached to intestine, g) Cystidicola farionis, h) Proteocephalus sp2. 
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Appendix B. Parasites infecting the three-spined sticklebacks in Sagelvvatn and Takvatn grouped by taxon. Location in host, stage of development, lifecycle type, transmission route, host 

specificity and hosts is indicated.”*” indicates autogenic (i.e. within lake) lifecycle and “–“ indicates allogenic lifecycle (i.e. mature in birds). G and S refers to generalist and specialist. 

References: Sterud (1999) and Levsen (1992). 

 

Group Species or taxon Location Stage Lifecycle Transmission Specialist/generalist Host(s)

Macroparasites Cestoda Cyanthocephalus truncatus intestine adult * amphipod G S. alpinus, S. trutta, G. aculeatus

Diphyllobothrium dendriticum plerocercoid - copepod G S. alpinus, S. trutta, G. aculeatus

Diphyllobothrium ditremum plerocercoid - copepod G S. alpinus, S. trutta, G. aculeatus

Diphyllobothrium spp. plerocercoid - copepod G S. alpinus, S. trutta, G. aculeatus

Eubothrium sp. intestine adult * copepod S S. alpinus or S. trutta

Proteocephalus sp1. intestine plerocercoid * copepod S G. aculeatus (P. Filicollis )

Proteocephalus sp2. intestine plerocercoid * copepod S S. alpinus or S. trutta

Schistocephalus solidus body cavity plerocercoid - copepod S G. aculeatus

Monogenea Gyrodactylus arcuatus skin, fins adult * direct S G. aculeatus

Nematoda Cystidicola farionis swimmbladder small adult * amphipod S S. alpinus

Digenea Crepidostomum  sp. intestine adult * amphipod G S. alpinus, S. trutta

Diplostomum  spp. eye metacercaria - direct G S. alpinus, S. trutta, G. aculeatus

body cavity metacercaria body cavity metacercaria - direct G S. alpinus, S. trutta, G. aculeatus

eye metacercaria eye metacercaria - direct G S. alpinus, S. trutta, G. aculeatus

Microparasites Protozoa Trichodina  sp. skin, fins - * direct G ?

sessile ciliate skin, fins - * direct G ?

liver, body cavity, 
encysted in stomach 

wall

liver, body cavity, 
encysted in stomach 

wall
liver, body cavity, 

encysted in stomach 
wall
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Appendix C. Inter-lake parameters. Total abundance, prevalence (%), mean intensity (range), mean abundance (±S.D.) and variance to mean ratio of the parasite component-

populations of the three-spined sticklebacks in Sagelvvatn and Takvatn. 

 

Species /group Population Total abundance Prevalence (%) Mean intensity (range) Mean abundance (±S.D.) Variance/mean ratio

Cyanthocephalus truncatus Sagelvvatn 16 10.3 1.3 (1-2) 0.140 (±0.435) 1.4
Takvatn 20 13.9 1.3 (1-2) 0.174 (±0.464) 1.2

Diphyllobothrium dendriticum Sagelvvatn 9 6.0 1.3 (1-2) 0.076 (±0.327) 1.4
Takvatn 1 0.9 1.0 (1) 0.009 (±0.093) 1.0

Diphyllobothrium ditremum Sagelvvatn 787 81.9 8.3 (1-60) 6.784 (±10.233) 15.4
Takvatn 727 67.8 9.3 (1-128) 6.322 (±14.299) 32.3

Diphyllobothrium spp. Sagelvvatn 700 56.0 10.8 (1-34) 6.034 (±8.235) 11.2
Takvatn 424 58.3 6.3 (1-78) 3.687 (±9.215) 23.0

Eubothrium sp. Sagelvvatn 0 0  - 0  -
Takvatn 1 0.9 1.0 (1) 0.009 (±0.093) 1.0

Proteocephalus sp1. Sagelvvatn 1242 48.3 22.2 (1-450) 10.710 (±43.544) 177.1
Takvatn 7 2.6 2.3 (1-4) 0.061 (±0.825) 3.0

Proteocephalus sp2. Sagelvvatn 16 1.7 8.0 (1-15) 0.138 (±1.395) 14.1
Takvatn 0 0  - 0  -

Schistocephalus solidus Sagelvvatn 45 24.1 1.6 (1-4) 0.388 (±0.810) 1.7
Takvatn 37 25.2 1.3 (1-3) 0.322 (±0.629) 1.2

Gyrodactylus arcuatus Sagelvvatn 1436 63.8 19.4 (1-225) 12.379 (±30.648) 75.9
Takvatn 67 13.0 4.5 (1-27) 0.583 (±2.785) 13.3

Cystidicola farionis Sagelvvatn 0 0  - 0  -
Takvatn 45 23.5 1.7 (1-5) 0.391 (±0.886) 2.0

Crepidostomum sp. Sagelvvatn 0 0  - 0  -
Takvatn 7 4.4 1.4 (1-2) 0.061 (±0.305) 1.5

Diplostomum spp. Sagelvvatn 6371 100.0 55.0 (7-151) 54.922 (±28.000) 14.3
Takvatn 4635 100.0 40.3 (11-151) 40.304 (±22.250) 12.3

body cavity metacercaria Sagelvvatn 101 44.8 1.9 (1-13) 0.871 (±1.580) 2.9
Takvatn 172 60.9 2.5 (1-9) 1.496 (±1.970) 2.6

eye metacercaria Sagelvvatn 168 60.3 2.4 (1-13) 1.448 (±1.917) 2.5
Takvatn 391 89.6 3.8 (1-10) 3.400 (±2.467) 1.8

Trichodina sp. Sagelvvatn  - 96.0  -  -  -
Takvatn  - 88.7  -  -  -

sessile ciliate Sagelvvatn  - 70.4  -  -  -
Takvatn  - 69.6  -  -  -
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Appendix D. Seasonal variation parameters. Prevalence (%), mean intensity (range) and variance to mean ratio of the parasite component populations of the three-spined 

sticklebacks in Sagelvvatn and Takvatn. 

 

Species/group Population June August October June August October June August October

Cyanthocephalus truncatus Sagelvvatn 20.0         10.0           - 1.3 (1-2) 1.3 (1-2)  - 1.3 1.4  -
Takvatn 3.3           21.7          6.7            1.0 (1-1) 1.3 (1-2) 1 (1-1) 1.0 1.2 1.0

Diphyllobothrium dendriticum Sagelvvatn  - 11.7           -  - 1.3 (1-2)  -  - 1.3  -
Takvatn 3.3            -  - 1.0 (1-1)  -  - 1.0  -  -

Diphyllobothrium ditremum Sagelvvatn 83.3         90.0          66.7          2.8 (1-6) 11.1 (1-60) 8.3 (1-59) 1.6 11.9 25.7
Takvatn 33.3         85.0          73.3          6.3 (1-38) 8.0 (1-32) 13.8 (1-128) 24.3 8.4 6.9

Diphyllobothrium spp Sagelvvatn 10.0         91.7          30.0          4.7 (2-7) 11.6 (1-34) 7.7 (1-33) 5.3 6.5 17.6
Takvatn 63.3         85.0          6.7            2.9 (1-7) 8.0 (1-78) 2.5 (2-3) 2.6 21.9 2.5

Eubothrium sp. Sagelvvatn  -  -  -  -  -  -
Takvatn  - 1.7             - 1.0 (1-1)  - 1.0  -

Proteocephalus  sp1. Sagelvvatn 80.0         50.0          10.0          11.3 (1-35) 32.1 (1-450) 3.0 (1-6) 10.8 222.1 4.4
Takvatn  - 5.0            -             - 2.3 (1-4)  -  - 2.9  -

Proteocephalus sp2. Sagelvvatn  - 3.3             -  - 8.0 (1-15)  -  - 14.1  -
Takvatn  -  -  -  -  -  -  -  -  -

Schistocephalus solidus Sagelvvatn 10.0         30.0          33.3          1.0 (1-1) 1.7 (1-4) 1.4 (1-2) 0.9 1.8 1.1
Takvatn 6.7           41.7          20.0          1.0 (1-1) 1.2 (1-3) 1.5 (1-3) 1.0 1.0 1.6

Gyrodactylus arcuatus Sagelvvatn 60.0         90.0          13.3          8.8 (1-50) 25 (1-225) 1.8 (1-4) 27.3 72.1 2.6
Takvatn 3.3           20.0          10.0          1.0 (1-1) 5.1 (1-27) 2.3 (2-3) 1.0 14.1 2.3

Cystidicola farionis Sagelvvatn  -  -  -  -  -  -    -  -  -
Takvatn 40.0         25.0          6.7            1.8 (1-5) 1.5 (1-3) 1.5 (1-2) 2.1 1.7 1.6

Crepidostomum sp. Sagelvvatn  -  -  -  -  -  -  -  -  -
Takvatn  - 10.0           -  - 1.2 (1-2)  -  - 1.4  -

Diplostomum  spp. Sagelvvatn 100.0       100.0        100.0        46.1 (13-102 70.8 (24-151) 33.1 (7-79) 9.2 8.9 11.1
Takvatn 100.0       100.0        100.0        44.8 (11-100) 37.6 (11-151) 41.1 (18-80) 9.4 16.9 6.8

body cavity metacercaria Sagelvvatn 20.0         58.3          43.3          3 (1-6) 1.5 (1-3) 2.6 (1-13) 3.3 1.0 5.5
Takvatn 53.3         58.3          73.3          3.6 (1-9) 2.1 (1-8) 2.2 (1-7) 3.4 2.3 1.9

eye metacercaria Sagelvvatn 63.3         64.4          50.0          1.7 (1-4) 2.6 (1-7) 2.8 (1-13) 1.2 2.0 4.8
Takvatn 83.3         91.2          93.3          3.6 (1-9) 3.6 (1-10) 4.1 (1-10) 1.9 1.6 2.0

Trichodina  sp. Sagelvvatn 90.0         96.7          96.7           -  -  -  -  -  -
Takvatn 93.3         91.7          83.3           -  -  -  -  -  -

sessile ciliate Sagelvvatn 13.3         88.3          90.0           -  -  -  -  -  -
Takvatn 26.7         83.3          86.7           -  -  -  -  -  -

Variance/mean ratioPrevalence (%) Mean intensity (range)
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P Res. dev. P Res. dev. P Res. dev. P Res. dev.
Cyanthocephalus truncatus Sagelvvatn  - * 41.6

Takvatn ** 69.2 *** 55.4 . 51.6
Diphyllobothrium dendriticum Sagelvvatn ** 50.4 ** 31.3 . 28.5

Takvatn  -
Diphyllobothrium ditremum Sagelvvatn  - *** 173.2 *** 160.6

Takvatn ** 122.1
Diphyllobothrium  spp. Sagelvvatn *** 440.1 *** 197.3 *** 156.4 *** 148.5

Takvatn *** 197.4 *** 156.4 *** 148.5
Eubothrium sp. Sagelvvatn  -

Takvatn

Proteocephalus sp1. Sagelvvatn *** 162.6 *** 108.0 . 104.4
Takvatn . 9.0

Proteocephalus sp2. Sagelvvatn *** 144.6 *** 122.4  -  -
Takvatn

Schistocephalus solidus Sagelvvatn  - ** 75.5  -
Takvatn ** 96.5 *** 80.3

Gyrodactylus arcuatus Sagelvvatn *** 290.6 *** 121.4  -
Takvatn ** 46.7  -

Cystidicola farionis Sagelvvatn *** 81.1

Takvatn * 72.2
Crepidostomum sp. Sagelvvatn ** 31.9

Takvatn * 22.8 * 17.6
Diplostomum  spp. Sagelvvatn *** 373.1 *** 145.2 *** 130.6

Takvatn  - *** 119.3
body cavity metacercaria Sagelvvatn ** 246.3  -  -

Takvatn  - * 127.6  -
eye metacercaria Sagelvvatn *** 282.7  -

Takvatn  -
Infra community richness Sagelvvatn  - *** 89.4

Takvatn *** 51.6
Number of parasites per fish Sagelvvatn *** 387.0 *** 145.0 *** 129.1

Takvatn  - *** 117.6

Population Month Length Sex

Appendix E. Anova test results of the GLMs of the parasite abundances. Res. dev. is the residual deviance and P is the P-value. Significance levels are indicated as: *** 

= P<0.001, ** = P<0.01, * = P<0.05, . = P<0.10 and - = P>0.10. Blanks indicate that the effect was not included in the model. The population effect is tested on the total 

data set (n=240), while month, length and sex are tested on the intra-lake data separately (n=120). Test results are showed only for the main terms despite the presence 

of significant interactions. 
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