
REPORT

Computer Science Technical Report� ����� June ����

Performance Experiments with the StormView

Distributed Parallel Volume Renderer

Jo Asplin and Dag Johansen

INSTITUTE OF MATHEMATICAL AND PHYSICAL SCIENCES

Department of Computer Science

University of Troms�� N����� TROMS	� Norway� Telephone
�� �� �� �� �
� Telefax
�� �� �� �� ��

Abstract

Volume rendering is a useful but cpu�intensive method for visualizing large scalar �elds� The
time to render a single image may be reduced by parallel processing� This paper reports on
performance experiments with the StormView volume renderer� which is parallelized on a set
of �� MIPS � 	� MFLOPS workstations connected by a 	
 Mbps Ethernet� For certain user
patterns� we show that our parallelization exhibits substantial speedups� We compare the
performance of a dynamic and a static load balancing algorithm�

ii

Contents

� Introduction �

� The StormView Volume Renderer �

��� Input to StormView �
��� Output from StormView �
��� The Volume Rendering Algorithm �

� Parallelizing StormView �

��� A Sequential Approach �
��� Introducing Parallelism �

� Load Balancing �

��� Static Task Distribution �
��� Dynamic Task Distribution �
��� Tasks vs� Sub�images �
��� A Process Group Implementation �

� Performance Measurements �

��� Experimental Environment � 	
��� A Scenario Favoring the Dynamic Algorithm � 	
��� Performance of Load Balancing �

��� Expense of Grid Distribution �

	 Discussion

��� Load Balancing Method �

��� Method of Transfering Sub�images �
��� User Pattern �

� Conclusion and Future Work ��

iii

� Introduction

Many sciences need to interpret large �D
three�dimensional� data sets� One example is weather
predictions produced by an atmosperic model where the state of the atmosphere is represented
as a grid of numbers� Another example is electron density �elds studied in chemistry� Obviously�
a scientist does not want to deal directly with a list of perhaps ��� numbers� so some form of
visualization is desirable� Volume rendering is a popular method of visualizing �D data sets ����
It consumes substantial time� and space�resources� Parallel processing is one of the most common
ways to support volume rendering ��� 	� ����

The speedup achieved by a parallel algorithm is often related to load balancing� The goal of
load balancing is to maximize the fraction of time that each processor is busy working on the
problem and minimize the fraction spent communicating or being idle� Load balancing methods
are often classi�ed as dynamic or static� Whereas dynamic methods uses communication to adjust
the work assignment as the computation progresses� static methods do not change the initial as�
signment� Dynamic methods often prove to be superior if the problem exhibits a high computation
to communication ratio� and the general load variation of the execution environment is di�cult
to predict�

The output of a volume rendering algorithm is typically described by � MB or so of image
data
assuming a screen�resolution of ����x���� pixels�� In a parallel execution� this data has to
be transferred from the worker processes to a single controller process responsible for assembling
and displaying the image� At one extreme� the workers could postpone the transfer of image data
until after the computation� At the other extreme� the image data could be transferred in small
fragments during the course of the computation� Whether one strategy performs better than the
other� depends on the computation to communication ratio of the overall computation�

Another issue of relevance to the performance of a distributed parallel volume renderer is the
user pattern with respect to the number of images produced per data set� At one extreme� a single
data set is visualized throughout a session� At the other extreme� a new data set has to be loaded
before the generation of each new image�

In this paper� we report on StormView� a parallel volume renderer running on a local area
network of workstations shared between several users� We have implemented well�known static
and dynamic load balancing methods� each of which may either scatter or concentrate the transfer
of image�parts� This allowed us to study the performance of the four algorithms experimentally in
a multiuser network� In addition� in order to evaluate the performance characteristics of the two
user pattern extremes� we also measured the time taken to transfer the data set to the parallel
processes�

The rest of the paper is organized as follows� In section � we describe the functionality of the
StormView volume renderer� Section � presents the general parallel interaction model employed
in StormView� along with design choices related to this model� Section � gives a motivation for
load balancing� and discusses the methods chosen� In Section � we describe the experiments� The
results are discussed in Section � before we summarize the paper in Section 	�

� The StormView Volume Renderer

StormView is a system that volume renders large scalar �elds� In this paper� meteorological data
sets is used� The work is part of the StormCast project which applies distributed computing to
the meteorology and environmental
pollution� domains ����

��� Input to StormView

The input to StormView consists of a grid object
GO� and a rendering�speci�cation object
RO��
The grid object represents a �D scalar �eld with one scalar value at each grid point� The grid is
rectilinear� meaning that the grid points are axis�aligned� but not necessarily evenly spaced� A
concrete example of a grid object is the ���x�	x�
 grid output from the Norwegian Meteorological

�

Institute�s atmospheric model LAM��S covering most of Europe� Scalar values suitable for volume
rendering include horizontal wind speed and relative humidity�

The rendering�speci�cation object contains parameters to control a single rendering of a grid
object� These include �D viewpoint� light source� atmospheric attenuation� and functions for
mapping scalar values to color and opacity� Mapping functions control what regions in the data
set are rendered� the degree of transparency� and the coloring� As an example� a meteorologist
might want to make regions having wind speed between �� and �� meters per second appear as red�
If� however� the red�colored regions are semi�transparent� the total color
the one that is eventually
mapped onto the screen� includes contributions from whatever lies behind these regions�

��� Output from StormView

The output from StormView is an image object �IO�� This is a matrix of RGB��tuples� where R� G
and B are intensities for the red� green and blue color�components� and � is opacity� The opacity
is stored along with the color in order to be able to blend the image with a background image�
such as a landscape or a grid reference frame� Figure � shows the result of blending two image
objects with a background reference� The images shows renderings of the same data set
horizontal
vindspeed�� While the left one gives an iso�surface e�ect� the right one shows a smoother color
variation�

Figure �� Volume rendered horizontal wind speed�

��� The Volume Rendering Algorithm

The volume rendering algorithm employed in StormView is the ray casting method described in
����� To determine the color of a particular pixel� a ray is sent through it into �D grid�space�
Opacity and color is integrated numerically along the ray while it cuts its way through a sequence
of grid�cells
see Figure ��� The integrands are evaluated on the basis of the mapping
functions contained in the rendering�speci�cation object and trilinear interpolation of the scalar
values contained in the grid object� The integral is approximated using the composite trapezoid
rule for each cell the ray passes through� Consequently� the exact positions where a ray enters
and leaves a cell need to be calculated� The integration continues until either the accumulated
opacity reaches a maximum value or the ray reaches the back side of the grid� At this point� the
corresponding RGB��tuple in the image object is calculated from the integrals�

�

Figure �� A ray passing through a sequence of grid cells

Rays hitting Rays missing

grid
���	�� grid
�	���

Min �����	�� ������	�

Max ���
	��� ��������

Median �������� ������		

Mean ������	� ������	�

Std�dev �������� ��������

Table �� Sequential performance �in seconds��

� Parallelizing StormView

Response time is the resource that is optimized in our work� Hence� the main design goal of
StormView has been to exploit the parallel system�s potential for response time reduction� No
particular e�orts have been devoted to reduce the space optimizations�

��� A Sequential Approach

Consider implementing StormView as a single process rendering the volume in a strict sequen�
tial fashion� Table � summarizes wall�clock timing of the individual rays during rendering of a
���x�	x�
 horisontal wind speed �eld on a �	 MIPS � �	 MFLOPS HP�	�� workstation�

Rays that miss the grid requires considerably less computation than those that hit it
that is�
rays within the �D projection of the grid�� so these two classes of rays are measured separately�
The data in Table � indicate that if all rays passing through a ���x��� image hit the grid� the
rendering may take more than ��� hours on a single workstation� This is too long for most practical
use�

��� Introducing Parallelism

The parallelization of StormView is based on two decisions� First� we decided to decompose the
problem at the pixel
ray� level� The smallest unit of work is the computation of the RGB� value

�

for a single pixel� A task represents the computation of a set of pixels� given information to locate
each�

Second� we decided that each participating process should have access to an entire grid object
in its primary memory� Any process can now compute an arbitrary ray� although the total amount
of memory devoted to the grid object will be high�

A consequence of these two decisions is that a process need not interact with any other process
during its computation of a task� The result is the high computation to communication ratio
necessary to exploit the parallel processing power inherent with high�perfomance computing nodes
and low�performance network�

A convenient way to organize such a system is to have a set of workers perform ray casting
in parallel� and a controller distribute the tasks and collect the results� Figure � illustrates the
parallel architecture as well as the �ow of data in� Note� the graphical user interface process is
separated from the rest of the system� The experiments presented in this paper are concerned
solely with the interaction between the controller and the workers�

User interface

RO

GO

IO

Controller

Worker 1 Worker 2 Worker n

message
passing

message
passing

GORO
IO

Parallel renderer

Figure �� Parallel architecture�

� Load Balancing

Load balancing is an important property of any e�cient parallel algorithm� We have experimented
with both static and dynamic load balancing schemes� In this section we describe the two schemes
and the rationale behind them�

��� Static Task Distribution

In static task distribution
also known as pre�scheduling�� the pixels that will be handled by each
individual worker are decided in advance �
�� This division of responsibility is not altered once the
computation starts� Each worker is assigned excactly one task per image�

�

The simplest approach to static task distribution is to partition the image into equally large
rectangular regions� Worker � is responsible for region �� worker � for region � and so on� Unfortu�
nately� the method does not compensate for the variation in image complexity� Di�erent amounts
of work are required to render di�erent regions of the image� This variation has several causes�

� the length of the part of the ray where work is being done may vary from zero to the length
of the grid diagonal depending on�

� opacity � the ray may reach the visibility limit� which in turn depends on scalar values
and mapping functions�

� viewpoint � the ray may pass through a narrow region of the grid� or even miss it com�
pletely�

� the number of iterations in the numerical integration depends on the complexity of the
respective integrands� which in turn depends on scalar values and mapping functions�

Although the total e�ect of these factors is di�cult to predict in advance� the data set should
have a certain degree of continuity� Hence� there is a high probability that neighbouring rays
require the same amount of work� We exploit this image coherence by making sure that each
worker is assigned pixels from all over the image� a method often called scattered decomposition
��� ���� For the rest of this paper� the term static load balancing will refer to the algorithm that
employs scattered decomposition�

��� Dynamic Task Distribution

The static algorithm has one serious shortcoming� It ignores the variations in the individual worker
e�ciency� Dynamic task distribution adapts to this kind of variation� We chose the method of
demand driven computation� also known as self�scheduling ���
�� Initially� the controller keeps a
set of tasks corresponding to small subimages� Workers then issue task�requests to the controller�
which� in turn� assigns tasks until the set is empty� The crux of this scheme is that a slow worker
sends fewer requests and receives less work than a fast worker�

��� Tasks vs� Sub�images

In order to achieve good performance� one may need to consider the subdivision of the image
into sub�images� A sub�image is a group of rendered pixels
RGB��tuples� that a worker may
transfer to the controller using a single call to the available send�primitive� Note that sub�images
constitute the major part of the communication bandwidth in the algorithm� Therefore� it is useful
to contemplate di�erent ways of transfering this data from the workers to the controller� We want
to test whether many small messages scattered over time will yield a better performance than a
few large messages postponed to the end of the computation�

We have implemented two versions of the dynamic and the static algorithms� The two versions
di�er in that they either scatter or concentrate the transfer of sub�images from workers to the
controller� We denote them DS � SS � DC � and SC respectively
DS meaning Dynamic�Scatter
and so on�� In DS and SC there is a one�to�one correspondence between tasks and sub�images�
Once a complete task is computed� the corresponding sub�image is sent to the controller� DC

works as DS except that in a worker� all the �nished sub�images are accumulated into one single
sub�image� which is transferred after all tasks have been computed� SS di�ers from SC in that a
worker transfers several sub�images to the controller during the computation of the task� Figure
� illustrates the four algorithms�

��� A Process Group Implementation

Our implementation uses the ISIS distributed toolkit v� ����	 as platform ���� This choice was
motivated mainly by the location transparent naming of process groups� the presence of a reliable
multicast primitive� and the ability to marshall messages in a convenient way�

�

C W

RO

−
t

−

t

t

−
t

t

t

W

RO

C

−
−

−

−

−

C W

RO

−

W

RO

C

SS SCDC

C = controller

= worker

RO = rendering specification object

t = task

= subimage

− = null message

W

DS

= multicast and −reply

Figure �� The four load balancing algorithms �for simplicity� only one worker is shown��

Figures � and � show the pseudo code for the ISIS implementation of SC and DS � This
code uses the
slightly renamed� ISIS�abstractions mcast� reply� and thread� The two �rst are
primitives for multicast�communication between a process and a process group� Threads play
an important part in the delivery of a multicast message� The ISIS runtime system delivers a
message to the application program by instanciating and executing a thread with the message as
parameter� Several threads may execute logically in parallel within one process� A thread executes
non�preemptively until the control is explicitely handed over to the ISIS runtime system� This
occurs� for instance� at the termination of the thread� or in a call to a communication procedure�

For simplicity� we have not included code for transmission of the grid object� We assume that
a current grid object is already allocated at each worker�

The two programs are both synchronous in the sense that every multicast waits for a reply�
The static algorithm has a trivial communication structure involving only a single multicast from
the controller to the workers� Note that the render�routine ensures that a given worker is assigned
pixels scattered all across the image� The dynamic algorithm is more complex� Essentially� an
initial multicast from the controller to the workers encloses a series of multicasts from the workers
to the controller� The multicasts
actually unicasts� from the workers are a way of sending sub�
images to the controller and new tasks to the workers� Note how this resembles the technique of
piggybacking in network protocols�

�

Controller�

IO � mcast�RO� W��

Worker i�

thread�RO�
f

reply�render�RO� i���
g

Operations and variables�

i � worker identi�er

RO � rendering	speci�cation object

IO � image object

W � group of workers

render�RO� i� � computes RGB�	tuples for pixels assigned
to worker i with respect to RO

mcast�m� g� � multicasts message m to process group g

reply�m� � replies message m to the process
issuing the multicast

Figure �� ISIS pseudo code for SC �static task distribution with concentrated sub�image transfer��

� Performance Measurements

A set of experiments enabled us to compare the performances of the two load balancing algorithms
and the two ways of transfering sub�images from the workers to the controller� We also measured
the time for transfering a new grid object to the workers�

��� Experimental Environment

The experiments were run on a cluster of HP�	�� workstations connected by a �� Mbps Ethernet�
Each workstation contains a �� MHz PA�RISC 	��� CPU� �� MB of RAM� and runs version ����
of HP�UX� The theoretical performance of such a workstation is �	 MIPS and �	 MFLOPS�

All experiments uses the same input� The grid object represents horizontal wind speed from
the LAM��S atmospheric model� The rendering�speci�cation object includes a bird�s�eye view
point where all rays hit the grid and no ray traveled through more than �
 grid cells� Moreover�
the light�source is turned o� and the data set is rendered with a sharp iso�contour at a wind speed
of �� m�s� There are ����� pixels in the image�

Task size is a critical factor in the performance of the dynamic algorithms� If load balancing was
the only consideration� then task size should be as small as possible� Unfortunately� the smaller
the task size� the more communication is required� We found ��� pixels to give a reasonable
tradeo� between load balancing and communication� This is also a satis�able size of a sub�image
in the version of the static algorithm that scatters the sub�images over time
SS��

��� A Scenario Favoring the Dynamic Algorithm

It is worth pointing out that there is one particular scenario in which the dynamic algorithm always
outperforms the static one� This is when the speed of the individual workers di�ers substantially�
When another user decides to run a computing intensive process at one of the worker nodes� the
worker e�ciency decreases� Clearly� this decrease is undesirable� since the the overall response time

	

of the static algorithm depends on the slowest worker� When employing the dynamic algorithm
under similar conditions� the loaded worker would be assigned a smaller amount of work� the rest
of it being distributed fairly among the others�

��� Performance of Load Balancing

To evaluate the performance of the four versions of the load balancing algorithms� we measure
total response time of each of the algorithms
a�� with a di�erent number of workers
n�� In a
single experiment� each combination of
a� n� is repeated �� times� The following loop�structure
is used�

for sample �� f�� �� � � � � ��g
for n �� f��� ��� ��g

for a �� fDS� DC � SC � SSg
� run algorithm a with n workers �

Experiments were conducted at di�erent hours� The results from one experiment during the
day and one during the night are summarized in �gures 	 and
� These �gures plots the ���� �
con�dence intervals for the mean of the total response time�

From the measurements we make three major observations for our problem� First� the dy�
namic algorithms always perform better than the static ones� However� in certain situations� the
algorithms exhibits a similar performance� Second� the dynamic algorithms are signi�cantly more
stable� Third� there is no signi�cant di�erence between scattering and concentrating the transfer
of sub�images�

��� Expense of Grid Distribution

The experiments presented so far are concerned with the rendering of a single image� assuming
the grid object is always distributed to the workers before the computation begins� In certain
situations the user needs to load new grids relatively often� such as in the rendering of a time
series with a di�erent grid per image� It is therefore worthwhile to measure the grid distribution
time�

We measured this time in an experiment using the following loop structure�

for sample �� f�� �� � � � � ��g
� distribute the grid to �	 workers �

The results from the experiment is presented in Figure ��

� Discussion

We now use the experimental results as basis for discussing load balancing method� sub�image
transfer� and user pattern� Without extensive data collection it is impossible to give very con�
�dent statements about the load variation� We believe the experiments give reasonably repre�
sentative indications of the underlying behaviour of the algorithms when executed in the current
environment�

	�� Load Balancing Method

The experiments clearly demonstrates the superiority of dynamic load balancing for this particular
system and input� This result is primarily accounted for by the dynamic algorithm�s ability of
adapting to imbalance in both image complexity and worker e�ciency�

Note also that even when the static and dynamic performance approaches each other� the
dynamic algorithm is still better
see Figure
�� This suggests that the computation to commu�
nication ratio is su�ciently high for the extra synchronization overhead inherent in the dynamic
algorithm to be negligible� As noted before� the size of the computation fraction is a�ected by
viewpoint� mapping functions� grid size and scalar values� However� situations in which the com�
putation fraction is small also seem to yield less interesting images� The interesting images seem
to include a combination of large semi�transparent regions
meaning less performance gain from
early ray�termination� and sharp iso�contours
meaning more iterations in the numeric integration
due to a more complex integrand��

From Figure 	 we make an important observation� Note how the response times of the two
static algorithms make a jump upwards when the number of workers is increased from �� to ���
This demonstrates how sensitive the static algorithms are to the inclusion of ine�cient workers�

	�� Method of Transfering Sub�images

The experiments reveals no di�erence between scattering and concentrating transfer of sub�images�
This result is not surprising when comparing the order of magnitude of the total response time
of the computation and the network bandwidth respectively� The network bandwidth is around
� MB per second� Suppose that the computation of a ����� pixel image is parallelized over ��
workers which �nishes computation simultaneously� The worst possible scenario with respect to
bandwidth exploitation arises when the transfer of sub�images is concentrated at the end� One
RGB��tuple is represented by � bytes� so this takes
� � ���������� � ��� seconds to transfer�
Table �
on page �� shows that the computation itself requires around
���� � ��������� � ���
seconds� The transfer time is clearly negligible�

	�� User Pattern

During a session� a user of StormView is repeatedly faced with two main choices� loading a new
grid or rendering the current one� At one extreme� a single grid is loaded� followed by a sequence of
renderings� This situation arises� for example� when the user wants to render a grid from di�erent
viewpoints and with di�erent color� and transparency mappings� At the other extreme� a new
grid is loaded before each rendering� This would be the case when rendering a time series�

The two extremes may be represented algorithmically as follows�

User pattern �� User pattern ��

load grid loop

loop load grid

render grid render grid

end loop end loop

In the second user pattern� full replication of the grid object may have a bigger in�uence on the
performance� As Figure � shows� the grid transfer time is not ignorable compared to the rendering
time� To see how this situation might be improved� keep in mind that the current communication
protocol
ISIS v� ����	� implements multicast by invoking a send operation to each individual
process in the destination group� Consequently� we could choose either or both of the following
strategies�

� reduce the amount of data transferred in send operations to individual processes by aban�
doning full replication�

� reduce the number of send operations to individual processes by using a communication
protocol that allows hardware multicast�

The �rst strategy might imply a reduced performance during the rendering phase� One possi�
bility is to partition the grid into regions of responsibility and assign one region to each worker ����

�

Another is caching ���� These methods lead to extra communication and� possibly� unnecessary
computation
for instance� it might be di�cult to cut o� rays early�� On the second hand� our
load balancing experiments shows that the computation fraction may still be high enough for these
e�ects to be negligible�

� Conclusion and Future Work

In a workstation environment� dynamic load balancing is the superior choice for ray casting volume
rendering algorithms in which complete rays may be computed without the need for synchroniza�
tion� This has two reasons� First� dynamic load balancing adapts better to the kind of worker
e�ciency imbalance often occuring in such an environment� Second� ray casting volume rendering
is parallelizable at a su�ciently coarse grained level for the extra communication present in the
dynamic algorithm to be negligible�

The possible gain of scattering the transfer sub�images over time is negligible� This is also due
to the high computation to communication ratio�

If the user pattern implies loading a new grid per every image to be rendered� it would be
desirable to employ hardware multicast and also avoiding full replication of the grid�

Future work includes investigating how a faster network technology such as ATM
Asyn�
chronous Transfer Mode� might in�uence the relative di�erence in performance between dynamic
and static load balancing� Furthermore� it would be interesting to identify what issues of fault
tolerance might be relevant for this type of application� and what performance tradeo�s will occur
in a fault tolerant version�

Acknowledgements

We thank Tage Stabell Kul� and Fred B� Schneider for comments on early drafts of the paper�

References

��� Kenneth P� Birman� The Process Group Approach to Reliable Distributed Computing� Com�
munications of the ACM� ��
���������� December �����

��� Stuart Green� Parallel Processing for Computer Graphics� Pitman� �����

��� Dag Johansen� StormCast� Yet Another Excercise in Distributed Computing� In F� Brazier
and D� Johansen� editors� Distributed Open Systems� pages �����	�� IEEE Computer Society
Press� �����

��� Arie Kaufman� Introduction to Volume Visualization� In Arie Kaufman� editor� Volume
Visualization� pages ���
� IEEE Computer Society Press� �����

��� Kwan�Liu Ma and James S� Painter� Parallel Volume Visualization on Workstations� Com�
puters and Graphics� �	
�������	� �����

��� Paul Mackerras and Brian Corrie� Exploiting Data Coherence to Improve Parallel Volume
Rendering� IEEE Parallel � Distributed Technology� �
���
���� �����

�	� C� Montani� R� Perego� and R� Scopigno� Parallel Rendering of Volumetric Data Sets on
Distributed�Memory Architectures� Concurrency	 Practice and Experience� �
���������	�
April �����

�
� Michael J� Quinn� Designing E
cient Algorithms for Parallel Computers� McGraw�Hill� ��
	�

��� John Salmon and Je� Goldsmith� A Hypercube Ray�Tracer� In G� C� Fox� editor� Proceedings
of the Third Conference on Hypercube Computers and Applications� ��

�

��

���� Jaswinder Pal Singh et al� Parallel Visualization Algorithms� Performance and Architectural
Implications� IEEE Computer� �	
	�������� July �����

���� Craig Upson and Michael Keeler� V�BUFFER� Visible Volume Rendering� Computer Graph�
ics� ��
��������� August ��

�

���� B� W� Weide� Analytical Models to Explain Anomalous Behaviour of Parallel Algorithms� In
Proceedings of the ��
� International Conference on Parallel Processing� pages �
���
	� New
York� August ��
�� IEEE�

��

Controller�

k �
�
mcast�RO� W��

thread�Ih�
f
if �h �� ���

IO
� Ih�

j � k

�
reply�Tj��

g

Worker i�

thread�RO�
f

Tj � mcast�I
��� C��

while �j � q�
Tj � mcast�render�RO� Tj�� C��

reply���
g

Operations and variables�

i � worker identi�er

RO � rendering	speci�cation object

IO � image object

W � group of workers

C � group of controller �a single	member group�

q � the number of tasks

Tj � task j

render�RO� Tj� � computes RGB�	tuples for pixels de�ned
by task Tj with respect to rendering	speci�cation object RO

mcast�m� g� � multicasts message m to process group g

reply�m� � replies message m to the process
issuing the multicast

k � task identi�er

h � subimage identi�er

j � task and subimage identi�er

r � the number of stop	signals sent

Figure 	� ISIS pseudo code for DS �dynamic task distribution with scattered sub�image transfer��

��

100

150

200

250

300

10 15 20 25

to
ta

l r
es

po
ns

e
tim

e
(s

)

number of workers

99.9% confidence interval. Period: 09:28 .. 18:09, 20/2-95

static, concentrated
static, scattered

dynamic, concentrated
dynamic, scattered

Figure �� ���� � con�dence intervals� day�

100

150

200

250

300

10 15 20 25

to
ta

l r
es

po
ns

e
tim

e
(s

)

number of workers

99.9% confidence interval. Period: 21:43 .. 06:25, 20/2-95

static, concentrated
static, scattered

dynamic, concentrated
dynamic, scattered

Figure
� ���� � con�dence intervals� night�

��

10

20

30

40

50

60

70

80

90

17:17 20:44 0:12 3:39 7:07 10:35

to
ta

l r
es

po
ns

e
tim

e
(s

)

sample time

Figure �� Time pro�le� multicast of a ������ bytes grid object to �� workers�

��

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

