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Abstract

Volume rendering is a useful but cpu�intensive method for visualizing large scalar �elds� The
time to render a single image may be reduced by parallel processing� This paper reports on
performance experiments with the StormView volume renderer� which is parallelized on a set
of �� MIPS � 	� MFLOPS workstations connected by a 	
 Mbps Ethernet� For certain user
patterns� we show that our parallelization exhibits substantial speedups� We compare the
performance of a dynamic and a static load balancing algorithm�
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� Introduction

Many sciences need to interpret large �D 
three�dimensional� data sets� One example is weather
predictions produced by an atmosperic model where the state of the atmosphere is represented
as a grid of numbers� Another example is electron density �elds studied in chemistry� Obviously�
a scientist does not want to deal directly with a list of perhaps ��� numbers� so some form of
visualization is desirable� Volume rendering is a popular method of visualizing �D data sets ����
It consumes substantial time� and space�resources� Parallel processing is one of the most common
ways to support volume rendering ��� 	� ����

The speedup achieved by a parallel algorithm is often related to load balancing� The goal of
load balancing is to maximize the fraction of time that each processor is busy working on the
problem and minimize the fraction spent communicating or being idle� Load balancing methods
are often classi�ed as dynamic or static� Whereas dynamic methods uses communication to adjust
the work assignment as the computation progresses� static methods do not change the initial as�
signment� Dynamic methods often prove to be superior if the problem exhibits a high computation
to communication ratio� and the general load variation of the execution environment is di�cult
to predict�

The output of a volume rendering algorithm is typically described by � MB or so of image
data 
assuming a screen�resolution of ����x���� pixels�� In a parallel execution� this data has to
be transferred from the worker processes to a single controller process responsible for assembling
and displaying the image� At one extreme� the workers could postpone the transfer of image data
until after the computation� At the other extreme� the image data could be transferred in small
fragments during the course of the computation� Whether one strategy performs better than the
other� depends on the computation to communication ratio of the overall computation�

Another issue of relevance to the performance of a distributed parallel volume renderer is the
user pattern with respect to the number of images produced per data set� At one extreme� a single
data set is visualized throughout a session� At the other extreme� a new data set has to be loaded
before the generation of each new image�

In this paper� we report on StormView� a parallel volume renderer running on a local area
network of workstations shared between several users� We have implemented well�known static
and dynamic load balancing methods� each of which may either scatter or concentrate the transfer
of image�parts� This allowed us to study the performance of the four algorithms experimentally in
a multiuser network� In addition� in order to evaluate the performance characteristics of the two
user pattern extremes� we also measured the time taken to transfer the data set to the parallel
processes�

The rest of the paper is organized as follows� In section � we describe the functionality of the
StormView volume renderer� Section � presents the general parallel interaction model employed
in StormView� along with design choices related to this model� Section � gives a motivation for
load balancing� and discusses the methods chosen� In Section � we describe the experiments� The
results are discussed in Section � before we summarize the paper in Section 	�

� The StormView Volume Renderer

StormView is a system that volume renders large scalar �elds� In this paper� meteorological data
sets is used� The work is part of the StormCast project which applies distributed computing to
the meteorology and environmental 
pollution� domains ����

��� Input to StormView

The input to StormView consists of a grid object 
GO� and a rendering�speci�cation object 
RO��
The grid object represents a �D scalar �eld with one scalar value at each grid point� The grid is
rectilinear� meaning that the grid points are axis�aligned� but not necessarily evenly spaced� A
concrete example of a grid object is the ���x�	x�
 grid output from the Norwegian Meteorological
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Institute�s atmospheric model LAM��S covering most of Europe� Scalar values suitable for volume
rendering include horizontal wind speed and relative humidity�

The rendering�speci�cation object contains parameters to control a single rendering of a grid
object� These include �D viewpoint� light source� atmospheric attenuation� and functions for
mapping scalar values to color and opacity� Mapping functions control what regions in the data
set are rendered� the degree of transparency� and the coloring� As an example� a meteorologist
might want to make regions having wind speed between �� and �� meters per second appear as red�
If� however� the red�colored regions are semi�transparent� the total color 
the one that is eventually
mapped onto the screen� includes contributions from whatever lies behind these regions�

��� Output from StormView

The output from StormView is an image object �IO�� This is a matrix of RGB��tuples� where R� G
and B are intensities for the red� green and blue color�components� and � is opacity� The opacity
is stored along with the color in order to be able to blend the image with a background image�
such as a landscape or a grid reference frame� Figure � shows the result of blending two image
objects with a background reference� The images shows renderings of the same data set 
horizontal
vindspeed�� While the left one gives an iso�surface e�ect� the right one shows a smoother color
variation�

Figure �� Volume rendered horizontal wind speed�

��� The Volume Rendering Algorithm

The volume rendering algorithm employed in StormView is the ray casting method described in
����� To determine the color of a particular pixel� a ray is sent through it into �D grid�space�
Opacity and color is integrated numerically along the ray while it cuts its way through a sequence
of grid�cells 
see Figure ��� The integrands are evaluated on the basis of the mapping
functions contained in the rendering�speci�cation object and trilinear interpolation of the scalar
values contained in the grid object� The integral is approximated using the composite trapezoid
rule for each cell the ray passes through� Consequently� the exact positions where a ray enters
and leaves a cell need to be calculated� The integration continues until either the accumulated
opacity reaches a maximum value or the ray reaches the back side of the grid� At this point� the
corresponding RGB��tuple in the image object is calculated from the integrals�
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Figure �� A ray passing through a sequence of grid cells

Rays hitting Rays missing

grid 
���	�� grid 
�	���

Min �����	�� ������	�

Max ���
	��� ��������

Median �������� ������		

Mean ������	� ������	�

Std�dev �������� ��������

Table �� Sequential performance �in seconds��

� Parallelizing StormView

Response time is the resource that is optimized in our work� Hence� the main design goal of
StormView has been to exploit the parallel system�s potential for response time reduction� No
particular e�orts have been devoted to reduce the space optimizations�

��� A Sequential Approach

Consider implementing StormView as a single process rendering the volume in a strict sequen�
tial fashion� Table � summarizes wall�clock timing of the individual rays during rendering of a
���x�	x�
 horisontal wind speed �eld on a �	 MIPS � �	 MFLOPS HP�	�� workstation�

Rays that miss the grid requires considerably less computation than those that hit it 
that is�
rays within the �D projection of the grid�� so these two classes of rays are measured separately�
The data in Table � indicate that if all rays passing through a ���x��� image hit the grid� the
rendering may take more than ��� hours on a single workstation� This is too long for most practical
use�

��� Introducing Parallelism

The parallelization of StormView is based on two decisions� First� we decided to decompose the
problem at the pixel 
ray� level� The smallest unit of work is the computation of the RGB� value
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for a single pixel� A task represents the computation of a set of pixels� given information to locate
each�

Second� we decided that each participating process should have access to an entire grid object
in its primary memory� Any process can now compute an arbitrary ray� although the total amount
of memory devoted to the grid object will be high�

A consequence of these two decisions is that a process need not interact with any other process
during its computation of a task� The result is the high computation to communication ratio
necessary to exploit the parallel processing power inherent with high�perfomance computing nodes
and low�performance network�

A convenient way to organize such a system is to have a set of workers perform ray casting
in parallel� and a controller distribute the tasks and collect the results� Figure � illustrates the
parallel architecture as well as the �ow of data in� Note� the graphical user interface process is
separated from the rest of the system� The experiments presented in this paper are concerned
solely with the interaction between the controller and the workers�

User interface

RO

GO

IO

Controller

Worker 1 Worker 2 Worker n

message
passing

message
passing

GORO
IO

Parallel renderer

Figure �� Parallel architecture�

� Load Balancing

Load balancing is an important property of any e�cient parallel algorithm� We have experimented
with both static and dynamic load balancing schemes� In this section we describe the two schemes
and the rationale behind them�

��� Static Task Distribution

In static task distribution 
also known as pre�scheduling�� the pixels that will be handled by each
individual worker are decided in advance �
�� This division of responsibility is not altered once the
computation starts� Each worker is assigned excactly one task per image�
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The simplest approach to static task distribution is to partition the image into equally large
rectangular regions� Worker � is responsible for region �� worker � for region � and so on� Unfortu�
nately� the method does not compensate for the variation in image complexity� Di�erent amounts
of work are required to render di�erent regions of the image� This variation has several causes�

� the length of the part of the ray where work is being done may vary from zero to the length
of the grid diagonal depending on�

� opacity � the ray may reach the visibility limit� which in turn depends on scalar values
and mapping functions�

� viewpoint � the ray may pass through a narrow region of the grid� or even miss it com�
pletely�

� the number of iterations in the numerical integration depends on the complexity of the
respective integrands� which in turn depends on scalar values and mapping functions�

Although the total e�ect of these factors is di�cult to predict in advance� the data set should
have a certain degree of continuity� Hence� there is a high probability that neighbouring rays
require the same amount of work� We exploit this image coherence by making sure that each
worker is assigned pixels from all over the image� a method often called scattered decomposition
��� ���� For the rest of this paper� the term static load balancing will refer to the algorithm that
employs scattered decomposition�

��� Dynamic Task Distribution

The static algorithm has one serious shortcoming� It ignores the variations in the individual worker
e�ciency� Dynamic task distribution adapts to this kind of variation� We chose the method of
demand driven computation� also known as self�scheduling ��� 
�� Initially� the controller keeps a
set of tasks corresponding to small subimages� Workers then issue task�requests to the controller�
which� in turn� assigns tasks until the set is empty� The crux of this scheme is that a slow worker
sends fewer requests and receives less work than a fast worker�

��� Tasks vs� Sub�images

In order to achieve good performance� one may need to consider the subdivision of the image
into sub�images� A sub�image is a group of rendered pixels 
RGB��tuples� that a worker may
transfer to the controller using a single call to the available send�primitive� Note that sub�images
constitute the major part of the communication bandwidth in the algorithm� Therefore� it is useful
to contemplate di�erent ways of transfering this data from the workers to the controller� We want
to test whether many small messages scattered over time will yield a better performance than a
few large messages postponed to the end of the computation�

We have implemented two versions of the dynamic and the static algorithms� The two versions
di�er in that they either scatter or concentrate the transfer of sub�images from workers to the
controller� We denote them DS � SS � DC � and SC respectively 
DS meaning Dynamic�Scatter
and so on�� In DS and SC there is a one�to�one correspondence between tasks and sub�images�
Once a complete task is computed� the corresponding sub�image is sent to the controller� DC

works as DS except that in a worker� all the �nished sub�images are accumulated into one single
sub�image� which is transferred after all tasks have been computed� SS di�ers from SC in that a
worker transfers several sub�images to the controller during the computation of the task� Figure
� illustrates the four algorithms�

��� A Process Group Implementation

Our implementation uses the ISIS distributed toolkit v� ����	 as platform ���� This choice was
motivated mainly by the location transparent naming of process groups� the presence of a reliable
multicast primitive� and the ability to marshall messages in a convenient way�
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Figure �� The four load balancing algorithms �for simplicity� only one worker is shown��

Figures � and � show the pseudo code for the ISIS implementation of SC and DS � This
code uses the 
slightly renamed� ISIS�abstractions mcast� reply� and thread� The two �rst are
primitives for multicast�communication between a process and a process group� Threads play
an important part in the delivery of a multicast message� The ISIS runtime system delivers a
message to the application program by instanciating and executing a thread with the message as
parameter� Several threads may execute logically in parallel within one process� A thread executes
non�preemptively until the control is explicitely handed over to the ISIS runtime system� This
occurs� for instance� at the termination of the thread� or in a call to a communication procedure�

For simplicity� we have not included code for transmission of the grid object� We assume that
a current grid object is already allocated at each worker�

The two programs are both synchronous in the sense that every multicast waits for a reply�
The static algorithm has a trivial communication structure involving only a single multicast from
the controller to the workers� Note that the render�routine ensures that a given worker is assigned
pixels scattered all across the image� The dynamic algorithm is more complex� Essentially� an
initial multicast from the controller to the workers encloses a series of multicasts from the workers
to the controller� The multicasts 
actually unicasts� from the workers are a way of sending sub�
images to the controller and new tasks to the workers� Note how this resembles the technique of
piggybacking in network protocols�
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Controller�

IO � mcast�RO� W��

Worker i�

thread�RO�
f

reply�render�RO� i���
g

Operations and variables�

i � worker identi�er

RO � rendering	speci�cation object

IO � image object

W � group of workers

render�RO� i� � computes RGB�	tuples for pixels assigned
to worker i with respect to RO

mcast�m� g� � multicasts message m to process group g

reply�m� � replies message m to the process
issuing the multicast

Figure �� ISIS pseudo code for SC �static task distribution with concentrated sub�image transfer��

� Performance Measurements

A set of experiments enabled us to compare the performances of the two load balancing algorithms
and the two ways of transfering sub�images from the workers to the controller� We also measured
the time for transfering a new grid object to the workers�

��� Experimental Environment

The experiments were run on a cluster of HP�	�� workstations connected by a �� Mbps Ethernet�
Each workstation contains a �� MHz PA�RISC 	��� CPU� �� MB of RAM� and runs version ����
of HP�UX� The theoretical performance of such a workstation is �	 MIPS and �	 MFLOPS�

All experiments uses the same input� The grid object represents horizontal wind speed from
the LAM��S atmospheric model� The rendering�speci�cation object includes a bird�s�eye view
point where all rays hit the grid and no ray traveled through more than �
 grid cells� Moreover�
the light�source is turned o� and the data set is rendered with a sharp iso�contour at a wind speed
of �� m�s� There are ����� pixels in the image�

Task size is a critical factor in the performance of the dynamic algorithms� If load balancing was
the only consideration� then task size should be as small as possible� Unfortunately� the smaller
the task size� the more communication is required� We found ��� pixels to give a reasonable
tradeo� between load balancing and communication� This is also a satis�able size of a sub�image
in the version of the static algorithm that scatters the sub�images over time 
SS��

��� A Scenario Favoring the Dynamic Algorithm

It is worth pointing out that there is one particular scenario in which the dynamic algorithm always
outperforms the static one� This is when the speed of the individual workers di�ers substantially�
When another user decides to run a computing intensive process at one of the worker nodes� the
worker e�ciency decreases� Clearly� this decrease is undesirable� since the the overall response time

	



of the static algorithm depends on the slowest worker� When employing the dynamic algorithm
under similar conditions� the loaded worker would be assigned a smaller amount of work� the rest
of it being distributed fairly among the others�

��� Performance of Load Balancing

To evaluate the performance of the four versions of the load balancing algorithms� we measure
total response time of each of the algorithms 
a�� with a di�erent number of workers 
n�� In a
single experiment� each combination of 
a� n� is repeated �� times� The following loop�structure
is used�

for sample �� f�� �� � � � � ��g
for n �� f��� ��� ��g

for a �� fDS� DC � SC � SSg
� run algorithm a with n workers �

Experiments were conducted at di�erent hours� The results from one experiment during the
day and one during the night are summarized in �gures 	 and 
� These �gures plots the ���� �
con�dence intervals for the mean of the total response time�

From the measurements we make three major observations for our problem� First� the dy�
namic algorithms always perform better than the static ones� However� in certain situations� the
algorithms exhibits a similar performance� Second� the dynamic algorithms are signi�cantly more
stable� Third� there is no signi�cant di�erence between scattering and concentrating the transfer
of sub�images�

��� Expense of Grid Distribution

The experiments presented so far are concerned with the rendering of a single image� assuming
the grid object is always distributed to the workers before the computation begins� In certain
situations the user needs to load new grids relatively often� such as in the rendering of a time
series with a di�erent grid per image� It is therefore worthwhile to measure the grid distribution
time�

We measured this time in an experiment using the following loop structure�

for sample �� f�� �� � � � � ��g
� distribute the grid to �	 workers �

The results from the experiment is presented in Figure ��

� Discussion

We now use the experimental results as basis for discussing load balancing method� sub�image
transfer� and user pattern� Without extensive data collection it is impossible to give very con�
�dent statements about the load variation� We believe the experiments give reasonably repre�
sentative indications of the underlying behaviour of the algorithms when executed in the current
environment�

	�� Load Balancing Method

The experiments clearly demonstrates the superiority of dynamic load balancing for this particular
system and input� This result is primarily accounted for by the dynamic algorithm�s ability of
adapting to imbalance in both image complexity and worker e�ciency�






Note also that even when the static and dynamic performance approaches each other� the
dynamic algorithm is still better 
see Figure 
�� This suggests that the computation to commu�
nication ratio is su�ciently high for the extra synchronization overhead inherent in the dynamic
algorithm to be negligible� As noted before� the size of the computation fraction is a�ected by
viewpoint� mapping functions� grid size and scalar values� However� situations in which the com�
putation fraction is small also seem to yield less interesting images� The interesting images seem
to include a combination of large semi�transparent regions 
meaning less performance gain from
early ray�termination� and sharp iso�contours 
meaning more iterations in the numeric integration
due to a more complex integrand��

From Figure 	 we make an important observation� Note how the response times of the two
static algorithms make a jump upwards when the number of workers is increased from �� to ���
This demonstrates how sensitive the static algorithms are to the inclusion of ine�cient workers�

	�� Method of Transfering Sub�images

The experiments reveals no di�erence between scattering and concentrating transfer of sub�images�
This result is not surprising when comparing the order of magnitude of the total response time
of the computation and the network bandwidth respectively� The network bandwidth is around
� MB per second� Suppose that the computation of a ����� pixel image is parallelized over ��
workers which �nishes computation simultaneously� The worst possible scenario with respect to
bandwidth exploitation arises when the transfer of sub�images is concentrated at the end� One
RGB��tuple is represented by � bytes� so this takes 
� � ���������� � ��� seconds to transfer�
Table � 
on page �� shows that the computation itself requires around 
���� � ��������� � ���
seconds� The transfer time is clearly negligible�

	�� User Pattern

During a session� a user of StormView is repeatedly faced with two main choices� loading a new
grid or rendering the current one� At one extreme� a single grid is loaded� followed by a sequence of
renderings� This situation arises� for example� when the user wants to render a grid from di�erent
viewpoints and with di�erent color� and transparency mappings� At the other extreme� a new
grid is loaded before each rendering� This would be the case when rendering a time series�

The two extremes may be represented algorithmically as follows�

User pattern �� User pattern ��

load grid loop

loop load grid

render grid render grid

end loop end loop

In the second user pattern� full replication of the grid object may have a bigger in�uence on the
performance� As Figure � shows� the grid transfer time is not ignorable compared to the rendering
time� To see how this situation might be improved� keep in mind that the current communication
protocol 
ISIS v� ����	� implements multicast by invoking a send operation to each individual
process in the destination group� Consequently� we could choose either or both of the following
strategies�

� reduce the amount of data transferred in send operations to individual processes by aban�
doning full replication�

� reduce the number of send operations to individual processes by using a communication
protocol that allows hardware multicast�

The �rst strategy might imply a reduced performance during the rendering phase� One possi�
bility is to partition the grid into regions of responsibility and assign one region to each worker ����
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Another is caching ���� These methods lead to extra communication and� possibly� unnecessary
computation 
for instance� it might be di�cult to cut o� rays early�� On the second hand� our
load balancing experiments shows that the computation fraction may still be high enough for these
e�ects to be negligible�

� Conclusion and Future Work

In a workstation environment� dynamic load balancing is the superior choice for ray casting volume
rendering algorithms in which complete rays may be computed without the need for synchroniza�
tion� This has two reasons� First� dynamic load balancing adapts better to the kind of worker
e�ciency imbalance often occuring in such an environment� Second� ray casting volume rendering
is parallelizable at a su�ciently coarse grained level for the extra communication present in the
dynamic algorithm to be negligible�

The possible gain of scattering the transfer sub�images over time is negligible� This is also due
to the high computation to communication ratio�

If the user pattern implies loading a new grid per every image to be rendered� it would be
desirable to employ hardware multicast and also avoiding full replication of the grid�

Future work includes investigating how a faster network technology such as ATM 
Asyn�
chronous Transfer Mode� might in�uence the relative di�erence in performance between dynamic
and static load balancing� Furthermore� it would be interesting to identify what issues of fault
tolerance might be relevant for this type of application� and what performance tradeo�s will occur
in a fault tolerant version�
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Operations and variables�

i � worker identi�er

RO � rendering	speci�cation object

IO � image object

W � group of workers

C � group of controller �a single	member group�

q � the number of tasks

Tj � task j

render�RO� Tj� � computes RGB�	tuples for pixels de�ned
by task Tj with respect to rendering	speci�cation object RO

mcast�m� g� � multicasts message m to process group g

reply�m� � replies message m to the process
issuing the multicast

k � task identi�er

h � subimage identi�er

j � task and subimage identi�er

r � the number of stop	signals sent

Figure 	� ISIS pseudo code for DS �dynamic task distribution with scattered sub�image transfer��
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