

The xTrans Transaction Model
and FlexCP Commit Protocol

Anna‐Brith Arntsen
annab@cs.uit.no

Computer Science Department, University of Tromsoe, Norway

Abstract

Traditionally, transactions are flat and atomic possessing the ACID properties. The
traditional ACID transaction model has clear limitations in new application domains

where transactions often are long-running and require properties that go beyond ACID.
Structuring a long-running transaction as an ACID transaction will impede both

performance and concurrency. To meet extended and varying transactional requirements,
we have described a flexible transaction model, the xTrans model, providing support for

both ACID and non-ACID properties.

Further, current transaction processing systems in distributed environments are inflexible
with respect to supporting extended transactions. Thus, to assist in the execution of,
among others, xTrans transactions, we have designed a flexible commit protocol:

FlexCP. This report presents the xTrans transaction model and the FlexCP commit
protocol.

1. Introduction

Traditionally, applications where build on the classical, flat model of a database
transaction where a transaction is modeled as an atomic and isolated unit of work. Such
transactions follow the traditional ACID (atomicity, consistency, isolation and durability)
properties. While this flat transaction model was successful for small transactions
performing simple operations, it is not appropriate for new, complex transactions found
within new application domains like for instance real-time systems, mobile computing
environments, electronic commerce, CAD, collaborative work, workflow management,
and manufacturing control. Such transactions often need to access many data items and
are often long-running [17]. A well-known example of a long-running transaction can be

 2

found within travel arrangement scenarios. Such a long-running transaction may consist
of sub-transactions like booking a hotel room (T1), a flight (T2), a car (T3), a restaurant
table (T4), and a theatre ticket (T5). The sub-transactions, T1-T5, might as well have
adjacent contingent transactions or some of them may be defines as not important for the
commit of the overall transactions. Assuring ACID for long-running transactions will
impede both performance and concurrency, and one would exclude all access to the data
for hours.

The inflexibility of the flat transaction model has been addressed for decades, resulting in
a number of theoretically described extended transaction models [18]. They address
specific transactional requirements, such as relaxed atomicity and isolation, and offer
some flexibility. However, these models where described with specific applications in
mind, with fixed semantics and correctness criteria. Consequently, they are inflexible
with respect to supporting wide areas of applications.

We have described an extended and flexible transaction model, xTrans, trying to
overcome some of the inflexibility of the previous models. The xTrans transaction model
described in this report is presented using ACTA [9, 18]. The xTrans transaction structure
includes the ability to specify subtransactions as contingent, vital versus non-vital,
reactivatable versus not-reactivatable and substitutable versus non-substitutable. xTrans
introduces user-initiated flexibility to gain its desired level of flexibility, which denotes
that the role of the individual sub-transaction can change (i.e. from vital to non-vital).

Generally, ACID are the requirements of distributed transactions and to assure ACID of
such transactions, a two-phase commit protocol (2PC) or one of its variants (presumed
commit or presumed abort) controls the execution. 2PC is implemented within existing
middleware infrastructures like Microsoft Transaction Server (MTS), Sun’s Java
Transaction Server (JTS), and OMG’s Object Transaction Service (OTS). implement
2PC according to the X/Open Distributed Transaction Processing (DTP) standard, where
interactions with the underlying databases correspond to the X/Open XA-interface
specification. Thus, existing transactional middleware platforms support the traditional
flat transaction model with ACID guarantees, but with limited flexibility.

We believe that transactional middleware systems must be flexible in order to adapt to
extended transactions. To support the execution of xTrans transactions and other
extended transactions, flexibility is needed. Thus, we have designed a flexible commit
protocol, FlexCP, committing transactions either one-phase or two-phase.

In the remainder of this report we first, in section 2, give necessary background
information on extended transaction models, the ACTA language and distributed
transaction processing. Then, the xTrans transaction model is presented in section 3.
Section 4 presents prerequisites to the different parties in a distributed environment.
Section 5 follows with a presentation of the FlexCP commit and its associated
termination and recovery protocols. Finally, section 6 draws concluding remarks.

 3

2. Background

In this section, we will first look at some extended transaction models and ACTA. Next,
we introduce distributed transaction processing based on the X/Open DTP standard and
the two-phase commit protocol.

2.1 Extended transaction models

ACTA, a language for specifying transactions
ACTA [9,18] is a framework developed for characterizing the whole spectrum of
interactions found in new and extended applications. ACTA allow specification of
transactions effects on other transactions and transactions effects on objects. This is done
by providing a formalized facility to specify (1) the effects of transactions on other
transactions, and (2) the effects of transactions on objects.

(1) Dependencies provide a convenient way of specifying and reasoning about the
behavior of concurrent transactions. There are two possible dependencies that a
transaction may develop on any other transaction: commit-dependency and abort-
dependency. These dependencies, also called completion dependencies impose a
commit order, which prevents transactions form prematurely committing and
thereby preventing object inconsistencies.

Dependency set, denoted DepSet, is a set of inter-transaction dependencies
developed during the concurrent execution of a set of transactions T.

Different types of dependencies:
- Commit Dependency (Tj CD Ti): if both transactions Ti and Tj commit then the
commitment of Ti precedes the commitment of Tj.
- Strong-Commit Dependency (Tj SCD Ti): if transaction Ti commits then Tj
commits.
- Abort Dependency (Tj AD Ti): if Ti aborts then Tj aborts.
- Weak-Abort Dependency (Tj WD Ti): if Ti aborts and Tj has not yet committed,
then Tj aborts.
- Termination Dependency (Tj TD Ti): Tj cannot commit or abort until Ti either
commits or aborts.
- Exclusion Dependency (Tj ED Ti): if Ti commits and Tj has begun execution,
then tj aborts (both Ti and tj cannot commit)
- Force-Commit-on-Abort Dependency (Tj CMD Ti): if Ti aborts, Tj commits.
- Begin Dependency (Tj BD Ti): transaction Tj cannot begin execution until
transaction Ti has begun.

 4

- Serial Dependency (Tj SD Ti): transaction Tj cannot begin executing until Ti
either commits or aborts.
- Begin-on-Commit Dependency (Tj BCD Ti): transaction Tj cannot begin
executing until Ti commits.
- Begin-on-Abort Dependency (Tj BAD Ti): transaction tj cannot begin executing
until Ti aborts.
- Weak-begin-on-Commit Dependency (Tj WCD Ti): if Ti commits, Tj can begin
executing after Ti commits.

Weak-abort dependency is useful, for example, in specifying and reasoning about
the properties of nested transactions. Begin-on-commit, begin-on-abort and force-
commit-on-abort dependencies are useful for compensating and contingent
transactions.

The list of dependencies is not exhaustive. Other dependencies that involve
significant events besides the Begin, Commit and Abort event, can be defined.
When new significant events are associated with extended transactions, new
dependencies may be specified in a similar manner. ACTA is, in this sense, an
open-ended framework.

(2) Transactions effects on objects are captured by the introduction of two sets, the

View Set and the Access Set, and by the concept of delegation. The View Set
contains all the objects potentially accessible to the transaction. Objects already
accessed by the transaction are contained in another set, the Access Set. When an
object in the View Set of a transaction is accessed by the transaction, the object
becomes a member of the transaction’s Access Set.

A transaction may delegate the responsibility for finalizing its effects on some of
the objects in its Access Set to another transaction. This is achieved by removing
the delegated objects from the Access Set of the first transaction, and adding them
to the Access Set of the second transaction.

Nested transactions and Sagas
Nested Transactions [21] and Sagas [17, 18] are the earliest nontraditional transaction
models. In the taxonomy of nested transactions, we differentiate between closed and open
nested transactions because of their termination characteristics. As opposed to closed
nesting, open nesting allows partial results of the transaction to be observed by other
transactions.
In the Nested Transaction model, a transaction is composed of an arbitrary number of
subtransactions that may be executed concurrently. Top-level transactions have all the
ACID properties of traditional transactions. Subtransactions are atomic but share data
with their parents and are by so means not fully isolated. Subtransactions are not durable,
as an abort of their parent will cause their own abort. Top-level transactions, however, are
not required to abort if a subtransaction fail, but can perform its own recovery. Even so,

 5

the nested transaction as a whole remains globally isolated and atomic. Since the nested
transactions form hierarchical structures, they reflect modular programming where a
subtransaction corresponds to a nested procedure call.

The concept of Sagas is based on compensating transactions and open nesting. A Saga is
a long-lived transaction, LLT, which can be broken into a set of relatively independent
subtransactions able to interleave with each other. Associated with subtransactions are
compensating transactions, which semantically undoes the effects of a transaction after it
has committed. To execute a Saga, the system must guarantee that either all of the
subtransactions in a Saga are complete, or any partial execution is undone with
compensating transactions. By the notion of open nesting, Sagas relaxes the property of
isolation by revealing its partial results to other transactions before it completes.
Interleaving of subtransactions in any order may compromise consistency. However, a
Saga still requires that all or none of its subtransactions complete. Saga preserves the
atomicity and durability properties of traditional transactions.

DOM Transactions
The DOM Transaction Model [18] was developed for the DOM (Distributed Object
Management) project to support application development in a distributed object-oriented
environment that integrates various component systems. The systems being integrated
may be autonomous and heterogeneous and non-database systems (such as file systems)
as well as database systems.
DOM Transaction Model allows closed nested and open nested transactions and
combinations of the two. Open nested transactions do not provide the top-level atomicity
of closed nested transactions, so the partial results of the transaction may be viewed by
other transactions. Compensating transactions can be specified to undo the effects of
committed transactions, and contingency transactions can be specified that are executed
if a given transactions fails. Subtransactions can be specified as vital or non-vital. If a
vital subtransactions aborts, its parent transactions must abort. However, if a non-vital
subtransaction aborts, the parent may continue. Subtransactions may be executed
concurrently and dependencies may be specified, causing the subtransactions to be
executed (committed) in a specific order.
The correctness theory for the DOM model has not yet been developed. Generally it is
not possible to support the ACID properties for the global transactions since the
component system that are integrated may be non-database systems with or without
support for the ACID properties and the autonomy of the component system is preserved.
The DOM transaction model is described formally in [18], whereas protocols that cover
the model are not found.

ConTracts
The ConTract model [18] was proposed for defining and controlling long-lived, complex
computations in non-standard applications like office automation, CAD and
manufacturing control. A ConTract defines a set of predefined actions with an explicit
specification of control flow among them. The execution of a ConTract must be forward-

 6

recoverable; it must be re-instantiated and continued from where it was interrupted. A
ConTract is allowed to externalize its partial results before the whole ConTract is
complete, and compensating transactions are used to obliterate the results of committed
steps that are not needed. In addition, ConTract allows one to resolve conflicts in a more
flexible way by specifying what to do when conflicts occur.

Split‐Transactions
Split-transactions [18] were proposed for supporting open-ended applications; for
example CAD/CAM projects, VLSI design and software development. Open-ended
applications are characterized by uncertain duration, uncertain development and
interaction with other concurrent activities. The principle of split-transactions is to split
an ongoing transaction into two serializable transactions and divide its resources among
the resulting transactions. When splitting a transaction T into two transactions A and B
such that A is serialized before B, a set of properties must hold. The properties concern
about in what order writes and reads to the same object must be done. The main purpose
of split-transactions is to commit one of the split transactions (A in the above case) and
release useful results from the original transaction. The other split transaction (B in the
above case) continues.

Flex Transactions
The Flex Transaction Model [18] was designed to allow more flexibility. Consider a
transaction composed of a set of subtransactions. For each subtransaction, the user may
specify a set of functionally equivalent subtransactions, each of which when completed
will accomplish the subtransaction. A Flex Transaction may proceed and commit even if
some of its subtransactions fail as long as there is a functionally equivalent subtransaction
able to commit. The Flex Transaction Model also allows the specification of
dependencies between subtransactions: failure-dependencies, success-dependencies and
external-dependencies. The user is allowed to control the isolation granularity of a
transaction with compensating subtransactions.
The Flex Transaction model has been implemented in the Vienna Parallel Logic (VPL)
language [22]

Cooperative Transactions
Cooperative transactions [18] need not be serializable; instead, the parent of the
cooperative transaction defines a set of rules that regulate the way the cooperative
transactions should interact with each other. With cooperative transactions, there is a
notion of user-defined correctness criteria that allows different parts of a shared task to
use different correctness criteria suitable for their own purposes. Because isolation is not
required, the cooperative transaction hierarchies allow close cooperation between
transactions and also help to alleviate the problems caused by LLT’s.

 7

2.2 Distributed Transaction Processing

The X/Open Distributed Transaction Processing (DTP) reference model [12], figure 1, is
a standard for distributed transaction processing defined by the Open Group consortium.
The X/Open architecture allows multiple application programs to share resources
provided by multiple resource managers, and allows their work to be coordinated into
global transactions. Applications (AP) define transaction boundaries through what is
called the TX interface, and the transaction manager (TM) and resource managers (RMs)
interact through the XA interface. The TM controls the execution of a two-phase commit
protocol with presumed rollback to assure global atomicity. RMs communicate in the
two-phase commit procedure and responds to services requested by the TM. A
communication resource manager (CRM) control communication between distributed
applications within or across TM domains. The XA+ interface supports global transaction
information flow across TM domains.

Figure 1. X/Open Distributed TP reference model

Local transaction control (logging and concurrency) is performed by the RMs where the
actual operations are executed. A TM must deal with both normal processing and various
failure scenarios. Thus, a TM incorporates protocols for termination and recovery. In case
of a failure, the TM must coordinate recovery activities of the resource managers. A RM
manages persistent and stable data storage system of a single node, participates in commit
protocols, and executes rollback on request. With the help from the RMs, the TM
preserves the properties of the transaction.

XOPEN/DTP Transaction Model
X/Open DTP model support flat transactions and do not include subtransactions nor
nested transactions.

XID, the Transaction Identifier
When a transaction begins, the TM allocates it a unique transaction identifier, tid. The tid
identifies a data structure, XID. The XID is a public structure used to identify a

Resource manager (RM)

e.g.
TxRPC
XATMI
CPI-C

XA+

XA

TX

Application
program

Transaction manager

Resource manager (RM)

Communications
Resource manager (CRM)

e.g SQL

Resource manager (RM)
Resource manager (RM)

 8

transaction branch and records among other things the processes or participants who take
part in the transaction. A global transaction has one or more transaction branches. A
branch is a part of the work of a global transaction. Both RMs and TMs use the XID
structure, which lets the RM work with several TMs without recompilation.

TX and XA interface
These interfaces are supported by almost every vendor developing products related to
transaction processing, relational databases and message queuing. For instance Oracle,
Sybase, Informix, and IBM’s MQSeries [24]. Many ODBMS vendors like Versant and
Object Design have announced X/Open DTP support for coming releases, or have
already delivered first releases. The same applies for database access tool vendors like
RogueWave (DBTools.h++) and Persistence Software.

X/Open compliant resource managers provide a XA RM Client Library that incorporates
a XA switch [24]. The XA switch is an object provided by the RM implementing the XA
interface. TM interacts with the database client library using the XA switch, and passes
the ID of the transaction.

TX Interface
This interface defines the interaction between the AP and the TM modules [12,3]. The
interface APIs are prefixed with tx_, which specify the transaction bracketing, transaction
status and transaction control operations.

Some commonly used tx_calls
Calls Purpose
tx_begin Starts a transaction
tx_commit Commits a transaction
tx_rollback Aborts a transaction
tx_info Gets the status of the transaction

Table 1. TX_calls

XA Interface
The XA interface defines the interaction between the TM and the RM modules [12,3].
The interface API’s are prefixed with xa_ or ax_. The transaction manager issues xa_
calls to interface with the resource manager, and the resource manager issues ax_ calls to
interface with the transaction manager. Both the transaction manager and the resource
manager modules have to implement this bi-directional interface, which allows a
transaction manager to interact with any resource manger (that is X/Open compliant).
A TM must call the xa_routines in a particular sequence. When the TM invokes more
than one RM with the same xa_routine, it can do so in an arbitrary sequence.

Services in the XA Interface
Name Description
ax_reg
ax_unreg

Register an RM with a TM
Unregister an RM with the TM

 9

xa_close
xa_commit
xa_complete
xa_end
xa_forget

xa_open
xa_prepare
xa_recover
xa_rollback
xa_start

Terminate the AP’s use of an RM
Tell the RM to commit a transaction branch
Test an asynchronous xa_ operation for completion
Dissociate the thread from a transaction branch
Permit the RM to discard its knowledge of a heuristically-
completed transaction branch
Initialize an RM for use by an AP
Ask the RM to prepare to commit a transaction branch
Get a list of XID’s the RM has prepared or heuristically completed
Tell the RM to roll back a transaction branch
Start or resume a transaction branch – associate an XID with future
work the thread requests of the RM

Table 2. XA_Interface

xa_open - open a resource manager
A transaction manager calls xa_open() to initialize a resource manager. Return values
indicate whether the call was successful or not. The transaction manager assigns an
integer argument, Resource Manager identifier, rmid, that uniquely identifies the called
resource manager instance within the thread of control. The rmid is passed on subsequent
calls to XA routines to identify the resource manager. This identifier remains constant
until the transaction manager in this thread closes the resource manager. If the resource
manager supports multiple instances, the TM can call xa_open() more than once for the
same resource manager. The TM then generates a new rmid for each call.

xa_start – start work on behalf of a transaction branch
A transaction manager call xa_start() to inform a resource manager that an application
may do work on behalf of a transaction branch. Among the parameters send with xa_start
are the XID and rmid. Since many threads can participate in a branch and each one may
be invoked more than once, xa_start() must recognize whether or not the XID exists. If
another thread is accessing the calling thread’s RM for the same branch, xa_start() may
block and wait for the active thread to release control of the branch (via xa_end()). RM
responds according to the result of the call.

xa_end – end work performed on behalf of a transaction branch
TM calls xa_end() when a thread of control finishes, or needs to suspend work, on a
transaction branch. This call must be issued within the same thread that accesses the RM.
xa_end() return OK when the execution has a normal outcome, otherwise not OK (with
indications on what went wrong).

xa_prepare – prepare to commit work done on behalf of a transaction branch
A TM calls xa_prepare() to request a RM to prepare for commitment any work performed
on behalf of XID. The RM reports XA_OK if the execution was normal. If the
transaction was read-only and has been committed, RM returns XA_RDONLY. And, at
last, if the RM is not able to prepare to commit the work done on behalf of the transaction
branch, it returns an XA_RB. XA_RB are returned with values indicating whether the

 10

reason for rolling back was unspecified, due to communication failure, caused by a
deadlock, integrity violation, protocol error, timeout or other.

xa_commit – commit work done on behalf of a transaction branch
A TM may call this function from any thread of control. All associations for the
transaction must have been ended using xa_end(). xa_commit() returns “OK” if the
execution was normal, “Retry” if RM is not able to commit the transaction branch at this
time and “RB” if the RM has rolled back the transaction branch’s work and has released
all held resources. If the RM already completed the work heuristically, this function
reports how the RM completed (committed, rolled back or mixed).

xa_recover – obtain a list of prepared transaction branches from a resource manager
Prepared transactions are currently either in a prepared or heuristically completed state.
RM returns, if OK, an array of XID’s of these transactions and the total number of
XIDS’s, otherwise an error message.

xa_rollback – roll back work done on behalf of a transaction branch
RM rolls back the branch by releasing all resources held restore modified resources and
notify all associated threads of control of the branch’s failure. If RM already completed
the work heuristically, this function merely reports how the RM completed the
transaction branch. Return value reflects the result of the call.

xa_close – close a resource manager
A TM must call this function from the same thread of control that accesses the resource
manager. Once closed, the RM cannot participate in global transactions on behalf of the
calling thread until it is re-opened. The return values indicate whether the call was
successful or not. Trying to close an already closed resource manager has no effect, and
the return value will indicate that the request was performed successfully. An error is
returned if the TM calls xa_close within a transaction branch, i.e. the TM must call
xa_end before xa_close.

Commit protocol
When the client requests that the transaction is committed, the TM begins the two-phase
commit protocol [5]. Figure 2 illustrates that there can be more than one resource
manager participating in the transaction. Each and one of them are involved in the two-
phase commit protocol.

 11

Figure 2: Two-phase commit in X/Open DTP model

TM issues a command to RM, and RM responds back to TM whether the call has been
successful or not. Figure 3 illustrates a general interaction between a TM and a RM [12]:

Figure 3. Interaction between a transaction manager and resource manager using XA

Resource manager (RM)

Acknowledge Commit
or abort Response

Prepare to
commit

Application
program

Transaction manager

Resource manager (RM)

Commit

Resource manager (RM)

xa_rollback/xa_commit

Vote to commit/rollback

xa_prepare

xa_start

Committed/rolled back

Calls to RM API to query/update
RM within the transaction

Transaction
Manager

Resource
Manager

xa_open

xa_close

xa_end

 12

3. xTrans Transaction Model

New application domains require support for long-running beyond ACID transactions.
Thus, we present a flexible transaction model, xTrans, providing support for both ACID
and non-ACID transactional requirements. In this section, we first characterize xTrans
transactions. Then, we present the variety of the transactional properties lying in the
model before formalizing the model using the ACTA language. Finally, we discuss the
models potential flexibility.

3.1 Characterization of the xTrans Model

The structure of an xTrans transaction
Generally, an xTrans transaction is a partial ordering of operations demarcated by begin-
transaction and end-transaction. Splitting into subtransactions can be performed
recursively, and will for instance, after two times, result in a transaction family tree with
three levels with a top-level transaction T and a number of subtransactions (see figure 4).
A node with descendants is a parent and the descendants its children. A top-level
transaction does not have parents and leaf nodes do not have descendants. All database
access operations are performed at the leaf nodes.

 T1 T2

 T11 T12 T21 T22

Figure 4. A transaction family tree

The subtransactions (components) of the transaction in figure 8: T, T1, T11, T12, T2,
T21,T22,….,Tn are primary transactions.

Each primary transaction Ti (0 ≤ i <n) can have a set of associated contingent
transactions, ConTi. Contingent transactions are secondary transactions providing
alternatives to the primary transaction. A contingent transaction is executed if the primary

T

 13

transaction fails. Component transactions with adjacent contingent transactions are
substitutable; otherwise, non-substitutable.

Each component transaction Ti (0 ≤ i <n) (primary or a contingent transaction), that can
be compensated for have an associated compensating transaction, CTi. A compensating
transaction is a secondary transaction and is executed if the top-level transaction aborts.
A compensating transaction CTi undoes, from a semantic point of view, any effects of Ti.
Both primary and contingent transactions may have an associated compensating
transaction, but a top-level transaction does not. A component transaction with an
associated compensating transaction is compensatable - otherwise non-compensatable.

A primary or a secondary transaction with the option to be reactivated in case of failure
during trials, are reactivatable, otherwise non-reactivatable.

Primary and contingent transactions may be vital or non-vital. Compensating transactions
are always vital. A vital subtransaction is one that is of severe importance to the top-level
transaction. The top-level transaction can commit only if all of its vital subtransactions
has committed or reached the commit point. Moreover, if a vital subtransaction aborts,
the top-level transaction must abort. On the other hand, a top-level transaction can
commit independent of its non-vital subtransactions.

Compensatable component transactions do not have to wait for the top-level transaction
to commit, but can commit independently, release locks and reveal their results to other
transactions. However, non-compensatable component transactions must wait. If a top-
level transaction aborts, compensation must be performed for each committed
subtransaction. Generally, a parent transaction cannot commit until all of its children
have completed (committed or aborted).

A summary of characteristics of xTrans transactions:

o Open nested transactions, Compensatable component transactions are allowed to
commit when they are finished and before top-level transaction commits.
xTrans also support closed nested transactions, if there are no compensatable
subtransactions, and a combination of open and closed nesting.

o Contingency transactions: Contingency transactions are alternative transactions
that can execute if the original one fails to commit.

o Compensating transaction, which is a natural consistency of executing open,
nested transactions.

o Vital vs. non-vital transactions,
o Reactivation,
o Contingent vs. not-contingent
o Compensatable vs. not-compensatable.

To exemplify, consider a travel arrangement scenario with long-running non-ACID
transactions. A user requests a hotel room (T1), a flight (T2), a car (T3), a restaurant table
(T4), and a theater ticket (T5). He may also want to specify alternative hotels and

 14

restaurants. Not all reservations are equally important, and a restaurant table may for
instance be omitted from the transaction. This transaction must be structured as a beyond-
ACID transaction where intermediate results of individual tasks (subtransactions T1-T5)
can be committed and revealed when finished. Commit of partial results requires
compensating transactions to be specified and executed in case of rollback.

3.2 xTrans Transaction Properties

The atomicity and the durability properties of an xTrans transaction depend on which
subtransactions constitute the transaction. The isolation and the consistency properties of
the transaction depend on the concurrency control scheme used by the local (or global)
transaction services. We will look closer at the atomicity and the durability properties of
xTrans transaction model.

Atomicity
Three different compositions of a xTrans transaction have impact on the atomicity
property:

1) The transaction consists of only vital and non-compensatable subtransactions.
Sutransactions cannot commit until the top-level transaction commits, and
every subtransaction must have voted to commit before the top-level
transaction can commit. In this situation, full atomicity is achieved, and a top-
level transaction is an all-or-nothing operation.

2) The transaction consists of only vital subtransactions where some might also
be compensatable. The compensatable ones can commit before the top-level
transactions decides to commit or abort. If the top-level transaction decides to
abort, compensating activities takes place for the committed subtransactions.
The result is semantic atomicity.

3) The transaction consists of one or more non-vital subtransaction. Top-level
transaction can decide to commit even though one of the non-vital
subtransactions has aborted. The top-level transaction is not an all-or-nothing
operation, rather an all-something-or-noting operation. In this situation, we do
not achieve atomicity.

We want 2) semantic atomicity to be assured. Consequently, we define that semantic
atomicity is achieved by top-level transaction as long as all vital subtransactions commits.
We do not care about the non-vital subtransactions. Even though not all non-vital
subtransactions commits, the user get all of the transaction that is important to him.
Atomicity is still preserved at subtransaction level. This is the local database system’s
responsibility.

Durability
Durability must be preserved for top-level transactions so that it cannot be rolled back.
When a client is informed about the results of a transaction, he takes actions based on the
results, and do not want them to be ‘taken back’. On the other hand, durability is not

 15

preserved for subtransactions. Subtransaction can commit, which indirectly means
updating the database and reveal their results to other transactions. If then, the top-level
transaction aborts, the committed subtransactions must be undone/ compensated for. This
way, we violate durability at the subtransaction level. Durability is violated for
compensatable primary and contingent transactions and preserved for compensating
transactions.

Durability preservation at top-level transactions is a requirement. As long as we do not
allow rollback of committed top-level transactions, the transaction model fulfills that
constraint.

3.3 Formalization of XTrans Model

The xTrans transaction model consists of open, nested transactions with compensation. A
transaction is decomposed to any level of nesting, which gives us a top-level transaction
and a set of subtransactions (component transactions). These transactions are called
primary transactions. Secondary transactions, compensating and contingent transactions,
can be associated with the component transactions. Compensating transactions can also
have associated contingent transactions.
Transactions can have several roles; they can be vital/non-vital, reactivatable/not-
reactivatable, compensatable/not-compensatable, and substitutable/not-substitutable.

There are a lot of interactions in xTrans model, and we will capture them using
dependency specifications as in ACTA [9,18]. There are interactions between the primary
transactions, and there are interactions between the primary and the secondary
transactions. ACTA is developed for characterizing the whole spectrum of interactions.
In ACTA the semantics of interactions are expressed in terms of (1): transactions’ effects
on the commit and abort of other transactions and (2): the transactions effects on objects.
In the following we will describe the dependencies between the subtransactions and the
top-level transaction, and between the primary and the secondary transactions. We will
not describe the effects of transactions on objects. This is because the effects of the
transactions on objects deals with concurrency control, an issue not touched in this thesis.

A transaction structure, which conforms to our transaction model, consists of four types
of transactions:

Primary transactions:
o Top-level or parent transaction
o Subtransactions

Secondary transactions:
o Contingent transactions
o Compensating transactions

 16

Subtransactions, compensating transactions and contingent transactions are atomic
transactions. Atomic transactions execute concurrently without any interference as
though they executed in some serial order, and either all or none of the transaction’s
operations are performed. Top-level transaction maintains semantic atomicity as
mentioned in 4.3.

Each type of atomic transaction is associated with the significant events: Begin, Commit,
Abort. Begin is the initiation event for atomic transactions. Commit and Abort are the
termination events associated with atomic transactions. These significant events are the
primitives of our transaction manager. The specific primitives and their semantics depend
on the specifics of our transaction model. For instance, Commit implies that the
transaction is terminating successfully and that all of its effects on the objects should be
made permanent in the database. Whereas the Commit of a subtransaction in a closed,
nested transaction implies that all of its effects on the objects should be made persistent
and visible with respect to its parent and sibling subtransactions.

XTrans transactions can have different roles. They can be vital, non-vital, reactivatable,
not-reactivatable, compensatable, not-compensatable, substitutable and not-substitutable.
These roles are specified as parameters when formalizing the XTrans model.

We summarize the different transactions, their roles (parameters) and their associated
transactions in a table:
 Parameters Associate Trans.
Type Classify vital or

┐vital
reactive or
┐reactive

Subst or
┐subst 4)

comp or
┐comp

Cont 1) comp 2)

Subtrans Primary Yes 3) Yes Yes comp Yes Yes
Subtrans Primary Yes Yes Yes ┐comp Yes No
Comp 2) Secondary Vital Yes ┐subst ┐comp No No
Cont 1) Secondary Yes Yes ┐subst comp No Yes
Cont Secondary Yes Yes ┐subst ┐comp No No
1) Cont = Contingent transaction and 2) Comp = Compensating transaction.
3) Yes = A transaction can be described with both the parameter and the inverse of the parameter, but not both of them
at the same time.
4) Subst = A substitutable transaction

Table 3. Types of transactions with parameters.

From this table we can read that a non-compensatable primary transaction has no
compensating transaction associated with it. Primary transactions can be vital or non-vital
independent on whether it is compensatable or not. A compensating transaction is always
vital, and we don’t allow it to have contingent transactions associated with it. There
exists, in addition, no compensating transaction to the compensating transaction. A
contingent transaction has almost the same options as a primary transaction except that it
has no contingent transaction associated with it.

When specifying the dependencies we use:

o P to denote a parent or top-level transaction

 17

Primary transaction

o Ti (p1, p2, p3,p4) denotes child transaction number i with its parameters:

 Secondary transactions

o CTi(p1, p2, p3, p4) denotes compensating transaction number i with its
parameters and

o ConTi(p1, p2, p3, p4) contingent transaction number i.

Transaction’s roles are described using parameters:

Parameter 1, p1: vital versus ┐vital (non-vital)
Parameter 2, p2: to be reactivatable/┐reactivatable
Parameter 3, p3: substitutable/┐substitutalbe
Parameter 4, p4: compensatable/┐compensatable

The following are the dependencies used to capture interactions in XTrans model:
Partial ordering of primary transactions

o To establish a partial ordering of subtransactions, a Begin-On-Commit
dependency can be established between those that are dependent on each other.
For instance, when booking a vacation, we will not let the transaction continue if
it is not possible to get a flight reservation. Then, for instance, booking a hotel
room, transaction Ti, is begin-on-commit dependent on a transaction Tj: flight
reservation. Flight reservation precedes hotel reservation. Booking a hotel room is
also begin-on-commit dependent on Tj’s contingent transactions if they are to be
executed.
(Ti(p1,p2,p3,p4) BCD Tj(p1,p2,p3,p4)) Transction Ti cannot begin execution until Tj
commits. If transaction Tj has associated contingent transactions, which needs to
be executed because Tj aborts, Ti is also begin-on-commit dependent on the
contingent transaction ConTk that has taken Tj’s place:
(Ti(p1,p2,p3,p4)BCD ConTk(p1,p2,p3,p4))

Parent and Children

o (P CD Ti(p1,p2,p3,p4)). Parent is Commit Dependent on all its children regardless of
their parameters. If both transactions commits, then the commitment of T
precedes the commitment of P in the history. This does not force P to commit if T
commits, which means that subtransactions can commit independently. Nor does
it force subtransactions to commit. P can decide to commit as long as all its
subtransactions has terminated (committed or aborted).

Compensating transactions

o (CTi(p1,p2,p3,p4) BCD Ti(p1,p2,p3,comp)) & (CTi(p1,p2,p3,p4) BAD P). Compensating
transaction is Begin-on-Commit dependent on the transaction to which it is
associated. I.e. compensating transaction for Ti cannot begin executing until Ti

 18

commits. Compensating transaction is at the same time Begin-in-Abort dependent
on its parent. This means that CT cannot start until the parent has aborted.

o (CTi CMD P). Compensating transaction is Force-Commit-on-Abort Dependent

on parent transaction. If the parent aborts, the compensating transaction commits.
This is only for those subtransactions that have committed.

Contingent transactions

o (ConTi(p1,p2,subst, p4) BAD Ti(p1,p2,subst, p4)). Contingent transaction is Begin-on-
Abort dependent on the transaction it is associated with. The dependency says that
the contingent transaction ConTi cannot begin executing until transaction Ti
aborts.

o (ConTi(p1,p2, ┐subst, p4) BAD ConTi-i(p1,p2, ┐subst, p4)). Contingent transaction (i)
is Begin-on-Abort dependent on the previous executed contingent transactions (i-
1), if there is any previously executed contingent transaction.

Compensatable subtransactions

o (Ti(p1,comp,p3) WD P). The compensatable subtransaction is Weak-Abort
dependent on the parent transaction. The dependency guarantees the abortion of
an uncommitted child if its parents abort. But it does not prevent the child from
committing and making its effects on objects visible to others.

Non-compensatable subtransactions

o (Ti(p1,┐comp,p3) CD P). The non-compensatable subtransaction is Commit
Dependent on the parent, which means that the subtransaction cannot commit
until the parent are ready to commit.

o (Ti(p1, ┐comp,p3) AD P). The non-compensatable subtransaction is Abort

Dependent on the parent transaction. If the parent aborts then the subtransaction
aborts.

Vital subtransactions

o (P AD Ti(vital,p2,p3)). The parent is Abort Dependent only on its vital
subtransactions (both compensatable and non-compensatable). I.e. the parent must
abort if a vital subtransaction aborts. The parent only decides to commit when all
its vital subtransactions has committed.

Reactivatable subtransactions

o (Ti(p1,p2,reactivatable) BAD Ti(p1,p2,reactivatable)). The subtransaction that is to be
reactivated is Begin-on-Abort dependent on itself. This means that reactivation
cannot start until the previous attempt has aborted.

These dependencies tell us that:

 19

A partial ordering of the subtransactions (not necessarily between all of them) exists. If
both the children and the parent commits, the children will commit before the parent. The
parent transaction can decide its termination without regard to the children’s decision. If
the parent aborts and the children has not yet committed, then the uncommitted children
will abort. The parent is only allowed to commit if all of its vital children has committed.
 Non-compensatable descendants are not allowed to commit before the parent has
decided to commit whereas compensatable children can commit independent of the
parent. The compensating transactions are only allowed to start after its compensated-for
transaction and the parent has committed.
Contingent transactions associated with the primary transaction are only allowed to start
after the abortion of the primary transaction. Alternatively, if other contingent
transactions have been executed on behalf of the primary transaction, the contingent
transaction is only allowed to start after the previous executed contingent transaction.
Reactivation of a child is only allowed if the previous attempt of executing the
transaction has finished abortion.

3.4 Flexible Extensions

The xTrans transaction model potentially embeds flexibility, pointed out in the following.
Importantly, the dependency specifications described in the previous section remains
untouched even though flexibility is realized.

At least two approaches to flexibility exist: user- and the system- initiated flexibility.
User-initiated flexibility includes ‘on-the-fly’ decisions on the transaction or parts of it,
whereas system-initiated flexibility includes for instance resource management (i.e. real
time applications). Intuitively, in the wake of environmental changes, flexibility might be
essential. On the other hand, the user may have changed his mind about the transaction.
Both situations can be realistic for transactions residing in the system for a long time.

From vital to non-vital
The role of a subtransaction may be changed from vital to non-vital. The situation arises
for instance when it is not possible to commit the vital subtransaction or one of its
contingent transactions. Consider for instance the travel arrangement scenario and
imagine that the car rental subtransaction is vital. If neither this subtransaction nor any of
its contingent transactions succeed to commit, the transactions role may be changed from
vital to non-vital. Whether there is a need to do changes the opposite way: from non-vital
to vital, can be a discussed. We obviously do not care about the outcome of a non-vital
transaction, so at first instance it makes no sense in changing a subtransaction from non-
vital to vital. However, the user has the ability to do it.

Reactivation
We have the ability to reactivate parts of the transaction if it fails. The reactivation may
be performed after a specified amount of time and, if necessary, a number of times. The
transaction can change from having the ability to be reactivated to not, or vice versa. The

 20

number of and the time between the trials may also be changed. For instance, consider
booking a hotel room. This transaction can be reactivated a number of times. If the
transaction does not succeed, the reactivation process may be stopped. Another example
is one where we have a transaction trying to reserve tickets to an excursion. This
transaction is not defined with the ability to be reactivated. However, if it fails to succeed,
the user may want to interrupt and tell the transaction to be reactivated.

Contingent transactions
Dynamically change of contingent transactions. It may be desirable to update (add,
change, delete) the list of contingent transactions when the application is running. If for
instance, when trying to reserve a seat on a plane, the contingent transactions represent
different airline companies on that route, there may suddenly be someone joining the
market or other declared bankrupt.

4. FlexCP Prerequisites

This section presents the flexible commit protocol FlexCP (Flexible Commit Protocol)
supporting ACID as well as non-ACID requirements and its adjacent termination- og
recovery protocols. We assume an X/Open DTP environment.

First, we present the general requirements bound to a RM and a TM in such an
environment. Then, we look at the requirements for FlexCP in particular, and evaluate
whether the XA interface is sufficient for FlexCP. Finally, FlexCP, termination- and
recovery protocols are presented.

Resource Manager Requirements
A resource manager (RM) is compliant with the X/Open DTP model when it conforms to
the following:

o RM’s must provide xa-routines as specified in [12].
o RM’s must be able to recognize and accept XID’s from TM’s.
o RM must support a commit protocol by providing an xa_prepare() routine and

having the ability to report whether it can guarantee commit of a transaction
branch. RM must hold resources until the transaction manager ™ directs it to
either commit or roll back the branch. RM must support the one-phase
commitment optimization and allow xa_commit() even if it has not yet received
xa_prepare().

o RM must have support for recovery and track the status of all transaction
branches in which it is involved.

o RM’s receives transaction context from the TM via the XA protocol. Each time a
TM initiates start, end or commit of a transaction, the RM’s are informed. In order

 21

for TMs to use an RM’s XA protocol, the RM must provide its RM-specific
library for the TM to call. This is known as the XA switch, mentioned in

o It is important to check if the RM’s XA library is thread-safe. If the library is
thread-safe, it means that multiple threads in a process can be associated with the
RM at any given time. This means the application can have many threads with
RM connections open and can be performing work within calls to xa_start and
xa_end. If the XA library is not thread-safe, this requires an application to only
have one thread (and hence one transaction) associated with the RM at any given
time. Essentially the TM will acquire an XA lock whenever xa_start is called by
a thread, and will release this only when xa_end is called.

Transaction Manager Requirements
A TM is X/Open compliant when it conforms to the following:

o Service interfaces. TM’s must use the xa_routines the RM provides to coordinate
the work of all the local RM’s that the AP uses. TM’s must call xa_open() and
xa_close() on any local RM associated with the TM.

o Transaction identifiers. A TM must generate XID’s conforming to the structure
described in [12].

A TM maintains the transaction context. Transaction context contains information about
the transaction and reflects the transaction model defining the transactions. It contains
what follows:

o Transaction identity; X/Open XID (transaction identifier) compatible. It can, as
the OTS context, be a structure including a structure that can be transformed to an
X/Open XID and vice versa

o Timeout value
o Parameters:

- Can the transaction be reactivated, and at what intervals,
- Is the transaction vital or non-vital to the parent transaction,
- Is the transaction contingent or not, and
- Is the transaction compensatable or not.

o Parent(s). The parents must be referred with their transaction identity
o A reference to the transaction’s compensating transaction (if exists)
o A reference to the start of a list of contingence transactions (if any)
o At what RM will the transaction be executed

FlexCP Requirements
Two-phase commit (2PC) is the most common commit protocol for distributed
transactions. As mentioned in 3.4, 2PC is an all-or-nothing operation assuring ACID and
strict atomicity for its transactions. In 2PC, a top-level transaction cannot commit until all
of its subtransactions have committed. For long-running transactions, this involves a

 22

potential delay in that participating sites must wait and hold all their locks until the top-
level transaction reaches a final decision.

Optimistic 2PC (O2PC) [23] is an approach in overcoming the performance drawbacks of
2PC. In O2PC, locks are released as soon as a site votes to commit a transaction, without
waiting for the coordinator’s final commit or abort message. If a failure occurs,
transaction’s effects are undone semantically using compensating transactions. O2PC is
also an all-or-nothing operation preserving ACID with semantic atomicity.

Requirements from xTrans transactions (given in 3.4) gives that 2PC and O2PC are too
stringent with respect to atomicity. xTrans transactions require relaxed atomicity and the
ability to commit top-level transactions even though a non-vital subtransaction has
aborted. .

Related to the xTrans transaction model, the following must be considered when
designing FlexCP:

o The XTrans model requires compensatable subtransaction to be committed
immediately. They must be committed by a protocol that allows independent
commitment of subtransactions.

o Non-compensatable subtransactions must wait for the top-level transaction to
commit. These subtransactions must be committed by a 2CP protocol.

o A top-level transaction can commit even though some of its non-vital
subtransactions have aborted.

Consequently, FlexCP must have the ability to commit according to 2CP and to a
protocol allowing independent commit of subtransactions. For the last case, we adopt
one-phase commit (1CP), described in OTS [13] as a starting point. 1CP as implemented
in OTS allows one-phase commitment only when the transaction works on one single
resource, and it commits subtransactions independently by simply omit to send prepare
before commit. However, we modify the 1PC part of our protocol to allow one-phase
commitment regardless of the number of involved resources.

FlexCP functionalities:
(1) Start 1CP for compensatable subtransactions, and 2CP for non- compensatable
subtransactions. Depending on which subtransactions a transaction consist of, FlexCP can
run either:

o Only 1CP
o Only 2CP
o Or a combination of 1CP and 2CP

(2) When specified, reactivate failed transactions
(3) When specified, execute contingent transactions.
(4) Change the role of a transaction.

 23

FlexCP will send commit to those subtransactions that are compensatable, and prepare to
those that are non-compensatable. If a subtransaction fails to commit, FlexCP will
involve the user to determine if the subtransaction’s role must change. Then FlexCP will
either reactivate the subtransaction or start a contingent transaction. When FlexCP is
ready to commit (all vital subtransactions are either committed or ready to commit), it
will send commit to those that have responded vote-commit on the prepare message. If
FlexCP decides to abort the transaction (a vital subtransaction has aborted), a
compensation transaction is activated for those subtransactions that has committed.
FlexCP maintains a general view over compensatable and non-compensatable, vital and
not-vital subtransactions, and terminates the top-level transaction according to the final
state of them.

Interface Requirements
Is the XA interface of the X/Open DTP model [12] sufficient in supporting FlexCP.

Section 2.2 describes a typical interaction between a TM and a RM. A TM sends a
command to RMs, which in turn returns a response. TM issues xa_prepare() or
xa_commit() when starting the commit process, and RMs responses indicate whether the
command was performed successfully or not. If TM issues xa_commit() to a
compensatable transaction without first sending xa_prepare(), it will set a flag that
indicates one-phase commitment. Then RM knows that the transaction can be committed
even though it has not received prepare first.
A RM can commit a transaction as soon as it has received xa_end() indicating end of the
transaction branch. When the TM later issues xa_commit(), RM sends back a response
informing TM about the transaction’s termination.

The XA interface will both support 1PC and 2PC with its present set of commands.
Consequently, we find the XA interface sufficient in supporting FlexCP.

5. FlexCP Protocols

This section presents the FlexCP commit protocol together with its adjacent termination-
and recovery protocols. First, an overview of the initializing steps regarding transaction
setup is given.

5.1 Transaction Manager Initialization
.
Transaction Manager initializing transactions:

o Decomposition.
o Define possible compensating transactions.
o Define possible contingent transactions.

 24

o During the above steps: fill in all necessary information, parameters and
references in the transaction context.

o Maintain two lists belonging to the transaction: one list of transactions that can be
compensated for and one list with transactions that cannot be compensated for.
This will help coordinator in executing the FlexCP protocol.

Algorithm Transaction Manager

declare-var
 trans:Transaction {Transaction delivered to TM}
 tcontxt:Transaction context
 CONTXT: List of Transaction contexts belonging to both primary and secondary trans.

begin
Decompose(trans, CONTXT) {Subroutine that decompses trans and returns a pointer

to the list of transaction contexts belonging to trans}
for every subtransaction in CONTXT
begin
 if compensatable transaction

 SpecifyCompensatingTransaction(tcontxt)
 endif
 if substitutable transaction
 SpecifyContingentTransactions(tcontxt)
 endif
end

 for each needed resource manager
 xa_open() to the RM
 end-for
 for each subtransaction in CONTXT
 StartTransaction(tcontxt)
 end-for
StartCoordinator(CONTXT)
for each open resource manager xa_close() to the RM

end

StartTransaction(Transaction context: tcontxt)
begin
 xa_start() to the RM
 perform actions on behalf of the transaction
 xa_end() to the RM
 end

The commit protocol coordinator is explained in the next section. The coordinator will in
turn invoke other subroutines. When a transaction is to be reactivated, or a contingent
transaction executed, the above routine StartTransaction is invoked.

 25

5.2 Transaction Service Protocols

The FlexCP transaction service protocols (commit-, termination- and recovery) for a
distributed environment maintain semantic atomicity and durability of distributed
transactions.

FlexCP Commit Protocol

FlexCP provides two commit options: compensatable sub-transactions are immediately
committed, whereas the non-compensatable ones wait for the top-level transaction to
commit. A top-level or a sub-transaction, T, cannot commit unless all its descendants has
terminated.

Figure 5 shows the state transitions at the coordinator and the participant’s site. The
figure is a modified figure from [19]. Transaction manager starts the coordinator. The
participant’s are started either from the transaction manager or from the coordinator when
reactivation or start of contingent transaction. All references to XA interface are from
[12].
The coordinator moves from state Initial to Wait when having sent xa_commit() or
xa_prepare() to the participants. In addition, from Wait to Commit or Abort depending on
what the participant’s votes. Participants that cannot be compensated for moves from
Initial to Wait after having received Prepare from the coordinator. Compensatable
participants, after received commit from the coordinator, moves from Initial to Commit
or Abort depending on whether it decides to commit or abort.

 Coordinator Participant

Figure 5. State Transitions in FlexCP

xa_commit or
xa_prepare Reactivate or

contingent
transaction *)

xa_rb
xa rollback

xa_ok
xa-commit xa_rollback

Ack
xa-commit

Ack

 xa_repare
xa_ok

xa_commit/xa_ok xa_commit/xa_rb

Initial

Commit

Wait Wait

Initial

Abort Commit Abort

 26

*) The coordinator will remain in the Wait state when Vote-abort is received from one of
the participants and the participant can be reactivated or a contingent transaction can be
executed. The actions taken are described below under the section: Coordinator in Wait
state.

Coordinator initially:
Initially the coordinator writes a begin_commit record in its log, sends a xa_prepare()
message to all non-compensatable sites, xa_commit() to every other site, and enters the
Wait state.
When coordinator issues xa_commit() to a compensatable site, a flag that indicate one-
phase commitment is set (2.2). With this flag set, participants either commit or roll back
the transaction and cannot remain in a prepare state. Coordinator sends xa_commit() to
non-compensatable sites from the Wait state.

One-phase commit participants:
A participant in Initial state receives a xa_commit() message with a one-phase commit
flag set. The participant will either commit or roll back the transaction and move to
Commit or Abort state. If the transaction can be committed, a commit record is written to
the log, the transaction is committed, and XA_OK message sent to the coordinator. If the
participant cannot commit the transaction, it writes an abort message to the log, roll back
the transaction, and responds with XA_RB message. If a resource manager already
completed the work heuristically, this function merely reports how the resource manager
completed the transaction branch. A resource manager cannot forget about a heuristically
completed transaction branch until the transaction manager calls xa_forget().
In the XA interface there is no specific primitive for one-phase commitment: an resource
manager must consider an xa_commit() without preceding xa_prepare() as a request to
perform a one-phase commitment. The coordinator gets an XA_OK or XA_RB (roll
back) response back from the compensatable participant’s RM.

Two-phase commit participants:
When a participant receives a xa_prepare() message, it checks if it can commit the
transaction.

o If so, the participant writes a ready record in the log, sends a XA_OK message to
the coordinator, and enters “Ready” state.

o If the transaction branch was read-only and has been committed, the participant
returns XA_RDONLY and enters the “Ready” state.

o The RM returns XA_RETRY if it is not able to commit the transaction branch.
All resources held on behalf of the transaction branch remain in a prepare state
until commitment is possible.

o If the RM did not prepare to commit the work done on behalf of the transaction
branch, it roll back the work, releases all held resources and returns an XA_RB.

Coordinator in Wait state:
The coordinator takes action when it has received responses from all participants and/or
one of the participants has voted XA_RB.

 27

o If all sutransactions has responded, and all vital subtransactions have responded
XA_OK, the coordinator decides to commit the transaction globally, writes a
globally commit record in its log, and issues xa_commit() to all non-
compensatable transaction’s that has voted commit and enters the Commit state.

o If the coordinator receives a XA_RB from one subtransaction, the user will be

involved, and actions can be taken:

(1) User can change the transaction’s role; for example from vital to non-vital or
change reactivation parameters. The user can redefine the transactions role as
substitutable and/or rewrite its contingent transactions.
(2) The coordinator can reactivate the transaction or start a contingent transaction
by calling StartTransaction desribed in 5.2.

If (2): the transaction is reactivated or a contingent transaction is started, the
coordinator remains in the Wait state. See figure 6.

If the transaction is non-vital, it cannot be reactivated any more and no contingent
transactions can be executed, the transaction is ‘forgotten’. The coordinator
remains in the Wait state.

If the transaction is vital (the user has not changed it to non-vital), and no
possibility to reactivate or run a contingent transaction exists, the coordinator
immediately decides to abort the transaction globally. The coordinator will not
wait for all the participants to answer if XA_RB is received from a vital
subtransaction that cannot be reactivated or has no associated contingent
transactions. The coordinator:
- Writes an global-abort record in its log,
- Sends xa_rollback() message to all non-compensatable participants,
- Enters the “Abort” state.

Coordinator in commit state:
Coordinator waits for responses to xa_commit() command sent to non-compensatable
participants. The participants will respond with XA_OK or XA_RETRY. If a participant
respond with XA_RETRY, coordinator reissues xa_commit() at a later time. When all
participants has responden XA_OK coordinator writes end-transaction to log and
finishes.

Coordinator in abort state:
A global abort decision is taken after receiving XA_RB from a vital subtransaction.
The coordinator starts compensation for those subtransactions that have committed. Then
the coordinator writes end-transaction to log and finishes.

 28

Figure 6. Protocol actions without failures

 Coordinator Participant

N

Y

Y

N

Y

Y

N

N

Abort

Commit

Y

Initial

Begin_com
mit in log

XA_RB from
vital subtrans?

***)

Initial

Ready
in log

Abort
in log

Commit
in log

Commit
OK?

Prepare?

 Ready to
commit?

Commit
in log

Abort
in log

Wait

Ready

Abort
in log

Abort
in log

Commit
in log

Commit Abort

Abort Commit

Type of msg?

End-trans
in log

Committed
subtrans.?

Start
compensating

trans.

Y

N

N
Y N

Y

N

received
XA RB?

**)Reactivate or
contingent *).

Everybody
voted?

N

 29

*) A subtransaction has failed and responded XA_RB to coordinator. A subroutine will
be invoked to determine whether the subtransaction shall be reactivated any more, or if a
contingent transaction shall be started. The subroutine will interact with the user, and the
user can change the transaction’s role. If a contingent transaction is to be executed, one is
picked from the list of contingent transactions.

**) The subroutine in *) has decided to either reactivate the transaction or to start a
contingent transaction, and invokes a transaction manager routine: StartTransaction. If
the transaction is reactivated, its transaction context is updated. If a contingent transaction
is to be run, the list of transaction contexts is also updated.

***) The coordinator has received XA_RB from a vital subtransaction. The subroutine
from *) has, in interaction with the user, already decided that the transaction shall not
change role from vital to non-vital. The coordinator must abort the transaction according
to: Coordinator in Wait state.

Algorithm Commit Protocol Coordinator:

declare-var
 msg:Message
 ev:Event
 PL: List of participants, non-compensatable
 PLC: List of participants, compensatable
 tcontxt: TransactionContext

begin
 WAIT(ev)
 case of ev {Possible events are MsgArrival and Timeout}
 MsgArrival
 begin
 Let the arrived message be in msg
 case of msg
 Commit: {Commit command from scheduler}
 begin
 write begin_commit record in the log
 send xa_prepare() message to all the participants in PL
 send xa_commit() message to all the participants in PLC
 if empty PL write commit in log
 set timer
 end
 XA_RB(): {One participant, from PL or PLC, has voted to abort}
 Interact with user()
 if reactivation or start of contingent transaction
 begin
 Start_Transaction(tcontxt)
 end else
 if vital participant begin

 30

 {Start global abort on those participating in 2PC, i.e. the PL list}
 write abort record in the log
 send xa_rollback() message to all the participants in PL
 if any committed participants from PLC
 Start their compensating transactions
 end
 XA_OK: {Both xa_prepare and xa_commit responds with XA_OK **)}
 begin
 update the list of participants who have answered ***)
 if everybody voted and all vital participants have answered XA_OK then
 begin {Start 2PC on those belonging to PL}
 write commit in the log
 send xa_commit() to all the participants in PL (the others have committed)
 set timer
 end else
 ask for response from the unanswering participants

 if all vital participants have answered XA_OK on xa_commit() then
 begin {Coordinator can terminate the transaction}
 write end-trans in the log
 set timer
 end else
 ask for response from the unanswering participants
 end

 end-case
 end
 Timeout:
 begin
 execute the termination protocol {will be discussed later}
 end
 end-case
end

Algorithm Commit Protocol Participant:

declare-var
 msg:Message
 ev:Event
begin
 WAIT(ev)
 case of ev {Possible events are MsgArrival and Timeout}
 MsgArrival:
 begin
 Let the arrived message be in msg
 case of msg
 xa_prepare():
 begin
 if ready to commit then

 31

 begin
 write ready record in the log
 send XA_OK message to the coordinator
 set timer
 end
 else begin
 write abort record in the log
 send XA_RB message to the coordinator
 call local data processor to abort/roll back the transaction
 end
 end
 xa_commit:
 begin
 if ready to commit then
 begin
 write commit record in the log
 send XA_OK message to the coordinator
 call local data processor to commit the transaction
 end
 else if Heuristically completed then
 begin
 Send message to coordinator about the outcome of the completion
 end else
 begin
 write abort record in the log
 send XA_OK message to the coordinator
 call local data processor to abort/roll back the transaction
 end
 end
 xa_rollback:
 begin
 write abort record in the log
 send XA_OK message to the coordinator
 call local data processor to abort the transaction
 end
 end-case
 end
 Timeout:
 begin
 execute the termination protocol
 end
 end-case
end

*)
When reactivating a transaction or starting a contingent transaction the PL and/or PLC list must
be updated. In case of reactivation are the transaction’s context updated to reflect the action.
When a contingent transaction is started the PL and/or PLC list are updated to contain the
contingent transaction’s context. The ‘old’ transaction is terminated and removed from the list.

 32

**)
According to [12] is both xa_prepare and xa_commit issuing a XA_OK response when execution
has terminated successfully.

***)
The coordinator maintains two lists of XID’s that have responeded XA_OK. One list contains
those XID’s from PL that have responed XA_OK on a xa_prepare command. The other list
contains those XID’s from both PL and PLC list that have responded XA_OK on xa_commit
command. The reason for these two lists is described in **).

Termination Protocol
The termination protocols serve the timeouts for both the coordinator and the participant
processes. A timeout occurs at the destination site when it cannot get an expected
message from a source site within the expected time period. We need to consider failures
at various points of the execution of the commit protocol.

Coordinator Timeouts
There is three states in which the terminator can timeout: Wait, Commit, and Abort. We
refer to previous description of the coordinator and the participant algorithm when using
acronyms like PL and PLC.

1. Timeout in the Wait state: If the coordinator is in the Wait state it is waiting for
the local decisions of the participants. The coordinator can unilaterally commit the
transaction if it has received positive responses from all vital subtransactions. The
coordinator then writes a commit record in the log and sends a commit message to
all participants in PL list. However, it cannot commit the transaction if a vital
transaction has not responded. The coordinator can decide to abort the transaction
globally, in which case it writes an abort record in the log. Thereafter it sends a
xa_rollback() message to all participants in the PL list and start compensation of
those participants from the PLC list that have committed.

2. Timeout in the COMMIT or ABORT states. In this case, the coordinator is not
certain that the commit or abort procedures have been completed by the local
recovery managers at all the participating sites. Thus the coordinator repeatedly
sends the xa_commit() or xa_rollback() commands to the sites that have not
responded, and waits for their responses.

Participant timeouts. A participant can timeout in two states: INITIAL and READY:

1. Timeout in the INITIAL state. In this state the participant is waiting for a
xa_prepare() or a xa_commit() message. The coordinator must have failed in the
INITIAL or in the WAIT state. Coordinator is in the WAIT state if the participant
is representing a reactivated or contingent transaction. The participant can
unilaterally abort the transaction following a timeout. If the prepare or commit
message arrives at this participant later, this can be handled in one of two possible
ways.

 33

2. Timeout in the READY state. The participant has voted to commit the transaction
but does not know the global decision of the coordinator. The participant cannot
unilaterally make a decision. Since it is in the READY state, it must have voted to
commit the transaction. Therefore, it cannot change its vote and unilaterally abort
it. On the other hand, it cannot unilaterally decide to commit it since another
participant may have voted to abort it. In this case, the participant will remain
blocked until it can learn from someone the ultimate fate of the transaction.

Algorithm 2PC-Coordinator-Terminate:

Timeout:
begin
 if in WAIT state then
 begin
 write abort record in the log
 send xa_rollback() message to all participants in PL list
 send xa_rollback() message to all in PLC list that have not committed
 start
 end
 else begin
 check for last log record
 if last log record=abort then begin
 send xa_rollback() to all participants that have not responded
 if already not started
 start compensating transaction for those from PLC list that have committed
 end else
 send xa_commit() to all the participants that have not responded
 end
 set timer
end

Algorithm 2PC-Participant-Terminate

Timeout:
begin
 if in INITIAL state then
 write abort record in the log
 else {participant in the ready state}
 send XA_OK message to the coordinator to vote commit
 reset timer
 end
end

Recovery Protocol
A protocol for use by a coordinator or a participant to recover their state when failure.

 34

Coordinator Site Failures:

1. The coordinator fails while in the INITIAL state. This is before the coordinator
has initiated the commit procedure. Therefore, it will start the commit process
upon recovery.

2. The coordinator fails while in the WAIT state. In this case the coordinator has
sent xa_prepare() or xa_commit() command. Upon recovery, the coordinator will
restart the commit process for this transaction from the beginning by sending the
message one more time.

3. The coordinator fails while in the COMMIT or ABORT states. In this case the
coordinator will have informed the participants of its decision and terminated the
transaction. Thus, upon recovery, it does not need to do anything if all the
acknowledgements have been received. Otherwise, the termination protocol is
involved.

Participant Site Failures:
1. A participant fails in the INITIAL state. Upon recovery, the participant should abort
the transaction unilaterally. Let us see why this is acceptable. Note that the coordinator
will be in the INITIAL or in the WAIT state with respect to this transaction.

6. Conclusion
We have seen that there is a gap between provided and required needs for extended
transactional requirements. Even though a number of theoretically described transaction
models have been proposed in order to close this gap, they are inflexible with respect to
supporting wide areas of applications and varying transactional requirements. Thus, we
have described an extended and flexible transaction model, xTrans, trying to overcome
the restrictions of the previous models. We have used the language ACTA to describe
and capture all interactions in the model.

Further, to support the execution of xTrans transactions, flexibility is needed. Present
infrastructures supporting distributed transactions, like for instance TCM, OTS and JTS,
mainly provide support for flat, ACID transactions. We believe that these infrastructures
must be flexible in order to adapt to extended transactions. Consequently we have
designed a flexible commit protocol, FlexCP, committing transactions either one-phase or
two-phase – or both. The characteristics of each individual transaction decide how it is
used. For instance, contingent transactions may exist, reactivation of transactions may be
allowed, and the role of a sub-transaction may change through some intervention with a
user or. Thus, FlexCP supports both ACID and non-ACID transactions. Moreover, we
found the XA interface sufficient in supporting FlexCP.

Besides achieving flexibility within both the xTrans model and the FlexCP commit
protocol, concurrency and performance have increased. Concurrency has increased by
splitting and decomposing long-running transactions in to concurrently executing
subtransactions. Performance has improved by the ability to commit subtransactions
independently without waiting for the final decision of a top-level transaction. This of

 35

course depends on the specification of compensating transactions. In addition,
performance is increased as a top-level transaction immediately aborts if a vital
subtransaction fail to succeed.

When designing the transaction model, XTrans, and the flexible commit protocol,
FlexXP, we have assured that both semantic atomicity and durability are preserved at the
top-level transaction.

 36

7. References

[1] Linda G. DeMichiel, L. Ümut Yalcinalp: Enterprise JavaBeans Specification 2.0 Draft.
SunMicrosystems Inc., August 10, 1999
[2] CORBA Component Model:
http://www-106.ibm.com/developerworks/components/library/co-cjct6/
[3] Andreas Vogel, Madhavan Rangarao: Programming with Enterprise JavaBeans, JTS and OTS.
[4] Subrahmanyam. Java Transaction Service.
http://www.subrahmanyam.com/articles/jts/JTS.html
[5] Ian Gorton: Enterprise Transaction Processing Systems
[6] Marek Prochazka: Advanced Transactions in Enterprise JavaBeans
[7] Marek Prochazka: Extending Transactions in Enterprise JavaBeans. Technical Report 3/2000,
Department of Software Engineering, Charles University, Prague (May, 2000).
[8] JBoss: http://www.jboss.org/
[9] P.K. Chrysanthis and K. Ramamritham. ACTA: A Framework for Specifying and Reasoning
about Transaction Structure and Behavior. ACM SIGMOD, 1990
[10] http://www.cs.uit.no/~weihai/D441Sv01/
[11] http://www.omg.org/technology/documents/
[12] The X/Open CAE Specification. Distributed Transaction Processing: The XA Specification.
X/Open Document Number: XO/CA/91/300. December 1991.
[13] CORBA Services, Transaction Service Specification, v1.1. 1997
[14] Ramamritham, Chrysanthis. Advances in Concurrency Control and Transaction Processing.
IEEE Computer Society. 1997.
[15] Anne Thomas. "Enterprise JavaBeans Technology: Server Component Model for the
JavaTM Platform". Patricia Seybold Group (Prepared for Sun Microsystems, Inc.), Revised
December 1998.
[16] Elsmari, Navathe. Fundamentals of Database Systems, Third edition
[17] H. Garcia-Molina, K. Salem. SAGAS. ACM SIGMOD conference 1987
[18] Ahmed K. Elmagarmid. Database Transaction Models for Advanced Applications.
[19] Õzsu, Valduriez. Principles of Distributed Database Systems. 1999
[20] Garcia-Molina, Silberschatz, Breitbart. Overview of Multidatabase Transaction
Management.
[21] J. E. Moss. Nested Transactions. The MIT Press, 1985.
[22] E.Kuehn, F. Puntigam, A. Elmagarmid. Transaction specification in multidatabase systems
based on parallel logic programming. IMS91, Japan, April 1991.
[23] Levy, Korth, Silberschatz. An Optimistic Commit Protocol for Distributed Transaction
Management. University of Texas at Austin. 1991
[24] Slama, Garbis, Russell. Enterprise CORBA. 1999, Prentice Hall
[25] Enterprise JavaBeans Technology, server component model:
http://java.sun.com/products/ejb/white/white_paper.html
[26] Korth, Levy, Silberschatz. A Formal Approach to Recovery by Compensating Transactions.
The 16th VLDB Conference, Australia, 1990
[27] Szyperski. Component Software. Beyond Object-Oriented Programming
[28] Brian Cantwell Smith. “Procedural Reflection in Programming Languages”. PhD Thesis,
Massachusetts Institute of Technology, 1982.

