
FirePatch: Secure and Time-Critical Dissemination of Patches

Håvard Johansen
University of Tromsø

Norway

Dag Johansen
University of Tromsø

Norway

Robbert van Renesse
Cornell University

USA

Abstract
Because software security patches relay information
about vulnerabilities, they can be reverse engineered into
exploits. Tools for doing this already exist. As a re-
sult, there is a race between hackers and end-users to
first obtain patches. In this paper we present and evalu-
ate FirePatch, an intrusion-tolerant dissemination mecha-
nism that combines encryption, replication, and sandbox-
ing such that end-users are able to win the security patch
race.

1 Introduction
Automatic software updating over the Internet is essential
for a large-scale computer infrastructure in use by hun-
dreds of millions of users. Such “patches” are particularly
important if they fix security holes. Consequently, several
software companies offer patches on their websites and
automatically alert users of their availability.1 Some soft-
ware even supports automatic installation of patches.

While at first sight this seems useful to the security of
software, dissemination of security patches has actually
resulted in a significant reduction of security. This para-
dox stems from the fact that a security patch can be re-
verse engineered to reveal vulnerable code. A malicious
exploitation can be initiated on nodes that have not yet
installed the patch. Hence, there is a race from when a se-
curity patch is released to when all vulnerable hosts have

1Users may prefer to install a packet filter “shield” [8] that prevents
a security hole from being exploited, rather than having to restart an
application. Our solution is useful for either patches or shields, and we
shall not make a distinction in this paper.

successfully installed the patch. Making matters worse,
many machines are on-line only occasionally, and can be
compromised soon after they go on-line but before they
have a chance to discover and install a patch.

We call this time period the window of vulnerability
(WOV). Recent studies are compelling. For instance,
[3] reports in their study of the Windows Update system
involving 300 million users that 20% of end-users take
more than 24 hours to install a patch. This is more than
enough time to construct and disseminate an exploit based
on a new security patch. Tools for reverse engineering
patches already exist2, and there are even reputed to be
tools that construct exploits automatically. Hackers could
also mount a Denial-Of-Service (DoS) attack against the
patch web site (after learning of a patch) in order to in-
crease the WOV.

This paper describes FirePatch, a scalable and se-
cure overlay network for disseminating security patches.
FirePatch employs the following three techniques:

1. A patch is disseminated in two phases. First, an en-
crypted version of the patch is disseminated (which
cannot be reverse engineered). Some time later, the
decryption key is disseminated. As the key will typ-
ically be significantly smaller than the patch, it can
be disseminated much faster to a large collection of
machines.

2. In order to deal with DoS attacks that attempt to in-
crease the WOV, we have developed a distributed
software mirroring service. While replication makes

2See, for instance, Symantec and their binary analyzing toolkit
http://www.bindview.com/Services/Razor/Papers/
2004/comparing binaries.cfm

1

DoS more difficult, it increases the likelihood that
individual servers are compromised—a highly unde-
sirable situation for a server that disseminates secu-
rity patches to clients. Therefore, our service is also
made tolerant of Byzantine failures.

3. For machines that are not on-line all the time, we
have developed a simple protocol for secure down-
load and installation of patches that is run when a
machine goes on-line. While this goes on, the ma-
chine is prevented from participating in other net-
work communication.

The rest of this paper is organized as follows. In Sec-
tion 2 we outline the architecture of FirePatch and state
our assumptions. Section 3 describes our two-phase dis-
semination protocol which we use in our dissemination
overlay described in Section 4. Section 5 outlines the pro-
tocol for disconnected clients. FirePatch is evaluated in
Section 6 and related work is presented in Section 7. Sec-
tion 8 concludes.

2 Architecture and Assumptions

We distinguish three roles: patchers, clients, and mir-
rors. Patchers are typically software providers that issue
patches. For simplicity, we will assume a single patcher in
this paper, although any number of patchers is supported.
Clients are machines that run software distributed by the
patcher. Mirrors are servers that store patches for clients
to download, and notify clients when a new patch is avail-
able.

We assume that the patcher is correct and is trusted by
all correct clients. In particular, using public key cryptog-
raphy clients can ascertain the authenticity of patches. In
our system, clients are passive participants, and in partic-
ular do not participate in the dissemination system. Thus
we do not have to assume that clients are correct.

In order to deal with DoS attacks against the patcher,
we employ a distributed network of mirror servers. The
more mirrors, the harder it is to mount a DoS attack
against the network. However, the easier it is to com-
promise one or more mirrors. We allow a subset of mir-
rors to become compromised, but assume that individual
compromises are independent of one another, and that the

probability that a mirror is compromised is bounded by a
certain Pbyz.

The patcher publishes (and signs) the list of servers that
it considers mirrors for its patches. This list contains a
version number so the patcher can securely update this
list when necessary.

We assume that all communication goes over the Inter-
net, the shortcomings of which are well-known. In order
to deal with spoofing attacks, all data from the patcher
is cryptographically signed, and we thus assume that the
cryptographic building blocks are correct and the private
key is securely kept by the patcher.

3 Two-Phase Dissemination
We have devised a dissemination protocol that, when lay-
ered on top of a secure broadcast channel, makes the
WOV independent of message size. The net result of such
an invariant is that the WOV can be kept fixed and small
despite the fact that voluminous data has to be transferred
over the wire.

At first, this might seem as an impossible invariant. It
is not, and the overall and general applicable idea is in-
tuitively simple; we basically pre-send the varying size
patch without opening the WOV. This is done by dissem-
inating patches (or any data) in two phases. In round one,
we distribute an encrypted patch, and in the second phase,
we disseminate the fixed size decryption key.

The beauty of this scheme is that the WOV only con-
tains phase two. The time between the two phases is a
policy decision. One extreme is to do the second phase
immediately when the first phase completes. However,
this is not a viable approach as disconnected clients will
delay the completion. More alarmingly, Byzantine clients
will be able to stop the dissemination by claiming not to
have received any messages. A better scheme is to start
phase two some time after phase one is started. For in-
stance, in the Windows Update system, a 24 hour time
period between the phases would likely update at least
80% of the clients [3].

More formally, our general applicable protocol is spec-
ified as follows. Let m be a message that a source s wants
to disseminate to a set of clients. In the first phase, s gen-
erates a symmetrical encryption key k and a unique iden-
tifier UID, and broadcasts a 〈ENVELOPE, UID, k(m)〉

2

message, signed by s. Upon receipt and verification of the
signature, clients store this message locally. In the second
phase, s broadcasts 〈KEY, UID, k〉 to all clients. Upon
receipt, clients can decrypt the ENVELOPE message.

In our system the UID contains a version number
so clients can distinguish newer from older version of
patches.

4 Secure Dissemination Overlay
As mentioned before, FirePatch employs a network of
mirrors to fight DoS attacks. Thus, the patcher does not
broadcast patches and keys directly to the clients, but in-
stead to the collection of mirrors. The mirrors forward
this information to all clients that are currently connected
to the Internet, and provides it on demand to clients that
connect to the Internet at a later time.

In order to disseminate data reliably among the correct
mirrors, we employ the Fireflies group membership proto-
col [7] combined with ChainSaw, a request-response style
of gossip [6]. As mirrors can be Byzantine, the patcher
and clients have to connect to a sufficient number of mir-
rors in order to make the probability that they are con-
nected to at least one correct mirror node sufficiently high.
With the probability of a mirror node being Byzantine is
Pbyz, if a client connects to k nodes, then the probability
that all nodes are Byzantine is P k

byz. If this probability is
to be less than ε, then k > log ε/ log Pbyz . (If M is the
number of mirror nodes, and C the number of clients, then
each mirror node will have about C ∗ k/M clients.)

Thus the patcher first disseminates the encrypted (and
signed) patch to k mirrors, guaranteeing that at least one
correct mirror receives the patch with a probability higher
than 1 − ε. Using Fireflies and ChainSaw, all correct
mirrors quickly obtain and store the encrypted patch, and
each mirror notifies each of its clients. As a client is regis-
tered with at least k mirrors, it obtains such a notification
with high probability. It then selects one of the mirror
servers and attempts to download the patch. Should this
fail, it tries another mirror server and repeats this until
successful.

After some predetermined period of time, the patcher
sends the signed key to k mirrors. Each correct mirror,
upon receipt and verification of the signature, forwards
the key to each of its registered clients and stores the key

for later retrieval. A client may get multiple correctly
signed copies of the key, but as the key is small this is not
a problem. Using one of the copies, the client decrypts
the patch (or shield), and applies it.

5 Disconnected Nodes
A tricky problem is that not all clients may be up and con-
nected to the Internet at the time that the patch is being
disseminated. When at some later time such a client con-
nects to the Internet, it is vulnerable as hackers have now
had ample time to create an exploit and may be lurking
on such clients. We thus need a protocol for connecting
clients to get the patches it is missing without being com-
promised.

Our approach is as follows. When running, clients store
the list of all mirrors (disseminated by the patcher just like
patches and keys) on disk. When a client connects, a local
firewall is initially configured to block all network traffic
except to and from 2k−1 mirrors selected at random from
the stored list. Also, the firewall only admits a limited
number of message formats, as used below.

First, the client sends a 〈RECOVER, v〉 message to
each of the mirrors, where v is the version of the latest
installed patch at the client. Each of the 2k − 1 mirrors
responds with notifications of the missing patches as in
the protocol described above for connected clients, and
the client proceeds to download the necessary patches and
keys while all other messages are ignored and dropped.

The recovering client awaits exactly k notifications be-
fore it resumes normal operation. Waiting for more is dan-
gerous as the malicious mirror nodes may not respond and
thus prevent the node from recovering. Waiting for k − 1
or fewer increases means that probability that all notifica-
tion are from malicious mirrors becomes larger than ε.

6 Evaluation
Our prototype implementation is written in Python and
was evaluated on a local cluster of 39 3.2 GHz Intel
Prescott 64 machines with 2 GB of RAM. The machines
were connected by a 1 Gbit Ethernet network. We ran 5
mirrors on each machine for a total 195 mirrors. 10% of
the mirrors (chosen randomly) were configured to mount

3

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1

tim
e

(s
ec

on
ds

)

completion (fraction of mirrors)

8 MB
4 MB
2 MB
1 MB

512 kB

Figure 1: Completion times for varying envelope sizes.

a DoS attack by not forwarding KEY and ENVELOPE
messages.

Our experiment consisted of injecting a new patch into
the dissemination overlay every 320 seconds with the cor-
responding encryption key released after a 300 seconds
delay. We varied the size of the patches between 256 kB
and 8 MB and injected 10 patches of each size. The size
of decryption keys was set to 20 bytes. Mirrors logged the
time when they received envelopes and keys.

Figure 1 shows the time it took for an increasing frac-
tion of the mirrors to receive envelopes of varying sizes.
For instance, a 8 MB envelope was received by 20% of the
mirrors after 6 seconds and received by all mirrors after
12 seconds. The aggregate data throughput is in this case
approximately 1 Gbit/s. While these numbers are prag-
matic for our particular setup, they indicate that FirePatch
will be able to saturate available bandwidth in real-world
deployment.

Without our two-phase dissemination protocol the
WOV depends much on the size of the patch, as can be
seen from Figure 1. The time it took to disseminate a key
is independent of the size of patches, and took approx-
imately 0.23 seconds in each case. For example, for a
8 MB unencrypted patch, the two-phase protocol reduces
the WOV by a factor of 53. Figure 2 shows the reduction
factor as a function of the patch size.

 0

 10

 20

 30

 40

 50

 60

 0 2000 4000 6000 8000

W
O

V
 r

ed
uc

tio
n

fa
ct

or

patch size (kB)

Figure 2: WOV reduction for varying patch sizes.

7 Related Work
With approximately 300 million clients, Microsoft Win-
dows Update is currently the world’s largest software up-
date service [3]. The service consists of a (presumably
large) pool of servers that clients periodically pull for up-
dates. Other commercial patch management products like
ScriptLogic’s Patch Authority Plus3 and PatchLink Up-
date4 enable centralized management of patch deploy-
ment. It is, however, unclear how any of these systems
protect themselves from intrusion and if they provision
for the ability of hackers to reverse-engineer patches into
exploits.

Open-source communities, like the Debian GNU/Linux
Project5, organize their software update services similarly
to Windows Update, as a pool of servers that clients peri-
odically pull for updates. Clients can freely choose which
server to pull. The servers are organized in a hierarchy
with children periodically querying their parent for up-
dates. As these communities rely on donated 3rd party
hosting capacity, malicious entities can easily intrude into
the server pool.

SplitStream, Bullet, and Chainsaw [1, 6, 5] are efficient
peer-to-peer content distribution systems that achieve
high throughput by spreading the forwarding load to all

3http://www.scriptlogic.com/products/
patchauthorityplus/

4http://www.patchlink.com/
5http://www.debian.org

4

peers. While the elimination of dissemination trees in
Chainsaw makes it more robust than SplitStream and Bul-
let to certain failures, these systems do not tolerate Byzan-
tine failures. SecureStream [4] provides Byzantine tol-
erant dissemination by layering a Chainsaw style gossip
mesh on top of the Fireflies membership protocol [7] sim-
ilarly to FirePatch. However, SecureStream targets live
streaming of multimedia.

Vigilante [2] is a collaborative worm detection system
that automatically generates self-certifying alerts (SCAs)
upon worm detection. SCAs are similar to Shields [8]
in that, when applied at the clients, they prevent worms
from exploiting vulnerable software. It is unclear if SCAs
or Shields can be reverse-engineered into exploits. Both
can be disseminated by FirePatch.

8 Conclusion
We have investigated an approach to securely distribute
software security updates in partially connected Inter-
net environment, combining encryption, replication, and
sandboxing upon reconnection of disconnected comput-
ers. Our findings are intuitive, but are highly effective.

Currently, we are experimenting with FirePatch on
PlanetLab to achieve more realistic experience. Also, we
are porting our push-based Debian Patch Dissemination
toolkit [9] to FirePatch.

Availability
The FirePatch code is currently available in Fire-
flies’ CVS repository on SourceForge (http://
sourceforge.net/projects/fireflies).

References
[1] Miguel Castro, Peter Druschel, Anne-Marie Kermar-

rec, Animesh Nandi, Antony Rowstron, and Atul
Singh. SplitStream: high-bandwidth multicast in co-
operative environments. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles,
pages 298–313, New York, NY, USA, 2003. ACM
Press.

[2] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony
Rowstron, Lidong Zhou, Lintao Zhang, and Paul
Barham. Vigilante: end-to-end containment of inter-
net worms. In Proceedings of the twentieth ACM sym-
posium on Operating systems principles, pages 133–
147, New York, NY, USA, 2005. ACM Press.

[3] Christos Gkantsidis, Thomas Karagiannis, Pablo Ro-
driguez, and Milan Vojnović. Planet scale software
updates. Technical Report MST-TR-2006-85, Mi-
crosoft Research, June 2006.

[4] Maya Haridasan and Robbert van Renesse. Defense
against intrusion in a live streaming multicast system.
In Proceedings of the 6th IEEE International Con-
ference on Peer-to-Peer Computing, Cambridge, UK,
September 2006.

[5] Dejan Kostić, Adolfo Rodriguez, Jeannie Albrecht,
and Amin Vahdat. Bullet: High bandwidth data dis-
semination using an overlay mesh. In Proceedings of
the 19th ACM Symposium on Operating System Prin-
ciples, October 2003.

[6] Vinay S. Pai, Kapil Kumar, Karthik Tamilmani, Vinay
Sambamurthy, and Alexander E. Mohr. Chainsaw:
Eliminating trees from overlay multicast. In Pro-
ceedings of the 4th International Workshop on Peer-
to-Peer Systems, volume 3640 of Lecture Notes in
Computer Science, pages 127–140, Ithaca, NY, USA,
2005. Springer.

[7] Håvard Johansen, André Allavena, and Robbert van
Renesse. Fireflies: Scalable support for intrusion-
tolerant network overlays. In Proceedings of Eurosys
2006. ACM European Chapter, April 2006.

[8] Helen J. Wang, Chuanxiong Guo, Daniel R. Simon,
and Alf Zugenmaier. Shield: vulnerability-driven net-
work filters for preventing known vulnerability ex-
ploits. In Proceedings of the 2004 conference on Ap-
plications, technologies, architectures, and protocols
for computer communications, pages 193–204, New
York, NY, USA, 2004. ACM Press.

[9] Ole-Petter Wikene. Distributed, intrusion tolerant,
push-based patch dissemination. Master’s thesis, Uni-
versity of Tromsø, Norway, June 2006.

5

