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Innledning 

 

Bakrunnen for valg av denne oppgaven er at jeg ved en tilfeldighet kom over et 

prosjekt med lignende emne i valgfriperioden på 2. året ved medisinstudiet. Jeg 

syntes temaet var spennende og er generelt interessert i forskning og nyutvikling. Jeg 

har også studert ett år IT-grunnfag og har lang erfaring med bruk av datamaskin og 

programvare. Jeg valgte derfor å spørre min veileder fra 2.års oppgaven om et 

passende og lignende prosjekt for en 5.års oppgave. Oppgaven er i sin helhet 

gjennomført og skrevet av meg, med veiledning fra veileder. 

 

Oppgaven bygger på en modellering av den humane 5-HT7 reseptoren og liganders 

interaksjoner med reseptoren. Ligandene ble valgt ut på bakgrunn av deres høye 

affinitet til 5-HT7 reseptoren. Ligandene som er brukt er delt inn i tre grupper; 

agonister, antagonister og partielle agonister. Hovedmålet med denne grafiske 

fremstillingen er å identifisere hvilke aminosyrer i reseptoren som binder seg med 

ligandene, og se på hvilke forskjeller det er i interaksjonene med reseptoren i de 

forskjellige grupper av ligander. Ved å gjøre datasimuleringer på denne måten kan en 

forsterke tidligere teorier og se mulige nye interaksjoner, uten at man trenger å fysisk 

bruke reseptorer og ligander i et labratoreforsøk. Sammenligning med tidligere 

studier av samme type og ikke minst av mutasjonsstudier er viktig for å bedømme 

resultatet og komme med evt nye teorier.  

 

Dette er en oppgave der den spesifikke interaksjonen mellom ligand og reseptor står i 

sentrum, et område av forskningen som er spesielt viktig med tanke på utvikling av 

medikamenter. Jeg har derfor ikke gått særlig dypt inn på reseptorens funksjon og 

utbredning i menneskekroppen da dette ikke er målet med arbeidet. 



Norsk sammendrag 

Bakgrunn 

Bruk av datasimulerte modeller av reseptorer og ligander er et nyttig verktøy for å 

forstå den biokjemiske mekanismen bak aktivering eller inaktivering av en resptor, og 

dermed også nyttig for utvikling av nye medikamenter. Idenifiseringen av hvilke 

aminosyrer i en reseptor som binder seg til forskjellige ligander kan gi en forståele av 

hva som må til for å skape stoffer med høyere affinitet og spesifisitet for 

målreseptoren. 

  

Målet med studiet er å vurdere dockingresultatene med tanke på reseptor-ligand 

interaksjoner, det vil si hvilke aminosyrer i reseptoren som deltar i bindingen, og 

hvilke deler av ligandene som er viktig for bindingen. Det skal også gjøres en 

vurdering av dockingen av de forskjellige typer ligander i modellene basert på de 

forskjellige krystallstrukturer, for å se på resultatmessige forskjeller ved bruk av de 3 

forskjellige krystallstrukturer. Også en sammenligning av resultater fra andre 

docking-, SAR- (Structure-Activity Relationship) og mutasjonsstudier av 5-HT7 

reseptoren gjøres for å få gjort en bedre totalvurdering av dockingresultatene. 

 

Materiale og metode 

I dette studiet er det konstruert homologimodeller av human 5-HT7 (5-

hydroxytryptamin, serotonin) reseptor basert på 3 forskjellige krystallstrukturer 

(beta1 adrenerg reseptor bundet med agonist, antagonist og partiell agonist) ved hjelp 

av homologimodellering og docking av agonister, antagonister og partielle agonister 

til disse homologimodellene. Krystallstrukturene som er brukt er valgt ut på grunn av 

deres høye likhet med 5-HT7 reseptoren. Krystallstruktur ble hentet fra PDB 

databasen [www.rcsb.org/], reseptorens aminosyresekvens fra UniProt databasen 

[www.uniprot.org/]. Programmet ICM Pro fra Molsoft ble benyttet til å konstruere 

homologimodeller. 3D strukturer av ligander med rapportert høy affinitet for 5-HT7 

(Ki < 1.0 nM eller tilsvarende) ble importert fra ChEMBL databasen. 

Sammenlignbare 5-HT7 docking studier ble hentet fra Pubmed. 

 

Resultater og fortolkning 

Det var ingen signifikant forskjell på dockingresultatene for docking av ligander til de 

tre homologimodellene av 5-HT7 reseptoren, med tanke på bedre resultat, for 

eksempel ved docking av agonister kontra antagonister i agonistmodellen. Partiell 



agonist modellen viste generelt dårligere docking resultat. 

 

Reseptor-ligand interaksjoner i transmembrane helixer 3, 5, 6 og 7 sto i samsvar med 

tidligere studier av 5-HT7 reseptoren som er undersøkt i denne studien. Aminosyrene 

Val2.60 og Val3.33 er ikke beskrevet som viktig for ligandbinding i noen av de 

studiene som det er sammenlignet med, men de hadde i dette studiet gjentatte 

interaksjoner med ligander. Om disse er reelt viktig for ligandinteraksjon og eventuelt 

affinitet for 5-HT7 reseptoren kan man ikke si noe om på bakrunn av dette studiet. 

Derfor kan en videre forskning gjennom et mutasjonsstudie på aminosyrer Val2.60 og 

Val3.33 være nyttig for å avgjøre om disse er viktig for liganders binding og affinitet 

til 5-HT7 reseptoren. 



Abstract 

By constructing homology models of the human 5-HT7 (5-hydroxytryptamin, 

serotonin) receptor based on three different X-ray crystals of the turkey beta1 

adrenergic receptor (one with an agonist complex, one with antagonist complex and 

one with a partial agonist complex) we tried to determine if there are any difference 

between the docking of agonists, antagonist and partial agonist ligands in the three 

different models, and look into which amino acids that are important for ligand 

binding. 

The building of the homology models and docking was done using Molsoft ICM pro. 

X-ray crystal structures where downloaded from the PDB database (www.rcsb.org) 

and the amino acid sequence from UniProt database (www.uniprot.org).  Ligands 

were selected from was selected from ChEMBL database. Article searches where 

done in www.pubmed.com. 

Results did not indicate a difference in ligand-receptor interactions or energy state of 

the complexes across the agonist and antagonist models. The model based on the 

partial agonist complex template yielded less successful dockings and higher energy 

levels of docking complexes. 

Residues included in the binding site, in trans membrane helix's 3 (Asp3.32), 5 

(Thr5.43, Ser5.42, Tyr5.38, Phe5.47), 6 (Phe6.51, Phe6.52, Ser6.55), and 7 (Phe7.38), 

that interact with the ligands in this study, are in accordance with previously 

published SAR, docking and mutation papers included in this research. Other 

residues with repeating interaction with ligands include Val2.60, Val3.33 and Tyr5.38. 

Further investigation on the role of these amino acids in ligand binding could be 

useful. Agonists and partial agonists tend to bind in the pocket between helix's 4-7, 

while the antagonists occupy both the pocket between TMH4-6 and the pocket 

between TMH7-3. 
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Introduction 

Serotonin mediate many different physiological functions by interacting with 14 

serotoninergic receptor subtypes, further classified into seven families (5-HT1-7)(1). 

The 5-HT7 receptor is part of the G-protein coupled receptor (GPCR) superfamily. It 

consists of 7 trans membrane helixes, 3 extracellular loops and 3 intracellular loops (2) 

(fig.1A fig.2A). It is the latest of the 5-HT receptors family to be discovered (3). 

Studies have revealed a high concentration of the 5-HT7 receptor in hippocampus, 

thalamus, hypothalamus, cerebral cortex, and also in gastrointestinal and 

cardiovascular smooth muscle tissue (4, 17). Functions of the receptor has been 

proposed to be involvement in regulation of body temperature, circadian rhythms, 

learning and memory, neuronal excitability, inflammatory processes in the brain and 

smooth muscle relaxation of cerebral arteries among others(4). Because of its many 

various important functions it has become an attractive target for drug discovery 

(treatment of depression, inflammatory bowel disease, migraine, sleep disorders) 

 

In this study three dimensional models of the 5-HT7 receptor will be constructed. 

Docking studies with known 5-HT7 receptor agonists, partial agonists and 

antagonists will be performed for the 3 different homology models of the 5-HT7 

receptor. Results will be compared to other pharmacophore and docking studies that 

have been done for the 5-HT7 receptor. Also a comparison will be done to see if there 

is a significant difference in successful docking when docking the different groups of 

ligands to the 3 different homology models of the 5-HT7 receptor based on the the 

agonist, antagonist and partial agonist crystal structure. I.e. will the antagonists dock 

with better results in the receptor based on antagonist bound crystal then on the other 

two receptors. 

 

Method 

21 ligands (table 1) that is known to have high affinity for the human 5-HT7 receptor 

was selected from ChEMBL database [https://www.ebi.ac.uk/chembldb/]. These 

where imported to Molsoft ICM (5) and converted into an sdf file (table 1). 

 

The receptors used are based on X-ray crystal structures of three turkey beta1 

adrenergic receptor (6, 7). The crystal structures differ by what type of ligand that 

was bound to the receptor when the crystallization was done; an agonist, an 

antagonist and a partial agonist. Using Molsoft ICM (5) the models was built after 



they were aligned with the 5-HT7 amino sequence (imported from the protein 

knowledge base, accession code: P34969). The homology models were refined by 

optimizing side chain conformations of non-conserved residues (residues that are 

different in the target 5-HT7 from the template beta1 adrenergic receptor) by Monte 

Carlo simulation and annealing the backbone by energy minimization. 

 

Docking was done with a rigid receptor using Molsoft ICM (5). The binding site was 

identified using IcmPocketFinder. The docking with the 21 ligands was done in a 

batch docking. Top ten results, based on energy score was saved for each ligand. 

 

Very few ligands connected to Asp3.32 by an H-bond and low energy score, so it was 

decided to attempt to make the binding pocket slightly bigger. This was done by 

mutating Y333 (Tyr7.43) and L329 (Leu7.39) to alanine, then running a flexible 

receptor docking with previously successfully docked ligand number 4, and then 

mutating the Y333 and L329 back, hoping that this would create a slightly bigger 

binding pocket. New docking batches with the 21 ligands where done but no 

significant improvement in results was seen. Still trying to improve the docking, the 

second extracellular loop (ECL2) in its entirety was removed from the receptor 

models, in an attempt to make more room for the larger ligands in the binding site 

(fig1 and fig 2). This did improve the overall score and interactions of all ligands to 

all receptor models. Two docking batches were done for all three receptor models 

with the removed ECL2. 

 

1A 1B 

Fig 1. 5-HT7 receptor model 2 based on x-ray structure of beta 1 adrenergic receptor 

– antagonist complex. 1A: before removing the ECL2. 1B: After removing the ECL2. 



 

2A 2B 

Fig 2. 5-HT7 receptor model 2 based on x-ray structure of beta 1 adrenergic receptor 

– antagonist complex. Seen from extracellular side. 2A: before removing the ECL2. 

2B: After removing the ECL2. 

 

Amino acid numbering in figures are numbered according to the amino acid sequence 

of the human 5-HT7 receptor (UniProt database:P34969). In the text Ballesteros-

Weinstein nomenclature (8) is used (Conversion table is shown in table 2). This is 

based on the very few and highly conserved residues in the transmembrane helix's of 

almost all of the family A GPCRs. The most conserved residue in each helix is given 

the number 50 (Asn in helix 1, Asp in helix 2, Arg in helix 3, Trp in helix 4, Pro in 

helix's 5-7). For each amino acid in a transmembrane helix the position is numbered 

relative to the highly conserved residue. For example in TMH3 where the reference 

residue is Arg3.50, the amino acid in the position before is Asp3.49, and the one after 

is Tyr3.51. 



 

Amino acid residue in 

human 5-HT7 receptor 

Ballesteros-Weinstein 

V98 Val2.60 

D121 Asp3.32 

V122 Val3.33 

F117 Phe3.28 

I118 Ile3.29 

Y207 Tyr5.38 

T208 Thr5.39 

S211 Ser5.42 

T212 Thr5.43 

F216 Phe5.47 

F299 Phe6.44 

T300 Thr6.45 

W303 Trp6.48 

F306 Phe6.51 

F307 Phe6.52 

S310 Ser6.55 

L322 Leu7.32 

R326 Arg7.36 

F328 Phe7.38 

L329 Leu7.39 

W330 Trp7.40 

L332 Leu7.42 

Y333 Tyr7.43 

Table2. Conversion table for Ballesteros-Weinstein nomenclature. 

 

Results 

After completing 2 batches of docking on each receptor model, all with the same 21 

ligands, we can see that the overall results where not to different between the three 

receptor models (Table 3), although a higher average energy score can be seen in the 

docking results for the partial agonist model. The majority of ligands docked 

successfully, with a hydrogen/ionic bond to Asp3.32, though ligands 3, 4 and 21 did 

not make any successful docking (binding with Asp3.32) on any of the models. 



Table 3. Ligand nr shows the ligand number and the stack number from the docking 

batch. In a stack, number 1 has the lowest energy score, while 10 has the highest 

energy score. At bottom the average for all ligands, agonists, antagonists and partial 

agonists are shown. Only stacks with the lowest energy for each ligand (represented 

in table 3) is included in the average. 

Dock1 Agonist model 
 

Dock2 Agonist model 

    
 

    

Ligand nr/stack nr Energy (kcal/mol) 
 

Ligand nr/stack nr Energy (kcal/mol) 

1 - 1 -17,35 
 

1 - 4 -9,39 

2   
 

2 - 1 -22,25 

3   
 

3   

4   
 

4   

5 - 2 -18,97 
 

5   

6   
 

6   

7 - 6 -13,86 
 

7   

8   
 

8 - 2 -14,03 

9 - 1 -15,46 
 

9 - 2 -13,17 

10 - 7 -4,93 
 

10 - 1 -13,75 

11 - 3 -17,00 
 

11 - 1 -17,87 

12 - 1 -17,38 
 

12 - 4 -15,01 

13   
 

13 - 1 -17,15 

14   
 

14   

15 - 9 -10,17 
 

15 - 7 -10,89 

16 -4 -11,82 
 

16 - 4  -15,38 

17 - 1 -18,07 
 

17 - 1 -14,55 

18 - 1 -18,62 
 

18   

19 - 1 -18,28 
 

19   

20 - 1 -23,28 
 

20 - 1 -20,42 

21   
 

21   

    
 

    

All ligands -15,78 
 

All ligands -15,32 

Agonists -17,35 
 

Agonists -9,39 

Antagonist -16,75 
 

Antagonist -16,39 

Partial ago. -10,20 
 

Partial ago. -13,46 

 

  



Dock1 Antagonist model 
 

Dock2 Antagonist model 

    
 

    

Ligand nr/stack nr Energy (kcal/mol) 
 

Ligand nr/stack nr Energy (kcal/mol) 

1 - 4 -12,90 
 

1 - 1 -18,03 

2   
 

2   

3   
 

3   

4   
 

4   

5   
 

5 - 8 -9,10 

6   
 

6   

7 - 3 -13,52 
 

7 - 1 -19,03 

8 - 1 -20,77 
 

8 - 2 -14,69 

9 - 6 -14,48 
 

9 - 5 -12,10 

10 - 1 -18,61 
 

10 - 1 -11,20 

11 - 1 -17,33 
 

11 - 1 -15,01 

12   
 

12 - 2 -18,30 

13 - 5 -18,35 
 

13 - 1 -17,76 

14 - 3 -16,53 
 

14 - 1 -19,30 

15 - 2 -17,21 
 

15 - 2 -14,95 

16   
 

16 - 3 -16,39 

17   
 

17   

18 - 3 -16,39 
 

18 - 1 -17,39 

19   
 

19 - 1 -17,87 

20 - 1 -25,24 
 

20 - 1 -18,62 

21   
 

21   

    
 

    

All ligands -17,39 
 

All ligands -15,98 

Agonists -12,90 
 

Agonists -18,03 

Antagonist -18,17 
 

Antagonist -16,53 

Partial ago. -16,55 
 

Partial ago. -11,65 

 

 

Average for all models 

All ligands -14,97 

Agonists -14,50 

Antagnoist -15,42 

Partial ago. -13,13 

 

  



Dock1 Partial agonist model 
 

Dock2 Partial agonist model 

    
 

    

Ligand nr/stack nr Energy (kcal/mol) 
 

Ligand nr/stack nr Energy (kcal/mol) 

1 - 3 -13,97 
 

1 - 2 -15,37 

2 - 2 -15,82 
 

2 - 9 -5,66 

3   
 

3   

4   
 

4   

5 - 3 -10,23 
 

5 - 3 -10,30 

6 - 2  -13,75 
 

6   

7 - 4 -9,77 
 

7 - 4 -10,47 

8 - 1 -21,53 
 

8 - 1 -21,34 

9 - 4 -11,05 
 

9 - 1 -14,20 

10 - 2 -12,99 
 

10 - 1 -15,66 

11 - 2 -14,32 
 

10 - 7 -9,23 

12 - 3 -11,44 
 

12 - 5 -12,45 

13 - 6 -11,97 
 

13 - 3 -13,51 

14 - 4 -11,60 
 

14   

15 - 3 -13,48 
 

15   

16   
 

16   

17 - 3 -10,63 
 

17 - 2 -10,03 

18 - 2 -15,20 
 

18 - 1 -12,28 

19   
 

19 - 4 -9,21 

20 - 1 -10,06 
 

20 - 4 -13,02 

21   
 

21   

    
 

    

All ligands -12,99 
 

All ligands -12,34 

Agonists -13,97 
 

Agonists -15,37 

Antagonist -13,06 
 

Antagonist -11,59 

Partial ago. -12,02 
 

Partial ago. -14,93 

 

 

5-HT7 receptor model 1 based on x-ray structure of beta 1 adrenergic receptor – full 

agonist complex 

The lowest energy score of the agonists in the agonist model came from ligand 1 (the 

full agonist 5-carboxamido-tryptamine), with a score of -17.35 kcal/mol (fig. 3). 

Almost all of the agonists docked with its hydrophobic part in the pocket between 

TMH4-6 and the nitrogen of the carboxamido moiety in close proximity to Ser5.42, 

and Thr5.43. Van der Waals interactions could be seen between the hydrophobic parts 

of the ligands and Val.3.33, Phe6.51, Phe6.52 and Leu7.39. Some results showed a 

hydrogen bond between the ligand and Thr5.43, and some to Ser5.42. The ligand with 

the lowest energy score had an H-bond interaction with Thr5.43. 

 

Ligand 20 scored the lowest on energy out of the antagonists, -23.28 kcal/mol (fig. 4). 

As expected it placed itself with a hydrogen bond to Asp3.32 while occupying the 

two pockets on either side. Also the Cl-terminal end is placed deep in the  hydrophob 



pocket between TMH4-6, showing van der Waals interactions with Phe6.51, Phe6.52 

and Val3.33. The other hydrophob end is placed in the pocket between TMH7-3 with 

the same type of interactions with Leu7.39, Leu7.32, Phe3.28 and Val2.60. None of 

the results showed any hydrogen-bond interaction between ligand and residues in the 

pocket between THM7-3. 

 

Fig 3. Ligand 1, CHEMBL 18840, 5-HT7 agonist, docked with agonist model. Seen 

from the extracellular side. 

 

Fig 4. Ligand 20, CHEMBL 259086, 5-HT7 antagonist, docked with agonist model. 

Seen from the extracellular side. 

 

 



The partial agonists had the highest average energy score of all the ligands groups. In 

the agonist model ligand 9 had the lowest score, -15.46 kcal/mol. The majority of the 

agonists were placed in the pocket between TMH4-6, in addition to the 

hydrogen/ionic bond to Asp3.32. Also the partial agonists favored the pocket, 

between TMH4-6 (fig.6). Though ligand 9 placed itself in the pocket between  

TMH7-3 with the ionic/ hydrogen bond to Asp3.32 and van der Waals bonds to 

Leu7.39 and Leu 7.32 (fig 5). 

 

Fig 5. Ligand 9, CHEMBL 161765, 5-HT7 partial agonist, docked with agonist model. 

Seen from the extracellular side. 

 

Fig 6. Ligand 10, CHEMBL 158402, 5-HT7 partial agonist, docked with agonist 

model. Seen from the extracellular side. 



5-HT7 receptor model 2 based on x-ray structure of beta 1 adrenergic receptor – an-

tagonist complex 

Agonist ligand 1, with an energy score of -18.03 kcal/mol, docked with a 

hydrogen/ionic bond to Asp3.32 and the carboxamido moiety in the pocket between 

TMH4-6 (fig 7). The ligand also made a H-bond to Thr5.43, van der Waals 

interactions with Val3.33, Phe6.51 and Phe6.52. The majority of the dockings by this 

ligand made a hydrogen-bond to Ser5.42. A few results indicated a ligand – Ser6.55 

interaction via a hydrogen bond. 

 

Fig 7. Ligand 1, CHEMBL 18840, 5-HT7 agonist, docked with antagonist model. 

Seen from the extracellular side. 

 

Antagonist ligand 20 showed an overall low energy score on both agonist and 

antagonist model. With -25.24 kcal/mol it had the lowest score of all docking results. 

In addition to the Asp3.32 bond the ligand had a hydrogen bond to Tyr5.38 in the 

TMH4-6 pocket and hydrophob interactions with Val3.33, Phe6.51 and Phe6.52, with 

the Cl-terminal of the ligand placed in the pocket between THM7-3, where it bonded 

to Phe3.28, Leu7.39 and Val2.60 via van der Waals (fig 8). Other results indicated 

ligand-residue interaction by H-bonds to Ser5.42 and Trp7.40. In the case where it 

connected to Trp7.40 the Cl-terminal end was placed in the pocket formed by THM4-

6, but this specific result had a higher energy score (-15.97 kcal/mol). 

 



Fig 8. Ligand 20, CHEMBL 259086, 5-HT7 antagonist, docked with antagonist 

model. Seen from the extracellular side. 

 

In the antagonist model the partial agonists docked in the pocket between TMH4-6. 

Most results from this group of ligands did not make a successful dock, and none of 

the ligands made any other H-bonds while retaining the bond to Asp3.32. Ligand 10, 

with the lowest energy score -18.61 kcal/mol, docked with an H-bond to Asp3.32 and 

van der Waals bonds to Phe6.52, Phe6.52 and Val3.33, filling the TMH4-6 pocket (fig 

9). 

 

Fig 9. Ligand 10, CHEMBL 158402, 5-HT7 partial agonist, docked with antagonist 

model. Seen from the extracellular side. 

  



5-HT7 receptor model 3 based on x-ray structure of beta 1 adrenergic receptor – 

partial agonist complex 

The overall results on the partial agonist model were not as good as on the other two 

models. The best results came from ligand 8 in the first docking with an energy score 

of -21.53 kcal/mol (fig 10). While keeping the Asp3.32 ionic/hydrogen bond it also 

had an H-bond to Tyr5.38. Van der Waals interaction between the ligand and residues 

in the receptor included Val3.33, Phe6.51 and Phe6.52 in the pocket between TMH4-

6, Phe3.28, Leu7.39 and Ile3.29 in the pocket between TMH7-3. It also scored low in 

the second docking, -21.34 kcal/mol. Although it did not make many successful 

dockings while maintaining the Asp3.32 bond and occupying the two pockets on 

either side, the ligand did make a hydrogen-bond with Ser5.42 in two of the docking 

simulations. 

 

Fig 10. Ligand 8, CHEMBL 267062, 5-HT7 antagonist, docked with partial agonist 

model. Seen from the extracellular side. 

 

Discussion 

It should be mentioned that residues in the extracellular loop 2 (ECL2) is known to be 

involved with ligands binding to aminergic GPCRs (as well as residues in trans 

membrane helix's 3, 5, 6 and 7) (11, 15). The second extracellular loop has also been 

suggested to be important for selectivity over the 5HT-1a receptor, by reducing the 

size of certain cavities where ligands bind in the 5-HT7 receptor (11). The ECL2 in 

this study was removed to create a larger pocket for the ligands to be placed in during 

the docking simulations. Therefor we cannot say anything about the role of amino 



acids in the ECL2 regarding binding of ligands to the receptors in this study. 

 

Many ligands did not make many successful dockings with the homology receptor 

models, and a few did not make any at all. Some of the reasons for this might be that 

we did a rigid receptor docking. Doing a flexible receptor docking might have shown 

more successful results. Also there are small discrepancies in the homology model. 

The similarity of the amino acid sequence of the template used (beta1 adrenergic 

receptor with ligand complex) and the resolution of the template contribute to the 

quality of the homology model. The template used in this research has one of the 

highest  resemblances to the amino acid sequence of the human 5-HT7 receptor. 

 

Binding site description and pharmacophore models 

Several pharmacophore models for the 5ht7 have been published (9,10,11,4,12). Most 

suggest at least four pharmacophore features; a positive ion (PI), a hydrogen-bond 

acceptor (HBA) and two hydrophobic regions (HYD). The PI, a basic nitrogen, 

interacts with Asp3.32, and works as the main anchoring point for the ligand. The two 

hydrophobic regions are located on each "side" of the PI. Located in the receptor 

binding site it would be one between helix's 4-6 (HYD1) (Phe5.47, Phe6.52, Phe6.51, 

Trp6.48 (10,11,13)) and the other between helix's 7-3 (HYD2) (Phe3.28, Ile3.29, 

Phe7.38, Trp7.40, Leu7.39 (10,13,14)). Theories about a more central placed 

hydrophob pocked have also been published(4, 13). It has also been suggested that 

the two pockets formed by TMH4-6 and TMH7-3 contains residues that bonds with a 

ligands HBA moiety (Ser5.42, Ser6.55, Thr5.43 between TMH4-6 (11,12,13) and 

Tyr7.43 (14) between TMH7-3). 

 

Comparing the three models 

As most of the ligands used in the docking are antagonists, one could expect an 

average lower energy score from the dockings to the 5-HT7 receptor model based on 

x-ray structure of beta 1 adrenergic receptor with an antagonist complex. But as we 

can see from table 3 the results are not significantly better from the antagonist model 

compared to the agonist model. The 5-HT7 receptor model based on x-ray structure 

of beta 1 adrenergic receptor with a partial agonist complex yielded a higher energy 

score on most of the ligands, suggesting that in this study the crystal structure with 

the partial agonist complex might be less suited for docking with 5-HT7 antagonists. 

 



Agonists 

The agonist in this study made many successful dockings (connecting with an 

hydrogen/ionic-bond to Asp3.32) while scoring a low energy. The agonist ligand 

occupied the pocket between TMH4-6 in almost every case of a successful docking. 

Residues included in the hydrophob pocket are located in TMH5 (Phe5.47 (11)) and 

TMH6 (Phe6.44, Phe6.51, Phe6.52, Trp6.48 (10)) as suggested in previously 

published papers. In this study we also noticed that many of the agonist results 

showed van der Waals interaction with Val3.33. In most cases it did make an H-bond, 

mainly with Thr5.43 (which has been suggested as one of the residues connecting 

with an HBA part of ligands (12)), and in several occasions H-bonds between ligand 

and Ser5.42 and Ser6.55 where seen. These two residues have also been suggested to 

be  HBA connecting amino acids in the binding of both agonists and antagonists (10, 

11). It has been suggested that the pocket formed between TMH4-6 is where the 

agonist’s hydrophob/aromatic part bind, by interaction with hydrophob residues and 

hydrogen-bond (12). 

 

There was no significant difference in the way the agonist docked in the three 

different models, and there were minimal differences between the agonist and 

antagonist model. Even so, the dockings in the receptor model with full agonist 

complex are probably more correct models, as it represents the receptor in its active 

state. 

 

Antagonists 

Most of the ligands used in the docking studies are 5-HT7 antagonists (table 3). 

Despite the large number of antagonists docked, none of them made a successful 

docking while connecting with an hydrogen-bond in the TMH7-3 pocket (mainly 

Tyr7.43 (14)). Many hydrophobic interactions where seen, mainly with Leu7.39, 

Leu7.32 in TMH7, Phe3.28 and Val2.60 in TMH3 and 2 respectively. The importance 

of residue Val2.60 might be worth investigating further. The less conserved area 

between TMH7-3 has been proposed to be important in antagonist selectivity over 

other monoamine GPCRs, especially for ligands with the presence of hydrophob 

aromatic- and H-bond accepting moieties that interact with this part of the 

receptor(14). Some of the residues suggested to be important in this selectivity are 

Tyr7.43, Phe3.28, Arg7.36 (11, 14). 

 



In many of the results we could see an interaction by an HBA in the pocket between 

TMH4-6, in addition to van der Waal bonds to Phe6.52, Phe6.52 and Val3.33. 

Residue S6.55 in this pocket is believed to be important for antagonist selectivity 

over the 5HT-1a receptor (11). In this study antagonists mostly interacted with 

Ser5.42, but also Thr5.43 and Tyr5.38. While it has been proposed that S6.55 

connects to a ligands HBA in the 5-HT7 receptor, the 5HT-1a receptor has an alanine 

at this position, and it is believed that this is one of the reasons for the selectivity. 

Ligands with selectivity over 5HT1a must have the correct structure and spacing 

allowing it to make the connection to S6.55 rather than S5.42 in the 5-HT7 receptor. 

None of our antagonists did make a successful docking while connecting to S6.55 

with a hydrogen-bond, but a few of the agonist results did show an H-bond to this 

residue. Ligands 7 and 8, both antagonists, has been proved to be selective 

antagonists over other the human 5-HT2A receptor (16(ref2)). 

 

Partial agonists 

The few partial agonists used in the docking had an overall high energy score (table 

3), and they did not show any pattern of better docking results in the docking with the 

model based on the crystal structure with a partial agonist complex. 

Since ligand 9 and 10 doesn't have a suitable HBA moiety, neither made any other H-

bonds to other parts of the binding site then the mandatory Asp3.32 connection. 

Ligand 21 didn't make any successful dockings. 

 

Most of the dockings resulted in a placement of the partial agonists in the pocket 

between TMH4-6. But the ligand with the highest score in the agonist model was 

placed more in the center, connecting via van der Waals bonds to Leu7.32 and 

Leu7.39 between TMH7-3, with its aromatic hydrophobic terminal end in close 

proximity of Phe7.38, though no interaction could be seen with that residue. This 

might be because of the placement of Phe7.38 in this specific homology model, as its 

aromatic ring is pointing outwards, and not in towards the expected binding site. 

Phe7.38 has been suggested to be an important residue for selectivity for some partial 

agonists (13). Along with residues Phe6.51 and Phe6.52, it is thought to create a 

hydrophobic pocket in the central part of the binding site (13). The placement of  

ligand 9, in the first docking in the model based on the crystal structure with an 

agonist complex (fig3), may support this theory. A few other results like this where 

also seen with ligand 10, though with a much higher energy score. 



Conclusion 

The ligands used for docking in this study fitted in to the binding site of the 3 

different homology models of the human 5-HT7 receptor as we had expected, and 

mostly in accordance with previously published SAR, docking and mutation studies 

investigated. This includes the Asp3.32 ionic bond, hydrogen bonds to residues 

Ser5.42, Thr5.43 and Ser6.55 in the pocket between TMH4-6 and van der Waals 

interactions. Only one H-bond to residues in the area between TMH7-3 was seen, and 

that was to Trp7.40. This only happened on one single result, and the energy of the 

complex was high. Agonists and partial agonists docked mostly in the pocket between 

TMH4-6, with a few exceptions of the partial agonist where it was more centrally 

placed. The larger antagonists filled out both the pocket between TMH4-6 and 

TMH7-3. Residues that repeatedly had hydrophobic interactions to ligands (via van 

der Waals) include Val2.60, Phe3.28, Val3.33, Ile3.29, Phe6.51, Phe6.52, Leu7.32, 

Leu7.39. The repeating antagonist interaction with Val2.60, and both agonist and 

antagonist interaction with Val3.33, might be worth further investigation to clarify 

their role in ligand binding. Also a few results indicated hydrogen bond between 

Tyr5.38 and antagonists. 

 

The only significant difference we could register between the results from the 3 

different homology models, was that the one based on beta1 adrenergic receptor with 

a partial agonist complex yielded less successful dockings and in general a higher 

energy score. This might suggest that this crystal structure is less suited to be used as 

template for homology models intended for docking with antagonists. 

  



Ligands used in the dockingbatch 

Ligand Nr Formula CHEMBL ID Ligand type 

 

1 
 

C11H14N3O CHEMBL18840 Agonist 

 

2 
 

C27H33N4O2S CHEMBL430706 Antagonist 

 

3 
 

C25H31FN3O3S CHEMBL413707 Antagonist 

 

4 
 

C26H31ClN3O3S CHEMBL116292 Antagonist 



 

5 
 

C26H32N5O3S CHEMBL115262 Antagonist 

 

6 
 

C26H31FN3O3S CHEMBL114345 Antagonist 

 

7 
 

C25H29FN3O CHEMBL9951 Antagonist 

 

8 
 

C25H30N3O CHEMBL267062 Antagonist 



 

9 
 

C15H19N2S CHEMBL161765 

Partial 

agonist 

 

10 
 

C15H25N2S CHEMBL158402 

Partial 

agonist 

 

11 
 

C24H30ClFN3O CHEMBL409662 Antagonist 

 

12 
 

C24H31ClN3O CHEMBL408976 Antagonist 



 

13 
 

C24H30ClFN3O CHEMBL406414 Antagonist 

 

14 
 

C24H31ClN3O CHEMBL261719 Antagonist 

 

15 
 

C22H27ClN3O CHEMBL261209 Antagonist 

 

16 
 

C22H27ClN3O CHEMBL260994 Antagonist 



 

17 
 

C24H31FN3O CHEMBL260872 Antagonist 

 

18 
 

C24H30ClFN3O CHEMBL259549 Antagonist 

 

19 
 

C24H30Cl2N3O CHEMBL259087 Antagonist 

 

20 
 

C25H33ClN3O CHEMBL259086 Antagonist 



 

21 
 

C26H32N CHEMBL596959 

Partial 

agonist 
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