
FACULTY OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

Harvest

A Collaborative System for Distributed Retrieval of

Social Data

Tor Kreutzer

Inf-3990

Master's Thesis in Computer Science
May, 2012

Abstract

In recent years, social network providers has become one of the largest indus-
tries in the world. These networks created a new arena for sharing informa-
tion over the Internet, and thus changed the way people interact with each
other. Hundreds of millions of social network users are updating statuses and
sending messages to each other every day. These interactions produce vast
amounts of social data. This data is the core of the social network providers
business model, and it is sold to large companies to perform personalized
advertisement, brand monitoring and viral marketing. The price of this data
can be intimidating, and some might be unable or unwilling to pay for it be-
cause of its price. If the data was freely available, research that could benefit
from this data would be derived more freely, leading to new knowledge.

This thesis presents Harvest, a collaborative system for retrieving social data.
Harvest is a peer-to-peer system consisting of contributing social network
users, inspired by public resource computing. Harvest shares social network
account-bound resources to retrieve large social data sets. Contribution is
achieved by running an application on the contributors computer like other
public resource computing system such as the @home systems.

The system implements retrieval of data from Twitter. Experiments on real
Twitter data show that the system scales with increased contribution. The
data retrieval bandwidth per contributing user is quite low, and the number of
contributors needed to achieve a considerably large data retrieval bandwidth
is high, but there are no associated financial costs with the system. Harvest
would benefit greatly by retrieving data from more sources as this would
increase its data retrieval bandwidth, in addition to o↵er more abundant
data.

iii

Acknowledgements

I would like to thank my adviser Professor Otto Anshus and my co-advisers
Associate Professor John Markus Bjørndalen and Associate Professor Phuong
Ha Hoai for their constructive feedback and support. Their help and advice
has been invaluable.

I would like to thank my fellow student Andreas for his constant (and some-
times constructive) criticism, and for six awesome years of study.

Finally, I would like to thank my family, my friends and my beloved girlfriend
for their support.

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Problem Statements . 2

1.2 Motivation . 3

1.3 Contributions . 3

1.4 Limitations . 4

1.5 Lessons Learned . 5

1.6 Organization . 5

2 Modern Social Networks 7

2.1 Explicit Social Networks . 7

2.1.1 Data Access . 8

2.2 Implicit Social Networks . 8

2.2.1 Data Access . 8

3 Related Work 11

vii

viii Contents

3.1 Data Mining . 11

3.1.1 Twitter . 11

3.1.2 Facebook . 12

3.2 Public Resource Computing 12

3.3 BOINC . 12

4 Harvesting the Social Network 15

4.1 Collaboration . 16

4.2 Distributed System . 16

4.2.1 Data Retrieval . 16

4.2.2 Work Distribution . 17

5 Architecture 19

5.1 Harvest Architecture . 19

5.1.1 Peer to Peer System 19

5.1.2 Harvest Nodes . 20

5.1.3 System Discovery . 22

5.2 Social Networks and Social Data 22

5.3 Consumers . 23

6 Design 25

6.1 Harvest Design . 25

6.1.1 Consumer Interface . 25

6.1.2 Collection Management 28

6.1.3 Data Storage . 29

Contents ix

6.1.4 Collection Interface . 29

6.1.5 Network Interface . 30

6.2 Tracker Design . 31

6.2.1 Tracker Interface . 31

7 Implementation 33

7.1 PyRpc . 33

7.1.1 PyRpc Architecture . 33

7.1.2 Network Communication Design and Implementation . 34

7.1.3 PyRpc Design and Implementation 36

7.2 PyChord . 37

7.2.1 Chord . 37

7.2.2 PyChord Design and Implementation 40

7.3 PyRest . 41

7.3.1 PyRest Architecture 41

7.3.2 PyRest Design and Implementation 41

7.4 Harvest . 43

7.4.1 Consumer Interface . 43

7.4.2 Collection Management 43

7.4.3 Data Storage . 44

7.4.4 Collection Interface . 44

7.4.5 Network Interface . 44

7.5 Harvets Tracker Implementation 45

8 Experiments 47

x Contents

8.1 Methodology . 47

8.1.1 Metrics . 48

8.2 Benchmarks . 50

8.2.1 Experimental Setup . 51

8.3 Performance Benchmarks . 51

8.3.1 System Scaling . 51

8.3.2 Network Utilization . 54

8.3.3 System Activity Distribution 56

8.3.4 Memory Usage . 57

8.3.5 CPU Usage . 57

8.3.6 Data Loss . 58

8.4 Sensitivity Benchmarks . 59

8.4.1 CPU Sensitivity . 59

8.4.2 Disk IO Sensitivity . 60

9 Discussion 63

9.1 Discussion of Experimental Results 63

9.1.1 System Performance 63

9.1.2 Harvest Node Inactivity 64

9.1.3 Data Loss . 65

9.1.4 Application Sensitivity 65

9.2 Motivation for Harvest Architecture and Design 65

9.3 Evaluation of Implementation 66

9.3.1 Motivation for Implemented Artifacts 66

Contents xi

9.4 Evaluation of Problem Statements 68

10 Conclusions and Future Work 69

10.1 Contributions . 69

10.2 Concluding Remarks . 70

10.3 Future Work . 70

References 73

List of Figures

4.1 Harvest Overview . 15

4.2 Data Retrieval Process . 17

5.1 Harvest Architecture . 20

5.2 Harvest Node Architecture . 21

5.3 System Discovery . 22

7.1 PyRpc Architecture . 35

7.2 PyChord Architecture . 39

8.1 Systems Research Methodology 48

8.2 System Scale Benchmark Results 53

8.3 Network Utilization Benchmark Results 55

8.4 CPU Sensitivity . 60

8.5 Disk IO Sensitivity . 61

xiii

List of Tables

6.1 Harvest RESTful Interface. 26

6.2 Harvest Tracker RESTful Interface. 32

xv

List of Abbreviations

API application programming interface.

BOINC Berkley Open Infrastructure for Network Computing.

CPU central processing unit.

DHT distributed hash table.

IO input/output.

KB kilo bytes.

Kbps kilo bits per second.

MB mega bytes.

Mbps mega bits per second.

P2P peer-to-peer.

PRC public resource computing.

REST representational state transfer.

RPC remote procedure call.

SN social network.

SNBW social network bandwidth.

SNP social network provider.

TCP transmission control protocol.

xvii

Chapter 1

Introduction

Social interaction has changed much in the last few years. The introduction
of web based social network (SN) created a new arena for sharing information
over the Internet, and thus revolutionized the way people interact with each
other. As a consequence, large amounts of social data are generated within
these networks every day. This social data can in turn be collected and
analyzed, giving previously intangible knowledge.

Social network provider (SNP) generally have price tags on their collection
of social data. A single SN user on his own has only access to a smaller part
of this data for free. This makes the access to large amounts of social data
limited for those who do not have the means to a↵ord it. This is a problem
for individuals interested in large collections of social data, but are unable
to extract it, because of the limitations of the social network providers. By
introducing a platform where users can collaborate on retrieving data, their
combined resources will grant access to a potentially much larger amount
of social data without financial cost. This will lower the threshold for con-
ducting research on social data, in turn lead to more results in this field of
research.

This thesis presents: Harvest, A Collaborative System for Distributed Re-
trieval of Social Data. This system allows regular SN users to contribute
the resources made available from their SN account to collaboratively re-
trieve large amounts of social data. Contribution is achieved by contributors
running client software on their computers. The contributor will then be
part of a distributed system retrieving data on his behalf. This software is
an application that will run in the background, having little a↵ect on other

1

2 1 Introduction

applications.

Harvest o↵ers an interface for retrieving data using the resources of the con-
tributors. Those interested, the consumers of the data, can define their data
set of interest, and request it from Harvest. In turn, Harvest will start a
distributed retrieval session, retrieving the requested data from the SNs.

Experiments on real social data are run to benchmark and explore the system
behaviour. Public data is retrieved from Twitter using the Twitter REST
API1. The experimental results show the limitations in data retrieval rate of
a single user, and the that the system presented in this thesis is a scalable
alternative to retrieving large amounts of data from social networks with no
financial costs associated with it. But it is also clear from the experiments
that the number of users needed to achieve a relatively large data retrieval
bandwidth is very high for it to have obvious practical use.

Should the quotas of the SNPs increase however, and should Harvest include
other sources for retrieving data, the above limitations can be surpassed.

1.1 Problem Statements

The social data on today’s modern SNs are a part of their business model. As
a consequence, their huge amount of data is generally reserved for those with
the means to a↵ord it, for instance large research projects and advertisement
companies. The single SN user is limited to only a handful of this data within
some time frame with no cost. This means he has no chance to retrieve large
amounts of data on his own from these networks without having to pay for
it. It would be interesting to see the performance of many users as part of
a system where they could collaborate with many others, combining many
hands to retrieve larger amounts of data without cost.

This thesis proposes the following hypothesis:

Social data can be retrieved from social networks in a
scalable manner, increasing in data retrieval rate with
an increasing number of contributing users, using a col-
laborative system.

1Twitter REST API - http://dev.twitter.com

1.2 Motivation 3

Following the hypothesis above, thesis states the following:

Collaborative retrieval of social data using such a system
will avoid the financial costs generally associated with
such data extraction.

The statement and hypothesis is evaluated through Harvest. The system
provides an interface for collaborative retrieval of large amounts of social
data. The architecture, design, and implementation of Harvest is evaluated
on its ability to scale with increasing contribution, and experimental results
are discussed in Chapter 9.

1.2 Motivation

Social data has been useful in research topics such as social network analysis
and sociology for a long time. Many interesting references on such topics can
be found in [14].

Another field of research that greatly benefits from the modern social net-
works is information di↵usion; the theory on how, why, and at what rate
new ideas or actions spreads through communication channels [13]. This
area is extensively researched with relation to viral marketing and epidemi-
ology [9, 11, 4].

With the new modern SNs, the size of this data is in a totally di↵erent
magnitude than earlier, and this makes such work much more exiting than
before. The motivation for this work is to grant access to large data sets from
SNs to those who are interested but discouraged by their financial costs. With
more accessible data, new and innovative work and research could spawn
more freely, leading to applicable results in many fields.

1.3 Contributions

The following scientific contributions are made:

• The architecture, design and implementation of a scalable collaborative
system for retrieving social data.

4 1 Introduction

• Experimental results showing properties of the system.

The following artifacts where also developed along with this thesis. Regard-
ing the artifacts that are open source. They were developed by the author
during this thesis, and later opened to the public. Their entire development
is done by the author.

• Harvest, an implementation of a scalable collaborative system for re-
trieving social data.

• An open source Python Chord protocol module.2

• An open source Python RPC module.3

• An open source Python module for building RESTful interfaces.4

1.4 Limitations

In the work on this thesis, some areas are not taken into account.

Harvest does not take into consideration the side e↵ects of arbitrary discon-
nects from the system. Although the system overlay network handles arbi-
trary node failures, the system itself does not handle the data loss that comes
with node departure. When Harvest nodes retrieve data, this data will not
be available if the node either disconnects or fails. To avoid this behaviour,
a separate scheme for either replication of retrieved data, or overlapping of
data retrieval must be designed.

There has been no focus on security aspects of the system. As this is a
distributed system running on arbitrary users personal machines there is
always the need to look for potential exploits. But as this thesis is about the
scale of data retrieval rate based on increasing contribution, this area has
been left out.

Harvest does not consider user specific privileges when coordinating data
retrieval. As some users might have access to some private material, there is
potential for a small optimization by coordinating this.

2http://github.com/TnaK/PyChord.
3http://github.com/TnaK/PyRpc.
4http://github.com/TnaK/PyRest.

1.5 Lessons Learned 5

Another potential optimization is reuse of data between sessions. This is
not handled by Harvest, and could possibly provide huge optimizations for
certain requests with overlapping data.

1.5 Lessons Learned

This thesis presents a method for retrieving social data from social net-
works using collaboration. Using this method, it is possible to retrieve larger
amounts of data without associated financial cost, with increasing data re-
trieval bandwidth based on contribution. It is clear from the experiments
that the contribution needed for this to be reasonable is quite high. Combin-
ing data retrieval from di↵erent social networks would be highly beneficial,
as this would both increase the data retrieval bandwidth as well as o↵ering
more abundant data.

1.6 Organization

The remainder of the thesis is organized as follows. Chapter 2 will describe
preliminary details about the current state of modern social networks. Chap-
ter 3 will discuss related work.

The next chapters will describe the state of Harvest in a dogmatic fashion.
The system is described as is, saving the discussion and evaluation for later
chapters. Chapter 4 presents the main idea behind the work of this the-
sis. The architecture of the system presented in the thesis is detailed in
Chapter 5. The design is given in detail in Chapter 6. Chapter 7 gives the
implementation details of the system.

The system is evaluated in Chapter 8 and Chapter 9 with experiments and
discussion. The thesis is concluded in Chapter 10, and outlines for future
work is presented.

Chapter 2

Modern Social Networks

People and the relationships between them can be represented as a graph
(or network), with individual persons representing nodes in the graph, and
the relationships between them as edges in the graph. This is called a social
network.

The modern meaning of the term SN refers the explicit social networks that
belong to web applications of the Internets SNPs such as Facebook, Twitter
and Myspace. There are also other, implicit SNs such as web forums and
blogs.

2.1 Explicit Social Networks

These web applications create concrete representations of SNs, and map all
social interactions between users within them. This creates social networks
that are more detailed and more accessible than before, and gives new pos-
sibilities for work on such networks since there is almost unlimited amounts
of data associated with them.

The amounts of users on these SNs has grown to vast numbers in the past
few years. Facebook alone has over 901 million active users [6] as the end of
March 2012. The amount of social data created within Facebook was close
to the exa-scale around 2010.

This social data is the core of the SNPs business model, and comes with a
price tag. To support the cost of providing a social service at this scale, their

7

8 2 Modern Social Networks

social data is sold as a product to those of interest. As a result, not everyone
can a↵ord this data.

2.1.1 Data Access

The SNPs generally make their data available through web application pro-
gramming interfaces (APIs), commonly using representational state transfer
(REST), or RESTful APIs. Though many of these APIs are meant for social
apps that interact with the networks, some also o↵er APIs for data harvesting
and analysis of social data.

The regular APIs are generally free, but limited by the amount of API calls
allowed within a certain time frame. After this time frame has passed, the
limit is reset. These APIs are designed for creating web applications and
mobile application on top of the SNs, but can be used for data harvesting of
small data sets.

Data harvesting APIs give access to more data, but this data is not free, and
the price increases with the amount of data requested. For example, the two
main providers of twitter data (Gnip1 and DataSift2) have prices ranging up
to 15.000$ per month for their service.

2.2 Implicit Social Networks

These are social networks that are created by social behavior on the Internet.
For example, if two Internet users discuss the same topic thread in a public
forum, there is an implicit social connection between them since they share
a common interest on the topic.

2.2.1 Data Access

Implicit SNs were not designed for data mining in the same way as for explicit
SNs. Because of this, data retrieval from such networks is rather limited, and

1Gnip - http://gnip.com/twitter
2DataSift - http://datasift.com

2.2 Implicit Social Networks 9

generally done by web crawling techniques, as there are seldom specific APIs
for retrieving data from public forums.

Chapter 3

Related Work

3.1 Data Mining

Data mining is the extraction of knowledge from data. In this context the
data has origin from social networks; data mining social data. This is usually
done by crawling the web, or by public APIs designed for such purposes
o↵ered by SNPs. In most of the work done on data extraction there has been
an emphasis on the processing of this data and the analysis associated with
that processing. This is in most cases di↵erent from the work of this thesis
as only the method of data extraction is relevant.

Below are work related to data extraction from social networks.

3.1.1 Twitter

In an experiment done by Kwak et. al [10] used a setup of 20 computers
that collaboratively harvested the entire Twitter social graph, and executed
analysis on that data set. This di↵ers from the work of this thesis in that it
was not built as a system for retrieving social data. Rather this was a setup
to collect that specific data for the analysis experiment.

11

12 3 Related Work

3.1.2 Facebook

In another work on social data mining [12], data was harvested from users
through social apps developed using Facebook Development Platform1, in-
cluding a gaming app. In this experiment, data was extracted from the
usage of these applications using di↵erent techniques, such as retrieving user
information from the Facebook users that

Harvest is similar in the fact that it also uses a SN app for the data retrieval.
But the Harvest application is designed explicitly for this purpose, and o↵ers
no functionality beyond that. Instead of retrieving info about the users that
use the app, Harvest use the quota of the SN account to retrieve public data
from other users.

3.2 Public Resource Computing

Public resource computing (PRC) has been a research field since the mid
1990’s starting with GIMPS2 and Distributed.net3. There have since then
been a number of systems that take advantage of volunteer computing [1, 2, 7].
The major di↵erence between Harvest and PRC is how they define shared
resources. In PRC, resources is generally referring to computational resources
such as central processing unit (CPU) and memory. Although these resources
are contributed, Harvest focuses on the ability to retrieve data as its resource.
It is this resource that is limited, and that is shared within Harvest.

3.3 BOINC

Berkley Open Infrastructure for Network Computing (BOINC)4 [1] is a frame-
work for creating large-scale public resource computing system. BOINC takes
advantage of the computing and storage resources of participating users to
create scalable systems with high demands for computing, storage and com-
munication. Many systems (60+) use BOINC to achieve their computational
resources, including SETI@home, folding@home, MilyWay@home to mention

1Facebook Development Platform - http://developer.facebook.com
2Great Internet Mersenne Prime Search - http://www.mersenne.org
3Distributed.net - http://www.distributed.net
4http://boinc.berkeley.edu/

3.3 BOINC 13

a few. These systems have grown largely in popularity the last years, and
has proved the e↵ectiveness of a distributed model for performing large scale
computing.

BOINC takes advantage of the computational hardware of participating users
to perform computation on data. Harvest on the other hand uses the partici-
pating users’ download limit, or quota, of his SN account. Also, Harvest is all
about acquiring data, where as BOINC is a framework for data processing.

Harvest has a di↵erent architecture than BOINC. BOINC uses a centralized
server [3] for task distribution. Harvest on the other hand is a decentralized
system, and handles this task distribution distributed on every participating
node.

Chapter 4

Harvesting the Social Network

The limitations of cost (financial) free data retrieval from SNs are described
in Chapter 2. The idea behind this thesis is to provide a way to provide
higher data retrieval bandwidth using collaboration. This is achieved by
a distributed and decentralized system of collaborating peers that combine
their resources for the greater good. Illustrated in Figure 4.1, this system is
the middle layer between those interested in the data; the data consumers,
and the holders of the data; the SNs.

&RQVXPHUV

+DUYHVW

6RFLDO�1HWZRUNV

Figure 4.1: Harvest as the middle layer between the data and their consumers.

15

16 4 Harvesting the Social Network

4.1 Collaboration

All users of SNs have certain resources associated with their accounts. The
resource of interest is their capacity to retrieve data from a social network;
their social network bandwidth (SNBW). As mentioned in Chapter 2 the free
APIs of the social network providers are limited by the number of API calls
within some time frame. This means that the SNBW of a single SN user is
the amount of data he can retrieve within that time frame.

In order to achieve increased data retrieval rate, the SNBW of several users
(contributors), is combined by having them collaborate on retrieving the
social data. With more users, one would achieve higher SNBW, thus getting
high network bandwidth. The result is the ability to retrieve large data sets
within a reasonable amount of time.

4.2 Distributed System

This collaboration is achieved through a distributed system that connects all
contributors together. In order to be granted access to this system, contribu-
tors run client software on their computers that are authenticated with their
SN accounts. The system handles all communication within the network,
and there is no need for manual administration. The core functionality of
the system is to coordinate the collaborative data retrieval. This includes
harvesting data from the SNs and work distribution.

4.2.1 Data Retrieval

The data of interest is the social data. The information described by SN
users on their profiles, their social links (friends and followers), and their
status updates. It is this data that is retrieved by Harvest.

To initiate data retrieval, Harvest o↵ers an interface for external users (con-
sumers). This is an asynchronous interface, letting consumers request the
desired data, check the status of their request, and download the data when
the task is completed.

The data retrieval process of harvest is illustrated in Figure 4.2. It starts
by a consumer initiating a request for a data set. This requested data set is

4.2 Distributed System 17

&RQVXPHUV

+DUYHVW

6RFLDO�1HWZRUNV

�

� �

�

�

Figure 4.2: Data retrieval process of Harvest in steps 1 to 5. 1: Request
to retrieve data set. 2. Data set requested from social network. 3: Dis-
tributed data retrieval from social network. 4: Data requested from Harvest.
5: Requesed data set downloaded and merged from Harvest.

then converted into SN API calls, and requested from the SN by the contrib-
utors. Partial data is then retrieved and stored at each contributor. Upon
request from the consumer, the data is downloaded from each contributor,
and merged into a final result; the requested data set.

Harvest is is only responsible for the retrieval of the requested data, and does
not handle the merging of acquired data. Data is merged by the consumer
that has requested this data.

4.2.2 Work Distribution

In order to coordinate data retrieval, Harvest distributes work within the
system. The work that is done in harvest is API calls to the SNs, and these
must be distributed evenly in order to fully utilize the API call limit of each
contributing user. Harvest divides the data request into a number of SN API
calls that retrieves that data. These API calls, or tasks, can then be sent
to nodes within the network that are responsible for executing that specific

18 4 Harvesting the Social Network

task.

Chapter 5

Architecture

Harvest is a distributed system for retrieving large amounts of data from
social networks. The system consists of SN users that run software on their
computers, which are the nodes in the system. The illustration in Figure 4.1
from Chapter 4 shows an overview of the main idea of the system. This
chapter details this idea into a system architecture, and describes the purpose
and functionality of the social networks, of Harvest, and of the consumers.

5.1 Harvest Architecture

5.1.1 Peer to Peer System

Harvest is a distributed and decentralized peer-to-peer (P2P) system of con-
tributing SN users. Each contributor is represented as a node in the system;
a Harvest node. The architecture is illustrated in Figure 5.1. These nodes
present the system equally in terms of interfaces they provide. This means
that all requests to Harvest should result in the same result regardless of what
node handled the request. This is the intended behaviour, and no guarantees
are set to make it absolute.

Harvest users contribute their resources to the system in the form of data
retrieval bandwidth. This contribution is achieved by contributors running
a Harvest application on their computer. This application acts as a peer in
Harvests P2P network, collaborating with other peers within the system to

19

20 5 Architecture

retrieve data.

+DUYHVW�
1RGH

+DUYHVW�
1RGH

+DUYHVW�
1RGH

+DUYHVW�
1RGH

+DUYHVW�
1RGH

&RQVXPHU &RQVXPHU

+DUYHVW

6RFLDO�1HWZRUN 6RFLDO�1HWZRUN

Figure 5.1: Harvest peer-to-peer system. An elaborated illustration of Fig-
ure 4.1. The Harvest nodes within the dotted lines represent the Harvest box
in Figure 4.1. The same data retrieval process applies here.

Harvest is a decentralized P2P system. New nodes can enter the network
from any node currently in the system, and will find their place with no
manual administration. Likewise, consumers can send requests to any node
in the system, and the data retrieval process will be distributed internally
within the system autonomously.

5.1.2 Harvest Nodes

The architecture of the Harvest nodes is illustrated in Figure 5.2. The node
has a layered architecture, where each layer only communicates with the layer
just above or just below it.

The top layer is the consumer interface for the node. This interface handles
all interaction with consumers and lets consumers access the data collection
management and the data storage of this node. The interface support re-
questing data harvesting, as well as defining the data to be retrieved. In
addition it has methods for downloading retrieved data. Retrieving data is
done per node, meaning the entire data for a data retrieval session must be
partially retrieved from every node.

5.1 Harvest Architecture 21

&RQVXPHU�LQWHUIDFH

&ROOHFWLRQ�
,QWHUIDFH

'DWD�6WRUDJH

1HWZRUN�
,QWHUIDFH

&ROOHFWLRQ�0DQDJHPHQW

Figure 5.2: Harvest node architecture. Each layer only communicates to the
layer directly above or below it.

The collection management layer is responsible for the retrieval of the re-
quested data. This includes coordinating collaborative data retrieval, work
distribution, and load balancing. The collection management at each node
harvests data according to the consumers request utilizing Harvests collection
interface, and stores retrieved data using local data storage.

The Harvest nodes data storage persistently stores all retrieved data. Data
stored in the data storage is accessible for consumers through the consumer
interface. Retrieved data is handed to the data storage by the collection
management.

The collection interface directly interacts with the interfaces of the SNs.
This is the layer that does the dirty work, and retrieves all the data. It holds
specific SN collection interfaces and is authenticated with the SN account
credentials of the contributing user.

The network interface layer is responsible for all internal communication
between the Harvest nodes, along with maintaining overlay network structure
and placing new nodes in the P2P network. The network interface is used
by the collection management to perform work distribution between Harvest
nodes.

22 5 Architecture

5.1.3 System Discovery

Harvest has a point of entry into the system to simplify system discovery for
the Harvest application. Similar to BitTorrent and other file sharing P2P
system, a tracker to track nodes currently in the system is used to achieve
system discovery. The tracker will try to have a updated list of Harvest nodes
in the system, but sets no guarantees of consistency to achieve this.

This tracker is used both by contributors entering the system and consumers
finding a system node to request data from. The system discovery is illus-
trated in Figure 5.3. The tracker contains the address of all nodes in the
system. To find an entry point into the system, both consumers and con-
tributors need to contact the tracker and get the list of nodes currently in
the system. Any node in the system can then give entry to the system for
contributors, and respond to any requests from the consumers.

&RQVXPHU

7UDFNHU 7UDFNHU

+DUYHVW�
1RGHV +DUYHVW�

1RGHV

D� E�

Figure 5.3: System discovery for consumers and contributors. a) A consumer
finds a Harvest node by first contacting the tracker. b) A Harvest node en-
tering the system finds an entry point by contacting the tracker.

5.2 Social Networks and Social Data

The SNs are holders of social data. This is where social data is created
and stored. The public part of this data is o↵ered by Harvest, and contains

5.3 Consumers 23

information such as user information, social links, and status updates. SNs
make their social data accessible through web based interfaces that let users
control their SNs accounts and view public data.

Harvest utilizes these web based interfaces for retrieving the public data from
the social networks.

5.3 Consumers

The consumers are the external users of Harvest. Consumers are interested
in the social data, and will use Harvests consumer interface for acquiring that
data.

Consumers interact with Harvest by starting a data retrieval session. Within
this session, a consumer can define the data set to be harvested, and acquire
it at a later time when it is retrieved. To define the data, Harvest o↵ers a
interface to describe a data set. This interface lets consumers define data
something like the following: the information of user x and his followers, or
the timeline of user y and his friends. This is greatly detailed in Chapter 6.

Chapter 6

Design

This chapter takes the architecture from Chapter 5 and defines the design for
the Harvest system. Both the design of the Harvest nodes and the tracker is
detailed.

6.1 Harvest Design

Illustrated in Figure 5.2, harvest has its main responsibilities divided into
several parts, or layers; consumer interface, collection management, data
storage, collection interface, and network interface. This section will detail
these separate responsibilities, and describe how these layers interact with
one another.

6.1.1 Consumer Interface

Harvest provides consumers with a RESTful interface for social data re-
trieval. This interface is provided by each node within the system. The
interface consists of the two RESTful resources: sessions resource and data
resource. These RESTful resources and their supported methods are detailed
in Table 6.1.

25

26 6 Design

Resource Description
GET /sessions Returns a list of all sessions located at the

Harvest node.
POST /sessions Creates a new session at the Harvest node.

Returns the session id for this new session.
GET /sessions/session id Returns information about the session at

the Harvest node associated with the ses-
sion id.

POST /sessions/session id Upload new collection definitions to the
session associated with the session id.

DELETE /sessions/session id Delete all session data belonging to the
session associated with the session id.

GET /data/session id Return all retrieved data from the session
associated with the session id.

DELETE /data/session id Delete all retrieved data associated with
the session id.

Table 6.1: Harvest RESTful Interface.

Sessions Resource

The sessions resource defines operations to create and interact with data
retrieval sessions in Harvest. Sessions define the context of data retrieval of
a data set. The session consists of a session id, and the definition of what
data is to be retrieved for that session.

The sessions resource is divided into a sessions collection resource and a
session specific resource. The sessions collection resource (/sessions) o↵er
methods for view ongoing sessions, and creating new sessions at a Harvest
node. The specific sessions resource (/sessions/session id) is accessed us-
ing the session id. This resource o↵er methods for defining data sets to be
retrieved, getting status of a given session, and deleting the session entirely.

Data Resource

The data resource is for accessing session specific data. One must specify
the data of interest with a session id. This resource o↵ers methods for down-

6.1 Harvest Design 27

loading the retrieved data for the given session, and for deleting it.

The data has no timeout associated with it. This means that if the session
owner does not delete the data, it will stay there until deleted.

Data Definition Interface

Harvest retrieves data according to the consumers request. These data sets
are defined using collection definitions. A collection definition is essentially
a data structure consisting of the following fields:

• *type f

• *user f

• timeline f

• friends f

• followers f

• recursive range f

Some fields are mandatory in order to define a data set. These are denoted
by an asterisk. Other fields are optional or situational, depending on other
fields.

The type f field indicates what type of data is of interest and is a mandatory
field. The type can be one of the following:

• user t

• timeline t

• friends t

• followers t

The type user t defines that user specific data for a given user is to be
retrieved. What data is retrieved depends on what SN API is used, commonly
including user name, friends count, and description. The timeline t type will

28 6 Design

retrieve the timeline, or list of public statuses of a given user. The types
friends t and followers t retrieves a list of friends and followers respectively
for a given user.

The user f field define what specific user to retrieve data from. This can be
specified either by the users alias or SN id. This field is also mandatory.

The timeline f field is linked with the user type, and only has e↵ect when
used with that type. If the timeline field is set, then a users timeline will be
retrieved in addition to the user info of the given user.

The friends f and followers f fields are also linked with the user type. If
the friends or followers fields are set, then the given users list of friends or
followers respectively will be retrieved as well.

The field recursive range f denotes whether the given request should be re-
peated in a recursive manner, and how many recursive steps to take. For
instance, to retrieve the friends and followers of a given users, and then in
turn retrieve the friends and followers of those users, the recursive range f
field can be used to achieve this in a single collection definition.

6.1.2 Collection Management

The collection management of Harvest is done on a per session basis. This
means that every data retrieval session is treated separately. Whenever a
session is started by a consumer via the consumer interface, a session object
is created and stored at the node, and a session id is returned to the consumer.
This session id will then be used for all future reference to the session.

As mentioned, data retrieval is defined by collection definitions. Collection
definitions define data sets in a coarse grained manner. A single definition
can define a very large data set, and in many cases the data sets defined by
a collection definition will be translated into a lot of SN API calls. In order
for the collection interface to retrieve the defined data from the SNs, these
definitions must be converted into collection definitions that correspond to a
single SN API call.

It is the responsibility of the collection manager to distribute these fine
grained collection definitions through the network to achieve collaboration
in the system. This in turn means that work for the collection interface is
generated at the Harvest nodes, rather than by the consumers.

6.1 Harvest Design 29

Work Distribution and Load Balancing

The collaboration of the system is achieved by two techniques: Work distri-
bution, and work stealing. Both of these methods are coordinated by the
collection management, by performed by the network interface.

Work distribution is a pushed based approach for distributing collection def-
initions to other nodes in the network. The collection management receives
collection definitions from the consumer interface or by converting coarse
grained definitions into fine grained definitions. The definition is run through
the network interface to determine if this definition belongs to another node
in the system (this is described in a later section). The network interface will
send the definition to the collection management of the node responsible for
that definition.

If a Harvest node is out of collection definitions but has not reached its data
retrieval limit by the SN, the collection management will steal collection def-
initions from other nodes. The collection management will poll the network
for excess work using the network interface. This is a pull based approach,
and is an optimization of the work distribution to achieve more even load
balancing.

6.1.3 Data Storage

Retrieved data is stored persistently at each node in a file system storage.
The collected data is stored immediately after it is retrieved to avoid high
memory consumption. This data is made accessible through the consumer
interface, and can be downloaded or deleted by the consumer. Data is stored
in separate directories for each session, and separate sub-directories for each
data type. All individual units of data retrieved from the SNs are stored in
a separate file.

6.1.4 Collection Interface

A specific collection interface for each SN handles the retrieval from that
specific SN API. Each SN API call is derived from the collection definitions
received from the collection management. These fine grained collection def-
initions correspond to a single SN API call. The data from these API calls

30 6 Design

are retrieved and returned to the collection management for storage.

6.1.5 Network Interface

Harvest has an object based network interface for internal network commu-
nication. This is achieved using a remote procedure call (RPC) interface.
Network nodes are represented as proxy objects. Remote methods are called
on these methods to perform the network protocol, and to send data between
nodes.

The system uses Chord [15] as the overlay network protocol. Chord is a
structure P2P network protocol providing the following features to Harvest
(as described in the original paper):

• “Load balance: Chord acts as a distributed hash function, spread-
ing keys evenly over the nodes; this provides a degree of natural load
balance.” [15]

• “Decentralization: Chord is fully distributed: no node is more im-
portant than any other. This improves robustness and makes Chord
appropriate for loosely-organized P2P applications.” [15]

• “Scalability: The cost of a Chord lookup grows as the log of the
number of nodes, so even very large systems are feasible. No parameter
tuning is required to achieve this scaling.” [15]

• “Availability: Chord automatically adjusts its internal tables to re-
flect newly joined nodes as well as node failures, ensuring that, barring
major failures in the underlying network, the node responsible for a key
can always be found. This is true even if the system is in a continuous
state of change.” [15]

• “Flexible naming: Chord places no constraints on the structure of
the keys it looks up: the Chord key-space is flat. This gives applications
a large amount of flexibility in how they map their own names to Chord
keys.” [15]

By utilizing the Chord protocol, Harvest is a completely decentralized sys-
tem, with minimal need for manual administration. Chord simplifies overlay
structure maintenance by automated failure detection, node entry and node
departure.

6.2 Tracker Design 31

Work Distribution and Load Balancing

The network interface handles distribution of collection definitions around
the network. The interface will determine where the collection definitions
belong by performing a Chord lookup based on a key from the collection
definition. The collection definitions user f field will be used as key. The
Chord lookup will find the Harvest node responsible for the given key, thus
responsible for the collection definition.

Work stealing is done using a di↵erent approach. The collection manage-
ment requests excess work to steal using the network interface. The network
interface will iterate network as a linked list, stealing excess work along the
way up to some limit. This limit is calculated based on the amount of work
the stealing node can steal and still be within his retrieval limit. If there is
nothing to steal (the stealing nodes target has no definitions himself, or can
perform all his definitions within his retrieval limit), the node will continue.

6.2 Tracker Design

The tracker is a simple HTTP server with a RESTful interface. It is essen-
tially a name server containing enough information about each node in the
network in order to either join the network in the case of contributors, or
send requests to the system in the case of consumers.

6.2.1 Tracker Interface

The tracker holds information about Harvest nodes connected to the system.
This information is used by the Harvest application in order to join the
distributed system, and also for consumers to locate system nodes in order
to start data retrieval sessions and request data. The tracker provides a
RESTful interface for this interaction. The interface is described in Table 6.2.

The Interface of the tracker consists of a single resource; the names resource.
This resource is divided into a name collection resource (/names) and a
specific name resource (/names/name id). The names collection resource
has methods for listing all names, or nodes, currently in the system and for
posting a new entry into the list of names. The specific name resources is used

32 6 Design

to get information about certain nodes in the system such as its connection
information. It also has a method for removing a entry from the list of names.

Resource Description
GET /names Returns a list of all Harvest nodes cur-

rently on line in the system as a list of
name ids.

POST /names Register as an active node in the system.
Return a name id corresponding to the
registered node.

GET /names/name id Returns information about the Harvest
node associated with the name id.

DELETE /names/name id Removes the name entry associated with
the name id from the tracker.

Table 6.2: Harvest Tracker RESTful Interface.

Along with being a single point of entry to the system, it is also useful in other
cases. The tracker holds information about all nodes in the system. Using
this information, the information of the entire system is easily accessible.
This makes it possible to create useful tools and application for monitoring
and control the system.

Chapter 7

Implementation

This chapter will present the implementation details of Harvest. The chap-
ter will start by giving a brief architecture, design, and implementation of
the most significant artiface modules created in addition to Harvest. Then
continue to present the implementation of Harvest itself, and how the afore-
mentioned modules are used to achieve this implementation.

7.1 PyRpc

PyRpc is a RPC module for Python. It is an object based RPC modules
handling method calls to be called on remote objects with arbitrary input
parameters. Only restriction is that the argument must be serializeable using
Pythons pickle module.

7.1.1 PyRpc Architecture

The PyRpc module has a client/server architecture. It consists of proxy
objects and remote objects. The proxy nodes act as clients, and remote
objects as servers.

Upon receiving a call to a remote method, the proxy node will serialize that
method call, send it to the remote node and wait for a serialized return value
from the remote object. This return value is then de-serialized and returned
to the caller.

33

34 7 Implementation

Remote objects act as server, waiting for remote method call as requests from
proxy objects. The remote objects will receive serial methods, de-serialize
them and execute them call locally. The return value is then serialized and
returned to the requesting proxy object. This interaction is illustrated in
Figure 7.1.

7.1.2 Network Communication Design and Implemen-
tation

The network communication between proxy and remote objects are achieved
by using high abstraction network interfaces. There are three layers of net-
work abstractions that is used to achieve both network communication as
well as serialization and de-serialization of method calls; streams, channels,
and portals.

Streams

Streams create a simple file-like abstraction over sockets for sending and
receiving data over a network connection. The streams are represented as
stream objects. They have a read/write interface. Reading and writing from
the stream takes input the number of bytes to read or write.

The network communication is done using transmission control protocol
(TCP) to achieve reliable data transfer. This is implemented using the TCP
sockets of the Python socket library.

Channels

Channels are a higher level of abstraction compared to streams. The channels
support the sending of frames over the network. Frames are continuous series
of bytes with a header describing the length in bytes of the frame. aChannels
have a send/receive interface which allow sending and receiving single frames
at a time, and supports frames of arbitrary sizes.

The channels are represented as channel objects and are instantiated using
stream objects. The channels are implemented using the stream module
for network communication, and uses the Python struct module to create a

7.1 PyRpc 35

3URFHGXUH�
LQYRFDWLRQ

6HULDOL]HG�
3URFHGXUH

'HVHULDOL]DWLRQ

5HPRWH�
SURFHGXUH�

FDOO

5HWXUQ�
YDOXH

6HULDOL]HG�
UHWXUQ�
YDOXH

'HVHULDOL]HG�
YDOXH�

UHWXUQHG

'HVHULDOL]DWLRQ

5HPRWH�1RGH

3UR[\�1RGH

Figure 7.1: Client server architecture. Proxy nodes send requests to remote
nodes in the form of serialized procedures.

36 7 Implementation

frame header.

Portals

Portals are a higher level of abstraction compared to channels. Portals sup-
port sending and receiving of arbitrary Python objects over a network con-
nection. The portals o↵er send/receive interface, and can take an arbitrary
number of Python objects as input.

Portals are essentially channels that support serialization of input and out-
put parameters so that Python objects can be sent through them directly.
Serialization of Python objects is done using Pythons pickle module.

Portals network communication is implemented using the channel module.
Serialized objects are put into frames and sent using the channels send in-
terface.

7.1.3 PyRpc Design and Implementation

The network communication between the proxy and remote nodes are done
using aforementioned network interfaces. The serialization is achieved using
the Pickle protocol.

Proxy Objects

Proxy objects use portals to achieve network communication and serialization
of remote methods.

Proxy objects are initialized with an address to its corresponding remote
object. This is used to connect to the remote object when executing remote
calls.

In Python, instance methods are attributes to objects. PyRpc takes advan-
tage of this by treating all method calls that are not named attributes of the
object as remote calls. Upon such method calls, the proxy object stores the
name of the method as well as the arguments of that method in a method
container class, connects to the corresponding remote object and sends the
method container to the remote object through a portal. The proxy will then

7.2 PyChord 37

receive the return value from the remote object through the same portal and
return it to the caller.

PyRpc supports exception handling of remote method calls. If the remote
method should throw an exception, this exception will be the return value
from the portal. Exceptions will be raised instead of returned by the proxy
object.

Remote Objects

Remote objects are the remote resources that call the method calls locally to
produce the results. To achieve this they are implemented as threaded TCP
servers taking connection requests from proxy objects. Upon connection, all
network communication is done using portals, and the remote objects will
start by receiving a method container object from the proxy object. The
method name and arguments are then extracted and the named method is
called locally

The remote objects are instantiated with an address to set up a TCP server
so that proxy objects can connect to them and perform remote calls.

7.2 PyChord

PyChord is an open source Python implementation of the Chord protocol
[15]. The implementation is inspired by the Open Chord1 project, but is a
standalone implementation developed as part of this thesis.

7.2.1 Chord

This section give a brief description of Chord, as is heavily based on the
original paper. For further details the reader is directed to [15].

The Chord protocol is a structured P2P overlay network protocol designed
for distributed hash table (DHT) networks. Chord specifies how to perform
key based lookup, how to handle new nodes joining the system, and how to
recover from node departure of existing nodes (failure and planned).

1http://open-chord.sourceforge.net/

38 7 Implementation

Chord provides fast distributed computation of a hash function mapping
keys to nodes. Chord assigns keys to nodes with consistent hashing [8] which
grants properties such as high probability load balancing, and scalable over-
head related to key transfer when a node joins (or leaves) the network.

Chord scalability comes from the nodes needs to only contain a small amount
of routing-information about other nodes. This is information is in the form
of a lookup table, or finger table, which results in every node in a N -node
network needs only know about O(logN) other nodes.

Consistent Hashing

Using a consistent hash function each node and key is assigned an m-bit
identifier using SHA-1 [5] as hash function. A nodes identifier is determined
by hashing the nodes address. This address can be the nodes IP address. A
key’s identifier is determined by hashing the key.

“Consistent hashing assigns keys to nodes as follows. Identifiers
are ordered in an identifier circle modulo 2m. Key k is assigned to
the first node whose identifier is equal to or follows (the identifier
of) k in the identifier space. This node is called the successor node
of key k, denoted successor(k)0. If identifiers are represented as
a circle of numbers from 0 to 2m � 1, then successor(k) is the
first node clockwise from k.” [15]

The illustration in Figure 7.2 shows a three node DHT with a key range of 8.
The nodes 1, 4, and 6 are responsible for the keys from and including them
selves and down to their predecessor. For example will node 4 be responsible
for keys 4, 3, and 2.

Scalable Key Location

The basic lookup scheme of Chord is described as a list traversal, iterating
through node successors until the node responsible for the given key is found.
Chords scalable alternative involve storing additional routing information.

Given an m-bit identifier space, each node contains a routing table with up
to m entries, called the finger table.

7.2 PyChord 39

�

�

�

�

�

�

��

Figure 7.2: A three node Chord DHT with a key range of 8 keys, with nodes
indexed by keys 1, 4, and 6.

40 7 Implementation

“The ith entry at node n contains the identity of the first node
s that succeeds n by at least 2i�1 on the identifier circle, i.e.,
s = successor(n + 2i�1), where 1  i  m (and all arithmetic is
modulo 2m). The node s is referred the ith finger of node n.” [15]

Dynamic Operations and Failures

In order to ensure that lookups execute correctly, Chord must ensure that
finger table entries and successor pointers are correct even in the presence of
failures and nodes joining the network. This is achieved by Chord “stabiliza-
tion” protocol which runs periodically in the background. This protocol con-
sists of the following methods: stabilize, notify, fix fingers, check predecessor.

Stabilize is an algorithm that is periodically called to verify the nodes position
in the ring. If the position is not correct, the node will notify the neighbours
about the new structure of the ring; stabilizing the network. Fix fingers
periodically goes through the nodes lookup table and update their relevant
information about the network structure. Check predecessor is called peri-
odically to check if the nodes predecessor has failed. If so, the network will
be updated the next time the ring is stabilized.

7.2.2 PyChord Design and Implementation

PyChord fulfills the Chord protocol algorithms and supports key lookup ac-
cording to Chords scalable lookup scheme.

A PyChord network consists is represented as a PyChord object, and each in-
stance of this object will represent a node in the network. A PyChord object
supports joining, creating and leaving the network in addition to performing
key lookup within the network.

PyChord implements the Chord “stabilization” protocol algorithms as asyn-
chronous tasks in separate threads. These algorithms will run periodically
with configurable intervals, and starts to run as soon as the PyChord object
joins a network.

PyChord is designed to be customized and configurable. This is achieved by
sub-classing the PyChord object, and implementing new methods, creating
interfaces for network interaction. These methods can then be accessed by

7.3 PyRest 41

other nodes through RPCs.

A small di↵erence with between Chord as described above and PyChord is
that both the nodes IP address as well as its port number will define its key.
This way a single computer can support multiple instances of PyChord.

7.3 PyRest

PyRest is an open source Python module for developing RESTful interfaces
for web applications in Python. It was developed prior to Harvest as a
solution to a mandatory assignment in a separate university course, and is
used for creating Harvests external interfaces, along with the Harvest Tracker
interface.

The idea behind PyRest is to create a framework that simplifies the process
of creating RESTful interfaces. The framework is similar to that of Webpy2,
Flask3, and Bottle4, only less complex, as PyRest only handles the setup of
interfaces, rather than a framework for development entire applications.

7.3.1 PyRest Architecture

PyRest follows a standard client-server architecture, where PyRest is the
framework for setting up interfaces for clients at the servers. PyRest o↵ers
a simple way of defining the interfaces, and a server handling the requests of
clients accessing this interface.

7.3.2 PyRest Design and Implementation

PyRest features methods for setting up RESTful HTTP interfaces, and to im-
plement the HTTP commands to support for each resource defined. PyRest
also features a simple way of supporting mime type responses with formatted
data.

2The Webpy project - http://webpy.org
3Flask - http://flask.pocoo.org/
4Bottle: Python Web Framework - http://bottlepy.org/

42 7 Implementation

Interfaces

PyRest interfaces are set up using nested classes. Classes (representing re-
sources) within classes build up the paths for the defined resource. The sup-
port for specific HTTP methods are added by implementing them. For ex-
ample, the following class definition will produce the resource /api/resource
supporting the HTTP method GET that does nothing.

c l a s s ap i (PyRest . RestResource) :
c l a s s r e s ou r c e (PyRest . RestResource) :

de f GET(s e l f) :
pass

In this example the name of the resource matches the name of the class re-
source. PyRest also has support for regular expressions to support arbitrary
input paths. These expressions are set by defining a pattern attribute
at the specific resource, and then naming this pattern in the python regu-
lar expression notation of Pythons re module. The following class definition
produces the interface /api/ < numeric > where any numerical character
pattern is matched to this path. Again the resource TheResource supports
only the method GET that does nothing.

c l a s s TheApi (PyRest . RestResource) :
p a t t e r n = ” api ”

c l a s s TheResource (PyRest . RestResource) :
p a t t e r n = ”\d+”

de f GET(s e l f) :
pass

Mime Types

PyRest uses Python decorators to support di↵erent MIME types in return
values. By decorating the HTTP method definitions with a MIME-decorator
the return value of the method sets and converts the content type of the
return value. The following class definition creates the interface /jsonobject
that returns an empty JSON object on HTTP GET.

c l a s s j s onob j e c t (PyRest . RestResource) :
@PyRest . mime json
de f GET(s e l f) :

r e turn {}

7.4 Harvest 43

7.4 Harvest

This section will cover the implementation of Harvest. The implementation
of Harvest is done in Python. Harvest is implemented as an event-based sys-
tem, where most interaction between modules are done using events. Events
are controlled by a separate event handler running in the background in
a separate thread. Modules can subscribe to specific events by registering
callback methods at the event handler.

The Harvest application runs a total of 11 threads (including the main
thread).

7.4.1 Consumer Interface

The consumer interface is implemented using the PyRest module described
above. It implements the interface described in Sub-section 6.1.1 by creating
the appropriate class hierarchy, and implementing the methods corresponding
to the HTTP commands each resource supports.

The consumer interface is handled by a RESTful server. This server is put
in a separate thread running in the background. Upon read requests from
consumers, e.g. getting session status or downloading retrieved data, the
interface has direct access to the data and will return it to the requester.
Upon requests that alter session state, the consumer interface will generate
appropriate events that are handled by subscribing handlers.

7.4.2 Collection Management

The collection management consists of several classes that manage di↵erent
aspects of Harvests data retrieval.

A part of the collection management is the session management. This is done
by a session store that maintain track of all sessions. The session management
subscribes to the events generated when a new session is initiated, and also
if the session properties (such as collection definitions) are updated.

Although executed by the network interface, the session store manages the
work distribution and work stealing of Harvest. Upon new collection defini-
tion events, the session store will pass the definitions through the network

44 7 Implementation

interface to determine the Harvest node responsible for that definition. When
out of definitions to process, the collection management will steal work from
the network using the network interface.

The retrieval of data is handled by a collector object. The collector will
interact with the session management to retrieve the collection definitions of
the currently active session and executing them using the collection interface,
as well as storing retrieved data in the Harvest nodes local storage.

7.4.3 Data Storage

The Harvest nodes local storage is a file system storage. It stores files in
the JSON5 data format. All data retrieved from the social networks such
as users information about a user or a users timeline, is stored in separate
files. All data that belongs to individual sessions will be stored in separate
directories.

7.4.4 Collection Interface

The collection interface implements a wrapper between the SN APIs and
Harvest. The support for di↵erent SN APIs is achieved by implementing the
mapping from a collection definition to single SN API calls. In the current
implementation of Harvest only Twitter is supported using the Twitter REST
API.

This API mapping, along with twitter authentication, is achieved with Tweepy6,
an open source Python Twitter module that implements the Twitter REST
API.

7.4.5 Network Interface

The network interface is implemented using the aforementioned PyChord
module. The interface is implements a subclass of a PyChord object. The
object interface is extended to support methods for work distribution and

5JavaScript Object Notation - http://json.org
6Tweepy - http://tweepy.github.com

7.5 Harvets Tracker Implementation 45

work stealing. These methods are implemented using RPC methods that are
callable from any node in the system.

7.5 Harvets Tracker Implementation

The Harvest tracker is a RESTful server implemented using the aforemen-
tioned PyRest module. The server hold a list of current Harvest nodes in the
system in a list in memory.

The tracker periodically checks the status of every node in the system to
verify that it has not failed. This is done by performing an HTTP connection
to the nodes consumer interface. If the connection cannot be achieved, the
node is assumed failed, and removed from the list. This is run in a separate
thread.

Chapter 8

Experiments

Harvest is benchmarked, and several experiments give documentation of sys-
tem performance. This chapter details the experiments run, as well as their
results.

This chapter will first go through the methodology used when conducting
experiments as well as define the metrics of performance. Then it will detail
the experiments that benchmark the system and discuss their results indi-
vidually. A more rigorous discussion of joint results is given in Chapter 9.

8.1 Methodology

The evaluation done in this thesis follow a systems approach. In this ap-
proach the performance of the system are evaluated by experimentation, and
the di↵erent stages of the system are iteratively, based on experimental re-
sults, improved. This process is illustrated in Figure 8.1

The research is based on an idea. This idea defines the main goal of the
project. It is an abstract description of some need or problem, and perhaps
a solution to this problem. It is this idea that will shape the project. Based
on this idea, a solution to the problem at hand is then is then devised in the
form of a system.

The first stage of creating such a system is defining its architecture. This
architecture define all the components of the system. It defines their func-
tional properties and their responsibilities. These properties include their

47

48 8 Experiments

,GHD

$UFKLWHFWXUH

'HVLJQ

,PSOHPHQWDWLRQ

([SHULPHQWV

Figure 8.1: The systems research methodology.

functional purpose and their dependencies on other components.

The second step is to create a concrete design of the architectural com-
ponents, and define how they aught to achieve their properties. This will
produce a system design that define how the system and all of its compo-
nents interact with each other on a more detailed level, containing a detailed
description of the internal components of each architectural component, and
the interfaces between them.

The third step in the process is creating a system implementation. The
implementation is itself the actual system. This implementation is used for
conducting experiments that will define the performance of the system. These
experiments produce results, and these results grants knowledge. This newly
acquired knowledge will shed light on strengths and weaknesses in the system
at various levels, and may in turn lead to new ideas, architectures, designs
and implementations, repeating the process from that level, continuously
improving the system.

8.1.1 Metrics

In this thesis, the following metrics measure performance: (i) network band-
width usage, (ii) memory utilization, (iii) CPU utilization, (iv) active time
distribution, (v) system scale.

8.1 Methodology 49

Network Bandwidth Usage

Network bandwidth usage is the amount of network tra�c used for retrieving
data from social networks. This is noted in bits per second, with prefix
multipliers Kilo or Mega. In short kilo bits per second (Kbps), and mega
bits per second (Mbps).

Network bandwidth is measure using an external tool; Wireshark1. Wire-
shark lets users measure all network packets going in and out from a com-
puter, and has the ability to create filters to separate useful data from other
network noise.

Memory Utilization

Memory utilization of a process is defined as the memory used by a process
during the execution of that process. The Memory utilization is measured
in bytes with prefix multipliers mega or kilo. In short mega bytes (MB) and
kilo bytes (KB)

Memory utilization is measured using external monitoring tools, namely the
Activity Monitor of OS X. This is measured using observation. Although
this might be inaccurate, it will give the order of magnitude of the memory
usage, and will be accurate enough for the experiments.

CPU Utilization

CPU utilization is defined as the amount of CPU used by a given process.
CPU utilization is measured in percent of total CPU capacity.

CPU utilization is measured using external monitoring tools, namely the
Activity Monitor of OS X. This is measured using observation. Although
this might be inaccurate, it will give the order of magnitude of the CPU
utilization, and will be accurate enough for the experiments.

1Wireshark - http://wireshark.org

50 8 Experiments

Active Time Distribution

The active time distribution is the ratio active time over inactive time of
a Harvest node. Active time denotes the time spent doing useful work,
including: retrieving data from a SN, distributing work within the network,
handling requests, and storing data.

This active time distribution is measured internally within each node indi-
vidually. The measurements does not represent the active time distribution
of the system, but for each node. The measurements are measure using
Pythons time module. Exactly where this is timed is detailed for the specific
experiment.

System Scaling

System scaling defines Harvest ability to increase data retrieval bandwidth
with increasing number of contributing users. This is measured as the ratio
of execution time of a data retrieval session of n users over that of 1 user.

System scaling is measured internally for each node. The execution time of
each session is then calculated by taking the earliest start time and latest
finish time of each nodes individual sessions.

8.2 Benchmarks

Harvest benchmarked on a number of experiments to define the properties
of the system. The benchmarks are divided into two types; i) performance
benchmarks and ii) sensitivity benchmarks.

The performance benchmarks measure the performance of the system. This
includes its hardware resource utilization and scale with increased user con-
tribution.

Sensitivity benchmarks measure the Harvest applications influence on other
applications running side by side. These experiments show the a↵ect it has on
other applications, and determine whether the Harvest application behaves
like low profile background application.

When running any of the experiments, the computers that are part of the

8.3 Performance Benchmarks 51

benchmarks have been left without any external influence. All processes
that are not part of the operating systems background processes have been
terminated to achieve more reliable results.

8.2.1 Experimental Setup

Some of the experiments are run on a single computer, and some are run on
a collection of computers.

Benchmarks that are run on a single computer are run on a Macbook Air
running 64-bit OS X 10.7.3 on an Intel i5 processor with 4GB or RAM and
a SSD hard drive.

Benchmarks that are running on several computers are run on DELL Preci-
sion WorkStation T3500s running 32-bit Cent OS 5.7 on an Intel Xeon E5520
processor with 12 GB RAM with a 7200rpm S-ATA hard drive.

All experiments are run retrieving Twitter data using the Twitter REST API
version 1.

All experiments are run using Python version 2.7.2.

8.3 Performance Benchmarks

The following benchmarks measure the system performance with respect to
hardware resource utilization as well as measuring the system scaling with
increasing number contributing users.

8.3.1 System Scaling

One of Harvests main measurements of performance is its ability to scale.
The system should have an increasing data retrieval rate with increasing
number of contributing nodes.

The System scaling benchmark has the following factor: The number of
Harvest nodes contributing to a data retrieving session. The parameters of
this benchmark is the data set that is retrieved.

52 8 Experiments

By increasing the number of Harvest nodes contributing to the data retrieval
of the same data set, the execution time of each factor is compared to that
of a single Harvest node. This will show the systems ability to scale.

The execution time of the data retrieval session was measured using Pythons
time module, more precise the function asctime. This function returns the
current time on the format “Sun Jun 20 23:21:05 1993”. As soon as the
consumer interface of Harvest receives a request to initiate a data retrieval
session, a session object is created, and the object is timestamped in its
constructor like so:

c l a s s Se s s i on (ob j e c t) :
de f i n i t (s e l f) :

s e l f . i n i t i a t e d = time . asct ime ()

Then, upon finishing the session, the session object is timestamped again,
but this time denoting when it ended. The session is considered finished by
the Harvest node when it no longer has any collection definitions left. End
time time stamp is done in a session object method like so:

c l a s s Se s s i on (ob j e c t) :
de f end (s e l f) :

s e l f . ended = time . asct ime ()

When every Harvest node finishes their local sessions, the earliest start time
and the latest end time are extracted and will denote the execution time of
that session.

This experiment was also run on a various number of computers to test
Harvests sensitivity to the underlying platform; centralized (single computer)
vs. decentralized and distributed (multiple computers). The experiments was
run with varying factors on one computer, and on the number of computers
matching the number of Harvest nodes.

System Scaling Results

A Harvest retrieval session was started on a relatively static data set, namely
the retrieval of user information of the Twitter user “Bashiok”, all of his
friends and followers, and their timelines. The total size of this data set was
small enough to perform repeatable experiments within a reasonable amount
of time (approximately 39,3 MB, takes about 29.3 hours to retrieve the data

8.3 Performance Benchmarks 53

Figure 8.2: System scale with an increasing number of contributors on a
single computer and increasing number of contributors on equally increasing
number of computers. The measured points are for 1, 5 and 8 Harvest nodes.
The yellow line represents linear speedup, the blue line represents varying
number of Harvest nodes on one computer, the red line represents varying
number of Harvest nodes on equal number of computers.

set for 1 Harvest node 1 time), and big enough to show the system scale with
increased contribution.

The data retrieval was performed with the factors 1, 5 and 8 Harvest nodes.
The results of this experiment is shown in Figure 8.2. The blue graph shows
the benchmark for a single computer running a various number Harvest
nodes. The red graph shows the benchmark of multiple computers running
on the same number of Harvest nodes.

The yellow graph is a reference to linear speedup. The blue graph shows in-
creasing performance with increasing number of Harvest nodes. The speedup
is just above linear for 5 contributing Harvest nodes, but shows signs of dimin-
ishing returns as the contribution increases. The red graph shows speedup

54 8 Experiments

just above linear, but with no obvious signs of diminishing returns.

The total data retrieval bandwidth for each of the experiments were ap-
proximately 3Kbps, 15Kbps, and 25Kbps for 1, 5, and 8 contributing nodes
respectively.

System Scaling Discussion

The speedup achieved when increasing the number of contributing users is
clearly best when running on several computers, rather than on one com-
puter. This shows that this type of data retrieval fits the chosen architecture.

The super-linear results from the benchmark run on several computers are
probably due to the way Harvest nodes retrieve data. A Harvest node will
retrieve data until their limit is reached. Then they will wait for the limit
to be reset by the SNP and continue. If the data harvesting was completed
early or late within that data harvesting period, this would a↵ect the results
when the data size is relatively small.

8.3.2 Network Utilization

Each individual Harvest node must respect the limitation determined by the
SNP of the data retrieval session. As a consequence of this the system will
spend a lot of time inactive, waiting for the limit to be reset. To measure
the e↵ect of this on network bandwidth usage, data tra�c is measured for
system nodes while executing a data retrieval session. This benchmark is run
on one computer running one Harvest instance.

Wireshark2 is used to monitor the network usage. Wireshark has real time
packet monitoring, and supports filtering of packets to filter out irrelevant
packages. To create a graph over packets going between Twitter and Harvest,
a filter on destination and source host names was created. This gives an
overview of network bandwidth usage by the Harvest application.

2Wireshark - http://wireshark.org

8.3 Performance Benchmarks 55

Network Utilization Results

The graph in Figure 8.3 is a sample of the network utilization of a Harvest
node during execution of a data retrieval session. The figure is a screen dump
created by Wireshark, and shows only relevant network tra�c by using filters
as described above.

The units on the Y-axis are in bytes per tick, and the tick is set to 1 minute.
The units on the X-axis are in minutes. The green line indicate the outgoing
tra�c to Twitter, and the red line is the incoming tra�c from Twitter.

Figure 8.3: Network utilization over time for Harvest nodes. The X-axis is
time in minutes, the Y-axis is Bytes per minute. Red line denotes incoming
data tra�c, green line denotes outgoing tra�c.

The average network bandwidth usage of a Harvest node was 3 Kbps and
was derived from the system scaling benchmark results. From the graph one
can observe that the network peak usage is below 200 Kbps. Also, from the
graph it is clear that Harvest has a bursty network usage. The network usage
of Harvest is flat when the limit of the SNP is reached, and it jumps back
up again as soon as it resets.

56 8 Experiments

Network Utilization Discussion

One can conclude that Harvest is not a bandwidth intensive application.
Harvest requests data from the SN sequentially, and the latency between
these requests dominate the download time of the data.

8.3.3 System Activity Distribution

This benchmark measures the total time a Harvest application is in an active
state vs. the time the application is in an inactive state. Harvest is in an
active state when it is retrieving social data; Either performing SN API
calls, load balancing, work distribution, data retrieval coordination, or data
storage. Harvest is inactive the rest of the time; this could be either because
it has not yet received any work to execute, or it is waiting for the limit of
the SNP to be reset.

To measure the active time distribution of a Harvest application, the active
time of a data retrieval session is measured and compared to the total run
time of the same session.

System Activity Distribution Results

The time of several data retrieval sessions are measured and averaged. The
measured time in an active state compared to an inactive state for a data
retrieval session is 0.25. This means that for every unit of time spent on
useful work, a Harvest application will do nothing for four.

System Activity Distribution Discussion

It is important to note that this result is only valid for one Harvest instance.
The entire system will in practise not show this activity distribution, as
there will at most times be at least one Harvest node retrieving some data,
depending on the number of Nodes currently in the system.

8.3 Performance Benchmarks 57

8.3.4 Memory Usage

During the runtime of a data retrieval session execution, the memory utiliza-
tion of the nodes are measured to give an indication on how much memory
is consumed by a Harvest node. The memory utilization is measured on a
single computer running a single Harvest application instance.

The memory usage is not measured accurately, but observed using OS X
Activity Monitor. This does not give low accuracy, but it will show the order
of magnitude of the memory consumption during runtime.

Memory Usage Results

The memory consumption of the Harvest application ran stable with a rela-
tively constant usage of 22.0MB while the application was active retrieving
data. The memory usage when the application was inactive was 10.3MB.

Memory Usage Discussion

The reason for the relatively constant memory consumption is due to Har-
vests storage policy. Since Harvest stores data to disk immediately after
retrieving data, the memory consumption does not go up any more than the
amount of data to be stored just after it was harvested.

8.3.5 CPU Usage

During the runtime of a data retrieval session execution, the CPU utilization
of the nodes give an indication on the computational demands of the Harvest
application. This experiment is run on a computer running a single Harvest
instance.

The CPU usage is not measured accurately, but observed using OS X Activity
Monitor. This does not give low accuracy, but it will show the order of
magnitude of the CPU usage during runtime.

58 8 Experiments

CPU Usage Results

The CPU utilization was when active retrieving data observed at a stable
rate of 2.8% with high and low peaks at values 1.5% and 3.8%. When not
active the application was measured a stable average rate of 1.5% with high
and low peaks at values 1.1% and 1.8% respectively.

CPU Usage Discussion

Although the observations of CPU usage are inaccurate, it clearly shows that
the CPU usage of the Harvest application is quite low.

8.3.6 Data Loss

To loss of the data harvesting, session statistics for several data retrieval
sessions are gathered. As each collection definition is processed, they are
stored in the session object as either completed or failed. This is then used
to determine the average fail rate of a definition. Also, the failure reason
for failed definitions is also stored. This will give indication to why the
definitions fail.

Data Loss Results

The data was retrieved from 4 data retrieval sessions. The results from the
data retrieval sessions show that the amount of failing requests compared
to the total amount of requests done is 16.3%, meaning that 1 in every 6th
request failed. It was also almost exclusively timeline requests that filed.

Data Loss Discussion

According to the documentation of the Twitter REST API, failures can come
from a number of di↵erent reasons. Extracting the relevant reasons based
on API responses results in the following: failures at the server handling the
request, the requested data was private, or the request for the data took too
long time to process. From this it was clear that the reason for the failing
requests was almost exclusively due to requests taking too long.

8.4 Sensitivity Benchmarks 59

8.4 Sensitivity Benchmarks

The following experiments measure the a↵ect Harvest has on other applica-
tions. The experiment is done by running Harvest during a data retrieval
session side by side of another application, and measure how the performance
decreases. This experiment is run both as Harvest is active retrieving data,
and while Harvest is inactive, waiting for the limit of the SNP to reset. Both
of these runs are then compared to a reference run measured without the
Harvest application.

8.4.1 CPU Sensitivity

To test the a↵ect Harvest has on the CPU performance of other applications,
a CPU intensive benchmark calculating prime numbers is run side by side
Harvest.

The performance of the benchmark is measured both execution time, or real
time, and CPU time. CPU time measures the amount of time the CPU has
spent on the benchmark. Di↵erences in this measurement would indicate the
cache e↵ect of the Harvest application. The real time measurements measure
the total amount of time spent on the benchmark. This measurement would
indicate the e↵ect Harvest has on CPU utilization and CPU scheduling.

The benchmarks are written in C, and uses headers time.h and sys/time.h
for measurements. Real time is measured using the function clock found
in time.h, CPU time is measured using the function gettimeofday found in
sys/time.h

All experiments are run at least 60 times and averaged.

CPU Sensitivity Results

The measurements are shown in Figure 8.4 with relative performance to
the reference run with respect to execution time. The results suggest that
there is little a↵ect by the Harvest application on CPU utilization as the
performance decreased with less than 1% to the reference run in both the
active and inactive runs.

60 8 Experiments

Figure 8.4: Relative CPU performance comparing real and CPU execution
time. Lower is better. Note that the Y-axis does not start on 0.

CPU Sensitivity Discussion

The CPU time and real time measurements are fairly equal. This can indicate
that the side e↵ects from Harvest is probably due to cache invalidation, and
less that Harvest is hogging CPU resources.

8.4.2 Disk IO Sensitivity

The disk input/output (IO) benchmark will measure Harvests a↵ect on disk
IO performance. This is measured by running a disk IO intensive benchmark
side by side the Harvest application. A benchmark writing large amounts of
data to a file will measure write performance, and a benchmark reading a
large file into memory will measure read performance. The performance is
measured in execution time. The time is measured in real time.

8.4 Sensitivity Benchmarks 61

Disk IO Sensitivity Results

The measurements of disk IO sensitivity are shown in Figure 8.5. From the
figure it is clear there is little e↵ects from Harvest with respect to disk IO as
the performance decrease with respect to the reference run is less than 1%
for both read and write operations.

Figure 8.5: Relative disk IO performance comparing real execution times of
the reference run against running the benchmark with Harvest active and
inactive. Lower is better. Note that the Y-axis does not start on 0.

Disk IO Sensitivity Results

Running this benchmark on a SSD might be the reason for the sensitivity
results. Running this on a disk drive might show di↵erent results, ans the
mechanical elements of disk drives have very low performance compared to
SSDs.

Chapter 9

Discussion

This chapter will try to argue for the decisions made during the work of this
thesis, along with discussing the results of the experiments of Chapter 8.

9.1 Discussion of Experimental Results

9.1.1 System Performance

Unfortunately, the experiments were not run with a particularly large amount
of contribution, and the performance of the system in its intended form
was not tested fully. This could only be achieved by having a tremendous
amount of Twitter accounts, which is simply not feasible without launching
the system. As it is not mature enough for such a launch at the time of
writing, this was not achieved. Ideally there should have been thousands or
millions of accounts participating, giving a data retrieval rate several orders
of magnitude greater.

The results of the system scale benchmark show 1:1 scaling performance
with increasing number of contributing users. The experiments showed linear
speedup. But it is clear from the experimental results that the data retrieval
bandwidth per user is quite low. On average, each Harvest node give a band-
width contribution of 3Kbps. With an assumption of linear speedup (which
would be the best case), to achieve a relatively high bandwidth (10Mbps)
one would need over 300.000 contributing users. This is also assuming there

63

64 9 Discussion

is only one user having an active session within the system at any one time.
Given 100 users having active sessions within the system, the bandwidth has
to be divided among all of those users.

From these results one can draw the conclusion that Harvest in its current
state not a reasonable alternative for harvesting social data if the financial
costs is not a considered factor. The motivation for using Harvest is that
it is an alternative to retrieving social data without any associated financial
costs, even though the current data retrieval bandwidth is low.

Should the rules change, and the limits be eased, the potential increase in
data retrieval bandwidth is large. The increased data retrieval rate will
increase proportional to the number of contributing users, ass all users will
benefit from it. This show potential in Harvest. The same would also be true
if data could be harvested from more locations. This is one of the powers of
distributed data retrieval such as Harvest. The potential can much higher
than its centralized counterpart.

9.1.2 Harvest Node Inactivity

Harvest nodes shows from experiments that it is mostly in an inactive state;
meaning it is not doing any useful work due to limitations from the SNPs.
Performance benchmarks show that the overall utilization of hardware re-
sources (CPU and memory) is quite low, not only because the Harvest node
isn’t doing any work most of the time, but low in general. The conclusion to
draw from these results is that Harvest could be doing more.

By supporting more SN APIs, Harvest could be retrieving data from di↵er-
ent locations while waiting for others to reset. The idea of combining data
harvest from several di↵erent SN APIs was there from the beginning of the
development. But for simplicity, and to show a proof of concept only such
API was implemented. Adding support for more APIs is not a very hard
task, but the synchronization of the semantics of data from di↵erent SNs
would be a challenge.

There is also the alternative to retrieve data from implicit social networks
such as public forums and blogs. As they have no limitations to how much
data can be retrieved from them. This would introduce new challenges as
there are no or few APIs to retrieve that data. In addition the data from
these networks are structured di↵erently, or not structure at all.

9.2 Motivation for Harvest Architecture and Design 65

As Harvest nodes are doing nothing large portions of their time, there is the
alternative to let them perform other types of useful work such a computation
of retrieved data. This was experimented with early in the thesis work, but
was quickly discontinued as it produced too many challenges. Mainly in what
type of computational model to use for such distributed computation.

9.1.3 Data Loss

The reason for the data loss is due to the implementation of the retrieval of
user timelines. When requesting a users timeline, the entire timeline is to
be retrieved. As some of this data is fairly old, Twitter probably does not
store it in a cache for fast retrieval. Rather it is most likely stored in a slower
storage, making the request take too long.

To fix this problem, the collection interface should limit the retrieval to only
recent tweets. This would give lower data losses. It would also result in more
updated data, as only newer timelines are retrieved. The only downside
would be that less is retrieved, but considering the pros is may be worth it.

9.1.4 Application Sensitivity

Results from memory utilization, CPU utilization and network bandwidth
usage show that Harvest node application is not a performance intensive ap-
plication. CPU and disk IO intensive benchmarks showed minuscule degra-
dation in performance, and should be able to run on any modern computer
in the background without ruining the performance of other applications.

9.2 Motivation for Harvest Architecture and
Design

The main idea behind Harvest is to have a collaborative data retrieval to
harvest large amounts of social data without any financial cost associated
with it. In order to achieve this, there needs to be a way for people to
contribute their resources to the collaborative data retrieval. The common
way of addressing this is to have a small application run on the contributors
computer, and this method is also used by Harvest. The advantage of this

66 9 Discussion

approach is to distribute the load among many peers, using computational
resources that are already there, and that is seldom used at full e�ciency
anyway. To address this, Harvest is a completely decentralized system, with
no need for manual administration. All data is retrieved at the peers, and
sent to the consumer upon request. It coordinates all work distribution and
load balancing in a distributed fashion.

Another key point to Harvest is that is should scale to be able to achieve high
data retrieval rates. This is achieved by choosing a scalable P2P architecture;
a DHTs, or more specifically Chord. The DHT was chosen as it seemed fit
to distribute work the same way it uses consistent hashing to distribute keys.
With a large amount of contribution the distribution would be quite even.
Chord was chosen for its simplicity, and as its details was well known to the
author.

9.3 Evaluation of Implementation

The entire implementation of Harvest is done in Python. As Harvest is not a
computationally demanding application, Python is a reasonable choice as it
is a very productive language. Pythons relatively low computational perfor-
mance will hardly be noticed as Harvest would idle most of the time, which
is backed up by experimental results. In addition, web based applications do
not su↵er as much from low computational performance as network latency
will dominate the execution time in many cases.

9.3.1 Motivation for Implemented Artifacts

PyRpc

The idea behind PyRpc is to simplify network communication between net-
work nodes in the implementation of the PyChord module.

The inspiration for this module came from the pseudo code of the original
Chord paper. The goal was to achieve a RPC implementation that would be
as similar as possible. The pseudo-code of the Chord method find successor
goes like this:

n.find successor(id)

9.3 Evaluation of Implementation 67

if (id 2 (n, successor]) then
return successor

else
n0 = closest preceding node(id)
return n0.f indsuccessor(id)

end if

Compared to the PyChord source below for the same method, it is very sim-
ilar. This makes implementing the protocol from the pseudo-code simpler.
Note that the PyChord source is stripped from error handling and optimiza-
tions to more clearly illustrate the resemblance.

de f f i n d s u c c e s s o r (s e l f , nodeId) :
i f nodeId . i n I n t e r v a l (s e l f , s u c c e s s o r) :

r e turn su c c e s s o r
e l s e :

n0 = c lose s tPreced ingNode (id)
re turn n0 . f i ndSuc c e s s o r (id)

PyChord

The decision to do a implementation of Chord was because of two things.
First, there was no easily accessible open source solution for such an im-
plementation. Second, such an implementation would be educational, and
no harm will come from more learning. It also made it possible to provide
tailored interfaces for the future implementation of Harvest, which is harder
to achieve with third party libraries.

PyRest

PyRest is a module for setting up RESTful interfaces in Python. It was
primarily implemented as a possible solution to an assignment in a di↵erent
course at the University of Tromsø. As the design of Harvest was to use
RESTful interfaces for its interaction, PyRest was further developed to be
more robust and useful.

Webpy is an alternative to PyRest, which is an entire framework for creating
web applications. Other examples are Bottle, and Flask. These are larger
and more complex compared to PyRest, and o↵ers no extra functionality to

68 9 Discussion

Harvest. Because of this PyRest was chosen. It also served as an educational
bonus.

9.4 Evaluation of Problem Statements

In Chapter 1 the following hypothesis was presented:

Social data can be retrieved from social networks in a
scalable manner, increasing in data retrieval rate with
an increasing number of contributing users, using a col-
laborative system.

Experimental results point to the validation of the hypothesis. Although the
achieved data retrieval bandwidth is low for each contributing user, the per-
formance of Harvest increases with increased contribution. The data retrieval
rate of several users is linearly, with a 1:1 rate, scaling with the number of
Harvest nodes.

The statement of this thesis from Chapter 1 was:

Collaborative retrieval of social data using such a system
will avoid the financial costs generally associated with
such data retrieval.

By utilizing a decentralized and distributed P2P system, Harvest is able to do
all data retrieval with no associated financial cost. Assuming the system will
continue to scale beyond that of the experimental coverage, this will continue
even when reaching a number of contributing users in the thousands, or even
millions.

Chapter 10

Conclusions and Future Work

This chapter concludes the work of this thesis. The chapter will give a
summary of the thesis and its contributions, concluding remarks, and future
work for continuing this research.

10.1 Contributions

This thesis describes the architecture, design, and implementation of a col-
laborative for retrieving social data. The thesis hypothesis and statement
defined in Chapter 1 are stated below:

Social data can be retrieved from social networks in a
scalable manner, increasing in data retrieval rate with
an increasing number of contributing users, using a col-
laborative system.

Collaborative retrieval of social data using such a system
will avoid the financial costs generally associated with
such data retrieval.

Harvest was created to evaluate this hypothesis and statement. The system
has been evaluated by experiments on real Twitter data, and the results of the
experiments have shown linear scaling in data retrieval rate with increasing
number of contributing users to the system.

69

70 10 Conclusions and Future Work

In addition to Harvest, this thesis has contributed with several open source
Python modules. PyChord is a Python implementation of the Chord DHT
protocol. It creates a simple interface for building P2P systems with easily
expendable protocols. PyRpc is an Python RPC module that allows for
network communication at a high level of abstraction. Finally, PyRest is a
Python framework for setting up RESTful interfaces for web applications.

10.2 Concluding Remarks

As the amount of social data in social networks continue to grow, the poten-
tial for new/meaningful knowledge within this data is ever increasing. By
making this data more accessible to the public (by removing financial costs
associated with it), this potential knowledge could be extracted.

The goal of this work was to create a system where users of social networks
could share their resources to the greater good, and collaborate on the re-
trieval of social data without having to pay for it. This thesis has focused on
the creation of a scalable architecture and design that can support a large
amount of collaborating users. This resulted in Harvest.

Harvest allows users to collaborate on data retrieval, avoiding any financial
cost. But the data retrieval bandwidth achieved by Harvest is very low. It
is clear that in its current state it is not a reasonable alternative to retrieve
large amounts of data from such networks. One can conclude that Twitter
has thought of this when designing their limitations. But if Harvest retrieves
data from more social networking channels, and given a large contributing
user base, the above limitations can be surpassed.

Harvest nodes have a large portion of their time spent inactive, or idle. This
means they have the possibility to perform other types of useful work, such
as data processing.

10.3 Future Work

Harvest is a working system, and its design and implementation is a solid
foundation for conducting experiments and evaluating the thesis statement.
But it lacks certain features and has some flaws in its design that need to be

10.3 Future Work 71

addressed before it can be a fully functional system.

Data loss/unavailability due to o✏ine clients is currently not handled. This
means that not all requested data will be accessible at any time, in turn
resulting in incomplete data sets. Consequences of this has not been tested.
This can be handled by some replication scheme, but that leads to another
problem; consistency. For Harvest to be useful in a real-life scenario, this
should be addressed.

The system has also not been tested at a very large scale. Limited to a small
number of Twitter accounts, the system has not gone through experiments
that completely verifies its ability to scale.

The current interface for defining data sets is limiting. A richer interface
supporting keyword searches and live streams of public status updates would
make the system more usable.

To achieve more abundant data set, the support for more SNs would help.
As the current implementation only supports retrieval of Twitter data, it is
limited to the users of twitter, and the type of data found there; mini-blogs,
follower/friend relations, and trending topics. By including more explicit
SNs like Facebook and Myspace, and also implicit social networks such as
public forums, blogs or Reddit, a much wider data set could be harvested.
This will introduce new challenges such as data formats and representations
between these networks.

Harvest nodes are being idle, or inactive large portions of the time. There
is also the potential for performing other types of useful work in their spare
time. If Harvest nodes for instance perform desired processing on the re-
trieved data, only the results needed to be downloaded by the consumers.
Evaluating the characteristics of adding support for such processing would
be interesting. It could also prove useful, as it takes more advantage of the
underlying architecture.

References

[1] David P. Anderson. Boinc: A system for public-resource computing and
storage. In Proceedings of the 5th IEEE/ACM International Workshop
on Grid Computing, GRID ’04, pages 4–10, Washington, DC, USA,
2004. IEEE Computer Society.

[2] David P. Anderson, Je↵ Cobb, Eric Korpela, Matt Lebofsky, and Dan
Werthimer. Seti@home: an experiment in public-resource computing.
Commun. ACM, 45(11):56–61, November 2002.

[3] David P. Anderson, Eric Korpela, and Rom Walton. High-performance
task distribution for volunteer computing. e-Science and Grid Comput-
ing, International Conference on, 0:196–203, 2005.

[4] N.A. Christakis and J.H. Fowler. Connected: Amazing Power of Social
Networks and How They Shape Our Lives. HARPERCOLLINS UK,
2009.

[5] Donald E. Eastlake and Paul E. Jones. US Secure Hash Algorithm 1
(SHA1). http://www.ietf.org/rfc/rfc3174.txt?number=3174.

[6] Facebook. Facebook statistics. http://newsroom.fb.com/.

[7] M. Grivas and D. Kehagias. A multi-platform framework for distributed
computing. In Informatics, 2008. PCI ’08. Panhellenic Conference on,
pages 163 –167, aug. 2008.

[8] David Karger, Eric Lehman, Tom Leighton, Mathhew Levine, Daniel
Lewin, and Rina Panigrahy. Consistent hashing and random trees: Dis-
tributed caching protocols for relieving hot spots on the world wide web.
In In ACM Symposium on Theory of Computing, pages 654–663, 1997.

[9] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread
of influence through a social network. In Proceedings of the ninth ACM

73

http://www.ietf.org/rfc/rfc3174.txt?number=3174

74 References

SIGKDD international conference on Knowledge discovery and data
mining, KDD ’03, pages 137–146, New York, NY, USA, 2003. ACM.

[10] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What
is twitter, a social network or a news media? In Proceedings of the 19th
international conference on World wide web, WWW ’10, pages 591–600,
New York, NY, USA, 2010. ACM.

[11] Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman. The
dynamics of viral marketing. In Proceedings of the 7th ACM conference
on Electronic commerce, EC ’06, pages 228–237, New York, NY, USA,
2006. ACM.

[12] Atif Nazir, Saqib Raza, and Chen-Nee Chuah. Unveiling facebook: a
measurement study of social network based applications. In IMC ’08:
Proceedings of the 8th ACM SIGCOMM conference on Internet mea-
surement, pages 43–56, New York, NY, USA, 2008. ACM.

[13] E.M. Rogers. Di↵usion of Innovations. The Free Press, New York, 5th
edition, 2003.

[14] John Scott. Social network analysis. Sociology, 22(1):109–127, February
1988.

[15] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. SIGCOMM Comput. Commun. Rev., 31:149–160, August
2001.

	Abstract
	Acknowledgements
	Introduction
	Problem Statements
	Motivation
	Contributions
	Limitations
	Lessons Learned
	Organization

	Modern Social Networks
	Explicit Social Networks
	Data Access

	Implicit Social Networks
	Data Access

	Related Work
	Data Mining
	Twitter
	Facebook

	Public Resource Computing
	BOINC

	Harvesting the Social Network
	Collaboration
	Distributed System
	Data Retrieval
	Work Distribution

	Architecture
	Harvest Architecture
	Peer to Peer System
	Harvest Nodes
	System Discovery

	Social Networks and Social Data
	Consumers

	Design
	Harvest Design
	Consumer Interface
	Collection Management
	Data Storage
	Collection Interface
	Network Interface

	Tracker Design
	Tracker Interface

	Implementation
	PyRpc
	PyRpc Architecture
	Network Communication Design and Implementation
	PyRpc Design and Implementation

	PyChord
	Chord
	PyChord Design and Implementation

	PyRest
	PyRest Architecture
	PyRest Design and Implementation

	Harvest
	Consumer Interface
	Collection Management
	Data Storage
	Collection Interface
	Network Interface

	Harvets Tracker Implementation

	Experiments
	Methodology
	Metrics

	Benchmarks
	Experimental Setup

	Performance Benchmarks
	System Scaling
	Network Utilization
	System Activity Distribution
	Memory Usage
	CPU Usage
	Data Loss

	Sensitivity Benchmarks
	CPU Sensitivity
	Disk IO Sensitivity

	Discussion
	Discussion of Experimental Results
	System Performance
	Harvest Node Inactivity
	Data Loss
	Application Sensitivity

	Motivation for Harvest Architecture and Design
	Evaluation of Implementation
	Motivation for Implemented Artifacts

	Evaluation of Problem Statements

	Conclusions and Future Work
	Contributions
	Concluding Remarks
	Future Work

	References

