

FACULTY OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE

Hubble: a platform for developing apps that
manage cloud applications and analyze their

performance

Robert Molund Pettersen

INF-3990

Master's Thesis in Computer Science
May, 2012

ii

Abstract

The ability to deliver computing as a metered service has made the

cloud an attractive platform for deployment of applications. Using the

cloud, enterprises experience a decrease in maintenance overhead, faster

deployment, and that cloud elasticity can be exploited to meet fluctuating

resource demands.

This thesis presents Hubble, a platform for developing apps that manage

cloud applications and analyze their performance. Hubble provides apps

with support for persistent storage of performance data, creating secure

channels for communication with cloud instrumentation and management

software, and interfaces to aid with analytical computations on performance

data.

We present and evaluate several apps that have been developed for Hubble.

These provide functionality spanning from retrieval of performance data,

visualization of performance, and management of cloud services.

iii

iv

Acknowledgments

First and foremost, I want to thank my supervisor Åge Kvalnes for his

outstanding expertise and high availability. Whether it was weekend or in

the am, you where always there with an answer and motivation.

Further, I would like to thank the rest of the iad group for helpful discussions

and being there when I needed to rant about subtleties of large frameworks

and their vague documentation.

I would also like to thank my parents for providing me with useful resources

throughout my academic career, such as food and water.

v

vi

Contents

Acknowledgments v

Contents vii

List of Figures ix

List of Tables xiii

List of Acronyms xv

1 Introduction 1

1.1 Problem definition . 2

1.2 Scope and Limitations . 2

1.3 Method and Approach . 3

1.4 Outline . 4

2 Background and Related Work 5

2.1 Vortex Architecture . 5

2.1.1 IVortex kernel . 5

2.1.2 Vortex Services . 6

2.2 The Svosh Suite . 7

2.3 Protocol Buffers . 7

2.4 Related Work . 8

2.4.1 App platforms . 8

2.4.2 Systems . 10

2.4.3 Visualization . 12

3 Hubble Design and Implementation 17

3.1 Architecture . 17

vii

Contents

3.2 Performance data . 18

3.3 Cloud monitor . 21

3.3.1 Vortex Monitor . 23

3.3.2 Linux/BSD Monitor 26

3.4 Secure client/cloud communication 27

3.4.1 Secure Channels . 28

3.5 App platform Application Programming Interface (API) . . 30

3.5.1 Hubble Control Interface 31

3.5.2 Hubble Storage Interface 32

3.5.3 Hubble Analytical Interface 34

3.6 Connecting and launching apps 37

4 Apps 39

4.1 Rover: Performance data retrieval 39

4.2 Pulsar: Performance data visualization 42

4.2.1 Entity Browser . 43

4.2.2 Control interface . 44

4.2.3 Visualization view 45

4.3 Uranus: Cloud management 47

5 Experiments 51

5.1 Experimental setup . 51

5.2 Application Deployment . 52

5.3 Micro benchmarks . 58

6 Conclusion 63

6.1 Summary . 63

6.2 Discussion . 64

6.2.1 First requirement . 64

6.2.2 Second requirement 65

6.2.3 Third requirement 65

6.2.4 Fourth requirement 66

6.3 Future work . 66

References 69

viii

List of Figures

2.1 Schedulers control when to dispatch resource requests. . . . 6

2.2 Ganglia illustration from monitoring the WikiMedia Foun-

dation cluster. 11

2.3 HP Cluster Management utility, illustration from [7]. . . . 11

2.4 Example from the Unix top visualization. Each line

represent a process, stating the current load. 13

2.5 Illustration from the abstract Lava PS visualization system.

Image from http://www.isi.edu/ johnh/software/lavaps/. . 13

2.6 Screenshot from the game inspired PSDoom visualization

system. Illustration from http://psdoom.sourceforge.net. . 14

2.7 Illustration of Performance Monitor (PerfMon), visualizing

the cpu load of the local computer. 15

3.1 Overview of the Hubble architecture. 17

3.2 Relational diagram illustrating structure of the data format. 19

3.3 A sample configuration that could be sent from a monitor,

describes the total number of shares and resources at the

remote host. 20

3.4 Overview of the architecture of the Vortex monitor. The

monitor is designed as a process which interfaces with the

kernel statistics resource to retrieve performance data. User

level applications can be instrumented through separate

channels. 23

3.5 Simplified example result of statistical reading from the

Vortex kernel. The customer entity has been allotted 10% of

the available resources. The optional configuration section

is colored green. 25

ix

List of Figures

3.6 The Linux/BSD monitor utilizes the whoami and ps com-

mand line tools to retrieve performance data from running

processes. 26

3.7 Overview of process communication in Vortex. The blue

boxes are Vortex services, green circles are processes and

red circles are kernel resources. The red lines illustrates

AIO-channels. 29

3.8 Microsoft SQL Server Management Studio in the process of

analyzing a query. A suggestion has been made to create a

non-clustered index to improve query performance. 34

3.9 Login screen of Hubble. Requires the user to provide a host

name, service name and a private key file. 36

3.10 Hubble connected to a Vortex, Linux and a BSD node, with

the compatible apps listed on the right hand side. 38

4.1 Overview of the Rover architecture. Components that are

included in Rover are in the red box. Rover communicates

with the monitor and database through the API. 40

4.2 The Rover control interface allows the user to deploy the

monitor should it not be present, instruct the mode of

retrieval and the sampling frequency and which instrumen-

tation code should be retrieved. 41

4.3 The architecture of the Pulsar app running on the Hubble

platform. 42

4.4 The Pulsar browser component facilitates browsing of the

entities in the database. Entities are assigned a type specific

icon that represent the type of resource. 44

4.5 The Pulsar control interface lets the user control the layout

of the graph and shape the performance data. 45

4.6 Pulsar connected to a Vortex node, displaying the network

throughput in Mb/s of a service. All components are

displayed. 46

4.7 Architecture of the PerfMon bridging app. 47

4.8 The shell app utilizes the current active SSH connection to

multiplex commands to the cloud and results back to the app. 48

4.9 The execute app utilizes the existing SSH channel to

transmit commands and receive results back. 49

x

List of Figures

5.1 Overview of the test setup. Two competing applications are

installed in the cloud, while two separate load generators

generate external load for the applications. 52

5.2 i/o utilization when operating with 10% of the available

network resources, measured in Mbit/s. 54

5.3 CPU utilization when operating with 10% of the available

resources, measured in percent. 54

5.4 Application performance when operating with 10% of the

available resources, measured in requests per second. 55

5.5 Using the shell app we can adjust the alloted resources at

the remote host. 56

5.6 i/o utilization after increasing the allotted network re-

sources to 20%, measured in Mbit/s. 56

5.7 cpu utilization after increasing the allotted network re-

sources to 20%, measured in percent. 57

5.8 Application performance after increasing the allotted net-

work resources to 20%, measured in requests per second. . 57

5.9 cpu utilization of the monitor at 1 request pr second,

measured in percent. 59

5.10 cpu utilization of the monitor at 10 requests pr second,

measured in percent. 59

5.11 cpu utilization of Secure Vortex Channel (SVOCH) at 1

request pr second, measured in percent. 60

5.12 cpu utilization of SVOCH at 10 requests pr second, mea-

sured in percent. 60

5.13 Bandwidth utilization in Kbit/s of the monitor at 1 request

pr second. 61

5.14 Bandwidth utilization in Kbit/s of the monitor at 10

requests pr second. 61

xi

xii

List of Tables

3.1 The Hubble app platform API. 30

3.2 The Hubble control interface. 31

3.3 The Hubble storage interface. 32

3.4 The Hubble analytical interface. 35

xiii

xiv

List of Acronyms

SVOSH Secure Vortex Shell . 7

SVOCH Secure Vortex Channel . xi

PerfMon Performance Monitor . ix

SSH Secure Shell . 27

SFTP Secure File Transfer Protocol . 40

SCP Secure Copy Protocol . 30

RPC Remote Procedure Call . 7

GPB Google Protocol Buffers . 7

LINQ Language Independent Query . 11

API Application Programming Interface . viii

MCC Microsoft Chart Controls . 45

TPL Task Parallel Library . 40

xv

xvi

Chapter 1

Introduction

The ability to deliver computing as a metered service has made the cloud

an attractive platform for deployment of applications. With the cloud

as a platform, companies and enterprises experience that applications

can be deployed faster, manageability improves, maintenance overhead

decreases, and that cloud elasticity can be exploited to meet fluctuating

and unpredictable resource demands.

The cloud offers resources such as disk, network, and cpu, and while many

public cloud providers offer pay-as-you-go computing, varying approaches to

infrastructure, virtualization, software services, and pricing models makes

it non-trivial to select a provider that fits a particular need.

Li et. al.[9] compare different cloud offerings and their pricing models.

From this work, it is evident that a pricing model at one cloud provider

could be suited for some need, while the pricing model of another provider

better suited for other needs. For example, for a long running computation

with non-urgent completion time requirements, fanning out to use Amazon

Spot Instances1 when the price of those resources drop below an acceptable

threshold might be desirable to the owner of the computation.

Another example could be choosing between two different cpu offerings.

One offers very cheap, but slow, cpu and the other offers very fast, but

expensive, cpu. In the process of selecting an offering, pertinent questions

are: will the faster cpu result in a commensurate increase in application

1http://aws.amazon.com/ec2/spot-instances/

1

Chapter 1. Introduction

performance? Measured in some application level metric, what is the cost

of given service for each of the offerings?

For companies that deploy applications in the cloud, tools and mechanisms

to facilitate answers to questions such as these are highly desirable.

Currently, a cloud tenant typically has to rely on interfaces that are cloud-

specific, if available at all. For example, in Microsoft Azure, custom

probing tools need to be employed to gather performance data from the

Diagnostics Monitor, whereas Amazon provides performance summaries via

tenant account web pages.

In this thesis we present Hubble, a platform for developing apps that

manage cloud applications and analyze their performance. The design and

implementation of Hubble is the subject of this thesis.

1.1 Problem definition

The goal of this thesis is to design and implement a platform for developing

apps that manage cloud applications and analyze their performance. The

platform should offer the following functionality:

1. Enable secure communication of performance data produced by cloud

instrumentation to an app.

2. Provide efficient mechanisms for storing and performing query-based

retrieval of structured performance data.

3. Offer interfaces for aiding apps in performing analytical computations

on performance data.

4. Offer interfaces for aiding apps in controlling the cloud environment.

1.2 Scope and Limitations

Usually, an app platform provides means to deploy apps to a central

repository, often referred to as an app store, such that users can locate

and install selected apps on their instance of the platform. Further, an app

platform usually provides functionality for an app to create and manage

graphical user interfaces. The existence of this functionality is either to

reduce app complexity, or to conserve the aesthetics of apps for the platform.

2

1.3. Method and Approach

Due to time limitations, the design and implementation of a graphical user

interface and app store for Hubble will not be considered.

1.3 Method and Approach

Three paradigms divide the discipline of computing[3]: (i) Theory, (ii)

Abstraction, and (iii) Design.

Theory is based on mathematics and is comprised of four steps for developing

a coherent, valid theory:

1. Characterize objects of study (definition)

2. Hypothesize possible relations among them (theorem)

3. Determine whether the relationships are true (proof)

4. Interpret results

The abstraction paradigm is an experimental scientific method, and is used

to investigate a phenomenon based on the following four steps:

1. Form a hypothesis

2. Construct a model and make a prediction

3. Design an experiment and collect data

4. Analyze results

The design paradigm is founded in engineering and follows four steps to

form the basis for constructing a system aimed at solving a problem:

1. State requirements

2. State specifications

3. Design and implement the system

4. Test the system

3

Chapter 1. Introduction

The focus of this thesis will be on the design paradigm. First, a definition

of the requirements for the system will be outlined. Then the system will be

implemented based on these requirements, followed by testing of the systems

functionality. This will be repeated till the system behaves satisfactory.

Finally an evaluation of whether the system provides the functionality

needed to solve the problem will be presented.

1.4 Outline

The rest of this thesis is organized as follows.

Chapter 2 provides background information for understanding the design

and implementation, and related work.

Chapter 3 describes the design and implementation of Hubble, an app

platform for management and analysis of cloud applications and their

performance.

Chapter 4 describes the design and implementation of apps developed for

running on top of the Hubble platform.

Chapter 5 evaluates the design and implementation through experiments.

Chapter 6 provides a summary and concludes the thesis.

4

Chapter 2

Background and Related Work

This chapter outlines key aspects of the Vortex architecture and present

related work.

2.1 Vortex Architecture

Vortex is designed to maximize scheduler control over resource consumption.

The kernel is structured as a graph of resources, a resource grid, where each

resource implements common operating system functionality such as a file

system, a network protocol, etc. Resources communicate asynchronously

through message passing, with each message containing a tag to identify

the requesting activity. An activity is typically equivalent to a process.

Schedulers control when to dispatch a message to a resource, thereby also

controlling when and how a resource is multiplexed among activities.

2.1.1 IVortex kernel

The Vortex kernel has been designed and implemented using three design

principles [8]; (i) Measure all resource consumption, (ii) Identify the unit

to be scheduled with the unit of attribution and (iii) Employ fine-grained

scheduling.

The first principle assures us that all resource consumption in the system

is observed and measured. This is important to get a complete view of the

resource usage in the system.

5

Chapter 2. Background and Related Work

Figure 2.1: Schedulers control when to dispatch resource requests.

This is achieved by making all resource requests be passed as messages

between resources. Schedulers are inter-positioned between resources as seen

in Figure 2.1 and will be able to measure resource consumption external to

the resource when dispatching messages.

The second principle asserts the correctness of performance data, as the

resource usage as part of executing a message will be attributed to the

activity associated with the message.

The last principle, which is the most significant for this thesis, forces the

kernel to employ fine-grained scheduling. This means that the scheduler

have complete control over the different resources in the system, by dividing

them into many fine-grained resources that can be controlled separately.

For instance when accessing the file system, the request could traverse a file

block cache, a volume manager, and a device driver resource or a subset of

these resources. The scheduler can control requests to the block cache based

on memory consumption whereas the amount of data transferred might be

a desirable metric at the disk driver level.

2.1.2 Vortex Services

For resource management and security isolation, Vortex defines the concept

of a service. Services are organized in a strict hierarchical manner.

Resources are allotted to services, which in turn can be utilized by processes

and threads. Services can run multiple processes, but their collective

resource consumption can never exceed what is available to their governing

service. Processes within a service have local autonomy over available

resources; they are free to decide on a policy for how resources are shared

6

2.2. The Svosh Suite

among themselves, and also to create and delegate resources to sub-services.

The service abstraction provides security isolation by limiting what names

and resources are visible and accessible to processes. The root file system of

a service must be a strict post-fix of the root of its parent service. Moreover,

a process can only see processes attached to its service or a descendant

service.

2.2 The Svosh Suite

We developed the Secure Vortex Shell (SVOSH) Suite in previous work [11].

SVOSH offers authentication, encryption, and integrity of messages sent

between clients and Vortex. As part of this thesis we have reimplemented

large parts of SVOSH. In particular, we have extended SVOSH with support

for secure channels and replaced SVOSH’s previous i/o subsystem with

interfaces to an asynchronous i/o engine that was developed recently. We

refer to the new version as Secure Vortex Channel (SVOCH). SVOCH is

further described in Section 3.4.

2.3 Protocol Buffers

Protocol Buffers1 is a language and platform neutral functionality for

serializing structured data for use in communications protocols. Google

Protocol Buffers (GPB) was developed by Google. In Hubble, we base

wire-level representation of performance data on GPB.

Google initially developed GPB to deal with an index server request/re-

sponse protocol, but GPB is now widely used within Google for storing

and interchanging all kinds of structured information. GPB resembles the

Apache Thrift protocol used by Facebook. The main difference is that

GPB include a Remote Procedure Call (RPC) stack that is used for nearly

all inter-machine communication.

Google Protocol Buffers have native language bindings for Java, c++ and

Python, but have through third party developers been ported to most other

languages and platforms.

1http://code.google.com/p/protobuf/

7

Chapter 2. Background and Related Work

Google Protocol Buffers are not self describing, but utilize indexes on field

names to achieve data compression of field separators. Data structures are

defined in a separate .proto file, and both simple and complex data types

are supported, as well as recursive data structures.

Once the data structure has been defined, a language specific compiler will

produce simple accessors as well as methods for serializing and parsing the

whole data structure to/from raw bytes.

There are a number of advantages over other wire-level protocol formats

like xml. Depending on the language and implementation, the raw data

produced by protocol buffers is 3 - 10 times smaller in size, and take 20 -

100 times faster to parse.

2.4 Related Work

2.4.1 App platforms

App platforms are emerging in many, often unexpected, areas. A charac-

teristic of these platforms is that they provide rich, domain-specific, APIs

for third party developers to create advanced applications with little effort.

Spotify1 is a music streaming that offers unlimited streaming of millions

of tracks through a client application that can be installed on multiple

platforms. The application also acts as an app platform where third party

developers can create apps that can utilize APIs for searching, organizing,

and playing music. Apps can be developed to suggest music based on the

users mood, or virtual rooms can be created where users can suggest music

to be played for all users participating in the room.

Spotify apps are developed using a combination of html5, css, and

JavaScript. html5 canvases are used to construct the user interface, which

is styled using css. The API is offered through JavaScript modules, which

provide functionality to search for music, create collections and play lists,

display album art, and so on.

The Spotify API is very restricted when it comes to interacting with music.

No external storage is supported, and play lists and collections are stored

1http://www.spotify.com

8

2.4.1. App platforms

internally by utilizing the strict API. Only the name of the collections and

their content can be changed.

Facebook1 is the worlds largest social networking site, with over 500 million

active users posting status updates and sharing pictures from all over the

world. Facebook also offers an app platform on which developers can create

apps that augment the social API already developed by Facebook. The

most prevalent app category on the Facebook app platform is games. This

is presumably because of the readily available social API that facilitates

social channels that allow users to interact with each other in the games

running on the platform.

Facebook apps can be developed in any language that supports web

programming, such as php, Python, Java or c#. Similar to Spotify

apps, Facebook apps utilize html5 canvases for graphical user interfaces.

The API is written in JavaScript and php, and provides functionality to

authenticate users, retrieve social graphs, and create new social channels to

facilitate communication between users of the apps.

Compared to Spotify, Facebook has a more open API in the area of

deployment and storage. Apps can be deployed directly to the Facebook

page, or by utilizing an external connection, the app can be deployed at

a company web-server. If the app needs storage for various data, such as

player scores or app settings, an external storage provider can be utilized

at the app developers discretion.

Microsoft offers an app platform for their mobile devices, called Windows

Phone, which supports the c#, vb, and xaml programming languages.

xaml is used to design the user interface and c# or vb is used to create the

app logic. The platform offers an API for connecting to Microsoft services

such as Live for game integration, Bing for maps and searches, and hardware

devices like gps and accelerometer for positioning.

The platform offers an isolated storage component for each app, which can

be utilized as a database or binary storage. In this respect the platform does

not restrict the isolated storage, and the developer can choose to design the

storage in a way that is optimal for the app.

The platform does however have restrictions on the graphical user interfaces.

1http://www.facebook.com

9

Chapter 2. Background and Related Work

The graphical user interfaces are restricted to a set of pre-defined buttons

and shapes. Even the font is constrained. This might seem like an

unreasonable restriction at first, but it ensures that the end-user experience

is preserved across different apps.

Several other vendors offer platforms with varying APIs for app develop-

ment. Android, Google Chrome, and Apple iOS are examples of vendors

that offer an app platform. Other vendors are emerging for platforms

running on TV’s and other peripheral devices.

Similar to these app platforms, Hubble offers a platform for creating domain-

specific applications. Hubble positions its storage policy close to the one

offered by Spotify. By having a strict storage policy, we can offer a unified

interface for retrieving performance data across cloud providers.

To our knowledge, Hubble is the first platform for development of apps that

manage cloud applications and analyze their performance.

2.4.2 Systems

Ganglia[10] and HP Cluster Management Utility[7] are two systems designed

for cluster monitoring. Both systems collect performance data at the

granularity of cluster nodes and rely on low frequency sampling to improve

system scalability. Depending on the type of deployed instrumentation,

Hubble can be configured to provide functionality similar to Ganglia and

HP Cluster Management Utility.

Supermon[14] is similar to Ganglia, but focuses on high frequency sampling,

even in the presence of many nodes. To reduce the data volume in

deployments with many nodes, Supermon only retrieves performance data

pertaining observed entities. For example, Supermon can be configured

to only retrieve the available memory for each node in the cluster. In

Hubble, the frequency at which performance data samples are collected

is programmable. Hubble does not, however, currently support collection of

specific performance data entities; upon request, the monitor responds with

all entities in a performance data sample. As described in Section 6.3, an

interesting extension to Hubble would be for apps to supply an Xquery-like

query when requesting performance data from a node. The query could

then be evaluated at the node and only matching entities returned to the

requesting app.

10

2.4.2. Systems

Figure 2.2: Ganglia illustration from
monitoring the WikiMedia Founda-
tion cluster.

Figure 2.3: HP Cluster Manage-
ment utility, illustration from [7].

Otus[12] is similar to Ganglia, but samples data at process-level. Its goal

is to provide detailed post-analysis charts, not real-time analysis. Hubble

allows for analysis of a running system.

Fay[5] and DTrace[1] are two powerful platforms for gathering and analyzing

software execution traces used to diagnose system behavior on both single

machines and on clusters. Both frameworks introduce the notion of a probe

that can be inserted into applications or kernels to extract performance

data. This work is complementary to Hubble, as both a Fay and DTrace

probe could be used as instrumentation techniques. In particular, Fay

offers functionality that could work as drop-in replacements for several

Hubble components. For example, in addition to technology for safely

inserting probes into a kernel or process address space, Fay provides

support for evaluating queries written in a form of Language Independent

Query (LINQ). These queries can specify that performance data is to

be collected from one or more machines and also how to aggregate and

combine the collected data (in an efficient and distributed way). Fay could

for example be used in Hubble.control (see Section 3.5.1) as a replacement

for communication with the Hubble monitor.

Astrolabe[16] is a information management service, which monitors the

performance of a collection of distributed resources, reporting summaries

back to the user. The summaries are calculated on-the-fly using an

11

Chapter 2. Background and Related Work

aggregation approach that is intended to bound the rate of information

flow at each participating node. In contrast, Hubble is designed to retrieve

performance data at the lowest level possible, and instead offer aggregation

as a post-processing option.

VMware VFabric Application Performance Manager[17] and IBM Tivoli

Monitoring[15] are two enterprise monitoring systems designed to monitor

existing enterprise cloud solutions from VMware, XEN, and KVM among

others. While these systems usually are relatively expensive, and rely on

specialized infrastructure to be able to retrieve useful performance data, our

system aims to be generally applicable to all types of cloud infrastructure.

2.4.3 Visualization

Visualization systems come in many forms, ranging from textual represen-

tation to abstract graphical representation and the more common chart

representations.

The Unix top process performance visualizer is one of the most used

visualization systems on Unix systems, and comes bundled with most

Linux/Unix systems. Top visualizes each process by a line of text that

dynamically changes based on the load in the process, as seen in Figure 2.4.

LavaPS1 and PSDoom[2] are two quite different abstract visualization

system that each have their unique way of representing performance

statistics.

LavaPS disguises it self as a lava lamp, with colored blobs representing

processes running on the monitored system. The blobs move faster the

more CPU usage the process has, and grows larger the more memory the

process consumes, as illustrated in Figure 2.5.

PSDoom on the other hand, simulates the 3D shoot-em-up game Doom,

where processes are represented as monsters, and gives a more interactive

representation of the monitored system than LavaPS. A user can get an

overview of the load of the system by looking at how crowded the different

rooms are. An illustration is seen in Figure 2.6.

Both LavaPS and PSDoom are visualization techniques that can capture

trends and the big picture of running systems. But mining macro-level

1http://www.isi.edu/ johnh/software/lavaps/

12

2.4.3. Visualization

Figure 2.4: Example from the Unix top visualization. Each line represent a
process, stating the current load.

Figure 2.5: Illustration from the abstract Lava PS visualization system.
Image from http://www.isi.edu/ johnh/software/lavaps/.

13

Chapter 2. Background and Related Work

Figure 2.6: Screenshot from the game inspired PSDoom visualization
system. Illustration from http://psdoom.sourceforge.net.

information from these techniques can prove difficult. Hubble tries to

visualize performance characteristics at the lowest level available, and give

valuable information about other parts of the system as well as those parts

being visualized.

Microsoft Performance Monitor (PerfMon) is one of the more traditional

visualization frameworks that utilizes line plots. PerfMon is installed on

most Windows distributions, and has a wide array of pre-defined sources of

data to visualize, from cpu load to memory utilization of different parts of

the system. An illustration of the PerfMon visualization system is seen on

Figure 2.7.

PerfMon can also be configured to connect to a remote host, and visualize

performance characteristics from that host instead of the local host.

While PerfMon provides visualization of the performance characteristics of

the monitored system, it is not very flexible when it comes to navigating

the different components of the system. Hubble tries to visualize the

performance data in a intuitive way, and at the same time give the user

the option to navigate all components, all the way down to a macro-level

14

2.4.3. Visualization

Figure 2.7: Illustration of Performance Monitor (PerfMon), visualizing the
cpu load of the local computer.

so that every angle of a process can be thoroughly investigated.

15

16

Chapter 3

Hubble Design and

Implementation

This chapter describes Hubble, a platform for apps that manage cloud

applications and analyze their performance

3.1 Architecture

Figure 3.1 depicts the Hubble architecture. Hubble consists of three main

components: (i) a client-side app platform and API, (ii) a performance

monitor residing in the cloud, and (iii) a storage database that can reside

either in the cloud or at the client side.

Figure 3.1: Overview of the Hubble architecture.

17

Chapter 3. Hubble Design and Implementation

The app platform provides an API that can be used to develop apps for

administration and analytics of cloud services and virtual machines. The

app platform provides a portal for connecting to the cloud and controlling

applications running in the cloud.

The Hubble platform provides an API for retrieving and storing performance

data in the database, securing communication with processes in the cloud,

and an analytical interface for performing analysis on the performance data.

The Hubble platform is implemented in the .NET architecture and as such

supports app implementations in a wide array of languages, including c#,

vb and d#. These languages have libraries that can facilitate graphical

user interfaces for apps running on the platform.

The monitor residing in the cloud gathers performance data from multiple

sources, and can take advantage of powerful probing frameworks like

Fay[5] or DTrace[1] for providing performance data. The monitor gathers

performance data, but actual retrieval of the performance data is performed

by an app.

3.2 Performance data

Different clouds may provide different opportunities for deploying in-

strumentation that collects performance data. For example, Microsoft

Azure does not provide built-in performance monitoring interfaces, instead

custom probing tools need to be employed to gather performance data

from the Diagnostics Monitor. In contrast, a Vortex cloud can provide

detailed performance data about how different operating system resources

are utilized. Also, a cloud deployment may involve simple single-process

applications, or applications that consist of multiple processes that span

multiple virtual machines.

The disparity in what type of instrumentation may be possible, in combi-

nation with potentially complex application deployments, led us to define

a common model and format for performance data. All instrumentation

must provide performance data that adhere to this model. Similarly, apps

can assume that any performance data is structured according to the model.

The common data model does as such facilitate and promote creation of apps

that are portable across cloud platforms and different operating systems.

18

3.2. Performance data

Figure 3.2: Relational diagram illustrating structure of the data format.

The data model is recursive and designed around the notion of entities that

can describe both resource usage and resource allotment.

Figure 3.2 illustrates the data model. The header contains the time at

which the performance data sample was constructed by instrumentation,

along with an optional repeatable configuration field.

Each sample contains two different timestamps, the host and the external

timestamps. The host timestamp is set by instrumentation and is expected

to be of high accuracy with respect to the ordering of events internally in the

host. For example, instrumentation could use the cpu timestamp counter

register on x86-based architectures to provide cycle-accurate timestamps.

The external timestamp is set by the monitor and must be drawn from a real

time clock source. Typically, the monitor would use an ntp-derived clock as

19

Chapter 3. Hubble Design and Implementation

Figure 3.3: A sample configuration that could be sent from a monitor,
describes the total number of shares and resources at the remote host.

a source for the external timestamp. By using the host timestamp an app

can make strong assumptions about the time between samples originating

from the same host. For example, if the host timestamp indicates that a

sample was produced 20000 microseconds after another sample, the app can

assume that this is correct. By using the external clock timestamp, an app

can correlate samples originating from different hosts. Here, the external

timestamp clock source limits accuracy. Typically, an ntp-derived clock can

be expected to be accurate within a few milliseconds.

The configuration field can contain translations for entity names, for human

readability, or other static data like amount of resources available, speed of

network interfaces, and the like. The configuration is usually only sent once,

or upon request by an app, to reduce the amount of data communicated.

A sample can be seen in Figure 3.3. The sample describes a system with a

2.6Ghz cpu, with 4Gb of ram and a 1Gb nic. The host uses a percentage

distribution when distributing resource allotments.

The header also contains an optional repeatable field for entities, which in

turn can contain an optional number of sub entities. All fields are made

optional to promote creation of apps that are robust to situations where a

cloud cannot provide a certain type of performance data.

20

3.3. Cloud monitor

Entities may optionally contain a number of usage and allotment records.

These are optional since some entities may serve as organizational entities,

like process groups or services.

Each entity must also specify an identifier that is unique to the host from

which the performance data originates. The use of unique identifiers enables

apps to reason about changes to the cloud environment. For example, if an

identifier is present in one performance data sample but not in a (time-wise)

later sample, an app can assume that the entity has been removed from the

cloud environment since it is not consuming cpu, i/o, or memory.

The type field describes the type of entity and corresponds to a defined

enumeration of standard entities found in the cloud, including computer,

principal, process, thread, cpu, memory, etc.

The usage records contains fields for number of cycles, cache accesses and

misses, number of bytes transferred, and a separate field for application

specific statistics. The application-specific field can for example be number

of clients served, number of disk accesses, or other metrics.

We have chosen to implement this data model in Google Protocol Buffers

(GPB), as GPB provide a platform independent format for reading and

writing serialized and compressed data in an efficient way. GPB have

native language bindings for Java, c++ and Python, but through third

party developers, have been ported to most other languages and platforms.

There are a number of advantages of GPB over other wire-level protocol

formats. Compared to xml, depending on the language and implementation,

the raw data produced by GPB is 3 - 10 times smaller in size, and 20 - 100

times faster to parse.

To support GPB on the Vortex platform we ported the c implementation

provided by a third party developer1 (see Section 3.3.1 for more informa-

tion).

3.3 Cloud monitor

Different clouds might offer different opportunities for instrumentation. For

example, the Amazon Elastic Compute Cloud allows a tenant access to

1http://code.google.com/p/protobuf-c/

21

Chapter 3. Hubble Design and Implementation

and control over its environment at the level of processes and the virtual

machine kernel, but performance data from the hypervisor is restricted to

summaries provided by Amazon via tenant account web pages. In such an

environment, the monitor can deploy instrumentation that access common

kernel interfaces, such as the Linux /proc interface, or rely on more invasive

instrumentation such as Fay[5], DTrace[1], or other probing frameworks.

The inability to deploy instrumentation at any level in the cloud infrastruc-

ture implies that Hubble can make few assumptions about exactly what

performance data can be gathered by the monitor. Moreover, differences

in cloud environments imply that instrumentation code must be crafted

specifically for a given cloud. These restrictions led us to place few

requirements on the monitor, with respect to functionality and interfaces.

The monitor resides in the cloud and must provide an interface for Hubble

apps to connect and collect the gathered performance data, and the monitor

must provide a control interface whereby it can be configured to operate

in pull or push mode. The control interface is also required to respond

to capability requests, which will reveal which configuration options are

available.

In pull mode, the monitor must provide performance data upon a request,

and in push mode, the monitor must obtain performance data from its

instrumentation code at specified time intervals and communicate this to

the requester. Other configuration options may include a scope which the

monitor is limiting the gathering of performance data to.

Beyond this, the monitor is required to obey the formating on the provided

performance data as described earlier in Section 3.2. The monitor is also

required to start the performance sample with a node entity that describes

the current host. This is to be able to separate performance data from

different clouds. Ensuring that performance data is securely communicated

is handled by Hubble (see Section 3.4).

In the following we describe two monitor implementations. One for a cloud

based on the Vortex system, and a second for a cloud where the tenant

environment is based on the Linux/BSD operating system.

22

3.3.1. Vortex Monitor

Figure 3.4: Overview of the architecture of the Vortex monitor. The monitor
is designed as a process which interfaces with the kernel statistics resource
to retrieve performance data. User level applications can be instrumented
through separate channels.

3.3.1 Vortex Monitor

The Vortex monitor is the monitor implementation that has received most

attention in this thesis. The implementation makes use of instrumentation

code placed in the Vortex kernel, which extracts the same performance data

as used by kernel-side schedulers.

The Vortex monitor is a user-level process that implements the interface

required for apps to request performance data. Similar to a unix system,

Vortex processes operate with input and output channels. The monitor

assumes that these are secure communication channels connected to Hubble

(see Section 3.4). Upon startup, the monitor takes control over process input

and output and then waits for incoming requests.

The monitor is structured around a request queue where incoming app

requests are placed. A request can be of type pull or push. When receiving

a pull mode request, the monitor responds with performance data. Upon

receiving a push mode request, the monitor sets up a timer that, upon

expiration, inserts a pull request into the monitor request queue, causing

the monitor to respond as if it had received a pull request.

Vortex is structured around services as an organizational unit, that can be

alloted cpu, i/o and memory resources. These resources can be utilized by

processes running under the service or further delegated to sub services. The

processes utilize the resources through aggregates for the different resources.

23

Chapter 3. Hubble Design and Implementation

For example, a process that needs cpu cycles would request these by resource

clients associated with a cpu aggregate for that process.

To handle a request for a performance data sample, the monitor first

performs a Vortex system call to open the kernel statistics interface1. This

call returns a Vortex resource identifier that subsequently can be read from

to retrieve a performance data sample.

As part of our work we have replaced the existing xml-based Vortex

statistics interface with an interface that returns performance data in the

Google Protocol Buffers (GPB) format. This entailed porting a c-based

GPB implementation by a third party developer2 to operate within the

Vortex kernel environment.

As part of the porting, we made some optimizations to the original GPB

implementation. In particular, the GPB implementation relied a two-phase

construction of serialized data, whereby the data is first constructed as a

graph using dynamic allocation of memory to represent nodes, followed by

a graph traversal to produce a serialized byte-array representation.

To improve performance and reduce memory requirements, the implementa-

tion was modified to allocate memory for graph nodes from a pre-allocated

array. This was possible since construction of the performance data sample

only entails adding new nodes to the graph, not modifying or removing

existing nodes. Thus, a series of expensive malloc() calls could be satisfied

by code that used a simple counter to keep track of the next byte of free

array memory. A side-effect of this scheme is better cache locality, since

nodes are placed sequentially in memory and traversal can be expected to

touch fewer cache lines.

Also, the kernel-side logic for traversing Vortex data structures to retrieve

performance data has been re-implemented. The logic is based on a depth-

first traversal algorithm with respect to Vortex services. The logic starts

by creating an entity that represent the current computer node and then

proceeds to traverse the services the authenticated user have access to.

At each service, all processes and their associated i/o, memory and cpu

aggregates are recorded, as explained above. Further, each of the aggregates

1This interface can be used by a process to retrieve performance data on itself or
other processes.

2http://code.google.com/p/protobuf-c/

24

3.3.1. Vortex Monitor

Figure 3.5: Simplified example result of statistical reading from the Vortex
kernel. The customer entity has been allotted 10% of the available resources.
The optional configuration section is colored green.

are descended into, and their specific performance data is recorded.

A performance data sample is further augmented by the monitor with

configuration entities. As an example, consider Figure 3.5, which shows

Vortex definitions for entities as well as information such as the total amount

of resources available for a customer entity.

The information in the configuration section is typically static, and as such is

only supplied by the monitor in the first performance data sample. Though,

an app can request the information by setting a flag in a pull request.

For some of our experiments we needed metrics that typically would entail

25

Chapter 3. Hubble Design and Implementation

instrumentation of the application. In particular, we needed access to the

number of accepted clients to a web server. While this could have been

obtained by straightforward instrumentation of the web server, we extended

the Vortex kernel instrumentation code to collect the number of accepts on

open listen sockets.

A general interface for instrumentation to communicate with the monitor

has been implemented, but it is not used in any of the experiments presented

in this thesis.

3.3.2 Linux/BSD Monitor

The Linux/BSD monitor is a user level implementation that makes use of

existing user level tools to gather performance statistics about processes

belonging to the authenticated user. The monitor was implemented as a

proof of concept that the solution is extensible to multiple platforms.

The monitor was implemented in roughly 100 lines of python, and consists

of a set of functions that wraps Linux/BSD command line tools to retrieve

performance data samples. The outline of the monitor architecture can be

seen on Figure 3.6.

Google Protocol Buffers (GPB) have native support for Python, and can

create language bindings to our entity data format without having to port

a special preprocessor.

Figure 3.6: The Linux/BSD monitor utilizes the whoami and ps command
line tools to retrieve performance data from running processes.

26

3.4. Secure client/cloud communication

Upon request from the client, the python script starts by creating an entity

representing the current host. Further, the script gets the current user

through whoami, and adds this entity as a principal entity.

After adding the principal entity, the script utilizes the ps command line

tool for getting information about the users current running processes and

associated performance data.

The output from the ps tool is parsed to retrieve both the current cpu

and memory usage. As the performance information obtained through the

tool is normalized to a percentage of the total available resources, the total

amount of shares is set to 100% in the configuration field.

After all running processes have been added, the script serializes the entities

using the native language binding made available through GPB native

Python preprocessor. The result is returned to the requester.

3.4 Secure client/cloud communication

A performance data sample can reveal information that is potentially

sensitive. For example, performance data have been used as a source of

information for malicious attackers[13]. Moreover, instrumentation must

be considered trusted since the code has full access to a tenant’s cloud

environment. Thus, authentication, integrity, and confidentiality must be

ensured for communication between client-side and the cloud.

For secure communication Hubble relies on use of the Secure Shell (SSH)

protocol[18]. SSH uses public-key cryptography for authentication and

offers encryption mechanisms to ensure communication integrity and confi-

dentiality. The SSH protocol is supported on most cloud platforms, either

as a native maintenance entrance for a tenant, or as a service that can be

launched inside a tenant’s virtual machine environment.

Another facet of the SSH protocol is that is designed to allow multiplexing

of several logical channels over a single SSH connection. By creating a

channel, a separate communication channel can be established between

a client- and server-side application. For example, the protocol defines

well-known channel types for shell access and file transfers. The ability

to perform file transfers can for example be used to deploy monitor code,

should the monitor be unavailable at the cloud host.

27

Chapter 3. Hubble Design and Implementation

The SSH protocol is also designed to allow creation of custom channels,

as defined in RFC 42541. Hubble exploits this feature to create separate

communication channels between apps and the cloud.

In previous work we implemented a SSH server for Vortex[11]. This work

was heavily modified and extended for the work presented in this thesis.

In the following we present the current design and implementation of the

Vortex SSH server.

3.4.1 Secure Channels

Previously we have implemented Secure Vortex Shell (SVOSH) [11] that

provides users with shell access over an SSH connection. We have

reimplemented this work to allow custom sub-systems to attach to the secure

channels. The resulting authentication and encryption engine was named

Secure Vortex Channel (SVOCH) as it provide secure channels, not only

shell communication.

During the rewrite process, several bugs were also uncovered and corrected.

Some of these bugs were related to the buffer management that would allow

a sliding window protocol for each of the separate secure channels. In the

previous implementation, multiplexing several channels was not explored

and the bug was undetected. But as more channels where multiplexed at

the same time, the buffer overflow bug surfaced.

As the Vortex operating system have evolved since the first implementation

of the SVOSH, the implementation was further rewritten to take advantage

of the fully asynchronous communication engine2, the AIO-engine. The

AIO-engine resides in user space, and uses a thread-pool to efficiently take

care of i/o operations and their continuations.

The AIO-engine also maintains a cache of recently used components used

when performing i/o communication in Vortex, such as IOStreams and

flows. This reduces the latency when creating new channels and improves

performance.

Further the AIO-engine exposes a notion of AIO-channels that are used

for asynchronous communication. These channels are used to setup

communication in the engine.

1http://www.ietf.org/rfc/rfc4254.txt
2Ongoing work, not yet published

28

3.4.1. Secure Channels

Figure 3.7: Overview of process communication in Vortex. The blue boxes
are Vortex services, green circles are processes and red circles are kernel
resources. The red lines illustrates AIO-channels.

Each service can have multiple public keys associated with them that can

be used for authentication. Figure 3.7 illustrates an example setup where

the customer service has one associated public key.

The client authenticates with the service that is to be monitored using his

private key, and establishes a secure SSH channel to an instance of SVOCH.

SVOCH sets up the necessary AIO-channels and multiplexes the incoming

data to the destination process. Figure 3.7 illustrates an example where

the monitor process has been attached to a duplex channel for requests and

delivery of performance data.

The monitor further uses a read channel from the kernel statistics resource

for reading performance data, and a read-write channel to a web server

process for requesting and reading application level performance data.

SVOCH has further been extended with capabilities for dynamically

changing the alloted resources of processes and services running on Vortex.

29

Chapter 3. Hubble Design and Implementation

This capability is implemented in the form of a user level process that

accepts as arguments a service identifier and a specification of resource

allotments. When launched, the process performs a series of system calls to

set resource allotment according to what is requested.

Finally the Secure Copy Protocol (SCP) protocol has been implemented

in SVOCH to facilitate secure copying of files and folders. The SCP

functionality is implemented through a user level process that translates

SCP protocol messages to the creation of files and folders. Contents of files

are delivered as binary data through SVOCH.

3.5 App platform API

This section introduces the API that the Hubble platform provides for

developing apps. The API provides functionality for creating secure

channels to the cloud, storing and retrieving performance data to the

database, and an analytical interface to aid an app in common analytical

tasks.

An overview of the API provided by the Hubble app platform can be seen in

Table 3.1. hubble.control provides an interface for setting up secure channels

to the cloud and performing common operations such as starting processes,

images, and adjusting resource allotments. Since different cloud providers

have different APIs for connecting and managing resources, for each provider

there needs to be a separate implementation of this interface.

hubble.storage provides an interface to the database, offering functionality

both for inserting new performance data, and to retrieve different aggregated

statistics. One single implementation of the interface is sufficient across

cloud providers since the internal database interface is the same.

hubble.analyze provides tools to analyze and perform normalization on the

Hubble App Platform API
Interface Functionality provided
hubble.control Control Interface
hubble.storage Storage Interface
hubble.analyze Analytical Interface

Table 3.1: The Hubble app platform API.

30

3.5.1. Hubble Control Interface

hubble.control interface
Interface Functionality
newChannel Create new channels
newEnvironment Create new environment
adjustAllotment Adjust allotments

Table 3.2: The Hubble control interface.

data retrieved from the database. Some of the functions made available

in this interface need cloud specific implementations, while other generic

functionality is available across cloud providers.

3.5.1 Hubble Control Interface

hubble.control is the interface that provides functionality for setting up

secure channels to the cloud and performing common management tasks.

Table 3.2 provides an overview of the control interface functionality.

newChannel creates a new secure channel, and takes two parameters. The

first parameter describes the SSH channel type, and is typically one of

shell or execute, but custom channel types are also supported. The second

parameter describes the remote process that is to be attached at the remote

end of the secure channel.

The implementation of this function revolves around SSH protocol messages

for setting up a new secure channel in the existing SSH connection. The

returned identifier can be used to communicate with the remote process or

read exit status messages.

newEnvironment instantiates a new environment in the cloud, and requires

two parameters. The first parameter describes the image that is to be

started, along with information about where to find the image and whether

the image has to be transfered to the cloud before executing it. The second

parameter describes the alloted resources the new virtual machine should

be alloted.

adjustAllotment adjusts the alloted resources for an already started cloud

environment, and requires one parameter that describes the new resource

allotment.

31

Chapter 3. Hubble Design and Implementation

The implementation of these functions are highly dependent on the available

API at the cloud provider. In our Vortex implementation of the interface,

the newEnvironment translates to the creation of a new service with the

given allotment and a single process running as specified by the image. In

Amazon EC2, this would translate to the creation of a new virtual machine.

adjustAllotment is implemented using the API developed to adjust allotment

of already existing services running on Vortex.

Both implementations use the control interface to create new secure channels

to the respective administrative interfaces at the Vortex side, and passing

the parameters required to achieve the desired effect.

3.5.2 Hubble Storage Interface

Hubble provides a storage interface for persisting performance data samples.

To reduce client/cloud communication, app developers are encouraged to

access performance data through the Hubble storage interface instead of

interacting directly with the monitor by use of the Hubble control interface.

An overview of the storage interface is presented in Table 3.3.

All functionality related to retrieving performance data requires one param-

eter and one optional parameter. The first parameter is a list of unique ids

of entities that performance data are to be aggregated over. The second

parameter is an optional specification of the start and stop time.

The insert function requires one parameter, an entity object as described

in Section 3.2. The implementation will be required to follow the relations

and take care of placing the data in the correct tables.

hubble.storage interface
Interface Functionality
getCPU Get per cpu cycle usage
getCores Get per core cycle usage
getMem Get Memory usage
getIO Get i/o usage
getApp Get Application level metric
putEntity Insert new Usage sample

Table 3.3: The Hubble storage interface.

32

3.5.2. Hubble Storage Interface

The size in bytes of a performance data sample will vary depending on type

of instrumentation, number of reported entities, etc. For example, a Vortex

sample is typically in the order of 12KB. Accumulating samples at a high

rate and over longer periods of time can thus result in substantial storage

requirements. For example, assuming that each sample is 12KB and that

samples are obtained at a rate of one per second, storing samples over a 12

month period would require approximately 378GB of storage space.

The database interface implementation is the same across cloud providers.

When designing the Hubble storage, several approaches were implemented

and tested. Initially, performance data was stored in Entity Framework

4 containers. These are in-memory structures that allow fast inserts and

lookups, and provide the programmer with explicit control over when data

is persisted to disk. However, our experience was that Entity Framework

4 containers suffer from exceedingly long persist times where no concurrent

reads or writes can be performed. For example, even with a small amount

of samples (less than 10), we experienced periods of up to 4 − 5 seconds

where a container was inaccessible due to being persisted.

Storing performance data in flat files (with a log rotation approach)

was considered. This approach, however, was deemed likely to result in

poor performance due to the need for repeated scans when searching and

aggregating.

Hubble currently relies on a database approach for storing performance

data. The implementation uses a Microsoft SQL table scheme that can be

deployed either to a local Microsoft SQL Server instance or, which has been

tested, to remote Microsoft Azure Storage.

To avoid partial updates and improve write performance, one single

transaction is used in the implementation of the put functionality. This

ensures that partial data cannot be read before all data belonging to the

specific sample has been committed. The transaction spans a bulk insert

job for the entire sample to improve performance.

To further improve the performance of the database, Microsoft SQL Server

Management Studio was used to detect missing indexes and get suggestions

for how to improve the query. An illustration is shown in Figure 3.8.

With the information obtained from the Management Studio, we have

created several non-clustered, non-unique indexes on the tables. Non-

33

Chapter 3. Hubble Design and Implementation

Figure 3.8: Microsoft SQL Server Management Studio in the process of
analyzing a query. A suggestion has been made to create a non-clustered
index to improve query performance.

clustered indexes have the property that the physical order or the items

in the database is independent of their indexed order. This removes the

constraint that the items need to be physically sorted as well as logically

sorted. Benchmarks performed in the Management Studio show these

indexes reduces the average query time of a single query from 1 second

to 10ms.

The implemented get functionality returns LINQ enabled identifiers, which

can be iterated directly over or used indirectly in other functionality. The

get functionality is implemented by translating the parameters to a LINQ

query that will, when executed, return the database items included in the

list of unique ids with the associated resource usage. The LINQ enabled

identifiers have their query execution deferred till the actual elements are

read.

3.5.3 Hubble Analytical Interface

The analytical interface aims to provide functionality to analyze perfor-

mance data in an efficient manner. Table 3.4 outlines the interface.

34

3.5.3. Hubble Analytical Interface

movingAverage is an interface that enhances the LINQ enabled identifier

returned from the storage interface with moving average calculations. The

interface requires three parameters, where the first describes the moving

average formula. The formula can be exponential moving average, triangular

moving average, or other moving average formulas. The second parameter

describes the interval the moving average should be calculated over, and

the third parameter is the LINQ identifier returned from a storage interface

functionality.

Our implementation exploits the financial formula component of the .NET

framework to provide a wide array of moving average formulas. The financial

formula is applied directly to the LINQ identifier, so the formula is executed

when the items are iterated.

normalize normalizes the performance data retrieved through the storage

interface, and requires two parameters. The first parameter describes the

interval the data should be normalized over and the second is the LINQ

enabled identifier from the storage interface.

The implementations are not allowed to iterate over the elements in

the LINQ identifier, since this could lead to multiple iterations of the

data, and possibly un-needed data transfers from the database. Instead

the implemented functions need to enhance the LINQ query with the

functionality required from the interface so that the query is executed only

once to obtain the desired result.

bigData is our interface for large scale analytics, and is meant to provide a

simple interface for starting MapReduce, Dryad or other large scale analytics

jobs on large datasets collected to the database. The function requires one

parameter, which is a LINQ query describing the analytical job.

An implementation of bigData could take advantage of local gpu resources

for performing MapReduce jobs through Mars[6] locally, or instantiate

hubble.analyze interface
Interface Functionality
movingAverage Get the moving average
normalize Normalize
bigData Large scale analytics

Table 3.4: The Hubble analytical interface.

35

Chapter 3. Hubble Design and Implementation

Figure 3.9: Login screen of Hubble. Requires the user to provide a host
name, service name and a private key file.

virtual machines in the cloud for running MapReduce jobs remotely.

Another opportunity for the bigData interface is to facilitate cheap compute

resources like the Amazon EC2 Spot instances. Spot instances is a new way

of exploiting left-over compute resources. At any time there are data centers

in the Amazon EC2 cloud that are under utilized, either because the region

that the data center serves currently are in the night or other reasons.

These compute resources are volatile and can be disrupted at any time if

the resources are needed elsewhere in the Amazon cloud. Regardless, these

compute resources are well designed for MapReduce jobs, as the workers in

a MapReduce job are idempotent and can be restarted at a later time.

Because of lack of resource to instantiate MapReduce jobs we have not been

able to test an implementation of this interface.

36

3.6. Connecting and launching apps

3.6 Connecting and launching apps

The app platform has a user interface for connecting to the cloud and

launching apps. The design aims to be simplistic and require a minimum

of user input. The login screen, as seen in Figure 3.9, requires the user

to provide a host name, a service identifier and a private key file for

authentication during cloud login. The credentials we have chosen to

support is the public-key authentication scheme, as described in Section

3.4.

Before being able to connect to the cloud, the client needs to make sure

that the public key is installed at the remote host, and that it gives access

to the processes that are to be monitored. Most enterprises already have

a public-key infrastructure, and by supporting this authentication method,

the enterprises can make use of this solution without implementing new

authentication mechanisms.

Hubble uses the cryptographic library from Renci1 since it already supports

the encryption standards often used by cloud providers. We have chosen

to utilize a well tested library for our encryption and integrity for two

reasons; (i) we can support more authentication methods than is feasible

to implement in the timespan of this thesis, and (ii) to be able to assert

that the encryption methods validate and are correct. The library also have

hooks for Secure Copy Protocol (SCP) for deploying the monitor code in

the cloud if this should be needed.

After the necessary information have been provided, Hubble will try to

authenticate the client, using the provided credentials, to the specified

cloud. The authentication process is explained in detail in our work with

SVOSH[11]. If the provided credentials are validated, a secure channel is

created between the client side app platform and the remote host SSH server.

After connecting to the cloud, Hubble will probe for the capabilities of the

remote host. These probes include shell and execute functionality, but also

whether the monitor is deployed at the cloud provider. The apps that are

compatible with the functionality at the cloud will be presented to the user,

as illustrated on Figure 3.10.

All the available apps utilize the same connection and can multiplex several

1http://sshnet.codeplex.com/

37

Chapter 3. Hubble Design and Implementation

Figure 3.10: Hubble connected to a Vortex, Linux and a BSD node, with
the compatible apps listed on the right hand side.

separate data channels on the same secure channel if needed. Each of

the separate data channels maintain their own sliding window protocol to

prevent congestion and exercise back-pressure to be able to consume data

as it is generated at the remote host.

At this point the user may launch any number of apps.

38

Chapter 4

Apps

This chapter describes apps developed to run on top of the Hubble platform.

As part of our work we have implemented many Hubble apps. The

functionality provided by these apps can be categorized as (i) retrieval of

performance data, (ii) visualization of performance characteristics, and (iii)

management of cloud services.

4.1 Rover: Performance data retrieval

We have named our performance data retrieval app Rover after Mars Rover,

which is a probe running on Mars gathering planetary data. Rover was the

first app developed for Hubble, and provides functionality for collecting

performance data from the monitor residing in the cloud and for storing

this data in the Hubble database.

Figure 4.1 illustrates the Rover architecture. Rover is implemented in c#

on the .NET framework, and encompasses 7463 lines of code. Of these

lines, roughly 6000 was auto-generated to handle the structure of the GPB

format.

The Rover architecture is centered around a queue, which is protected by a

synchronization construct (a .NET monitor). When Rover receives data, the

raw wire-level protocol data is placed in the queue and the synchronization

construct signals that there are data available in the queue.

39

Chapter 4. Apps

Figure 4.1: Overview of the Rover architecture. Components that are
included in Rover are in the red box. Rover communicates with the monitor
and database through the API.

The signal will wake up a thread in a thread pool. The thread pool is

implemented using the Task Parallel Library (TPL). TPL provides an

efficient and scalable use of system resources by using algorithms like hill-

climbing to determine and adjust the number of threads to maximizes

throughput. To complement this, work-stealing algorithms are employed

to provide load-balancing.

Upon wakeup, the workers in the thread pool will dequeue packets from

the queue, and parse the hierarchical structure of the entity wire-level data

format explained in Section 3.2 into single entity objects. Each of the entity

objects will in turn be passed to the insert function in the storage interface.

Upon launch, Rover uses the Hubble control interface (see Section 3.5.1)

to establish a secure communication channel to the cloud. This channel is

then used to connect to the monitor, or to deploy the monitor using a SCP

channel if needed.

After ensuring that the monitor is present at the cloud, Rover sends a

request to the remote SSH server instructing that the monitor process be

attached to the remote end of the secure channel. This way of using SSH to

secure the communication of an otherwise insecure application is similar to

the one used with the Secure File Transfer Protocol (SFTP) in the OpenSSH

system. At this point Rover has a secure duplex channel to the monitor.

Rover continues by requesting the monitor capabilities. These capabilities

40

4.1. Rover: Performance data retrieval

Figure 4.2: The Rover control interface allows the user to deploy the monitor
should it not be present, instruct the mode of retrieval and the sampling
frequency and which instrumentation code should be retrieved.

include whether the monitor supports pull or push based retrieval, or both,

and whether the client can exercise control over what instrumentation that

is deployed (see Section 3.3).

Different monitoring scenarios might have different requirements with

respect to sampling frequency. Some scenarios might require one sample

each hour, while other scenarios might require several samples per second. A

third scenario might even require different sampling frequencies at different

times of the day. As such, Rover exposes a graphical user interface, shown

in Figure 4.2, that presents monitor capabilities and where the user can

configure Rover operation.

After the configuration has been entered, Rover starts retrieving perfor-

mance data and writing this data to storage.

41

Chapter 4. Apps

Figure 4.3: The architecture of the Pulsar app running on the Hubble
platform.

4.2 Pulsar: Performance data visualization

Visualization of performance data can have many uses. Charts can verify

whether alloted resources are in fact available, implementation anomalies

can be detected, and one can learn about resource usage pattern for different

periods of the day. These are only a few examples of uses.

Pulsar is a visualization app implemented in C# for deployment on the

Hubble platform. It is built using Windows Forms, and is assembled using

custom components which consists of standard .NET controls. Pulsar

encompasses 3153 lines of code, where 990 lines are related to auto-

generated data structures.

Pulsar can be configured to request performance data from Hubble storage

at a specific rate, using current time as a timestamp, or Pulsar can operate

on data in Hubble storage that were collected within a specified time

window. Using the former mode of operation, Pulsar visualizes performance

42

4.2.1. Entity Browser

data as it is stored by Rover and the visualization reflects the current state

of the cloud environment.

As shown in Figure 4.3, there are three main components in the Pulsar app:

(i) an entity browser, (ii) a control interface, and (iii) a visualization view,

The entity browser presents the user with the available entities in the

performance data (see Section 3.2), and communicates user-selected entities

to the control interface. The control interface enables the user to make

choices with respect to how the data will be visualized. The visualization

view in turn visualizes the entities, utilizing the chosen options from the

control interface.

4.2.1 Entity Browser

The Pulsar Entity browser examines performance data samples and con-

structs a tree view layout to visualize entities based on the parent-child

relationship of entities as found in the performance data. As shown in

Figure 4.4, the resulting visualization resembles a typical Windows explorer

layout. This makes searching for specific entities similar to finding a folder

in Windows explorer.

The entity browser parses each entity and places the relevant data in an

visual entity object, containing the unique ID and the human readable

identificator found in the database. The entity browser separates the

different entity types using custom-created icons representing the type of

entity (see Section 3.2).

The contents of the entity browser is continuously updated as the visualiza-

tion progresses. The contents of the browser will reflect the time interval

that is currently visualized; if an entity is present in a performance data

sample within the visualized time interval, the entity will be presented in

the browser.

When the user selects an entity, the browser descends the entity hierarchy to

extract the unique identifiers of entities (see Section 3.2) below the selected

entity. Also, the browser ascends the hierarchy to find the nearest principal

entity to discover what resources are available to the selected entity. These

unique identifiers are then communicated to the control interface.

43

Chapter 4. Apps

Figure 4.4: The Pulsar browser component facilitates browsing of the
entities in the database. Entities are assigned a type specific icon that
represent the type of resource.

4.2.2 Control interface

The Pulsar control interface serves two purposes. The first is to shape the

performance data, by exercising control over how much data will be gathered

and by applying analytical formulas using Hubble’s analytical interface. The

second is controlling layout of the chart in the visualization view.

The control interface operates on the set of unique identifiers received from

the Entity Browser. Using the Hubble storage interface, the control interface

obtains LINQ enabled identifiers for the corresponding performance data.

The control interface provides the user with a graphical user interface to

control how the performance data is visualized. The user can choose from

44

4.2.3. Visualization view

Figure 4.5: The Pulsar control interface lets the user control the layout of
the graph and shape the performance data.

a variety of different plots, ranging from line and spline charts to bar and

column charts. The user can also exercise control of how many seconds will

be presented in the chart.

The user can also specify that the charts are displayed in 3D. In 3D mode,

the user can further enhance the visualization by adjusting the inclination

and rotation degree of the chart.

The user can further enhance the chart by applying different combinations

of the functionality found in Hubble’s analytical interface. The user can

select different normalization and or moving average formulas that are to be

applied to the data before transmitting the resulting LINQ enabled identifier

along with the layout parameters to the visualization view. Note that all

operations applied to performance data by the control interface are deferred;

retrieval of performance data from storage and application of analytical

functions occurs in context of the visualization view.

4.2.3 Visualization view

The visualization view is in charge of producing a graphical representation

corresponding to the input from the control interface.

The implementation currently uses Microsoft Chart Controls (MCC) for

the .NET Framework to produce the graphical representation. MCC is

straightforward to use, as it accepts LINQ enabled identifiers as specification

of data sources for a chart. Thus, the visualization view can forward the

input from the control interface directly to MCC, only specifying additional

parameters pertaining to how the data is to be interpreted. These additional

parameters specify aspects such as series delimiters, grouping, coloring, line

thickness, etc.

45

Chapter 4. Apps

Figure 4.6: Pulsar connected to a Vortex node, displaying the network
throughput in Mb/s of a service. All components are displayed.

An example of the Hubble interface, including the Entity browser, control

interface, and visualization view is shown in Figure 4.6.

We have experimented with other approaches to implementing the visual-

ization view. A commonly used tool for performance visualization on the

Microsoft platform is Performance Monitor (PerfMon). PerfMon is not very

flexible when it comes to configuration, however, and is only able to show

pre-defined graphs.

Figure 4.7 shows performance data from Hubble visualized by PerfMon,

along with an architecture for an app that bridges Hubble with PerfMon.

The visualization was produced by changing the visualization view compo-

nent of Pulsar to first evaluate the LINQ enabled identifiers received from

the control interface and then post the resulting data to PerfMon. Although

we have not done so, the modular structure of the Hubble makes it possible

to create a new app that relies on PerfMon for visualization rather than

Microsoft Chart Controls (MCC).

46

4.3. Uranus: Cloud management

Figure 4.7: Architecture of the PerfMon bridging app.

4.3 Uranus: Cloud management

The main use of the SSH protocol is gaining access to execute commands

either directly or indirectly through a shell at the remote host. As such we

have provided the user with apps to do both these tasks through the already

established secure channels. The internal channel multiplexing within the

SSH protocol takes care of delivering the messages at the correct remote

application. We have chosen to call these apps Uranus, after the Greek god

personifying the sky.

When starting the shell app, a separate internal shell channel in the already

established secure channel is created through the Hubble control interface.

In the process of establishing a shell channel, the system negotiates with

the remote host as to which character are to be used as newline character

to make output readable. After the channel is established, the platform

requests the remote shell be attached to the remote end of the channel.

Uranus consists of two separate, but similar, apps: the shell and the execute

app.

The shell app is implemented using a textbox .NET control, the same control

used when creating text editors. The textbox control is augmented with a

keystroke interceptor which intercepts keystrokes and transmits them to the

remote host over the established shell channel.

Upon receiving data from the remote shell, the shell appends the output

47

Chapter 4. Apps

Figure 4.8: The shell app utilizes the current active SSH connection to
multiplex commands to the cloud and results back to the app.

using the correct newline character in the textbox. An illustration is seen in

Figure 4.8.

The execute app is implemented in a similar fashion, but instead of creating

a secure shell channel, the execute app creates an execute channel. The user

specifies a process to execute at the remote host in an editable text box.

This process is added as the second argument when creating the execute

channel.

Both apps will poll the resulting Hubble channel identifier and wait for the

cloud-side process to terminate. Any output the process generates along

with the exit code will be displayed in a read-only text box. An illustration

is seen in Figure 4.9.

If the cloud provider supports an API for configuration of the resources made

available to the tenant, an app could be created to automatically request

and relinquish resources depending on whether the deployed application

meets a configurable application metric.

For example, a web server could be configured to be able to serve 1000

requests per second. If the web server cannot meet this requirement, the app

48

4.3. Uranus: Cloud management

Figure 4.9: The execute app utilizes the existing SSH channel to transmit
commands and receive results back.

would analyze which resources are being used the most and increase these

the allotment for these resources. In the web server example this resource

could be network or disk bandwidth. If the memory or cpu resource is overly

provisioned, the app could be configured to relinquish some of the resources

to reduce cost. The app could also be configured to move the application

to another provider should the time and day dictate that another provider

could provide the required resources for less money.

Although we have not implemented such an app yet, in Chapter 5.2 we

demonstrate an experiment where the shell app was used to manually issue

resource allotment changes, thereby mimicking the behavior of such an app.

49

50

Chapter 5

Experiments

This chapter presents our experience from running experiments with the

Hubble platform.

Two types of experiments were performed. The first was a typical scenario

where a company plans to deploy an application and wants to learn about

its behavior, and then tune the alloted resource depending on observed

performance. The second experiment aimed to explore the overhead of

monitor operation.

All experiments involve use of cloud nodes running Vortex.

5.1 Experimental setup

For our experiments we used Dell PowerEdge M600 nodes equipped with 2

Intel Xeon E5430, each with 4 cores running at 2.66ghz, 16gb of ram, and

a 1Gb/s ethernet network interface.

The Vortex nodes ran Vortex build 32768, and the load generator nodes ran

CentOS release 5.5.

The client computer running the Hubble platform was a Dell Precision 390

with a single processor equipped with 4 cores running at 2.40ghz and 8gb

of ram. The computer was running 64bit Windows 7, with Microsoft SQL

server 2008 R2 installed for storage.

51

Chapter 5. Experiments

Figure 5.1: Overview of the test setup. Two competing applications are
installed in the cloud, while two separate load generators generate external
load for the applications.

We utilized Pulsar to generate performance graphs throughout these

experiments.

5.2 Application Deployment

In this experiment we explore a scenario where a company plans deployment

of an application in the cloud. The goal of the experiment is to investigate

whether the Hubble platform can aid in deciding the right pricing model

for the application, and whether Hubble can be used to change allotted

resource at the cloud provider to ensure that the application can sustain a

certain performance level.

The application the company plans to deploy is a typical cloud application

that service clients with data based on some parameters in client requests.

The service is assumed to be i/o-bound, as negligible computation is

involved in determining what data to serve to a client.

52

5.2. Application Deployment

As shown in Figure 5.1, we deploy two instances of the application. This

was done to make the deployment more realistic, as cloud providers typically

co-host tenant environments, causing there to be competition for resources

at each cloud node.

The cloud node was connected to two load generator nodes. On these we

ran the Apache Benchmarking tool ab1 to generate load for each of the

application instances. ab was configured to run with 32 concurrent requests,

where new requests are created upon completion of previous requests (a

closed loop setup).

On the cloud node we configured Vortex with Weighted Fair Queuing[4]

schedulers. Such schedulers assign weights to clients and ensure that each

client receives resources in proportion to its assigned weight. The schedulers

are also work-conserving; if at any given time there are idle resources and

there is demand from a client, that client will receive resources. If there is

competition for idle resources, those resources are shared among demanding

clients in proportion to their weight. By comparing a client’s weight to

the sum of all assigned weights, one can determine the minimum resource

entitlement for that client. Any received resources above that minimum

originates from idle resources.

Initially the client application was deployed to the Vortex node with 10%

of the available cpu and i/o resources. The resource utilization is shown in

Figure 5.2 and Figure 5.3, where utilization is plotted along with resource

allotment.

By examining the graphs, it is evident that the i/o resource is used

to it’s fullest (100 out of 1000 Mbit/s available) while there are ample

cpu resources available. This confirms the initial assumption that the

application was i/o bound.

Looking at application performance, illustrated in Figure 5.4, the current

allotment of resources results in a performance of approximately 50 requests

per second.

Intuitively these performance characteristics indicate that increasing the

amount of allotted i/o resources would linearly increase the application

performance.

1http://www.apache.org

53

Chapter 5. Experiments

Figure 5.2: i/o utilization when operating with 10% of the available network
resources, measured in Mbit/s.

Figure 5.3: CPU utilization when operating with 10% of the available
resources, measured in percent.

54

5.2. Application Deployment

Figure 5.4: Application performance when operating with 10% of the
available resources, measured in requests per second.

To test this hypothesis we double the allotted i/o resources, from 10%

to 20%, while keeping the allotted cpu resources at 10%. This was

accomplished by use of the shell app to access the Vortex API for adjusting

resource allotments. Figure 5.5 shows how the adjustment was performed.

Note that here we use the shell to execute a command that normally would

only be accessible to the cloud provider, i.e. adjusting the amount of

resources available to a tenant. As part of this thesis we have implemented

user level tools for adjusting the amount of resources available to Vortex

services. Since Vortex organizes services hierarchically and only allows a

process access to its hosting service and any descendant services, the shell

command (and corresponding Vortex-side process) was launched in context

of the Vortex root service. This allowed for the command to effectuate

changes to the customer tenant resource allotment.

Figure 5.6 and Figure 5.7 illustrates the change in consumption of cpu and

bandwidth when increasing the allotment of i/o resources to 20%.

Since our load generators strive to consume all available bandwidth at

the different services, we can immediately see the changes in application

resource consumption. As expected, we observe that the available network

55

Chapter 5. Experiments

Figure 5.5: Using the shell app we can adjust the alloted resources at the
remote host.

Figure 5.6: i/o utilization after increasing the allotted network resources to
20%, measured in Mbit/s.

56

5.2. Application Deployment

Figure 5.7: cpu utilization after increasing the allotted network resources
to 20%, measured in percent.

Figure 5.8: Application performance after increasing the allotted network
resources to 20%, measured in requests per second.

57

Chapter 5. Experiments

bandwidth is consumed, while we observe only 1% increase in cpu

consumption.

Figure 5.8 shows application performance with the increased allotment of

network bandwidth. As expected, the application level performance is

commensurate with the increase in available i/o resources.

From these experiments we can conclude that the application requires a

cloud environment with few cpu cycles, and if the company wishes to

increase application performance, increases in the i/o budget is likely to

result in a proportional increase in performance.

5.3 Micro benchmarks

In this experiment we measure the overhead incurred by running the monitor

in the cloud. As all resource usage is monitored by the monitor, even

resources consumed by the monitor, we are able to use the Hubble platform

to measure the resource usage of itself.

Because we are using the SSH protocol to encrypt our data before sending,

there is some associated encryption overhead. Since the encryption is

performed by SVOCH, a separate process, we are able to differentiate

between resources used for monitoring and resources used for encryption.

The user can adjust the rate at which Rover will retrieve updated resource

usage records, so we will benchmark our monitor at two different refresh

rates. One of our goals was that our monitor would provide users with

performance statistics at a very high resolution, and as such we will test

our solution at both 1 update per second and 10 updates per second.

When running the experiment we populated the Vortex node with some

regular services. This was done to ensure that each performance data sample

would contain a substantial number of entities, resulting in both encryption

and instrumentation overhead. With these services running, each sample

obtained from the monitor encompassed approximately 12Kb of data.

Figure 5.9 and Figure 5.10 shows the cpu utilization of the monitor when

running 1 sample per second and 10 samples per second, respectively. The

graphs show that the monitor scales its cpu consumption linearly with the

number of requests, and that the total consumption is very low.

58

5.3. Micro benchmarks

Figure 5.9: cpu utilization of the monitor at 1 request pr second, measured
in percent.

Figure 5.10: cpu utilization of the monitor at 10 requests pr second,
measured in percent.

59

Chapter 5. Experiments

Figure 5.11: cpu utilization of SVOCH at 1 request pr second, measured in
percent.

Figure 5.12: cpu utilization of SVOCH at 10 requests pr second, measured
in percent.

60

5.3. Micro benchmarks

Figure 5.13: Bandwidth utilization in Kbit/s of the monitor at 1 request pr
second.

Figure 5.14: Bandwidth utilization in Kbit/s of the monitor at 10 requests
pr second.

61

Chapter 5. Experiments

Figure 5.11 and Figure 5.12 shows the cpu utilization of SVOCH when

running 1 sample per second and 10 samples per second respectively. The

graphs show that with respect to cpu consumption, the encryption engine

scales linearly with the number of samples per second.

Figure 5.13 and Figure 5.14 shows the bandwidth usage when running 1

sample per second and 10 samples per second, respectively. The bandwidth

usage is in the expected range. 12KB of data sent per second equates to

approximately 100Kb/s. Again, resource consumption scales linearly with

the number of requests per second.

62

Chapter 6

Conclusion

This thesis has presented the design and implementation of Hubble, an

app platform for designing cloud management and analytical apps to

aid in administration, deployment and performance monitoring of cloud

applications.

6.1 Summary

We have presented Hubble, an app platform for administration and analysis

of cloud applications. The platform and all its components, including the

apps, encompass 23208 lines of code, which is split evenly between c and

c# code.

The platform provides a well formed API for developing apps that can estab-

lish secure communication and retrieve performance data about applications

running in the cloud.

A monitor component has been designed and implemented to facilitate

collection of performance data from instrumentation code running in the

cloud.

Further, the platform provides a persistent database for storing structured

performance data retrieved from the monitor. The database is designed

for efficient inserts and allows query-based retrieval and aggregation of

performance data.

63

Chapter 6. Conclusion

Several apps that utilize the API have been designed, implemented, and

tested in a Vortex cloud environment. Rover, which is a performance data

retriever, enables secure transfer of the collected performance data from the

monitor to the database.

Pulsar visualizes different performance characteristics from the performance

data found in the database. Pulsar exposes a rich interface that allows the

user to choose from a wide variety of different chart plots, normalization,

and moving average computations to enhance the visualization.

Uranus is an administration suite that enables the user to create and manage

processes, adjust resource allotments, and perform other administrative

tasks should the cloud provider support it.

Together, these apps provide a dashboard for assisting in application

deployment scenarios, profiling performance characteristics of the deployed

applications, and administration of these.

6.2 Discussion

The problem that we set out to solve involved creating an app platform

that could facilitate administration and analysis of cloud applications. A

platform has been design and implemented, Hubble, and its effectiveness

has been evaluated through the implementation of several apps. These

apps utilize the platform API to perform different performance analysis

and management tasks.

In the following we discuss each requirement presented in Section 1.1 and

assess whether the requirement has been met.

6.2.1 First requirement

The first requirement defined for our platform was: Enable secure commu-

nication of performance data produced by cloud instrumentation to an app.

To satisfy this requirement a monitor component was designed and imple-

mented to facilitate collection of performance data from instrumentation

running in the cloud.

In its control interface (see Section 3.5.1), Hubble offers functionality for

64

6.2.2. Second requirement

setting up secure communication channels to the cloud. As described in

Section 3.4, Hubble uses the public-key based Secure Shell (SSH) protocol

to ensure authenticity, integrity, and confidentiality for client/cloud commu-

nication channels. To support the Hubble secure channel functionality for

Vortex, we made substantial improvements to previous work (see Section

3.4.1).

6.2.2 Second requirement

The second requirement defined was: Provide efficient mechanisms for

storing and performing query-based retrieval of structured performance data.

To satisfy this requirement we designed a database that could store struc-

tured performance data (see Section 3.5.2). The database was enhanced

with indexes to optimize query performance and allow efficient aggregation

of performance data.

Apps utilize the Hubble storage interface for persisting new, and querying

for existing, performance data.

6.2.3 Third requirement

The third requirement defined for our platform was: Offer interfaces for

aiding apps in performing analytical computations on performance data.

To satisfy this requirement we developed the analytical interface of Hubble

(see Section 3.5.3). This interface provides apps with common analytical

functionality such as normalization, aggregation, and moving averages.

The interface is prepared to be extended with large-scale analytical

operations that may involve cloud computing resources or local gpu

resources for efficient and scalable analysis. Specifically, apps are presented

with LINQ enabled identifiers when using both the Hubble storage and

analytical interfaces. These allow query execution and data analysis to be

deferred until materialization is needed, e.g. when results are visualized or

written to disk. Further, LINQ offers mappings to distributed computation

frameworks such as Dryad[19].

65

Chapter 6. Conclusion

6.2.4 Fourth requirement

The fourth and last requirement defined was: Offer interfaces for aiding

apps in controlling the cloud environment.

This requirement is hard to satisfy in a general manner, since different cloud

providers provide different interfaces for controlling the cloud environment.

We have to the extent possible, provided mechanisms that allow the

fulfillment of this requirement. Apps can utilize the Hubble control interface

for remote shell and execute capabilities (see Section 4.3).

To demonstrate that it is possible to dynamically adjust the allotted

resources of a cloud environment, we have augmented Vortex with interfaces

for adjusting the resources allotted to an existing service. We demonstrated

this capability in Section 5.2.

6.3 Future work

The Hubble platform opens up for a wide range of app possibilities.

But because of time restrictions and other limiting factors there are still

functionality that could be improved or extended to facilitate even more

functionality.

The app platform could be extended with APIs for window management.

This would make the apps more aesthetic, and provide users of the platform

with a familiar user interface across apps. This functionality would also

ease development as the developers would not need to worry about window

creation and management.

The platform could be further extended with means to deploy apps to the

platform, optionally from a central repository or app store. This would

allow developers to submit their apps to the central repository and make

them available for users to browse and deploy on their platforms.

The monitor has not been thoroughly tested in a multi-node cloud, and

we recognize that there is work to be done in the field of aggregating

performance data from multiple hosts in an efficient manner.

Our bigData interface has a lot of potential, and could be implemented in

a way that could facilitate remote cloud computing resources or local gpu

66

6.3. Future work

resources to perform the actual large-scale analytical job. We have already

started planning jvm support on Vortex to be able to offer MapReduce

functionality.

67

68

References

[1] Beauchamp, T., and Weston, D. DTrace: The reverse engineer’s

unexpected swiss army knife. In Blackhat Europe (2008).

[2] Chao, D. Doom as an interface for process management. In Proceedings

of the SIGCHI conference on Human factors in computing systems

(New York, NY, USA, 2001), CHI ’01, ACM, pp. 152–157.

[3] Comer, D. E., Gries, D., Mulder, M. C., Tucker, A., Turner, A. J., and

Young, P. R. Computing as a discipline. Commun. ACM 32, 1 (Jan.

1989), 9–23.

[4] Demers, A., Keshav, S., and Shenker, S. Analysis and simulations of

a fair queuing algorithm. In Proceedings of Special Interest Group on

Data Communication (Austin, Texas, September 1989), pp. 3–12.

[5] Erlingsson, U., Peinado, M., Peter, S., and Budiu, M. Fay: extensible

distributed tracing from kernels to clusters. In Proceedings of the

Twenty-Third ACM Symposium on Operating Systems Principles (New

York, NY, USA, 2011), SOSP ’11, ACM, pp. 311–326.

[6] He, B., Fang, W., Govindaraju, N. K., Luo, Q., and Wang, T. Mars:

A mapreduce framework on graphics processors.

[7] HP Cluster Management Utility. http://h20311.www2.hp.com/HPC/

and documentation therein.

[8] Kvalnes, Å., Johansen, D., Valv̊ag, S., Renesse, R. v., and Schneider,

F. Design principles for isolation kernels. Tech. rep., University of

Tromsø, 2011.

69

References

[9] Li, A., Yang, X., Kandula, S., and Zhang, M. Cloudcmp: comparing

public cloud providers. In Proceedings of the 10th annual conference on

Internet measurement (New York, NY, USA, 2010), IMC ’10, ACM,

pp. 1–14.

[10] Massie, M. The ganglia distributed monitoring system: design,

implementation, and experience. Parallel Computing 30, 7 (July 2004),

817–840.

[11] Pettersen, R. Public-key based authentication and administration of

vortex services. Unpublished Bachelor Thesis, University of Tromsø,

2010.

[12] Ren, K., López, J., and Gibson, G. Otus: resource attribution in

data-intensive clusters. In Proceedings of the second international

workshop on MapReduce and its applications (New York, NY, USA,

2011), MapReduce ’11, ACM, pp. 1–8.

[13] Ristenpart, T., Tromer, E., Shacham, H., and Savage, S. Hey, you, get

off of my cloud: exploring information leakage in third-party compute

clouds. In Proceedings of the 16th ACM conference on Computer and

communications security (New York, NY, USA, 2009), CCS ’09, ACM,

pp. 199–212.

[14] Sottile, M. J., and Minnich, R. G. Supermon: a high-speed cluster

monitoring system. In Cluster Computing, 2002. Proceedings. 2002

IEEE International Conference on (2002), pp. 39–46.

[15] IBM Tivoli Monitor. http://www.ibm.com/software/tivoli/ and docu-

mentation therein.

[16] Van Renesse, R., Birman, K. P., and Vogels, W. Astrolabe: A

robust and scalable technology for distributed system monitoring,

management, and data mining. ACM Trans. Comput. Syst. 21, 2 (May

2003), 164–206.

[17] Vmware vFabric Application Performance Manager.

http://www.vmware.com/products/application-platform/vfabric-

application-performance-manager/ and documentation therein.

[18] Ylonen, T., and Lonvick, C. The Secure Shell (SSH) Protocol

Architecture. RFC 4251 (Proposed Standard), Jan. 2006.

70

References

[19] Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, U., Kumar, P.,

and Currey, G. J. Dryadlinq: A system for general-purpose distributed

data-parallel computing using a high-level language.

71

