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Abstract

The number of scale-space statistical algorithms has been greatly increased over the last
15 years. The concept originated from computer vision, introduced in Lindeberg (1994).
The seminal paper by Chaudhuri and Marron (1999) brought the scale-space concept into
smoothing of curves and kernel density estimation through the SiZer tool. By using all
relevant smoothing bandwidths, i.e., the “scale” part, SiZer allows the user to look for
interesting features in the smoothed curves or density estimates simultaneously on all
bandwidths. In the years following, a number of classical statistical problems were also
included in the family of scale-space algorithms.

In this thesis, new scale-space algorithms for four such classical statistical problems are
suggested. Paper II presents two closely related problems, addressed with highly similar
approaches.

Paper I addresses spectral scale-space analysis. Peaks found in the estimated spectral
density function of evenly sampled stationary signals are typically of great interest for
scientists. A peak found at a given frequency translates to potential (hidden) periodic-
ities in a data set. Therefore, algorithms to determine which spectral peaks that really
are significant are important in real-world applications. The presented algorithm uses the
infamous periodogram, for reasons explained later. The different Fourier frequencies are
the “space” part of the algorithm, while the “scale” part is introduced through a smooth-
ing parameter of an assumed prior distribution. By using the Integrated Nested Laplace
Approximation (Rue et al., 2009), a full posterior distribution can be constructed, from
which the needed p-values are found.

Unlike Papers I and III, Paper II presents a scale-space approach without introducing a
prior distribution. Through two similar algorithms, two different questions are addressed:
1) Can a multivariate data set be considered to originate from some unspecified multivariate
Gaussian distribution? 2) Can k multivariate data sets be considered to originate from some
unspecified multivariate distribution? The “scale” part of both algorithms is connected to
a weighted summation across neighboring dimensions. The number of dimensions that are
summed across is given by the scale parameter. The “space” parameter is connected to the
time or location index of the data series. The algorithms do not need to invert estimated
covariance matrices, thereby they can handle the High Dimension Low Sample Size case,
where most comparable methods fail.

Paper III brings the scale-space concept into long-range dependence and wavelet anal-
ysis. The basis of this third paper is the wavelet coefficients resulting from linear filtering
of the data with localized wavelet filters of increasing widths. The variance of these coeffi-
cients forms the “wavelet variance”. The “space” part is connected to the different wavelet
filters/scales. As in Paper I, the “scale” part is connected to the smoothing parameter of
the prior distribution. The degree of long-range dependence is fully characterized by the
Hurst parameter. This parameter can be estimated through linear regression of the natural
logarithm of the wavelet variance. Determining for which scales this regression should be
done is not trivial, an issue which the presented algorithm addresses. A time-divided /local
wavelet analysis for detecting non-stationarities in the data is also presented in Paper III.
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Chapter 1

Introduction

The motivation for this thesis was to expand the collection of statistical scale-space meth-
ods. The concept of scale-space, or multi-scale, is fairly new. It is commonly considered to
have been introduced within the computer vision field by Lindeberg (1994). Lindeberg uses
two-dimensional Gaussian smoothing kernels to generate smoothed versions of the original
image, where the “scale” part is connected to the variances of the smoothing kernels. For
instance, a large degree of smoothing hides the details of the image, and instead focuses on
the coarser structures in the image. No specific level of smoothing is considered to be the
correct level. Different features might be present/detectable on different smoothed versions
of the original image.

The underlying idea of the scale-space methodology is that different significant features
of a data set might be connected to different scales. In general, the scale is connected to
zooming in or out, or looking at the fine details or the coarse trends of the data. Generally,
the scales that a feature is connected to, which will also be the best scales to detect/observe
it at, will not be known. Without this prior knowledge, the normal approach is to guess or
in some way estimate which scale is best. For instance, in classical nonparametric density
estimation or smoothing schemes, some sort of bandwidth has to be chosen (Wand and
Jones, 1995). By only looking at one bandwidth, one cannot detect features that are not
detectable when using only this bandwidth.

The SiZer Methodology

The pioneering scale-space work within statistics was done by Chaudhuri and Marron
(1999), with further theoretical justifications and improvements in Chaudhuri and Marron
(2000) and Hannig and Marron (2006); Hannig and Lee (2006). Here, the SiZer (Significant
Zero-crossings of the derivative) procedure for nonparametric, one-dimensional function
estimation was introduced. SiZer is a tool for detecting significant trends of the true
underlying signal viewed at different smoothing levels, also called scales. In this SiZer-
paper, the concept of SiZer maps was introduced (see Erdsté and Holmstrom (2005) for
more on SiZer maps). A SiZer map is a two-dimensional image, graphically communicating
relevant information. The first axis assigns the position or time of the data vector, while the



degree of smoothing is given by the second axis. As SiZer represents the scale-space idea
in a comprehensible way, and since the presented methods of this thesis have strong ties to
SiZer, the SiZer methodology is presented and demonstrated in the following paragraphs.

Let z;,i = 1,...,n be a sample from some smooth univariate distribution f(z). A
kernel estimate of f(x) is found as

n

ZKh %) nlthC?i), (11)

where the bandwidth /smoothing parameter h > 0 is connected to the width of the smooth-
ing kernel Kp,(x) = K(z/h)/h (Wand and Jones, 1995). The basic smoothing kernel K (z)
has to meet the requirements of a density function, and often the standard normal distri-
bution is used.

In a nonparametric regression setting, the model considered can be described by

yi = p(z;) + e,

where p(z) is the true regression function, z;,i = 1,...,n are the explanatory variables,
and the e;s are the independent error terms. The regression function is estimated through
local linear regression, producing the estimate

fr(z) = argmin, Z —(a+b(x; — 2)) Ku(z — ), (1.2)

where the minimization is done jointly over a and b, but only a is kept.

Both of these two problems are curve estimation problems. In the normal setting, where
one tries to estimate the true underlying function (f(x) or u(z)), such nonparametric
smoothing methods will produce biased estimates. In the SiZer methodology, this bias
problem is not present since the target of the curve estimation is the true curve viewed at
varying levels of resolution/smoothing.

In SiZer, the inference is done on the derivatives of the curves. Thereby, it is the
derivatives of the curves viewed at different resolutions that have to be estimated. In the
density estimation setting, the basic smoothing kernel in Equation (1.1) is replaced by the
derivate of the kernel K'(z), to produce the estimated first derivatives

ZK’:E—:UZ _nhz ( ) (1.3)

In the regression setting, the first derivative is estimated by keeping the b parameter instead
of the a parameter in Equation (1.2), given as

i, (x) = argmlnbz — (a+b(x; — 2))) Kn(z — ;).



After estimating the first derivative at some location = and smoothing level h, a test for
significance is done. If the estimated first derivative is found to be significantly posi-
tive /negative, this is marked with a blue/red pixel in the SiZer map.

As an example on how a SiZer analysis can be performed, a real-world data set is
analyzed. The data consists of the maximal snow-depth of each year from 1920 to 2005 in
Tromsg, Norway. The left panel of Figure 1.1 shows the data set as green dots. The solid
blue lines are nonparametric curve estimates generated by using Equation (1.2) for a range
of bandwidth parameters. There seem to be a varying number of features (peaks and dips)
in the regression estimates for the different bandwidths. The goal of the SiZer analysis is
to determine the features that are actually present, and not just sampling artifacts.
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Figure 1.1: Left panel: Blue lines are curve estimates of the snow-depth data (green dots)
using a Gaussian kernel in Equation (1.2). The black line corresponds to the result of using
the bandwidth selected by the plug-in estimator from Ruppert et al. (1995). Right panel:
SiZer map of the snow-depth data with a significance level of 0.05. The horizontal black
line indicates the bandwidth selected by the plug-in method.

The right panel of Figure 1.1 shows the SiZer map, indicating for which time periods
and scales (smoothing level) the slope of the nonparametric regression line is significantly
different from zero. Red/blue pixels mark (location, scale) pairs where the slope is signifi-
cantly decreasing/increasing. The choice of colors follow the original SiZer work, while they
are swapped in Paper III. This is done since for some applications, such as temperature
data sets, it seems more natural to use red for an increase, and blue for a decrease. The
purple pixels indicate non-significant derivatives, while the gray pixels indicate that there
are too few /sparse data points to do inference on the given location/scale. The horizontal
distance between the two dotted white lines indicates the effective size of the smoothing
parameter on the second axis. As can be seen, the period from around 1920 to 1940 of
seemingly low snow-depths, shows up as a significant dip in the data when viewed on some



smoothing levels. This period of low snowfall is well-known to local meteorologists.

Scale-Space Methods

The concept of a SiZer map has been carried over to many other scale-space techniques. All
the methods presented in this thesis include some sort of significance map closely related to
the original SiZer map. One advantage of such maps is that they can communicate results
for all scales and all positions simultaneously. A problem arises when the data for instance
represent an image. Then the data are two-dimensional, making a natural extension of
the two-dimensional SiZer map into a three-dimensional map. This problem was examined
by Godtliebsen et al. (2004), where they chose to present significance maps connected to
different smoothing levels as different slides of a time-lapse video. For the three papers
of this thesis (Papers I-III, respectively), the first axis represents frequency, position (e.g.
time), and wavelet scale number. For Papers I and III, the second axis represents the
smoothing level. For Paper II, the second axis corresponds to the width of a summation
window.

Papers I and III, the spectral feature detection and wavelet variance analysis papers,
are more similar to each other than to Paper II (testing of multinormality and the k-sample
problem). This is because Papers I and III apply a Bayesian scale-space approach. In gen-
eral, when a Bayesian approach is taken, some sort of prior knowledge of the problem at
hand is utilized in the procedure. Here, this is done by introducing a random walk smooth-
ing prior distribution of either order one or two (Rue and Held, 2005). The chosen prior,
with some smoothing parameter, determines how smooth realizations one can expect from
the prior. Thus, when calculating the posterior distribution, a large smoothing parameter
will give a smoother posterior distribution.

Using a smoothing prior in the scale-space field of signal analysis was introduced in
the Posterior Smoothing method of Godtliebsen and Qigard (2005), and it was expanded
and improved in Qigard et al. (2006). In the first paper, the quantiles were found through
sampling the posterior distribution, while for Gaussian noise models the quantiles can be
calculated exactly using the methods of the second paper. A basic problem with the general
SiZer methodology is that it cannot handle data sets with few/sparse data points. Since
the posterior distribution is used to find significant features, Posterior Smoothing does not
run into such problems with sparse/few data. The ability to handle situations with few
data points is essential for the methods in Papers I and ITI, and in particular for Paper
ITT, where the number of data points “never” will be larger than 25.

The review paper by Holmstrom (2010a) thoroughly presents the evolution of the scale-
space field and discusses many of the suggested methods. The BSiZer method was intro-
duced in Erdsté and Holmstrém (2005, 2007). Here, a different Bayesian approach on the
SiZer methodology is taken. The review paper of Holmstrom (2010b) looks at the original
BSiZer and extensions to the analysis of images and random fields. Other notable scale-
space techniques include the extension of the SiZer methodology to dependent data in Park
et al. (2004) for goodness-of-fit testing of time series models. This dependent SiZer method
assumes that a times series follows a given time series model. The autocovariance function
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connected to this model is incorporated in a scale-space test of this assumption. Scale-space
bivariate density estimation was introduced in Godtliebsen et al. (2002), and Godtliebsen
et al. (2004) looked at scale-space methods for detecting significant features in images,
something which also is the focus of Holmstrom et al. (2011). Scale-space detection of
significant changes of time-separated images is investigated in Holmstrom and Pasanen
(2012). The detection and localization of non-stationarities and change-points is treated in
scale-space manners in Kim and Marron (2006); Olsen et al. (2008a,b); Park et al. (2007).
A graphical tool that tries to differentiate significant trends from dependence in the data
is presented in Rondonotti et al. (2007).

In Chapter 2, Papers I-IIT will be presented and the results will be discussed. Ideas
about future work will also be presented. Chapter 3 contains the conclusions of the thesis.
Chapter 4 contains the three papers that make up the main body of the thesis.






Chapter 2

Results and Discussion

This chapter presents and discusses the three papers making up the thesis. For each paper,
the problems and the suggested scale-space solutions/methods are presented and discussed.
Some future work connected to each paper is also suggested.

2.1 Paper I - Spectral Feature Detection

Often scientists are interested in investigating whether or not a data set contains some
periodic components. If detected, such periodic components can be connected to real-
world phenomena. Mathematically, periodic components can be described by sinusoidal
functions. Decomposing a signal into a set of weighted sinusoidal functions is essential what
is done in spectral analysis. The spectral density function (SDF), or power spectrum, of a
zero-mean stationary real-valued stochastic process x4, t € Z, is defined by

@)= 3 Al e —1j2<w<1)2

h=—00

where the autocovariance function of the series, y(h) = E(xixi4h), h € Z is assumed ab-
solutely summable, i.e. > |y(h)] < oo. Frequencies connected to high f(w) values are
naturally of interest, since high SDF values indicate that the signal contains a strong pe-
riodic component connected to the frequency w. Whether or not a peak is significant or
just a sampling noise artifact might not always be obvious from an estimated SDF. Paper
I introduces a scale-space approach to spectral feature detection. The idea is to detect sig-
nificant peaks in the true underlying SDF viewed at different resolutions or scales. A peak
is found if, for increasing frequencies, one goes from a frequency region of a significantly
positive first derivative of the SDF, to a region with a significantly negative first derivative.
Between these two significant regions, there can be a small region of non-significant first
derivatives.

Estimating the SDF of some evenly sampled stationary signal is one of the classical
statistical problems (Brockwell and Davis, 1991; Brillinger, 2001). The classical, but infa-
mous, way of estimating the SDF of an evenly sampled time series is through calculating
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the periodogram, defined as
2

. —1/2<w<1/2,

2n
E l,te—Qmwt
t=1

where 1, ..., xy, denote the observed time series. In essence, the periodogram measures
how well a set of different sinusoidal functions “fit” the data. The raw periodogram is
known to be asymptotically unbiased, but not consistent, resulting in a highly fluctuating
estimate. To smooth the periodogram is a common way of getting a consistent estimator of
the SDF and makes it easier to interpret the output (Blackman and Tukey, 1958; Parzen,
1961; Priestley, 1981). The method presented in Paper I smooths the periodogram through
a Bayesian approach.

As mentioned, the periodogram is generally far from the optimal way of estimating the
SDF of a signal. The reason for it being used in Paper I, is that it produces uncorrelated
sampling noise across the normal set of Fourier frequencies, given by w; = j/2n,j =
1,...,n. Having uncorrelated noise is essential for the posterior smoothing scheme of
Paper 1. The distribution of the log-transformed periodogram values is also easy to work
with, even though the noise is non-Gaussian. By using an integrated Wiener process as
the prior distribution, a Gaussian Markov Random Field (GMRF) that includes the first
derivative of the log-transformed periodogram values can be constructed. The needed
posterior marginals of the first derivatives can be very accurately approximated through
the simplified Laplace approximation of Rue et al. (2009). These calculations have a low
computational cost compared to Markov chain Monte Carlo methods. The “scale” part is
introduced through the smoothing parameter of the prior.

The results are displayed in significance maps, illustrating for which smoothing levels
and for which frequencies, peaks in the log-spectral density are detected as significant.

I(w) E%

Future work

The periodogram requires the sampling to be even. Extensions of the periodogram to
unevenly sampling were suggested by Lomb (1976) and Scargle (1982). By selecting a
set of evenly spaced frequencies, similar to the Fourier frequencies, the estimated spectral
density values will in general be correlated. By knowing the sampling pattern (in time or
space), the correlation structure of the spectral estimates can be estimated.

For future work, the method of Paper I is planned to be extended to also handle
uneven sampling. Currently, the implementation of the procedure do handle unevenly
sampled data, but the spectral estimates coming out of the Lomb-Scargle procedure are
(wrongly) assumed to be uncorrelated. The set of frequencies are selected based on an
average sampling distance. To do it right, the correlations have to be incorporated into
the posterior distribution somehow. Alternatively, one can select frequencies that are close
to having zero correlation to all other frequencies. Generally, this will seldom be possible
to do, except for when the sampling is close to even.

It might also be of interest to extend the procedure to the case of looking for areas with
low spectral content, also called spectral dips. For communications signal processing, such



dips will represent frequency regions for which the amount of received power is low. The
larger bias of the periodogram for low spectral power levels then has to be handled. This
can be done by using a multitaper technique to generate the spectral estimates. Doing
this, the grid of frequencies for which the spectral estimates will be uncorrelated will be
coarser than the normal Fourier frequency grid (Percival and Walden, 1993).

2.2 Paper II - Multinormality Testing and the k-sample
Problem

Scale-space approaches of two different classical statistical problems are presented in Pa-
per I1. The first problem is goodness-of-fit testing of multinormality (multivariate Gaussian
distribution). Tt is very common to assume that some data set originates from a multi-
normal distribution. This is often assumed even though one might know it to be false,
but the severity of making this false assumption depends on the problem at hand and the
sensitivity to non-normal data of the statistical analysis being done on the data (Cox and
Wermuth, 1994; Farrell et al., 2007; Looney, 1995).

There are a lot of different methods for testing for multinormality (Farrell et al., 2007;
Mecklin and Mundfrom, 2004). In general, almost all of these tests at some point of the
algorithms need to invert an estimated covariance matrix. If there are at least as many
dimensions p as there are samples n, then the estimated covariance matrix is non-invertible.
Hence, these methods fail in the case of n < p, also known as the High Dimension Low
Sample Size (HDLSS) case. The presented scale-space method does not need to invert any
covariance matrices, and thereby all combinations of sample and dimension sizes can be
treated. Having this ability comes with a prize. The information that might lie in the
covariance structure, when n > p, is not utilized by the presented method. This also is the
case for the presented k-sample method.

The “scale” part of the method is connected to how many neighboring dimensions that
are summed across. This summation window size, which makes up the vertical axis of the
resulting significance map, is varied through the odd numbers from 1 to the number of
dimensions. The “space” part is connected to the different dimensions of the data. As the
summation is done across neighboring dimensions, changing the order of the dimensions
around might change the results of the analysis. Therefore, the method should be restricted
to data sets where there is a natural ordering of the dimensions, e.g. time series or one-
dimensional spatial data.

The result of doing the summation is a vector of length n. This vector is then tested
for univariate normality through the well-established Anderson-Darling test (Anderson and
Darling, 1952, 1954; Lewis, 1961). A rejection/acceptance of normality is indicated with a
red/blue pixel in the significance map at the coordinates corresponding to the summation
window width and the dimension for which this window was centered on. This way of
testing is not adequate to conclude that the data set in total might originate from some
unspecified multinormal distribution, but a significance map dominated by blue pixels is a



strong indication on that being the case.

The k-sample problem is the other problem of this paper. A common question is
whether or not k£ data sets of equal dimension size p might originate from some unknown
discrete or continuous multivariate distribution. Also here there are a huge number of
suggested algorithms. Most of these need to invert estimated covariance matrices, making
them useless in the HDLSS case. Each of the k data sets are processed as in the testing
for multinormality. So, for a given summation window size and center of summation, k
vectors of potential unequal lengths are compared through the k-sample Anderson-Darling
test (Pettitt, 1976; Scholz and Stephens, 1987).

As the presented methods have the special quality of being able to handle the HDLSS
case, the two presented scale-space methods are compared to the only other methods that
handle the HDLSS case. To the author’s knowledge, only the methods of Liang et al.
(2000, 2009) handles HDLSS for the multinormality case, while for the k-sample problem
the methods of Friedman and Rafsky (1979); Hall and Tajvidi (2002); Henze (1988); Székely
and Rizzo (2004) were used for comparison.

As shown in the paper, it is possible to “enhance” small mean-value differences when
summing across dimensions, see the discussion at the start of the Results chapter concerning
the motivational example. These mean-value differences can either be across data sets (the
k-sample situation), or as the motivational example where the difference is connected to
different modes in the data set. Unfortunately, there is nothing to gain by summing across
dimensions when a difference is connected to the variance. A simple example explains this.

Assume that a data set consist of ten zero-mean, uncorrelated normally distributed
three-dimensional vectors. The five first vectors have variance 1 for all dimensions, while
the last five have variance 4 for all dimensions. When summing across the three dimen-
sions (assuming equal summation weights of 1/3), the five first elements will be normally
distributed with zero mean and variance equal to 1/3. The last five elements will on the
other hand have a variance of 4/3. So, the variance has gone from 1 and 4, to 1/3 and
4/3, for the first and last five elements, respectively. Hence, the relative difference of the
variances has not changed as a result of doing the summation.

The presented scale-space multinormality testing procedure could be extended to other
distributions as long as the distribution is closed under summation. A distribution is
thought of as being closed under summation if a sum of variables (with potentially differ-
ent parameters) from this distribution has this same type of distribution, with parameters
depending on the individual parameters. The normal distribution is an obvious example,
and it is closed under summation also for variables that originate from a multinormal distri-
bution with non-zero covariance elements. The x?, Poisson, Cauchy and Lévy distributions
are other relevant examples. Unfortunately, these distributions require the variables to be
independent for them to be guaranteed to be closed under summation.

Future work

Normalizing each dimension individually was considered for the paper. This might be
relevant when there are large differences in the variance of the different dimensions. If
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one of the dimensions has a clearly larger variance than the rest of the dimensions, this
dimension might “dominate” when doing the summations. Figure 2.1 illustrates how large
variances can influence the resulting significance map. The data set consists of 200 samples
of 55 dimensions. All dimensions are multinormally distributed (as for the motivational
example) except dimensions 11, 26 and 41. For these three dimensions, the 100 first
dimensions have zero mean, while the other 100 samples have mean values of —2.5, 7,
and 12, respectively. The figure clearly shows how large deviations from normality (large
separation of the two modes) make the deviations, which originate in only one dimension,
“spread” more upwards compared to when the deviations from normality are less clear.
The rejection region of the highest scales is the result of the window picking up the non-
normality at both dimension 26 and 41. When each dimension is normalized individually,
the only remaining rejections are the scale 1 rejections of dimension 11, 26 and 41 (not
shown).

Window width

10 20 30 40 50 10 20 30 40 50
Position — AD-test with Bonferroni

Figure 2.1: Left panel: 200 artificial signals of length 55. Right panel: Significance map of
test for multinormality with a significance level of 0.05.

Introducing this into the suggested methods has been considered, but as of now it is
not implemented. Doing so is quickly done, and will not change much at all in the paper.
Part of the reason for not implementing it yet is that no examples were investigated where
it was thought that a normalization of the data would significantly influence the results.
These considerations were done early in the process of the work, so it might be worth
looking into again before final publication of the paper.

2.3 Paper III - Log Wavelet Variance
Paper III is a redone version of Paper VI of the Ph.D thesis of Qigard (2004). A paper

based on this manuscript was also submitted to Journal of Computational and Graphical
Statistics in 2005. As pointed out by the reviewers, the needed changes to the paper were
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quite massive. Based on the underlying idea presented in Qigard (2004) and the submitted
paper, and with the permission of the original authors, a complete redo of the paper has
been done, mainly by the two current first authors. One of the most prominent changes
include the move from using the Discrete Wavelet Transform (DWT) to the Maximum
Overlap DWT (Percival, 1995; Percival and Walden, 2000). The dependence assumptions
of the wavelet variance estimates have also been totally changed. These changes resulted
in the need to construct a completely new procedure to estimate the relevant quantiles of
the posterior distribution.

Paper IIT suggests a wavelet-based scale-space analysis of time series. The wavelet
coefficients of a time series indicate for which scales and locations the significant “energy”
of the time series can be found (Percival and Walden, 2000). For instance, if a time series is
dominated by changes on short time-scales, the wavelet coefficients connected to the lower
scales will have larger absolute values than the coefficients connected to higher scales. If
the time series is non-stationary, the distribution of the wavelet coefficients will change as a
function of time/location for at least some of the scale parameters. The wavelet variance of
the jth scale is defined as the variance of the wavelet coefficients of the jth scale. Increasing
values of the scales parameter j corresponds to wider wavelets filters.

Stochastic processes X; with long-range dependence (LRD) are known to have autoco-

variance sequences s, that decay so slowly that the sum ), s,/ diverges. As the time lag
7 of the ACVS increases, the ACVS can be described by

s, = cov(Xy, Xypr) ~ CT77,

where 0 < v < 1, ~ denotes asymptotic equivalence, and C' is a real constant. The ~
parameter is connected to the Hurst parameter H through v = 2 — 2H. Thereby, the
degree of LRD is fully characterized by this Hurst parameter.

Let the log wavelet variance be defined as the natural logarithm of the wavelet variance.
If the time series has LRD, the log wavelet variance will follow a straight line for the upper
scale numbers j. The slope of this line can be directly used to estimate the Hurst parameter
of the time series (Abry and Veitch, 1998; Abry et al., 2003). Hence, the LRD of a time
series will directly influence the slope of the upper part of the log wavelet variance. As
demonstrated in Stoev et al. (2005), this linearity will in general not extend all the way
down to the lowermost scale parameters. Therefore, it is important to have a way to
determine for which scale parameters the log wavelet variance can be said to be linear.
An automatic method to determine this is given in Veitch et al. (2003). This method is
also partially used in the presented algorithm. Paper III presents a Bayesian scale-space
method to investigate for which wavelet scale parameters this assumed linearity can be
said to be true. The “scale” part of the algorithm is connected to the smoothing parameter
of the random walk 2 prior.

As shown in Stoev et al. (2005), different forms of non-stationarity of a times series
might influence the shape of the estimated log wavelet variance. To be able to detect some
relevant non-stationarities, a local analysis is also suggested in Paper III. The time series
is divided into non-overlapping windows of equal length. For each of these windows, the
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log wavelet variance is estimated. By comparing these local log wavelet variance analyses
to each other, one might detect non-stationarities in the signal. If the signal is stationary,
the results of the different local analyses will not be different.

In the other papers of this thesis, the False Discovery Rate (FDR) correction for mul-
tiple testing (Benjamini and Hochberg, 1995) has been used along with the Bonferroni
correction (Hochberg and Tamhane, 1987). The reason for it not being used in Paper
III is that there are always very few data points (the wavelet variance estimates). For
instance, with a mother wavelet filter of length 8, the data has to contain close to 235
million samples to have an uppermost scale number of Jy = 25. Using an FDR correction
on such few data points seems a bit unnecessary. To investigate the influence on the choice
of the significance level, this level can either be varied, or the planned “significance maps”
described in the paper can be used. Developing such “significance maps”, as apposed to the
current feature/summary maps, should be quite doable, and the authors are considering
doing this before making the final version for submission to a journal.

Future work

As of now, non-overlapping windows are used in the local analysis. For each window, an
increasing number of “boundary wavelet coefficients” are ignored in the analysis as the
wavelet scale increases. These coefficients will be at the left/first part of each window.
If important features of the data are located in this part of the data set, these features
might not be detected when using non-overlapping windows. Changing the code to use
overlapping windows is trivial, and adding this as an option for the user will be done. Tt
will also be possible for the user to set the degree of overlap.

For the uppermost wavelet scale number Jy, the distributional assumptions presented
in the paper are bad. When inspecting the distribution of the wavelet variance of the
uppermost scale of simulated f{GN data, the distribution cannot be fitted adequately with
any x? distribution. The way the degrees of freedom (DOF) is estimated relies on this x?
assumption of the wavelet variance. Thereby, the estimated DOF of the uppermost scale
is also not reliable. This uppermost DOF is only used in the bias correction, which is also
based on the assumed y? distribution, of the estimated log wavelet variance. Therefore, the
distributional assumption of the uppermost scale is inaccurate, and the uppermost scale is
excluded from the analyses.

Finding a better description of the distribution of the wavelet variance of the uppermost
scale has been investigated as part of this thesis, and some ad hoc methods for selecting a
“better” DOF has been made. The general validity of this ad hoc method is questionable,
and as there are few wavelet coefficients for the uppermost scale, the variance will be
large compared to the other relevant scales. Therefore, none of these ad hoc methods are
included in the presented algorithms. As long as the distribution of the log wavelet variance
of the uppermost scale cannot be adequately approximated by a normal distribution, even
a better knowledge of this uppermost distribution does not work well with the assumed
multinormal likelihood /posterior distribution of the presented paper.
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Chapter 3

Conclusions

Through the research and analyses in this thesis, the collection of statistical methods based
on the scale-space methodology has been expanded. The methods presented are exploratory
tools that should be used at an early stage of a statistical data analysis. In all three papers,
the presented tools output some sort of two-dimensional maps, indicating for which level
of smoothing/averaging (the “scale” parameter) and for which location/time/wavelet scale
(the “space” parameter) the relevant null hypothesis is rejected.

The tools from Papers I, II and III allow the user to quickly see:

)

I1)

I11)

The location (frequency) and smoothing level for which the first derivative of the
estimated spectral density function can be said to be significantly positive or negative,
or not significantly different from zero. From this, peaks in the spectrum can be
located, something that can be connected to real-world periodicies.

The location (time or sampling index, typically) and neighborhood (number of di-
mensions being averaged across) for which:

i) A multivariate data set cannot be said to originate from some unspecified mul-
tivariate Gaussian distribution.

ii) Two or more data sets cannot be said to originate from the same unspecified
multivariate discrete or continuous distribution.

The location (wavelet scale number) and smoothing level for which the log wavelet
variance cannot be described by a linear relationship as a function of the wavelet
scale number. The suggested local log wavelet variance analysis can also detect some
forms of non-stationarities in the data.

All the presented tools are easy to use, and the results are presented in two-dimensional
images/maps that scientists with just basic statistical training can quickly interpret. The
methods are implemented in MATLAB, and for the spectral method in Paper I, a user-
friendly graphical user interface exists. Following publication of Papers IT and III, user-
friendly MATLAB code will be made available to the public.
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