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Abstract

In this thesis we generalize the Hansen and Seo test in the R package tsDyn, which tests
a linear cointegration model against a two-regime threshold cointegration model, to the
case of three regimes in the alternative hypothesis. As the Lagrange Multiplier (LM)
test statistic used in the Hansen and Seo test in tsDyn is different from the LM statistic
described in Hansen and Seo (2002), we generalize both these LM statistics, and show
that they are equal under certain conditions. The Hansen and Seo test uses the SupLM
statistic which is the maximum of this LM statistic when the two thresholds vary over
the set of all possible threshold values. The grid search algorithm, which is necessary
when maximizing this LM statistic, is also extended to the case of three regimes, and it
is rewritten such that if the cointegration value β is given, it really maximizes the LM
statistic under the constraints specified by the user.

In our empirical studies we have examined thoroughly the bivariate time series consisting
of the monthly NIBOR rates of the maturities tomorrow next and 12 months. When
modeling this bivariate time series, we find strong evidence for a two-regime TVECM
being superior to a linear VECM, and in our out-of-sample forecasting the two-regime
SETAR model gives much better prediction of the cointegration relation than a linear
AR model. When testing a two-regime SETAR model for the cointegration relation
against a three-regime model, the two-regime model cannot be rejected at any reasonable
significance level. In addition, we show how influential a few outliers may be by removing
them from the time series and rerunning some of the statistical tests. Also, we have
tested all the 66 possible pairs of Norwegian interest rates for cointegration, and we
have tested the term spread of each pair for threshold effects, i.e., testing a linear model
against a two-regime model, as well as testing a two-regime model against a three-regime
model. We find a lot of cointegrated pairs, and we find evidence for a two-regime model
in approximately 50 % of the cases, and evidence for a three-regime model in some cases
in this univariate time series analysis.

At last, we simulate a bivariate time series with a three-regime threshold cointegration
model as data generation process, and estimate a three-regime threshold cointegration
model from this simulated time series. Thus, we illustrate that the thresholds which our
version of the Hansen and Seo test detects as optimal, are close to the original thresholds
used in the simulation. As expected, a linear model for this bivariate time series is
strongly rejected, and there is strong evidence for a three-regime threshold model for the
cointegration relation being superior to both a linear model and a two-regime threshold
model .
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Chapter 1

Introduction

Cointegration has since it was introduced in Granger (1981), attached much attention
among economists because it is a tool for testing the existence of and finding stable long-
run relationships between nonstationary variables. For example, time series of interest
rates are often nonstationary, but the Expectations Hypothesis which states that a long-
term interest rate is an average of expected future short-term rates plus a risk premium,
implies that there exists a stable linear long-run relationship between the short-term and
the long-term interest rate (Hall, Anderson, and Granger 1992). A lot of papers have
investigated the relationship between short-term and long-term interest rates, see e.g.,
Modigliani and Shiller (1973), Engsted (1996), Campbell and Shiller (1991), Musti and
D’Ecclesia (2008), Arize, Malindretos, and Obi (2002), and Buigut and Rao (2010). Some
of the results support the Expectations Hypothesis, and some do not, so other theories
than the Expectations Hypothesis have been presented to explain the term structure
of interest rates, but it is generally accepted that interest rates of different maturities
should not deviate too much from each other (Siklos and Wohar 1996). The first tests
for cointegration were proposed in Engle and Granger (1987), while Johansen (1988)
and Johansen and Juselius (1990) have developed a procedure to test for the number
of cointegration relations, i.e., long-run relationships, between the variables, and to find
these cointegration relations. In this thesis we consider only bivariate time series, so the
number of cointegration relations is either 0 (i.e., no cointegration) or 1.

When modeling a bivariate time series consisting of two interest rates of different matu-
rities, the long-run relationship is typically the term spread, i.e., the difference between
the interest rates, or more generally, a linear combination of the interest rates with one
coefficient normalized to 1, and the other coefficient nearby 1. If we in our model include
an error correction term containing this long-run relationship, we achieve that at each
time point adjustments are performed due to deviations from the long-run equilibrium, the
larger deviations the larger adjustments. However, in economic applications it is often un-
realistic that the adjustments should be done at each time point. For example, there may
be transaction costs, so that arbitrage opportunities between two markets only arise when
the price difference is large enough to imply net gains to traders (Clements and Galvão
2004). To take into account such nonlinear behavior, Balke and Fomby (1997) introduced
the threshold cointegration model, which allows the adjustment to be made only when the
deviation from the long-run equilibrium is larger than an upper threshold and/or smaller
than a lower threshold. Stigler (2011) gives both an overview of the field threshold coin-
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Chapter 1. Introduction

tegration and a description of how such a data analysis may be conducted by using the R
package tsDyn. With this paper as a starting point, we will analyse NIBOR rates, down-
loaded from http://www.norges-bank.no/en/price-stability/interest-rates/, by
using threshold cointegration. We will also analyse the term spread by using nonlinear
autoregressive time series models described in Di Narzo, Aznarte, and Stigler (2011).

When a threshold cointegration model is estimated, it is of crucial interest to test whether
this nonlinear model is superior to a linear cointegration model. Hansen and Seo (2002)
proposed a test which tests a linear cointegration model against a two-regime threshold
cointegration model, and this test is implemented in the R package tsDyn. In Hansen and
Seo (2002) and Seo (2003) monthly U.S. Treasury bond rates are modeled by using two-
regime and three-regime threshold cointegration models, respectively. We downloaded
these U.S. interest rates from St. Louis Federal Reserve Bank at http://research.

stlouisfed.org/fred2/, but we were not able to reproduce the results in Seo (2003).
Therefore, we have examined the algorithm of the Hansen and Seo test in the package
tsDyn thoroughly.

Our main contribution is the generalization of the Hansen and Seo test in the R package
tsDyn to the case of three regimes in the alternative hypothesis. As the Lagrange
Multiplier (LM) test statistic used in the Hansen and Seo test in tsDyn is different
from the LM statistic described in Hansen and Seo (2002), we generalize both these
LM statistics, and show that they are equal under certain conditions. The Hansen and
Seo test uses the SupLM statistic which is the maximum of this LM statistic when the
two thresholds γ1 and γ2 vary over the set of all possible threshold values. However,
the function LM(γ1, γ2) is a highly irregular function such that we have to perform a grid
search when maximizing this function. The global maximum of a function under explicitly
given constraints is unique, i.e., the maximum value is unique, but there may be more
than one point which give this maximum value. However, neither the implementation of
the Hansen and Seo test used in Seo (2003) nor the implementation in the package tsDyn
gives the user full control over the constraints used when maximizing LM(γ1, γ2), which
may explain why we did not succeed in reproducing the results in Seo (2003). Therefore,
we have made a new algorithm for the grid search in Chapter 3, which covers both the
case of two regimes and the case of three regimes in the alternative hypothesis. In the case
of three regimes, the algorithm is quadratic in the number of possible threshold values,
and hence very time consuming as the P-value of the test statistic is estimated by using
bootstrapping. Though, it is preferable with an algorithm which maximizes correctly
under the given constraints.

In our empirical studies we have examined thoroughly the bivariate time series consisting
of the monthly NIBOR rates of the maturities tomorrow next and 12 months, which was
the first pair of Norwegian interest rates we found where a two-regime threshold model
is significantly better than a linear model. We analyse both this bivariate time series
by using functions for multivariate time series analysis, and the cointegration relation by
using functions for univariate time series analysis. Our out-of-sample forecasting shows
that a threshold model gives much better prediction of the cointegration relation than a
linear model. In addition, we analyze the effect of removing 6 outliers from the tomorrow
next rates and 2 outliers from the 12 months rates by using interpolation. Thus, we show
how influential a few outliers may be.

2
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Chapter 1. Introduction

As there exist NIBOR rates of 9 different maturities and interest rates on Norwegian
government bonds of 3 different maturities, we may make 66 pairs of Norwegian interest
rates. Due to the fact that our version of the Hansen and Seo test is very time-consuming,
we are not able to test all these pairs of interest rates for threshold cointegration. Rather,
we have tested all these pairs for cointegration, and we have tested the term spread of
each pair for threshold effects, i.e., testing a linear model against a two-regime model,
as well as testing a two-regime model against a three-regime model. We find a lot of
cointegrated pairs, and we find evidence for a two-regime model in approximately 50 %
of the cases, and evidence for a three-regime model in some cases in this univariate time
series analysis. However, a threshold cointegration analysis of the corresponding bivariate
time series is a topic for further research.

At last, we simulate a bivariate time series with a three-regime threshold cointegration
model as data generation process, and estimate a three-regime threshold cointegration
model from this simulated time series. Thus, we illustrate that the thresholds which our
version of the Hansen and Seo test detects as optimal, are close to the original thresholds
used in the simulation. As expected, a linear model for this bivariate time series is
strongly rejected, and there is strong evidence for a three-regime threshold model for the
cointegration relation being superior to both a linear model and a two-regime threshold
model .

The rest of this thesis is organized as follows: In Chapter 2 we give an overview of
all time series models and statistical tests used in this thesis. Chapter 3 describes our
generalization of the Hansen and Seo test in the R package tsDyn to the case of three
regimes in the alternative hypothesis. Chapter 4 contains our analysis of Norwegian
interest rates. In Chapter 5 we simulate a time series which follows a three-regime vector
error correction model, and we analyse this simulated time series by using the same tools
as in Chapter 4. In Chapter 6 we summarize the results of this thesis. Appendix A and B
contain the R code of the original version in tsDyn and our revised version of the Hansen
and Seo test, respectively. Appendix C contains all the R code chunks which were run in
Chapter 4 and 5 to perform the data analysis.

3
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Chapter 2

The time series models and the
statistical tests used in this thesis

This chapter contains all the time series models and the statistical tests used in later
chapters of this thesis. All the materials in this chapter are found in the R documentation
of the R functions mentioned in the text, and in Shumway and Stoffer (2006), Tsay (2010),
Lütkepohl (2007), Pfaff (2008a) and Juselius (2006).

2.1 White noise processes

A univariate time series xt is an ordered set of random variables x1, x2, x3, . . . where xi is
the value at time point i. Also, we will use the same notation xt for a realization of this
stochastic process. In applications, we usually know only one single realization of finite
length T of the data-generating process, such that the task is to find a model for the
data-generating process which fits well to the known data x1, . . . , xT .

A white noise process is a simple data-generating process, but it is important as more
complicated time series models usually are defined by using a white noise process as error
term. It is defined as follows:

Definition 2.1. A white noise process is a data-generating process εt such that E(εt) = 0,
E(ε2

t ) = σ2 for all t and E(εtετ) = 0 for all t , τ. If in addition εt ∼ N(0, σ2), we say
that εt is Gaussian white noise. If we replace the condition of uncorrelatedness with
the stronger assumption of independence, the process is said to be independent white
noise.

2.2 Autoregressive moving average models

When modeling the term spread in Chapter 4, we will try an ARMA(p,q) model which
is defined as follows:

5



2.3. Unit root models

Definition 2.2. The time series xt is an ARMA(p,q) process if

xt = c + φ1xt−1 + · · · + φpxt−p + εt + θ1εt−1 + · · · + θqεt−q (2.1)

where c is a constant, p and q are nonnegative integers, φp , 0, θq , 0 and εt is a white
noise process. The integer p is called the AR order, while the number q is the MA
order.

Using the lag operator L defined by Lxt = xt−1, we may write the model as:

(1 − φ1L − · · · − φpLp)xt = c + (1 + θ1L + · · · + θqLq)εt.

The polynomial φ(L) = 1−φ1L− · · · −φpLp is the AR polynomial, while the polynomial
θ(L) = 1 + θ1L + θ2L2 · · ·+ θqLq is the MA polynomial. We assume that the AR and MA
polynomials have no common factors; otherwise we may reduce the AR and MA orders
by cancelling these factors.

We estimate an ARMA(p,q) model by using the function arima in the R package stats.

2.2.1 Model checking

When fitting ARMA(p,q) models it is important to check that the residual series behaves
like a white noise series. We do this by plotting the sample autocorrelation function
(ACF) and the sample partial autocorrelation function (PACF) of the residuals using the
R functions acf and pacf. The AR-order p and MA-order q are sufficiently large if the
sample ACF and PACF are well inside the 95 % confidence bounds of ± 2√

T
. In addition,

we run the Ljung-Box test to test whether the sample autocorrelations

ρ̂ε̂(h) =

∑T
t=h+1 ε̂tε̂t−h

T∑
t=1
ε̂2

t

of the residuals ε̂t when h = 1, . . . ,H, (2.2)

collectively are large. The Ljung-Box statistic is defined by

Q = T (T + 2)
H∑

h=1

(
ρ̂ê(h)

)2

T − h
(2.3)

Under the null hypothesis H0 of white noise residuals, Q is asymptotically distributed
as χ2

H−p−q when T → ∞. Here, the number of degrees of freedom is decreased from H
to H − p − q, to get a better approximation of the null hypothesis distribution in the
case that ε̂t , t = 1, . . . ,T is the residual series of an ARMA(p,q) model. The R function
Box.test computes Q and the P-value given the asymptotic distribution of Q under H0.
So, we reject the null hypothesis at level α if the P-value is less than or equal to α.

2.3 Unit root models

The ARMA(p,q) model above is stationary when all the roots of the AR polynomial φ(z)
are outside the unit circle. In this case, we may write the model as

xt = µ +

∞∑
i=0

ψiεt−i

6



2.3. Unit root models

However, if at least one of the roots of φ(z) is inside the unit circle, the process is explosive,
i.e., xt → ∞ rapidly when t → ∞, so this case is not interesting. On the contrary, the
case when φ(z) has the unit root z = 1 and all the other roots outside the unit circle, has
many interesting applications in spite of the fact that the model is nonstationary in this
particular case. Suppose that φ(L) = F(L)(1 − L)d where all the roots of F(L) are outside
the unit circle, and let the first order difference be ∆xt = (1 − L)xt = xt − xt−1. Then,
the ARMA(p,q) model φ(L)xt = θ(L)εt may be written as F(L)∆d xt = θ(L)εt which shows
that the time series ∆d xt is a stationary ARMA(p− d, q) model. The following definitions
are useful:

Definition 2.3. A time series with no deterministic component that has a stationary
ARMA representation after being differenced d times is said to be integrated of order
d, which is denoted by xt ∼ I(d).

Definition 2.4. A time series which is I(1), is also called difference-stationary, as we
get a stationary series when differencing once.

Definition 2.5. A time series xt is trend-stationary if xt = β0 + β1t + zt where β0 and
β1 are constants, and zt is a stationary time series. If β1 = 0, the time series xt is said to
be level-stationary.

By these definitions, we have extended the class of time series which may be analyzed,
considerably from the class of stationary time series. This is important because a lot of
the time series in applications are nonstationary. For example, many of the financial time
series may be made stationary either by differencing one or more times, or by detrending,
i.e., removing the deterministic trend such that the residuals constitute a stationary time
series.

In applications, we usually know only a single realization of length T of the data-
generating process, which means that we have to estimate the parameters. As we cannot
draw a reliable conclusion about unit roots only by finding the roots of the estimated AR
polynomial, we have to perform tests for unit roots. In Section 2.3.1 and 2.3.2 we will
describe the ADF test and the KPSS test.

2.3.1 The ADF test

The augmentet Dickey-Fuller test (ADF test) is designed for the case when the time series
possibly contains a linear trend β1 + β2t, but we do not know a priori the values of β1 and
β2. Hence, we have to estimate β1 and β2, test whether these parameters are significantly
different from zero, and test for unit roots. The test procedure consists of test regressions

7



2.3. Unit root models

with three different combinations of the deterministic component:

∆yt = β1 + β2t + πyt−1 +

k∑
j=1

γ j∆yt− j + ut, (2.4)

∆yt = β1 + πyt−1 +

k∑
j=1

γ j∆yt− j + ut, (2.5)

∆yt = πyt−1 +

k∑
j=1

γ j∆yt− j + ut. (2.6)

Note that π = 0 in these equations is equivalent to the existence of a unit root. The
function ur.df in the R package urca (Pfaff 2008a) performs the test regressions (2.4),
(2.5) and (2.6) when the parameter type is equal to "trend", "drift" and "none",
respectively. The number k of lagged differences in these regression equations may be
selected according to Akaikes or Bayes information criteria, or may be set to a fixed
number. The ADF tests for these three regression equations contain the following test
statistics:

� τ3: A “t statistic” for testing H0 : π = 0 against π < 0 in Equation (2.4).

� φ2: A likelihood ratio statistic for testing H0 : β1 = β2 = π = 0 against H0 not true
in Equation (2.4).

� φ3: A likelihood ratio statistic for testing H0 : β2 = π = 0 against H0 not true in
Equation (2.4).

� τ2: A “t statistic” for testing H0 : π = 0 against π < 0 in Equation (2.5).

� φ1: A likelihood ratio statistic for testing H0 : β1 = π = 0 against H0 not true in
Equation (2.5).

� τ1: A “t statistic” for testing H0 : π = 0 against π < 0 in Equation (2.6).

These statistics are constructed in the same way as ordinary t and F statistics in regression
analysis, but they do not follow the ordinary Student t and F distributions, so these
distributions have to be estimated. Fortunately, the function ur.df reports both the
values of the test statistics and their critical values at the 1%, 5% and 10% significance
level.

The test procedure is as follows:

1. First, we estimate Equation (2.4) and test for the presence of a unit root by using
the test statistic τ3. If H0 : π = 0 is rejected, we are finished and conclude that the
time series yt does not contain a unit root.

2. If not, we test for the presence of a trend by using the test statistic φ3. If H0 : β2 =

π = 0 is rejected, we test again for a unit root by using the standardized normal.
If this test cannot be rejected, we are finished and conclude that the time series yt

contains a unit root with a non-zero trend. If this test is rejected, we are finished
and conclude that the time series yt does not contain a unit root.

3. If H0 : β2 = π = 0 cannot be rejected, we conclude that the time series yt does
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not contain a trend, we estimate Equation (2.5) (where the trend term is removed),
and test for the presence of a unit root by using the test statistic τ2. If H0 : π = 0
is rejected, we are finished and conclude that the time series yt does not contain a
unit root.

4. If not, we test for the presence of a drift term by using the test statistic φ1. If
H0 : β1 = π = 0 is rejected, we test again for a unit root by using the standardized
normal. If this test cannot be rejected, we are finished and conclude that the time
series yt contains a unit root with a non-zero drift. If this test is rejected, we are
finished and conclude that the time series yt does not contain a unit root.

5. If H0 : β1 = π = 0 cannot be rejected, we conclude that the time series yt has
neither a drift nor a trend term, we estimate Equation (2.6) (where the trend and
drift term are removed) and test for the presence of a unit root by using the test
statistic τ1. If H0 : π = 0 is rejected, we conclude that the time series yt does not
contain a unit root. If H0 : π = 0 cannot be rejected, we are finished and conclude
that the time series yt contains a unit root without trend and drift. If H0 : π = 0
is rejected, we are finished and conclude that the time series yt does not contain a
unit root.

If the result of the test procedure is that yt contains a unit root, we know that yt is I(d)
where d ≥ 1. Therefore, we apply the test procedure on the series ∆yt. If the conclusion is
that ∆yt does not contain a unit root, we conclude that yt is I(1). If not, we conclude that
yt is I(d) where d ≥ 2, and apply the test procedure on the series ∆2yt, and so on.

2.3.2 The KPSS test

In many applications we want to conclude that the time series contains a unit root. Then,
it may be dangerous to solely rely on the ADF test which has a unit root process as null
hypothesis. The Kwiatkowski-Phillips-Schmidt-Shin test (KPSS test) has on the other
hand a stationary process as the null hypothesis and a unit root process as the alternative
hypothesis. Thus, the probability of mistakenly concluding with a unit root process is
fully controlled by the significance level.

In the KPSS test (Kwiatkowski et al. 1992) we assume that the time series yt may be
decomposed into a sum of a deterministic trend, a random walk and a stationary er-
ror:

yt = ξt + rt + εt

where ξ is a constant, rt is a random walk defined by rt = rt−1 + ut with ut i.i.d (0,σ2
u)

and r0 fixed, and εt is the stationary error term. The null hypothesis is simply σ2
u = 0,

which implies that the random walk degenerates to the constant r0, such that yt is trend-
stationary under H0 when ξ , 0, and level-stationary under H0 when ξ = 0. The test
statistic is constructed as follows: First, we regress yt on a constant or on a constant and
a trend, depending on whether we want to test level-stationarity or trend-stationarity.
Let ε̂t, t = 1, . . . ,T be the residuals of this regression, and define the partial sums of these
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residuals as S t =
t∑

i=1
ε̂i, t = 1, . . . ,T . Then the test statistic for the KPSS test is

LM =

T∑
i=1

S 2
t

σ̂2
ε

where the estimate σ̂2
ε of the error variance is defined by

σ̂2
ε = T−1

T∑
t=1

ε̂2
t + 2T−1

l∑
s=1

(
1 − s

l + 1

) T∑
t=s+1

ε̂tε̂t−s,

where the number l of lags used when computing the error variance, has to be specified.
This test is implemented in the function ur.kpss in the R package urca. By letting the

parameter lags="long", the number l is set to l =

[
12

(
T

100

) 1
4
]
. The test statistics η̂µ and

η̂τ for testing level-stationarity and trend-stationarity, respectively, are reported, together
with the critical values for the significance levels 1%, 2.5%, 5% and 10%.

2.4 SETAR(p) models

Generally, we get a better approximation of a nonlinear function by using a piecewise
linear function, rather than a global linear function. Similarly, we may get a better
approximation of a nonlinear data-generation process by introducing a piecewise linear
time series model. A simple nonlinear time series model is the self-exciting threshold
autoregressive (SETAR) model which is defined as follows:

Definition 2.6. A time series xt is said to follow a k-regime SETAR(p) model if it
satisfies

xt = c j + φ1 jxt−1 + · · · + φp jxt−p + εt j, if γ j−1 < xt−d−1 ≤ γ j, (2.7)

where p is a nonnegative integer, k is a positive integer, d ∈ {0, 1, . . . , (p− 1)}, j = 1, . . . , k
and γi are real numbers such that −∞ = γ0 < γ1 < · · · < γk = ∞, and εt j is a white
noise process for each j = 1, . . . , k. The number p is the AR order, the number d is
the threshold delay, i.e., the time delay of the threshold variable xt−d−1 compared with
xt−1, the integer k denotes the regime number, while the numbers γ1, . . . , γk−1 denote
the k − 1 thresholds which divide the threshold space into k regimes.

Note that, in each of the k regimes, the time series xt is a linear AR(p) model. So, when
k = 1, xt is an AR(p) model, However, when k ≥ 2, all these k linear models are different,
and which one of these k models we actually use when computing xt, is governed by the
value of the threshold variable xt−d−1. As a result, the SETAR(p) model is nonlinear when
k > 1.

We estimate a SETAR(p) model by using the function setar in the R package tsDyn.
Note that the definition of the SETAR model in tsDyn is a bit more general than the
definition above which corresponds to always using the default value 1 of the parameters
steps and d in the setar function, and never using the parameters mTh and thVar to
define the threshold variable.
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2.4.1 Testing for the number of regimes in SETAR models

When we have estimated a SETAR(p) model with k > 1, it is important to decide whether
this nonlinear model is superior to a linear model (with only one regime). Hansen (1999)
has proposed such a test which is implemented in the function setarTest in the R package
tsDyn. By using this test, we are able to test a 1-regime model against a 2-regime model,
test a 1-regime model against a 3-regime model, and test a 2-regime model against a 3-
regime model. Let S j be the minimum SSR when fitting a j-regime SETAR model to the
data y1, y2, . . . , yT . Then, S 1 is the SSR from the estimation of the linear AR(p) model.
If j = 2, the threshold value γ which minimizes the SSR, is computed by performing a
grid search for γ, thus S 2 is the minimum value of SSR in this grid search. If j = 3, a
new grid search for the second threshold value is performed conditional on the value of
the first threshold, thus S 3 is the minimum value of SSR in this new grid search.

The test statistic for testing a j-regime SETAR model against a k-regime SETAR model
where k > j is given by

F jk = T
S j − S k

S k
.

However, the distribution of F jk is nonstandard due to the presence of nuisance pa-
rameter(s) γ which are only defined under the alternative hypothesis. Therefore, the
distribution of F jk is estimated by bootstrapping, i.e., resampling of the residuals under
the null hypothesis, estimating the threshold parameter(s) and computing F jk for each
bootstrap replication. The function setarTest returns the value of the test statistic F jk,
the bootstrap P-value and the critical values at the 90%, 95%, 97.5% and 99% level.

2.5 Vector autoregressive models

A good starting point in multivariate time series analysis is the vector autoregressive
model of order p (VAR(p) model), which is defined as follows:

Definition 2.7. The K-dimensional time series yt is said to follow a VAR(p) model if
it satisfies

yt = µ + A1yt−1 + A2yt−2 + · · · + Apyt−p + ut t = 1, . . . ,T (2.8)

where yt = [y1t, . . . , yKt]′ is a (K × 1) random vector, the Ai are fixed (K × K) coefficient
matrices, µ is an intercept term, and ut is a K-dimensional white noise process, i.e.,
E(ut) = 0, E(utu′s) = 0 when t , s and E(utu′t) = Σu where Σu is nonsingular. The process
yt is said to be stable if its reverse characteristic polynomial has no roots in and on
the unit circle, i.e.,

det(IK − A1z − · · · − Apz) , 0 for |z| ≤ 1. (2.9)

We estimate a VAR(p) model by using the R function lineVar in the package tsDyn
which does linear regression on Equation (2.8). When a model is estimated, it is of crucial
importance to test whether the residuals obey the model’s assumptions. So, we test for
serial correlation, ARCH effects and nonnormality in the residuals.
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2.5.1 The asymptotic Portmanteau test

Suppose that ut, t = 1, . . . ,T are the residuals of a VAR(p) process defined by Equation
(2.8). Then, the autocovariance matrices Ci and the autocorrelation matrices Ri of the
residuals ut are estimated as

Ci =
1
T

T∑
t=i+1

utu′t−i, i = 0, 1, . . . , h < T

Ri = D−1CiD−1, i = 0, 1, . . . , h < T,
where D is the diagonal matrix whose diagonal elements are equal to the square root of
the diagonal elements of C0. The asymptotic Portmanteau test is a test for the overall
significance of the residual autocorrelation up to lag h, i.e., it tests

H0 : Rh = (R1, . . . ,Rh) = 0 against H1 : Rh , 0.
The test statistic of the Portmanteau test is

Qh = T
h∑

i=1

tr(Ĉi
′
Ĉ0
−1

ĈiĈ0
−1

)

where Ĉi = 1
T

T∑
t=i+1

ûtû′t−i, i = 0, 1, . . . , h < T and ût, t = 1, . . . ,T are the estimated

residuals.

For large T and h the test statistic Qh is approximately distributed as χ2(K2(h − p).
We perform the asymptotic Portmanteau test with h = 16 by using the R function
serial.test in the R package vars with the default parameters type="PT.asymptotic"
and lags.pt=16. Also, the P-value is included in the output from this function, such
that the null hypothesis of no autocorrelation in the residuals is rejected if the P-value is
less than the selected significance level.

2.5.2 The ARCH-LM test

We test for ARCH effects in the residuals by using the ARCH-LM test which is defined
as follows: Consider the auxiliary model

vech(utu′t) = β0 + B1vech(ut−1u′t−1) + · · ·+ Bqvech(ut−qu′t−q) + εt, t = q + 1, . . . ,T (2.10)

where vech() is the column stacking operator for symmetric matrices which stacks the
elements on and below the main diagonal, and εt is an error term. Note that when ut is
K-dimensional, β0 and εt are 1

2 K(K + 1)- dimensional vectors, while Bi, i = 1, . . . , q are(
1
2 K(K + 1) × 1

2 K(K + 1)
)
-dimensional matrices. The hypothesis in the ARCH-LM test

are H0 : B1 = · · · = Bq = 0 and H1 : B1 , 0 or · · · or Bq , 0. Let Σ̂vech be the residual

covariance estimator of the model (2.10), i.e., Σ̂vech = 1
T−q

T∑
t=q+1

ε̂tε̂
′
t where ε̂t, t = 1, . . . ,T

are the estimated residuals in (2.10), and let Σ̂0 be the residual covariance estimator of
the model (2.10) under H0, i.e., when q = 0. Then, the test statistic is defined as:

LMMARCH(q) =
T K(K + 1)

2
− T tr

(̂
ΣvechΣ̂

−1
0

)
.

Under H0, the statistic has an asymptotic χ2(qK2(K + 1)2/4)-distribution. Also, we get
the univariate ARCH-LM test by letting K = 1 in the above formulas. The regression
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model (2.10) reduces in this case to

u2
t = β0 + B1u2

t−1 + · · · + Bqu2
t−q + εt where β0, εt, B1, . . . , Bq now are numbers.

The function arch.test in the R package vars computes by default only the multivariate
ARCH-LM test statistic for the multivariate time series ut, but if we let the parameter
multivariate.only be FALSE, it also computes the univariate ARCH-LM test statistic
for each of the components of ut. We use the default numbers of lags in the ARCH-LM
tests, which are 5 and 16 in the univariate and multivariate case, respectively, but the
number of lags may be changed by setting the parameters lags.single and lags.multi.
The P-value is included in the output from arch.test, so the null hypothesis of no
ARCH effect in the residuals is rejected if the P-value is less than the selected significance
level.

2.5.3 Normality tests

The following normality tests are based on the third and fourth central moment, i.e.,
the skewness and kurtosis of the normal distribution. If x ∼ N(0, 1), we know that
E(x3) = 0 and E(x4) = 3. Let ût be the estimated residuals of a VAR(p) model based on a
sample y1, . . . , yT with the presample values y−p+1, . . . , y0, and suppose that ut is zero mean
white noise with nonsingular covariance matrix Σu which may be Cholesky decomposed

as Σu = PP′. The residuals ût are standardized by letting ŵt = P̂−1(̂ut− û) where û = 1
T

T∑
t=1

ût

and P̂ is a matrix satisfying P̂P̂′ = 1
T−K p−1

T∑
t=1

(̂ut − û)(̂u′t − û
′
) such that plim(P̂− P) = 0. By

these definitions, wt ∼ NK(0, IK) if the residuals are Gaussian white noise. Let

b̂1 = (̂b11, . . . , b̂K1)′ with b̂k1 =
1
T

T∑
t=1

ŵ3
kt, k = 1, . . . ,K

b̂2 = (̂b12, . . . , b̂K2)′ with b̂k2 =
1
T

T∑
t=1

ŵ4
kt, k = 1, . . . ,K

Then, the test statistic λs = Tb̂1̂b′1/6, which has asymptotical distribution χ2(K), may be
used to test skewness, i.e., to test H0 : E[w3

1t, . . . ,w
3
Kt]
′ = 0 against H1 : E[w3

1t, . . . ,w
3
Kt]
′ ,

0. Similarly, the test statistic λk = T (̂b2 − 3K)(̂b2 − 3K)′/24, which has asymptotical
distribution χ2(K), may be used to test kurtosis, i.e., to test H0 : E[w4

1t, . . . ,w
4
Kt]
′ = 3K

against H1 : E[w4
1t, . . . ,w

4
Kt]
′ , 3K. Finally, the test statistic λsk = λs + λk, which has

asymptotical distribution χ2(2K), may be used for a joint test of the null hypotheses for
skewness and kurtosis (the Jarque-Bera normality test).

The function normality.test in the R package vars performs these three multivariate
tests. If the parameter multivariate.only is FALSE, also the univariate Jarque-Bera
tests for each of the K components are performed. For each of these tests, both the value
of the test statistic and the P-value are reported, so we reject the null hypothesis if the
P-value is less than the selected significance level.
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2.6 Vector error correction models

Suppose that each component of a K-dimensional time-series yt is I(1). Then, Equa-
tion (2.8) on page 11 is not an appropriate formulation of its model because the terms
yt, yt−1, . . . , yt−p all are nonstationary. However, by substituting

A1 = IK + Γ1

Ai = Γi − Γi−1 i = 1, . . . , p − 1
Ap = −Γp−1

in Equation (2.8), rearranging the terms and using that ∆yi = yi − yi−1 for all i, we may
rewrite this equation as

∆yt = µ + Γ1∆yt−1 + Γ2∆yt−2 + · · · + Γp−1∆yt−p+1 + ut. (2.11)

Naturally, both equations describe the same model, but we prefer to use Equation (2.11)
when yt is I(1), because each term in Equation (2.11) is stationary in this case. So, when
yt is I(1), we may find an appropriate model for yt by differencing each component of yt

once, and performing the regression based on Equation (2.11). However, then we have
not taken into account that there may be dependencies between some of the components
of yt, e.g., two of the components may have a common trend, or there may exist a linear
combination of the components of yt which is stationary. For examle, if yt consists of two
interest rates of different maturities, the difference between the two interest rates often
is stationary, while each of the interest rates is I(1). This problem is generally solved
by including an error correction term Πyt−1 in Equation (2.11) where Π is a (K × K)
matrix which has rank rk(Π) < K, because if Π has full rank K, then Π is invertible,
such that the nonstationary variable yt−1 may be written as a sum of stationary terms
by using this equation, which is an inconsistency. So, rk(Π) = r < K which implies that
there exist (K × r)-matrices α and β of rank r such that Π = αβ′. Then, each of the r
rows of β′yt−1 is a stationary linear combination of the components of yt, and is called a
cointegration relation. The number r, which is equal to the number of cointegration
relations, is called the cointegration rank. As the matrix β contains all the coefficients
of the cointegration relations, it is called the cointegration matrix. The matrix α,
which is the coefficient matrix of the stationary term β′yt−1 in Equation (2.12), is called
the loading matrix. Thus, we have arrived at the vector error correction model
(VECM):

Definition 2.8. A VECM of order p is defined by

∆yt = µ + αβ′yt−1 + Γ1∆yt−1 + Γ2∆yt−2 + · · · + Γp−1∆yt−p+1 + ut t = 1, . . . ,T (2.12)

where yt = [y1t, . . . , yKt]′ is a (K × 1) random vector, µ is a (K × 1) constant vector, α
and β are (K × r) matrices such that rk(α) =rk(β) = r with 0 < r < K, the Γi are fixed
(K ×K) coefficient matrices, and ut is a K-dimensional white noise process, i.e., E(ut) = 0,
E(utu′s) = 0 when t , s and E(utu′t) = Σu where Σu is nonsingular.

Remark 1. Note that the case r = 0 is excluded in this definition. If r = 0, there does not
exist any cointegration relation, so we do not need an error correction term such that the
VAR model in diffences in Equation 2.11 is approriate.

Remark 2. When we rewrite the VAR(p) model (2.8) to the VECM form (2.12), the
matrix Π is uniquely determined as Π = I − A1 − A2 − · · · − Ap, but the (K × r)-matrices
α and β such that Π = αβ′ are not uniquely determined. Therefore, common practice
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is to normalize β such that the upper (r × r) submatrix of β is Ir, the identity matrix of
order r. When K = 2, as later in this thesis, the cointegration rank is r = 1 if there exists
cointegration at all. Thus, the cointegration matrix is in this case the vector β′ = [1 − β]
where β is a number, which we call the cointegration value.

Remark 3. Also, note that the VECM of order p always may be rewritten as a VAR(p)
model by substituting all the ∆-operators in Equation (2.12) with its definition (e.g.,
∆yt replaced by yt − yt−1), and simplifying. However, this VAR(p) model is no longer
unrestricted as the model (2.8), because there is at least one cointegration relation in
this VECM of order p as the number r of cointegration relations should satisfy 0 < r < K.

2.6.1 The Johansen cointegration rank test

The cointegration rank r has to be determined before we estimate the VECM. Therefore,
we perform a likelihood ratio test to find the cointegration rank, before we estimate the
restricted VECM with this specific cointegration rank. A likelihood ratio statistic for
testing

H0 : r = r0 against H1 : r0 < r ≤ r1

is given by

λLR(r0, r1) = −T
r1∑

i=r0+1

ln(1 − λi),

where λ1 ≥ λ2 ≥ . . . ≥ λK are the eigenvalues of the matrix S −
1
2

11 S 10S −1
00 S 01S −

1
2

11 which is
computed by using the following matrix formulas:

∆Y = [∆y1, . . . ,∆yT ]
Y−1 = [y0, . . . , yT−1]
∆Xt−1 = [∆y′t−1, . . . ,∆y′t−p+1, µ

′]′

∆X = [∆X0, . . . ,∆XT−1]

M = IT − ∆X′(∆X∆X′)−1∆X
R0 = ∆Y M
R1 = Y−1M
S i j = RiR′j/T, i = 0, 1, j = 0, 1.

By letting r1 have different values in the interval [r0 + 1,K], we get different LR tests for
the cointegration rank. If r1 = r0 + 1, we get the trace test, and if r1 = K, we get the
maximum eigenvalue test. The function ca.jo in the R package urca performs the
trace test and the maximum eigenvalue test when the parameter type is equal to "trace"

and "eigen", respectively. However, the limiting distributions of these LR statistics
are nonstandard, but they may be simulated by considering multivariate random walks.
Conveniently, the function ca.jo reports the critical values at the 1%, 5% and 10%
significance level, so we reject H0 when the LR statistic has larger value than the critical
value for the chosen significance level.

When the cointegration rank r is determined, we use the function cajorls in the R pack-
age urca to compute the least squares estimate of the restricted VECM with cointegration
rank r.

15



2.7. Threshold vector error correction models

2.7 Threshold vector error correction models

In Section 2.4 on page 10 a nonlinear SETAR(p) model was made from linear AR(p)
models by introducing threshold(s). Similary, we may make a nonlinear threshold vector
error correction model (TVECM) from a linear VECM:

Definition 2.9. A K-dimensional time series yt is said to follow a k-regime TVECM of
order p if it satisfies

∆yt = c j +Π jyt−1 + Γ1 jyt−1 + · · · + Γ(p−1), jyt−p+1 + ut j, if γ j−1 < yt−d−1 ≤ γ j, (2.13)

where p ≥ 0, k > 1 and 0 ≤ d < p are integers, j = 1, . . . , k and γi are real numbers such
that −∞ = γ0 < γ1 < · · · < γk = ∞, and ut j is a K-dimensional white noise process for
each j = 1, . . . , k. The number p is the AR order, d is the threshold delay, i.e., the
time delay of the threshold variable yt−d−1 compared with yt−1, the integer j denotes the
regime number, while the numbers γ1, . . . , γk−1 denote the k − 1 thresholds which
divide the threshold space into k regimes.

Note that, in each of the k regimes, the time series yt is a linear VECM. However, all
these k linear models are different (otherwise, we may reduce k by merging some of the
regimes), and which one of these k models we actually use when computing yt, is governed
by the value of the threshold variable yt−d−1. As a result, the TVECM is nonlinear.

We estimate a TVECM by using the function TVECM in the R package tsDyn. Note
that in tsDyn only TVECMs with threshold delay equal to 0 may be estimated and
tested.

2.7.1 Checking the residuals of an estimated TVECM

Unfortunately, the functions in the R package vars for checking the residuals may only be
applied to estimated VAR(p) models. Therefore, we have made an R function (included in
R chunk 40 in Appendix C) which performs the ARCH-LM test described in Section 2.5.2
on a general data set. When applying this function on the residuals from the estimated
VAR(3) model, the results are similar, but not exactly equal to the results from the funcion
arch.test. In this chunk we also perform a Doornik-Hansen univariate and multivariate
normality test (Doornik and Hansen 1994) on the residuals of the estimated TVECM
by using the function DH.test in the R package asbio. This test is designed to deal
with small samples rather than the asymptotic Jarque-Bera test which is implemented
in the function normality.test. But more important for us, this function performs the
normality test on whatever data set, not only on the residuals of an estimated VAR(p)
model as the function normality.test.

2.7.2 The Hansen and Seo test

When we have estimated a TVECM, it is important to decide whether this nonlinear
model is superior to a linear VECM. Such a test was proposed in Hansen and Seo (2002),
and is implemented in the function TVECM.HStest in the R package tsDyn. By using
this function, we are able to test a linear VECM against a two-regime TVECM. The idea
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is to test whether the difference between the parameter matrices in the two regimes, is
significantly different from zero. If so, the TVECM catches some dynamics of the given
time series which the linear VECM does not, and accordingly, the TVECM is superior
to a linear VECM. However, in Chapter 3 we extend this test to cover the case of a
three-regime TVECM as the alternative hypothesis, so we postpone the details of the
test statistic until this chapter. In our data analysis in Chapter 4 and 5 we use this
extended version of the function TVECM.HStest.
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Chapter 3

Testing for three-regime threshold
cointegration

In this chapter we extend the function TVECM.HStest to the case of a three-regime
TVECM in the alternative hypothesis. In Section 3.1 we generalize both the LM statistic
described in Hansen and Seo (2002), and the LM statistic implemented in the function
TVECM.HStest, and we show that these two LM statistics are equivalent under certain
conditions. When computing the test statistic in the Hansen and Seo test, it is necessary
to perform a grid search to find the largest LM statistic when the thresholds vary over the
set of all possible threshold values. In Section 3.2 we extend this grid search to the case
of two thresholds, and we improve this grid search such that it really finds the largest
LM statistic under the constraints specified by the user, when the cointegration value β
is given. Throughout this chapter we assume that K = 2, i.e., only bivariate models are
considered.

Appendix A contains the source code of the function TVECM.HSTest in the version 0.7-40
of the package tsDyn which was the starting point for our work on the Hansen and Seo
test, while Appendix B contains the source code of our new version of this function.

3.1 The derivation of the SupLM statistic in the case

of three regimes

3.1.1 Some matrix formulas

This section contains the vector and matrix formulas, which are necessary when deriving
the formulas for the LM statistics, but not usually covered in an introductory linear
algebra course.

Matrix rule 1. Product of partitioned matrices.
Let the (m× n) matrix A be partitioned into submatrices A11, A12, A21, A22 with dimensions

(p×q), p×(n−q)), ((m−p)×q), and ((m−p)×(n−q)), respectively, such that A =

A11 A12

A21 A22

.
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Let the (n × t) matrix B be partitioned as B =

B11 B12

B21 B22

. Then, we have that:

AB =

A11 A12

A21 A22

 B11 B12

B21 B22

 =

A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

 .
provided that A and B are partitioned such that all the products of the submatrices are
defined.

Matrix rule 2. Inverse of a partitioned matrix.

Suppose that the invertible matrix A is partitioned as A =

A11 0
0 A22

 where the matrices

A11 and A22 both are invertible. Then, we have that

A−1 =

A−1
11 0
0 A−1

22

 .
Matrix rule 3. Transpose of a partitioned matrix.

Let A′ denote the transpose of A, and let A be partitioned as A =

A11 A12

A21 A22

. Then we

have that A′ =

A′11 A′21

A′12 A′22

.
Matrix definition 1. Orthogonal matrices.
An (m × k) matrix B is orthogonal to the (m × n) matrix A if A′B = 0.

Matrix definition 2. The vec and vech operator.
Let A be an (m×n) matrix with the columns A1, A2, . . . , An. Then the vec operator stacks
the columns of A into an (mn × 1) vector, i.e.,

vec(A) =


A1

A2
...

An

 .
While the vec operator stacks all the elements in the columns, the vech operator stacks
only the elements on and below the main diagonal of an (m × m) matrix A into an
(( 1

2m(m + 1)) × 1) vector.

Matrix definition 3. Kronecker product
Let A = (ai j) and B = (bi j) be (m × n) and (p × q) matrices, respectively. The (mp × nq)
matrix

A ⊗ B =


a11B · · · a1nB
...

...

am1B · · · amnB


is the Kronecker product of A and B.
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Matrix rule 4. Rules for the Kronecker product and the vec operator.
Let A, B and C be matrices of appropriate dimensions. Then we have the following rules:

(A ⊗ B)′ = A′ ⊗ B′

A ⊗ (B + C) = A ⊗ B + A ⊗C
(A ⊗ B)(C ⊗ D) = AC ⊗ BD

(A ⊗ B)−1 = A−1 ⊗ B−1 when A and B are invertible,

vec(A + B) = vec(A) + vec(B)
vec(ABC) = (C′ ⊗ A)vec(B)
vec(AB) = (In ⊗ A)vec(B) where n is the number of columns in B

3.1.2 The three-regime TVECM written in matrix form

Let xt be a two-dimensional I(1) time series with normalized cointegration vector
β = [1, −β]′ where β is the cointegration value, and let wt(β) = β′xt denote the cointegra-
tion relation. A linear VECM of order p may then be written as

∆xt = A′Xt−1(β) + ut

where the regressor

Xt−1(β) =
[
1 wt−1(β)′ ∆x′t−1 ∆x′t−2 · · · ∆x′t−p+1

]′
is of format ((2p) × 1), the parameter matrix A is of format ((2p) × 2), and the error ut is
of format (2 × 1) and is assumed to have finite covariance matrix Σ = E(utu′t).

Let Y =
[
∆x1 ∆x2 · · · ∆xT

]′
, X =

[
X0(β) X1(β) · · · XT−1(β)

]′
, and U =

[
u1 u2 · · · uT

]′
.

Then the linear VECM above may be written compactly as

Y = XA + U (3.1)

where Y is of format (T ×2), X is of format (T × (2p)), A is of format ((2p)×2), and U is of
format (T×2). When the errors ut are Gaussian, and the cointegration value β is fixed, the
maximum likelihood estimator Ã is equal to the ordinary least squares estimator which
is given by Â = (X′X)−1X′Y.

We extend this linear VECM to a TVECM with three regimes and threshold delay 0: Let
the threshold parameter be γ = (γ1, γ2) where γ1 < γ2, and let

d1t(β, γ) = 1(wt−1(β) ≤ γ1)
d2t(β, γ) = 1(γ1 < wt−1(β) ≤ γ2)
d3t(β, γ) = 1(wt−1(β) > γ2)

where 1(·) denotes the indicator function, i.e., 1(P) = 1 if the logical condition P is
TRUE and 1(P) = 0 otherwise. Then the TVECM with three regimes may be written
as:

∆xt = A′1Xt−1(β)d1t(β, γ) + A′2Xt−1(β)d2t(β, γ) + A′3Xt−1(β)d3t(β, γ) + ut.
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If we let Y and U be as above, and let Zi =


X0(β)′di1(β, γ)
X1(β)′di2(β, γ)

...

XT−1(β)′diT (β, γ)

 for i = 1, 2, 3, the model

may be more compactly written as

Y = Z1A1 + Z2A2 + Z3A3 + U = ZA + U (3.2)

where Z =
[
Z1 Z2 Z3

]
and A =

[
A′1 A′2 A′3

]′
.

So, the T observations of the bivariate time series are now divided into three regimes. If
the t-th observation is in regime i, the t-th row of the matrix Zi is equal to the t-th row
of the matrix X, while the t-th row of the matrices Z j, j , i is equal to 0. An important
consequense of this fact is that X = Z1 + Z2 + Z3 and Z′i Z j = 0 when i , j, i.e., Zi is
orthogonal to Z j when i , j.

Typically, the middle regime in a three-regime TVECM contains a large part of the
observations of the time series. So, when testing the hypothesis H1 of a three-regime
TVECM against the hypothesis H0 of a linear VECM, we actually test whether there are
significant differences between the parameters in the middle regime and the parameters
in the lower and upper regime. If the differences are not significant, then we may use the
same parameter matrix in all three regimes, so

Y = Z1A1 + Z2A2 + Z3A3 + U = Z1A + Z2A + Z3A + U = (Z1 + Z2 + Z3)A + U = XA + U

which is the linear VECM (3.1) above.

Therefore, we rewrite the three-regime TVECM as follows:

Y = Z1A1 + Z2A2 + Z3A3 + U = Z1A1 + (X − Z1 − Z3)A2 + Z3A3 + U
= Z1(A1 − A2) + XA2 + Z3(A3 − A2) + U = XA2 + Z1B1 + Z3B3 + U (3.3)

So, testing for three-regime threshold cointegration implies testing whether the parameter
matrix

[
B1 B3

]
is significantly different from zero.

3.1.3 The least squares estimators of the parameters

In this section we compute the least squares estimators of the parameter matrices of the
three-regime TVECM.

Proposition 3.1. The least squares estimators of the parameter matrices A2, B1 and B3

in the three-regime TVECM Y = XA2 + Z1B1 + Z3B3 + U are given by:

Â2 = (Z′2Z2)−1Z′2Y, B̂1 =
[
(Z′1Z1)−1Z′1 − (Z′2Z2)−1Z′2

]
Y, and B̂3 =

[
(Z′3Z3)−1Z′3 − (Z′2Z2)−1Z′2

]
Y.

Proof. First, we find the least squares estimator of A in model (3.2) by using the rules for
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partitioned matrices in Section 3.1.1 and the fact that Zi is orthogonal to Z j when i , j.

Â =


Â1

Â2

Â3

 = (Z′Z)−1Z′Y =



Z′1
Z′2
Z′3


[
Z1 Z2 Z3

]
−1 

Z′1
Z′2
Z′3

 Y

=


Z′1Z1 0 0

0 Z′2Z2 0
0 0 Z′3Z3


−1 

Z′1
Z′2
Z′3

 Y =


(Z′1Z1)−1 0 0

0 (Z′2Z2)−1 0
0 0 (Z′3Z3)−1



Z′1
Z′2
Z′3

 Y =


(Z′1Z1)−1Z′1Y
(Z′2Z2)−1Z′2Y
(Z′3Z3)−1Z′3Y


By using B1 = A1 − A2 and B3 = A3 − A2 from (3.3), we get

Â2 = (Z′2Z2)−1Z′2Y

B̂1 = Â1 − Â2 = (Z′1Z1)−1Z′1Y − (Z′2Z2)−1Z′2Y =
[
(Z′1Z1)−1Z′1 − (Z′2Z2)−1Z′2

]
Y

B̂3 = Â3 − Â2 = (Z′3Z3)−1Z′3Y − (Z′2Z2)−1Z′2Y =
[
(Z′3Z3)−1Z′3 − (Z′2Z2)−1Z′2

]
Y

�

3.1.4 The LM statistics

As in Seo (2003) we use a Lagrange Multiplier test with the following LM statistic:

LM(β, γ) = ŝ′
(
Ṽar(ŝ)

)−1
ŝ (3.4)

where ŝ = ŝ(β, γ) =

vec
(
B̂1

)
vec

(
B̂3

) is the least squares estimator of the parameter vector, i.e.,

the parameter matrix vectorized by using the vec(·) operator defined in Section 3.1.1,
and Ṽar(ŝ) is an estimate of the covariance matrix of ŝ. Because the conditional het-
eroscedasticity is commonly used in time series analysis of interest rates, we use the White-
Eicker heteroscedasticity consistent covariance estimator, which is defined as follows: Let
U =

[
U1 U2

]
be the residuals of Equation (3.3), and let Û =

[
Û1 Û2

]
be the correspond-

ing estimated residuals. Then, the White-Eicker heteroscedasticity consistent es-

timator of Var(vec(U)) = Var

U1

U2

 is defined as the matrix D =

D11 D12

D21 D22

 where Di j =

diag(Û1iÛ1 j, Û2iÛ2 j, . . . ÛTiÛT j), i.e., the diagonal matrix with Û1iÛ1 j, Û2iÛ2 j, . . . , ÛTiÛT j

on the diagonal.

If we, on the contrary, suppose that the error process ut is homoscedastic, i.e., Σu =

E(utu′t) =

σ11 σ12

σ21 σ22

 for all t = 1, 2, . . . ,T , we have that

Var(vec(U)) = Var

U1

U2

 = E

U1

U2

 [U′1 U′2
] =

E(U1U′1) E(U1U′2
E(U2U′1) E(U2U′2)


=

σ11IT σ12IT

σ21IT σ22IT

 = Σu ⊗ IT .

In this case we may use the estimator Σ̃u = 1
T ÛÛ′.
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Proposition 3.2. With the notation above, the least squares estimator ŝ of the parameter
vector is given by

ŝ =

I2 ⊗ [(Z′1Z1)−1Z′1 − (Z′2Z2)−1Z′2]
I2 ⊗ [(Z′3Z3)−1Z′3 − (Z′2Z2)−1Z′2]

 vec(Y) = s +

I2 ⊗ [(Z′1Z1)−1Z′1 − (Z′2Z2)−1Z′2]
I2 ⊗ [(Z′3Z3)−1Z′3 − (Z′2Z2)−1Z′2]

 vec(U)

(3.5)

The White-Eicker heteroscedastic consistent estimate of the covariance matrix of ŝ is
given byI2 ⊗ [(Z′1Z1)−1Z′1 − (Z′2Z2)−1Z′2]

I2 ⊗ [(Z′3Z3)−1Z′3 − (Z′2Z2)−1Z′2]

 D
[
I2 ⊗ [Z1(Z′1Z1)−1 − Z2(Z′2Z2)−1] I2 ⊗ [Z3(Z′3Z3)−1 − Z2(Z′2Z2)−1]

]
(3.6)

If we suppose that the error process ut is standard white noise, we may estimate the
covarianse matrix of ŝ by

1
T

Û′Û ⊗ [(Z′1Z1)−1 + (Z′2Z2)−1] Û′Û ⊗ [(Z′2Z2)−1]
Û′Û ⊗ [(Z′2Z2)−1] Û′Û ⊗ [(Z′2Z2)−1 + (Z′3Z3)−1]

 (3.7)

Proof. We apply the rules for the vec(·) operator (see Section 3.1.1) to rewrite the ex-
pression for ŝ:

ŝ =

vec(B̂1)
vec(B̂3)

 =

vec{[(Z′1Z1)−1Z′1 − (Z′2Z2)−1Z′2]Y}
vec{[(Z′3Z3)−1Z′3 − (Z′2Z2)−1Z′2]Y}


=


(
I2 ⊗ [(Z′1Z1)−1Z′1 − (Z′2Z2)−1Z′2]

)
vec(Y)(

I2 ⊗ [(Z′3Z3)−1Z′3 − (Z′2Z2)−1Z′2]
)

vec(Y)

 =

I2 ⊗ [(Z′1Z1)−1Z′1 − (Z′2Z2)−1Z′2]
I2 ⊗ [(Z′3Z3)−1Z′3 − (Z′2Z2)−1Z′2]

 vec(Y)

which proves the first expression for ŝ. To prove the second expression we rewrite vec(Y):

vec(Y) = vec(XA2 + Z1B1 + Z3B3 + U) = vec(XA2) + vec(Z1B1) + vec(Z3B3) + vec(U)
= (I2 ⊗ X)vec(A2) + (I2 ⊗ Z1)vec(B1) + (I2 ⊗ Z3)vec(B3) + vec(U)

In addition, note that X = Z1 +Z2 +Z3, that Z′i Z j = 0 when i , j, and that (Z′i Zi)−1Z′i Zi = IN

where N = 2p is the number of columns in Zi. By using these facts, we get

ŝ =

I2 ⊗ [(Z′1Z1)−1Z′1 − (Z′2Z2)−1Z′2]
I2 ⊗ [(Z′3Z3)−1Z′3 − (Z′2Z2)−1Z′2]

 vec(Y)

=

I2 ⊗ [(Z′1Z1)−1Z′1 − (Z′2Z2)−1Z′2]
I2 ⊗ [(Z′3Z3)−1Z′3 − (Z′2Z2)−1Z′2]

 [(I2 ⊗ X)vec(A2) + (I2 ⊗ Z1)vec(B1) + (I2 ⊗ Z3)vec(B3) + vec(U)]

=

[I2 ⊗ (IN − IN)]vec(A2) + (I2 ⊗ IN)vec(B1) + (I2 ⊗ 0)vec(B3) + (I2 ⊗ [(Z′1Z1)−1Z′1 − (Z′2Z2)−1Z2])vec(U)
[I2 ⊗ (IN − IN)]vec(A2) + (I2 ⊗ 0)vec(B1) + (I2 ⊗ IN)vec(B3) + (I2 ⊗ [(Z′3Z3)−1Z′3 − (Z′2Z2)−1Z2])vec(U)


=

vec(B1) + (I2 ⊗ [(Z′1Z1)−1Z′1 − (Z′2Z2)−1Z2])vec(U)
vec(B3) + (I2 ⊗ [(Z′3Z3)−1Z′3 − (Z′2Z2)−1Z2])vec(U)


= s +

I2 ⊗ [(Z′1Z1)−1Z′1 − (Z′2Z2)−1Z2]
I2 ⊗ [(Z′3Z3)−1Z′3 − (Z′2Z2)−1Z2]

 vec(U)

24



3.1. The derivation of the SupLM statistic in the case of three regimes

Next, we prove formula (3.6). Note that

ŝ − s = Cvec(U) where C =

I2 ⊗ [(Z′1Z1)−1Z′1 − (Z′2Z2)−1Z2]
I2 ⊗ [(Z′3Z3)−1Z′3 − (Z′2Z2)−1Z2]


Thus, we get

Cov(ŝ) = Cov(ŝ − s) = CCov(vec(U))C′ = CDC′

which is equivalent to formula (3.6).

To prove formula (3.7), we substitute Σu ⊗ IT for D in expression (3.6) and simplify:I2 ⊗ [(Z′1Z1)−1Z′1 − (Z′2Z2)−1Z′2]
I2 ⊗ [(Z′3Z3)−1Z′3 − (Z′2Z2)−1Z′2]

 (Σu ⊗ IT )
[
I2 ⊗ [Z1(Z′1Z1)−1 − Z2(Z′2Z2)−1] I2 ⊗ [Z3(Z′3Z3)−1 − Z2(Z′2Z2)−1]

]
=

Σu ⊗ [(Z′1Z1)−1Z′1 − (Z′2Z2)−1Z′2]
Σu ⊗ [(Z′3Z3)−1Z′3 − (Z′2Z2)−1Z′2]

 [I2 ⊗ [Z1(Z′1Z1)−1 − Z2(Z′2Z2)−1] I2 ⊗ [Z3(Z′3Z3)−1 − Z2(Z′2Z2)−1]
]

We expand the first of the 4 entries in this matrix product:(
Σu ⊗ [(Z′1Z1)−1Z′1 − (Z′2Z2)−1Z′2]

) (
I2 ⊗ [Z1(Z′1Z1)−1 − Z2(Z′2Z2)−1]

)
=

Σu ⊗ [(Z′1Z1)−1Z′1Z1(Z′1Z1)−1 − (Z′1Z1)−1Z′1Z2(Z′2Z2)−1 − (Z′2Z2)−1Z′2Z1(Z′1Z1)−1 + (Z′2Z2)−1Z′2Z2(Z′2Z2)−1] =

Σu ⊗ [(Z′1Z1)−1 − 0 − 0 + (Z′2Z2)−1] = Σu ⊗ [(Z′1Z1)−1 + (Z′2Z2)−1]

By expanding the three other entries similarly, and replacing the covariance matrix Σu by
its estimate 1

T Û′Û, we get formula (3.7). �

The formulas in Hansen and Seo (2002) for the LM statistic may now be generalized to
the three-regime TVECM:

Proposition 3.3. We use the following notation:

Di = diag(U1 j,U2 j, . . . ,UT j) for j = 1, 2
Mi = I2 ⊗ Z′i Zi for i = 1, 2, 3

ξi =
[
D1Zi D2Zi

]
for i = 1, 2, 3

Ωi = ξ′iξi for i = 1, 2, 3

Vi = M−1
i ΩiM−1

i for i = 1, 2, 3

Ri =
(
I2 ⊗ (Z′i Zi)−1Z′i

)
for i = 1, 2, 3.

Then, the matrix V =

V1 + V2 V2

V2 V2 + V3

 is equal to the White-Eicker heteroscedastic

consistent estimator (3.6) of the covariance matrix of ŝ, and the LM statistic is given by

LM1 = ŝ′V−1s = vec(Y)′
[
R′1 − R′2 R′3 − R′2

]
V−1

R1 − R2

R3 − R2

 vec(Y).

Remark 4. For a two-regime TVECM, the only changes from the formulas in the propo-
sition are V = V1 + V2, s = [R1 − R2]vec(Y), and i = 1, 2.
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3.1. The derivation of the SupLM statistic in the case of three regimes

Proof. We compute Vi:

Vi = M−1
i ΩiM−1

i = (I2 ⊗ (Z′i Zi)−1)
[
D1Zi D2Zi

]′ [
D1Zi D2Zi

]
(I2 ⊗ (Z′i Zi)−1)

= (I2 ⊗ (Z′i Zi)−1)

Z′i D1

Z′i D2

 [D1Zi D2Zi

]
(I2 ⊗ (Z′i Zi)−1)

= (I2 ⊗ (Z′i Zi)−1)(I2 ⊗ Z′i )

D1

D2

 [D1 D2

]
(I2 ⊗ Zi)(I2 ⊗ (Z′i Zi)−1)

= (I2 ⊗ (Z′i Zi)−1)(I2 ⊗ Z′i )

D1D1 D1D2

D2D1 D2D2

 (I2 ⊗ Zi)(I2 ⊗ (Z′i Zi)−1)

= (I2 ⊗ (Z′i Zi)−1Z′i )

D11 D12

D21 D22

 (I2 ⊗ Zi(Z′i Zi)−1) =
(
I2 ⊗ (Z′i Zi)−1Z′i

)
D

(
I2 ⊗ Zi(Z′i Zi)−1

)
The heteroscedastic consistent estimator (3.6) of the covariance matrix of ŝ may be written
as: R1 − R2

R3 − R2

 D
[
R′1 − R′2 R′3 − R′2

]
=

R1D − R2D
R3D − R2D

 [R′1 − R′2 R′3 − R′2
]

=R1DR′1 − R1DR′2 − R2DR′1 + R2DR′2 R1DR′3 − R1DR′2 − R2DR′3 + R2DR′2
R3DR′1 − R3DR′2 − R2DR′1 + R2DR′2 R3DR′3 − R3DR′2 − R2DR′3 + R2DR′2


Now we need the following Lemma to simplify this expression further:

Lemma 3.4. RiDR′j = 0 for all i and j such that i , j, i = 1, 2, 3 and j = 1, 2, 3.

Proof. Note that if a column in Z′i is equal to 0, then the corresponding column in Z′i Dkl

is also equal to 0 because the matrices Dkl are diagonal matrices. Thus, if an element of
a row in Z′i Dkl is , 0, then the corresponding element in each column of Z j is = 0 when
j , i, so Z′i DklZ j = 0 when i , j. Consequently, we get

(I2 ⊗ Z′i )D(I2 ⊗ Z j) =

Z′i 0
0 Z′i

 D11 D12

D21 D22

 Z j 0
0 Z j

 =

Z′i D11Z j Z′i D12Z j

Z′i D21Z j Z′i D22Z j

 = 0

Thus,we get

RiDR′j =
(
I2 ⊗ (Z′i Zi)−1Z′i

)
D

(
I2 ⊗ Z j(Z′jZ j)−1

)
=

(
I2 ⊗ (Z′i Zi)−1

)
(I2 ⊗ Z′i )D(I2 ⊗ Z j)

(
I2 ⊗ (Z′jZ j)−1

)
=

(
I2 ⊗ (Z′i Zi)−1

)
· 0 ·

(
I2 ⊗ Z j(Z′jZ j)−1

)
= 0

�

Now, we use the lemma to simplify:R1DR′1 − R1DR′2 − R2DR′1 + R2DR′2 R1DR′3 − R1DR′2 − R2DR′3 + R2DR′2
R3DR′1 − R3DR′2 − R2DR′1 + R2DR′2 R3DR′3 − R3DR′2 − R2DR′3 + R2DR′2


=

V1 − 0 − 0 + V2 0 − 0 − 0 + V2

0 − 0 − 0 + V2 V3 − 0 − 0 + V2

 =

V1 + V2 V2

V2 V3 + V2


�
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In the function TVECM.HStest in the R package tsDyn (Di Narzo, Aznarte, and Stigler
2011), the LM statistic for a two-regime TVECM is computed. Now we generalize this
formula to the three-regime TVECM and show that this LM statistic is identical to LM1

in Proposition 3.3.

Proposition 3.5. Let Y = XA2 + U be the linear VECM defined above, let Z =
[
Z1 Z3

]
and let H = IT − X(X′X)−1X. Let se = vec((HZ)′Y) and ze =

[
D1HZ D2HZ

]
where Di =

diag(U1i,U2i, . . . ,UTi) as before. Then z′eze is the White-Eicker heteroscedastic consistent
estimate of the covariance matrix of se, and the LM statistic LM2 = s′e(z

′
eze)−1se is equal

to the statistic LM1 in Proposition 3.3, when Z′HZ is invertible.

Proof. When regressing Y on X, the residuals are given by Û = HY. As the matrix H is
symmetric and idempotent, i.e., H2 = H, we have that

se = vec((HZ)′Y) = vec(Z′HY) = vec(Z′HHY) = vec(Z′HÛ) = (I2 ⊗ (HZ)′)vec(Û)

Thus, we get

Cov(se) = Cov((I2 ⊗ (HZ)′)vec(Û)) = (I2 ⊗ (HZ)′)Cov(vec(Û))(I2 ⊗ HZ),

while

z′eze =

Z′HD1

Z′HD2

 [D1HZ D2HZ
]

=

 Z′HD2
1HZ Z′HD1D2HZ

Z′HD2D1HZ Z′HD2
2HZ

 (H and Di are symmetric)

= (I2 ⊗ Z′H)

 D2
1 D1D2

D2D1 D2
2

 (I2 ⊗ HZ) = (I2 ⊗ (HZ)′)D(I2 ⊗ HZ),

where D =

 D2
1 D1D2

D2D1 D2
2

 is the White-Eicker estimate of Cov(vec(U)).

To prove the last assertion, note that both LM1 and LM2 may be written as w′
(
̂Cov(w)

)−1
w,

i.e., w = ŝ in LM1 and w = se in LM2. In addition, Cov(w) is in both cases estimated
by using the White-Eicker heteroscedastic consistent estimator of Cov(U). Suppose that
there exists an invertible matrix K such that se = Kŝ. Then, we have that

LM2 = s′e
(
̂Cov(se)

)−1
se = (Kŝ)′

(
̂Cov(Kŝ)

)−1
Kŝ = ŝ′K′

(
KĈov(ŝ)K′

)−1
Kŝ

= ŝ′K′(K′)−1
(
Ĉov(ŝ)

)−1
K−1Kŝ = ŝ′

(
Ĉov(ŝ)

)−1
ŝ = LM1

Therefore, LM1 = LM2 if there exists such a matrix K. Note that the order of the
estimated parameters is different in se and ŝ. In ŝ, all the elements of B̂1 precede all the
elements of B̂3, while in se all the elements connected to the regression of Y1 precede all
the elements connected to the regression of Y2. However, we may reorder the elements of

ŝ by leftmultiplying with the matrix P =


IN 0 0 0
0 0 IN 0
0 IN 0 0
0 0 0 IN

 where N = 2p is the number of
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columns in the X matrix:

Pŝ =


IN 0 0 0
0 0 IN 0
0 IN 0 0
0 0 0 IN


I2 ⊗ [(Z′1Z1)−1Z′1 − (Z′2Z2)−1Z′2]
I2 ⊗ [(Z′3Z3)−1Z′3 − (Z′2Z2)−1Z′2]

 vec(Y)

=

I2 ⊗
(Z′1Z1)−1Z′1 − (Z′2Z2)−1Z′2
(Z′3Z3)−1Z′3 − (Z′2Z2)−1Z′2

 vec(Y),

so the order of the parameters in Pŝ and se is equal. The matrix P is invertible as P2 = I.
Now, we prove that se = (I2 ⊗ Z′HZ)Pŝ. This will complete the proof of the assertion
that LM1 = LM2 as (I2 ⊗ Z′HZ)P is invertible when Z′HZ is invertible. We rewrite this
equation:

se = (I2 ⊗ Z′HZ)Pŝ

(I2 ⊗ (HZ)′)vec(Y) = (I2 ⊗ Z′HZ)

I2 ⊗
(Z′1Z1)−1Z′1 − (Z′2Z2)−1Z′2
(Z′3Z3)−1Z′3 − (Z′2Z2)−1Z′2

 vec(Y)

(I2 ⊗ Z′H)vec(Y) =

I2 ⊗ Z′H
[
Z1 Z3

] (Z′1Z1)−1Z′1 − (Z′2Z2)−1Z′2
(Z′3Z3)−1Z′3 − (Z′2Z2)−1Z′2

 vec(Y)I2 ⊗
Z′1H
Z′3H

 vec(Y) =

I2 ⊗
Z′1H

(
Z1(Z′1Z1)−1Z′1 + Z3(Z′3Z3)−1Z′3 − (Z1 + Z3)(Z′2Z2)−1Z′2

)
Z′3H

(
Z1(Z′1Z1)−1Z′1 + Z3(Z′3Z3)−1Z′3 − (Z1 + Z3)(Z′2Z2)−1Z′2

) vec(Y)

so it suffices to prove thatZ′1H
(
Z1(Z′1Z1)−1Z′1 + Z3(Z′3Z3)−1Z′3 − (Z1 + Z3)(Z′2Z2)−1Z′2

)
Z′3H

(
Z1(Z′1Z1)−1Z′1 + Z3(Z′3Z3)−1Z′3 − (Z1 + Z3)(Z′2Z2)−1Z′2

) − Z′1H
Z′3H

 = 0

We show the equality in detail only for the first component, as the proof for the second
component is similar. (Interchanging Z1 and Z3 in the proof for the first component gives
the proof for the second component.) First we simplify Z′1H:

Z′1H = Z′1(IT − X(X′X)−1X′) = Z′1(It − (Z1 + Z2 + Z3)
[
(Z′1 + Z′2 + Z′3)(Z1 + Z2 + Z3)

]−1 (Z′1 + Z′2 + Z′3)

= Z′1 − Z′1Z1
(
Z′1Z1 + Z′2Z2 + Z′3Z3

)−1 (Z′1 + Z′2 + Z′3)

where we have used that Z′i Z j = 0 when i , j. Thus, we get

Z′1H
(
Z1(Z′1Z1)−1Z′1 + Z3(Z′3Z3)−1Z′3 − (Z1 + Z3)(Z′2Z2)−1Z′2

)
− Z′1H

=
[
Z′1 − Z′1Z1

(
Z′1Z1 + Z′2Z2 + Z′3Z3

)−1 (Z′1 + Z′2 + Z′3)
] (

Z1(Z′1Z1)−1Z′1 + Z3(Z′3Z3)−1Z′3 − (Z1 + Z3)(Z′2Z2)−1Z′2
)

− Z′1 + Z′1Z1
(
Z′1Z1 + Z′2Z2 + Z′3Z3

)−1 (Z′1 + Z′2 + Z′3)

= Z′1 + 0 − (Z′1Z1)(Z′2Z2)−1Z′2 − 0 −
[
Z′1Z1

(
Z′1Z1 + Z′2Z2 + Z′3Z3

)−1
] (

Z′1 + Z′3 − (Z′1Z1 + Z′3Z3)(Z′2Z2)−1Z′2
)

− Z′1 + Z′1Z1
(
Z′1Z1 + Z′2Z2 + Z′3Z3

)−1 (Z′1 + Z′2 + Z′3)

= Z′1Z1
(
Z′1Z1 + Z′2Z2 + Z′3Z3

)−1 Z′2 +
[
Z′1Z1

(
Z′1Z1 + Z′2Z2 + Z′3Z3

)−1
] (

Z′1Z1 + Z′3Z3)(Z′2Z2)−1Z′2
)

− (Z′1Z1)(Z′2Z2)−1Z′2
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= Z′1Z1

(
(Z′1Z1 + Z′2Z2 + Z′3Z3)−1

)
(Z′2Z2)(Z′2Z2)−1Z′2

+
[
Z′1Z1

(
Z′1Z1 + Z′2Z2 + Z′3Z3

)−1
] (

(Z′1Z1 + Z′3Z3)(Z′2Z2)−1Z′2
)
− (Z′1Z1)(Z′2Z2)−1Z′2

=
[
Z′1Z1

(
Z′1Z1 + Z′2Z2 + Z′3Z3

)−1
] (

(Z′1Z1 + Z′2Z2 + Z′3Z3)(Z′2Z2)−1Z′2
)
− (Z′1Z1)(Z′2Z2)−1Z′2

= (Z′1Z1)
[(

Z′1Z1 + Z′2Z2 + Z′3Z3
)−1 (

Z′1Z1 + Z′2Z2 + Z′3Z3
) − IN

]
(Z′2Z2)−1Z′2

= (Z′1Z1)(IN − IN)(Z′2Z2)−1Z′2 = 0

which completes the proof. �

Remark 5. Note that the left multiplication by Di = diag(Ui) in ze is equivalent to element-
wise multiplication by the vector Ui. When LM2 is computed, the element-wise multi-
plication should be used as in tsDyn, because this is more efficient than leftmultiplying
with Di. However, mathematically, it is preferable to use leftmultiplying with Di instead
of introducing a new symbol for the element-wise multiplication.

Remark 6. According to Engle (1984), the statistic LM1 in Proposition 3.3 is the Wald
statistic, and the statistic LM2 in Proposition 3.5 is the Lagrange Multiplier statistic,
while in Hansen and Seo (2002) LM1 is called the LM statistic. In Engle (1984), it is
proved that the Wald statistic, the LM statistic and the likelihood ratio statistic are iden-
tical when the loglikelihood is a quadratic function, which is the case when multinormal
distribution is presupposed. As LM1 = LM2, it does not matter which name we use, but
in computations it is more effective to use LM2 than LM1. This is important as we have
to perform a grid search to find the most optimal value of γ = (γ1, γ2).

3.1.5 The SupLM statistic

From now on, we denote the LM statistic by LM. Note that LM depends on both the
cointegration value β and the threshold parameter γ = (γ1, γ2), i.e., LM = LM(β, γ). If
β is known a priori, we use this known value β0. For example, when we are testing
for nonlinear mean reversion in interest rates, we may let β0 = 1 such that the error
correction term becomes wt−1(β0) = β′0yt =

[
1 −1

]
yt = yt1−yt2, i.e., the difference between

the two interest rates. The LM statistic is computed under H0 such that when β is not
a priori known, we use the estimate of β under H0, i.e., the least squares estimate β̂ in
the linear VECM (3.1). However, we have not any value of γ under H0. In addition, the
least squares estimation of the parameters in the TVECM (3.2) is valid only for fixed
γ. Therefore, we can’t use LM(β̂, γ) as test statistic when testing H0 against H1. As
in Hansen and Seo (2002) and Seo (2003), we use the SupLM statistic which does not
depend on the nuisance parameter γ:

SupLM = sup
γ∈Γp

LM(β̂, γ)

where Γp = {(γ1, γ2) | P(wt−1(β̂) ≤ γ1) ≥ p, P(γ1 < wt−1(β̂) ≤ γ2) ≥ p, P(wt−1(β̂) > γ2) ≥ p},
and p is a trimming parameter which typically is set to 0.05, 0.10 or 0.15. As LM(β̂, γ)
is a highly irregular function, this maximization has to be performed by using a grid
search.

29



3.2. The implementation of the SupLM test in the case of three regimes

3.2 The implementation of the SupLM test in the case

of three regimes

In the function TVECM.HStest in the R package tsDyn, the SupLM statistic is imple-
mented for the case of a two-regime TVECM. We extend this to the case of a three-regime
TVECM. This involves using the formula for LM2 in Proposition 3.5, and a new algo-
rithm for searching for the largest LM2(β, γ) when γ ∈ Γp. The function TVECM.XHStest

is our extension and improvement of the function TVECM.HStest. It computes the set of
possible threshold values in the following way:

1. As in TVECM.HStest, the error correction term vector [w0(β),w1(β), . . . ,wT−1(β)] is
sorted in ascending order and stored in the vector allgammas.

2. The minimum number of wt’s in each regime is computed by Ttrim= dT pe where
T is the size of the dataset as before, and p is the trimming parameter. Then,
Min1=allgammas[Ttrim] is the smallest possible value of the largest wt in the lower
regime if the lower regime should contain at least 100p % of the data. Correspond-
ingly, Max1=allgammas[T-Ttrim+1] is the largest possible value of the smallest wt

in the upper regime if the upper regime should contain at least Ttrim wt’s. Here
we use the ceiling function to assure that the lower and upper regime contain at
least 100p % of the wt’s, while in TVECM.HStest the round function is used such
that the lower and upper regime may contain slightly less than 100p % of the wt’s.

3. Next, we remove all duplicates in allgammas. In TVECM.HStest, this is done by
using the R function unique. However, unique removes an element of the vector
only if it is exactly equal to another element in the vector. This means that if two
elements in the vector are different only because of inaccuracies in the representation
of floating point numbers, then unique does not remove such a duplicate. Usually,
there are such duplicates in allgammas because the error correction term wt(β) =

β′xt is computed by doing arithmetic operations on the floating point numbers β
and xt. We remove duplicates in the following way: Let gammas=allgammas, i.e.,
we remove duplicates from the vector gammas, while we keep the vector allgammas
unchanged because we need it later to ensure that the middle regime has enough
data. Let tolerance be an upper limit for inaccuracies due to computations with
floating point numbers. The default value is set to 1e-12, but the user may specify
another value by tolerance=<value>. If gammas[i]-gammas[i-1]≤tolerance,
then gammas[i] is recognized as a duplicate of gammas[i-1], and hence is removed
from the vector gammas. When this is done for each i = 2, 3, . . . ,T , the difference
between any two consequtive elements in gammas is ≥tolerance, i.e., all duplicates
(according to our definition of duplicates) are removed from the vector gammas.

4. Next, we compute the index iMin in gammas of Min1 and the index iMax in gammas

of Max1. Then, we have that gammas[iMin] is the smallest possible value of the
largest wt in the lower regime, and that gammas[iMax] is the largest possible value
of the smallest wt in the upper regime. Thus, the lower threshold γ1 has to be
≥ gammas[iMin], and the upper threshold γ2 has to be ≤ gammas[iMax-1]. (We
have to subtract 1 in the index because the upper regime is defined by a strong
inequality, while the lower regime is defined by an ≤ inequality.)
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3.2. The implementation of the SupLM test in the case of three regimes

5. Now, the vector gammas=gammas[iMin:(iMax-1)] contains all the possible thresh-
old values. If the number of possible threshold values, i.e., the length of the vector
gammas, is less than ngridTh, the user specified number of different threshold values
in the grid, then ngridTh is set equal to the length of gammas, and a warning with
the new value of ngridTh is displayed. Then, each slot in the grid contains one
element. If we had used the user specified value of ngridTh, then some of the slots
in the grid would have been empty, so this refinement of the grid does not change
SupLM.

6. If the length of gammas is larger than ngridTh, then ngridTh elements of gammas
are selected as in TVEM.HStest by the R command

gammas=gammas[round(seq(from=1,to=length(gammas),length.out=ngridTh))]

(3.8)

The function seq makes a sequence of ngridTh elements equally spaced between 1
length(gammas), and the function round rounds this sequence of decimal numbers
to integers. Note that if the parameter ngridTh is chosen smaller than the length of
the gammas vector, then a further constraint is introduced when maximizing LM =

LM(β, γ), and this constraint depends not only on the value of ngridTh, but also
on how the ngridTh possible threshold values are selected from the gammas vector,
i.e., on the R command (3.8). Naturally, this constraint is removed if ngridTh is
set equal to the length of the time series, though, this may be very time-consuming
if combined with bootstrapping.

7. We add tolerance to gammas to ensure that wt is moved to the correct regime
when wt is slightly larger than the current threshold value.

Now, gammas contains all the threshold values which should be used in the grid when
searching for the SupLM value. If the user has specified type="2Reg", i.e., the model
has two regimes, this is a single grid, i.e., as in TVECM.HStest, we compute LM(β, γ) for
each γ in gammas, and SupLM is the largest of these values. (If the user has specified a
fixed β by fixed.beta=<value>, this value is used when LM(β, γ) is computed. If the
user has not specified a fixed β, we use the least squares estimate β̂ of β from the linear
VECM model, computed by the function VECM in package tsDyn.

If the user has specified type="3Reg", i.e., the model have three regimes, we use a double
for loop to set up the grid: The outer for loop controls the index i of the lower threshold
γ1 in gammas. The index i runs from 1 to iMax which is determined below. The inner
for loop controls the index j of the upper threshold γ2 in gammas. This index runs from
jMin to ngridTh. We require that the middle regime contains at least 100p % of the
data when iMax and jMin is determined. We compute iMax in the following way:

1. We find the index in allgammas of the smallest element in allgammas equal to
allgammas[T-Ttrim] except for floating point error by using the R command
i1=which(abs(allgammas-allgammas[T-Ttrim])<tolerance,arr.ind=TRUE)[1].
Then, allgammas[i1] is the largest wt in the middle regime when the upper regime
contains at least Ttrim elements. If also the middle regime contains at least Ttrim
elements, then the the largest wt in the lower regime is Max2=allgammas[i1-Ttrim].
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2. The upper limit for the index i is now computed by the R command
iMax=max(which(gammas<=Max2,arr.ind=TRUE)).
Note that we have to select the largest element in gammas less than or equal to
Max2 as there may be no element in gammas equal to Max2 because we have removed
elements from gammas.

The lower limit jMin of j has to be determined when the index i and γ1 have got their
values. The aim is to choose the starting point of γ2 so large that the middle regime
contains at least Ttrim wt’s when the lower threshold γ1 is fixed to gammas[i]. We
compute jMin in the following way.

1. First, we compute the set of indices of all the elements in allgammas which are
approximately equal to gammas[i] by using the following R command:
help=which(abs(allgammas-gammas[i])<tolerance,arr.ind=TRUE).
Then help[length[help]] is the largest element in allgammas which is approxi-
mately equal to gammas[i], i.e., the largest wt moved to the lower regime for this
value of γ1.

2. Next, we compute the least possible value of the the largest wt moved to the middle
regime for this value of γ1 by using the R command
Min2=allgammas[help[length(help)]+Ttrim]-tolerance.
The term +Ttrim assures that the middle regime has at least Ttrim elements.
The term -tolerance is added to get the correct answer in the following test
gammas>Min2 when Min2 is approximately equal to an element in gammas. This is
necessary because by construction, gammas contains only the smallest element of a
group of elements in allgammas which at most differ with tolerance in absolute
value.

3. Next, we test whether gammas(ngridTh)>Min2. If not, the value gammas[i] of
γ1 is so large that there is no possible choices of γ2 such that the middle regime
contains at least Ttrim wt’s, so we skip this value of i.

4. If gammas(ngridTh)>Min2, we compute jMin by the R command

jMin<-min(which(gammas >= Min2,arr.ind=TRUE))

which is the index of the least element in gammas greater than or equal to Min2

3.3 Summary and concluding remarks

In this chapter we have generalized the LM statistic described in Hansen and Seo (2002)
and the LM statistic used in the function TVECM.HStest to the case of three regimes in
the alternative hypothesis, and we have shown that these LM statistics are equal under
certain conditions. Correspondingly, we have generalized the grid search for maximizing
this LM statistic to the case of three regimes, and the grid search is improved such that in
the case of known cointegration value β, it really finds the global maximum of LM(γ1, γ2)
when the two thresholds γ1 and γ2 vary among all the possible threshold values if the
parameter ngridTh is greater than or equal to the length of the time series. However,
our implementation, the function TVECM.XHStest, is very time consuming, especially
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when the number of bootstrap replications is e.g., 1000 to get an accurate estimate of
the P-value of the test. Fortunately, the time consumption is considerably reduced when
modeling long time series of interest rates, if we use the cointegration value β = 1 instead
of the estimated value of β. This is due to the fact that the number of different values
of the threshold variable, which in this case is the lagged value of the difference between
the two interest rates, is considerably smaller than the length of the time series.

It is important to be aware of the fact that even when ngridTh is chosen large such that
the whole vector of possible threshold values is used when maximizing LM(γ1, γ2), we
have maximized LM(γ1, γ2) under the constraint that each group with wt values which
do not differ more than tolerance in absolute value, are moved as a whole between the
regimes. If we drop this constraint, we normally get an even larger value of SupLM (and
an even smaller value of SSR). But then we regard numbers which differ in value only due
to inaccuracies in the floating point number repesentation, as different, which is wrong
from an applied perspective. So, we keep this constraint throughout our analysis.

Also, the requirement of at least 100p % of the wt’s in each regime is a constraint under
the maximization. If we weaken this constraint by reducing p, we get an even larger
value of the SupLM. However, the value of p should not be chosen too small, because we
need enough wt’s in each regime to get a reasonable estimate of the coefficients in each
regime.

In addition, the selection of threshold values from gammas when ngridTh is chosen less
than length(gammas), involves a further constraint. Fewer threshold values in the grid
imply that all wt’s between two consequtive elements in gammas are grouped together and
moved as a whole between the regimes.

The asymptotic distribution of the SupLM statistic is nonstandard, so we use bootstrap-
ping to estimate the P-value. In the function TVECM.HStest two methods of bootstrap-
ping are implemented: residual bootstrapping and fixed regressor bootstrapping. In
residual bootstrapping a completely new data set is drawn for each bootstrap replica-
tion by using the function TVECM.sim, while in fixed regressor bootstrapping only new
Y-values are drawn, i.e., the regressor X is fixed for all bootstrap replications. The fixed
regressor bootstrapping is strictly speaking not bootstrapping, but an approximation of
the asymptotic distribution of the SupLM statistic using the White-Eicker heteroscedas-
tic consistent covariance estimator. On the contrary, the residual bootstrapping is real
bootstrapping, but presupposes homoscedasticity. In TVECM.XHStest we have kept all
the bootstrapping capabilities in TVECM.HStest unchanged.

A consequence of the double grid to search for the largest LM(γ1, γ2) is that even when the
number of possible threshold values is only 200, the elapse time to compute the SupLM is
about half a minute. As we have to repeat the computation of SupLM statistic for each
bootstrap replication, the elapse time of the function TVECM.XHStest is several hours
when the number of bootstrap replications is e.g., 1000, which is often recommended
when estimating P-values by bootstrapping. Above, we have seen that leaving out wt-
values from the set of possible threshold values implies introducing a further constraint
when maximizing LM(γ1, γ2). Therefore, we should use exactly the same constraints ,
i.e., exactly the same parameters ngridTh, trim and tolerance, when computing the
SupLM statistic, and when bootstrapping. Preferably, ngridTh greater than or equal to
the length of the time series should be combined with at least nboot equal to 1000, but if
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this is infeasible, a test run should be done with such a large ngridTh and a small value
of nboot to measure the influence on the SupLM statistic of including all the wt-values
in the set of possible threshold values.
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Chapter 4

Analysis of the NIBOR rates of
maturities tomorrow next and 12
months

In this chapter we analyse the bivariate time series consisting of the monthly averages of
NIBOR rates of the two maturities tomorrow next and 12 months. We analyse both this
bivariate time series by using functions for multivariate time series analysis, and the term
spread of these NIBOR rates by using functions for univariate time series analysis. In
addition, we test the influence of some outliers by removing them from these time series
and rerunning some of the statistical tests. At last, we run the Johansen cointegration
rank test on all the possible pairs of interest rates which may be made from the NIBOR
rates of 9 different maturities and rates on Norwegian government bonds of 3 maturities,
and we test the term spread of these pairs for threshold effects.

All the models and tests we have used in the data analysis in this chapter, are described
in Chapter 2 and 3. The data analysis is performed by using R, and all the R code chunks
needed for this data analysis are included in Appendix C.

4.1 The data set

In our analysis we use the NIBOR TN (Norwegian Inter Bank Offered Rate tomorrow next,
monthly averages of daily observations of the nominal interest rate) as the short rate,
and NIBOR 12M (Norwegian Inter Bank Offered Rate 12 months, monthly averages of
daily observations of the nominal interest rate) as the long rate. We create the time
series objects NIBTN and NIB12M of the NIBOR TN and NIBOR 12M rates downloaded from
www.norges-bank.no. These time series contain all the monthly observations from May
1985 to December 2010, i.e., 308 observations in each time series.

First of all, we plot these two time series. In Figure 4.1 on the next page we see that
NIBTN and NIB12M have 6 and 2 outliers, respectively. With the purpose of being able
to test the influence of these outliers, we make new time series objects TestNIBTN and
TestNIB12M where these outliers are replaced by interpolated values between adjacent
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4.1. The data set

Figure 4.1. Plots of the time series NIB12M and NIBTN.
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4.2. Estimation of an unrestricted VAR model

values of the outliers. Figure 4.2 shows the plots of these time series where the outliers
are removed.

4.2 Estimation of an unrestricted VAR model

As a starting point, we estimate an unrestricted VAR model. Table 4.1 on the next
page shows the coefficients of the estimated VAR model. Note that the intercept term in
each equation is insignificant. So, we could have estimated an unrestricted VAR model
without constant term. However, in the TVECM estimated in Table 4.16 on page 46, the
constant term is significant. Therefore, we have kept the constant term throughout our
analysis.

Figure 4.2. Plots of the time series TestNIB12M and TestNIBTN where the outliers are
removed.
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4.2. Estimation of an unrestricted VAR model

Table 4.1. The coefficients of the estimated VAR model. The standard errors of the
coefficients are in the parenthesis. The symbols ’***’, ’*’ and ’.’ denote significance at
the 0.1 %, 1 % and 10 % level, respectively.

Equation NIB12M Equation NIBTN
Intercept 0.0044(0.0370) -0.2158(0.1816)
NIB12M -1 1.5871(0.0621)*** 1.5928(0.3049)***
NIBTN -1 -0.0820(0.0118)*** 0.1077(0.0578).
NIB12M -2 -0.6357(0.1062)*** -1.1195(0.5214)*
NIBTN -2 0.0296(0.0130)* 0.0731(0.0640)
NIB12M -3 0.0942(0.0638) 0.0059(0.3133)
NIBTN -3 0.0036(0.0123) 0.3659(0.0602)***

When a model is estimated, it is of crucial importance to test whether the residuals
obey the model’s assumptions. So, we test for ARCH effects, nonnormality and serial
correlation in the residuals. Table 4.2 shows the results of the ARCH and normality
tests. We see that in the multivariate ARCH test the null hypothesis of no ARCH effects
is strongly rejected. However, in the univariate ARCH tests for the time series NIBTN

and NIB12M, the null hypothesis of no ARCH effects cannot be rejected at any reasonable
significance level. We also see that the null hypothesis of Gaussian error terms is strongly
rejected; there are both skewness and kurtosis.

Table 4.3 shows the results of the Portmanteau test of the estimated VAR model for two
different values of the parameter K, the lag order of the VAR model. We see that the null
hypothesis of no serial correlation is rejected even at the 1 % level when K=2, but when
K=3, the null hypothesis of no serial correlation is no longer rejected at any reasonable
significance level. This shows that K=3 lags in the VAR model are sufficient to remove
serial correction in the residuals.

Table 4.2. The ARCH and normality tests of the estimated VAR model of NIB12MTN.

Statistic df p-value
Multivariate ARCH-LM test 131.7 45 1.96e-10
ARCH-LM test of NIB12M 23.4 16 0.105
ARCH-LM test of NIBTN 1.1 16 1
Multivariate JB test 190005.2 4 0
Multivariate Skewness test 4247.7 2 0
Multivariate Kurtosis test 185757.4 2 0
JB test of NIB12M 133.6 2 0
JB test of NIBTN 244304.2 2 0

Table 4.3. The Portmanteau test of the estimated VAR model of NIB12MTN when the
parameter K has value 2 and 3.

Statistic df p-value
K=2 105.6 56 6.98e-05
K=3 58.9 52 0.237
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4.3 Testing for unit roots

The largest root of the characteristic polynomial of the estimated VAR model above is
0.9879 , i.e., very close to 1, so it is necessary to test whether there are unit roots in this
model. Hence, we apply the test procedure described in Section 2.3.1 on page 7. We start
with testing whether the time series NIBTN contains a unit root or not. Table 4.4 shows
the values of the test statistics and their critical values belonging to the test regression
(2.4). The value τ3 = −3.18 means that the hypothesis H0 : π = 0 cannot be rejected at
the 5% significance level. The value φ3 = 5.08 means that the hypothesis H0 : β2 = π = 0
cannot be rejected at the 10% significance level. Further, φ2 = 3.63 means that the
hypothesis H0 : β1 = β2 = π = 0 cannot be rejected at the 10% significance level. So,
the time series NIBTN contains a unit root without trend. Plots of the residuals, the
autocorrelations of the residuals and the partial autocorrelations of the residuals in this
test regression are in Figure 4.3 on the next page. We see that the number of lags selected
by the AIC criterium is sufficient to remove autocorrelation in the residuals.

Next, we test whether this model has a drift term by performing the test regression (2.5).
Table 4.5 shows the values of the test statistics and their critical values belonging to this
test regression. We see that for each of these two tests, the null hypotheis cannot be
rejected at any reasonable significance level. Consequently, we conclude that the NIBTN

time series does contain a unit root, but neither a linear trend nor a drift term is present,
i.e., the time series NIBTN is a pure random walk.

Finally, we test whether the series is I(2) by using the ADF test on the differenced series.
Table 4.6 on the next page shows the values of the test statistics and their critical values
in the test regression (2.4) performed on the differenced series. We see that the null
hypothesis of a unit root is strongly rejected. Consequently, the original series NIBTN is
not I(2), i.e., it is I(1).

As an alternative, we may test whether the NIBTN series is level-stationary or trend-
stationary by using the KPSS test described in Section 2.3.2 on page 9. Table 4.7 on
the next page shows the values of the test statistics and their critical values. The null
hypothesis of a level-stationary series is strongly rejected by the first line in this table,
while the null hypothesis of a trend-stationary series is rejected at the 2.5 % significance
level by the second line in this table. So, the series NIBTN is a unit root process.

Table 4.4. ADF test of NIBTN: τ3, φ2 and φ3 tests

statistic 1% 5% 10%
τ3 -3.18 -3.98 -3.42 -3.13
φ2 3.63 6.15 4.71 4.05
φ3 5.08 8.34 6.30 5.36

Table 4.5. ADF test of NIBTN: τ2 and φ1 tests.

statistic 1% 5% 10%
τ2 -1.83 -3.44 -2.87 -2.57
φ1 2.00 6.47 4.61 3.79
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Figure 4.3. Diagnostic plots for the ADF test of the time series NIBTN.

Residuals

0 50 100 150 200 250 300

-5
0

5
10

15
20

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C
F

Autocorrelations of Residuals

5 10 15 20

-0
.1
0
-0
.0
5

0.
00

0.
05

0.
10

Lag

P
ar
ti
al

A
C
F

Partial Autocorrelations of Residuals

Table 4.6. ADF test of diff(NIBTN): τ3, φ2 and φ3 tests.

statistic 1% 5% 10%
τ3 -8.48 -3.98 -3.42 -3.13
φ2 23.96 6.15 4.71 4.05
φ3 35.93 8.34 6.30 5.36

Table 4.7. KPSS test of NIBTN: η̂µ and η̂τ tests.

statistic 10% 5% 2.5% 1%
η̂µ 1.55 0.35 0.46 0.57 0.74
η̂τ 0.18 0.12 0.15 0.18 0.22
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Next, we show in the same way that the time series NIB12M is I(1). Table 4.8 shows the
values of the three test statistics and their critical values in the test regression (2.4). We
see that the null hypothesis in each of the three tests cannot be rejected at any reasonable
significance level. So, the time series NIB12M contains a unit root without trend.

Next, we test whether this model has a drift term by performing the test regression (2.5).
Table 4.9 on the next page shows the values of the test statistics and their critical values.
The value φ1 = 1.97 means that the null hypothesis of a unit root without trend and drift

Table 4.8. ADF test of NIB12M: τ3, φ2 and φ3 tests.

statistic 1% 5% 10%
τ3 -2.50 -3.98 -3.42 -3.13
φ2 2.51 6.15 4.71 4.05
φ3 3.22 8.34 6.30 5.36

Figure 4.4. Diagnostic plots for the ADF test of the time series NIB12M.
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4.4. Estimation of a VECM

cannot be rejected at any reasonable significance level.

Next, we test whether the series is I(2) by using the ADF test on the differenced series.
Table 4.10 shows the values of the test statistics and their critical values. The value
φ3 = 27.71 means that the null hypothesis of a unit root with drift but without trend is
rejected at any reasonable significance level. So, the original series NIB12M is not I(2),
i.e., it is I(1).

As an alternative, we may test whether the NIB12M series is level-stationary or trend-
stationary by using the KPSS test. Table 4.11 shows the values of the test statistics and
their critical values. The null hypothesis of a level-stationary series is strongly rejected by
the first line in this table, while the null hypothesis of a trend-stationary series is strongly
rejected by the second line in this table. Consequently, the series NIB12M is a unit root
process.

4.4 Estimation of a VECM

Table 4.1 on page 38 shows that a lot of the coefficients of the unrestricted VAR model are
not significant, which means that this model is overparametrized. As we know that the
variables NIBTN and NIB12M both are I(1), we run the cointegration rank test described
in Section 2.6.1 on page 15. As a result, we get a VECM which has fewer parameters, and
hence, is less overparametrized than the original VAR model. Table 4.12 on the facing
page shows the values of the trace statistic and its critical values, while Table 4.13 on
the next page shows the values of the λmax statistic and its critical values. Both the trace
statistic and the λmax statistic show that the H0 hypothesis r = 0 is strongly rejected. So,
we conclude that the cointegration rank is r = 1.

Table 4.9. ADF test of NIB12M: τ2 and φ1 tests.

statistic 1% 5% 10%
τ2 -1.69 -3.44 -2.87 -2.57
φ1 1.97 6.47 4.61 3.79

Table 4.10. ADF test of diff(NIB12M): τ3, φ2 and φ3 tests.

statistic 1% 5% 10%
τ3 -7.44 -3.98 -3.42 -3.13
φ2 18.47 6.15 4.71 4.05
φ3 27.71 8.34 6.30 5.36

Table 4.11. KPSS test of NIB12M: η̂µ and η̂τ tests.

statistic 10% 5% 2.5% 1%
η̂µ 1.55 0.35 0.46 0.57 0.74
η̂τ 0.26 0.12 0.15 0.18 0.22
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4.5. Estimation of a TVECM

As an alternative, the cointegration rank may be determined by plotting the cointegration
relations as in Section 8.1.3 of Pfaff (2008a). In Figure 4.5 on the following page we see
that the first cointegration relation seems to be stationary, while the second relation is
undoubtedly nonstationary, which is in agreement with cointegration rank r = 1. It does
not matter whether we look at the plots of the relations with or without correction for
the short-term influences.

Next, we compute the restricted VECM when r = 1, and the normalized cointegration
relation β = [1 − β]′ by using the function VECM in the package tsDyn (Di Narzo,
Aznarte, and Stigler 2011) or by using the functions ca.jo and cajorls in the package
urca (Pfaff 2008a). Table 4.14 shows the coefficients of the estimated VECM with r = 1
cointegration relation. We see that a much larger part of these coefficients are significant
than the coefficients of the unrestricted VAR model in Table 4.1 on page 38.

4.5 Estimation of a TVECM

In Figure 4.6 on page 45 we have plotted the response of the long rate Rt, the short rate
rt and the term spread st = Rt − rt to the past term spread st−1 as in Seo (2003). (Here,
the long rate is NIB12M, and the short rate is NIBTN.) We see that the current changes
in Rt, rt and st are small when |st−1| is small. However, when |st−1| is large, the current
changes ∆rt and ∆st are also large. A small proportion of the observations are in this

Table 4.12. The values and the critical values of the trace statistic.

statistic 10% 5% 1%
r <= 1 | 2.12 6.50 8.18 11.65

r = 0 | 35.39 15.66 17.95 23.52

Table 4.13. The values and the critical values of the λmax statistic.

statistic 10% 5% 1%
r <= 1 | 2.12 6.50 8.18 11.65

r = 0 | 33.27 12.91 14.90 19.19

Table 4.14. The coefficients of the estimated VECM. The standard errors of the
coefficients are in the parenthesis. The symbols ’***’, ’**’, ’*’ and ’.’ denote significance
at the 0.1 %, 1 %, 5 % and 10 % level, respectively.

Equation NIB12M Equation NIBTN
ECT 0.0512(0.0167)** 0.4739(0.0818)***
Intercept -0.0353(0.0179)* -0.1787(0.0878)*
NIB12M -1 0.5420(0.0644)*** 1.1132(0.3154)***
NIBTN -1 -0.0334(0.0151)* -0.4387(0.0741)***
NIB12M -2 -0.0986(0.0638) -0.0018(0.3123)
NIBTN -2 -0.0035(0.0123) -0.3659(0.0601)***
Cointegration relation 1 -0.9565

43



4.5. Estimation of a TVECM

Figure 4.5. Plots of the cointegration relations βiy, and those that are corrected for
short-term influences, βiR1.
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4.5. Estimation of a TVECM

unstable area, but the large current changes in rt and st in the unstable area cause the
system to return rapidly into the stable area. So, these time series have a signficant mean
reverting property only in the unstable area where st−1 is large negative. Due to this
typical nonlinear property, the linear VECM is probably not the best choice for this data
set. Therefore, we try a TVECM as in Seo (2003).

When estimating a TVECM, we have to select values of the parameters nthresh, lag
and beta. According to the Expectations Hypothesis, the term spread, i.e., the difference
between a long and a short interest rate, is stationary, see e.g., Seo (2003) and Buigut
and Rao (2010). In accordance with this, we may fix beta=1 in the estimation of the
TVECM. As an alternative, we may find the optimal value of beta by using the grid
search of the TVECM function in the package tsDyn. So, we estimate TVECMs for a
small set of choices for these parameters. The results are summarized in Table 4.15 on
the next page. Note that these results support the Expectations Hypothesis as for each

Figure 4.6. Plots of ∆Rt, ∆rt and ∆st against st−1. The vertical red line in each plot
denotes the threshold γ in the estimated TVECM in Table 4.16 on the following page.
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4.5. Estimation of a TVECM

pair of values of the parameters nthresh and lag the value beta=1 derived from the
Expectations Hypothesis, gives AIC and BIC numbers almost as small as the beta value
which we got from the grid search.

However, we see that nthresh=1, lag=2 and beta=1.071 give the smallest value of
both AIC and BIC, so we estimate this TVECM once again to get more information
about this specific model. Also, we estimate the corresponding TVECM for the data set
TestNIB12MTN. Figure 4.7 on the facing page shows the plots of the grid search for β
and γ when estimating the model. The plots of SSR as a function of γ and β support the
result that β = 1.071 and γ = −0.83 give the smallest value of SSR, but there are also
other values of β and γ which give almost as small values of SSR. For this TVECM, the
parts of the observations in each regime are 0.25 and 0.75 which both are well beyond
the trimming parameter 0.1, as it should be. Table 4.16 shows the coefficients of this
TVECM. Given the short-run dynamics, i.e., the lagged terms of ∆Rt and ∆rt, the time
series ∆Rt and ∆rt and ∆st are linear functions of st−1 in each regime. Figure 4.8 on page 49
shows the graph of these response functions. We see that when st−1 is large negative, ∆rt

Table 4.15. AIC, BIC and SSR for different TVECMs. The three rightmost columns
show the parts of the data in each of the two (three) regimes.

nthresh lag β Parameters AIC BIC SSR ndown nmiddle nup
1 1 1.000 16 -573.8 -510.5 642.2 0.320 0.680
1 1 1.040 16 -571.6 -508.3 623.9 0.451 0.549
1 2 1.000 24 -606.5 -513.5 565.3 0.423 0.577
1 2 1.071 24 -614.7 -521.7 541.0 0.246 0.754
1 3 1.000 32 -598.0 -475.3 554.4 0.319 0.681
1 3 1.105 32 -612.1 -489.4 526.3 0.230 0.770
2 1 1.000 24 -578.7 -481.9 599.9 0.412 0.248 0.340
2 1 1.040 24 -573.4 -476.6 593.1 0.448 0.193 0.359
2 2 1.000 36 -612.6 -471.2 516.3 0.269 0.190 0.541
2 2 1.071 36 -575.9 -434.6 551.2 0.354 0.111 0.534
2 3 1.000 48 -608.9 -423.0 490.7 0.293 0.224 0.484
2 3 1.105 48 -591.8 -405.9 523.1 0.230 0.368 0.401

Table 4.16. The coefficients of the TVECM with β = 1.071, lag=2 and threshold value
γ = −0.83. The standard errors of the coefficients are in the parenthesis. The symbols
’***’, ’**’, ’*’ and ’.’ denote significance at the 0.1 %, 1 %, 5 % and 10 % level,
respectively.

Lower regime Upper regime

Equation NIB12M Equation NIBTN Equation NIB12M Equation NIBTN
ECT 0.0932(3.2e-05)*** 0.9704(5.1e-18)*** -0.0247(0.5276) 0.0205(0.9124)
Const 0.1112(0.0269)* 1.6485(2.6e-11)*** 0.0073(0.7020) 0.0159(0.8605)
NIB12M t -1 0.4983(3.0e-06)*** 1.6058(0.0014)** 0.5291(7.5e-11)*** 0.8748(0.0194)*
NIBTN t -1 0.0061(0.7892) -0.0033(0.9759) 0.1867(8.4e-05)*** -0.2750(0.2177)
NIB12M t -2 -0.0902(0.4384) -0.2677(0.6287) -0.1092(0.1339) 0.2341(0.4983)
NIBTN t -2 0.0344(0.0975). 0.0518(0.5995) -0.0801(2.8e-05)*** -0.6300(1.4e-11)***
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4.5. Estimation of a TVECM

Figure 4.7. Plot of the grid search for β and the threshold γ in
TVECM(NIB12MTN,nthresh=1,lag=2,...).
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Table 4.17. The results of the ARCH-LM test for the residuals of the estimated
VAR(3) model and the estimated TVECM.

Test statistic df P-value
VAR model 121.74 45 0.00000

TVECM 32.71 45 0.91380
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4.5. Estimation of a TVECM

Table 4.18. The results of the Doornick-Hansen test for multivariate normality in the
residuals of the estimated VAR(3) model and the estimated TVECM.

VAR model TVECM

E df P(Chi > E) E df P(Chi > E)
Multivariate 8012.76 4 0.00000 10034.45 4 0.00000
NIB12M 44.78 2 0.00000 32.29 2 0.00000
NIBTN 7967.98 2 0.00000 10002.16 2 0.00000

is large negative and ∆Rt is small negative, such that st = st−1 + ∆st = st−1 + ∆Rt − β∆rt is
much larger than st−1. Thus, if we are in the lower regime, which is the unstable area,
the error correction term causes a large step towards the upper regime. However, in the
upper regime, the coefficients of the constant term and the error correction term are not
significant, while most of the coefficients of the lagged terms of ∆Rt and ∆rt are significant,
see Table 4.16 on page 46. So, in the upper regime, the bivariate time series [∆Rt ∆rt]′ is
approximately a stable VAR(2) process.

Similarly, we compute the responses of rt, Rt and st = Rt − rt from the TVECM model
with two thresholds to changes in st−1. Figure 4.9 on page 50 shows the graph of these
response functions. We see that the main difference from Figure 4.8 on the next page
is the new narrow middle regime with approximately the same slope for ∆rt as in the
lower regime. The upper regime is the stable area as for the TVECM with one threshold.
However, it is highly questionable whether we need two unstable areas to the left of the
stable regime. This indicates that the TVECM with only one threshold is the best one,
but we will investigate this further later on.

Next, we run the Hansen and Seo test by using our function TVECM.XHStest. Both fixed
regressor bootstrap and residual bootstrap are used in these tests. Table 4.19 shows the
result of the Hansen and Seo test of the data set NIB12MTN and TestNIB12MTN. We
see that for the original data set NIB12MTN, the null of a linear cointegration model is
rejected even at the 1% significance level irrespective of the bootstrap type and irrespec-
tive of whether the alternative model has two or three regimes. However, for the data
set TestNIB12MTN where the outliers are removed, we cannot reject the null of linear
cointegration at any reasonable significance level. So, for this example it seems like a
TVECM may be considered as a tool to take care of outliers. A possible explanation of
this phenomenon is as follows:

� The mean reverting property shown in Figure 4.6 on page 45 is much better modeled
with a TVECM than with a VECM. By having a large coefficient of the error
correction term in the unstable area (the lower regime), we achieve that the time
series returns rapidly to the stable area (the upper regime). However, in the upper
regime the coefficient of the error correction term is small such that the probably
of staying in this regime is large. Table 4.16 on page 46 shows the significant
differences between the coefficients of the error correction terms in the two regimes.

� Generally in regression, large outliers influence heavily on the estimated coeffients.
So, when we move the outliers to the lower regime, we may expect that we get a bet-
ter fit in the upper regime in the TVECM than for the corresponding observations
in the VECM. Probably, this explains the large differences between the coefficients
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4.5. Estimation of a TVECM

Figure 4.8. Plots of the responses of ∆rt, ∆Rt and ∆st to st−1 in the TVECM with one
threshold.
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4.5. Estimation of a TVECM

Figure 4.9. Plots of the responses of ∆rt, ∆Rt and ∆st to st−1 in the TVECM with two
thresholds.
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4.5. Estimation of a TVECM

of the VECM in Table 4.14 on page 43 and the coefficients in the upper regime of
the TVECM in Table 4.16 on page 46. In addition, we also expect to get a better fit
for the observations in the lower regime, when we do not take into account all the
observations in the upper regime. This is illustrated in Figure 4.10 on the following
page where we have plotted the residuals of the time series NIB12M and NIBTN for
the estimated VECM and TVECM above. We see that the outliers in the VECM
are mostly farther away from zero than the outliers in the TVECM. As a result,
the SSR of the estimated TVECM is 541 while the SSR of the estimated VECM
is 648. Also, there is an improvement in the test of ARCH effects: Table 4.17 on
page 47 shows the test statistic for multivariate ARCH effects in the residuals of
the estimated VAR model and the estimated TVECM. We see that the null hy-
pothesis of no multivariate ARCH effects in the residuals of the estimated TVECM
cannot be rejected at any reasonable significance level, while the null hypothesis
of no multivariate ARCH effects in the residuals of the estimated VAR model is
strongly rejected as pointed out earlier. However, there is no improvement in the
normality test. Table 4.18 on page 48 shows that the null hypothesis of normally
distributed errors is strongly rejected both for the residuals of the estimated VAR
model and the estimated TVECM.

The function TVECM.XHStest also contains a new grid search for the threshold values
(γ1, γ2) which minimize the SSR. The grid search for the case of two thresholds in the
function TVECM is a conditional search, i.e., first the function searches for the best value of
γ1, and then it searches for the best value of γ2 conditional on the value of γ1. This algo-
rithm is linear in the number of possible threshold values, but it does not necessarily find
the global minimum of SSR. On the contrary, the grid search algorithm in TVECM.XHStest

is quadratic in the number of possible threshold values, and it finds the global minimum
of SSR and the global maximum of the LM statistic under the constraints that β is fixed
and each of the regimes contain at least as large proportion of the observations as the
trimming parameter. We illustrate the improvement of the grid search by gathering the
SSR, the threshold values and the percents of observations in each regime from the return
data of the TVECM.XHStest calls above. The results are shown in Table 4.20 on page 53.
Comparing this with Table 4.15 on page 46, we see that for the data set NIB12MTN the
functions TVECM and TVECM.XHStest give the minimum SSR 541 and 541.0, respectively,
when β = 1.071, lag=2 and nthresh=1. So, the TVECM function has really found the
threshold value which minimizes SSR, although the upper plot in Figure 4.7 on page 47

Table 4.19. The results of the Hansen and Seo test for the two data sets NIB12MTN
and TestNIB12MTN.

Data set nthresh boot type nboot supLM P-value Seconds
NIB12MTN 1 FixedReg 1000 29.0 0.020 259.6

2 FixedReg 1000 56.1 0.001 33496.2
1 ResBoot 1000 29.0 0.008 360.6
2 ResBoot 1000 56.1 0.000 33441.0

TestNIB12MTN 1 FixedReg 1000 18.3 0.414 259.9
2 FixedReg 1000 33.3 0.730 33980.9
1 ResBoot 1000 18.3 0.530 359.7
2 ResBoot 1000 33.3 0.796 33738.7
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4.5. Estimation of a TVECM

Figure 4.10. Plots of the residuals of NIB12M and NIBTN in the estimated VECM and
TVECM.
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4.6. Estimation of a TAR model for the cointegration relation

does not support this properly. However, in the case of two thresholds, the corresponding
minimum SSRs are 551.2 and 458.2, respectively, which clearly shows that the TVECM

function does not find the global minimum of SSR under the given constraints. We also
see from Table 4.20 that SSR is minimized when only 11.1 % of the observations are in
the middle regime in the TVECM with two thresholds for the data set NIB12MTN. This
percentage is so close to the trimming parameter, that it is highly questionable whether a
TVECM with two thresholds should be used for this data set. We investigate this further
in the next section.

4.6 Estimation of a TAR model for the cointegration

relation

We know from Seo (2003) that the long-run relationship, i.e., the cointegration relation,
in a TVECM may be specified as a threshold autoregressive model (TAR model). If
the TVECM has two (three) regimes, then the TAR model for the cointegration relation
has two (three) regimes. So, we compute the long-run relationship from the estimated
TVECM above, and run the function setarTest in the package tsDyn, which have an
option for testing a two-regime TAR model against a three-regime TAR model. Table 4.21
and Figure 4.11 on the next page show the results and the plots, respectively of the
setarTest of sNIB12MTN. We see that the null hypothesis of one regime is rejected at
the 5 % significance level when we test against two regimes. On the contrary, when we test
two regimes against three regimes, the null hypothesis of two regimes cannot be rejected
at any reasonable significance level. So, we conclude that two regimes, i.e., one threshold,
is enough when modeling the cointegration relation sNIB12MTN. Hence, also the TVECM
for modeling the bivariate time series [∆Rt ∆rt]′ should have only one threshold. This is
in accordance with Figure 4.9 on page 50 which shows an unstable and too narrow middle
regime.

Table 4.22 on page 56 and Figure 4.12 on page 55 show the results and the plots, re-
spectively, of the setarTest of sTestNIB12MTN. We see that the null hypothesis of one
regime cannot be rejected at any reasonable significance level when we test against two
and three regimes.

However, a linear autoregressive model with low AR order is not a good choice for this
data set because such a model gives a lot of autocorrelation in the residuals. Therefore,

Table 4.20. The minimum SSR, the threshold values and the percents of observations
in each regime for the two data sets NIB12MTN and TestNIB12MTN. The parameter β is
in this computation fixed to the values we got from the TVECM call above, i.e., β = 1.071
for NIB12MTN, and β = 0.933 for TestNIB12MTN.

Data set nthresh SSR γ1 γ2 ndown nmiddle nup
NIB12MTN 1 541.0 -0.832 24.6 75.4

2 458.2 -0.869 -0.561 23.9 11.1 64.9
TestNIB12MTN 1 64.1 1.053 75.7 24.3

2 61.5 0.678 1.053 48.5 27.2 24.3
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4.6. Estimation of a TAR model for the cointegration relation

Figure 4.11. Plots of the SETAR tests of sNIB12MTN.
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4.6. Estimation of a TAR model for the cointegration relation

Figure 4.12. Plots of the SETAR tests of sTestNIB12MTN.
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4.7. Out-of-sample forecasting of the term spread

Table 4.21. The results of the setarTest of sNIB12MTN with 1000 bootstrap
replications.

F-test 90% 95% 97.5% 99% P-value
1vs2 52.7 20.7 30.2 53.8 96.0 0.027
1vs3 80.7 64.5 84.9 108.8 173.0 0.060
2vs3 23.9 36.7 45.6 56.3 64.8 0.265

Table 4.22. The results of the setarTest of sTestNIB12MTN with 1000 bootstrap
replications.

F-test 90% 95% 97.5% 99% P-value
1vs2 7.8 15.1 17.3 19.3 22.9 0.666
1vs3 15.3 28.8 31.2 34.6 41.6 0.815
2vs3 7.3 16.4 18.9 21.5 23.8 0.824

we search for an ARMA(p,q) model with insignificant autocorrelation in the residuals by
performing a loop of Ljung-Box tests. The P-values of these Ljung-Box tests are shown
in Table 4.23. We see that the autocorrelation is undoubtedly insignificant when the AR
order is p = 2, and the MA order is q = 8. This is also confirmed by Figure 4.13 on
the facing page where the ACF and PACF functions are plotted for the residuals of the
AR(1) and ARMA(2,8) models. So we select the ARMA(2,8) as the preferred model for
the data set sTestNIB12MTN.

Figure 4.14 on page 58 shows the plots of the estimated ACF and PACF functions of the
residuals when fitting the data sNIB12MTN to SETAR(2) and SETAR(3) models. We see
that there still are some autocorrelation in the SETAR(2) model, but in the SETAR(3)
model the autocorrelation is insignificant. So, we select the SETAR(3) model as the
preferred model for the data set sNIB12MTN. Table 4.24 on the facing page shows the
estimated coefficients of this SETAR(3) model. Note that the threshold value of this
SETAR(3) model for the data set sNIB12MTN is equal to the threshold value of the
TVECM in Table 4.16 on page 46 for the data set NIB12MTN.

4.7 Out-of-sample forecasting of the term spread

Next, we perform an out-of-sample forecasting as in Di Narzo (2008). We use the ob-
servations of sNIB12MTN and sTestNIB12MTN from May 1985 to February 2010 when
estimating four selected models. We predict values of sNIB12MTN and sTestNIB12MTN

Table 4.23. The P-values of the Ljung-Box tests of the ARMA(p, q) models for
sTestNIB12MTN. The degrees of freedom is 11 in each of these tests.

q = 0 q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8
p = 1 0.005 0.025 0.035 0.027 0.024 0.005 0.005 0.193 0.188
p = 2 0.016 0.029 0.015 0.024 0.006 0.008 0.018 0.191 0.440
p = 3 0.063 0.016 0.120 0.033 0.027 0.048 0.025 0.163 0.342
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4.7. Out-of-sample forecasting of the term spread

Figure 4.13. Plots of the estimated ACF and PACF functions of the residuals when
fitting the data sTestNIB12MTN to AR(1) and ARMA(2,8) models.
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Table 4.24. The coefficients of the SETAR(3) model for the data set sNIB12MTN. The
threshold value of this model is γ = −0.83.

Estimate Std. Error t value Pr(>|t|)
const L -1.464 0.228 -6.431 0.000
phiL.1 0.126 0.055 2.274 0.024
phiL.2 -0.056 0.054 -1.036 0.301
phiL.3 -0.032 0.085 -0.373 0.710

const H -0.006 0.092 -0.060 0.952
phiH.1 0.526 0.281 1.875 0.062
phiH.2 -0.104 0.249 -0.420 0.675
phiH.3 0.561 0.084 6.692 0.000
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4.7. Out-of-sample forecasting of the term spread

Figure 4.14. Plots of the estimated ACF and PACF functions of the residuals when
fitting the data sNIB12MTN to SETAR(2) and SETAR(3) models.
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4.7. Out-of-sample forecasting of the term spread

for the last 10 months of 2010 by using these selected models, and compare these predic-
tions with the observed values.

Figure 4.15 shows the comparison of the observed and predicted values of the cointegration
relation sNIB12MTN for the last ten months of 2010. We see that the SETAR(3) model
gives undoubtedly better prediction than the SETAR(1) model and the AR(1) and AR(3)
models.

Figure 4.16 on the next page shows the comparison of the observed and predicted values
of the cointegration relation sTestNIB12MTN (where the outliers are removed) for the last
ten months of 2010 of the data set. In this case we see that the linear models AR(1)
and ARMA(2,8) give approximately as good prediction as the SETAR(1) and SETAR(3)
models, which is in accordance with the result of the setarTest above.

Figure 4.15. Predictions of sNIB12MTN for the last ten months of 2010.
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4.7. Out-of-sample forecasting of the term spread

Figure 4.16. Predictions of sTestNIB12MTN for the last ten months of 2010.
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4.8. Summary

4.8 Summary

4.8.1 Analysis of the NIBOR rates of the maturities tomorrow
next and 12 months

In this chapter we have modeled the bivariate time series consisting of NIB12M and NIBTN

by using threshold cointegration. The Dickey-Fuller and the KPSS test show that these
two interest rates are I(1) but without trend and drift, i.e., pure randow walks. As a
starting point of the multivariate analysis, we model the bivariate time series by using a
VAR(p)-model. By choosing p = 3, there are no significant autocorrelation in the resid-
uals. The LM test for ARCH effects in the residuals, shows that there are no significant
ARCH effects in the residuals of each of the two time series, but the multivariate test
gives significant ARCH effects in the residuals. Also, the null hypothesis of normally
distributed residuals are strongly rejected; there are both skewness and kurtosis. The
Johansen test for cointegration rank strongly rejects the hypothesis of no cointegration
relations, i.e., the cointegration rank is r = 1. The cointegration relation is approximately
equal to the term spread, i.e., the difference between the two interest rates. The Hansen
and Seo test strongly rejects the null hypothesis of linear cointegration.

The residuals of the TVECM have better properties than the residuals of the VAR(p)
model we started with. The residuals in the TVECM are on the average smaller in ab-
solute value than the residuals in the VAR(p) model as the SSR is lowered. The LM
statistic for multivariate ARCH effects is considerable smaller for the residuals of the
TVECM than for the residuals of the VAR(p) model. So, there are not any significant
ARCH effects in the residuals of the TVECM, neither univariate nor multivariate. How-
ever, in the normality test the residuals of the TVECM do not behave better than the
residuals of the VAR model. The null hypothesis of normally distributed residuals is
strongly rejected, also for the residuals of the TVECM.

The term spread is modeled by a SETAR(3) model. When testing one regime against
two regimes, the null hypothesis of one regime, i.e., a linear model, is strongly rejected,
but when testing 2 regimes against 3 regimes, the null hypothesis of 2 regimes cannot
be rejected at any reasonable significance level. Therefore, we choose a two-regime SE-
TAR(3) model for the term spread. In the out-of-sample forecasting of the term spread,
the SETAR(3) model with two regimes gives much better prediction of the term spread
than the linear models.

We also illustrate how large influence the 6 outliers in NIBTN and the 2 outliers in the
NIB12M have on the analysis. If these outliers are removed by using interpolation between
adjacent values, the null hypothesis of linear cointegration cannot be rejected in the
Hansen and Seo test.

4.8.2 Testing of Norwegian interest rates

At www.norges-bank.no there are monthly NIBOR rates of nine different maturities (TN,
1W, 2W, 1M, 2M, 3M, 6M, 9M and 12M) and monthly interest rates on government bonds
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4.8. Summary

Table 4.25. The results of the setarTest with 1000 bootstrap replications on the term
spread of each of the different pairs of Norwegian interest rates.

Interest rates P-value thDelay Thresholds % in each regime
Rate 1 Rate 2 1vs2 1vs3 2vs3 th1 th2 L M H
NIB1W NIBTN 0.130 0.688 0.989 0 -0.170 -0.090 10.8 26.4 62.8
NIB2W NIBTN 0.004 0.009 0.093 0 -0.170 0.120 11.7 76.6 11.7
NIB1M NIBTN 0.048 0.080 0.127 0 -0.270 -0.160 13.2 12.3 74.5
NIB2M NIBTN 0.007 0.072 0.575 0 -0.400 0.270 12.0 76.6 11.3
NIB3M NIBTN 0.031 0.154 0.532 0 -0.400 0.050 13.2 40.2 46.5
NIB6M NIBTN 0.010 0.090 1.000 0 -0.360 -0.130 17.2 11.5 71.3
NIB9M NIBTN 0.435 0.826 0.925 0 -0.780 0.190 13.3 40.3 46.5
NIB12M NIBTN 0.015 0.088 1.000 0 -0.320 0.170 19.7 26.0 54.3
SOBL3 NIBTN 0.513 0.306 0.185 0 0.040 0.470 54.4 13.2 32.4
SOBL5 NIBTN 0.009 0.043 0.949 0 -1.360 -0.920 11.1 10.2 78.7
SOBL10 NIBTN 0.005 0.006 0.072 0 -1.330 -0.940 12.0 10.1 77.9
NIB2W NIB1W 0.006 0.071 0.748 0 -0.040 0.020 11.3 42.0 46.7
NIB1M NIB1W 0.129 0.476 0.692 0 -0.170 0.100 10.8 71.3 17.9
NIB2M NIB1W 0.818 0.862 0.750 0 0.090 0.130 63.1 10.9 25.9
NIB3M NIB1W 0.017 0.101 0.768 0 -0.350 -0.130 10.5 10.1 79.4
NIB6M NIB1W 0.013 0.065 0.580 0 -0.440 -0.090 13.2 13.2 73.6
NIB9M NIB1W 0.869 0.544 0.213 0 -0.170 0.270 25.2 29.6 45.1
NIB12M NIB1W 0.007 0.000 0.025 0 -0.320 -0.050 17.9 10.1 72.0
SOBL3 NIB1W 0.081 0.187 0.581 0 -0.850 0.470 19.9 45.9 34.2
SOBL5 NIB1W 0.006 0.016 0.262 0 -0.290 0.190 48.0 10.1 41.9
SOBL10 NIB1W 0.002 0.004 0.654 0 -1.380 -0.760 10.5 18.9 70.6
NIB1M NIB2W 0.173 0.073 0.089 0 -0.110 -0.040 19.0 23.4 57.7
NIB2M NIB2W 0.683 0.906 0.921 0 -0.180 -0.010 15.3 28.5 56.2
NIB3M NIB2W 0.165 0.564 0.917 0 0.020 0.070 44.5 12.0 43.4
NIB6M NIB2W 0.158 0.477 0.882 0 -0.550 0.480 10.6 77.0 12.4
NIB9M NIB2W 0.955 0.917 0.745 0 0.090 0.260 41.6 14.2 44.2
NIB12M NIB2W 0.369 0.063 0.046 0 0.210 0.470 49.6 20.1 30.3
SOBL3 NIB2W 0.125 0.294 0.657 0 -1.180 0.380 12.0 51.1 36.9
SOBL5 NIB2W 0.296 0.351 0.441 0 -0.050 0.750 50.0 16.1 33.9
SOBL10 NIB2W 0.118 0.072 0.181 0 -1.050 0.180 16.8 36.5 46.7
NIB2M NIB1M 0.275 0.645 0.888 0 0.040 0.100 52.9 27.0 20.1
NIB3M NIB1M 0.001 0.000 0.001 0 0.070 0.100 50.0 11.1 38.9
NIB6M NIB1M 0.009 0.033 0.407 0 -0.390 -0.090 10.5 15.5 74.0
NIB9M NIB1M 0.724 0.791 0.763 0 -0.120 0.140 24.8 18.6 56.6
NIB12M NIB1M 0.003 0.027 0.490 0 -0.280 -0.050 17.8 10.2 72.0
SOBL3 NIB1M 0.068 0.230 0.683 0 -1.110 -0.750 12.1 11.7 76.2
SOBL5 NIB1M 0.001 0.035 0.983 0 -1.340 -0.780 10.8 16.4 72.8
SOBL10 NIB1M 0.001 0.010 0.976 0 -0.910 1.750 25.0 52.9 22.1
NIB3M NIB2M 0.001 0.008 0.336 0 -0.060 0.110 15.3 72.6 12.0
NIB6M NIB2M 0.006 0.006 0.126 0 0.200 0.340 69.3 19.7 10.9
NIB9M NIB2M 0.542 0.684 0.764 0 -0.210 0.260 21.2 36.3 42.5
NIB12M NIB2M 0.232 0.358 0.643 0 0.150 0.480 46.4 28.8 24.8
SOBL3 NIB2M 0.029 0.154 0.703 0 -0.990 0.490 14.2 51.5 34.3
SOBL5 NIB2M 0.112 0.102 0.240 0 -1.060 1.230 16.8 61.7 21.5
SOBL10 NIB2M 0.043 0.020 0.130 0 -1.310 0.080 11.7 39.1 49.3
NIB6M NIB3M 0.006 0.025 0.274 0 -0.190 0.150 11.8 60.5 27.7
NIB9M NIB3M 0.486 0.640 0.759 0 -0.160 0.380 21.2 66.4 12.4
NIB12M NIB3M 0.000 0.009 0.514 0 -0.380 -0.170 10.9 10.9 78.3
SOBL3 NIB3M 0.030 0.016 0.059 0 -0.970 -0.630 14.6 13.5 71.9
SOBL5 NIB3M 0.063 0.161 0.624 0 -1.090 1.080 16.7 61.0 22.3
SOBL10 NIB3M 0.004 0.004 0.186 0 -1.260 0.440 14.3 46.1 39.6
NIB9M NIB6M 0.571 0.209 0.102 0 -0.040 0.020 27.4 12.4 60.2
NIB12M NIB6M 0.134 0.266 0.617 0 -0.140 0.080 15.9 32.8 51.4
SOBL3 NIB6M 0.113 0.090 0.245 0 -0.780 -0.050 18.1 39.9 42.0
SOBL5 NIB6M 0.013 0.033 0.489 0 -1.310 0.260 11.1 52.7 36.1
SOBL10 NIB6M 0.004 0.028 0.800 0 -1.390 0.540 11.1 52.7 36.1
NIB12M NIB9M 0.775 0.498 0.292 0 -0.060 -0.020 14.6 10.6 74.8
SOBL3 NIB9M 0.122 0.080 0.165 0 -0.930 -0.540 11.1 16.4 72.6
SOBL5 NIB9M 0.140 0.116 0.183 0 -1.120 0.280 11.5 42.9 45.6
SOBL10 NIB9M 0.198 0.129 0.211 0 -1.150 -0.030 15.0 23.0 61.9
SOBL3 NIB12M 0.231 0.210 0.319 0 -0.230 0.100 52.3 15.3 32.4
SOBL5 NIB12M 0.004 0.012 0.283 0 -1.160 0.180 10.5 53.3 36.2
SOBL10 NIB12M 0.004 0.014 0.402 0 -1.030 -0.090 21.1 30.9 48.0
SOBL5 SOBL3 0.045 0.036 0.155 0 0.040 0.190 47.0 13.5 39.5
SOBL10 SOBL3 0.008 0.027 0.507 0 -0.420 0.680 13.5 52.3 34.2
SOBL10 SOBL5 0.064 0.014 0.048 0 -0.210 0.500 11.8 62.0 26.2
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Table 4.26. The results of the setarTest with 1000 bootstrap replications and optimal
thDelay on the term spread of each of the different pairs of Norwegian interest rates.

Interest rates P-value thDelay Thresholds % in each regime
Rate 1 Rate 2 1vs2 1vs3 2vs3 th1 th2 L M H
NIB1W NIBTN 0.044 0.017 0.015 2 -0.130 -0.110 18.6 12.2 69.3
NIB2W NIBTN 0.000 0.003 2 -0.140 0.120 16.8 70.8 12.4
NIB1M NIBTN 0.016 0.082 0.234 1 -0.210 0.290 18.9 68.8 12.3
NIB2M NIBTN 0.008 0.025 0.461 3 0.140 0.220 71.5 11.3 17.2
NIB3M NIBTN 0.032 0.147 0.523 0 -0.400 0.050 13.2 40.2 46.5
NIB6M NIBTN 0.016 0.093 0.999 0 -0.360 -0.130 17.2 11.5 71.3
NIB9M NIBTN 0.193 0.002 0.000 2 0.100 0.220 46.0 11.5 42.5
NIB12M NIBTN 0.017 0.044 0.376 3 0.180 0.510 46.7 26.0 27.3
SOBL3 NIBTN 0.053 0.062 0.320 2 -0.590 -0.200 29.2 15.7 55.2
SOBL5 NIBTN 0.006 0.047 0.957 0 -1.360 -0.920 11.1 10.2 78.7
SOBL10 NIBTN 0.006 0.004 0.080 0 -1.330 -0.940 12.0 10.1 77.9
NIB2W NIB1W 0.007 0.083 0.747 0 -0.040 0.020 11.3 42.0 46.7
NIB1M NIB1W 0.064 0.355 0.918 1 -0.160 -0.070 11.5 12.8 75.7
NIB2M NIB1W 0.075 0.023 0.039 3 0.120 0.230 70.1 19.3 10.6
NIB3M NIB1W 0.014 0.092 0.776 0 -0.350 -0.130 10.5 10.1 79.4
NIB6M NIB1W 0.011 0.079 0.569 0 -0.440 -0.090 13.2 13.2 73.6
NIB9M NIB1W 0.587 0.159 0.111 3 0.080 0.510 40.7 37.2 22.1
NIB12M NIB1W 0.007 0.002 0.018 0 -0.320 -0.050 17.9 10.1 72.0
SOBL3 NIB1W 0.068 0.172 0.569 0 -0.850 0.470 19.9 45.9 34.2
SOBL5 NIB1W 0.003 0.010 0.267 0 -0.290 0.190 48.0 10.1 41.9
SOBL10 NIB1W 0.000 0.005 0.662 0 -1.380 -0.760 10.5 18.9 70.6
NIB1M NIB2W 0.002 0.004 0.198 2 -0.010 0.050 54.4 28.8 16.8
NIB2M NIB2W 0.009 0.013 0.096 3 0.080 0.180 66.1 21.9 12.0
NIB3M NIB2W 0.021 0.006 0.035 3 0.060 0.270 52.6 33.2 14.2
NIB6M NIB2W 0.106 0.070 0.163 1 -0.150 0.530 24.8 64.2 10.9
NIB9M NIB2W 0.082 0.010 0.015 3 0.040 0.460 39.8 35.4 24.8
NIB12M NIB2W 0.287 0.256 0.264 1 -0.200 0.750 23.7 66.8 9.5
SOBL3 NIB2W 0.038 0.128 0.723 2 0.520 0.780 67.2 12.8 20.1
SOBL5 NIB2W 0.023 0.019 0.124 3 -0.700 0.520 29.9 32.1 38.0
SOBL10 NIB2W 0.072 0.192 0.692 3 0.430 1.280 57.7 10.2 32.1
NIB2M NIB1M 0.001 0.000 0.024 3 -0.100 0.140 13.1 75.5 11.3
NIB3M NIB1M 0.000 0.000 0.008 2 -0.170 0.300 16.1 74.5 9.5
NIB6M NIB1M 0.008 0.033 0.420 0 -0.390 -0.090 10.5 15.5 74.0
NIB9M NIB1M 0.016 0.108 0.870 3 -0.110 0.630 27.0 62.8 10.2
NIB12M NIB1M 0.000 0.012 0.498 0 -0.280 -0.050 17.8 10.2 72.0
SOBL3 NIB1M 0.063 0.225 0.668 0 -1.110 -0.750 12.1 11.7 76.2
SOBL5 NIB1M 0.002 0.041 0.980 0 -1.340 -0.780 10.8 16.4 72.8
SOBL10 NIB1M 0.002 0.014 0.968 0 -0.910 1.750 25.0 52.9 22.1
NIB3M NIB2M 0.002 0.006 0.364 0 -0.060 0.110 15.3 72.6 12.0
NIB6M NIB2M 0.015 0.005 0.113 0 0.200 0.340 69.3 19.7 10.9
NIB9M NIB2M 0.011 0.076 3 0.350 0.500 70.4 19.9 9.7
NIB12M NIB2M 0.084 0.047 3 0.100 0.450 42.7 29.9 27.4
SOBL3 NIB2M 0.033 0.165 0.743 0 -0.990 0.490 14.2 51.5 34.3
SOBL5 NIB2M 0.104 0.118 0.258 0 -1.060 1.230 16.8 61.7 21.5
SOBL10 NIB2M 0.032 0.000 0.005 2 -0.810 -0.140 27.4 20.1 52.6
NIB6M NIB3M 0.004 0.017 0.304 0 -0.190 0.150 11.8 60.5 27.7
NIB9M NIB3M 0.012 0.028 0.262 1 -0.260 0.290 15.0 56.2 28.8
NIB12M NIB3M 0.001 0.006 0.503 0 -0.380 -0.170 10.9 10.9 78.3
SOBL3 NIB3M 0.028 0.009 0.040 0 -0.970 -0.630 14.6 13.5 71.9
SOBL5 NIB3M 0.005 0.000 0.016 1 -0.080 1.180 53.8 25.9 20.3
SOBL10 NIB3M 0.002 0.000 0.014 1 -0.250 1.630 45.1 33.1 21.8
NIB9M NIB6M 0.032 0.127 0.809 1 -0.040 0.140 27.9 52.7 19.5
NIB12M NIB6M 0.092 0.019 0.036 2 0.170 0.320 64.5 26.4 9.1
SOBL3 NIB6M 0.065 0.156 1 -0.140 0.570 55.5 22.4 22.1
SOBL5 NIB6M 0.011 0.038 0.490 0 -1.310 0.260 11.1 52.7 36.1
SOBL10 NIB6M 0.001 0.027 0.771 0 -1.390 0.540 11.1 52.7 36.1
NIB12M NIB9M 0.302 0.003 0.000 1 0.030 0.100 38.9 20.8 40.3
SOBL3 NIB9M 0.051 0.115 0.437 1 -0.930 -0.510 11.5 16.8 71.7
SOBL5 NIB9M 0.125 0.125 0.222 0 -1.120 0.280 11.5 42.9 45.6
SOBL10 NIB9M 0.140 0.092 0.119 1 -1.297 -0.560 10.6 19.0 70.4
SOBL3 NIB12M 0.249 0.123 0.140 1 -0.900 -0.530 11.0 22.1 66.9
SOBL5 NIB12M 0.004 0.009 0.294 0 -1.160 0.180 10.5 53.3 36.2
SOBL10 NIB12M 0.006 0.023 0.407 0 -1.030 -0.090 21.1 30.9 48.0
SOBL5 SOBL3 0.003 0.029 0.823 3 -0.240 0.100 15.7 39.5 44.8
SOBL10 SOBL3 0.007 0.025 0.484 0 -0.420 0.680 13.5 52.3 34.2
SOBL10 SOBL5 0.067 0.018 0.026 1 -0.160 0.500 16.1 58.0 25.9
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Table 4.27. The results of the setarTest of sNIB12MTN without the outliers in
autumn 1992 with 1000 bootstrap replications.

F-test 90% 95% 97.5% 99% P-value
1vs2 58.6 16.3 21.4 28.4 48.0 0.007
1vs3 63.4 44.7 54.8 67.4 96.1 0.028
2vs3 4.1 19.9 25.1 31.7 45.4 0.979

of three maturities (3Y, 5Y, 10Y). There are also monthly interest rates on treasury bills
of four maturities (3M, 6M, 9M and 12M), but these time series are considered to be
too short when performing a threshold cointegration analysis as they contain less than
100 observations. Consequently, there are 66 different pairs of Norwegian interest rates
(NIBOR rates and rates on government bonds) which may be tested for threshold cointe-
gration. As the function TVECM.XHStest is very time-consuming, our goal has been just
finding an example of a pair of Norwegian interest rates with significant threshold coin-
tegration, and performing a thorough analysis of this pair. By estimating TVECMs for
each of the 66 pairs, we checked whether the size of the narrowest regime decreased from
approximately 0.1 to approximately 0.05, when the trimming parameter was lowered from
0.1 to 0.05. All such pairs were excluded as we think that the trimming parameter should
not determine the optimal size of the regimes. The remaining pairs were then tested for
threshold cointegration by trial and error by using the function TVECM.XHStest. The
pair of the NIBOR TN rate and the NIBOR 12M rate was the first pair we encountered
with significant threshold cointegration.

We have also performed a more systematic search among the 66 different pairs. We have
seen above that a few outliers with very divergent values may change the conclusions of
the statistical tests considerably. Therefore, the decision whether an outlier should be
removed or not, should be considered seriously. In Juselius (2006) it is recommended
that outliers are removed from financial time series by including dummy variables in the
VAR model when the outliers are explained by known economical shocks. In autumn
1992 there was extensive speculation against the krone during the period of turbulence in
European foreign exchange markets such that Norges Bank abandoned the fixed exchange
regime of the Norwegian krone in December 1992 (Gjedrem 1999). So, the outliers in
the interest rates in September, November and December 1992 should be removed. As
dummy variables are not implemented in the TVECM function, we remove the outliers by
interpolating between August and October 1992, and between October 1992 and January
1993 in all the 12 time series of Norwegian interest rates we consider. The results of the
function setarTest run on the term spread of NIB12M and NIBTN with these outliers
in autumn 1992 removed, are shown in Table 4.27. We see the results are similar to
the results in Table 4.21 on page 56 where no outliers are removed. So, even if we have
removed the very large outliers in autumn 1992, there is still strong evidence that the two-
regime SETAR(3) is superior both to the AR(3) model and the three-regime SETAR(3)
model, when modeling the term spread of the interest rates NIB12M and NIBTN. On the
other hand, when removing all the 6 outliers in NIBTN and the 2 outliers in NIB12M, there
is no longer any evidence for threshold effects in the term spread as Table 4.22 on page 56
shows.

First, we run the Johansen trace test by using the function ca.jo. For 36 of the 36 pairs

64



4.8. Summary

of NIBOR rates, the null hypothesis of r = 0 cointegration relations was strongly rejected
(at the 1 % level). So, all pairs of NIBOR rates have significant cointegration. On the
contrary, for 3 of the 3 pairs of interest rates on government bonds, the null hypothesis
of r = 0 cointegration relations cannot ble rejected at any reasonable significance level.
Hence, there are no significant cointegration among the monthly interest rates on govern-
ment bonds. Regarding the 27 pairs consisting of one NIBOR rate and the interest rate
on one government bond, the null hypothesis of r = 0 cointegration relations is rejected
at the 1, 5 and 10 % level in 1, 10, and 5 cases, respectively, while there are no significant
cointegration among 11 of these 27 pairs of interest rates.

We also run the ADF test on the term spread, i.e., the difference between the interest
rates in each pair. In 64 of the 66 pairs, the null hypothesis that the term spread follows
a unit root process without drift and trend, is rejected at the 1 % level.

Next, we run the setarTest on the term spread of each of the 66 pairs of Norwegian
interest rates, using nboot=1000 bootstrap replications to get good estimates of the P-
values, and m=4 lagged terms of st (i.e., the terms st−1, st−2, st−3 and st−4) in each regime.
In TVECMs the threshold variable which governs the regime selection at time t, is fixed to
st−1, while in SETAR models we may choose the threshold variable among the lagged terms
present in the model by using the parameter thDelay (threshold delay). If thDelay=d, the
threshold variable is selected as st−1−d, so the possible values of thDelay is 0, 1, . . . , (m−1)
where 0 is the default value. We find the optimal value of thDelay by estimating a
SETAR model with three regimes using the function setar with thDelay=0:3, which
means that the setar function searches for the optimal value of the threshold delay among
the possible values 0, 1, 2, 3. Table 4.25 on page 62 and Table 4.26 on page 63 show the
results of the setarTest when the parameter threshold delay has its default value 0 and
its optimal value, respectively. We see that the P-value when testing one regime against
two regimes, is less than 0.05 for 33 and 45 of the 66 interest rate pairs in Table 4.25
and Table 4.26, respectively. So, there is sgnificant threshold effects in the term spread
of many interest rate pairs. Hence, we would expect significant threshold cointegration
in many interest rate pairs. In Table 4.28 we illustrate the effect of choosing the optimal
threshold delay rather than its default value. We see that the number of cases with
significant threshold effects increases considerably by using the optimal threshold delay.
This means that threshold delay should be implemented both in the TVECM function and
the TVECM.XHStest function.

Table 4.28. The number of interest rate pairs in Table 4.25 on page 62 and Table 4.26
on page 63 with P-value < 0.05 in the setarTest.

Number of regimes in thDelay

H0 H1 0 optimal
1 2 33 45
1 3 25 41
2 3 4 15

According to Table 4.28 a three-regime SETAR model should be selected for the term
spread for 15 interest rate pairs, i.e., the two-regime model is rejected at the 5 % level
in these cases. However, most of these models have a very narrow middle regime as
shown in Table 4.26 on page 63, contrary to the ideas from economic theory of a wide
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middle regime where the time series is stable. But, the pair consisting of NIB3M and
NIB1M is very interesting. When thDelay=2, the division into regimes seems reasonable,
and the two-regime model is rejected at the 1 % level. Hence, this pair should be tested
for threshold cointegration, but we are not able to do it before the functions TVECM and
TVECM.XHStest are extended with the threshold delay functionality. However, we need
an example of a three-regime TVECM to illustrate the algorithm developed in Chapter 3.
So, in Chapter 5 we simulate a bivariate time series generated by such a model.
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Chapter 5

Analysis of a simulated TVECM
with three regimes

In this chapter we simulate a bivariate time series from a TVECM with two thresholds
by using the function TVECM.sim in the package tsDyn. Thereafter, we analyse this
time series by using the same tools as in Chapter 4. We see that the parameters and the
thresholds are estimated quite accurately, and that both a two-regime model and a linear
model are strongly rejected when tested against a three-regime model.

5.1 Simulation

A bivariate TVECM with a constant term, an error correction term and two lagged differ-
ences for each of the variables, contains 12 parameters in each regime, i.e., 36 parameters
when the TVECM has two thresholds. In order of being able to estimate so many pa-
rameters, we choose the number of observations in the simulated time series fairly large,
N = 2 000. Due to the fact that the parameters have to satisfy a stability condition, we
cannot choose these 36 parameters arbitrarily. (The stability condition for a TVECM
is similar to the stability condition (2.9) for a VAR(p) model.) For simplicity, we use
the parameters of the first TVECM we estimated by using the time series NIB12M and
NIBTN. That is, we let the parameters in the lower and upper regime of the simulated
TVECM be equal to the parameters in the lower regime of the estimated TVECM, and
we let the parameters in the middle regime of the simulated model be equal to the pa-
rameters in the upper regime of the estimated model. When estimating this TVECM
in Chapter 4, we discovered that the TVECM function did not find the TVECM with the
smallest SSR without specifying a search interval for the threshold. As the TVECM
shown in Table 4.16 on page 46 was estimated with such a search interval specified by
th1=list(int=c(-1.5,1.5)), these parameters are a bit different from those used in
the simulation, which are shown in Table 5.1 on the following page. As a consequence,
also the cointegration value changed when introducing the search interval for the thresh-
old. Therefore, we also keep the cointegration value β = 1.046 from this first estimation
in our simulation. The threshold values γ1 and γ2 are tuned such that approximately 12%
of the observations are in the lower and the upper regime. As a result, γ1 = −3.7 and
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5.1. Simulation

Table 5.1. The coefficients of the simulated TVECM. The thresholds and the
cointegration value used in the simulation is γ1 = −3.7, γ2 = 1.2 and β = 1.046.

Regime Term Equation NIB12M Equation NIBTN
Lower ECT 0.0999 0.9871

Const 0.0948 1.3375
NIB12M t -1 0.4434 1.4526
NIBTN t -1 0.0123 0.0056
NIB12M t -2 -0.0426 -0.2651
NIBTN t -2 0.0333 0.0539

Middle ECT -0.0424 0.0069
Const 0.0142 0.0237
NIB12M t -1 0.5554 0.8862
NIBTN t -1 0.1809 -0.2722
NIB12M t -2 -0.1230 0.2262
NIBTN t -2 -0.0789 -0.6334

Upper ECT 0.0999 0.9871
Const 0.0948 1.3375
NIB12M t -1 0.4434 1.4526
NIBTN t -1 0.0123 0.0056
NIB12M t -2 -0.0426 -0.2651
NIBTN t -2 0.0333 0.0539

γ2 = 1.2. The error terms are drawn from a bivariate normal distribution with covariance

matrix equal to the identity matrix, and the starting values are chosen as y0 =
[
0 0.5

]′
and y1 =

[
1 1.5

]′
. The simulated time series yt =

[
y1t y2t

]′
is plotted in Figure 5.1 on the

next page. Both y1t and y2t seem to be nonstationary without a constant mean. However,
the cointegration relation wt = y1t − βy2t, which is plotted in Figure 5.2 on page 70 seems
to be stationary. We see that the majority of the observations are in the middle regime
between the lower threshold (red line) and the upper threshold (green line). Further,
this time series returns rapidly from the outer regimes: if an observation is in the lower
or upper regime, then the next observation is not in this regime. Sometimes, it jumps
directly from the lower to the upper regime or vice versa, but normally it returns back
to be middle regime and stays there for a while. Thus, this time series has a clear mean
reverting property.

The differenced series ∆y1t, ∆y2t and ∆wt which are plotted aginst wt−1 in Figure 5.3
on page 71, seem to be stationary. These plots are much more symmetric than the
corresponding plots in Figure 4.6 on page 45 of ∆Rt, ∆rt and ∆st. While the plots in
Figure 4.6 on page 45 contain points where st−1 is large negative and lack points where
st−1 > 2, the plots in Figure 4.6 on page 45 seem to be approximately symmetric around
wt−1 = −1.3. Hence, it is reasonable that a good model for the time series yt has three
regimes instead of two regimes, i.e., the observations with large postive values of wt are
moved to a new upper regime.
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5.1. Simulation

Figure 5.1. Plot of the simulated time series yt =
[
y1t y2t

]′.
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5.1. Simulation

Figure 5.2. Plot of the cointegration relation wt = y1t − βy2t of the simulated series yt.
The horisontal red line in each plot denotes the threshold γ1 = −3.7, and the horisontal
green line in each plot denotes the threshold γ2 = 1.2.

0 50 100 150 200 250 300

-8
-4

0
2

4
6

The first 300 values of wt

t

w
t

1700 1750 1800 1850 1900 1950 2000

-6
-4

-2
0

2
4

The last 300 values of wt

t

w
t

70



5.1. Simulation

Figure 5.3. Plots of ∆y1t, ∆y2t and ∆wt against wt−1 for t = 1, . . . , 300. The vertical red
line in each plot denotes the threshold γ1 = −3.7, and the vertical green line in each plot
denotes the threshold γ2 = 1.2.
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5.2. Estimation of a TVECM

5.2 Estimation of a TVECM

We estimate a TVECM with two thresholds from the simulated time series by using the
function TVECM in the package tsDyn. We let the search interval for γ1 and γ2 in the
grid search be [−5, 3]. In Figure 5.4 we see that the SSR as a function of γ has minima
when γ1 = −3.7 and γ2 = 1.2 so this plot detects the original threshold values used when
simulating the time series yt. The result of the grid search for the threshold values is
γ1 = −3.704, γ2 = 1.196], i.e., close to, but not exactly equal to the original threshold
values −3.7 and 1.2. However, if we estimate the TVECM once again by using the function
TVECM with fixed threshold values γ1 = −3.7 and γ2 = 1.2, we get exactly the same SSR
as before (4006.463 in the first model and 4006.463 in the second model). Consequently,
the minor differences in the threshold values, do not influence on the partion of the
observations into the three regimes, i.e., the two estimated models are exactly equal.

Figure 5.4. Plot of the grid search for the threshold γ in
TVECM(tvecm1.data,nthresh=2,lag=2,...).
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5.2. Estimation of a TVECM

Table 5.2 shows the coefficients of the estimated TVECM. We see that there are only
minor differences between these coefficients and those used when simulating the time
series yt.

Given the short-run dynamics, i.e., the lagged terms of ∆y1t and ∆y2t, the time series ∆y1t

and ∆y2t and ∆wt are linear functions of wt−1 in each regime. Figure 5.5 on the next page
shows the graph of these response functions. We see that when wt−1 is large negative, ∆y2t

is large negative and ∆y1t is small negative, such that wt = wt−1 + ∆wt = wt−1 + ∆y1t − β∆y2t

is much larger than wt−1. Thus, if we are in the lower regime, which is an unstable area,
the error correction term causes a large step towards the middle regime. However, in
the middle regime, the coefficients of the constant term and the error correction term
are not significant, while most of the coefficients of the lagged terms of ∆y1tt and ∆y2t

are significant, see Table 5.2. So, in the middle regime, the bivariate time series ∆yt is
approximately a stable VAR(2) process. Finally, when wt−1 is large positive, ∆y2t is large
positive and ∆y1t is small positive, such that wt = wt−1 + ∆wt = wt−1 + ∆y1t − β∆y2t is much
smaller than wt−1. Thus, if we are in the upper regime, which is an unstable area, the
error correction term causes a large step towards the middle regime.

Next, we run the Hansen and Seo test (the function TVECM.XHSTest) for the simulated
time series yt. Table 5.3 on page 75 shows that the results of the Hansen and Seo test
for the simulated time series yt. We see that the null hypothesis of linear cointegration
is strongly rejected irrespective of one or two thresholds in the alternative hypothesis,
and irrespective of the bootstrap type. The estimated P-values from the bootstrapping

Table 5.2. The coefficients of the estimated TVECM from the simulated data with
β = 1.046, lag=2 and threshold values γ1 = −3.7 and γ2 = 1.2. The standard errors of
the coefficients are in the parenthesis. The symbols ’***’, ’**’, ’*’ and ’.’ denote
significance at the 0.1 %, 1 %, 5 % and 10 % level, respectively.

Regime Term Equation Var1 Equation Var2
Lower ECT 0.0763(0.4195) 1.0608(2.5e-28)***

Const -0.0558(0.8809) 1.3397(0.0003)***
Var1 t -1 0.4669(4.4e-07)*** 1.2941(1.2e-42)***
Var2 t -1 0.0312(0.5650) 0.0631(0.2454)
Var1 t -2 -0.0601(0.3793) -0.2774(5.2e-05)***
Var2 t -2 0.0576(0.1225) 0.0922(0.0137)*

Middle ECT -0.0621(0.0345)* 0.0088(0.7652)
Const 0.0495(0.2348) -0.0041(0.9210)
Var1 t -1 0.5689( 2.2e-56)*** 0.9213(5.5e-132)***
Var2 t -1 0.1780( 5.9e-19)*** -0.2926( 8.4e-47)***
Var1 t -2 -0.1155( 3.9e-05)*** 0.2585( 8.1e-20)***
Var2 t -2 -0.0796( 2.1e-08)*** -0.6559(1.2e-317)***

Upper ECT 0.0727(0.4122) 0.9710(4.7e-27)***
Const 0.3385(0.0418)* 1.5142(2.2e-19)***
Var1 t -1 0.3620(3.5e-05)*** 1.5182(5.3e-63)***
Var2 t -1 0.0570(0.2663) 0.0164(0.7493)
Var1 t -2 -0.0905(0.1029) -0.3188(1.1e-08)***
Var2 t -2 0.0866(0.0141)* 0.0670(0.0577).
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5.2. Estimation of a TVECM

Figure 5.5. The responses of ∆y1t, ∆y2t and ∆wt to wt−1 in the estimated TVECM for
the simulated time series yt.
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5.3. Testing a two-regime threshold model against a three-regime threshold model

are exactly equal to 0 in all cases because no one of the bootstrap replications gives a
test statistic as large as the supLM value for the simulated time series yt. Consequently,
the Hansen and Seo test detects threshold cointegration for this simulated time series,
which is as it should be. In the last two lines of the table, we have run TVECM.XHStest

with the parameter ngridTh equal to the length N = 2000 of the simulated time series
such that all the wt values are included in the set of possible threshold values in the
grid search. We see that the set of all possible threshold values contains 1798 elements,
and that the supLM statistic is 264.2 and 533.8 when the number of thresholds is 1
and 2 respectively, which is a bit larger than the results (262.2 and 529, respectively)
when ngridTh has the value 200, i.e., when only 20000

1798 = 11.1 % of the possible threshold
values are included in the grid search. Nor the percentages of the observations in each
regime have changed noticeably. So, for this simulated time series, there are only minor
differences between the results when running the grid search with all possible threshold
values included and the results when running the grid search with only a fraction of
the possible threshold values included. However, keep in mind that when estimating
TVECMs from real data, the function LM(γ1, γ2) may be highly irregular, such that it is
advisable to run TVECM.XHStest with the parameter ngridTh equal to the length of the
time series, and, if necessary due to time consumption, a small value on the parameter
nboot.

5.3 Testing a two-regime threshold model against a

three-regime threshold model

In Section 5.2 on page 72 linear cointegration was strongly rejected when tested against
threshold cointegration, but we do not yet know whether the TVECM should have two
or three regimes. As in Section 4.6 on page 53, we solve this problem by running the
setarTest on the cointegration relation wt = y1t − βy2t (where β = 1.046 is fixed). The
results in Table 5.4 on the following page show that a linear model (one regime) is strongly
rejected when testing against two and three regimes, which is consistent with the results
of the Hansen and Seo test in Table 5.3. In addition, a two-regime SETAR model is
strongly rejected when testing against a three-regime SETAR model. (All the estimated
P-values are exactly 0 because no one of the bootstrap replications gives as large value of
the test statistic as the value of the test statistic for the time series wt.) Consequently, the
SETAR model for the time series wt should have three regimes, and the TVECM for the
bivariate time series yt should also have three regimes. Also, the plots of the setarTest

Table 5.3. The results of the Hansen and Seo test for the simulated time series yt.

nthresh ngridTh boot type nboot supLM P-value Seconds L % M % U %
1 200 FixedReg 1000 262.2 0.000 545.2 86.8 13.2
2 200 FixedReg 1000 529.0 0.000 80690.1 10.0 76.9 13.2
1 200 ResBoot 1000 262.2 0.000 1050.5 86.8 13.2
2 200 ResBoot 200 529.0 0.000 16623.2 10.0 76.9 13.2
1 1798 FixedReg 2 264.2 0.000 18.8 87.0 13.0
2 1798 FixedReg 2 533.8 0.000 24580.5 10.1 76.9 13.0
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Chapter 5. Analysis of a simulated TVECM with three regimes

of wt in Figure 5.6 on the facing page confirm these results. We see that in each of the
three plots the value of the test statistic is far to the right in the tail of the estimated
distribution. At last, we note that the threshold values γ1 = −3.704 and γ2 = 1.189 which
we got from the setarTest, are very close to the oringal threshold values γ1 = −3.7 and
γ2 = 1.2.

5.4 Summary

In this chapter we have simulated a TVECM with three regimes, and thereafter estimated
a three-regime TVECM from the simulated time series. When specifying large enough
search intervals for the threshold values, the TVECM function finds the thresholds which
were used in the simulation quite accurately, and the plot of the grid search for the
thresholds shows clear minima for these threshold values. As expected, the coefficients
of the estimated TVECM are close to the coefficients of the three-regime TVECM which
was used in the simulation. When running the Hansen and Seo test on this simulated
time series, the null hypothesis of linear cointegration is strongly rejected. The function
TVECM.XHStest finds that both the minimum value of SSR and the maximum value of
the LM statistic occur for the thresholds −3.71077 and 1.18421, which are quite close to
the thresholds −3.7 and 1.2 which were used in the simulation.

The cointegration relation, which is approximately equal to the difference between the
two time series, is modeled by a SETAR process. When testing one regime against two
regimes, the null hypothesis of one regime is strongly rejected. When testing two regimes
against three regimes, the null hypothesis of two regimes is strongly rejected. So, a three-
regime threshold model should be used for this data set, which is in accordance with the
fact that the data was generated from a three-regime TVECM.

Table 5.4. The results of the setarTest of ssim with 1000 bootstrap replications.

F-test 90% 95% 97.5% 99% P-value
1vs2 386.2 15.9 17.5 19.9 21.2 0.000
1vs3 776.3 29.7 32.0 33.6 36.5 0.000
2vs3 326.9 16.9 18.9 21.5 23.3 0.000
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Figure 5.6. Plots of the SETAR tests of wt.
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Chapter 6

Conclusion and discussion

In this thesis we have extended the Hansen and Seo test implemented in the R package
tsDyn to the case of three regimes in the alternative hypothesis. We have generalized
the two existing versions of the LM statistic used in the Hansen and Seo test to the
case of three regimes, and have shown that they are equal under certain conditions.
The grid search algorithm, which is necessary when maximizing the LM statistic, is also
extended to the case of three regimes, and it is rewritten such that if the cointegration
value β is given, it really maximizes the LM statistic under the constraints specified by
the user. As the time consumption of this algorithm increases as a quadratic function
of the number of possible threshold values, our version of the Hansen and Seo test is
very time-consuming when the number of bootstrapping replications is e.g., 1000, which
is often recommended when estimating P-values by using bootstrapping. On the other
hand, it is not at all satisfactory with an algorithm which does not maximize the LM
statistic correctly. Fortunately, in the case of modeling long bivariate time series with
only a few digits in each observation, the time consumption is considerably reduced if
we use the cointegration value β = 1 instead of the estimated value of β. The reason is
that the number of different values of the threshold variable, which in this case is the
lagged difference between the two time series, is small compared to the total number of
observations in the time series.

Our analysis of interest rates provides strong evidence that the monthly NIBOR rates of
the maturities tomorrow next and 12 months are cointegrated I(1) processes, and that
a two-regime TVECM is superior to a linear VECM when modeling this bivariate time
series. If two lagged differences are included in the TVECM, the autocorrelation in the
residuals is removed, and there are no ARCH effects in the residuals of the TVECM,
neither univariate nor multivariate. However, there are both skewness and kurtosis in
the residuals, probably due to the existence of some outliers. In addition, we find strong
evidence that a two-regime SETAR(3) model is superior to both an AR(3) model and a
three-regime SETAR(3) model, when modeling the cointegration relation. In the out-of-
sample forecasting of the cointegration relation, we find that the two-regime SETAR(3)
model gives much better prediction than an AR(1), an AR(3) and a two-regime SETAR(1)
model.

It is a remarkable fact that the evidence for a threshold model being superior to a linear
model completely disappears when removing 6 outliers from the NIBOR tomorrow next
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series and 2 outliers from the NIBOR 12 months series by interpolation between adja-
cent values. Certainly, it is not recommended to remove outliers uncritically by using
interpolation, but this analysis shows how influential a few outliers may be. Hence, it
is very important how we treat the outliers. Naturally, if there are errors in the series,
e.g., typing mistakes, it is surely okay to correct the time series. On the other hand, if
an outlier in a financial time series is caused by e.g., a financial shock, Juselius (2006)
recommends including a dummy variable to explain this shock. It is well known that the
outliers in September, November and December 1992 are explained by the turbulence in
the financial markets when the fixed exchange rate regime of the Norwegian krone was
abandoned. Hence, we should include dummy variables for these 3 months in our anal-
ysis. However, dummy variables are not implemented in the R package tsDyn, so the
best we can do is to remove these three outliers by using interpolation. If we remove only
these three outliers, then the two-regime SETAR(3) model is still superior to an AR(3)
model with approximately the same P-value as when no outliers are removed.

We may consider a TVECM as a tool to take care of outliers. By using large coefficients
of the error correction term in the outer regime(s), we achieve that the time series returns
rapidly back to ordinary values. The residuals of the TVECM have better properties than
the residuals of the VAR(p) model we started with. The residuals in the TVECM are on
the average smaller in absolute value than the residuals in the VAR(p) model as the SSR
is lowered. The LM statistic for multivariate ARCH effects is considerably smaller for
the residuals of the TVECM than for the residuals of the VAR(p) model such that there
are not any significant ARCH effects in the residuals of the TVECM. However, in the
normality test the residuals of the TVECM do not behave better than the residuals of the
VAR(p) model. The null hypothesis of normally distributed residuals is strongly rejected,
also for the residuals of the TVECM. The reason is probably the large outliers. Summing
up, the residuals of the TVECM have better statistical properties than the residuals of
the VAR(p) model, probably due to the ability of the TVECM to model nonlinearities,
but it is not sufficient. In addition, dummy variables should be used whenever it is
appropriate.

In Chapter 5 we have simulated a bivariate time series with a three-regime TVECM
as data generation process, and estimated a three-regime TVECM from this simulated
time series. As expected, the coefficients of the estimated TVECM are close to the
coefficients of the three-regime TVECM which was used in the simulation. Though,
the function TVECM found the original thresholds only when large search intervals were
specified for the thresholds in the TVECM call. When running the function TVECM.XHStest

on this estimated TVECM, the null hypothesis of linear cointegration is strongly rejected.
Further, both the SupLM statistic and the minimal SSR occurs for thresholds which are
very close to the original thresholds used in the simulation. On the contrary, when
runnning TVECM.XHStest on real data, e.g., interest rates, the thresholds minimizing
SSR are often very different from the thresholds maximizing the LM statistic, which is a
bit strange.

The cointegration relation of the simulated time series was modeled by using a SETAR(3)
model. When testing one regime against two regimes, the null hypothesis of one regime
is strongly rejected. When testing two regimes against three regimes, the null hypothesis
of two regimes is strongly rejected. Therefore, a three-regime threshold model should be
used for this data set, which is in accordance with the fact that the data was generated
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from a three-regime TVECM.

We have also investigated the NIBOR rates of 9 different maturites and the rates on
Norwegian government bonds of 3 maturities systematically. In all these 12 time series
we have removed the outliers in autumn 1992 by interpolation between adjacent values.
There is highly significant cointegration in each of the 36 pairs of NIBOR rates, while
there is no cointegration in the three pairs of government bonds. When modeling the
term spread of the 66 pairs of interest rates, a two-regime SETAR(4) model is superior to
an AR(4) model at the 5 % level in approximately 50 % of the cases. So, we may expect
significant threshold cointegration in a lot of these bivariate time series. In addition, we
have found that a three-regime SETAR(4) model is superior to a two-regime SETAR(4)
model for the term spread in some cases. Consequently, we may expect to find that a
three-regime TVECM is superior to a two-regime TVECM for some of the interest rate
pairs. Indeed, this is an important topic for future research, but cannot be performed
until the following limitations and bugs in tsDyn are resolved:

� According to economic theory, the models should have a wide middle regime where
the interest rates are quite stable, and much narrower outer regimes where the
interest rates are unstable. Therefore, a lot of the cases with significant threshold
effects in Table 4.25 on page 62 and Table 4.26 on page 63 have a too narrow
middle regime to be interesting in practice. Maybe, the size of the regimes in the
functions TVECM, TVECM.XHStest, setar and setarTest should be bounded both
below and above with specific bounds for each regime. In this way, we achieve
that only models with reasonable sizes of the regimes are taken into consideration
when estimating TVECMs and SETAR models, and when testing these models for
significant threshold effects. Hence, the elapse time of the very time-consuming
functions setarTest and TVECM.XHStest would be considerably reduced.

� Table 4.28 shows that the number of cases with significant threshold effects increases
considerably when the optimal threshold delay is chosen instead of the default
value 0. As the threshold delay is not implemented in the functions TVECM and
TVECM.XHStest, we are neither able to estimate TVECMs with threshold delay,
nor able to test such TVECMs for threshold effects. In addition, in some cases the
function setarTest fails when testing a two-regime model against a three-regime
model. (See the blank fields in the fifth column of Table 4.26 on page 63.)

� The grid search for β and the threshold(s) in the function TVECM is far from perfect
as the search intervals for β and the threshold(s) have to be chosen by care; if not,
the global minimum of SSR is not found. As all the tests for threshold effects are
dependent on this β value, the results of these tests may be unreliable.

� Since dummy variables are recommended to take care of outliers, the R package
tsDyn should be extended such that dummy variables may be included when esti-
mating and testing TVECMs, SETAR models and VAR models.
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Appendix A

The source code of TVECM.HSTest

This appendix contains the source code of the function TVECM.HSTest in the version
0.7-40 of the package tsDyn which was the starting point for our work on the Hansen
and Seo test, while the next appendix contains the source code of our new version of this
function. To save space, only the subfunctions where we have done changes, are included
in these appendices.

TVECM.HStest <- function(data, lag=1, ngridTh=300, trim=0.05, nboot=100,

fixed.beta=NULL, intercept=TRUE, boot.type=c("FixedReg", "ResBoot"),

hpc=c("none", "foreach"), common=c("All", "ECT"), type=c("2Reg", "SymReg")) {

## Check args:

boot.type<-match.arg(boot.type)

hpc<-match.arg(hpc)

common<-match.arg(common)

type<-match.arg(type)

dir=FALSE #internal value, was used to try different implementation of lmtest

### Organize Data

data<-as.matrix(data)

if(ncol(data)>2) {warning("Please no more than two equations")}

if(is.null(colnames(data))){colnames(data)<-paste("Var", c(1:2), sep="")}

T<-nrow(data)

p<-lag

y<-diff(data)[(p+1):(T-1),]

DeltaX<-embed(diff(data),p+1)[,-(1:2)]

if(intercept) DeltaX<-cbind(1, DeltaX)

x<-DeltaX

t<-nrow(y)

### Compute beta with VECM() and extract ect

if(is.null(fixed.beta)){

ve<-VECM(data, lag=lag, include="const", estim="ML")

}else{

ve<-VECM(data, lag=lag, include="const", beta=fixed.beta, estim="2OLS")

}

ect<-ve$model[,grep("ECT", colnames(ve$model))]

w0<-matrix(ect[!is.na(ect)], ncol=1)

###Set up of the grid
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q<- if(type=="2Reg") sort(w0) else sort(abs(w0))

if(ngridTh>(1-2*trim)*t) {

newNgridTh<-round((1-2*trim)*t-1)

warning("ngridTh (", ngridTh,

") bigger than number of potential threshold values, set to ",newNgridTh,"\n")

ngridTh<-newNgridTh

}

gamma2<-q[round(seq(from=trim*t, to=(1-trim)*t,length.out=ngridTh))]

gamma2<-unique(gamma2)

ngridTh<-length(gamma2)

###########

###Lm Test

###########

lmtest02<-function(y,x,w0,gammas,dir=dir){

#y: y var, x: intercept and lags matrix, w0: ECT term, gammas: potential thresholds

X<-cbind(w0,x) #X: ECT and intercept and lags

if(dir){

q<-qr(X)

res_restr<-qr.resid(q,y)

} else{

z0zz<-X%*%solve(t(X)%*%X)

res_restr<-lm.fit(X,y)$residuals #residuals from the linear VECM given b0

}

res_restr1<-res_restr[,1]

res_restr2<-res_restr[,2]

store<-rep(NA, ngridTh)

Ttrim<-trim*t

ngridTh<-min(t*(1-2*trim), length(gammas))

for(j in 1:ngridTh){

d1<-if(type=="2Reg") ifelse(w0<=gammas[j],1,0) else

ifelse(w0<= - gammas[j] | w0> gammas[j],1,0) #d1: dummy variable

n1<-sum(d1)

if (min(c(n1,(t-n1)))>Ttrim){

z1<-if(common=="All") c(d1)*X else c(d1)*w0

res_unrestr <-if(dir) qr.resid(q, z1) else z1-z0zz%*%(t(X)%*%z1)

#z11: residuals from unrestricted model (with threhsold)

zea<-res_restr1*res_unrestr

zeb<-res_restr2*res_unrestr

ze<-cbind(zea,zeb)

#[(z11.*(e1*ones(1,length(z11(1,:))))),(z11.*(e2*ones(1,length(z11(1,:)))))];

v<-crossprod(ze)

z11y<-crossprod(res_unrestr,y)

s<-matrix(c(z11y), ncol=1) #vectorization of the parameter matrix z11y

VV<-crossprod(v)

VVinv<-try(solve(VV), silent=TRUE)

if(inherits(VVinv, "try-error")) VVinv<-ginv(VV)

store[j]<-t(s)%*%VVinv%*%t(v)%*%s

} #end of the if

} #end of the whole loop

return(store)

} #end of the function lmtest01
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#### LM test for fixed regressor bootstrap: X'X^-1 evaluated only once

lmtest02_boot<-function(y,x,w0,gammas,dir=dir){

X<-cbind(w0,x) #X: ECT and intercept and lags

if(dir){

res_restr<-qr.resid(q,y)

} else{

res_restr<-lm.fit(X,y)$residuals #residuals from the linear VECM given b0

}

res_restr1<-res_restr[,1]

res_restr2<-res_restr[,2]

store<-rep(0, ngridTh)

ngridTh<-min(t*(1-2*trim), length(gammas))

for(j in 1:ngridTh){

d1<-if(type=="2Reg") ifelse(w0<=gammas[j],1,0) else

ifelse(w0<= - gammas[j] | w0> gammas[j],1,0) #d1: dummy variable

n1<-sum(d1)

if (min(c(n1,(t-n1)))>Ttrim){

z1<-if(common=="All") c(d1)*X else c(d1)*w0

res_unrestr <-if(dir) qr.resid(q, z1) else z1-z0zz%*%(t(X)%*%z1)

#z11: residuals from unrestricted model (with threhsold)

zea<-res_restr1*res_unrestr

zeb<-res_restr2*res_unrestr

ze<-cbind(zea,zeb)

# [(z11.*(e1*ones(1,length(z11(1,:))))),(z11.*(e2*ones(1,length(z11(1,:)))))];

v<-crossprod(ze)

z11y<-crossprod(res_unrestr,y)

s<-matrix(c(z11y), ncol=1) #vectorization of the parameter matrix z11y

VV<-crossprod(v)

VVinv<-try(solve(VV), silent=TRUE)

if(inherits(VVinv, "try-error")) VVinv<-ginv(VV)

store[j]<-t(s)%*%VVinv%*%t(v)%*%s

} #end of the if

} #end of the whole loop

lm01<-max(store, na.rm=TRUE)

lm01

} #end of the function lmtest01

###

lm01<-lmtest02(y,x,w0,gamma2, dir=dir)

teststat<-max(lm01, na.rm=TRUE)

##################################

### Bootstraps

##################################

if(nboot==0){

CriticalValBoot<-NULL

PvalBoot<-NULL

boots.reps<-NULL

if(hpc=="foreach") warning("hpc='foreach' used only when nboot>0\n")

}else if (nboot>0){

##################################

### Fixed Regressor Bootstrap %

##################################
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if(boot.type=="FixedReg"){

X<-cbind(w0,x) #X: ECT and intercept and lags

Ttrim<-trim*t

if(dir){

q<-qr(X)

} else{

z0zz<-X%*%solve(t(X)%*%X)

}

lmtest_withBoot<-function(e){

yr<-rnorm(n=t,0,1)*e

return(lmtest02_boot(yr,x,w0,gamma2,dir=dir))

}

boots.reps<- if(hpc=="none") replicate(nboot, lmtest_withBoot(e=residuals(ve)))

else foreach(i=1:nboot, .export="lmtest_withBoot", .combine="c")

%dopar% lmtest_withBoot(e=residuals(ve))

##################################

### Residual Bootstrap

##################################

} else{

lmtest_with_resBoot<-function(ve){

#bootstrap it

data.boot<-TVECM.sim(TVECMobject=ve, type="boot")

# estimate VECM

if(is.null(fixed.beta)){

ve.boot<-VECM(data.boot, lag=lag, include="const", estim="ML")

}else{

ve.boot<-VECM(data.boot, lag=lag, include="const", beta=fixed.beta,

estim="2OLS")

}

# extract w0, y and x

ect.boot<-ve.boot$model[,"ECT"]

which.nas<-1:(p+1)

w0.boot<-matrix(ect.boot[-which.nas], ncol=1)

x.boot<-ve.boot$model[-which.nas,-c(1:3)]

y.boot<-ve.boot$model[,c(1:2)]

y.boot<-diff(y.boot)[(p+1):(T-1),]

# set-up grid

w0.ord.boot<-sort(w0)

gamma2.boot<-w0.ord.boot[round(seq(from=trim*T,

to=(1-trim)*T,length.out=ngridTh))]

gamma2.boot<-unique(gamma2.boot)

ngridTh.boot<-length(gamma2.boot)

test.boot<-lmtest02(y.boot,x.boot,w0.boot,gamma2.boot,dir=dir)

return(max(test.boot, na.rm=TRUE))

}

boots.reps<- if(hpc=="none") replicate(nboot, lmtest_with_resBoot(ve)) else

foreach(i=1:nboot,.export="lmtest_with_resBoot", .combine="c")

%dopar% lmtest_with_resBoot

}#end if boot= ResBoot

## result: compute p values and critical values:
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PvalBoot<-mean(ifelse(boots.reps>teststat,1,0))

CriticalValBoot<-quantile(boots.reps, probs= c(0.9, 0.95,0.99))

}#end if boot>0

####### Return args

args<-list()

args$nboot<-nboot

args$boot.type<-boot.type

ret<-list()

ret$args<-args

ret$stat<-teststat

ret$values<-lm01

ret$ths<-gamma2

ret$maxTh<-gamma2[which(lm01==ret$stat)]

ret$PvalBoot<-PvalBoot

ret$CriticalValBoot<-CriticalValBoot

ret$allBoots<-boots.reps

class(ret)<-"TVECMHanSeo02Test"

return(ret)

}#End of the whole function

### Print method

print.TVECMHanSeo02Test<-function(x,...){

cat("## Test of linear versus threshold cointegration",

" of Hansen and Seo (2002) ##\n\n", sep="")

cat("Test Statistic:\t", x$stat)

cat("\t(Maximized for threshold value:", x$maxTh, ")\n")

if(x$args$nboot>0){

boot.name<-switch(x$args$boot.type, "FixedReg"="Fixed regressor bootstrap",

"ResBoot"="Residual Bootstrap")

cat("P-Value:\t", x$PvalBoot, "\t\t(",boot.name, ")\n")

}

}
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The source code of TVECM.XHSTest

This appendix contains the source code of our new version of the Hansen and Seo test,
which includes the extension to three regimes and an improved grid search algorithm.

TVECM.XHStest <- function(data, lag=1, ngridTh=300, trim=0.05, nboot=100,

fixed.beta=NULL, intercept=TRUE, boot.type=c("FixedReg", "ResBoot"),

hpc=c("none", "foreach"), common=c("All", "ECT"),

type=c("2Reg", "SymReg", "3Reg"), tolerance=1e-12,trace=TRUE,dir=FALSE) {

## Check args:

boot.type<-match.arg(boot.type)

hpc<-match.arg(hpc)

common<-match.arg(common)

type<-match.arg(type)

#dir=FALSE #internal value, was used to try different implementation of lmtest

### Organize Data

data<-as.matrix(data)

if(ncol(data)>2) {warning("Please no more than two equations")}

if(is.null(colnames(data))){colnames(data)<-paste("Var", c(1:2), sep="")}

T<-nrow(data)

p<-lag

y<-diff(data)[(p+1):(T-1),]

DeltaX<-embed(diff(data),p+1)[,-(1:2)]

if(intercept) DeltaX<-cbind(1, DeltaX)

x<-DeltaX

t<-nrow(y)

### Compute beta with VECM() and extract ect

if(is.null(fixed.beta)){

ve<-VECM(data, lag=lag, include="const", estim="ML")

}else{

ve<-VECM(data, lag=lag, include="const", beta=fixed.beta, estim="2OLS")

}

ect<-ve$model[,grep("ECT", colnames(ve$model))]

w0<-matrix(ect[!is.na(ect)], ncol=1)

w0.ord<- if(type=="2Reg" | type=="3Reg") sort(w0) else sort(abs(w0))

Ttrim<-ceiling(trim*t)

###Set up of the grid
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GridSetup<-function(allgammas){

Min1<-allgammas[Ttrim] #At least element [1:Min1] to lower regime such that

#at least 100trim % goes to lower regime

Max1<-allgammas[t-Ttrim+1] #At least element [(t-Trim+1):t] to upper

# regime such that at least 100trim % goes to upper regime

if (Min1>Max1) stop("The parameter trim is too large\n")

gamma2<-allgammas #allgammas: all possible threshold values

i<-2

while (i <= length(gamma2)) {

if (abs(gamma2[i-1]-gamma2[i])< tolerance) {

gamma2<-gamma2[-i]

} else {

i<-i+1

}

} #gamma2: all possible threshold values, but now all repetitions are removed,

#i.e. the difference between two consequtive elements are always larger

#than tolerance

iMin<-max(which(gamma2<=Min1,arr.ind=TRUE)) #The index of the element of

#gamma2 which is the smallest possible value of the lower threshold.

iMax<-max(which(gamma2<=Max1,arr.ind=TRUE))-1 #The index of the element of

# gamma2 which is the largest possible value of the upper threshold.

if (iMin>iMax) {

stop("iMin>iMax probably because the parameter tolerance is too large\n")

}

gamma2<-gamma2[iMin:iMax] #The threshold value(s) have to be in this set

newNgridTh<-length(gamma2)

if(ngridTh>newNgridTh) {

warning("ngridTh (", ngridTh,

") >= the number of potential threshold values, set to ",

newNgridTh, "\n")

ngridTh<-newNgridTh

}

else {

warning("ngridTh (", ngridTh,

") < the number of potential threshold values, ",newNgridTh,

"so only a subset of the potential threshold values is selected.\n")

if (trace) {

cat("The set of possible threshold values:\n")

print(gamma2)

}

gamma2<-gamma2[round(seq(from=1, to=newNgridTh,length.out=ngridTh))]

if (trace) {

cat("The set of the selected threshold values:\n")

print(gamma2)

}

}

gamma2<-gamma2+tolerance #necessary to ensure that the condition w_t<=gamma2[j]

# is TRUE also in the case that w_t is slightly larger than gamma2[j] due to

# inaccuracies in floating point numbers.

return(gamma2)

}
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###########

###Lm Test when type="2Reg" or "SymReg". This function returns the whole set of

###LM-values such that the threshold values corresponding to the supLM value may be

###found later. When bootstrapping we use the function lmtest2RegSymReg_boot which

###returns only the supLM value. In addition, SSR is computed for each threshold

###value in lmtest2RegSymReg, but not in lmtest2RegSymReg_boot. These are the only

###differences between these two functions.

###########

lmtest2RegSymReg<-function(y,x,w0,gammas,dir=dir){

#y: y var, x: intercept and lags matrix, w0: ECT term, gammas: potential thresholds

ngridTh<-length(gammas)

X<-cbind(w0,x) #X: ECT and intercept and lags

if(dir){

q<-qr(X)

res_restr<-qr.resid(q,y)

} else{

z0zz<-X%*%solve(t(X)%*%X)

res_restr<-lm.fit(X,y)$residuals #residuals from the linear VECM given b0

}

res_restr1<-res_restr[,1]

res_restr2<-res_restr[,2]

store<-rep(0, ngridTh)

SSR<-rep(10000, ngridTh)

for(i in 1:ngridTh){

d1<-if(type=="2Reg") ifelse(w0<=gammas[i],1,0) else

ifelse(w0<= - gammas[i] | w0> gammas[i],1,0) #d1: dummy variable

z1<-if(common=="All") c(d1)*X else c(d1)*w0

res_unrestr <-if(dir) qr.resid(q, z1) else z1-z0zz%*%(t(X)%*%z1)

#z11: residuals from unrestricted model (with threhsold)

zea<-res_restr1*res_unrestr

zeb<-res_restr2*res_unrestr

ze<-cbind(zea,zeb)

# [(z11.*(e1*ones(1,length(z11(1,:))))),(z11.*(e2*ones(1,length(z11(1,:)))))];

v<-crossprod(ze)

z11y<-crossprod(res_unrestr,y)

s<-matrix(c(z11y), ncol=1) #vectorization of the parameter matrix z11y

Vinv<-try(solve(v), silent=TRUE)

if(inherits(Vinv, "try-error")) Vinv<-ginv(v)

store[i]<-t(s)%*%Vinv%*%s

d2<-1-d1

z2<-c(d2)*X

Z<-cbind(z1,z2)

SSR[i]<-crossprod(c(qr.resid(qr(Z),y)))

} #end of the whole loop

ret<-list()

ret$store<-store

ret$SSR<-SSR

return(ret)

} #end of the function lmtest2RegSymReg

###Lm Test for bootstrapping when type="2Reg" or "SymReg". This function returns only

###the supLM value. When not bootstrapping we use the function lmtest2RegSymReg which
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###returns the whole set of the LM values, and the SSR values. This is the only

###difference between these two functions.

###########

lmtest2RegSymReg_boot<-function(y,x,w0,gammas,dir=dir){

#y: y var, x: intercept and lags matrix, w0: ECT term, gammas: potential thresholds

ngridTh<-length(gammas)

X<-cbind(w0,x) #X: ECT and intercept and lags

if(dir){

q<-qr(X)

res_restr<-qr.resid(q,y)

} else{

z0zz<-X%*%solve(t(X)%*%X)

res_restr<-lm.fit(X,y)$residuals #residuals from the linear VECM given b0

}

res_restr1<-res_restr[,1]

res_restr2<-res_restr[,2]

store<-rep(0, ngridTh)

for(i in 1:ngridTh){

d1<-if(type=="2Reg") ifelse(w0<=gammas[i],1,0) else

ifelse(w0<= - gammas[i] | w0> gammas[i],1,0) #d1: dummy variable

z1<-if(common=="All") c(d1)*X else c(d1)*w0

res_unrestr <-if(dir) qr.resid(q, z1) else z1-z0zz%*%(t(X)%*%z1)

#z11: residuals from unrestricted model (with threshold)

zea<-res_restr1*res_unrestr

zeb<-res_restr2*res_unrestr

ze<-cbind(zea,zeb)

#[(z11.*(e1*ones(1,length(z11(1,:))))),(z11.*(e2*ones(1,length(z11(1,:)))))];

v<-crossprod(ze)

z11y<-crossprod(res_unrestr,y)

s<-matrix(c(z11y), ncol=1) #vectorization of the parameter matrix z11y

Vinv<-try(solve(v), silent=TRUE)

if(inherits(Vinv, "try-error")) Vinv<-ginv(v)

store[i]<-t(s)%*%Vinv%*%s

} #end of the whole loop

lm01<-max(store, na.rm=TRUE)

return(lm01)

} #end of the function lmtest2RegSymReg_boot

###########

###Lm Test when type="3Reg". This function returns the whole set of

###LM-values such that the threshold values corresponding to the supLM value may be

###found later. When bootstrapping we use the function lmtest3Reg_boot which returns

###only the supLM value. In addition, SSR is computed for each pair of threshold

###values in lmtest3Reg, but not in lmtest3Reg_boot. These are the only

###differences between these two functions.

###########

lmtest3Reg<-function(y,x,w0,gammas,dir=dir){

#y: y var, x: intercept and lags matrix, w0: ECT term, gammas: potential thresholds

ngridTh<-length(gammas)

w0.ord<-sort(w0)+tolerance #The comparisons between w0.ord and gammas decide

# the limits of the loops below. As we have already added tolerance to gammas, we

# also have to add tolerance to w0.ord, to get correct comparisons.
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X<-cbind(w0,x) #X: ECT and intercept and lags

if(dir){

q<-qr(X)

res_restr<-qr.resid(q,y)

} else{

z0zz<-X%*%solve(t(X)%*%X)

res_restr<-lm.fit(X,y)$residuals #residuals from the linear VECM given b0

}

res_restr1<-res_restr[,1]

res_restr2<-res_restr[,2]

store<-matrix(0, ncol=ngridTh,nrow=ngridTh)

SSR<-matrix(100000, ncol=ngridTh,nrow=ngridTh)

Max2<-w0.ord[which(abs(w0.ord-w0.ord[t-Ttrim])<tolerance,arr.ind=TRUE)[1]-Ttrim]

# which(abs(w0.ord-w0.ord[t-Ttrim])<tolerance,arr.ind=TRUE)[1] computes the

# index in w0.ord of the smallest element in w0.ord equal to w0.ord[t-Ttrim] except

# for floating point error, so Max2 is the element in w0.ord with index Trim

# smaller than the computed index by which(....)[1].

iMax<-max(which(gammas<=Max2,arr.ind=TRUE)) #The index of the largest element

# in gammas which is <=Max2

for(i in 1:iMax){

d1<- ifelse(w0<=gammas[i],1,0) #d1: dummy variable

z1<-if(common=="All") c(d1)*X else c(d1)*w0

help<-which(abs(w0.ord-gammas[i])<tolerance,arr.ind=TRUE) #The index of the

# elements in w0.ord which are =gammas[i] except for floating point error

Min2<-w0.ord[help[length(help)]+Ttrim]-tolerance #Min2 is the element in

# w0.ord which index is Trim larger than the index in w0.ord of the

# largest element in w0.ord which is equal to gammas[i]. The tolerance

# is subtracted due to the test against gammas in the next two statements.

# help<-length(which(abs(gammas-Min2)<tolerance,arr.ind=TRUE))

if (gammas[ngridTh] > Min2) { #Min2 in gammas, i.e. the middle

# regime contains at least

# Ttrim elements; if help=0, gammas[i] is so large that the middle

# regime contains less than Trim elements, which means that no LM

# and SSR values should be computed for this value of i

jMin<-min(which(gammas >= Min2,arr.ind=TRUE))

#The index of the least element >= Min2 in gammas

for (j in jMin:ngridTh) {

d3<- ifelse(w0>gammas[j],1,0) #d1: dummy variable

z3<-if(common=="All") c(d3)*X else c(d3)*w0

z<-cbind(z1,z3)

res_unrestr <-if(dir) qr.resid(q, z) else z-z0zz%*%(t(X)%*%z)

#z11: residuals from unrestricted model (with threhsold)

zea<-res_restr1*res_unrestr

zeb<-res_restr2*res_unrestr

ze<-cbind(zea,zeb)

# [(z11.*(e1*ones(1,length(z11(1,:))))),(z11.*(e2*ones(1,length(z11(1,:)))))];

v<-crossprod(ze)

z11y<-crossprod(res_unrestr,y)

s<-matrix(c(z11y), ncol=1)

#vectorization of the parameter matrix z11y

Vinv<-try(solve(v), silent=TRUE)
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if(inherits(Vinv, "try-error")) Vinv<-ginv(v)

store[i,j]<-t(s)%*%Vinv%*%s

d2<-1-d1-d3

z2<-c(d2)*X

Z<-cbind(z1,z2,z3)

SSR[i,j]<-crossprod(c(qr.resid(qr(Z),y)))

} # end for (j in jMin:ngridTh) {

} #end if (help>0) {

} #end of the whole loop

ret<-list()

ret$store<-store

ret$SSR<-SSR

return(ret)

} #end of the function lmtest3Reg

###Lm Test for bootstrapping when type="3Reg". This function returns only the supLM

###value. When not bootstrapping, we use the function lmtest3Reg which

###returns the whole set of LM values, and the SSR values. This is the only

###difference between these two functions.

###########

lmtest3Reg_boot<-function(y,x,w0,gammas,dir=dir){

#y: y var, x: intercept and lags matrix, w0: ECT term, gammas: potential thresholds

ngridTh<-length(gammas)

w0.ord<-sort(w0)+tolerance #The comparisons between w0.ord and gammas decide

# the limits of the loops below. As we have already added tolerance to gammas,

# we also have to add tolerance to w0.ord, to get correct comparisons.

X<-cbind(w0,x) #X: ECT and intercept and lags

if(dir){

q<-qr(X)

res_restr<-qr.resid(q,y)

} else{

z0zz<-X%*%solve(t(X)%*%X)

res_restr<-lm.fit(X,y)$residuals # residuals from the linear VECM given b0

}

res_restr1<-res_restr[,1]

res_restr2<-res_restr[,2]

store<-matrix(0, ncol=ngridTh,nrow=ngridTh)

Max2<-w0.ord[which(abs(w0.ord-w0.ord[t-Ttrim])<tolerance,arr.ind=TRUE)[1]-Ttrim]

# which(abs(w0.ord-w0.ord[t-Ttrim])<tolerance,arr.ind=TRUE)[1] computes the

# index in w0.ord of the smallest element in w0.ord equal to w0.ord[t-Ttrim] except

# for floating point error, so Max2 is the element in w0.ord with index Trim

# smaller than the computed index by which(....)[1].

iMax<-max(which(gammas<=Max2,arr.ind=TRUE)) #The index of the largest element

# in gammas which is <=Max2

for(i in 1:iMax){

d1<- ifelse(w0<=gammas[i],1,0) #d1: dummy variable

z1<-if(common=="All") c(d1)*X else c(d1)*w0

help<-which(abs(w0.ord-gammas[i])<tolerance,arr.ind=TRUE) #The index of the

# elements in w0.ord which are =gammas[i] except for floating point error

Min2<-w0.ord[help[length(help)]+Ttrim]-tolerance #Min2 is the element in

# w0.ord which index is Trim larger than the index in w0.ord of the

# largest element in w0.ord which is equal to gammas[i]. The tolerance
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# is subtracted due to the test against gammas in the next two statements.

# help<-length(which(abs(gammas-Min2)<tolerance,arr.ind=TRUE))

if (gammas[ngridTh] > Min2) { #Min2 in gammas, i.e. the middle

# regime contains at least

# Ttrim elements; if help=0, gammas[i] is so large that the middle

# regime contains less than Trim elements, which means that no LM

# and SSR values should be computed for this value of i

jMin<-min(which(gammas >= Min2,arr.ind=TRUE))

#The index of the least element >= Min2 in gammas

for (j in jMin:ngridTh) {

d3<- ifelse(w0>gammas[j],1,0) #d1: dummy variable

z3<-if(common=="All") c(d3)*X else c(d3)*w0

z<-cbind(z1,z3)

res_unrestr <-if(dir) qr.resid(q, z) else z-z0zz%*%(t(X)%*%z)

#z11: residuals from unrestricted model (with threhsold)

zea<-res_restr1*res_unrestr

zeb<-res_restr2*res_unrestr

ze<-cbind(zea,zeb)

# [(z11.*(e1*ones(1,length(z11(1,:))))),(z11.*(e2*ones(1,length(z11(1,:)))))];

v<-crossprod(ze)

z11y<-crossprod(res_unrestr,y)

s<-matrix(c(z11y), ncol=1)

#vectorization of the parameter matrix z11y

Vinv<-try(solve(v), silent=TRUE)

if(inherits(Vinv, "try-error")) Vinv<-ginv(v)

store[i,j]<-t(s)%*%Vinv%*%s

} # end for (j in jMin:ngridTh) {

} #end if (help>0) {

} #end of the whole loop

lm01<-max(store, na.rm=TRUE)

return(lm01)

} #end of the function lmtest3Reg_boot

gamma2<-GridSetup(w0.ord)

lm01<-if (type=="3Reg") lmtest3Reg(y,x,w0,gamma2, dir=dir) else

lmtest2RegSymReg(y,x,w0,gamma2, dir=dir)

teststat<-max(lm01$store, na.rm=TRUE)

##################################

### Bootstraps

##################################

if(nboot==0){

CriticalValBoot<-NULL

PvalBoot<-NULL

boots.reps<-NULL

if(hpc=="foreach") warning("hpc='foreach' used only when nboot>0\n")

}else if (nboot>0){

##################################

### Fixed Regressor Bootstrap %

##################################

if(boot.type=="FixedReg"){

X<-cbind(w0,x) #X: ECT and intercept and lags
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Ttrim<-trim*t

if(dir){

q<-qr(X)

} else{

z0zz<-X%*%solve(t(X)%*%X)

}

lmtest_withBoot<-function(e){

yr<-rnorm(n=t,0,1)*e

return(if (type=="3Reg") lmtest3Reg_boot(yr,x,w0,gamma2,dir=dir) else

lmtest2RegSymReg_boot(yr,x,w0,gamma2,dir=dir))

}

boots.reps<- if(hpc=="none") replicate(nboot, lmtest_withBoot(e=residuals(ve)))

else foreach(i=1:nboot, .export="lmtest_withBoot", .combine="c")

%dopar% lmtest_withBoot(e=residuals(ve))

##################################

### Residual Bootstrap

##################################

} else{

lmtest_with_resBoot<-function(ve){

#bootstrap it

data.boot<-TVECM.sim(TVECMobject=ve, type="boot")

# estimate VECM

if(is.null(fixed.beta)){

ve.boot<-VECM(data.boot, lag=lag, include="const", estim="ML")

}else{

ve.boot<-VECM(data.boot, lag=lag, include="const",

beta=fixed.beta, estim="2OLS")

}

# extract w0, y and x

ect.boot<-ve.boot$model[,"ECT"]

which.nas<-1:(p+1)

w0.boot<-matrix(ect.boot[-which.nas], ncol=1)

x.boot<-ve.boot$model[-which.nas,-c(1:3)]

y.boot<-ve.boot$model[,c(1:2)]

y.boot<-diff(y.boot)[(p+1):(T-1),]

# set-up grid

w0.ord.boot<-sort(w0.boot)

gamma2.boot<-GridSetup(w0.ord.boot)

return(if (type=="3Reg") lmtest3Reg_boot(y.boot,x.boot,w0.boot,

gamma2.boot, dir=dir) else

lmtest2RegSymReg_boot(y.boot,x.boot,w0.boot,gamma2.boot,dir=dir))

}

boots.reps<- if(hpc=="none") replicate(nboot, lmtest_with_resBoot(ve)) else

foreach(i=1:nboot,.export="lmtest_with_resBoot", .combine="c")

%dopar% lmtest_with_resBoot

}#end if boot= ResBoot

## result: compute p values and critical values:

PvalBoot<-mean(ifelse(boots.reps>teststat,1,0))
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CriticalValBoot<-quantile(boots.reps, probs= c(0.9, 0.95,0.99))

}#end if boot>0

####### Return args

args<-list()

args$nboot<-nboot

args$boot.type<-boot.type

ret<-list()

ret$args<-args

ret$stat<-teststat

ret$SSR<-min(lm01$SSR,na.rm=TRUE)

ret$LMvalues<-lm01

ret$ths<-gamma2

if (type=="3Reg") {

a<-which(abs(lm01$store-ret$stat)<1e-10,arr.ind=TRUE)

ret$maxThLM<-c(gamma2[a[1,1]],gamma2[a[1,2]])

d1<- ifelse(w0<=ret$maxThLM[1],1,0)

d3<- ifelse(w0>ret$maxThLM[2],1,0)

d2<-1-d1-d3

ret$PercentsLM<-c(round(mean(d1)*100,digits=1),round(mean(d2)*100,digits=1),

round(mean(d3)*100,digits=1))

a<-which(abs(lm01$SSR-ret$SSR)<1e-10,arr.ind=TRUE)

ret$minThSSR<-c(gamma2[a[1,1]],gamma2[a[1,2]])

d1<- ifelse(w0<=ret$minThSSR[1],1,0)

d3<- ifelse(w0>ret$minThSSR[2],1,0)

d2<-1-d1-d3

ret$PercentsSSR<-c(round(mean(d1)*100,digits=1),round(mean(d2)*100,digits=1),

round(mean(d3)*100,digits=1))

} else {

ret$maxThLM<-gamma2[which(abs(lm01$store-ret$stat)<1e-10)]

d1<- ifelse(w0<=ret$maxThLM,1,0)

d2<-1-d1

ret$PercentsLM<-c(round(mean(d1)*100,digits=1),round(mean(d2)*100,digits=1))

ret$minThSSR<-gamma2[which(abs(lm01$SSR-ret$SSR)<1e-10)]

d1<- ifelse(w0<=ret$minThSSR,1,0)

d2<-1-d1

ret$PercentsSSR<-c(round(mean(d1)*100,digits=1),round(mean(d2)*100,digits=1))

}

ret$PvalBoot<-PvalBoot

ret$CriticalValBoot<-CriticalValBoot

ret$allBoots<-boots.reps

class(ret)<-"TVECMXHanSeo02Test"

return(ret)

} #End of the whole function

### Print method

print.TVECMXHanSeo02Test<-function(x,...){

cat("## Test of linear versus threshold cointegration",

" of Hansen and Seo (2002) ##\n\n", sep="")

cat("Test Statistic:\t", x$stat)

cat("\t(Maximized for threshold value:", x$maxThLM, ")\n")

cat("Percentage of observations in each regime", x$PercentsLM, "%\n\n")
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cat("Minimum SSR:\t", x$SSR)

cat("\t(Minimized for threshold value:", x$minThSSR, ")\n")

cat("Percentage of observations in each regime", x$PercentsSSR,"%\n")

if(x$args$nboot>0){

boot.name<-switch(x$args$boot.type,

"FixedReg"="Fixed regressor bootstrap", "ResBoot"="Residual Bootstrap")

cat("P-Value:\t", x$PvalBoot, "\t\t(",boot.name, ")\n")

}

}
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Appendix C

The R code chunks used in
Chapter 4 and 5

This apppendix contains all the R code chunks used in the data analysis of Chapter 4 and
Chapter 5. In this analysis we have used functions from the R base distribution and the
following contributed R packages: tsDyn (Stigler 2011), urca (Pfaff 2008a), vars (Pfaff
2008b), xtable (Swinton 2011), asbio (Aho 2011) and zoo (Zeileis and Grothendieck
2005), which may be downloaded from http://cran.r-project.org/.

## chunk number 1: setup

setCacheDir("sweave-cache3/values")

options(tikzMetricsDictionary="tikzMetricsDictionary",keep.space=TRUE,

keep.blank.line=FALSE,width=80,tikzMetricPackages = c("\\usepackage[T1]{fontenc}",

"\\usetikzlibrary{calc}","\\usepackage{amssymb}","\\usepackage{amsbsy}"))

library(urca)

library(zoo)

library(vars)

library(tsDyn,lib.loc="C:/R/R-2.12.0/testlibrary")

library(xtable)

xcolours<-c("black","red","green","blue","orange","brown","violet",

"turquoise","pink","magenta","yellow","lightblue")

## chunk number 2: importing.data

renter<-read.table("renter_mnd.sdv",sep=";",dec=",",header=TRUE)

renter<-renter[!is.na(renter$NIBOR.T.N.nom),]

renter<-renter[!is.na(renter$NIBOR.12M.nom),]

NIBTN<-as.zoo(ts(renter$NIBOR.T.N.nom,frequency=12,start=c(1985,5),end=c(2010,12)))

NIB12M<-as.zoo(ts(renter$NIBOR.12M.nom,frequency=12,start=c(1985,5),end=c(2010,12)))

## chunk number 3: fig.NIB12MTN

par(mfrow=c(2,1))

plot(NIB12M,type='p',main='Plot of NIB12M')

plot(NIBTN,type='p',main='Plot of NIBTN')

## chunk number 4: make.TestNIB12MTN

TestNIBTN<-NIBTN

TestNIB12M<-NIB12M

OutliersNIBTN<-NIBTN[c(13,20,21,89,90,92)]

TestNIBTN[13]<-14.205 #interpolation between 14.01 in Apr. 86 and 14.4 in Jun. 86
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TestNIBTN[20]<-14.42 #interpolation between 14.33 in Nov. 86 and 14.6 in Feb. 87

TestNIBTN[21]<-14.51 #interpolation between 14.33 in Nov. 86and 14.6 in Feb. 87

TestNIBTN[89]<-11.00 #interpolation between 11.08 in Aug. 92 and 10.84 in Nov. 92

TestNIBTN[90]<-10.92 #interpolation between 11.08 in Aug. 92 and 10.84 in Nov. 92

TestNIBTN[92]<-11.165 #interpolation between 10.84 in Nov. 92 and 11.49 in Jan. 93

TestNIBTN[c(13,20,21,89,90,92)] #The new values in TestNIBTN:

OutliersNIB12M<-NIB12M[c(20,21)]

TestNIB12M[20]<-14.89 #interpolation between 14.78 in Nov. 86 and 15.12 in Feb. 87

TestNIB12M[21]<-15.0 #interpolation between 14.78 in Nov. 86 and 15.12 in Feb. 87

TestNIB12M[c(20,21)] #The new values in TestNIB12M:

## chunk number 5: fig.TestNIB12MTN

par(mfrow=c(2,1))

plot(TestNIB12M,type='p',main='Plot of TestNIB12M')

plot(TestNIBTN,type='p',main='Plot of TestNIBTN')

## chunk number 6: compute.VAR.tsDyn

NIB12MTN <- cbind(NIB12M,NIBTN)

TestNIB12MTN <- cbind(TestNIB12M,TestNIBTN)

NIB12MTN.lVAR<-lineVar(NIB12MTN,lag=3,include="const",model="VAR",I="level",beta=NULL,

estim=c("2OLS", "ML"),LRinclude=c("none", "const", "trend","both"))

summary(NIB12MTN.lVAR)

NIB12MTN.VAR.summary<-summary(NIB12MTN.lVAR)

NIB12MTN.VAR.tab<-t(NIB12MTN.VAR.summary$bigcoefficients)

tab.NIB12MTN.VAR<-xtable(NIB12MTN.VAR.tab,digits = 3,align="|l|l|l|")

## chunk number 7: tab.NIB12MTN.var.coeff

print(tab.NIB12MTN.VAR,floating=FALSE,colnames=TRUE,rownames=TRUE,

sanitize.text.function = function(x){x})

## chunk number 8: diag.test.NIB12MTN.var

NIB12MTN.VAR<-VAR(NIB12MTN,type="const",lag.max=10,ic="SC")

NIB12MTN.VAR.summary<-summary(NIB12MTN.VAR)

NIB12MTN.VAR.arch<-arch.test(NIB12MTN.VAR,multivariate.only=FALSE)

NIB12MTN.VAR.normality<-normality.test(NIB12MTN.VAR,multivariate.only=FALSE)

NIB12MTN.VAR.serial<-serial.test(NIB12MTN.VAR)

NIB12MTN.VAR2<-VAR(NIB12MTN,p=2,type="none")

NIB12MTN.VAR2.serial<-serial.test(NIB12MTN.VAR2)

NIB12MTN.VAR.ArchNormality<-rbind(c(NIB12MTN.VAR.arch$arch.mul$statistic,

NIB12MTN.VAR.arch$arch.mul$parameter,NIB12MTN.VAR.arch$arch.mul$p.value),

c(NIB12MTN.VAR.arch$arch.uni$NIB12M$statistic,

NIB12MTN.VAR.arch$arch.uni$NIB12M$parameter,

NIB12MTN.VAR.arch$arch.uni$NIB12M$p.value),

c(NIB12MTN.VAR.arch$arch.uni$NIBTN$statistic,

NIB12MTN.VAR.arch$arch.uni$NIBTN$parameter,

NIB12MTN.VAR.arch$arch.uni$NIBTN$p.value),

c(NIB12MTN.VAR.normality$jb.mul$JB$statistic,

NIB12MTN.VAR.normality$jb.mul$JB$parameter,

NIB12MTN.VAR.normality$jb.mul$JB$p.value),

c(NIB12MTN.VAR.normality$jb.mul$Skewness$statistic,

NIB12MTN.VAR.normality$jb.mul$Skewness$parameter,

NIB12MTN.VAR.normality$jb.mul$Skewness$p.value),

c(NIB12MTN.VAR.normality$jb.mul$Kurtosis$statistic,

NIB12MTN.VAR.normality$jb.mul$Kurtosis$parameter,

NIB12MTN.VAR.normality$jb.mul$Kurtosis$p.value),
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c(NIB12MTN.VAR.normality$jb.uni$NIB12M$statistic,

NIB12MTN.VAR.normality$jb.uni$NIB12M$parameter,

NIB12MTN.VAR.normality$jb.uni$NIB12M$p.value),

c(NIB12MTN.VAR.normality$jb.uni$NIBTN$statistic,

NIB12MTN.VAR.normality$jb.uni$NIBTN$parameter,

NIB12MTN.VAR.normality$jb.uni$NIBTN$p.value))

rownames(NIB12MTN.VAR.ArchNormality)<-c("Multivariate ARCH-LM test",

"ARCH-LM test of NIB12M","ARCH-LM test of NIBTN","Multivariate JB test",

"Multivariate Skewness test","Multivariate Kurtosis test","JB test of NIB12M",

"JB test of NIBTN")

colnames(NIB12MTN.VAR.ArchNormality)<-c("Statistic","df","p-value")

NIB12MTN.VAR.SerialTests<-rbind(c(NIB12MTN.VAR2.serial$serial$statistic,

NIB12MTN.VAR2.serial$serial$parameter,NIB12MTN.VAR2.serial$serial$p.value),

c(NIB12MTN.VAR.serial$serial$statistic,NIB12MTN.VAR.serial$serial$parameter,

NIB12MTN.VAR.serial$serial$p.value))

rownames(NIB12MTN.VAR.SerialTests)<-c("\\code{K=2}","\\code{K=3}")

colnames(NIB12MTN.VAR.SerialTests)<-c("Statistic","df","p-value")

## chunk number 9: tab.NIB12MTN.VAR.ArchNormality

print(xtable(NIB12MTN.VAR.ArchNormality,digits = c(0,1,0,3),align="|l|r|r|r|",

display=c("f","f","f","g")),floating=FALSE,

sanitize.text.function = function(x){x})

## chunk number 10: tab.NIB12MTN.VAR.SerialTests

print(xtable(NIB12MTN.VAR.SerialTests,digits = c(0,1,0,3),align="|l|r|r|r|",

display=c("f","f","f","g")),floating=FALSE,

sanitize.text.function = function(x){x})

## chunk number 11: ADF-NIBTN.ct

NIBTN.ct<-ur.df(NIBTN,lags=10,selectlags="AIC",type='trend')

summary(NIBTN.ct)

NIBTN.ct.tab<-cbind(t(as.matrix(NIBTN.ct@teststat)),as.matrix(NIBTN.ct@cval))

rownames(NIBTN.ct.tab)<-c("$\\tau_3$","$\\phi_2$","$\\phi_3$")

colnames(NIBTN.ct.tab)<-c("statistic","1\\%","5\\%","10\\%")

## chunk number 12: tab.NIBTN.ct

print(xtable(NIBTN.ct.tab,digits = c(2,2,2,2,2)),floating=FALSE,

sanitize.text.function = function(x){x})

## chunk number 13: fig.NIBTN.ct

plot(NIBTN.ct)

## chunk number 14: ADF-NIBTN.co

NIBTN.co<-ur.df(NIBTN,lags=10,selectlags="AIC",type='drift')

summary(NIBTN.co)

NIBTN.co.tab<-cbind(t(as.matrix(NIBTN.co@teststat)),as.matrix(NIBTN.co@cval))

rownames(NIBTN.co.tab)<-c("$\\tau_2$","$\\phi_1$")

colnames(NIBTN.co.tab)<-c("statistic","1\\%","5\\%","10\\%")

## chunk number 15: tab.NIBTN.co

print(xtable(NIBTN.co.tab,digits = c(2, 2, 2, 2, 2)),floating=FALSE,

sanitize.text.function = function(x){x})

## chunk number 16: ADF-diffNIBTN.ct

diffNIBTN<-diff(NIBTN)

diffNIBTN.ct<-ur.df(diffNIBTN,lags=10,selectlags="AIC",type='trend')

summary(diffNIBTN.ct)

diffNIBTN.ct.tab<-cbind(t(as.matrix(diffNIBTN.ct@teststat)),

as.matrix(diffNIBTN.ct@cval))
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rownames(diffNIBTN.ct.tab)<-c("$\\tau_3$","$\\phi_2$","$\\phi_3$")

colnames(diffNIBTN.ct.tab)<-c("statistic","1\\%","5\\%","10\\%")

## chunk number 17: tab.diffNIBTN.ct

print(xtable(diffNIBTN.ct.tab,digits = c(2, 2, 2, 2, 2)),floating=FALSE,

sanitize.text.function = function(x){x})

## chunk number 18: KPSS-NIBTN

NIBTN.kpss<-ur.kpss(NIBTN,type="mu",lags="long")

summary(NIBTN.kpss)

NIBTN.kpss.tau<-ur.kpss(NIBTN,type="tau",lags="long")

summary(NIBTN.kpss.tau)

NIBTN.kpss.tab<-rbind(cbind(t(as.matrix(NIBTN.kpss@teststat)),

as.matrix(NIBTN.kpss@cval)),cbind(t(as.matrix(NIBTN.kpss.tau@teststat)),

as.matrix(NIBTN.kpss.tau@cval)))

rownames(NIBTN.kpss.tab)<-c("$\\hat{\\eta}_\\mu$","$\\hat{\\eta}_\\tau$")

colnames(NIBTN.kpss.tab)<-c("statistic","10\\%","5\\%","2.5\\%","1\\%")

## chunk number 19: tab.NIBTN.kpss

print(xtable(NIBTN.kpss.tab,digits = c(2, 2, 2, 2, 2, 2)),floating=FALSE,

sanitize.text.function = function(x){x})

## chunk number 20: ADF-NIB12M.ct

NIB12M.ct<-ur.df(NIB12M,lags=10,selectlags="AIC",type='trend')

summary(NIB12M.ct)

NIB12M.ct.tab<-cbind(t(as.matrix(NIB12M.ct@teststat)),as.matrix(NIB12M.ct@cval))

rownames(NIB12M.ct.tab)<-c("$\\tau_3$","$\\phi_2$","$\\phi_3$")

colnames(NIB12M.ct.tab)<-c("statistic","1\\%","5\\%","10\\%")

## chunk number 21: tab.NIB12M.ct

print(xtable(NIB12M.ct.tab,digits = c(2, 2, 2, 2, 2)),floating=FALSE,

sanitize.text.function = function(x){x})

## chunk number 22: fig.NIB12M.ct

plot(NIB12M.ct)

## chunk number 23: ADF-NIB12M.co

NIB12M.co<-ur.df(NIB12M,lags=10,selectlags="AIC",type='drift')

summary(NIB12M.co)

NIB12M.co.tab<-cbind(t(as.matrix(NIB12M.co@teststat)),as.matrix(NIB12M.co@cval))

rownames(NIB12M.co.tab)<-c("$\\tau_2$","$\\phi_1$")

colnames(NIB12M.co.tab)<-c("statistic","1\\%","5\\%","10\\%")

## chunk number 24: tab.NIB12M.co

print(xtable(NIB12M.co.tab,caption = str,digits = c(2,2,2,2,2)),

floating=FALSE,sanitize.text.function = function(x){x})

## chunk number 25: ADF-diffNIB12M.ct

diffNIB12M<-diff(NIB12M)

diffNIB12M.ct<-ur.df(diffNIB12M,lags=10,selectlags="AIC",type='trend')

summary(diffNIB12M.ct)

diffNIB12M.ct.tab<-cbind(t(as.matrix(diffNIB12M.ct@teststat)),

as.matrix(diffNIB12M.ct@cval))

rownames(diffNIB12M.ct.tab)<-c("$\\tau_3$","$\\phi_2$","$\\phi_3$")

colnames(diffNIB12M.ct.tab)<-c("statistic","1\\%","5\\%","10\\%")

## chunk number 26: tab.diffNIB12M.ct

print(xtable(diffNIB12M.ct.tab,digits = c(2,2,2,2,2)),floating=FALSE,

sanitize.text.function = function(x){x})

## chunk number 27: KPSS-NIB12M

NIB12M.kpss<-ur.kpss(NIB12M,type="mu",lags="long")
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summary(NIB12M.kpss)

NIB12M.kpss.tau<-ur.kpss(NIB12M,type="tau",lags="long")

summary(NIB12M.kpss.tau)

NIB12M.kpss.tab<-rbind(cbind(t(as.matrix(NIB12M.kpss@teststat)),

as.matrix(NIB12M.kpss@cval)),cbind(t(as.matrix(NIB12M.kpss.tau@teststat)),

as.matrix(NIB12M.kpss.tau@cval)))

rownames(NIB12M.kpss.tab)<-c("$\\hat{\\eta}_\\mu$","$\\hat{\\eta}_\\tau$")

colnames(NIB12M.kpss.tab)<-c("statistic","10\\%","5\\%","2.5\\%","1\\%")

## chunk number 28: tab.NIB12M.kpss

print(xtable(NIB12M.kpss.tab,digits = c(2,2,2,2,2,2)),floating=FALSE,

sanitize.text.function = function(x){x})

## chunk number 29: cajo-NIB12MTN

NIB12MTN.trace <- ca.jo(NIB12MTN, type = 'trace', K = 3, ecdet="none")

summary(NIB12MTN.trace)

NIB12MTN.eigen <- ca.jo(NIB12MTN, type = 'eigen', K = 3, ecdet="none")

summary(NIB12MTN.eigen)

NIB12MTN.trace.tab<-cbind(as.matrix(NIB12MTN.trace@teststat),

as.matrix(NIB12MTN.trace@cval))

NIB12MTN.eigen.tab<-cbind(as.matrix(NIB12MTN.eigen@teststat),

as.matrix(NIB12MTN.eigen@cval))

colnames(NIB12MTN.trace.tab)<-c("statistic","10\\%","5\\%","1\\%")

colnames(NIB12MTN.eigen.tab)<-c("statistic","10\\%","5\\%","1\\%")

## chunk number 30: tab.NIB12MTN.trace

print(xtable(NIB12MTN.trace.tab,digits = c(2,2,2,2,2)),floating=FALSE,

sanitize.text.function = function(x){x})

## chunk number 31: tab.NIB12MTN.eigen

print(xtable(NIB12MTN.eigen.tab,digits = c(2,2,2,2,2)),floating=FALSE,

sanitize.text.function = function(x){x})

## chunk number 32: fig.coint.relation

y1<-NIB12MTN%*%as.matrix(NIB12MTN.trace@V[1:2,1],nrow=2,ncol=1)

y2<-NIB12MTN%*%as.matrix(NIB12MTN.trace@V[1:2,2],nrow=2,ncol=1)

r1<-NIB12MTN.trace@RK%*%NIB12MTN.trace@V[,1]

r2<-NIB12MTN.trace@RK%*%NIB12MTN.trace@V[,2]

par(mfrow=c(2,2))

plot(y1,type='l',main='Plot of $\\boldsymbol{\\beta}_{1}y$')

plot(r1,type='l',main='Plot of $\\boldsymbol{\\beta}_{1}R_1$')

plot(y2,type='l',main='Plot of $\\boldsymbol{\\beta}_{2}y$')

plot(r2,type='l',main='Plot of $\\boldsymbol{\\beta}_{2}R_1$')

## chunk number 33: compute.vecm.tsDyn

NIB12MTN.vecm<-VECM(NIB12MTN, lag=2,r=1, include = "const",

beta=NULL,estim="ML",LRinclude="none")

NIB12MTN.vecm.summary<-summary(NIB12MTN.vecm)

NIB12MTN.vecm.tab<-rbind(t(NIB12MTN.vecm.summary$bigcoefficients),

t(round(NIB12MTN.vecm$model.specific$coint,digits=4)))

rownames(NIB12MTN.vecm.tab)[7]<-"Cointegration relation"

tab.NIB12MTN.vecm<-xtable(NIB12MTN.vecm.tab,digits = 3,align="|l|l|l|")

## chunk number 34: compute.vecm.urca eval=FALSE

## NIB12MTN.eigen<-ca.jo(NIB12MTN,type="eigen",K=3,spec= "transitory",

## ecdet="none")

## NIB12MTN.vecm<-cajorls(NIB12MTN.eigen,r=1)

## NIB12MTN.vecm
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## NIB12MTN.vecm.tab<-rbind(NIB12MTN.vecm$rlm$coefficients,

## t(NIB12MTN.vecm$beta[,1]))

## rownames(NIB12MTN.vecm.tab)[7]<-"Cointegration relation"

## tab.NIB12MTN.vecm<-xtable(NIB12MTN.vecm.tab,digits = 3,align="|l|l|l|")

## NIB12MTN.vecm$residuals<-NIB12MTN.vecm$rlm$residuals

## chunk number 35: tab.NIB12MTN.vecm.coeff

print(tab.NIB12MTN.vecm,floating=FALSE,colnames=TRUE,rownames=TRUE,

sanitize.text.function = function(x){x})

## chunk number 36: TVECM.model

pdf(file="thesis3-TVECM-GridSearch.pdf", onefile=TRUE)

NIB12MTN.tvecm<-TVECM(NIB12MTN,nthresh=1,lag=2,ngridBeta=400,ngridTh=400,

beta=list(int=c(0.85,1.25)),th1=list(int=c(-1.5,1.5)),plot=TRUE,

trim=0.1,common="All",trace=FALSE)

TestNIB12MTN.tvecm<-TVECM(TestNIB12MTN,nthresh=1,lag=2,ngridBeta=400,

ngridTh=400,beta=list(int=c(0.85,1.25)),th1=list(int=c(-1.0,1.25)),

plot=FALSE,trim=0.1,common="All",trace=FALSE)

dev.off(which = dev.cur())

NIB12MTN.tvecm.summary<-summary(NIB12MTN.tvecm)

A<-t(rbind(NIB12MTN.tvecm.summary$bigcoefficients$Bdown,

NIB12MTN.tvecm.summary$bigcoefficients$Bup))

B<-rbind(colnames(A),A)

B<-cbind(rownames(B),B)

tvecm.model.coeff<-xtable(B,align=c("|l|l|l|l|l|l|"))

## chunk number 37: fig.diffSeries

diffR<-diff(NIB12M)

diffr<-diff(NIBTN)

Spread<-NIB12M-NIBTN

diffSpread<-diff(Spread)

SpreadMinus1<-Spread[2:length(Spread)]

par(mfrow=c(3,1))

plot(SpreadMinus1,diffR,type="l",ylab="$\\Delta R_t$",

xlab="$s_{t-1}=R_{t-1}-r_{t-1}$")

abline(v=NIB12MTN.tvecm$model.specific$Thresh,col="red")

plot(SpreadMinus1,diffr,type="l",ylab="$\\Delta r_t$",

xlab="$s_{t-1}=R_{t-1}-r_{t-1}$")

abline(v=NIB12MTN.tvecm$model.specific$Thresh,col="red")

plot(SpreadMinus1,diffSpread,type="l",ylab="$\\Delta s_t$",

xlab="$s_{t-1}=R_{t-1}-r_{t-1}$")

abline(v=NIB12MTN.tvecm$model.specific$Thresh,col="red")

## chunk number 38: make.table.TVECM.model

make.table.TVECM<-function() {

Result<-numeric(0)

for (i in 1:2) {

for (j in 1:3) {

x.tvecm<-TVECM(NIB12MTN,nthresh=i,lag=j,

ngridBeta=0,ngridTh=400,beta=list(exact=1),

th1=list(int=c(-1.5,1.5)),plot=FALSE,trim=0.1,

common="All",trace=FALSE)

Tsum<-summary(x.tvecm)

if (length(Tsum$nobs_regime)<2.5) {

nobsRegime<-c(round(Tsum$nobs_regime[1],digits=3),NA,
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round(Tsum$nobs_regime[2],digits=3))

} else {

nobsRegime<-round(Tsum$nobs_regime,digits=3)

}

Result<-rbind(Result,c(i,j,1,Tsum$nparB,round(Tsum$aic,digits=1),

round(Tsum$bic,digits=1),round(Tsum$SSR,digits=1),

nobsRegime))

x.tvecm<-TVECM(NIB12MTN,nthresh=i,lag=j,ngridBeta=400,

ngridTh=400,plot=FALSE,trim=0.1,beta=list(int=c(0.85,1.25)),

th1=list(int=c(-1.5,1.5)),common="All",trace=FALSE)

Tsum<-summary(x.tvecm)

if (length(Tsum$nobs_regime)<2.5) {

nobsRegime<-c(round(Tsum$nobs_regime[1],digits=3),NA,

round(Tsum$nobs_regime[2],digits=3))

} else {

nobsRegime<-round(Tsum$nobs_regime,digits=3)

}

Result<-rbind(Result,c(i,j,

round(Tsum$model.specific$beta,digits=3),Tsum$nparB,

round(Tsum$aic,digits=1),round(Tsum$bic,digits=1),

round(Tsum$SSR,digits=1),nobsRegime))

}

}

colnames(Result)<-c("nthresh","lag","$\\beta$","Parameters","AIC","BIC",

"SSR","ndown","nmiddle","nup")

return(Result)

}

Result.tvecm<-make.table.TVECM()

## chunk number 39: tab.Result.tvecm

print(xtable(Result.tvecm,digits=c(0,0,0,3,0,1,1,1,3,3,3)),

include.rownames=FALSE,floating=FALSE,

sanitize.text.function = function(x){x})

## chunk number 40: Residuals.TVECM.model

ArchLM.test<-function(y,q=-1) {

T<-dim(y)[1]

K<-dim(y)[2]

if (q<0) {

if (K>1) {

q<-5

} else if (K==1) {

q<-16

}

}

Res<-matrix(0,nrow=T,ncol=K*(K+1)/2)

for (i in 1:T) {

help<-y[i,] %*% t(y[i,])

Res[i,]<-help[lower.tri(help,diag=TRUE)]

}

Res.Varq<-VAR(Res,p=q,type="const")

Residq<-cbind(Res.Varq$varresult$y1$residuals,Res.Varq$varresult$y2$residuals,

Res.Varq$varresult$y3$residuals)

111



Appendix C. The R code chunks used in Chapter 4 and 5

Sigmaq<-(1/(T-q)) * t(Residq) %*% Residq

Res.Var0<-lm(Res ~1)

Resid0<-Res.Var0$residuals

Sigma0<-(1/T) * t(Resid0) %*% Resid0

InvSigma0<-solve(Sigma0)

ArchLM<-T*K*(K+1)/2-T*sum(diag(Sigmaq%*%InvSigma0))

df<-q*K*K*(K+1)*(K+1)/4

Pval=pchisq(ArchLM,df,lower.tail=FALSE)

return(list(ArchLM=ArchLM,df=df,Pval=Pval))

}

NIB12MTN.VAR.resid<-cbind(NIB12MTN.VAR$varresult$NIB12M$residuals,

NIB12MTN.VAR$varresult$NIBTN$residuals)

ArchLM.test.VAR<-ArchLM.test(NIB12MTN.VAR.resid)

ArchLM.test.tvecm<-ArchLM.test(NIB12MTN.tvecm$residuals)

ARCHtest.tab<-c(ArchLM.test.VAR$ArchLM,ArchLM.test.VAR$df,ArchLM.test.VAR$Pval)

ARCHtest.tab<-rbind(ARCHtest.tab,

c(ArchLM.test.tvecm$ArchLM,ArchLM.test.tvecm$df,ArchLM.test.tvecm$Pval))

rownames(ARCHtest.tab)<-c("VAR model","TVECM")

colnames(ARCHtest.tab)<-c("Test statistic","df","P-value")

library(asbio)

NIB12MTN.VAR.resid.DH<-DH.test(NIB12MTN.VAR.resid,c("NIB12M","NIBTN"))

NIB12MTN.VAR.DH.tab<-rbind(NIB12MTN.VAR.resid.DH$multi,NIB12MTN.VAR.resid.DH$univ)

dimnames(NIB12MTN.VAR.DH.tab)[[1]][1]<-"Multivariate"

NIB12MTN.tvecm.resid.DH<-DH.test(NIB12MTN.tvecm$residuals,c("NIB12M","NIBTN"))

NIB12MTN.tvecm.DH.tab<-rbind(NIB12MTN.tvecm.resid.DH$multi,NIB12MTN.tvecm.resid.DH$univ)

dimnames(NIB12MTN.tvecm.DH.tab)[[1]][1]<-"Multivariate"

NIB12MTN.DH.tab<-cbind(NIB12MTN.VAR.DH.tab,NIB12MTN.tvecm.DH.tab)

## chunk number 41: tab.tvecm.model

print(tvecm.model.coeff,hline.after=c(1,nrow(tvecm.model.coeff)),

floating=FALSE,quote=FALSE,include.colnames=FALSE,include.rownames=FALSE,

add.to.row=list(pos=list(0,1),

command=c("\\hline & \\multicolumn{2}{|l|}{\\textbf{Lower regime}} &

\\multicolumn{2}{|l|}{\\textbf{Upper regime}}\\\\[1mm]\\cline{2-5}","")),

sanitize.text.function = function(x){x})

## chunk number 42: tab.ARCHtest.Residuals

print(xtable(ARCHtest.tab,digits = c(2,2,0,5),align=c("|r|r|r|r|")),floating=FALSE,

sanitize.text.function = function(x){x})

## chunk number 43: tab.DHtest.Residuals

NIB12MTN.DH<-xtable(NIB12MTN.DH.tab,digits=c(2,2,0,5,2,0,5),align=c("|l|r|r|r|r|r|r|"))

print(NIB12MTN.DH,hline.after=c(0,1,nrow(NIB12MTN.DH)),

floating=FALSE,quote=FALSE,include.colnames=TRUE,include.rownames=TRUE,

add.to.row=list(pos=list(-1,1),

command=c("\\hline & \\multicolumn{3}{|l|}{\\textbf{VAR model}} &

\\multicolumn{3}{|l|}{\\textbf{TVECM}}\\\\[1mm]\\cline{2-7}","")),

sanitize.text.function = function(x){x})

#print(xtable(NIB12MTN.DH.tab),floating=FALSE,rownames=TRUE,colnames=TRUE,

# sanitize.text.function = function(x){x})

## chunk number 44: responses.TVECM1

w<-NIB12MTN%*%NIB12MTN.tvecm$model.specific$coint

m<-2

w<-w[(m+2):length(w)]
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Thresh<-NIB12MTN.tvecm$model.specific$Thresh

Bdown<-NIB12MTN.tvecm$coefficients$Bdown

Bup<-NIB12MTN.tvecm$coefficients$Bup

Res1R<-ifelse(w<=Thresh,Bdown[1,2]+Bdown[1,1]*w,Bup[1,2]+Bup[1,1]*w)

Res1r<-ifelse(w<=Thresh,Bdown[2,2]+Bdown[2,1]*w,Bup[2,2]+Bup[2,1]*w)

s1<-cbind(Res1R,Res1r)%*%NIB12MTN.tvecm$model.specific$coint

Ind<-order(w)

## chunk number 45: fig.responses.TVECM1

par(mfrow=c(1,1))

plot(w[Ind],Res1r[Ind],type="l",lty=1,col=xcolours[1],xlab="$s_{t-1}$",

ylab="Response",xlim=c(-5,max(w)),ylim=c(-5,5))

axis(4)

abline(0,0,col="blue")

lines(w[Ind],Res1R[Ind],type="l",lty=1,col=xcolours[2])

lines(w[Ind],s1[Ind],type="l",lty=1,col=xcolours[3])

legend("topright",c("$\\Delta r_t$","$\\Delta R_t$","$\\Delta s_t$"),

lty=1,col=xcolours[1:3])

## chunk number 46: responses.TVECM2

m<-2

NIB12MTN.tvecm2<-TVECM(NIB12MTN,nthresh=2,lag=m,ngridBeta=0,ngridTh=200,

beta=list(exact=NIB12MTN.tvecm$model.specific$beta),plot=FALSE,

trim=0.1,common="All",trace=FALSE)

w<-NIB12MTN%*%NIB12MTN.tvecm2$model.specific$coint

w<-w[(m+2):length(w)]

Thresh<-NIB12MTN.tvecm2$model.specific$Thresh

Bdown<-NIB12MTN.tvecm2$coefficients$Bdown

Bmiddle<-NIB12MTN.tvecm2$coefficients$Bmiddle

Bup<-NIB12MTN.tvecm2$coefficients$Bup

Res2R<-ifelse(w<=Thresh[1],Bdown[1,2]+Bdown[1,1]*w,

ifelse(w<=Thresh[2],Bmiddle[1,2]+Bmiddle[1,1]*w,Bup[1,2]+Bup[1,1]*w))

Res2r<-ifelse(w<=Thresh[1],Bdown[2,2]+Bdown[2,1]*w,

ifelse(w<=Thresh[2],Bmiddle[2,2]+Bmiddle[2,1]*w,Bup[2,2]+Bup[2,1]*w))

s2<-cbind(Res2R,Res2r)%*%NIB12MTN.tvecm$model.specific$coint

Ind<-order(w)

## chunk number 47: fig.responses.TVECM2

par(mfrow=c(1,1))

plot(w[Ind],Res2r[Ind],type="l",lty=1,col=xcolours[1],xlim=c(-5,max(w)),

xlab="$s_{t-1}$",ylab="Response",ylim=c(-5,5))

axis(4)

abline(0,0,col="blue")

lines(w[Ind],Res2R[Ind],type="l",lty=1,col=xcolours[2])

lines(w[Ind],s2[Ind],type="l",lty=1,col=xcolours[3])

legend("topright",c("$\\Delta r_t$","$\\Delta R_t$","$\\Delta s_t$"),

lty=1,col=xcolours[1:3])

## chunk number 48: Han-Seo-Test

TimeUsed.NIB12MTN.Fix.3Reg<-system.time(NIB12MTN.HSTest.FixedReg.3Reg<-

TVECM.XHStest(NIB12MTN,nboot=1000,lag=2,trim=0.1,tolerance=1e-10,

fixed.beta=NIB12MTN.tvecm$model.specific$beta,ngridTh=1000,type="3Reg",

boot.type="FixedReg",hpc="none",trace=FALSE))

TimeUsed.NIB12MTN.Res.3Reg<-system.time(NIB12MTN.HSTest.ResBoot.3Reg<-

TVECM.XHStest(NIB12MTN,nboot=1000,lag=2,trim=0.1,
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tolerance=1e-10,fixed.beta=NIB12MTN.tvecm$model.specific$beta,

ngridTh=1000,type="3Reg",boot.type="ResBoot",hpc="none",trace=FALSE))

TimeUsed.NIB12MTN.Fix.2Reg<-system.time(NIB12MTN.HSTest.FixedReg.2Reg<-

TVECM.XHStest(NIB12MTN,nboot=1000,lag=2,trim=0.1,

tolerance=1e-10,fixed.beta=NIB12MTN.tvecm$model.specific$beta,

ngridTh=1000,type="2Reg",boot.type="FixedReg",hpc="none",trace=FALSE))

TimeUsed.NIB12MTN.Res.2Reg<-system.time(NIB12MTN.HSTest.ResBoot.2Reg<-

TVECM.XHStest(NIB12MTN,nboot=1000,lag=2,trim=0.1,

tolerance=1e-10,fixed.beta=NIB12MTN.tvecm$model.specific$beta,

ngridTh=1000,type="2Reg",boot.type="ResBoot",hpc="none",trace=FALSE))

TimeUsed.TestNIB12MTN.Fix.2Reg<-system.time(TestNIB12MTN.HSTest.FixedReg.2Reg<-

TVECM.XHStest(TestNIB12MTN,nboot=1000,lag=2,

trim=0.1,tolerance=1e-10,fixed.beta=TestNIB12MTN.tvecm$model.specific$beta,

ngridTh=1000,type="2Reg",boot.type="FixedReg",hpc="none",trace=FALSE))

TimeUsed.TestNIB12MTN.Res.2Reg<-system.time(TestNIB12MTN.HSTest.ResBoot.2Reg<-

TVECM.XHStest(TestNIB12MTN,nboot=1000,lag=2,trim=0.1,tolerance=1e-10,

fixed.beta=TestNIB12MTN.tvecm$model.specific$beta,ngridTh=1000,type="2Reg",

boot.type="ResBoot",hpc="none",trace=FALSE))

TimeUsed.TestNIB12MTN.Fix.3Reg<-system.time(TestNIB12MTN.HSTest.FixedReg.3Reg<-

TVECM.XHStest(TestNIB12MTN,nboot=1000,lag=2,trim=0.1,tolerance=1e-10,

fixed.beta=TestNIB12MTN.tvecm$model.specific$beta,ngridTh=1000,type="3Reg",

boot.type="FixedReg",hpc="none",trace=FALSE))

TimeUsed.TestNIB12MTN.Res.3Reg<-system.time(TestNIB12MTN.HSTest.ResBoot.3Reg<-

TVECM.XHStest(TestNIB12MTN,nboot=1000,lag=2,trim=0.1,tolerance=1e-10,

fixed.beta=TestNIB12MTN.tvecm$model.specific$beta,ngridTh=1000,type="3Reg",

boot.type="ResBoot",hpc="none",trace=FALSE))

## chunk number 49: makes.Result.HSTest.NIB12MTN

Result.HSTest<-c(1,NIB12MTN.HSTest.FixedReg.2Reg$args$boot.type,

NIB12MTN.HSTest.FixedReg.2Reg$args$nboot,

format(round(NIB12MTN.HSTest.FixedReg.2Reg$stat,digits=1),nsmall=1),

format(NIB12MTN.HSTest.FixedReg.2Reg$PvalBoot,nsmall=3),

round(TimeUsed.NIB12MTN.Fix.2Reg[["elapsed"]],digits=1))

attr(Result.HSTest,"dimnames")<-NULL

Result.HSTest<-rbind(Result.HSTest,c(2,NIB12MTN.HSTest.FixedReg.3Reg$args$boot.type,

NIB12MTN.HSTest.FixedReg.3Reg$args$nboot,

round(NIB12MTN.HSTest.FixedReg.3Reg$stat,digits=1),

NIB12MTN.HSTest.FixedReg.3Reg$PvalBoot,

round(TimeUsed.NIB12MTN.Fix.3Reg[["elapsed"]],digits=1)),deparse.level=0)

Result.HSTest<-rbind(Result.HSTest,c(1,NIB12MTN.HSTest.ResBoot.2Reg$args$boot.type,

NIB12MTN.HSTest.ResBoot.2Reg$args$nboot,

format(round(NIB12MTN.HSTest.ResBoot.2Reg$stat,digits=1),nsmall=1),

format(NIB12MTN.HSTest.ResBoot.2Reg$PvalBoot,nsmall=3),

round(TimeUsed.NIB12MTN.Res.2Reg[["elapsed"]],digits=1)),deparse.level=0)

Result.HSTest<-rbind(Result.HSTest,c(2,NIB12MTN.HSTest.ResBoot.3Reg$args$boot.type,

NIB12MTN.HSTest.ResBoot.3Reg$args$nboot,

round(NIB12MTN.HSTest.ResBoot.3Reg$stat,digits=1),

format(NIB12MTN.HSTest.ResBoot.3Reg$PvalBoot,nsmall=3),

format(round(TimeUsed.NIB12MTN.Res.3Reg[["elapsed"]],digits=1),nsmall=1)),

deparse.level=0)

Result.HSTest<-rbind(Result.HSTest,c(1,TestNIB12MTN.HSTest.FixedReg.2Reg$args$boot.type,

TestNIB12MTN.HSTest.FixedReg.2Reg$args$nboot,
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format(round(TestNIB12MTN.HSTest.FixedReg.2Reg$stat,digits=1),nsmall=1),

TestNIB12MTN.HSTest.FixedReg.2Reg$PvalBoot,

round(TimeUsed.TestNIB12MTN.Fix.2Reg[["elapsed"]],digits=1)),deparse.level=0)

Result.HSTest<-rbind(Result.HSTest,c(2,TestNIB12MTN.HSTest.FixedReg.3Reg$args$boot.type,

TestNIB12MTN.HSTest.FixedReg.3Reg$args$nboot,

round(TestNIB12MTN.HSTest.FixedReg.3Reg$stat,digits=1),

format(TestNIB12MTN.HSTest.FixedReg.3Reg$PvalBoot,nsmall=3),

round(TimeUsed.TestNIB12MTN.Fix.3Reg[["elapsed"]],digits=1)),deparse.level=0)

Result.HSTest<-rbind(Result.HSTest,c(1,TestNIB12MTN.HSTest.ResBoot.2Reg$args$boot.type,

TestNIB12MTN.HSTest.ResBoot.2Reg$args$nboot,

format(round(TestNIB12MTN.HSTest.ResBoot.2Reg$stat,digits=1),nsmall=1),

format(TestNIB12MTN.HSTest.ResBoot.2Reg$PvalBoot,nsmall=3),

round(TimeUsed.TestNIB12MTN.Res.2Reg[["elapsed"]],digits=1)),deparse.level=0)

Result.HSTest<-rbind(Result.HSTest,c(2,TestNIB12MTN.HSTest.ResBoot.3Reg$args$boot.type,

TestNIB12MTN.HSTest.ResBoot.3Reg$args$nboot,

round(TestNIB12MTN.HSTest.ResBoot.3Reg$stat,digits=1),

TestNIB12MTN.HSTest.ResBoot.3Reg$PvalBoot,

round(TimeUsed.TestNIB12MTN.Res.3Reg[["elapsed"]],digits=1)),deparse.level=0)

Result.HSTest<-cbind(c("NIB12MTN","","","","TestNIB12MTN","","",""),

Result.HSTest)

colnames(Result.HSTest)<-c("Data set","nthresh","boot type","nboot",

"supLM","P-value","Seconds")

tab.Result.HSTest<-xtable(Result.HSTest,align=c("|l|l|l|l|l|r|r|r|"),

digits=c(0,0,0,0,0,1,3,1))

## chunk number 50: tab.Result.HSTest

print(tab.Result.HSTest,hline.after=c(-1,0,4,nrow(tab.Result.HSTest)),

floating=FALSE,quote=FALSE,include.colnames=TRUE,include.rownames=FALSE,

sanitize.text.function = function(x){x})

## chunk number 51: fig.res.models

NIB12MTN.tvecm1.res.zoo<-zooreg(NIB12MTN.tvecm$residuals,frequency=12,

start=c(1985,8))

NIB12MTN.vecm.res.zoo<-zooreg(NIB12MTN.vecm$residuals,frequency=12,

start=c(1985,8))

par(mfrow=c(1,2))

plot(NIB12MTN.tvecm1.res.zoo[,1],main="Residuals of NIB12M",xlab="Time",

ylab="",type="p",cex=0.5,col="black",ylim=range(NIB12MTN.vecm.res.zoo[,1]))

lines(NIB12MTN.vecm.res.zoo[,1],type="p",cex=0.5,col="red")

abline(0,0)

legend("topright",c("TVECM","VECM"),bty="o",col=c("black","red"),lty=rep(1,2))

plot(NIB12MTN.tvecm1.res.zoo[,2],main="Residuals of NIBTN",xlab="Time",ylab="",

type="p",cex=0.5,col="black",ylim=range(NIB12MTN.vecm.res.zoo[,2]))

lines(NIB12MTN.vecm.res.zoo[,2],type="p",cex=0.5,col="red")

abline(0,0)

legend("topright",c("TVECM","VECM"),bty="o",col=c("black","red"),lty=rep(1,2))

## chunk number 52: make.SSR.HSTest

options(warn=-1)

SSR.HSTest<-c(1,format(round(NIB12MTN.HSTest.FixedReg.2Reg$SSR,digits=1),nsmall=1),

round(NIB12MTN.HSTest.FixedReg.2Reg$minThSSR,digits=3),

round(NIB12MTN.HSTest.FixedReg.2Reg$PercentsSSR,digits=1))

attr(SSR.HSTest,"dimnames")<-NULL

SSR.HSTest<-rbind(SSR.HSTest,c(2,round(NIB12MTN.HSTest.FixedReg.3Reg$SSR,digits=1),
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round(NIB12MTN.HSTest.FixedReg.3Reg$minThSSR,digits=3),

round(NIB12MTN.HSTest.FixedReg.3Reg$PercentsSSR,digits=1)),deparse.level=0)

SSR.HSTest<-rbind(SSR.HSTest,c(1,round(TestNIB12MTN.HSTest.FixedReg.2Reg$SSR,digits=1),

format(round(TestNIB12MTN.HSTest.FixedReg.2Reg$minThSSR,digits=3),nsmall=3),

round(TestNIB12MTN.HSTest.FixedReg.2Reg$PercentsSSR,digits=1)),deparse.level=0)

SSR.HSTest<-rbind(SSR.HSTest,c(2,round(TestNIB12MTN.HSTest.FixedReg.3Reg$SSR,digits=1),

round(TestNIB12MTN.HSTest.FixedReg.3Reg$minThSSR,digits=3),

round(TestNIB12MTN.HSTest.FixedReg.3Reg$PercentsSSR,digits=1)),deparse.level=0)

for (i in 1:4) {

if (SSR.HSTest[i,1]==SSR.HSTest[i,6]) {

SSR.HSTest[i,7]<- SSR.HSTest[i,5]

SSR.HSTest[i,6]<-NA

SSR.HSTest[i,5]<- SSR.HSTest[i,4]

SSR.HSTest[i,4]<-NA

}

}

options(warn=0)

SSR.HSTest<-cbind(c("NIB12MTN","","TestNIB12MTN",""),SSR.HSTest)

colnames(SSR.HSTest)<-c("Data set","nthresh","SSR","$\\gamma_1$","$\\gamma_2$",

"ndown","nmiddle","nup")

tab.SSR.HSTest<-xtable(SSR.HSTest,align=c("|l|l|l|r|r|r|r|r|r|"),

digits=c(0,0,0,1,3,3,1,1,1))

## chunk number 53: tab.SSR.HSTest

print(tab.SSR.HSTest,hline.after=c(-1,0,2,nrow(tab.SSR.HSTest)),

floating=FALSE,quote=FALSE,include.colnames=TRUE,include.rownames=FALSE,

sanitize.text.function = function(x){x})

## chunk number 54: make.setarTest

sNIB12MTN<- as.zoo(ts(NIB12MTN%*%NIB12MTN.tvecm$model.specific$coint,

frequency=12,start=c(1985,5),end=c(2010,12)))

sTestNIB12MTN<- as.zoo(ts(TestNIB12MTN%*%TestNIB12MTN.tvecm$model.specific$coint,

frequency=12,start=c(1985,5),end=c(2010,12)))

sTestNIB12MTN.setarTest1vs<-setarTest(sTestNIB12MTN,m=3,nboot=1000,

trim=0.1,test="1vs",hpc="none",check=FALSE)

sNIB12MTN.setarTest1vs<-setarTest(sNIB12MTN,m=3,nboot=1000,trim=0.1,

test="1vs",hpc="none",check=FALSE)

sTestNIB12MTN.setarTest2vs3<-setarTest(sTestNIB12MTN,m=3,nboot=1000,

trim=0.1,test="2vs3",hpc="none",check=FALSE)

sNIB12MTN.setarTest2vs3<-setarTest(sNIB12MTN,m=3,nboot=1000,trim=0.1,

test="2vs3",hpc="none",check=FALSE)

## chunk number 55: make.setarTest.table

sNIB12MTN.setarTest<-c(round(sNIB12MTN.setarTest1vs$Ftests[1,1],digits=1),

round(sNIB12MTN.setarTest1vs$CriticalValBoot[1,1:4],digits=1),

round(sNIB12MTN.setarTest1vs$PvalBoot[1],digits=3))

sNIB12MTN.setarTest<-rbind(sNIB12MTN.setarTest,

c(round(sNIB12MTN.setarTest1vs$Ftests[1,2],digits=1),

round(sNIB12MTN.setarTest1vs$CriticalValBoot[2,1:4],digits=1),

round(sNIB12MTN.setarTest1vs$PvalBoot[2],digits=3)))

sNIB12MTN.setarTest<-rbind(sNIB12MTN.setarTest,

c(round(sNIB12MTN.setarTest2vs3$Ftests[1,3],digits=1),

round(sNIB12MTN.setarTest2vs3$CriticalValBoot[1,1:4],digits=1),

round(sNIB12MTN.setarTest2vs3$PvalBoot[1],digits=3)))
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colnames(sNIB12MTN.setarTest)<-c("F-test","90\\%","95\\%",

"97.5\\%","99\\%","P-value")

rownames(sNIB12MTN.setarTest)<-c("1vs2","1vs3","2vs3")

tab.sNIB12MTN.setarTest<-xtable(sNIB12MTN.setarTest,align=c("|l|r|r|r|r|r|r|"),

digits=c(0,1,1,1,1,1,3))

sTestNIB12MTN.setarTest<-c(round(sTestNIB12MTN.setarTest1vs$Ftests[1,1],digits=1),

round(sTestNIB12MTN.setarTest1vs$CriticalValBoot[1,1:4],digits=1),

round(sTestNIB12MTN.setarTest1vs$PvalBoot[1],digits=3))

sTestNIB12MTN.setarTest<-rbind(sTestNIB12MTN.setarTest,

c(round(sTestNIB12MTN.setarTest1vs$Ftests[1,2],digits=1),

round(sTestNIB12MTN.setarTest1vs$CriticalValBoot[2,1:4],digits=1),

round(sTestNIB12MTN.setarTest1vs$PvalBoot[2],digits=3)))

sTestNIB12MTN.setarTest<-rbind(sTestNIB12MTN.setarTest,

c(round(sTestNIB12MTN.setarTest2vs3$Ftests[1,3],digits=1),

round(sTestNIB12MTN.setarTest2vs3$CriticalValBoot[1,1:4],digits=1),

round(sTestNIB12MTN.setarTest2vs3$PvalBoot[1],digits=3)))

colnames(sTestNIB12MTN.setarTest)<-c("F-test","90\\%","95\\%",

"97.5\\%","99\\%","P-value")

rownames(sTestNIB12MTN.setarTest)<-c("1vs2","1vs3","2vs3")

tab.sTestNIB12MTN.setarTest<-xtable(sTestNIB12MTN.setarTest,

align=c("|l|r|r|r|r|r|r|"),digits=c(0,1,1,1,1,1,3))

## chunk number 56: tab.sNIB12MTN.setarTest

print(tab.sNIB12MTN.setarTest,hline.after=c(-1,0,nrow(tab.sNIB12MTN.setarTest)),

floating=FALSE,quote=FALSE,include.colnames=TRUE,include.rownames=TRUE,

sanitize.text.function = function(x){x})

## chunk number 57: tab.sTestNIB12MTN.setarTest

print(tab.sTestNIB12MTN.setarTest,hline.after=c(-1,0,nrow(tab.sTestNIB12MTN.setarTest)),

floating=FALSE,quote=FALSE,include.colnames=TRUE,include.rownames=TRUE,

sanitize.text.function = function(x){x})

## chunk number 58: fig.sNIB12MTN.setarTest

par(mfrow=c(3,1))

plot(sNIB12MTN.setarTest1vs)

plot(sNIB12MTN.setarTest2vs3)

## chunk number 59: fig.sTestNIB12MTN.setarTest

par(mfrow=c(2,1))

plot(sTestNIB12MTN.setarTest1vs)

plot(sTestNIB12MTN.setarTest2vs3)

## chunk number 60: Ljung.Box.loop

Ljung.Pval<-matrix(0,nrow=3,ncol=9)

for (i in 1:3) {

for (j in 0:8) {

Ljung.Pval[i,j+1]<-Box.test(arima(sTestNIB12MTN,order=c(i,0,j))$residuals,

lag=11+i+j,fitdf=i+j,type="Ljung")$p.value

}

}

rownames(Ljung.Pval)<-c("$p=1$","$p=2$","$p=3$")

colnames(Ljung.Pval)<-c("$q=0$","$q=1$","$q=2$","$q=3$","$q=4$","$q=5$",

"$q=6$","$q=7$","$q=8$")

tab.Ljung.Pval<-xtable(Ljung.Pval,align=c("|l|l|l|l|l|l|l|l|l|l|"),

digits=c(3,3,3,3,3,3,3,3,3,3))

## chunk number 61: tab.sTestNIB12MTN.LjungTest
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print(tab.Ljung.Pval,hline.after=c(-1,0,nrow(Ljung.Pval)),

floating=FALSE,quote=FALSE,include.colnames=TRUE,include.rownames=TRUE,

sanitize.text.function = function(x){x})

## chunk number 62: fig.sTestNIB12MTN.res.linear

linear1.residuals<-linear(sTestNIB12MTN,m=1)$residuals

arma28.residuals<-arima(sTestNIB12MTN,order=c(2,0,8))$residuals

par(mfrow=c(2,2))

acf(linear1.residuals)

pacf(linear1.residuals)

acf(arma28.residuals)

pacf(arma28.residuals)

## chunk number 63: fig.sNIB12MTN.res.setar

setar2.residuals<-setar(sNIB12MTN,m=2)$residuals

setar3.residuals<-setar(sNIB12MTN,m=3)$residuals

par(mfrow=c(2,2))

acf(setar2.residuals)

pacf(setar2.residuals)

acf(setar3.residuals)

pacf(setar3.residuals)

## chunk number 64: make.tab.setar3.summary

sNIB12MTN.setar3<-setar(sNIB12MTN,m=3,mH=3,mL=3,nthresh=1,

include="const",trim=0.1)

setar3.summary<-summary(sNIB12MTN.setar3)

tab.setar3.summary<-xtable(setar3.summary$coef,align=c("|r|r|r|r|r|"),

digits=c(3,3,3,3,3))

## chunk number 65: tab.setar3.summary

print(tab.setar3.summary,hline.after=c(-1,0,nrow(tab.setar3.summary)),

floating=FALSE,quote=FALSE,include.colnames=TRUE,include.rownames=TRUE,

sanitize.text.function = function(x){x})

## chunk number 66: compare.models

mod.test<-list()

sNIB12MTN.train<-window(sNIB12MTN,end=c(2010,2))

sNIB12MTN.test<-window(sNIB12MTN,start=c(2010,3))

mod.test[["linear1"]]<-linear(sNIB12MTN.train,m=1)

mod.test[["linear3"]]<-linear(sNIB12MTN.train,m=3)

mod.test[["setar1"]]<-setar(sNIB12MTN.train,m=1)

mod.test[["setar3"]]<-setar(sNIB12MTN.train,m=3)

frc.test<-lapply(mod.test,predict,n.ahead=10)

Thresh1<-mod.test[["setar1"]]$model.specific$coefficients[["th"]]

mod.Ttest<-list()

sTestNIB12MTN.train<-window(sTestNIB12MTN,end=c(2010,2))

sTestNIB12MTN.test<-window(sTestNIB12MTN,start=c(2010,3))

mod.Ttest[["linear1"]]<-linear(sTestNIB12MTN.train,m=1)

mod.Ttest[["arma(2,8)"]]<-arima(sTestNIB12MTN.train,order=c(2,0,8))

mod.Ttest[["setar1"]]<-setar(sTestNIB12MTN.train,m=1)

mod.Ttest[["setar3"]]<-setar(sTestNIB12MTN.train,m=3)

frc.Ttest<-lapply(mod.Ttest,predict,n.ahead=10)

frc.Ttest[["arma(2,8)"]]<-frc.Ttest[["arma(2,8)"]]$pred

## chunk number 67: fig.sNIB12MTN.predict

par(mfrow=c(1,1))

plot(3:12,sNIB12MTN.test,xlab="Month in 2010",ylim=c(-2,2),type="l",lwd=2,
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lty=1,col=xcolours[1])

for (i in 1:length(frc.test)) lines(3:12,frc.test[[i]],lty=1,col=xcolours[i+1],

type="l",lwd=2)

legend(4,2.0,lty=1,col=xcolours[1:(length(frc.test)+1)],lwd=2,

legend=c("observed",names(frc.test)))

## chunk number 68: fig.sTestNIB12MTN.predict

par(mfrow=c(1,1))

plot(3:12,sTestNIB12MTN.test,xlab="Month in 2010",lty=1,,col=xcolours[1],

ylim=c(-0.5,2),type="l",lwd=2)

for (i in 1:length(frc.Ttest)) lines(3:12,frc.Ttest[[i]],

lty=1,col=xcolours[i+1],type="l",lwd=2)

legend(4,2.0,lty=1,col=xcolours[1:(length(frc.Ttest)+1)],lwd=2,

legend=c("observed",names(frc.Ttest)))

## chunk number 69: test.pairs

renter<-read.table("renter_mnd.sdv",colClasses=c("character",rep("numeric",9),

rep("NULL",11),rep("numeric",3),rep("NULL",15)),sep=";",dec=",",header=TRUE)

# har hentet sdv-filen fra

# http://www.norges-bank.no/templates/article____55483.aspx

for (i in 2:10) {

colnames(renter)[i]<-substr(colnames(renter)[i],7,9)

if (substr(colnames(renter)[i],3,3)==".") {

colnames(renter)[i]<-substr(colnames(renter)[i],1,2)

}

if (substr(colnames(renter)[i],2,2)==".") {

colnames(renter)[i]<-paste(substr(colnames(renter)[i],1,1),

substr(colnames(renter)[i],3,3),sep="")

}

colnames(renter)[i]<-paste("NIB",colnames(renter)[i],sep="")

}

for (i in 3:4) {

substr(colnames(renter)[i],5,5)<-"W"

}

for (i in 11:13) {

if (length(colnames(renter)[i])==6) {

colnames(renter)[i]<-paste(substr(colnames(renter)[i],1,4),

substr(colnames(renter)[i],6,6),sep="")

} else {

colnames(renter)[i]<-paste(substr(colnames(renter)[i],1,4),

substr(colnames(renter)[i],6,7),sep="")

}

}

Result<-list()

j<-0

for(i1 in 2:12) {

for (i2 in (i1+1):13) {

j<-j+1

Result[[j]]<-list()

rate1rate2<-na.contiguous(zoo(renter[c(i2,i1)],as.yearmon(renter$Dato,"%b-%y")))

rate1<-zoo(rate1rate2[,1],index(rate1rate2))

rate2<-zoo(rate1rate2[,2],index(rate1rate2))

rate1[index(rate1)=="sep 1992"]<-(coredata(rate1[index(rate1)=="aug 1992"])
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+coredata(rate1[index(rate1)=="okt 1992"]))/2

DiffOctJan<-coredata(rate1[index(rate1)=="jan 1993"])-

coredata(rate1[index(rate1)=="okt 1992"])

rate1[index(rate1)=="nov 1992"]<-coredata(rate1[index(rate1)=="okt 1992"])+

DiffOctJan/3

rate1[index(rate1)=="des 1992"]<-coredata(rate1[index(rate1)=="okt 1992"])+

DiffOctJan*2/3

rate2[index(rate2)=="sep 1992"]<-(coredata(rate2[index(rate2)=="aug 1992"])

+coredata(rate2[index(rate2)=="okt 1992"]))/2

DiffOctJan<-coredata(rate2[index(rate2)=="jan 1993"])-

coredata(rate2[index(rate2)=="okt 1992"])

rate2[index(rate2)=="nov 1992"]<-coredata(rate2[index(rate2)=="okt 1992"])+

DiffOctJan/3

rate2[index(rate2)=="des 1992"]<-coredata(rate2[index(rate2)=="okt 1992"])+

DiffOctJan*2/3

rate1rate2<-cbind(rate1,rate2)

colnames(rate1rate2)<-c(colnames(renter[i2]),colnames(renter[i1]))

Spread<-rate1-rate2

Result[[j]]$name1<-colnames(renter)[i2]

Result[[j]]$name2<-colnames(renter)[i1]

Result[[j]]$rate1.DF<-ur.df(rate1,lags=10,selectlags="AIC",type='none')

Result[[j]]$rate2.DF<-ur.df(rate2,lags=10,selectlags="AIC",type='none')

Result[[j]]$Spread.DF<-ur.df(Spread,lags=10,selectlags="AIC",type='none')

Result[[j]]$ca.jo <- summary(ca.jo(rate1rate2,type='trace',K=3,ecdet="none"))

Result[[j]]$setarD0<-try(setar(Spread,m=4,nthresh=2,d=1,trim=0.1,

thDelay=0),silent=TRUE)

Result[[j]]$setarTest1vsD0<-try(setarTest(Spread,m=4,nboot=1000,trim=0.1,

test="1vs",hpc="none",d=1,thDelay=0,check=FALSE),silent=TRUE)

Result[[j]]$setarTest2vs3D0<-try(setarTest(Spread,m=4,nboot=1000,

trim=0.1,test="2vs3",hpc="none",d=1,

thDelay=0,check=FALSE),silent=TRUE)

Result[[j]]$setarDx<-try(setar(Spread,m=4,nthresh=2,d=1,trim=0.1,

thDelay=0:3),silent=TRUE)

Result[[j]]$setarTest1vsDx<-try(setarTest(Spread,m=4,nboot=1000,trim=0.1,

test="1vs",hpc="none",d=1,thDelay=Result[[j]]$setarDx$model.specific$thDelay,

check=FALSE),silent=TRUE)

Result[[j]]$setarTest2vs3Dx<-try(setarTest(Spread,m=4,nboot=1000,trim=0.1,

test="2vs3",hpc="none",d=1,thDelay=Result[[j]]$setarDx$model.specific$thDelay,

check=FALSE),silent=TRUE)

}

}

jmax<-j

## chunk number 70: make.result.pairs

DF<-numeric(0)

Johansen<-numeric(0)

setarTest1vs2D0<-numeric(0)

setarTest1vs3D0<-numeric(0)

setarTest2vs3D0<-numeric(0)

setar.modelD0<-numeric(0)

setarTest1vs2Dx<-numeric(0)

setarTest1vs3Dx<-numeric(0)
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setarTest2vs3Dx<-numeric(0)

setar.modelDx<-numeric(0)

NoOfCoeff<-length(Result[[1]]$setarD0$model.specific$coefficients)

for (j in 1:jmax) {

DF<-rbind(DF,c(Result[[j]]$name1,Result[[j]]$name2,

round(Result[[j]]$rate1.DF@teststat,digits=2),

round(Result[[j]]$rate2.DF@teststat,digits=2),

round(Result[[j]]$Spread.DF@teststat,digits=2),Result[[j]]$Spread.DF@cval))

Johansen<-rbind(Johansen, c(Result[[j]]$name1,Result[[j]]$name2,

round(Result[[j]]$ca.jo@teststat[2],digits=2),

Result[[j]]$ca.jo@cval[2,],round(Result[[j]]$ca.jo@V[2,1],digits=3)))

if (class(Result[[j]]$setarTest1vsD0)=="try-error") {

setarTest1vs2D0<-rbind(setarTest1vs2D0,

c(Result[[j]]$name1,Result[[j]]$name2,NA,NA,NA,NA,NA))

setarTest1vs3D0<-rbind(setarTest1vs3D0,

c(Result[[j]]$name1,Result[[j]]$name2,NA,NA,NA,NA,NA))

} else {

setarTest1vs2D0<-rbind(setarTest1vs2D0,c(Result[[j]]$name1,Result[[j]]$name2,

round(Result[[j]]$setarTest1vsD0$Ftests[1],digits=1),

format(Result[[j]]$setarTest1vsD0$PvalBoot[1],nsmall=3),

Result[[j]]$setarTest1vsD0$args$thDelay,

Result[[j]]$setarTest1vsD0$args$m,Result[[j]]$setarTest1vsD0$args$nboot))

setarTest1vs3D0<-rbind(setarTest1vs3D0,c(Result[[j]]$name1,Result[[j]]$name2,

round(Result[[j]]$setarTest1vsD0$Ftests[2],digits=1),

format(Result[[j]]$setarTest1vsD0$PvalBoot[2],nsmall=3),

Result[[j]]$setarTest1vsD0$args$thDelay,

Result[[j]]$setarTest1vsD0$args$m,Result[[j]]$setarTest1vsD0$args$nboot))

}

if (class(Result[[j]]$setarTest2vs3D0)=="try-error") {

setarTest2vs3D0<-rbind(setarTest2vs3D0,

c(Result[[j]]$name1,Result[[j]]$name2,NA,NA,NA,NA,NA))

} else {

setarTest2vs3D0<-rbind(setarTest2vs3D0,c(Result[[j]]$name1,Result[[j]]$name2,

round(Result[[j]]$setarTest2vs3D0$Ftests[3],digits=1),

format(Result[[j]]$setarTest2vs3D0$PvalBoot,nsmall=3),

Result[[j]]$setarTest2vs3D0$args$thDelay,

Result[[j]]$setarTest2vs3D0$args$m,Result[[j]]$setarTest2vs3D0$args$nboot))

}

if (class(Result[[j]]$setar.modelD0)=="try-error") {

setar.modelD0<-rbind(setar.modelD0,

c(Result[[j]]$name1,Result[[j]]$name2,NA,NA,NA,NA,NA,NA,NA))

}else {

setar.modelD0<-rbind(setar.modelD0,c(Result[[j]]$name1,Result[[j]]$name2,

format(round(Result[[j]]$setarD0$model.specific$coefficients[

(NoOfCoeff-1):NoOfCoeff],digits=3),nsmall=3),

format(100*round(Result[[j]]$setarD0$model.specific$RegProp,digits=3),nsmall=1),

Result[[j]]$setarD0$model.specific$thDelay,Result[[j]]$setarD0$str$m))

}

if (class(Result[[j]]$setarTest1vsDx)=="try-error") {

setarTest1vs2Dx<-rbind(setarTest1vs2Dx,

c(Result[[j]]$name1,Result[[j]]$name2,NA,NA,NA,NA,NA))
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setarTest1vs3Dx<-rbind(setarTest1vs3Dx,

c(Result[[j]]$name1,Result[[j]]$name2,NA,NA,NA,NA,NA))

} else {

setarTest1vs2Dx<-rbind(setarTest1vs2Dx,c(Result[[j]]$name1,Result[[j]]$name2,

round(Result[[j]]$setarTest1vsDx$Ftests[1],digits=1),

format(Result[[j]]$setarTest1vsDx$PvalBoot[1],nsmall=3),

Result[[j]]$setarTest1vsDx$args$thDelay,

Result[[j]]$setarTest1vsDx$args$m,Result[[j]]$setarTest1vsDx$args$nboot))

setarTest1vs3Dx<-rbind(setarTest1vs3Dx,c(Result[[j]]$name1,Result[[j]]$name2,

round(Result[[j]]$setarTest1vsDx$Ftests[2],digits=1),

format(Result[[j]]$setarTest1vsDx$PvalBoot[2],nsmall=3),

Result[[j]]$setarTest1vsDx$args$thDelay,

Result[[j]]$setarTest1vsDx$args$m,Result[[j]]$setarTest1vsDx$args$nboot))

}

if (class(Result[[j]]$setarTest2vs3Dx)=="try-error") {

setarTest2vs3Dx<-rbind(setarTest2vs3Dx,

c(Result[[j]]$name1,Result[[j]]$name2,NA,NA,NA,NA,NA))

} else {

setarTest2vs3Dx<-rbind(setarTest2vs3Dx,c(Result[[j]]$name1,Result[[j]]$name2,

round(Result[[j]]$setarTest2vs3Dx$Ftests[3],digits=1),

format(Result[[j]]$setarTest2vs3Dx$PvalBoot,nsmall=3),

Result[[j]]$setarTest2vs3Dx$args$thDelay,

Result[[j]]$setarTest2vs3Dx$args$m,Result[[j]]$setarTest2vs3Dx$args$nboot))

}

if (class(Result[[j]]$setar.modelDx)=="try-error") {

setar.modelDx<-rbind(setar.modelDx,

c(Result[[j]]$name1,Result[[j]]$name2,NA,NA,NA,NA,NA,NA,NA))

}else {

setar.modelDx<-rbind(setar.modelDx,c(Result[[j]]$name1,Result[[j]]$name2,

format(round(Result[[j]]$setarDx$model.specific$coefficients[

(NoOfCoeff-1):NoOfCoeff],digits=3),nsmall=3),

format(100*round(Result[[j]]$setarDx$model.specific$RegProp,digits=3),

nsmall=1),

Result[[j]]$setarDx$model.specific$thDelay,Result[[j]]$setarDx$str$m))

}

}

colnames(DF)<-c("rate1","rate2","ADF rate1","ADF rate2","ADF Spread","1pct",

"5pct","10pct")

colnames(Johansen)<-c("rate1","rate2","trace statistic","10pct","5pct","1pct","-beta")

colnames(setarTest1vs2D0)<-c("rate1","rate2","Ftest","Pvalue","thDelay","m","nboot")

colnames(setarTest1vs3D0)<-c("rate1","rate2","Ftest","Pvalue","thDelay","m","nboot")

colnames(setarTest2vs3D0)<-c("rate1","rate2","Ftest","Pvalue","thDelay","m","nboot")

colnames(setar.modelD0)<-c("rate1","rate2","th1","th2","ndown","nmiddle",

"nup","thDelay","m")

colnames(setarTest1vs2Dx)<-c("rate1","rate2","Ftest","Pvalue","thDelay","m","nboot")

colnames(setarTest1vs3Dx)<-c("rate1","rate2","Ftest","Pvalue","thDelay","m","nboot")

colnames(setarTest2vs3Dx)<-c("rate1","rate2","Ftest","Pvalue","thDelay","m","nboot")

colnames(setar.modelDx)<-c("rate1","rate2","th1","th2","ndown","nmiddle",

"nup","thDelay","m")

Result.setarTestD0<-numeric(0)

Result.setarTestDx<-numeric(0)
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for (j in 1:jmax) {

Result.setarTestD0<-rbind(Result.setarTestD0,c(setarTest1vs2D0[j,c(1,2,4)],

setarTest1vs3D0[j,4],setarTest2vs3D0[j,4:5],setar.modelD0[j,3:7]))

Result.setarTestDx<-rbind(Result.setarTestDx,c(setarTest1vs2Dx[j,c(1,2,4)],

setarTest1vs3Dx[j,4],setarTest2vs3Dx[j,4],setar.modelDx[j,8],

setar.modelDx[j,3:7]))

}

colnames(Result.setarTestD0)<-c("Rate1","Rate2","1vs2","1vs3","2vs3",

"thDelay","th1","th2","ndown","nmiddle","nup")

colnames(Result.setarTestDx)<-c("Rate1","Rate2","1vs2","1vs3","2vs3",

"thDelay","th1","th2","ndown","nmiddle","nup")

tab.Result.setarTestD0<-xtable(Result.setarTestD0,

align=c("|l|l|l|r|r|r|r|r|r|r|r|r|"),digits=c(0,0,0,3,3,3,0,2,2,1,1,1))

tab.Result.setarTestDx<-xtable(Result.setarTestDx,

align=c("|l|l|l|r|r|r|r|r|r|r|r|r|"),digits=c(0,0,0,3,3,3,0,2,2,1,1,1))

## chunk number 71: tab.Result.setarTestD0

print(tab.Result.setarTestD0,hline.after=c(0,nrow(tab.Result.setarTestD0)),

floating=FALSE,quote=FALSE,include.colnames=FALSE,include.rownames=FALSE,

add.to.row=list(pos=list(-1,1),

command=c("\\hline\\multicolumn{2}{|l|}{\\textbf{Interest rates}} &

\\multicolumn{3}{|l|}{\\textbf{P-value}} & \\textbf{thDelay} &

\\multicolumn{2}{|l|}{\\textbf{Thresholds}} &

\\multicolumn{3}{|l|}{\\textbf{{\\%} in each regime}}\\\\

\\cline{1-5}\\cline{7-11}

\\textbf{Rate 1} & \\textbf{Rate 2} & \\textbf{1vs2} &

\\textbf{1vs3} & \\textbf{2vs3} & & \\textbf{th1} & \\textbf{th2} &

\\textbf{L} & \\textbf{M} & \\textbf{H}\\\\","")),

sanitize.text.function = function(x){x})

## chunk number 72: tab.Result.setarTestDx

print(tab.Result.setarTestDx,hline.after=c(-1,nrow(tab.Result.setarTestDx)),

floating=FALSE,quote=FALSE,include.colnames=FALSE,include.rownames=FALSE,

add.to.row=list(pos=list(-1,1),

command=c("\\hline\\multicolumn{2}{|l|}{\\textbf{Interest rates}} &

\\multicolumn{3}{|l|}{\\textbf{P-value}} & \\textbf{thDelay} &

\\multicolumn{2}{|l|}{\\textbf{Thresholds}} &

\\multicolumn{3}{|l|}{\\textbf{{\\%} in each regime}}\\\\

\\cline{1-5}\\cline{7-11}

\\textbf{Rate 1} & \\textbf{Rate 2} & \\textbf{1vs2} &

\\textbf{1vs3} & \\textbf{2vs3} & & \\textbf{th1} & \\textbf{th2} &

\\textbf{L} & \\textbf{M} & \\textbf{H}\\\\","")),

sanitize.text.function = function(x){x})

## chunk number 73: testOutlier1992

NIB12MTNx<-na.contiguous(zoo(renter[c("NIB12M","NIBTN")],

as.yearmon(renter$Dato,"%b-%y")))

NIB12Mx<-zoo(NIB12MTNx[,1],index(NIB12MTNx))

NIBTNx<-zoo(NIB12MTNx[,2],index(NIB12MTNx))

NIB12Mx[index(NIB12Mx)=="sep 1992"]<-(coredata(NIB12Mx[index(NIB12Mx)=="aug 1992"])+

coredata(NIB12Mx[index(NIB12Mx)=="okt 1992"]))/2

DiffOctJan<-coredata(NIB12Mx[index(NIB12Mx)=="jan 1993"])-

coredata(NIB12Mx[index(NIB12Mx)=="okt 1992"])

NIB12Mx[index(NIB12Mx)=="nov 1992"]<-coredata(NIB12Mx[index(NIB12Mx)=="okt 1992"])+
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DiffOctJan/3

NIB12Mx[index(NIB12Mx)=="des 1992"]<-coredata(NIB12Mx[index(NIB12Mx)=="okt 1992"])+

DiffOctJan*2/3

NIBTNx[index(NIBTNx)=="sep 1992"]<-(coredata(NIBTNx[index(NIBTNx)=="aug 1992"])

+coredata(NIBTNx[index(NIBTNx)=="okt 1992"]))/2

DiffOctJan<-coredata(NIBTNx[index(NIBTNx)=="jan 1993"])-

coredata(NIBTNx[index(NIBTNx)=="okt 1992"])

NIBTNx[index(NIBTNx)=="nov 1992"]<-coredata(NIBTNx[index(NIBTNx)=="okt 1992"])+

DiffOctJan/3

NIBTNx[index(NIBTNx)=="des 1992"]<-coredata(NIBTNx[index(NIBTNx)=="okt 1992"])+

DiffOctJan*2/3

NIB12MTNx<-cbind(NIB12Mx,NIBTNx)

NIB12MTNx.tvecm<-TVECM(NIB12MTNx,nthresh=1,lag=2,ngridBeta=400,ngridTh=400,

beta=list(int=c(0.85,1.25)),th1=list(int=c(-1.5,1.5)),plot=TRUE,

trim=0.1,common="All",trace=FALSE)

TimeUsed.NIB12MTNx.Fix.2Reg<-system.time(NIB12MTNx.HSTest.FixedReg.2Reg<-

TVECM.XHStest(NIB12MTNx,nboot=1000,lag=2,trim=0.1,

tolerance=1e-10,fixed.beta=NIB12MTNx.tvecm$model.specific$beta,

ngridTh=1000,type="2Reg",boot.type="FixedReg",hpc="none",trace=FALSE))

TimeUsed.NIB12MTNx.Res.2Reg<-system.time(NIB12MTNx.HSTest.ResBoot.2Reg<-

TVECM.XHStest(NIB12MTNx,nboot=1000,lag=2,trim=0.1,

tolerance=1e-10,fixed.beta=NIB12MTNx.tvecm$model.specific$beta,

ngridTh=1000,type="2Reg",boot.type="ResBoot",hpc="none",trace=FALSE))

TimeUsed.NIB12MTNx.Fix.3Reg<-system.time(NIB12MTNx.HSTest.FixedReg.3Reg<-

TVECM.XHStest(NIB12MTNx,nboot=1000,lag=2,trim=0.1,

tolerance=1e-10,fixed.beta=NIB12MTNx.tvecm$model.specific$beta,

ngridTh=1000,type="3Reg",boot.type="FixedReg",hpc="none",trace=FALSE))

TimeUsed.NIB12MTNx.Res.3Reg<-system.time(NIB12MTNx.HSTest.ResBoot.3Reg<-

TVECM.XHStest(NIB12MTNx,nboot=1000,lag=2,trim=0.1,

tolerance=1e-10,fixed.beta=NIB12MTNx.tvecm$model.specific$beta,

ngridTh=1000,type="3Reg",boot.type="ResBoot",hpc="none",trace=FALSE))

sNIB12MTNx<- NIB12MTNx%*%NIB12MTNx.tvecm$model.specific$coint

dNIB12MTNx<- NIB12Mx-NIBTNx

sNIB12MTNx.setarTest1vs<-setarTest(sNIB12MTNx,m=3,nboot=1000,trim=0.1,

test="1vs",hpc="none",check=FALSE)

sNIB12MTNx.setarTest2vs3<-setarTest(sNIB12MTNx,m=3,nboot=1000,trim=0.1,

test="2vs3",hpc="none",check=FALSE)

dNIB12MTNx.setarTest1vs<-setarTest(dNIB12MTNx,m=3,nboot=1000,trim=0.1,

test="1vs",hpc="none",check=FALSE)

dNIB12MTNx.setarTest2vs3<-setarTest(dNIB12MTNx,m=3,nboot=1000,trim=0.1,

test="2vs3",hpc="none",check=FALSE)

## chunk number 74: make.xsetarTest.table

sNIB12MTNx.setarTest<-c(round(sNIB12MTNx.setarTest1vs$Ftests[1,1],digits=1),

round(sNIB12MTNx.setarTest1vs$CriticalValBoot[1,1:4],digits=1),

round(sNIB12MTNx.setarTest1vs$PvalBoot[1],digits=3))

sNIB12MTNx.setarTest<-rbind(sNIB12MTNx.setarTest,

c(round(sNIB12MTNx.setarTest1vs$Ftests[1,2],digits=1),

round(sNIB12MTNx.setarTest1vs$CriticalValBoot[2,1:4],digits=1),

round(sNIB12MTNx.setarTest1vs$PvalBoot[2],digits=3)))

sNIB12MTNx.setarTest<-rbind(sNIB12MTNx.setarTest,

c(round(sNIB12MTNx.setarTest2vs3$Ftests[1,3],digits=1),
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round(sNIB12MTNx.setarTest2vs3$CriticalValBoot[1,1:4],digits=1),

round(sNIB12MTNx.setarTest2vs3$PvalBoot[1],digits=3)))

colnames(sNIB12MTNx.setarTest)<-c("F-test","90\\%","95\\%",

"97.5\\%","99\\%","P-value")

rownames(sNIB12MTNx.setarTest)<-c("1vs2","1vs3","2vs3")

tab.sNIB12MTNx.setarTest<-xtable(sNIB12MTNx.setarTest,align=c("|l|r|r|r|r|r|r|"),

digits=c(0,1,1,1,1,1,3))

## chunk number 75: tab.sNIB12MTNx.setarTest

print(tab.sNIB12MTNx.setarTest,hline.after=c(-1,0,nrow(tab.sNIB12MTNx.setarTest)),

floating=FALSE,quote=FALSE,include.colnames=TRUE,include.rownames=TRUE,

sanitize.text.function = function(x){x})

## chunk number 76: make.tab.simul.input.coeff

NIB12MTN.tvecmx<-TVECM(NIB12MTN,nthresh=1,lag=2,ngridBeta=400,ngridTh=200,

beta=list(int=c(0.925,1.125)),plot=FALSE,trim=0.1,common="All",trace=FALSE)

NIB12MTN.tvecmx.summary<-summary(NIB12MTN.tvecmx)

simul.input.coeff<-rbind(t(NIB12MTN.tvecmx.summary$coefficients$Bdown),

t(NIB12MTN.tvecmx.summary$coefficients$Bup),

t(NIB12MTN.tvecmx.summary$coefficients$Bdown))

simul.input.coeff<-format(round(simul.input.coeff,digits=4),nsmall=4)

simul.input.coeff<-cbind(c("Lower","","","","","","Middle","","","","","",

"Upper","","","","",""),dimnames(simul.input.coeff)[[1]],simul.input.coeff)

colnames(simul.input.coeff)[1:2]<-c("Regime","Term")

simul.input.coeff<-rbind(colnames(simul.input.coeff),simul.input.coeff)

simul.input.model.coeff<-xtable(simul.input.coeff,align=c("|l|l|l|r|r|"))

## chunk number 77: tab.simul.input.model

print(simul.input.model.coeff,hline.after=c(0,1,7,13,nrow(simul.input.model.coeff)),

floating=FALSE,quote=FALSE,include.colnames=FALSE,include.rownames=FALSE,

sanitize.text.function = function(x){x})

## chunk number 78: simulate.tvecm

N<-2000

set.seed(5)

innov<-rmnorm(N,varcov=diag(2))

tvecm1.data<-TVECM.sim(B=matrix(c(0.0999,0.9871,0.0948,1.3375,0.4434,1.4526,

0.0123,0.0056,-0.0426,-0.2651,0.0333,0.0539,-0.0424,0.0069,0.0142,0.0237,

0.5554,0.8862,0.1809,-0.2722,-0.123,0.2262,-0.0789,-0.6334,0.0999,0.9871,

0.0948,1.3375,0.4434,1.4526,0.0123,0.0056,-0.0426,-0.2651,0.0333,0.0539),

ncol=18),nthresh=2,Thresh=c(-3.7,1.2),starting=matrix(c(0,1,0.5,1.5),ncol=2),

beta=1.046,n=N,lag=2,include="const",innov=innov,show.parMat=FALSE)

## chunk number 79: compute.Rsim.rsim.ssim

coint<-c(1,-1.046)

Rsim<-tvecm1.data[,1]

rsim<-tvecm1.data[,2]

diffRsim<-diff(Rsim)

diffrsim<-diff(rsim)

ssim<-tvecm1.data%*%coint

diffssim<-diff(ssim)

ssimMinus1<-ssim[2:length(ssim)]

## chunk number 80: fig.Rsim.rsim

par(mfrow=c(2,1))

plot(Rsim,xlab="$t$",ylab="$y_{1t}$",type='l')

plot(rsim,xlab="$t$",ylab="$y_{2t}$",type='l')
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## chunk number 81: fig.ssim

par(mfrow=c(2,1))

plot(1:300,ssim[1:300],ylab="$w_t$",xlab="$t$",

main="The first 300 values of $w_t$",type='l')

abline(-3.7,0,col="red")

abline(1.2,0,col="green")

plot((N-299):N,ssim[(N-299):N],ylab="$w_t$",xlab="$t$",

main="The last 300 values of $w_t$",type='l')

abline(-3.7,0,col="red")

abline(1.2,0,col="green")

## chunk number 82: fig.diffsimSeries

par(mfrow=c(3,1))

plot(ssimMinus1[1:300],diffRsim[1:300],type="l",ylab="$\\Delta y_{1t}$",

xlab="$w_{t-1}$")

abline(v=-3.7,col="red")

abline(v=1.2,col="green")

plot(ssimMinus1[1:300],diffrsim[1:300],type="l",ylab="$\\Delta y_{2t}$",

xlab="$w_{t-1}$")

abline(v=-3.7,col="red")

abline(v=1.2,col="green")

plot(ssimMinus1[1:300],diffssim[1:300],type="l",ylab="$\\Delta w_t$",

xlab="$w_{t-1}$")

abline(v=-3.7,col="red")

abline(v=1.2,col="green")

## chunk number 83: fig.simul.tvecm1x.model

sink(file="errors.txt",type="output",split=FALSE)

simul.tvecm1x.model<-TVECM(tvecm1.data,nthresh=2,lag=2,ngridBeta=0,ngridTh=500,

plot=TRUE,include="const",th1=list(int=c(-5,3)),th2=list(int=c(-5,3)),

beta=list(exact=1.046),trim=0.05,common="All",trace=TRUE)

sink(file=NULL,type="output")

abline(v=-3.7)

abline(v=1.2)

text(-3.6,31000,pos=4,"$\\gamma=-3.7$")

text(1.3,33000,pos=4,"$\\gamma=1.2$")

## chunk number 84: estimate.tvecm

simul.tvecm1.model<-TVECM(tvecm1.data,nthresh=2,lag=2,ngridBeta=0,ngridTh=0,

plot=FALSE,include="const",th1=list(exact=-3.7),th2=list(exact=1.2),

beta=list(exact=1.046),trim=0.05,common="All",trace=FALSE)

## chunk number 85: make.tab.simul.tvecm1.coeff

simul.tvecm1.coeff<-rbind(t(summary(simul.tvecm1.model)$bigcoefficients$Bdown),

t(summary(simul.tvecm1.model)$bigcoefficients$Bmiddle),

t(summary(simul.tvecm1.model)$bigcoefficients$Bup))

simul.tvecm1.coeff<-cbind(c("Lower","","","","","","Middle","","","","","",

"Upper","","","","",""),dimnames(simul.tvecm1.coeff)[[1]],simul.tvecm1.coeff)

colnames(simul.tvecm1.coeff)[1:2]<-c("Regime","Term")

simul.tvecm1.coeff<-rbind(colnames(simul.tvecm1.coeff),simul.tvecm1.coeff)

simul.tvecm1.model.coeff<-xtable(simul.tvecm1.coeff,align=c("|l|l|l|l|l|"))

## chunk number 86: tab.simul.tvecm1.model

print(simul.tvecm1.model.coeff,hline.after=c(0,1,7,13,nrow(simul.tvecm1.model.coeff)),

floating=FALSE,quote=FALSE,include.colnames=FALSE,include.rownames=FALSE,

sanitize.text.function = function(x){x})

126



Appendix C. The R code chunks used in Chapter 4 and 5

## chunk number 87: simulated.responses

wsim<-ssim[4:length(ssim)]

Threshsim<-simul.tvecm1.model$model.specific$Thresh

Bdownsim<-simul.tvecm1.model$coefficients$Bdown

Bmiddlesim<-simul.tvecm1.model$coefficients$Bmiddle

Bupsim<-simul.tvecm1.model$coefficients$Bup

Res2Rsim<-ifelse(wsim<=Threshsim[1],Bdownsim[1,2]+Bdownsim[1,1]*wsim,

ifelse(wsim<=Threshsim[2],Bmiddlesim[1,2]+Bmiddlesim[1,1]*wsim,

Bupsim[1,2]+Bupsim[1,1]*wsim))

Res2rsim<-ifelse(wsim<=Threshsim[1],Bdownsim[2,2]+Bdownsim[2,1]*wsim,

ifelse(wsim<=Threshsim[2],Bmiddlesim[2,2]+Bmiddlesim[2,1]*wsim,

Bupsim[2,2]+Bupsim[2,1]*wsim))

ssim2<-cbind(Res2Rsim,Res2rsim)%*%simul.tvecm1.model$model.specific$coint

Indsim<-order(wsim)

## chunk number 88: fig.responses.sim

par(mfrow=c(1,1))

plot(wsim[Indsim],Res2rsim[Indsim],type="l",lty=1,col=xcolours[1],xlim=range(wsim),

xlab="$w_{t-1}$",ylab="Response",ylim=range(Res2rsim))

axis(4)

abline(0,0,col="blue")

lines(wsim[Indsim],Res2Rsim[Indsim],type="l",lty=1,col=xcolours[2])

lines(wsim[Indsim],ssim2[Indsim],type="l",lty=1,col=xcolours[3])

legend("top",c("$\\Delta y_{2t}$","$\\Delta y_{1t}$","$\\Delta w_t$"),lty=1,

col=xcolours[1:3])

## chunk number 89: simulate.HSTest.Fixed.3Reg

TimeUsed.Fixed.3Reg<-system.time(simul.tvecm1.test.Fixed.3Reg<-TVECM.XHStest(tvecm1.data,

nboot=1000,lag=2,trim=0.05,tolerance=1e-10,fixed.beta=1.046,ngridTh=200,type="3Reg",

boot.type="FixedReg",hpc="none",trace=FALSE))

## chunk number 90: simulate.HSTest.Res.3Reg

TimeUsed.Res.3Reg<-system.time(simul.tvecm1.test.Res.3Reg<-TVECM.XHStest(tvecm1.data,

nboot=200,lag=2,trim=0.05,tolerance=1e-10,fixed.beta=1.046,ngridTh=200,type="3Reg",

boot.type="ResBoot",hpc="none",trace=FALSE))

## chunk number 91: simulate.HSTest.2Reg

TimeUsed.Fixed.2Reg<-system.time(simul.tvecm1.test.Fixed.2Reg<-TVECM.XHStest(tvecm1.data,

nboot=1000,lag=2,trim=0.05,tolerance=1e-10,fixed.beta=1.046,ngridTh=200,type="2Reg",

boot.type="FixedReg",hpc="none",trace=FALSE))

TimeUsed.Res.2Reg<-system.time(simul.tvecm1.test.Res.2Reg<-TVECM.XHStest(tvecm1.data,

nboot=1000,lag=2,trim=0.05,tolerance=1e-10,fixed.beta=1.046,ngridTh=200,type="2Reg",

boot.type="ResBoot",hpc="none",trace=FALSE))

## chunk number 92: Test.grid.search

TimeUsed.Grid.Search.Fixed.3Reg<-system.time(Grid.Search.Fixed.3Reg<-

TVECM.XHStest(tvecm1.data,nboot=2,lag=2,trim=0.05,tolerance=1e-10,

fixed.beta=1.046,ngridTh=2000,type="3Reg",

boot.type="FixedReg",hpc="none",trace=FALSE))

TimeUsed.Grid.Search.Fixed.2Reg<-system.time(Grid.Search.Fixed.2Reg<-

TVECM.XHStest(tvecm1.data,nboot=2,lag=2,trim=0.05,tolerance=1e-10,

fixed.beta=1.046,ngridTh=2000,type="2Reg",

boot.type="FixedReg",hpc="none",trace=FALSE))

## chunk number 93: make.simul.Result.HSTest

options(warn=0)

simul.Result.HSTest<-c(1,length(simul.tvecm1.test.Fixed.2Reg$ths),
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simul.tvecm1.test.Fixed.2Reg$args$boot.type,

simul.tvecm1.test.Fixed.2Reg$args$nboot,

round(simul.tvecm1.test.Fixed.2Reg$stat,digits=1),

format(simul.tvecm1.test.Fixed.2Reg$PvalBoot,nsmall=3),

format(round(TimeUsed.Fixed.2Reg[["elapsed"]],digits=1),nsmall=1),

round(simul.tvecm1.test.Fixed.2Reg$PercentsSSR,digits=1))

attr(simul.Result.HSTest,"dimnames")<-NULL

simul.Result.HSTest<-rbind(simul.Result.HSTest,

c(2,length(simul.tvecm1.test.Fixed.3Reg$ths),

simul.tvecm1.test.Fixed.3Reg$args$boot.type,

simul.tvecm1.test.Fixed.3Reg$args$nboot,

format(round(simul.tvecm1.test.Fixed.3Reg$stat,digits=1),nsmall=1),

format(simul.tvecm1.test.Fixed.3Reg$PvalBoot,nsmall=3),

round(TimeUsed.Fixed.3Reg[["elapsed"]],digits=1),

format(round(simul.tvecm1.test.Fixed.3Reg$PercentsSSR,digits=1),nsmall=1)),

deparse.level=0)

simul.Result.HSTest<-rbind(simul.Result.HSTest,

c(1,length(simul.tvecm1.test.Res.2Reg$ths),

simul.tvecm1.test.Res.2Reg$args$boot.type,

simul.tvecm1.test.Res.2Reg$args$nboot,

round(simul.tvecm1.test.Res.2Reg$stat,digits=1),

format(simul.tvecm1.test.Res.2Reg$PvalBoot,nsmall=3),

round(TimeUsed.Res.2Reg[["elapsed"]],digits=1),

round(simul.tvecm1.test.Res.2Reg$PercentsSSR,digits=1)),deparse.level=0)

simul.Result.HSTest<-rbind(simul.Result.HSTest,

c(2,length(simul.tvecm1.test.Res.3Reg$ths),

simul.tvecm1.test.Res.3Reg$args$boot.type,

simul.tvecm1.test.Res.3Reg$args$nboot,

format(round(simul.tvecm1.test.Res.3Reg$stat,digits=1),nsmall=1),

format(simul.tvecm1.test.Res.3Reg$PvalBoot,nsmall=3),

round(TimeUsed.Res.3Reg[["elapsed"]],digits=1),

format(round(simul.tvecm1.test.Res.3Reg$PercentsSSR,digits=1),nsmall=1)),

deparse.level=0)

simul.Result.HSTest<-rbind(simul.Result.HSTest,

c(1,length(Grid.Search.Fixed.2Reg$ths),

Grid.Search.Fixed.2Reg$args$boot.type,

Grid.Search.Fixed.2Reg$args$nboot,

round(Grid.Search.Fixed.2Reg$stat,digits=1),

format(Grid.Search.Fixed.2Reg$PvalBoot,nsmall=3),

round(TimeUsed.Grid.Search.Fixed.2Reg[["elapsed"]],digits=1),

format(round(Grid.Search.Fixed.2Reg$PercentsSSR,digits=1),nsmall=1)),

deparse.level=0)

simul.Result.HSTest<-rbind(simul.Result.HSTest,

c(2,length(Grid.Search.Fixed.3Reg$ths),

Grid.Search.Fixed.3Reg$args$boot.type,

Grid.Search.Fixed.3Reg$args$nboot,

round(Grid.Search.Fixed.3Reg$stat,digits=1),

format(Grid.Search.Fixed.3Reg$PvalBoot,nsmall=3),

round(TimeUsed.Grid.Search.Fixed.3Reg[["elapsed"]],digits=1),

format(round(Grid.Search.Fixed.3Reg$PercentsSSR,digits=1),nsmall=1)),

deparse.level=0)
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for (i in 1:6) {

if (simul.Result.HSTest[i,1]==simul.Result.HSTest[i,10]) {

simul.Result.HSTest[i,10]<- simul.Result.HSTest[i,9]

simul.Result.HSTest[i,9]<-NA

}

}

options(warn=0)

colnames(simul.Result.HSTest)<-c("nthresh","ngridTh","boot type","nboot",

"supLM","P-value","Seconds","L $\\%$","M $\\%$","U $\\%$")

tab.simul.Result.HSTest<-xtable(simul.Result.HSTest,align=c("|l|l|r|l|r|r|r|r|r|r|r|"),

digits=c(0,0,0,0,0,1,3,1,1,1,1))

## chunk number 94: tab.simul.Result.HSTest

print(tab.simul.Result.HSTest,hline.after=c(-1,0,4,nrow(tab.simul.Result.HSTest)),

floating=FALSE,quote=FALSE,include.colnames=TRUE,include.rownames=FALSE,

sanitize.text.function = function(x){x})

## chunk number 95: make.setarTest.ssim

ssim.setarTest1vs<-setarTest(ssim,m=3,nboot=1000,trim=0.05,

test="1vs",hpc="none",check=FALSE)

ssim.setarTest2vs3<-setarTest(ssim,m=3,nboot=1000,trim=0.05,

test="2vs3",hpc="none",check=FALSE)

## chunk number 96: make.setarTest.ssim.table

ssim.setarTest<-c(round(ssim.setarTest1vs$Ftests[1,1],digits=1),

round(ssim.setarTest1vs$CriticalValBoot[1,1:4],digits=1),

round(ssim.setarTest1vs$PvalBoot[1],digits=3))

ssim.setarTest<-rbind(ssim.setarTest,

c(round(ssim.setarTest1vs$Ftests[1,2],digits=1),

round(ssim.setarTest1vs$CriticalValBoot[2,1:4],digits=1),

round(ssim.setarTest1vs$PvalBoot[2],digits=3)))

ssim.setarTest<-rbind(ssim.setarTest,

c(round(ssim.setarTest2vs3$Ftests[1,3],digits=1),

round(ssim.setarTest2vs3$CriticalValBoot[1,1:4],digits=1),

round(ssim.setarTest2vs3$PvalBoot[1],digits=3)))

colnames(ssim.setarTest)<-c("F-test","90\\%","95\\%",

"97.5\\%","99\\%","P-value")

rownames(ssim.setarTest)<-c("1vs2","1vs3","2vs3")

tab.ssim.setarTest<-xtable(ssim.setarTest,align=c("|l|l|l|l|l|l|l|"),

digits=c(0,1,1,1,1,1,3))

## chunk number 97: tab.ssim.setarTest

print(tab.ssim.setarTest,hline.after=c(-1,0,nrow(tab.ssim.setarTest)),

floating=FALSE,quote=FALSE,include.colnames=TRUE,include.rownames=TRUE,

sanitize.text.function = function(x){x})

## chunk number 98: fig.ssim.setarTest

par(mfrow=c(2,1))

plot(ssim.setarTest1vs)

plot(ssim.setarTest2vs3)
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