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Summary 

 

This project was aimed at synthesis of 1,3,4,6-tetrasubstituted diketopiperazines 

incorporating both hydrophobic and cathionic hydrophilic groups as a substituents on the 

diketopiperazine scaffold. In order to check the possibility of a proposed synthesis 

(Scheme 1), a range of disubtituted diketopiperazines were synthesized by using different 

amino acids of D and L configurations. In the study it has been investigated the N-

alkylation and reductive amination of amino acids, amino acids methyl esters and 

dipeptides. 
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Scheme 1. Proposed synthesis pathway for synthesizing 1,3,4,6–tetrasubstituted–2,5-DKPs  

(R=ethyl, benzyl). 

By synthesizing DKPs a new carbamation reaction was discovered (Scheme 2). 

This way of synthesis of carbamates was explored more extensively during this project. 
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Scheme 2. Synthesis of carbamates (R1=ethyl, isopropyl and t–butyl). 
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Abbrevations 

BEMP - 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine 

Boc – tert - butyloxycarbonyl 

DIC - N,N'-diisopropylcarbodiimide 

DCM - dichloromethane 

DKP – diketopiperazine 

DMF –dimethylformamide 

DIPEA – N, N – diisopropylethylamine 

EtOAc – ethyl acetate 

EDC – 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

HBTU - O-(Benzotriazol-1-yl)-N, N, N′, N′-tetramethyluronium hexafluorophosphate 

IR – infrared spectrometry 

MBHA - p–methylbenzhydrylamine 

MCR – multicomponent reaction 

NMM - N-methylmorpholine 

NMR – nuclear magnetic resonance spectroscopy 

PEGA – poly[acryloyl-bis(aminopropyl)polyethylene glycol] 

PMB - p – methoxybenzyl 

SDS – solvent drying system 

HRMS – high resolution mass spectrometry 

UDAC – ugi deprotection+activation/cyclization 

THF – tetrahydrofuran 

TFA – trifluoracetic acid 

 

http://en.wikipedia.org/wiki/Di-tert-butyl_dicarbonate
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1. Background  

 

Science is progressing every day. Together with it, new routes for the synthesis of 

natural product and potential drug candidates continue to emerge. Today there are a lot of 

different synthetic routes to diketopiperazines (DKPs), which are the smallest cyclic 

peptides. These cyclic compounds possess two amide groups with acceptor and donor 

properties. [1] DKPs are commonly found in a nature (plants, animals or microoganisms) 

or might be easily synthesized.[2, 3] 

The strategies for the synthesis of three isomeric DKP (Figure 1) are different 

depending on which positions the keto groups are situated, even though they share 

piperazine core. [2] 
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Figure 1. Isomers (a) 2,3-DKP; (b) 2,6-DKP; (c) 2,5-DKP. 

 

Why are DKPs important for science nowadays? First of all, a large variety of 

DKPs possess an ability to bind to a variety of biologically important receptors with a 

high affinity. [4] Secondly, they can be synthesized from different kinds of amino acids 

using simple chemical reactions and the most import reason is that DKPs exhibit 

numerous medicinally and biologically significant properties like antifungal, [5-7] 

antibacterial, [8-13] antitumor[14, 15] and antiviral activity. [16] All those features make DKPs 

an incredibly interesting research object. 
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1.1. 2,3–DKPs 

2,3–DKPs are not investigated that deeply compared to 2,5–DKPs, though there 

exist some very important compounds belonging to this isomeric group of DKPs. One of 

them is piperacillin, [17] which is similar to penicillin, but has a wider activity against 

Gram – negative, Gram – positive in particular many anaerobic species of 

bacteria.(Figure 2) 
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Figure 2. Chemical structure of piperacillin. 

 

There are many ways to synthesize 2,3–diketopiperazines and most important are 

the ones discussed below.

1.1.1. Tandem reductive alkylation – cyclization reaction 

In order to synthesize 2,3–DKPs an intramolecular cyclization reaction was used. 

This strategy was developed by Dinsmore and Bergman in 1998.[18] As shown in Scheme 

3, the mechanism involves the transformation of protected N-(2-aminoethyl) oxamates to 

stable amine hydrochlorides by HCl in ethylacetate. The next step in this reaction is a 

reductive amination and cyclization, which results in 1, 4, - disubstituted 2,3–DKPs. For 

this step sodium triacetoxyborohydride and molecular sieves were used to produce the 

compound 3.  
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Scheme 3, Reductive alkylation - cyclization reaction; reagents: (a) HCl, EtOAc, 0°C; (b) R1COR2, 

Na(OAc)3BH, ClCH2-CH2Cl, 4Å molecular sieves, 0°C to rt, ca. 10 h. 

 

As it is shown in Scheme 3, there are some byproducts in this reaction like 4, 5 

and 6, which have arisen through cyclization, acyl transfer or bisalkylation. The yields of 

the reaction with substituted benzaldehydes were sufficiently high, starting from 61% and 

higher. The reactions with less hindered aldehydes gave the result of bis - alkylation over 

reductive amination – cyclization and byproduct 6.  The study was continued by using 

branched aldehydes, which again gave yields over 60%. The results with ketones were 

unfavorable, the products of cyclization 4 and acyl transfer 5 were formed. Though the 

cyclic ketones led to high yields. 

So this suggest that tandem reductive alkylation – cyclization reaction for the 

preparation of unsymmetrical 1,4,-disubstituted-2,3–DKPs gives very nice outcome by 

using aromatic aldehydes, branched aliphatic aldehydes and cyclic ketones. 

In the literature intramolecular cyclization synthesis reactions for obtaining 2,3–

DKPs also can be found. Those methods were reported by Lewis et al.,[19] and Polniaszek 

and Bell.[20] 

1.1.2. Solid phase synthesis from reduced polyamides 

This was the first approach to make 2,3–DKPs using solid phase synthesis 

reported by Houghten et al.[21] Before that the solid phase synthesis was widely used in 

order to produce 2,5–DKPs. A p–methylbenzhydrylamine (MBHA) resin bound acylated 
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amino acid 7 is introduced as starting material. The amides 7 and 10 were reduced to 

amines 8 and 11 by borane in THF. It was continued with an impact of the 1, 1 - 

oxalyldiimidazole to produce a bis–acylated product 1,6–disubstituted–2,3–DKP 9 as 

well as 1,4,5–trisubstituted–2,3–DKP 12 as final compound after cleavage of the resin by 

treatment with HF/anisole (Scheme 4). 
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Scheme 4. Solid phase synthesis of 1,6-disubstituted 2,3-DKPs and 1,4,5-trisubstituted 2,3-DKPs from 

resin-bound polyamines; reagents: (a) Fmoc-Xaa-OH, DIPCDI, HOBt, DMF; (b) 20% piperidine 

and DMF; (c) Trt-Cl, DIPEA, DCM; (d) R2–X, BuOLi, DMSO; (e) 2% TFA in DCM, DIPEA/DCM; 

(f) Fmoc–Xaa–OH, DIPCDI, DMF; (g) 20% piperidine and DMF; (h) R4–COOH, DIPCDI, DMF; (i) 

BH3, THF, 65°C; (j) Oxalyldiimidazole, DMF; (k) HF, anisole. 

 

After purification of the compounds 9 and 12 the yields of this reaction were 

around 75%. Many different kinds of amino acids were investigated together with 

alkylating reagents and carboxylic acids that were used for this reaction. Using this 

method 24 compounds were synthesized in high yields and high purities. 

 

1.1.3.  Tandem reductive amination – cyclization 

This approach can be compared with the one mentioned in section 2. 1. 1., but 

instead of reductive alkylation–cyclization, reductive amination-cyclization was used, 

which was also reported by the Beshore and Dinsmore[22] in 2000. Reductive amination 

conditions are used in order to couple the starting material 13 with a primary amine and 
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first give and intermediate 15, which converts to the main product of the reaction; 1,4,5-

trisubstituted–2,3–DKP 16 (Scheme 5).  
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Scheme 5. One pot reductive amination – cyclization reaction. 

 

 The reactions with aliphatic amines resulted in moderate to good yields of 2,3–

DKP. The rather unhindered amines gave yields of 64 – 75%, meanwhile, when more 

branched amines gave an efficient result as their yields were 76 – 88%. The reactions 

with aromatic amines also succeed and gave rather good yields 71 – 80%, while electron 

withdrawing and sterically hindered anilines did not cyclize without heating.  

1.2. 2, 6–DKPs 

2,6–DKP is another isomer of DKPs. In contrast to 2,3 and 2,5 DKPs, there was 

not that much of attention paid to 2,6–DKPs. Though, over the years some useful 

compounds that belong to the 2,6–DKPs library have been discovered, like further 

discussed Flutimide,[23] which has similar framework DKP and plays an inhibitor role of 

influenza virus (Figure 3). 

N

N

O O

OH  
Figure 3. Chemical structure of Flutimide. 

1.2.1. Ugi five – center – four – component reaction. 

A one–pot multicomponent reaction (MCR) is a very effective way for the 

preparation of DKPs. For the synthesis of 2,6–DKPs Ugi five–center–four–component 

reaction[24] was used. It is a simple procedure, which gives high yields in addition to 

excellent selectivity. As is shown in Scheme 6, first of all, the amino acid 17 reacts with 
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an aldehyde 18 and after loss of water there is an imine formed, which after treatment 

with cyanide 20 is converted into an O–acylamide 21. By nucleophilic attack of solvent 

(alcohol 22) the amino ester 23 is formed. After solvent removal and refluxing in THF in 

a presence of base, trisubstituted 2,6–DKP was achieved. 
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Scheme 6. Ugi five–center–four–component reaction. 

 

 This reaction results in very high yields (usually around 95%) with most 

trifunctional α–amino acids, except lysine, glutamic and aspartic acids, where side chains 

participated in the MCR reaction or acted as nucleophiles instead of alcohol 22.  

It is also possible to synthesize 2,6–DKPs using solid phase synthesis methods as 

earlier described as one of the synthetic ways for making 2,3–DKPs. This way of 

synthesis of DKPs from amino acids using solid phase or solution phase was reported by 

Altamura et al.[25] 

 

1.2.2. Tandem reaction forming N1-C2/N4–C5 bonds 

 

 This is a practical method for preparation of 2,6–DKPs, which involves the 

formation of N1 - C2 and N4 – C5 bonds in succession. This synthetic pathway was 

reported by Abdel – Hamide et al. [26] in 1997. The method was used for synthesis of new 

antimicrobial agents. 
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Scheme 7. Tandem reaction forming N1- C2/N4–C5 bonds via formation of chloraceamide; reagents: 

(a) ClCOCH2Cl, DMF; (b) EtO2CH2NH2•HCl, C5H5N, ∆, 8h.  

 

As it can be seen from a Scheme 7, the first step of this reaction is acylation using 

chloroacetyl chloride, which gives amide from amine and affords good yields of the 

reaction. The result of reaction with ethylglycinate leads to 2,6–DKP as a product in 

moderate yields.  

1.2.3. Tandem multiple bond formation 

 
One of the most common reactions in synthesizing 2,6–DKPs is via multiple bond 

formation by forming N1–C2 and N1–C6 of the imides. This simultaneous method was 

used in a report by Singh et al. [23] and deals with the synthesis of Flutimide, which in  

Scheme 8 is the final product. The compound of interest is 2,6–DKP (28 in Scheme 8). 
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Scheme 8. Tandem N1–C2 and N1–C6 bond formation; reagents: (a) N–OH–succinimide, DCC, Et3N, 

DCM; (b) NH2OH•HCl, NaOH, H2O/EtOH; 80 -100°C. 

 

During the first step hydroxamide is activated with N–OH–succinimide and gives 

an active ester 27. The second step of the reaction gives a 2,6–DKP by treatment with 
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hydroxylamine and heat. In this case 80% yield was achieved. The reaction was 

successful and the 2,6–DKP was used as an intermediate product. 

 

1.2. 4. Concurrent 4 C–N bonds formation method for synthesizing the 2,6-

DKPs 

The more attractive method of all previously mentioned ones would be a 

concurrent 4 C-N bonds formation in a single reaction. Unfortunately this reaction pattern 

have not been investigated and developed so far as it could be. In the literature there are 

only symmetrical 2,6–DKP examples according to this method. In 1968 Basu et al.[27] 

published a reaction in which phenethylamine and ethyl chloroacetoacetate were heated 

under solvent free conditions (see Scheme 9). 

Ph
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Ph Ph
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30 31  
Scheme 9. 4C-N bonds formation via chloracetamide; reagents: (a) 170 - 175°C, 3h; (b) 195 – 200°C 

4h. 

 

The outcome of this reaction depended on a heating. When the sample was heated 

to 170-175°C for 3 hours 2,6–DKP was obtained as the main product, giving 97% yield. 

After heating to 195-200°C and prolonging the reaction time to 4 hours 2,5–DKP was 

produced as a major product (25%) and 2, 6–DKP (4%) as a minor one. 

  

1.3 2,5–DKPs 

The most widely investigated and most significant group of the three isomers are 

2,5–DKPs. As was mentioned before, 2,5–DKPs exhibit antiviral,[16] antibacterial,[10] 

antifungal[6] and other properties (Figure 4). Compound on a left was observed to have a 

use as antiviral agent against vesicular stomatitis virus, coxsackie virus and respiratory 
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syncytial virus. Compound in the middle of a Figure 4 showed antimicrobial properties 

against mycobacterium tuberculosis H37Ra and compound on the right proved to exhibit 

antifungal features.  
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Figure 4. Chemical structure of compounds that exhibit (d), antiviral (e) antibacterial (f) antifungal 

properties. 

 

1.3.1. Microwave – assisted solid – phase synthesis 

Several methods have been reported using solid phase synthesis of 2,5–DKPs. 

Most of the research was based on specific amino acids, Bianco et al. [28] reported the 

synthesis of DKP containing hydroxyproline derivatives and Papini et al. [29] about the 

cyclization of histidine containing peptides on solid phase. Grøtli et al.[30] reported in 

2006 a wide investigation about microwave assisted solid phase synthesis of 2,5–DKPs 

using various combinations of resins and solvents. 
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Scheme 10. Microwave assisted solid phase cyclization resulting in 2,5-DKP formation.  

By employing the solid phase synthesis method for the preparation of 2,5–DKPs 

some factors need attention. One of them is the conformations of the amino acids. As can 

be seen in Scheme 10 the most efficient way is to use a combination of D and L amino 

acids, because of the minimal steric interference of side chains during the cyclization 

step. Also, it is very important to choose the right peptide – resin linkage. When 
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cyclization was done in water, the best choice was PEGA – Ser resin, while using organic 

solvents the results were similar with ArgoGel – MB OH, PS – Ser and TentaGel S Ac 

resins. Taking into consideration all the listed factors, there were achieved very high 

yields for microwave assisted solid phase synthesis of 2,5–DKPs.  

 

1.3.2. Rapid synthesis of N-substituted DKPs by one pot Ugi – 

4CR/Deprotection + Activation/Cyclization (UDAC) 

 

 One reaction type, that has been mentioned before, is the multicomponent Ugi – 

4CR/deprotection + activation/cyclization reaction. This method for synthesis of DKPs 

was published by Wessjohann et al. [31] in 2009. It describes a simple procedure which 

leads to surprisingly high yields of the reaction products and short reaction times with no 

heating demand. 
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Scheme 11. Synthesis of trisubstituted DKPs via Ugi–4CR/deprotection + activation/cyclization 

(UDAC) method. 

 

It is a unique method in that it combined two reactions, i.e. Ugi–4CR/ 

deprotection/cyclization and Ugi–4CR/activaction/cyclization. Here, as can be seen in 

Scheme 11, the deprotection comes together with the activation of the electrophile. 

This one pot reaction was used with different kinds of protected amino acids, 

primary amines and aldehydes. It is continued by removal of the N-terminal Boc 

protecting group under acidic conditions using TFA-CH2Cl2. After the removal of the 

protecting group, the final cyclization is reached by adding a base into the solution. For 

those reactions biphasic mixture containing CH2Cl2/aqueous NaHCO3 was used, which 

was employed in order to keep the product in the organic phase. 
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 In general this method for making DKPs is fast, works under mild conditions and 

gives moderate to high yields. 

 

1.3.3. One pot synthesis of symmetrical 1, 4- disubstituted piperazine-2, 5-

diones 

This method was published by Su-Dong Cho et al. [32] in 2003. The first step of 

this reaction was already mentioned in 1992 by Sandri et al.[33]  
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Scheme 12. Cyclization via Chloracetamide; reagents (a) K2CO3, CH2Cl2; (b) NaOH, CH3CN, 82°C. 

 

 The first step of this reaction is the preparation of chloroacetamide of specific 

amine. It was done by mixing 2-chloroacetyl chloride with the appropriate amine in 

CH2Cl2 with addition of a base. The second step is the cyclization between two molecules 

of chloracetoamide initiated by strong base in CH3CN with heating (see Scheme 12). The 

yields of the reactions were varying from moderate to good depending on base and 

substituents on nitrogen. For example, cyclization reaction using alkyl, cycloalkyl, 

heterocyclic groups together with benzylic groups were giving good yields of the 

reactions. Though cyclization reactions with sterically hindered aromatic substituents 

worked very well, electron withdrawing groups on the aromatic ring gave negative 

results.  

 Combining the results of the first and second step of this reaction suggests that 

this reaction is giving very high yields and is extremely fast for synthesizing symmetrical 

DKPs. 
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1.3.4. Synthesis of hexa- and pentasubstituted DKPs from sterically hindered 

amino acids 

 

 Synthesis of hexa and pentasubstituted DKPs can sound like a big challenge, but 

according to Brown and Schafmeister[34] it was possible. In the same year it was also 

published a solid – phase synthesis method for making hexa substituted DKP by the 

group of Brown, Alleva and Schafmeister et al.[35] (Scheme 13). 

N
NH

CO2Att-BuO2C

R1
Cbz

N
NH

CO2Ht-BuO2C

R2
Cbz

N
NH

t-BuO2C

R1
Cbz

O
O

O

HN

N

R2

CO2t-Bu

Cbz

N
N

t-BuO2C

R1
Cbz

O

O

OH

HN
NH

R2

CO2t-Bu

N
N

t-BuO2C

R1
Cbz

O

N
NH

CO2t-Bu

O R2

a

b

c

39 40

4142

43  
Scheme 13. Synthesis of hexa- and pentasubstituted DKP; reagents: (a) DIPEA, DCM/DMF; (c), 

DIC/DCM. 

 

This was essentially a very similar reaction, but instead of solution phase solid 

phase was used. During the first step of the reaction N–alkylamino acid 40 serves as the 

nucleophile and couples with N–alkyl amino–OAt ester 39 forming an anhydride that 

spontaneously rearranges through an acyl transfer. 2,5-hexa substituted–DKPs are formed 

after dehydration assisted by the addition of a dehydrating agent N,N'-
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Diisopropylcarbodiimide (DIC). In order for the cyclization to take place, it is very 

important that amide 42 must be in the cis conformation.   

1.3.5.  Synthesis of functionalized, unsymmetrical 1,3,4,6 – tetrasubstituted 

2,5–DKPs 

  

This synthesis method allows a synthesis of tetrasubstituted DKPs involving the 

cyclization of N–alkylated dipeptides.  It was published by Luthman et al. [36] in 2007.  
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Scheme 14. Synthesis of functionalized, unsymmetrical 1,3,4,6–tetrasubstituted-2,5–DKPs via base – 

catalyzed dipeptide ester cyclization. Reagents: (a) EDC/NMM, CH2Cl2; (b) HCl (g)/CH3OH; (c) 

H2O, 200°C, 10min. (MW) microwave heating; (d) Et3N, H2O, 140°C, 10min., MW heating; (e) 

BEMP, R4-Br, CH2Cl2 for 24h at rt or DMF for 30min. at 60°C using MW heating.  

 

From Scheme 14 the main coupling steps of this reaction can be seen. The first 

one is the condensation reaction between N–alkylated amino ester and N–protected 

amino acid, which can be converted to DKP through 2 steps (deprotection and 

cyclization) or 1 step (deprotection/cyclization) under microwave heating. In order to 

alkylate the nitrogen and produce the tetrasubstituted DKP, a strong base 2-tert-
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Butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine (BEMP) was 

used. 

The yields are varying depending on substituents on the ring DKPs. More bulky 

or aromatic substituents gave moderate yields, while linear and branched alkyl groups 

gave rather good results.  
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2. The aim of the project 

The goal of this project was to synthesize 1,3,4,6–tetrasubstituted-2,5-DKPs using 

different kinds of amino acids with the help of microwave radiation. In a Figure 5 is 

shown the structure of the 2,5-DKPs. The challenge of this project was the introduction 

of hydrophilic groups into the DKP scaffold, because of the additional reactive side 

groups. Though, the introduction of hydrophilic groups is important, because it increases 

a water solubility and activity of a molecule, which allows us to produce potential 

therapeutic compounds. 

 

 R1 and R2 – hydrophobic groups                                              

R3 and R4 – hydrophilic groups 

 
 

Figure 5. General structure of 1,3,4,6–tetrasubstituted-2,5-DKPs. 

 

To be investigated if substituents R4 and R3 could be introduced on amino acid 

methyl ester hydrochlorides, Boc protected amino acids, dipeptides by using alkylation 

reactions or reductive amination.  
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3. Results and discussion 

3.1. Preparation of 2,5–disubstituted DKPs using a microwave assisted 

heating  
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Figure 6. General structure of DKP and examples. (44) (3R,6R)-3,6-dibenzylpiperazine-2,5-dione; 

(45) (3S,6S)-3,6-dimethylpiperazine-2,5-dione; (46) (3S,6S)-3-benzyl-6-methylpiperazine-2,5-dione.  

 

All of the produced disubstituted DKPs already have been synthesized before.  A 

selection of naturally occurring and synthetic amino acids was used, which included L 

and D phenylalanine together with L and D alanine in various combinations. R1 and R2 

substituents thus depended on the amino acid employed. (Table 1) 

 
Table 1. Synthesized disubstituted-2,5-DKPs. 

 

 
 

   

R1 R2 

D-Phe D-Phe 

L-Phe L-Phe 

D-Phe L-Phe 

L-Ala L-Ala 

L-Ala L-Phe 
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 In order to synthesize 2,5-disubstituted DKP a known synthetic pathway was 

chosen. (Scheme 15) 
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Scheme 15. Synthesis of disubstituted 2,5 DKP via base catalyzed dipeptide ester cyclization; 

Reagents: (a) HBTU, DIPEA, DMF overnight at rt; (b) HCl, THF 1h; (c) Et3N, H2O under 

microwave heating 140°C, 10 min. 

This synthetic procedure consisted of three steps. First, a coupling of an N–Boc–

protected acid with amino acid methyl ester hydrochloride to form a dipeptide methyl 

ester. In this reaction two coupling reagents EDC/NMM and HBTU were tested. The 

coupling with EDC/NMM as it was described in the literature [37, 38] did not give the 

planned result, though the results with HBTU were satisfying and gave 85% yields. For 

purification of compound 3 liquid/liquid extraction with citric acid (10%) and sodium 

bicarbonate aqueous solution was used. The protecting group removal was carried out 

smoothly using HCl/THF and gave a dipeptide methyl ester hydrochloride salt, which in 

the last step of the reaction in the presence of water as solvent and triethylamine as base 

using microwave heating gave 2,5–DKP as final compound with yields of 25-50%. The 

yields depended on amino acid configuration and size of substituents. The best result was 

achieved for compound 45, where for the starting material were used L and L alanine, 

which does not cause steric hindrance in a molecule. Because of the steric hindrance in 

the molecule, compound 44 was synthesized in lowest yield. This was the reaction that 
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needed to be tested before synthesizing 1,3,4,6–tetrasubstituted–2,5–DKP. This synthesis 

worked well on disubtituted DKPs so it could be used for more substituted ones. The 

compounds synthesized are not included the experimental part as they were earlier 

published, but spectral data were in accordance. [39-42] 

 

3.2 Attempts to synthesize arginine containing dipeptides 

The previous mentioned conditions for coupling Boc amino acid with amino acid 

methyl ester hydrochlorides were applied for coupling the arginine. As is known 

guanidino side chain can function as a nucleophile[43] and as long as there was no 

additional protection on it the reaction did not lead to a successful result. There were 

several attempts to produce diarginine dipeptide and phenylalanine and arginine 

containing dipeptide.  
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Scheme 16. Possible mechanism for the self-cyclization of N-boc arginine. 

It is likely, that the addition of base, in our case it was used DIPEA, led to the 

self-cyclization[44] (see Scheme 16) of deprotonated amine group on the unprotected side 

chain on the carbonyl group. It was an undesirable reaction as it prevented arginine to 

couple to the unprotected N terminus of the amino acid methyl ester hydrochloride.  In 

order to prevent it, the additional protection by a nitro group on the side chain could be 

used.  

3.3. Attempts towards synthesis of 1,3,4,6–tetrasubstituted-2,5-DKPs 

 

For the synthesis of tetrasubstituted-2,5-DKPs three possible pathways were 

studied. They are described more widely in a further section. The idea of the reaction was 
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to cyclize N–alkylated dipeptide and to introduce the last substituent via N–alkylation to 

get the final compound 1,3,4,6–tetrasubstituted–2,5–DKP using microwave irradiation. In 

all cases there were encountered some problems in the first steps of the reaction. 

 

3.3.1. Alkylation of amino acid methyl ester hydrochloride 

This was the first and the most common method that was tested in order to 

produce DKP (see Scheme 17). 
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Scheme 17.  Synthesis of tetrasubstituted-2,5-DKP via base catalyzed dipeptide ester cyclization; 

Reagents: (a) HBTU, DIPEA, DMF; (b) HCl/THF; (c) Et3N, H2O, MW heating 10 min., 140°C; (d) 

BEMP, R3-Br, MW heating 30min. at 60°C. 

 

 Nonetheless, it seemed to be an easy way to carry out this reaction, but a problem 

occurred in making the starting compound N–alkylated amino ester. 

H2N
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HN
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Scheme 18.  N-alkylation of amino acid methyl ester hydrochloride. 

 

 For that reason, the N-alkylation reaction was tested with NaHMDS[45], 

Cs2CO3
[46], K2CO3, Et3N[47], KOH, NaH[48] as bases (Scheme 18). In no case did it lead to 

the desired result. In most cases the result was dialkylated amino ester, though, using 

such a strong base as NaH it led, as 1H NMR showed, to a doubly alkylated amino acid. 

Though mono alkylation was possible using benzylbromide as an alkylating agent, but 

this did not give the final product, because the alkylated amino ester hydrochloride was 
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too hindered to couple to Boc protected amino acid. As was mentioned before, for the 

alkylation reaction Cs2CO3 was used, which first seemed to give a mono alkylated amino 

acid methyl ester. From the 1H NMR spectra a mono alkylated amino acid methyl ester 

could be seen, but after the results of MS and 13C NMR spectra it could be seen that the 

reaction product was a carbamate. This was also confirmed by IR spectra. The reaction 

was investigated more extensively and is more described in chapter 3.4.  

For synthesizing the starting material other methods were tried, like reductive 

amination (see Scheme 19). It was carried out by using aldehyde and primary amine to 

produce and imine and was continued with imine reduction by using  NaBH(OAc)3
[49] or 

NaBH4
[50] as a reducing agent. This did not lead to a mono N - alkylated compound and 

MS analysis indicated that dialkylation of amino acid methyl ester had occurred. The 

reason for it is not clear. 
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Scheme 19. Reductive amination of amino acid methyl ester. 

In addition to all attempts to synthesize N–monoalkylated amino ester, one more 

way to synthesize it was used through Boc–N–alkylated amino acid, which after 

esterification and deprotection did not give the wanted N–alkylated amino ester, but N–

alkylated amino acid (Scheme 20). 
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Scheme 20. Synthesis of N-alkylated amino acid methyl ester; reagents (a) Cs2CO3, R4-Br, DMF; (b) 

Dry MeOH and SOCl2. 

This was because of water, that was left after alkylation of Boc amino acid and it 

was difficult to remove it by drying it with brine, MgSO4, under vacuum or even using 

azeotropic water removal with benzene as a drying agent. It is likely that ester has 

formed, but due to the large amount of water it has been hydrolyzed and the acid was the 

final product. 
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3.3.2. Coupling of N–alkylated Boc–amino acid with amino acid methyl ester 

hydrochloride 

 

 This was one more possible method for synthesis of DKPs. It was easy to alkylate 

Boc – amino acid using Cs2CO3 as base, only monoalkylation was possible because of 

the protecting group (Scheme 21). Reactions were tested by using different R4 groups 

(ethyl, isopropyl, t - butyl) together with different Boc protected amino acids (phenyl 

alanine, alanine, valine). Reactions were successful and yielded 85-95 %, depending on 

the size of substituents and steric hindrance of the reaction product. 
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Scheme 21. Monoalkylation of Boc protected amino acid. 

 

Even though the starting material was synthesized successfully, the coupling 

reaction of N-alkylated Boc protected amino acid with amino acid methyl ester 

hydrochloride was not achieved (shown in a Scheme 22). It might be because of the 

change of a conformation of the Boc–alkylated amino acid or when the alkylation 

appeared it might be difficult for NH2 to attack at the right angle because of steric 

reasons. 
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Scheme 22. Proposed DKP synthesis via coupling of Boc N-alkylated amino acid with amino acid 

methyl ester hydrochloride and base catalyzed cyclization;  reagents: (a) HBTU, DIPEA, DMF; (b) 

HCl/THF; (c) Et3N, H2O, MW heating 10min., 140°C; (d) BEMP, R4-Br, MW heating 30 min. at 

60°C. 
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3.3.3. Alkylation of Boc–amino acid methyl ester 

 The last proposed synthesis was to protect the amino ester hydrochloride using 

Boc, and then try the N–mono alkylation reaction (see Scheme 23). 
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Scheme 23. Reagents (a) (Boc)2O, NaHCO3, Dioxane; (b) Cs2CO3, R4 - Br, DMF; (c) HCl/THF. 

 

After this step it was planned to continue with the deprotection of Boc alkylated 

amino ester and coupling reaction with a Boc amino acid. Though, the alkylation process 

of Boc amino ester caused difficulties. The alkylated Boc amino ester was only a minor 

product of the reaction. The MS analysis of the N alkylated Boc protected amino acid 

methyl ester showed that there was starting material Boc protected amino acid methyl 

ester, and N–alkylated Boc protected amino acid methyl ester, just the last one was the 

minor, and the starting material was the major product of the reaction. This method could 

be used after optimization of the reaction conditions that would allow getting higher 

yields of the reaction product. Due to the lack of time, because this was the last attempt to 

synthesize N–alkylated amino acid ester hydrochlorides, this was not managed to be 

done. 

 

3.4. Synthesis of the starting material 

In order to synthesize methyl esters as a starting material, simple and well known 

procedures were used (Scheme 24). According to which, dry methanol was cooled in an 

ice bath and thionyl chloride was introduced slowly, over 5 minute period. Then the 

amino acid was added to the solution. After dissolving by heating, tert–butyl methyl ether 

was added in a solution, which thereafter crystalize straight away in most of the cases.  In 

our case it was used for making phenylalanine, valine and alanine methyl esters 

hydrochlorides. The reaction gave extremely pure compounds in high yield (85-95%), 

which were the starting materials for the synthesis of DKPs. 
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Scheme 24.  Synthesis of amino acid methyl ester hydrochloride. 

3.5. One–pot synthesis of carbamates 

As it was mentioned before in a chapter 3.2.1., a new carbamation reaction during 

this project was discovered by attempting to alkylate amino acid methyl esters 

hydrochlorides. It was proved in our study that it is possible to synthesize a carbamate by 

adding Cs2CO3 and alkylating agent into a solution of amino acid methyl ester 

hydrochloride in DMF (see Scheme 25). This was an unexpected result that was 

discovered when trying to alkylate the amino acid methyl ester hydrochlorides. Similar 

procedures were used by Kyung Woon Jung et al.[51] in 2001. But indeed, to produce a 

carbamate Cs2CO3 an alkylating agent in addition to CO2 and tetrabutylammonium iodide 

was needed. 

In our case was used a very simple procedure, which was giving pure compounds 

with moderate to high yields of the reaction. The most surprising fact in this reaction is 

the insertion of CO2 on the skeleton of amino acid methyl ester hydrochloride without an 

addition of it. This reaction was therefore investigated. Phenylalanine methyl ester 

hydrochloride, valine methyl ester hydrochloride and threonine methyl ester 

hydrochloride together with one aromatic amine–anisidine were chosen as a starting 

material. Also different alkylating agents like bromoethane, isopropyliodide and t–

butylbromide were studied. Using this method, 11 different carbamates were produced. In 

addition to that, two different bases, Cs2CO3 and K2CO3 were tested to produce the 

carbamates. 
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Scheme 25. Synthesis of carbamates via alkylation of amino acid methyl ester hydrochloride; 

Reagents: Cs2CO3 or K2CO3 as a base in DMF, overnight stirring at rt. 
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 Some conclusions can be drawn from the results, which are displayed in a Table 2 

and Table 3. First of all, in all aspects it was easier to synthesize the ethyl carbamates. It 

might be because of steric hindrance in a molecule, as changing to isopropyl and t–butyl 

groups the yields were lower. Also, in most cases Cs2CO3 gave better yields in the 

reactions, though sometimes reactions, in which K2CO3 was used as a base, gave products 

with a better purity. From the data in Table 2 it can be seen that the yields are decreasing 

with addition of bulkier alkylating agents. For that reason, after purification the water 

phase was tested and apparently most of the carbamate was staying in it. In order to 

recover it, the water phase was saturated with sodium chloride and after extraction the 

yields increased. For example for compound 55a the yield went from 25% to 88%. So it 

may be that the other compounds yields might be a lot higher by choosing a better 

extraction procedure. Due to the lack of time this part was left for further investigation. 

 
Table 2. Yields of produced carbamates using Cs2CO3 and K2CO3 as a base. 

Entry R R1 Yield (%) 
Cs2CO3 

Yield (%) 
K2CO3 

52a  benzyl   ethyl        84   67 

52b  benzyl   isopropyl       75   54 

52c  benzyl   t–butyl             15   10 

53a  isopropyl  ethyl        45   32     

53b  isopropyl  isopropyl       34     - 

53c  isopropyl  t–butyl              8     - 

54a  1-hydroxy ethyl ethyl        37    32 

54b  1-hydroxy ethyl isopropyl       25     - 

55a  methyl indole   ethyl        88     -  
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Scheme 26. Synthesis of carbamates via N-alkylation of anisidine; reagents: Cs2CO3 or K2CO3 as a 

base in DMF, overnight stired at rt. 

 

Table 3. Yields of produced carbamates using Cs2CO3 and K2CO3 as a base. 

Entry R2 Yield (%) 
Cs2CO3 

Yield (%) 
K2CO3 

56a           ethyl  15   - 

56b           isopropyl  -   12 

 

The proof of the reaction product was made according to the 13C NMR, MS,  

which are displayed in a Figure 7, 8 for a compound 52a. The numbering in the following 

discussion is used as assigned. The 13C NMR spectrum has one carbonyl peak C7 at 

172.6 ppm and the C2 at 157.18 ppm, which proved that the compound consist of 2 

carbonyl groups. The aromatic carbons are at 139.9 ppm, 128.80 ppm, 128.03 ppm, 

126.41 ppm. The carbons at 60.60 ppm, 55.47 ppm can be assigned to the carbons that 

are close to the oxygen C9 and C12. The peak at 51.22 ppm belongs to C3, which is close 

to the nitrogen and the last two peaks at 37.23, 13.46 belong to aliphatic carbons C10 and 

C6 in that order. 



37 

 

 
Figure 7. 13C NMR spectra of a compound 52a. 

The MS results proved that the product of the reaction is a carbamate.  

 

 

Figure 8. MS spectra of a compound 52a. 



38 

 

4. Future outlook 

As a future prospect of this project, I would see the continuation of experiments 

on attempts to introduce substituents into different peptide precursors, e.g. the alkylation 

or reductive amination of Boc protected dipeptide. 
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Scheme 27.  Proposed synthesis method for the synthesis of tetrasubstituted-2,5-DKP. 

As it was difficult to find a good procedure for introduction of substituents on 

nitrogen either on amino acids, amino acid methylester hydrochlorides or dipeptides it 

was not done too much on testing the coupling reagent, only EDC and HBTU were 

tested. As well the conditions for cyclizing the dipeptides to DKP can also be improved 

by changing the reaction time, solvents and variation of the substituents. It would be 

interesting to investigate the possible cyclization of compound 61, which has 4 

substituents, two of them are on a nitrogen.  

In the chapter 3.2 was discussed the coupling reaction of arginine. My proposed 

synthesis way for that reaction would be the additional orthogonal protection on the side 

chain, which would let to produce dipeptide and the use of orthogonal protection would 

give us an opportunity to control the coupling and cyclization reactions. For example, it 

can be used N–boc N’-nitro arginine. Due to the lack of time this reaction was not tested. 
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In addition to that, I believe that the yields and purities of carbamation reaction 

can be improved by applying better solvents for extraction part and it would be a 

possibility to recover the whole amount of produced carbamate. It was mentioned before 

that as far as the reaction was used, the yields were decreasing and after the water phase 

test, the major part of the product was still left in a water phase.  
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5. Conclusions 

 

For the growing need and use of natural products and new potential drug 

candidates the new routes of synthesis arise. It will continue to emerge until more 

economical and versatile synthesis way for making DKPs will be reported. 

During this study no new method for DKP synthesis was discovered, but the 

introduction of substituents into the DKP ring was studied. It was tried to introduce 

different kinds of R groups on nitrogen by using alkylation and reductive amination 

methods. The groups were tested to introduce on amino acid methyl ester hydrochlorides, 

Boc protected amino acids and dipeptides.  

 By attempting to introduce the substituents using alkylation reaction, a new 

carbamation reaction was discovered. This was an unexpected result. Thereafter this 

reaction was investigated more extensively using different amino acid methyl ester 

hydrochlorides together with different alkylating agents. The use of different bases in the 

reaction: Cs2CO3 and K2CO3 was also tested. Results varied from moderate to high yields 

depending on the substituents, which caused a steric hindrance in the molecule, and the 

base. The better results were achieved using Cs2CO3 though reaction products using 

K2CO3 were showing more pure results.  
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6. Experimental 

6.1. General 

All the solvents and chemicals were purchased from commercial suppliers like 

Fluka, Aldrich, Merck and used for the reactions without further purification. Dry 

solvents were taken from dry solvent system (SDS). Reactions were monitored by using 

TLC 60 F254 silica gel plates, visualized by using UV light or iodine vapor. Flash column 

chromatography was performed on silica gel (35-70), which was supplied by Merck. 

The general procedures of the reactions are described further. All spectra are 

included in the appendixes section, which include spectra of 1H NMR, 13C NMR and MS 

and IR. All of the samples were run in deuterated methanol. Spectra of 1H NMR and 13C 

NMR were recorded on a Varian Mercurry 400 Plus (399.65/100.54 Mhz) spectrometer. 

Chemical shifts (δ) are reported in parts per million (ppm) TMS (δ = 0.00 ppm) used as 

an internal standard. Coupling constants (J) are measured in Hertz (Hz). Signal 

multiplicity is assigned as s (singlet), d (doublet), t (triplet), m (multiplet). Infrared 

spectra were obtained on a Varian 7000e FT – IR spectrometer, with frequencies (ν) 

reported in centimeter (cm-1). Mass spectra were recorded on a Thermo electron LTQ 

Orbitrap + Electrospray ion source (Ion - Max). 

 

6.2. General procedure for synthesis of carbamates 

The methyl ester of the C terminal amino acid (1 eq.) or an amine (1 eq.) was 

dissolved in a DMF (4ml per 1mmol) and cesium carbonate (2 eq.) was added into the 

reaction mixture. After stirring for 5min. an alkylating agent (1.3 eq.) was added 

dropwise and the reaction left for stirring overnight at room temperature. The reaction 

mixture was washed by using 4% potassium bisulfate aqueous solution (2x4ml per 

1mmol) and the organic layer was washed with brine (3x30ml) and dried over anhydrous 

MgSO4 and concentrated in vacuo.  
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Methyl 2-(ethoxycarbonylamino)-3-phenylpropanoate (52a): 

Phenylalanine methyl ester hydrochloride (1eq, 1.10 mmol, 0.20g) and ethyl bromide 

(1.30 eq, 1.45 mmol, 0.11 ml) gave 52a (0.23g, 0.94 mmol, 84%) as a white solid; 

HRMS (ESI): (M+Na)+ calculated for C13H17NNaO4 274,1055; found 274,1049 (100 %). 
1H NMR (400 MHz, CD3OD)δ 3.12 (dd, J = 13.8, 5.6 Hz, 1H), 2.92 (dd, J = 13.8, 9.0 

Hz, 1H), 1.18 (t, J = 7.1 Hz, 3H), 7.34 – 7.09 (m, 5H), 3.68 (s, 3H), 4.41 (dd, J = 9.1, 5.6 

Hz, 1H), 4.01 (q, J = 7.2 Hz, 2H). 
13C NMR (400 MHz, CD3OD) δ 172.60, 157.18, 136.90, 128.80, 128.03, 126.41, 60.60, 

55.47, 51.22, 37.23, 13.46. 

IR: 675.987, 700.703, 747.042, 777.974, 862.036, 1056.890, 1175.20, 1214.757, 

1252.403, 1338.941, 1373.251, 1431.647, 1699.588, 2336.255, 2361.353, 2483.465, 

2953.333, 2982.019, 3346.052, 3744.369 cm-1. 
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Methyl 2-(isopropoxycarbonylamino)-3-phenylpropanoate (52b): 

Phenylalanine methyl ester hydrochloride (1 eq, 1.10 mmol, 0.20 g) and isopropyl iodide 

(1.3 eq, 1.45 mmol, 0.15 ml) gave 52b (0.22 g, 0.83 mmol, 75%) as a yellow oil; 

HRMS (ESI): (M+Na)+ calculated for C14H19NNaO4 288,1212; found 288,1204 (100 %). 
1H NMR (400 MHz, CD3OD) δ 7.35 – 7.12 (m, 5H), 4.74 (h, J = 6.0 Hz, 1H), 4.40 (dd, J 

= 9.4, 5.5 Hz, 1H), 3.68 (s, 3H), 3.11 (dd, J = 13.7, 5.4 Hz, 1H), 2.91 (dd, J = 13.9, 8.8 

Hz, 1H), 1.17 (dd, J = 21.4, 6.1 Hz, 6H). 
13C NMR (400 MHz, CD3OD) δ 172.64, 136.90, 128.80, 128.01, 126.38, 68.15, 55.41, 

51.20, 37.26, 20.88. 
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IR: 701.017, 747.110, 779.617, 27.714, 915.764, 952.014, 1048.194, 1081.689, 

1111.111, 1145.375, 1213.326, 1257.324, 1342.707, 1373.618, 1438.397, 1512.950, 

1498.740, 1743.358, 1730.561, 2337.474. 2362.154, 2876.524, 2935.215, 2980.014, 

3030.328, 3064.294, 3346.097, 3488.423 cm-1. 

HN
O

O
O O  

Methyl 2-(tert-butoxycarbonylamino)-3-phenylpropanoate (52c): 

Phenylalanine methyl ester hydrochloride (1eq, 1.10 mmol, 0.20 g) and t – butyl bromide 

(1.3 eq, 1.45 mmol, 0.16 ml) gave 52c (0.05 g, 0.17 mmol, 15%) as a yellowish oil; 

HRMS (ESI): (M+Na)+ calculated for C15H21NNaO4 302,1368; found 302,1365 (100 %). 
1H NMR (400 MHz, CD3OD) δ 7.38 – 6.99 (m, 5H), 4.35 (t, J = 8.9, 5.7 Hz, 1H), 3.67 (s, 

3H), 3.08 (dd, J = 13.8, 5.6 Hz, 1H), 2.89 (dd, J = 13.8, 8.9 Hz, 1H), 1.37 (s, 9H). 
13C NMR(400 MHz, CD3OD) δ 172.77, 156.34, 136.95, 128.83, 128.01, 126.37, 79.18, 

55.13, 51.17, 37.28, 27.24. 

IR: 700.328, 745.528, 777.704, 857.845, 914.631, 1051.622, 1117.384, 1248.164, 

1279.799, 1365.229, 1390.858, 1441.749, 1498.213, 1603.991, 1712.372, 1744.796, 

2285.695, 2386.118, 2857.766, 3011.198, 3209.077, 3454.233, 3695.148 cm-1.  

HN
O

O
OO  

Methyl 2-(ethoxycarbonylamino)-3-methylbutanoate (53a): 

Valine methyl ester hydrochloride (1eq, 1.50 mmol, 0.20 g) and ethyl bromide (1.3 eq, 

1.98 mmol, 0.15 ml) gave 53a (0.14 g, 0.65 mmol, 45%) as a yellowish oil; 

HRMS (ESI): (M+Na)+ calculated for C9H17NNaO4 226,1055; found 226,1045 (100 %). 
1H NMR (400 MHz, CD3OD)δ 4.13 – 4.01 (m, 3H), 3.71 (s, 3H), 2.11 (td, J = 14.6, 13.4, 

7.9 Hz, 1H), 1.24 (t, J = 7.1 Hz, 3H), 0.93 (dd, J = 9.1, 6.8 Hz, 6H). 
13C NMR (400 MHz, CD3OD) δ 172.75, 157.65, 60.63, 59.58, 50.99, 30.39, 18.06, 16.96, 

13.50. 
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IR: 668.458, 778.615, 837.446, 907.212, 1033.689, 1099.029, 1115.827, 1162.271, 

1207.511, 1233.724, 1268.875, 1310.787, 1372.443, 1437.011, 1467.358, 1523.205, 

1720.152, 2361.116, 2493.898, 2875.081, 2971. 553, 3345.439 cm-1. 

 

 

HN
O

O
OO  

Methyl 2-(isopropoxycarbonylamino)-3-methylbutanoate (53b): 

Valine methyl ester hydrochloride (1eq, 1.50 mmol, 0.20 g) and isopropyl iodide (1.3 eq, 

1.98 mmol, 0.20 ml) gave 53b (0.11 g, 0.51 mmol, 34%) as a yellow oil; 

HRMS (ESI): (M+H)+ calculated for C10H20NO4 218,1387; found 218,1387 (90 %). 
1H NMR (400 MHz, CD3OD) δ 4.05 (d, J = 5.9 Hz, 1H), 3.71 (s, 3H), 3.31 – 3.30 (m, 

1H), 2.10 (h, J = 6.5 Hz, 1H), 1.23 (d, J = 6.2 Hz, 6H), 0.98 – 0.89 (m, 6H). 
13C NMR (400 MHz, CD3OD) δ 172.15, 156.63, 67.49, 58.87, 50.28, 29.72, 20.24, 17.36, 

16.29. 

IR: 667.843, 779.511, 45.156, 932.524, 1023.913, 1151.321, 1308.888, 1381.670, 

1444.253, 1506.074, 1722.551, 2863.790, 2976.458, 3342.413 cm-1. 

 

 

HN
O

O

OH

OO  
Methyl 2-(ethoxycarbonylamino)-3-hydroxybutanoate (54a): 

Threonine methyl ester hydrochloride (1eq, 1.50 mmol, 0.20 g) and ethyl bromide (1.3 

eq, 1.98 mmol, 0.15 ml) gave 54a (0.12 g, 0.56 mmol, 37%) as a colourles oil; 

HRMS (ESI): (M+Na)+ calculated for C8H15NNaO5 228,0848; found 228,0839 (100 %). 
1H NMR (400 MHz, CD3OD) δ 4.25 (q, J = 6.1, 2.9 Hz, 1H), 4.19 (d, J = 2.5 Hz, 1H), 

4.11 (q, J = 7.3 Hz, 2H), 3.74 (s, 2H), 1.26 (t, J = 7.2 Hz, 3H), 1.19 (d, J = 6.5 Hz, 3H). 
13C NMR (400 MHz, CD3OD) δ 171.62, 157.73, 67.01, 60.83, 59.61, 51.32, 18.79, 13.48. 
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IR: 692.647, 844.852, 1021.590, 1071.124, 1159.347, 1207.947, 1272.482, 1381.407, 

1443.210, 1513.045, 1728.943, 2863.985, 2976.877, 3441.758. 

HN
O

O

OH

OO  
Methyl 3-hydroxy-2-(isopropoxycarbonylamino)butanoate (54b): 

Threonine methyl ester hydrochloride (1eq, 1.50 mmol, 0.20 g) and isopropyl iodide (1.3 

eq, 1.98 mmol, 0.2 ml) gave 54b (0.08 g, 0.38 mmol, 25%) as a colourles oil; 

HRMS (ESI): (M+Na)+ calculated for C9H17NNaO5 242,1004; found 242,1001 (100 %). 

M+H)+ calculated for C19H18NO4 220,1179; found 220,1181 (75 %). 
1H NMR (400 MHz, CD3OD) δ 4.88 – 4.81 (m, 1H), 4.29 – 4.21 (m, 1H), 4.19 (d, J = 3.1 

Hz, 1H), 3.74 (s, 3H), 1.25 (d, J = 6.9 Hz, 6H), 1.19 (d, J = 5.7 Hz, 3H). 
13C NMR (400 MHz, CD3OD) δ 171.67, 157.34, 68.44, 67.06, 59.55, 51.36, 20.97, 20.93, 

18.87. 

IR: 691.924, 781.517, 844.608, 922.142, 1067.128, 1150.574, 1175.234, 1208.279, 

1271.921, 1381.107, 1438.737, 1509.656, 1723.349, 2865.975, 2977.512, 344.475 cm-1. 

HN
O

O

HN

OO  
Methyl 2-(ethoxycarbonylamino)-3-(1H-indol-3-yl)propanoate (55a): 

Tryptophan methyl ester hydrochloride (1eq, 0.92 mmol, 0.20 g) and ethyl bromide (1.3 

eq, 1.19 mmol, 0.09 ml) gave 55a (0.23 g, 0.81 mmol, 88%) as a colorless oil; 

HRMS (ESI): (M+Na)+ calculated for C15H18N2NaO4 313,1164; found 313,1159 (100%). 
1H NMR (400 MHz, CD3OD) δ 7.95 (s, 2H), 7.53 (dd, J = 8.4, 3.0 Hz, 1H), 7.34 (dd, J = 

8.2, 2.8 Hz, 1H), 7.08 (d, 2H), 7.02 (d, J = 7.2 Hz, 1H), 4.49 (d, J = 4.9 Hz, 1H), 4.03 (q, 

J = 6.7, 6.2 Hz, 2H), 3.65 (s, 3H), 3.26 (t, J = 5.7 Hz, 1H), 3.14 (d, J = 7.3 Hz, 2H), 1.19 

(t, J = 6.7 Hz, 3H).  

13C NMR (400 MHz, CD3OD) δ 173.05, 163.41, 136.62, 127.28, 123.09, 121.05, 118.44, 

117.72, 110.95, 109.38, 60.61, 54.99, 51.25, 35.53, 30.24, 27.32, 13.52.  
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IR: 744.677, 1065.022, 1096.859, 1214.165, 1340.160, 1374.917, 1521.144, 1616.353 

1700.151, 2336.784, 2361.681, 2977.557 cm-1. 

HN O

O

O
 

Ethyl 4-methoxyphenylcarbamate (56a): 

Anisidine (1eq, 1.63 mmol, 0.20 g) and ethyl bromide (1.3 eq, 2.12 mmol, 0.12 ml) gave 

56a (0.05 g, 0.25 mmol, 15%) as a dark brown oil; 

HRMS (ESI): (M+Na)+ calculated for C10H13NNaO3 218,0793; found 218,0784 (100%). 
1H NMR (400 MHz, CD3OD) δ 7.19 (d, 2H), 6.74 (dd, 2H), 4.05 (q, J = 7.1 Hz, 2H), 

3.65 (s, 3H), 1.19 (t, J = 7.1 Hz, 3H). 
13C NMR (400 MHz, CD3OD) δ 155.84, 128.34, 120.30, 113.81, 113.58, 60.35, 54.43, 

13.53. 

IR: 769.188, 933.923, 1036.663, 1068.416, 1077.993, 1382.117, 1443.730, 1513.26, 

1601.338, 1731.153, 2864.746, 2976.272, 3309.135 cm-1.
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7. Appendix 

 

methyl 2-(ethoxycarbonylamino)-3-phenylpropanoate 52a (page 48) 

methyl 2-(isopropoxycarbonylamino)-3-phenylpropanoate 52b (page 52) 

methyl 2-(tert-butoxycarbonylamino)-3-phenylpropanoate 52c (page 56) 

methyl 2-(ethoxycarbonylamino)-3-methylbutanoate 53a (page 60) 

methyl 2-(isopropoxycarbonylamino)-3-methylbutanoate 53b (page 64 ) 

methyl 2-(ethoxycarbonylamino)-3-hydroxybutanoate 54a (page 68) 

methyl 3-hydroxy-2-(isopropoxycarbonylamino)butanoate 54b (page 72) 

methyl 2-(ethoxycarbonylamino)-3-(1H-indol-3-yl)propanoate 55a (page 76 ) 

ethyl 4-methoxyphenylcarbamate 56a (page 80)
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1H NMR of methyl 2-(ethoxycarbonylamino)-3-phenylpropanoate 52a: 
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13C NMR of methyl 2-(ethoxycarbonylamino)-3-phenylpropanoate 52a: 



53 

 

MS of methyl 2-(ethoxycarbonylamino)-3-phenylpropanoate 52a: 

 



54 

 

IR of methyl 2-(ethoxycarbonylamino)-3-phenylpropanoate 52a: 



55 

 

1H NMR of methyl 2-(isopropoxycarbonylamino)-3-phenylpropanoate 52b: 



56 

 

13C of methyl 2-(isopropoxycarbonylamino)-3-phenylpropanoate 52b: 



57 

 

MS of methyl 2-(isopropoxycarbonylamino)-3-phenylpropanoate 52b: 
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IR of methyl 2-(isopropoxycarbonylamino)-3-phenylpropanoate 52b: 
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1H NMR of methyl 2-(tert-butoxycarbonylamino)-3-phenylpropanoate 52c: 
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13C NMR of methyl 2-(tert-butoxycarbonylamino)-3-phenylpropanoate 52c: 
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MS of methyl 2-(tert-butoxycarbonylamino)-3-phenylpropanoate 52c: 

 



62 

 

IR of methyl 2-(tert-butoxycarbonylamino)-3-phenylpropanoate 52c: 
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1H NMR of methyl 2-(ethoxycarbonylamino)-3-methylbutanoate 53a:  
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13C NRM of methyl 2-(ethoxycarbonylamino)-3-methylbutanoate 53a: 
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MS of methyl 2-(ethoxycarbonylamino)-3-methylbutanoate 53a: 
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IR of methyl 2-(ethoxycarbonylamino)-3-methylbutanoate 53a: 
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1H NMR of methyl 2-(isopropoxycarbonylamino)-3-methylbutanoate 53b: 
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13C NMR Methyl 2-(isopropoxycarbonylamino)-3-methylbutanoate 53b: 
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MS of methyl 2-(isopropoxycarbonylamino)-3-methylbutanoate 53b: 



70 

 

IR of methyl 2-(isopropoxycarbonylamino)-3-methylbutanoate 53b: 
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1H NMR of methyl 2-(ethoxycarbonylamino)-3-hydroxybutanoate 54a: 
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13C NMR of methyl 2-(ethoxycarbonylamino)-3-hydroxybutanoate 54a: 



73 

 

MS of methyl 2-(ethoxycarbonylamino)-3-hydroxybutanoate 54a: 
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IR of methyl 2-(ethoxycarbonylamino)-3-hydroxybutanoate 54a: 



75 

 

1H NMR of methyl 3-hydroxy-2-(isopropoxycarbonylamino)butanoate 54b: 



76 

 

13C NMR of methyl 3-hydroxy-2-(isopropoxycarbonylamino)butanoate 

54b:



77 

 

MS of methyl 3-hydroxy-2-(isopropoxycarbonylamino)butanoate 54b: 

 



78 

 

IR of methyl 3-hydroxy-2-(isopropoxycarbonylamino)butanoate 54b: 
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1H NMR of methyl 2-(ethoxycarbonylamino)-3-(1H-indol-3-yl)propanoate 55a: 
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13C NMR of methyl 2-(ethoxycarbonylamino)-3-(1H-indol-3-yl)propanoate 55a: 



81 

 

MS of methyl 2-(ethoxycarbonylamino)-3-(1H-indol-3-yl)propanoate 55a: 
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IR of methyl 2-(ethoxycarbonylamino)-3-(1H-indol-3-yl)propanoate 55a: 
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1H NMR of ethyl 4-methoxyphenylcarbamate 56a: 
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13C NMR of ethyl 4-methoxyphenylcarbamate 56a: 
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MS of ethyl 4-methoxyphenylcarbamate 56a: 
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IR of ethyl 4-methoxyphenylcarbamate 56a: 
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