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Abstract

Detection of objects embedded in tissue, using visible light, is difficult due

to light scattering. The optical properties of the surrounding tissue will in-

fluence the spectral characteristics of the light interacting with the object,

and the spectral signature observed from the object will be directly affected.

A method for calibrating the spectral signature of small objects, embed-

ded in translucent material, by the estimated local background spectrum is

presented. The method is evaluated under industrial conditions in a new

hyperspectral imaging system for automatic detection of nematodes in cod

fillets. The system operates at a conveyor belt speed of 400 mm/second

which meets the industrial required speed of assessing one fillet per second.

The local calibration method reduces the number of spectra needed to be

classified by 89.6 %. For one or more false alarms in 60 % of the fillets sam-

pled after the trimming station, the Gaussian maximum likelihood classifier
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detects 70.8 % and 60.3 % of the dark and pale nematodes, respectively. This

is better than what is previously reported using a higher resolution instru-

ment on a slow moving conveyor belt, and comparable or better to what is

reported for manual inspection under industrial conditions.

Keywords: hyperspectral imaging, imaging spectroscopy, industrial fish

fillet inspection, image processing, local calibration

1. Introduction1

Hyperspectral imaging (HSI), also known as imaging spectroscopy, is an2

emerging analytical tool integrating imaging and spectroscopy to attain a3

full spectral profile of each point in a scene being imaged. HSI was initially4

developed for remote sensing applications, but has increasingly been adopted5

in food control applications. Most applications, 22 out of 30 research papers6

since 2004 (Gowen et al., 2007), have utilized HSI in reflectance mode. Re-7

cently, HSI has been applied to problems requiring other measurement modes8

such as transmission for detection of nematodes in cod fillets (Sivertsen et al.,9

2011a) and interactance for estimating freshness of cod fillets (Sivertsen et al.,10

2011b), water content of cliff fish (Wold et al., 2006), ice fraction (Ottestad11

et al., 2009) and fat content (Segtnan et al., 2009) in salmon fillets.12

The two main types of parasitic nematodes infecting Atlantic cod (Gadus13

morhua) are Anisakis simplex and Pseudoterranova decipiens. A. simplex is14

more abundant in offshore fish, whereas P. decipiens is more likely to be found15

in inshore fish (Marcogliese, 2002). The two nematode species differ in size16

and color, where P. decipiens is often both darker and larger than A. simplex.17

Consuming nematode infected fish has traditionally not been considered a18
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health risk as long as the nematode is killed by adequate cooking, freezing or19

frozen storage (Wharton and Aalders, 2002). Nematodes have mainly been20

considered a cosmetic problem, which can have a significant impact on fish21

consumption (Fischler, 2002). As undercooked seafood increases in popular-22

ity the risk of nematodes infecting humans increases. Lately, the potential23

for A. Simplex to induce hypersensitive reactions in humans, even after it has24

been killed by cooking or freezing, has received increased attention (Werner25

et al., 2011).26

Today every single fillet is inspected by transillumination on candling27

tables (Hafsteinsson and Rizvi, 1987), and nematodes are removed manually.28

This is referred to as trimming, and is an expensive operation previously29

reported to account for half of the production cost for Pacific cod from the30

Bering Sea and the Gulf of Alaska (Bublitz and Choudhury, 1992). The31

fillet trimming is a bottleneck of the current fillet processing industry and32

often performed in room temperature, around 20 ◦C, with an increased risk33

of bacterial and enzymatic degradation. The manual detection efficiency34

for P. decipiens is reported as 68 % under ideal conditions, as low as 50 %35

under industrial conditions (Hafsteinsson and Rizvi, 1987) and only 25 %36

for fillets with skin (Hauksson, 1991). Others have reported detection rates37

in the range 33 - 93 % (Varga and Anderson, 1971), with an average of38

68 % (Bublitz and Choudhury, 1992). The absorbance characteristics of39

nematodes differ from cod muscle in the region 370-600 nm (Stormo et al.,40

2007, 2004; Petursson, 1991). In this region scattering of light is prominent in41

cod muscle and light interacting with the nematode is mixed with light from42

the surrounding tissue. This is why nematodes embedded deeper than 4-643
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mm are not detected by manual inspection (Bublitz and Choudhury, 1992;44

Hafsteinsson et al., 1989).45

Automatic nematode detection has been a prioritized research area for46

the cod fillet industry, where a series of different methods have been evalu-47

ated (see Sivertsen et al. (2011a); Heia et al. (2007) for a list of references).48

These methods have been evaluated at laboratory scale and on small fillet49

segments, and none have so far made it to an industrial application. Recently50

a system capable of automatic detection of nematodes in full size cod fillets51

was presented (Sivertsen et al., 2011a). The system utilized HSI in trans-52

mission mode, and was operating at a belt speed of 25 mm/second. The53

system was evaluated on industrially processed fillets and the performance54

was comparable to manual detection on candling tables. However, the limi-55

tations with the system are the slow speed and that it may not be used on56

fillets with skin.57

Several methods for preprocessing optical spectra to reduce the effect of58

scattering have been developed. Examples are the second derivative calcu-59

lated using the Savitzky-Golay second order smoothing filter (Savitzky and60

Golay, 1964), standard normal variate (SNV) (Barnes et al., 1989) and mul-61

tiplicative scatter correction (Geladi et al., 1985). These are all common62

methods applied in spectroscopy and work well when one can assume homo-63

geneous samples were the absorbance and scattering properties are constant64

along the optical path. This assumption does not apply for HSI of fish fillets,65

where the sample thickness, geometry and optical path length varies across66

the sample. In addition the light often propagates through muscle layers67

or regions with different optical properties, making it a non-trivial problem68
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to separate the absorbance and scattering effect in the recorded HSI spec-69

tra. The recorded spectra from two similar nematodes embedded in different70

muscle regions can be different, even though the absorbance characteristic of71

the two nematodes are identical. This will result in large spectral variations,72

and hence a difficult classification problem.73

The main objective of this work was to build a HSI setup for automatic74

detection of nematodes in cod fillets, operating at the industrial speed of 40075

mm/second with a performance comparable to what is achieved with manual76

inspection on candling tables.77

2. Materials and methods78

All the image processing methods and algorithms explained in the follow-79

ing were implemented in IDL (Exelis, Inc.).80

2.1. Industrial test81

The test was performed at a fish processing plant in northern Norway82

during the period 2-3 March 2010. The inspection machine was installed at83

the plant two weeks earlier and 43 fillets were sampled after the skinning84

machine and inspected in order to adjust the instrumentation and train the85

classifier. These fillets, referred to as the training set, were only inspected86

from the fillet side and no depth registrations of the nematodes were done.87

During the main test, 127 fillets were sampled prior to the trimming88

stations and 20 fillets were sampled after the trimming stations. These fillets89

are referred to as the test set. The fillets were sampled in batches of 10 and90

sent through the imaging machine. Each fillet was then manually inspected91

on a candling table, from both sides, by a team of two trained persons. To92
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speed up the manual inspection, two different teams were used, each team93

inspecting half of the fillets. All spots that resembled a nematode infection94

were sliced with a knife and further inspected. A custom made computer95

program was used to manually pin-point each of the nematodes directly on96

to the image recorded of the fillet. Each nematode was classified as pale97

or dark, according to its white/yellow or red/brown color respectively. In98

addition each nematode was classified as a surface (0-2 mm), embedded (2-99

6 mm) or deeply embedded nematode (deeper than 6 mm). The deeply100

embedded nematodes were all found by inspecting the fillets from the skin101

side.102

Nematodes found laying loose on top of the fillet, and which could not be103

seen in the image, were labeled with unknown position (UP).104

2.2. Hyperspectral interactance imaging system105

For the HSI system to meet the industrial speed requirements, several106

improvements were made to the hardware and measurement setup. These107

improvements and more details regarding the system are further explained108

in Sivertsen et al. (2011b). A detailed sketch of the main system components109

are shown in Fig. 1A, and a photograph of the inspection machine, with the110

front cover removed, is shown in Fig. 1B.111

The camera in the spectrometer uses a charge coupled device (CCD)112

sensor with a full well capacity of 40000 electrons and 12 bit A/D converter.113

The sensor is equipped with anti-blooming gates (Janesick, 2001) and black114

clamping (Barron et al., 1995). The black clamping works by calculating a115

mean dark current value, from pixels around the CCD not exposed to light,116

and subtracting this from the sensor readout before the values are converted117
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to digital numbers (DN).118

A photo cell is positioned 200 mm in front of the measurement region,119

where a microcontroller reads the output from the photocell and trigger the120

spectrometer once a fillet is present on the conveyor belt.121

Each of the spectra recorded by the HSI system represents light intensity122

from a spatial region of size 0.5 mm x 1.0 mm in the region 400 - 1000 nm123

with a spectral resolution of approximately 10 nm. The wavelength range124

448-752 nm was used for all the analysis in this work, and this overlaps with125

the wavelength region previously reported to be well suited for discriminating126

nematodes from fish muscle (Stormo et al. (2007, 2004); Petursson (1991)).127

2.3. System calibration128

The spatial and spectral distribution across the field of view (FOV) is129

measured by imaging a 300 mm x 300 mm x 25 mm Teflon slab. This is done130

every time the system is initialized and stable, approximately 30 minutes131

after the system is powered up. A rectangular spatial region in the image132

of the Teflon target, approximately 200 mm x 40 mm, is manually selected.133

This region is used to estimate the average spectral response across the field134

of view, T̂ (s, λ) = (1/N)
∑

l∗ J(s∗, λ, l∗), where (s∗, l∗) represent pixels inside135

the selected region, J(s, λ, l) is the recorded interactance image of the Teflon136

target, λ is the wavelength and N is the number of lines in the selected137

region.138

Each pixel, representing a spectrum from the corresponding region on the139

cod fillet being imaged, is then calibrated by140

I(s, λ, l) =
J(s, λ, l)

T̂ (s, λ)
. (1)
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2.4. Hyperspectral image model141

Due to the Poisson properties of the signal recorded from the CCD sensor142

(Benvenuto et al., 2008; Snyder et al., 1995), and neglecting the readout noise,143

the calibrated image can be approximated by144

I(s, λ, l) ∼ N (Ī(s, λ, l), C(s, λ)Ī(s, λ, l)), (2)

where Ī(s, λ, l) is the expected intensity value, C(s, λ) = α/T̂ (s, λ), α is the145

camera gain Janesick (2001) and N (·) represent the normal distribution.146

2.5. Image segmentation147

All the pixels on the fillet are identified using three wavelengths (500, 646148

and 800 nm), by the equation149

M(x) = 1(I(s,λ646,l)>3.5)1(I(s,λ800,l)>1.5I(s,λ500,l)), (3)

where 1(·) is the indicator function (Folland, 1999) and x = (s, l). M(x)150

equals one for pixels representing areas on the fillet and zero outside the151

fillet area. The fillet is further segmented into its respective parts using152

the centreline as a reference (Sivertsen et al., 2009). The fillet is divided153

into three parts: loin, belly and tail, where the transition between tail and154

loin/belly is set to 55 % of the fillet length. The loin part is separated from155

the belly by the centerline, and defined as the part with the highest average156

value of I(s, λ525, l) inside the loin and belly part, respectively.157

2.6. Local calibration filter158

When doing measurements in interactance or transmission mode, one can159

assume that the light interacting with a nematode near the fillet surface is160
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similar to the light registered from an area next to the nematode. The pur-161

pose of the local calibration filter is to calibrate each spectrum with the local162

background spectrum and reduce spectral variation within the nematode163

class due to background variations, such as fillet color and scattering prop-164

erties. For simplicity we will consider a single band image in the following.165

The local mean value is calculated as166

Î(x) =

∑
(x,y)∈AK(u)M(x, y)I(x, y)∑

(x,y)∈AK(u)M(x, y)
, (4)

where u =
(√

(x− s)2 + (y − l)2
)
/r1, M(x) is defined in (3) and A{x; r1} =167

{(x, y) : |u| ≤ 1} defines the local neighborhood for the pixel in position168

x = (s, l). The parameters r1, r2 and r3 defines the size and position of169

the local neighborhood and local background for the local calibration filter as170

illustrated in Fig. 2. The kernel, K, is the 1D Epanechnikov kernel (Epanech-171

nikov, 1969) Ke(u) = c(1−u2)1|u|≤1, where c is a normalizing constant. The172

local calibrated image is then defined as173

L(x) =
Î(x)M(x)

B̂(x)
(5)

where B̂(x) is the local background value, calculated by substituting the174

argument u in (4) with175

v =
(√

(x− s)2 + (y − l)2 − r2 − r3
)
/r3. (6)

By assuming the interactance values inside A are independent and identical176

distributed, and using the model in (2), the variance for the local mean value177

is estimated by178

S2
Î
(x) =

Î(x)
∑

(x,y)∈AC(x)M(x, y)K2(u)∑
(x,y)∈AM(x, y)K2(u)

, (7)
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where C(x) is the calibration factor defined in (2). The variance for the local179

background, S2
B̂

(x), is calculated by substituting u in 7 with v from 6.180

2.7. Detecting absorbing objects181

A pixel is defined as being on an absorbing object if its local mean value,182

Î(x), is lower than its local background value, B̂(x). For a single band image183

the test operator is given as184

zS(x) =
Î(x)− B̂(x)√
S2
Î
(x) + S2

B̂
(x)

, (8)

Previous work by Stormo et al. (2007) has shown that the band ratios 458185

nm/752 nm and 517 nm/752 nm enhance the contrast of pale and dark186

nematodes as compared to using any single band. Similar to (8) a pixel is187

defined as belonging to an absorbing object if the local mean value of the band188

ratio, R̂I(x), has a lower value than the local reference value, R̂B(x). The189

two mean values R̂I(x) and R̂B(x) are calculated from (4) by substituting190

the single plane image, I(x), by the band ratio, R(x) = I(x, λ1)/I(x, λ2).191

The test operator for the band ratio is defined as192

zR(x) =
R̂I(x)− R̂B(x)√
S2
R̂I

(x) + S2
R̂B

(x)
. (9)

The variance for the local mean value is estimated by193

S2
R̂I

(x) =

∑
(x,y)∈AK(u)M(x, y)Î(x, y)2∑

(x,y)∈AK(u)M(x, y)

−

(∑
(x,y)∈AK(u)M(x, y)Î(x, y)∑

(x,y)∈AK(u)M(x, y)

)2

,

(10)
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where u is defined in 4. The variance, S2
R̂B

, for the local reference value is194

calculated in a similar way, by substituting u in (10) with v from (6).195

A pixel is defined as an absorbing object if the test operator in (8) or (9)196

is less then a threshold, αD197

2.8. Optimizing the preprocessing method198

The training spectra for the nematode class were selected from the center199

pixel of 100 nematodes, clearly visible in the hyperspectral images of the200

fillets in the training set (N=43). The images were all previously calibrated201

using the smoothed Teflon calibrated image, calculated by (4), and the local202

calibration filter calculated by (5). The calibrated spectra were then pre-203

treated using each of the five methods explained in Rinnan et al. (2009): 1)204

Standard normal variate (SNV), 2) Multiplicative scatter correction (MSC),205

3) Savitzky-Golay second derivative, 4) normalizing each spectrum with its206

Euclidean length and 5) normalizing each spectrum with the area under the207

spectrum curve.208

The parameters for the five calibration methods were optimized over the209

equally spaced grid with parameters r1 = {0, 0.5, . . . , 3}, r2 = {1, 1.5, . . . , 5},210

r3 = {1, 1.5, . . . , 5} and WS = {1, 3, 5}, where r2 ≥ r1 and Ws is the width211

of the Savitzky-Golay filter. The parameters r1, r2 and r3 are given in mm,212

while WS is given in wavelength units of 10 nm. In addition the amount213

of nematodes, defined as absorbing objects was varied in the range D =214

{70 %, 80 %, . . . , 100 %}, and the corresponding threshold αD was calculated215

using the manual labeled nematodes in the training set. Some pixels were216

defined as absorbing objects for all pre-treatment methods and parameters.217

The corresponding spectra were defined as the training samples from the218
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other absorbing feature (OAF) class.219

The Fisher transformation vector, w, was calculated as described in Duda220

et al. (2000, pg.120) using the spectra from the nematode class in the training221

set (N = 100) and equally many spectra, randomly selected, from the OAF222

class. The separation boundary for the fisher linear classifier is defined as223

wTP−h = 0, where P is the spectrum to be classified. By applying the Fisher224

linear classifier to the training set and varying the threshold, h, in the range225

corresponding to detection rate from 0 - 100 % in 105 equally spaced steps,226

the receiver operating characteristic curve (ROC) (Duda et al., 2000, pg.49)227

was calculated. This was repeated 100 times where new spectra representing228

the OAF class were extracted for each iteration. The mean and standard229

deviation for the area under the ROC curve were calculated, and used as a230

quantitative discriminant measure of each of the preprocessing methods and231

parameter sets.232

2.9. Automatic nematode detection233

A Gaussian maximum likelihood (GML) classifier (Duda et al., 2000)234

was used to classify pixels as nematodes or not based on their corresponding235

spectrum. Assuming identical prior probabilities for both classes, a pixel236

classified as a nematode will have a value of one if237

log(L(R(xi);µn,Σn))− log(L(R(xi);µb,Σb)) > β, (11)

where R(x) is the local calibrated image, µn, µb, Σn and Σb is the maximum238

likelihood estimate of the mean and covariance for the nematode and back-239

ground class respectively, L(·) is the multivariate normal likelihood function240

and β is a threshold used for tuning the detection rate vs. the false alarm241
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rate. The mean and covariance were estimated from the training set, us-242

ing the center pixel from 100 nematodes for the nematode class and 100243

absorbing pixels, randomly selected from each fillet, as the OAF class.244

A new image, recorded by the spectrometer, is calibrated by (1) and the245

wavelength region truncated to 448-752 nm. The image is further segmented246

using (3) and divided into its respective parts; Loin, belly and tail using the247

center line as a reference (Sivertsen et al., 2009). The image is then calibrated248

locally using (5), the spectra are pre-treated and each pixel classified by (11)249

as nematode or not. The result is region grown using dilation (Gonzalez250

et al., 2009) with a square 5x5 kernel of ones. If the region of connected251

pixels overlap with a manual labeled nematode, it is counted as a correct252

detection. If not, it is counted as a false alarm.253

3. Results254

3.1. Optimal local calibration parameters255

By applying the Fisher linear classifier to the spectra in the training set,256

the ROC curve was calculated for all combinations of parameter sets and257

spectral pre-treatment methods. The area under the ROC curve for the best258

parameter sets, as a function of the pre-treatment method, was highest for259

SNV applied to the local calibrated image (Fig. 3A). The best parameter set260

for the local calibration filter was found using the band ratio 458 nm/752 nm261

as a feature band and the parameters: [r1, r2, r3, αD] = [1, 3, 4,−7.65], and262

for the smoothed Teflon calibrated images pre-treated with SNV: [r1, αD] =263

[1,−4.23].264

The ROC curve for the SNV pre-treated spectra, from the training set,265
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calibrated with the best parameters sets are shown in Fig. 3B. The training266

set contains only spectra from the center of hand picked nematodes clearly267

visible in the hyperspectral image. This was to reduce the risk of mixing268

the nematode spectra with the background muscle tissue. This is the main269

reason for the high performance of the Fisher linear classifier applied to the270

training set.271

The local calibration filter rejected on average 89.57±1.29 % of all pixels272

in the hyperspectral images from the training set due to the test in (9). The273

filter also has the effect of reducing the spatial variation for all bands (Fig. 4A274

and B), while the spectral features of the nematodes are enhanced (Fig. 4C).275

After the local calibration, four absorption peaks located approximately at276

448, 547, 576 and 646 nm are visible (Fig. 4C). In addition, the effect of water277

absorption above 700 nm is no longer apparent (Fig. 4C). The peak observed278

at 430 nm in the Teflon calibrated spectra is shifted to approximately 448279

nm after the local calibration. The two peaks, located at 547 and 576 nm,280

are not visible for the embedded nematode (Fig. 4D).281

3.2. Industrial test282

The average length of the 43 fillets in the training set was measured by283

the segmentation software to 447.7± 69.0 mm, and 243 nematodes, all pale284

ones, were found by manually inspecting these fillets. No depth registration285

of the nematodes was done for the training set. For the fillets in the test set,286

the average length of the 127 fillets sampled before the trimming stations287

was measured to 546.2 ± 81.7 mm. In these fillets, 640 nematodes, 88.5 %288

registered as pale and 11.5 % registered as dark ones, were found by man-289

ual inspection. Of these, 13 pale and 3 dark nematodes were found lying290
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detached on top of the fillet and were not located at the same position in291

the images. These nematodes were labelled UP (unknown position). The292

20 fillets sampled after the trimming stations were measured to an average293

length of 542.4± 90.4 mm, and 18 small and pale nematodes were found in294

these fillets. The small and pale nematodes were most likely of the type A.295

Simplex, while the dark, and much larger, nematodes probably were P. De-296

cipiens. The nematode distribution with respect to color, depth and position297

for all nematodes were calculated by the segmentation software. Most of the298

nematodes (93 %) were located in the Belly flap (Tab. 1). The local calibra-299

tion method detected 81.5 % of all nematodes as absorbing objects. Fewer300

of the pale nematodes were detected as absorbing objects with increasing301

depth. This was not observed for the dark nematodes.302

No exact size measurement of the nematodes were done. However some303

of the smallest nematodes found were curled up in a circular shape with a304

diameter of approximately 1 mm.305

The nematode detection rate using the GML classifier was calculated306

as a function of fillets with one or more false alarms, sampled before and307

after the trimming stations (Fig. 5). By accepting that 60 % of the fillets308

sampled before the trimming stations had one or more false alarms, as was309

done in Sivertsen et al. (2011a), the GML classifier achieved a detection rate310

of 52.4 % for all nematodes (dark and pale ones), 50.7 % for pale nematodes311

and 65.3 % for the dark nematodes. Accepting the same false alarm rate in312

the fillets sampled after the trimming stations, the detection rate increased313

to 61.5 % for all nematodes, 60.3 % for pale nematodes and 70.8 % for the314

dark nematodes. By extending the wavelength range from 440-752 nm to315
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458-800 nm, as was used by Sivertsen et al. (2011a), no improvement was316

achieved (results not shown).317

4. Discussion318

Our results show that interactance hyperspectral imaging can be applied319

as a tool for automatic detection of nematodes in cod fillets, at the required320

industrial speed of 400 mm/second. Even though the false alarm rate is high,321

the system can reduce the workload for the trimmers significantly.322

The proposed local calibration filter reduces intensity variations across323

the fillet area in the image and the spectral difference between nematodes324

and other absorbing objects is enhanced. The method reduces the number of325

pixels to classify by almost 90 %, while 81.6 % of all nematodes are detected326

as absorbing objects. The nematode detection rate reported in this study is327

improved due to the local calibration method and, for pale nematodes, better328

then previously reported by Sivertsen et al. (2011a).329

The two peaks observed at 540 and 576 nm in the local calibrated nema-330

tode spectra, being a signature of oxygenated haemoglobin (OHb), is found331

in absorption spectra from white, red and brown nematodes (Heia et al.,332

2003; Dixon et al., 1993). In the present study the peak was located at 547333

nm instead of 540 nm, indicating a small calibration error due to the lower334

spectral resolution in the current spectrometer. The peak observed at 646335

nm, only observed in spectra from dark nematodes, is probably due to met-336

haemoglobin (MHb) having an absorption maximum at 632 nm (Olsen and337

Elvevoll, 2011). For nematodes embedded in the fish muscle, the two OHb338

peaks are not easily seen in the local calibrated spectra. Both fresh and339
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frozen-thawed cod muscle show a clear absorption peak around 550 nm due340

to absorption of haemoglobin or myoglobin (HHb) in the muscle (Sivertsen341

et al., 2011b). For an embedded nematode, where scattering of light in the342

cod muscle is prominent, the signature from the nematode is mixed with343

the signature from the surrounding muscle. Hence, the HHb peak from the344

muscle masks out the two OHb peaks found in the nematode spectra.345

The detection rate reported from the test set, using the GML classifier,346

were higher for the dark nematodes than for the pale nematodes even though347

no dark nematodes were present in the training set. This indicate that sim-348

ilar mechanisms are attenuating light in these two nematode species. An349

explanation could be that there is another chromophore present in both pale350

and dark nematodes. From previous studies it is known that the connective351

tissue in nematodes contains elastin and collagen (Hafsteinsson and Rizvi,352

1987). Elastin is a yellow insoluble protein, known to exhibit a brilliant ul-353

traviolet induced fluorescence in the visible region (Thornhill, 1972). Pale354

nematodes are known to have a yellow color, and all nematodes exhibit a355

strong fluorescence in the visible region when illuminated at 360 nm (Pippy,356

1970). It seems plausible that this is due to elastin. The implication of this357

is that also the dark nematodes, having a higher amount of haemoglobin,358

contains elastin and probably the reason why dark nematodes are detected359

so well by the GML classifier, even though only pale nematodes were used360

in training the classifier.361

The reported manual detection rate under industrial conditions varies a362

great deal, and is reported in the range of 33 - 93 % for heavy infected fillets363

and 70-100 % for less infected fillets (Varga and Anderson, 1971). One of364
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the largest studies on manual nematode detection performance, performed365

over one year, in three different factories and on 22000 fillets, reports an366

average detection rate of 68 % (Bublitz and Choudhury, 1992). Both of these367

studies were performed in Canadian waters where A. Simplex rarely are found368

in the fillet; one study reporting a mean intensity of 0.038 A. Simplex per369

fillet (McClelland et al., 1983). In the Barents sea, outside northern Norway,370

A. Simplex is abundant were as much as 96 % of the fillets have been reported371

infected, with a mean intensity of 6.1 nematodes per fillet (Aspholm, 1995).372

No reports have been found on manual detection rate for A. Simplex under373

industrial conditions, but the manual detection rate by destructively slicing374

the fillet, is reported to only 42 % (McClelland et al., 1983), and as low375

as 7 % when candling pelagic fish (Levsen et al., 2005). It is evident that376

the manual detection rate for A. Simplex is very low, also demonstrated377

in this study where 18 pale nematodes were found in the fillets sampled378

after the trimming stations. We therefore conclude that the previous studies379

on manual detection rate for nematodes under industrial conditions, in fact380

document the manual detection rate for P. decipiens. This corresponds well381

with the detection rate for the GML classifier applied to dark nematodes in382

the present study. For pale nematodes, the GML classifier performs better383

than what to be expected from manual inspection.384

For fillets with skin on, the manual detection rate is reported to be only385

25 % (Hauksson, 1991). The system presented in this work has previously386

been used on both fillets with and without skin (Sivertsen et al., 2011b).387

The current salt fish production, where fillets are inspected with skin, would388

benefit from applying this system today.389
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The detection rate for the GML classifier depends on the false alarm rate390

permitted in production. To compare the present study with that of Sivertsen391

et al. (2011a), we have specifically reported the detection rate for a false alarm392

rate of 60 %. The false alarm rate is reported as number of fillets with one or393

more false alarms. For operational use, the false alarm rate can be converted394

to false alarms per fillet area or fillet weight, making it invariant to variation395

in fillet size. The results show a clear difference in the number of false alarms396

detected in fillets sampled before and after the trimming stations. This is397

probably due to the fact that the trimmers removes some of the blood spots,398

having a similar spectral characteristic to nematodes. The nematodes found399

lying loose on top of the fillets might also have been counted as false alarms.400

The factory, where the test was run, produced fresh loins for the European401

market. This is their high value product, and it needs to be shipped to402

the market as soon as possible. The inspection system presented here can403

be implemented in front of the trimming stations and in combination with404

a system for automatically portioning. The loin considered clean by the405

inspection system could then be sent directly to packing. This would mean a406

workload reduction for the trimmers and a better end product with a longer407

shelf life, due to a shorter time exposure to the high temperature of the408

trimming area. By applying the system after the trimming stations, as an409

extra control, we would expect more of the nematodes being detected but a410

significant workload increase on the trimming stations due to the high false411

alarm rate. An extra benefit with the system is the ability to classify the412

raw material based on freshness, or remaining shelf life, and on whether the413

raw material has been previously frozen or not (Sivertsen et al., 2011b).414
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In this study the focus has been on the design of the inspection system415

and the local calibration method. In future studies we hope to improve the416

results by applying a more advanced classifier. In addition investigating how417

the current system applies to other species such as saith and haddock would418

be of great interest.419
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Figure 1: A sketch showing the dimensions and position of the spectrometer and fiber
lines (A) and a photo of the machine with the front cover removed (B). The light sources
are connected to the two fiber lines through the black fiber cables seen in the photo. All
measures are in mm.
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Figure 2: The regions used for calculating the local mean value, Î(x), and the local
background value, B̂(x), at position, x = (s, l), for the highpass filter.
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Figure 3: (A) The five calibration methods, with the highest average area under the
ROC curve for the different pre-treatment methods: No spectral pre-treatment (T1), area
normalization (T2), Euclidean length normalization (T3), MSC normalization (T4), SNV
normalization (T5) and Savitzky-Golay second derivative with Ws = 3 (T6). (B) The
corresponding ROC curves for the best pre-treatment.
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Figure 4: (A) The band ratio 458nm/752nm for the Teflon calibrated image, and (B) the
local calibrated image (LC). (C) The average nematode spectra and average spectra from
other absorbing features (OAF) in the training set. (D) The spectra from the center pixels
of a surface (P0) and embedded (P1) nematode, and two other absorbing features (P2 and
P3).
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Figure 5: Performance of the GML classifier applied to all the fillets in the test set (N=147),
as nematode detection rate vs. fillets with one or more false alarms. The false alarm is
measured for the 127 fillets sampled before trimming (FA-BT) and the 20 fillets sampled
after the trimming stations (FA-AT). The green and red symbols indicates the results
reported by Sivertsen et al. (2011a) for pale and dark nematodes respectively.
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0-2 mm 3-5 mm > 6 mm

P
al

e Loin 17 (94.1%) 13 (76.9%) 2 (50.0%)
Belly 249 (88.0%) 233 (77.7%) 37 (43.2%)
Tail 1 (100%) 0 (-) 0 (-)

D
ar

k Loin 0 (-) 4 (100%) 0 (-)
Belly 34 (91.1%) 28 (92.9%) 1 (100%)
Tail 4 (75.0%) 1 (0%) 0 (-)

Table 1: Nematode distribution in the test set as a function of depth, color and position
on the fillet. The number enclosed in brackets gives the amount of nematodes detected as
absorbing objects by the local calibration method.
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