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Chapter 1

Introduction

The current thesis is focused on the application of an emissive probe in a RF
plasma experiment, NJORD. The plasma in NJORD is created via application of
a specific type of electromagnetic wave, known as helicon wave. Experiments such
as NJORD enable to create an ion beam through a double layer which is kept
up without the need for a current [1], thus making this class of experiments an
interesting option for space propulsion. With the concept being relatively new, a
number of open questions about the physics involved still remain. Emissive probes
on their own are a tool to get reliable plasma potential measurements, even for
plasmas with RF oscillations. In experiments such as NJORD, the diagnostics
used so far have mainly been the retarding field analyzers and Langmuir probes.
By using emissive probes, the goal has been to have a quicker way to determine the
plasma potential for potential mapping. In the course of research for this thesis it
has turned out, that when looking into the characteristics obtained by the emissive
probe, it is not as easy as anticipated in the beginning. Unexpected results have
made obtaining simple potential profiles quite challenging, but have also revealed
some highly interesting details.
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Chapter 2

Basic Concepts

Although the concepts and terms repeated in this chapter should be commonly
known to the valued reader within the field of plasma physics, the author is con-
vinced that these concepts should be repeated to get an understanding which
nomenclature was used. It also serves to clarify from which kind of formula and
assumption about the physics the algebra was done to reach the final formula. Of-
ten, in a discipline like experimental plasma physics, the basic assumptions differ
in small but significant details, leading to different understandings of the processes
involved in the experiment. Different books on plasma physics hold different points
of view on the topic of plasma physics as a whole. While one book is emphasizingg
MHD another book stresses a more single particle centered point of view. As such,
the following chapter as well as the plasma theory chapter are taken from several
books, namely [2],[3], [4] and [5] and represent a blend of descriptions given by
this books that where deemed most fit to deliver a useful insight into the basic
principles.

2.0.1 Notation remarks

It should be noted at the beginning of the thesis that it has in some parts an
uncommon notation. As it is in parts aimed as a guideline for further emissive
probe studies at NJORD, sometimes instead of the common, shorter notation, a
more extended, explanatory notation has been chosen to reduce possible confu-
sion. The following three deviations from common practice should be pointed out
specifically:

• 4 has not been chosen for any differences, but only as the Lapace Operator.
All differences are expressed complete to clarify, what difference between
quantities is used or have their own variable to prevent misunderstanding.
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• Variables encoding quantities of same units have the same variable and ex-
tended indices. This was done to enable an easier look on the physics. E.g.
that a division of two frequencies takes place and thus yields a dimensionless
parameter.

• All divisions are expressed as a
b

while a/b always means ”a or b”. This is
done in the context that a ”,” in a complex formula is easier overlooked.

2.1 Plasma Parameters

Before any useful treatment of the phenomena in plasmas can be conducted, a
small distinction about the boundaries of what defines a plasma should be made.
From this, the important basic parameters and the scales those parameters are
commonly found on can be derived. E.g. is it crystal clear, that in this work,
dimensions in the range of km are completely irrelevant. The parameter g, in lit-
erature like [4] called ”the plasma parameter”, is treated a bit later in a separate
section. A good first definition is given by [2]: ”A plasma is a quasi neutral gas
of charged and neutral particles which exhibit collective behavior”. In this short
sentence, there are already buried several parameters of importance. Coming first
to mind are the densities of the neutrals, the species of ions and electrons, or used
as variables here: nn;nia/b/c and ne. The prerequisite of quasi neutrality along with
the fact that in this experiments only one type of gas was used at a time is making
the use of a single ”charge-carrier density” n0 = ni = ne feasible. Subsequently,
other parameters of interest are those that guide the collective behavior. For a
neutral gas, first comes to mind the classical triplet of pressure, temperature and
volume. Pressure, while being an important parameter for experimental settings
and reproducibility, is absorbed into the knowledge of the particle densities. Vol-
ume is only important to ensure, that the conditions detailed in chapter 2.3 are
obeyed, so that the plasma falls into a part that can be treated as ”endlessly ex-
panded”. When close to the walls it is governed by sheath formation process, for
whom more details are given i in chapter 3.1. The remaining parameter, temper-
ature, needs to be treated a bit more careful. Temperature is easily defined in a
more classical sense, but in plasmas, a closer look is advised. A deeper discussion
follows in chapter 2.2. For now it just should be noted that it is handy to define
an electron-temperature Te and an ion-temperature Tia/b/c . The last parameters
to be defined are the ones guiding the behavior of charge-carriers, the magnetic
field B and the electric field, which in electrodynamics is better parameterized by
the electric potential. So for a plasma this potential is called the plasma-potential
Φ. The challenge in plasma physics is the fact that the collective behavior causes
B and φ, which in turn cause collective behavior. The problem of this simple
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Parameter Variable used Common value expected in NJORD
Electron Density ne 1010 − 1012m−3

Ion Density ni 1010 − 1012m−3

Neutral Density nn
Ion Temperature Ti 0,1-02 eV
Electron Temperature Te 3-6 eV
Magnetic Field B 0,001-0,02 Tesla
Plasma Potential Φ 50-60 V

Table 2.1: Overview of basic parameters and their expected values

loop-like problem is detailed in [3], and it is the goal of understanding in plasma
physics to identify self-consistent solution to this problem which manifest in stable
or repeating phenomenons.

2.2 Definition of Temperature

As shortly mentioned earlier, the concept of temperature needs a closer look. Tem-
perature is normally defined as a parameter defining a certain Maxwell-Boltzmann
like velocity-distribution, with the formula for a Maxwell-Boltzmann Distribution
(1-Dimensional treatment is given here only. A 3-Dimensional would be an anal-
ogous superposition) being:

f(v) = A · exp

(−1
2
mv2

κT

)
(2.1)

In a plasma, containing electrons and ions, which vastly differ in mass (for Argon
e.g. the ratio melectron

mion
is 1, 37 · 10−5), heating mechanisms can mainly affect either

ions or electrons, resulting in different velocity-distribution-functions. Thus, it is
advised to use separate temperatures for both species. More important is, that the
basic assumption of the distribution shape can be off. E.g. in NJORD, a distinct
ion-beam can form, and the RF-Signal used to drive the plasma source impacts
the distribution too. Further, the theory behind the plasma diagnostic methods
to access the plasma parameters is often based on the assumption of a Maxwell-
Boltzmann like population. This can lead to an systematic error when applying
those methods. Sadly, often the theoretical solutions require simplifications to be
solvable at all, so until further solutions are found, it is a necessary evil to live with.
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Order Single distribution quantity Dimension Multi species quantities
0 Density Scalar Charge density, mass density
1 Mean velocity Vector Current and mass flow
2 Pressure, Temperature Tensor Total pressure
3 Heat flux 3rd order Tensor Total heat flux

Table 2.2: Moments of a distribution function

2.2.1 Moments of a a distribution function

The distribution function is a very basic plasma quality as it is of core value when
treating plasmas theoretically. Also, many macroscopic quantities can be deter-
mined by determining the so called k-order moments of the distribution function,
even when assumptions like Maxwellian distribution are not valid. This, in com-
bination with knowledge of the electric and magnetic fields would give a complete
description of any plasma close enough to thermal equilibrium [6]. In practice,
it is nearly impossible to obtain them experimentally, although some specialized
diagnostics can get very close to obtaining a full distribution function. The k-order
moment of a distribution function f (~v) is defined as [6]:

Mk =

∫
f (~v) (~v)k d3~v (2.2)

When treating several species at the same time (as ions and electrons) at the same
time, the knowledge gets even more detailed. The table 2.2 gives an overview, of
which orders of moment correlate to which macroscopic quantity. Although not
used extensively in this thesis, in more theoretical works this can then be expanded
into the Vlasov equation, leading to Landau damping and detailed analysis of waves
in plasmas.

2.3 Debye Shielding

As expressed earlier, it is useful to be able to understand how electric fields pen-
etrate into plasmas. Every charge and thus, every electric field introduced, trig-
gers a response from the plasma. Opposite charges are attracted, while same are
repelled and by this, a disturbance of the local charge neutrality (mainly elec-
trons as explained later) is damping out the outside field. This mechanism, called
Debye-Shielding, was first discussed by Debye and Hueckel in 1923 [7]. Using
fluid assumptions for the charge-carriers, a defining length, the so-called Debye-
Length λD can be calculated that gives an estimate for a sphere of imbalance from
charge neutrality. Outside the Debye-Sphere with radius λD, the influence can be
neglected and quasi neutrality again be assumed. First, assume a quasi-neutral
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background of ions and electrons. Treat both particle species as fluids. To begin
the approximation, consider the reaction of the plasma to a test charge particle.
Assuming a collision-less plasma, the equation of motion for each species is [3]:

me/i

d ~ue/i
dt

= qe/i ~E −
1

ne/i
∇Pe/i (2.3)

Here ~u is the velocity, q is charge and P is the pressure. Invoking another set of
assumptions, namely:

• All changes are slow, there is no time-dependence, so that d
dt
≈ 0.

• There is no induction taking place, so that only an electrostatic potential is
considered, ~E ∼ ∇Φ.

• There is no temperature gradient

• The insertion of the test charge does not disturb the plasma in the way.
That means, it can be considered in thermal equilibrium. As such it can be
characterized by a temperature, which is linked to pressure by the Boltzmann
constant κ via P = ne/iκTe/i

This set of assumptions collapses the equation of motion into

ne/iqe/i∇Φ = −κTe/i∇ne/i (2.4)

This trivially gives for all three spacial directions the same solution, known as the
Boltzmann relation

ne/i(x) = ne/i0e
−qe/iΦ
κTe/i (2.5)

Now to look at the Poisson equation to solve for the potential gives

4Φ =
1

ε0

qtestδ(~r)︸ ︷︷ ︸
Testcharge

+ne(~r)qe + ni(~r)qi︸ ︷︷ ︸
Plasma Response

 (2.6)

For the region of parameters where
∣∣∣ qe/iΦκTe/i

∣∣∣� 1 is valid, an expansion into a Taylor

series is feasible so that 2.5 can be represented as ne/i = ne/i0

[
1− qe/iΦ

κTe/i

]
, yielding

4Φ =
1

ε0

[
ne0qe

(
1− qeΦ

κTe

)
+ ni0qi

(
1− qiΦ

κTi

)
+ qtestδ(~r)

]
(2.7)
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As the background plasma is neutral, the term ni0qi +ne0qe gives 0, thus equation
2.7 is simplified to

4Φ−
[
ni0q

2
i

ε0κTi
+
ne0q

2
e

ε0κTe

]
Φ = −qtest

ε0
δ(~r) (2.8)

This gives way for a species specific Debye length and an effective Debye length
consisting of the inverse square sum of all Debye length involved in the shielding.
As the electrons move much faster than the ions, this means ions are shielded by
electrons as well as by ions. Electrons in contrast are shielded by other electrons
only as they move too fast for any ion shielding to take place.

1

λ2
e

=
ne0q

2
e

ε0κTe
(2.9)

1

λ2
i

=
ni0q

2
i

ε0κTi
(2.10)

1

λ2
D

=
1

λ2
e︸︷︷︸

For electron shielding

+
1

λ2
i︸︷︷︸

For ion shielding

(2.11)

Via simple use of a spherical Laplace operator, equation 2.8 can be solved and
gives the so called Yukawa Potential that describes the potential of a shielded
charge

Φ(~r) =
qtest

4πε0r
exp

(
− r

λD

)
(2.12)

It is evident, that when being several Debye lengths away from the test charge,
there is going to be no noticeable effect of the plasma. This is important when
considering the size of the whole plasma and giving credibility to the assumption
that the main plasma has infinite extension and is not disturbed by effects due to
walls. Also it is a good base for the mental picture of the Debye-Sphere within
which particles ”feel” the charge, while particles outside are unaffected. There is
another, less complicated way to derive the Debye length [2]. Instead of taking
care of several shielding species and allowing for a complicated testcharge, in this
line of argumentation one assumes an infinitely thin, infinitely extended grid and
the ions are assumed to be an unison, static background. The equations are only
solved for one dimension. The Taylor expansion is then only done for the electrons
and the Laplace Operator solved for one dimension. Using this approach, the total
Debye length is to no surprise found to be the electron specific Debye length and
the potential away from the grid is found to be:

Φ = Φ0 exp

(
−|x|
λD

)
(2.13)
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Although encumbered by less math, some assumptions that have been given ex-
plicitly in the first method disappear implicitly into the mind experiment with
the grid. For laboratory practice, the simple assumption to neglect ions is still
valid, as often only the electron temperature is considered to be of importance
as Ti

Ti
≤ 1

10
. It is also obvious from these equations that the first term in both

solutions represents the potential given by the source, while the exponential term
describes the damping of the potential due to the plasma.

2.3.1 The Number of Particles within a Debye Sphere

Another useful dimensionless parameter are the particles in a Debye Sphere. For
the concept of quasi neutrality to fully work, so that there is no distortion outside
the Debye sphere, it must be showed that the number of particles within the Debye
sphere is big enough. Else the (statistically based) assumption of shielding breaks
down. This can be done by a simple geometric calculation determining the number
of particles within a Debye sphere

ND =
3

4
n0πλ

3
D (2.14)

By demanding that ND � 1 fulfillment of this assumption is assured. It should
be noted on the side but not executed in detail, that the number of particles in
the Debye sphere being high enough is also directly connected to the demand that
the plasma can be treated as collision-less (or more precise, to the fact that the
amount of low angle changing pass-by‘s are dominant in regard to the amount of
head on collisions between particles taking place). The inverse, 1

n0λD
= g is known

in literature as plasma parameter, and while intriguing on its own due to the fact
that it can be shown to be proportional to the potential to kinetic energy ratio in
the plasma, it will not be considered further in this work

2.4 The Plasma Frequency

In the spirit of this chapter it is also feasible to take a look at oscillations in the
plasma. To cover the whole field of oscillation in plasmas is quite a big task, but
when designing a plasma system that is heated by electromagnetic heating, basic
assumptions are necessary. First, we treat the frequency with which electrons
react to a local disturbance. As established via the Debye-Length, the disturbance
can be taken as appearing over the distance λD. Take then the mean velocity the
electrons have at a given temperature:

ve =

√
κTe
me

(2.15)

11



From the combination of these we obtain the electron plasma frequency :

ωpe =

√
κTe
me

λD
=

√
nee2

meε0
(2.16)

Analogously an ion plasma frequency can be defined:

ωpi =

√
ni (Ze)

2

miε0
∼= 1, 32Z

√
ni
A

(2.17)

Where A is the atomic number and Z is the charge number. For the first look
at plasmas, when designing an experiment, the electron plasma frequency is of
higher importance, so that it is often only referred to as the plasma frequency.
Any electric field applied with a frequency below the plasma frequency has no
chance of penetrating into the bulk plasma, as the electrons move fast enough to
immediately shield it out.

2.5 Magnetic Moment of a gyrating particle

In a helicon setup, there are also magnetic fields present, so a small look at the basic
phenomena of single particles in magnetized plasmas is in order. First, assume
no electric field and for simplicity reasons a B-Field in the z-direction while the
charged particle moves in the x-y-plane (a velocity in z-direction has no impact,
as a movement parallel to a magnetic field does not result in a Lorentz-force and
thus can be neglected here). The basic equation of motion is:

m
d~V

dt
= q~v × ~B (2.18)

Taking the crossproduct and deriving the terms in time gives two equations:

mv̈x = −
(
qB

m

)2

vx ∧ mv̈y = −
(
qB

m

)2

vy (2.19)

Those are the differential equations for a harmonic oscillator. Taking a standard
exponential solution approach, this gives a circular motion around a guiding center
with the so called cyclotron frequency ωc = |q|B

m
. Of interest in this solution is the

radius of this motion, called Larmor Radius, which is easily found to be rL =
v⊥
ωc

= mv⊥
|q|B with v⊥ the absolute value of velocity in the x-y-plane. Again, this is a

parameter to bear in mind, when designing a plasma experiment. Any experiment
with dimensions smaller that the Larmor Radius would inevitable suffer from loss
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of confinmentt, as the particles gyrate into the wall.
It is also useful to define a magnetic moment for gyrating particles in this context,
as it helps to describe the phenomenon of the magnetic mirror, as in chapter
3.2, used to trap particles and discussed later in this thesis. An easy access to
understanding this concept is to look at the gyrating particle as a current running
through a loop. A particle with charge q and cyclotron frequency ωc is equal to a
current loop with I = qωc

2π
covering the cross section area A = πr2

L. This gives the
definition of the magnetic moment as:

µ =
qωc
2π
· πr2

L =
mv2
⊥

2B
(2.20)

This quantity also plays an important role as it is a conserved quantity in plas-
mas (one exemplary way to deduct this is given in chapter 3.2) and provides an
interesting link between several viewpoints of conserved properties. For example,
the magnetic moment is also a representation of the ratio of kinetic energy in the
gyromotion to the gyration frequency, which yields W⊥

B
, that is also conserved.

Further it can be linked to the conservation of the magnetic flux enclosed in one
orbit, due to the fact that the enclosed flux is:

Ω = Bπr2
L =

2mπ

q2
µ (2.21)

This can be understood from the fact that if the the density of field lines increases,
the Lamor radius decreases accordingly so that still the same amount of field lines
is encompassed. Other links, that are not explored or explained in detail here
are that, if the system is looked at in Hamiltonian formalism using a cylindrical
geometry and the assumption of azimuthal symmetry, a Lagrangian can be defined
within which, the canonical angular momentum can be defined, that again turns
out to be conserved as it is an adiabatic invariant and directly proportional to the
magnetic moment.
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Chapter 3

Plasma Theory

This chapter is dedicated to give an overview of the more advanced theoretical con-
cepts playing an important role in the context of this thesis. Without question, this
chapter can not reach the goal of completeness, as the field of theoretical plasma
physics is constantly developing and expanding. But still, it should give a firm
basic understanding of the major processes involved in the NJORD experiment.
Another goal of this chapter is to add a level of physical understanding different
from the simple conclusion derived by mathematics and consisting of more graph-
ical picture of the processes taking place, to enable an intuitive understanding of
NJORD. As with chapter 2, the books mostly used are [3],[4],[2] and [6]

3.1 Sheath formation

The undeniable most important theoretical concept when using Langmuir and
emissive probes is that of sheath formation. This is the detailed study of plasma
shielding behavior close to objects immersed in it and has been done by Langmuir,
though more detailed solutions require numerics [3]. The first situation to look
at is that of the floating potential ΦFloat. This is the potential an electrical iso-
lated object acquires automatically due to electron and ion flux from the plasma
towards it. As the electrons are far more mobile then the ions, they hit the object
before the ions. That in turn leads to a charge build-up on the object, charging
it up negatively with respect to the plasma. The perturbation in the surround-
ing plasma potential and electron density leads then to a reduced electron- and
increased ion-flux towards the object. If the slow down on the electron flux is
not enough, the object further charges up negatively with correlating impact on
ion and electron flux, until a potential is reached at which electron and ion flux
balance each other out. This is the floating potential, that is shielding the plasma
from further electron loss.
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Solving this problem for a more complicated situation is needed, when the object
is set to a certain potential (or grounded). Inhomogeneous parameters add to a
nonlinear equation to create an intricate problem solvable only through numerical
methods, or well chosen boundary conditions and simplifications.
Assume an one-dimensional problem. Also, assume Maxwellian distributed elec-
trons that then have the following function depending on the electron energy,
which is a constant of motion and a potential Φrelative (x) = Φ (x) − Φplasma that
is measured relatively to the bulk plasma and considered negative in regard to the
plasma :

fe (ve,x)) =
n0√

2πκ Te
me

exp

(
−

(
mv2

2
+ qeΦrelative (x)

κTe

))
(3.1)

It should also be noted that as a boundary condition, lim|x|�λD Φrelative (x0) = 0.
Also limx→0 Φrelative (x) = Vbias−Φplasma , with Vbias being the potential bias of an
object immersed in the plasma. Integrating the distribution function is a way to
to get the density (and further quantities, see 2.2.1). The electron density is by
this found to be:

ne (x) =

∫ ∞
−∞

fe (v,0) dv = n0 exp

(
−qeΦrelative (x)

κTe

)
(3.2)

This expresses, that for a negatively biased probe, only electrons energetic enough
are able to overcome this barrier. The closer to the wall, the stronger the barrier,
and thus the electron density decreases more and more the closer to the wall. For
ions, the situation is slightly more complex. The electron movement is governed
mainly by the pressure gradient with respect to the momentum term, while for
the ions the momentum is playing a more important role than the pressure. This
is in essence the statement that the ions are considered cold. So, several things
have to be considered. As a first thought it is handy to remind oneself, that, as
there has to be ion flux conservation and the ions are accelerated towards the
biased object, the ion density has to decrease to, albeit for other reasons than the
electron density and also slower. As the potential has to vanish inside the plasma
as set by the boundary conditions, the resulting potential between the bulk plasma
and the biased wall has to have a downward slope. This is in essence the call for
a completely convex curvature as there are no sources in this simple picture. To
find an exact solution for the ion density now, first we have to evoke ion energy
conservation with:

1

2
miv

2
i (x) + eΦrelative =

1

2
miu

2
0 (3.3)

Adding in the ion flux conservation:

ni0vi0 = ni (x) vi (x) (3.4)
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this gives for the ion density:

ni (x) =
ni0√

1−2eΦrelative(x)

mv2
i0

(3.5)

The one-dimensional Poisson equation governing Φrelative (x) is then with the as-
sumption of quasineutrality:

d2Φrelative

dx2
=
n0e

ε0

[
exp

(
eΦrelative

κTe

)
−
(

1− 2eΦrelative (x)

miv2
i0

)− 1
2

]
(3.6)

To fulfill the demand of a convex function, the term in rectangular brackets has
to be always negative because the ion density is supposed the be higher than the
electron density. There are several notations to make this step easier by exchanging
to dimensionless variables now and through this step looking at Mach numbers,
but this is not done here. Instead a solution that is short and does not change the
physical viewpoint is presented as found in [3]. The full expression gives:(

1− 2eΦrelative (x)

miv2
i0

)− 1
2

> exp

(
eΦrelative (x)

κTe

)
(3.7)

Now using the fact that by definition Φrelative (x) ≤ 0 for all values, this can be
expressed as: (

1 +
2e |Φrelative (x)|

miv2
i0

)
< exp

(
2e |Φrelative (x)|

κTe

)
(3.8)

At this point, either a strong assumption or numerics are needed. If using as-
sumptions, it is advised to assume to be very close to the sheath edge to the
plasma. This then enables a Taylor expansion of the exponential term, so that the
inequality reads:

2e |Φrelative (x)|
miv2

i0

<
2e |Φrelative (x)|

κTe
+

1

2

(
2e |Φrelative (x)|

κTe

)2

+
1

3!

(
2e |Φrelative (x)|

κTe

)3

+. . .

(3.9)
This enforces the condition that:

v2
i0
>
κTe
mi

(3.10)

This velocity, vs =
√

κTe
mi

is known as the ion acoustic velocity, and the condition

that ions entering the sheath have at least this velocity is know as the Bohm sheath
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criterion. If this criterion is not fulfilled, the solution for the Poisson equation
would be sinusoidally oscillating [6]. This in turn would make a smooth matching
from sheath to plasma potential impossible. Or, in a more graphic description [2],
it would lead to areas that are not electron repellent, which is again violating the
basic assumption that sheath shield from electron loss. Steady state spatial oscil-
lations can be neglected too, as dissipation within the plasma would soon destroy
any kind of state that requires such high organization without means to keep it up.
Another important point is that this condition also puts an upper limit on sheath
formation. To reach the Bohm sheath criterion, the bias potential has to be at
least Φsheathedge = κTe

2e
. If the wall is biased above that, or even positive, no sheath

formation can take place. The plasma remains quasi neutral up to the object (for
most case. See chapter 3.1.2 for a short outlook those special formation cases).

3.1.1 Floating potential including RF influence

An expression for the floating potential has not been given as this needs special
consideration when dealing with RF. Without such, it is simply calculated by using
flux balance between electrons and ions:

1

4
nsveaverage exp

(
eΦfloat

κTe

)
= nsvs (3.11)

This gives:

Φfloat =
κTe
2e

ln

(
2πme

mi

)
(3.12)

When now there is an RF potential present, this changes the behavior. Assuming
that the ions are not affected by the quick chances in the potential as the frequency
is far higher than their oscillation frequency, (see chapter 2.4 for a definition of the
ion plasma frequency), the electrons can still react to the changes in the potential
and the current to the object will be determined by the Boltzmann retardation
factor adjusted to the instantaneous potential. To derive the floating potential
under RF, the electron flux has to be averaged over one RF cycle:

<
1

4
nsveaverage exp

(
e(VRF sinωt+ ΦRFfloat)

κTe

)
>= nsvs (3.13)

Evaluating this gives the expression for the floating potential in RF plasmas, which
shows two distinct terms. The original floating potential in a DC plasma and a cor-
rection term due to the increased electron collection when the sheath is expanded,
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that lowers the floating potential.

ΦRFfloat =
κTe
e

 1

2
ln

(
2πme

mi

)
︸ ︷︷ ︸

DC floating potential

− ln J0

(
eVRF
κTe

)
︸ ︷︷ ︸

RF correction to potential

 (3.14)

With J0 being the zero order Bessel function. For more complex oscillations,
the averaging has to adjusted accordingly, as in NJORD a more complex mix of
harmonics can be found.

3.1.2 Electron Sheath

While the derivation for the sheath given above is the standard method, it is
noteworthy that also pure electron sheath can form. In the absence of ions, a
pure electron sheath is possible [8]. This serves to balance out the current, and
following this, the electron sheath can only form if the relation for balancing out
the loss areas is observed [8]:

Aionloss
Aelectronloss

≈
√
mi

me

(3.15)

So electron sheaths can occur around small biased objects (like probes). Fitting
this criterion are probe tips, so it is to be considered. Measurements [9] showed a
dip in the potential before the electron sheath, which is positive biased towards the
plasma. First this was attributed to ion pumping mechanism towards an insulator
in the chamber, but further investigations revealed that the potential dip is present
independent of this [9], so that an electron sheath can exist for anodes that are
seemingly bigger than allowed by equation 3.15. Those electron sheaths are known
to be prone to instabilities and those instabilities in turn have been reported to
produce a RF magnetic field that excites whistler modes in the plasma [10]

3.2 Magnetic Mirrors

While NJORD is at the moment not configured to run as a magnetic mirror, the
geometry of magnetic fields still gives good reason to think about it, as the source
is separated from the expansion chamber through a magnetic bottleneck. Also no
big impact is expected on the experimental results, for the sake of completeness,
the theory for magnetic mirrors is included here. First, a small proof that the
magnetic moment µ is a conserved quantity is in order. Assume a bottle shaped
magnetic field like the one drawn in figure 3.1. This implies axial symmetry, and
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Figure 3.1: Bottleneck Configuration of a magnetic field for the magnetic mirror
concept

if cylindrical coordinates are used, BΘ = 0. To get the bottle shape, the field
lines have to converge and Br has to be quantified. To obtain a more detailed
expression, determine the divergence of the magnetic field, ∇· ~B = 0 in cylindrical
coordinates:

1

r

∂

∂r
(rBr) +

∂

∂z
Bz = 0 (3.16)

When the field is known along the middle axis and ∂
∂r
Bz can be assumed as neg-

ligible, this can be solved via integration:

rBr = −
∫ r

0

r
∂

∂z
Bz = −1

2
r2

[
∂

∂z
Bz

]
r=0

(3.17)

Equipped with this way to express Br, the crossproduct for the Lorentz force on
a particle can be calculated. This gives:

~F = q

 vΘ ·Bz − vz ·BΘ

vz ·Br − vr ·Bz

vr ·BΘ − vΘ ·Br

 (3.18)

Several terms governing different kinds of motion can be identified in here. First
of all, the terms containing BΘ can be dropped, as it was set to 0 in the beginning.
Two terms can be connected to the gyromotion of a particle around a guiding
center, specifically:

Fr = q · vΘ ·Bz ∪ FΘ = −q · vrBz (3.19)
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Another term which interacts with the gyromotion is in equation 3.20. When
exactly on the axis of symmetry, this term is also 0. When not on the center axis,
it causes the guiding center to follow the magnetic field lines as the particle drifts
into the bottle neck of higher Bz:

FΘ = qvzBr (3.20)

If there is a a slight gradient in the magnetic field, a ∇B-drift takes place too, as
a result of the gyromotion being off from the center axis. This means, that the
guiding center of the gyromotion drifts circularly around the center of symmetry
axis. So the resulting motion of the guiding center described by equations 3.19
and 3.20 is that of a spiral getting smaller and moving towards the bottleneck.
The last term however is the most interesting. For simplicity, a particle on the
central axis is considered, so that the spiraling motion can be neglected. Using
the expression derived in equation 3.17 for Br, this gives the following term, where
the definition made in chapter 2.5 is applicable for the average force over one
circulation :

< Fz >= −1

2
qvΘrL

∂

∂z
Bz = −µ ∂

∂z
Bz (3.21)

From the knowledge about the average force, the time derivative of energy stored
in the motion parallel to z is found to be (note, that d

dt
is in the reference frame

of the particle and also that Bz � Br is assumed):

d

dt

(
1

2
mv2

z

)
= −µ d

dt
B (3.22)

The time derivative of energy stored in the gyromotion is also easily expressed via
the magnetic moment:

d

dt

(
1

2
mv⊥

)
=

d

dt
(µB) (3.23)

Combining equation 3.22 and 3.23 with energy conservation by setting the time
derivative of the total system energy W to 0 yields that µ has to be a conserved
quantity :

d

dt

 −µ d
dt
B︸ ︷︷ ︸

Derivative of W in motion parallel to z

+ µ
d

dt
B +B

d

dt
µ︸ ︷︷ ︸

Derivative of W in gyromotion

 = 0 = B
d

dt
B

(3.24)
This is also the concept of a magnetic mirror. As a particle moves further into the
high B side, to keep µ constant, also the energy stored in the gyromotion must
increase. Due to no external energy source, the energy for this must come from
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the parallel motion and vz has to decrease. At some point the particle either has
moved through the maximum in the B-field, or it has vz = 0 and is reflected as it
in turn picks up speed when moving outward to a lower B-field. A bit of formalism
about the ratio of reflected particles is useful, as not all particles can be trapped
this way. Particles with a very small µ and a high velocity in z direction can easily
overcome the bottleneck. Consider a magnetic bottle with Bmin at its low field
side and Bmax at its high field side. A particle starting on the low field side with
vΘmin has a certain µ that has to be conserved. Also, the pitch angle Ξ between
gyromotion and z-ward motion can be defined as tan Ξ =

vΘmin

vzmin
Now assume that

the particle turns when reaching z so that B(z) = Bmax with vΘmax . Then the
conservation of µ requires:

1

2
m

v2
Θ0

Bmin

=
1

2
m
v2

Θmax

Bmax

(3.25)

Also, conservation of energy applies, so that the total kinetic energy at the start has
to be the kinetic energy stored in gyromotion when being reflected. Combination
of these two gives a ratio of velocities for that reflection to take place. Via this
ratio, a relation angle is defined:

Bmin

Bmax

=
v2

Θmin

v2
Total

≡ sin2 Ξ (3.26)

This leads to the definition of the mirror ratio R = Bmax
Bmin

via the ratio of mag-

netic fields at minimum and maximum value. Any particle with sin(Ξ) >
√
R is

reflected. As insignificant as the whole concept of magnetic mirrors might seem
at the first glance, it has strong applications and is a very useful tool in plasma
science. Although the loss can never be eliminated completely, as even when all
particles with a Ξ are lost, collisions will refill this population, leading to further
loss. Still it is a significant step forward in confinement and reason enough to line
the walls of plasma experiments with several small magnets, creating many small
mirrors. In industrial applications like thin film production, this is also exploited
to create trapped pockets of electrons to better ionize gas and increase the plasma
particle flow. In addition, pursuits to reach fusion conditions through this concept
are done and at CERN, the principle is used to trap anti hydrogen plasma. In
NJORD, the machine in which the experiments of this thesis were carried out, the
magnets in the source region are configured the way that they also can form a
magnetic trap.
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3.3 Helicon Waves

Helicon waves are a specific subcategory of waves in plasmas. The first glance
into the problem came through the observation of so called whistler waves. Those
are waves created in the ionospheric plasma containing a multitude of frequencies
like the ones created by lightning strike. The dispersion relation in magnetized
plasmas makes the different frequencies arrive at different times at the detector,
with the lower frequencies arriving later. Helicon waves are part of that class of
waves in magnetized plasmas. The name is derived from waves inside the free
electron plasma of metals, but the same waves can be seen in gas plasmas too.
As the treatment of waves is analytically very cumbersome, and not every case
possible is of interest for this thesis, only the mathematics leading to insight into
helicon waves are considered and if possible, logic and mathematic shortcuts are
taken. For a broader overview over waves in plasmas the so called CMA diagram
can be used as a reference. Every wave treatment in plasmas start with the basic
Maxwell equations and the ones governing flow. Already now not every equation
possible is necessary to solve the problem. Only some equations form the closed
set of equations necessary to describe the waves, while the rests encodes initial
conditions. As such, the required equations are invoked as needed and not given
as a full set at the beginning. Those equations are all assumed for cold plasmas
with small amplitudes, so that linearized versions can be used. So, starting with
the velocity of a particle in a plasma fulfilling prior conditions of a cold plasma
with a B field in z direction [3]:

~vi/e =
iqi/e
ωmi/e

Ez · ~ez +
~E⊥

1−
ω2
ci/e

ω2

−
iωci/e
ω

~ez × ~E

1−
ω2
ci/e

ω2

 exp
(
i(~k~x− ωt)

)
(3.27)

Those are representations of the E × B and the generalized drift mechanism tak-
ing place and oscillating propagation of an electric field in z-direction. With the
particle densities, this gives the plasma current.

~I = n0iqi~vi + n0eqe~ve (3.28)

This in turn can be used in Amperes law which then takes the full form:

∇× ~B = µ0

(
iε0ω

2
pi

ω

[
Ez · ~ez +

~E⊥

1− ω2
ci

ω2

− iωci
ω

~ez × ~E

1− ω2
ci

ω2

]
exp

(
i(~k~x− ωt)

)
+

+
iε0ω

2
pe

ω

[
Ez · ~ez +

~E⊥

1− ω2
ce

ω2

− iωce
ω

~ez × ~E

1− ω2
ce

ω2

]
exp

(
i(~k~x− ωt)

))
+ µ0ε0

∂ ~E

∂t

(3.29)
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This however is a very bloated and unhandy formula, so that it is useful to instead
absorb it into a tensor K̃. The resulting equation would be:

∇× ~B = µoε0
∂

∂t

(
K̃ · ~E

)
(3.30)

The following formalism was introduced by Stix in 1962 [11] and contains some
help to memorize what the mathematics means. It will not be explained in detail
but rather used as means to an end. Defining the five quantities L for ”Left”’, R
for ”Right”, S for ”Sum”, D for ”Difference” and P for ”Parallel” [3]:

R = 1−
ω2
pi

ω(ω + ωci)
+

ω2
pe

ω(ω − ωce)
(3.31)

L = 1−
ω2
pi

ω(ω − ωci)
+

ω2
pe

ω(ω + ωce)
(3.32)

S =
R + L

2
(3.33)

D =
R− L

2
(3.34)

P = 1−
ω2
pi

ω2
+
ω2
pe

ω
(3.35)

Although it can be seen as kind of circular logic here, is has already been pointed
out, that R and L where chosen to represent right- and left-handed solutions
for waves propagating through the plasma. With the simplifications defined, the
equation 3.29 in tensor form writes as:

∇× ~B = µ0ε0
∂

∂t

 S −iD 0
iD S 0
0 0 P

 · ~E
 (3.36)

With this in place, Maxwells equations can be summed up as the equation given
in 3.30 and:

∇× ~E = −∂
~B

∂t
(3.37)

Now, the so called cold plasma wave equation can be obtained by combining those
two into:

∇×
(
∇× ~E

)
= − 1

c2

(
K̃ · ~E

)
(3.38)

Since all the variables oscillate with exp(i~k~x − iωt) as assumed in the beginning,
this can be expressed as:

~k × (~k × ~E) = −ω
2

c2
K̃ · ~E (3.39)
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Now, in most literature a refractive index is defined for normalization purposes,

which here is chosen to be ~η = c~k
ω

. This leads then for the cold plasma wave
equation, to:

~n~n · ~E − η2 ~E + K̃ · ~E = 0 (3.40)

This can be expressed as one matrix equation. Using spherical coordinates for the
refractive index:

nx = n sin Θ (3.41)

ny = n cos Θ (3.42)

n2 = n2
x + n2

y (3.43)

This gives for equation 3.40: S − n2 cos2 Θ −iD n2 sin Θ cos Θ
iD S − n2 0

n2 sin Θ cos Θ 0 P − n2 sin2 Θ

 ·
 Ex
Ey
Ez

 = 0 (3.44)

This, in essence has reduced the problem of finding a self consistent wave solu-
tion in plasmas to an eigenvalue problem. As such, this is the general dispersion
relation for cold plasma waves. For the existence of non trivial solutions to this,
the determinant of the matrix has to be zero. Unless it is zero, only the trivial
solution could exist mathematically. This gives the condition:(

S sin2 Θ + P cos2 Θ
)
n4 −

(
RL sin2 Θ + PS(1 + cos2 Θ)

)
n2 + PRL = 0 (3.45)

If the wave propagates along B in z direction, this sets Θ = 0 and as such, the
determinant simplifies to ((

S − n2
)2 −D2

)
P = 0 (3.46)

This gives three solutions, P = 0, n2 = R and n2 = L, so that two separate dis-
persion relations exist. They are coupling to different mechanisms. The n2 = L is
driving ions while the n2 = R is connecting to the electrons. The meaning of this
can be seen when determining the eigenvector for n2 = R. This gives a right hand
circular polarized wave that propagates in z direction, as the eigenvector relation
is Ex

Ey
= i. Hence the wave is rotating in the same rotation sense as electrons are

gyrating due to the B-field. For waves with higher frequencies further simplifi-
cations are appropriate [12][5] [3], and the Altar-Appleton-Hartree approximation
is to be invoked. This means dropping the ion frequency terms, as the processes
take place on a far higher time scale. But for the discussion of helicon waves one
has to stick with the solution for medium oscillations with the dispersion relation
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ν2 = R. When all terms that are on of the order ωci
ωce

= me
mi
� 1 are dropped, this

gives the expression:

ν2 =
k2c2

ω2
= 1 +

ω2
pe

ωωce

(
1 + ωci

ω
− ω

ωce

) (3.47)

It should be noted that another way to reach this conclusion is to start with the
generalized Ohms law [12]. When choosing this procedure, some other physics
get accounted for. The leading ”1” in the dispersion relation disappears, which
is according to Bellan [3] an expression of displacement current. On the other
hand, it is easy to include a term to account for the collisions between electrons
and neutrals. Now to further narrow down the area of interest, it is only of use
to investigate the area just below electron cyclotron resonance. When exactly
on the electron cyclotron frequency with the electromagnetic wave, the electrons
are constantly experiencing an electric field and thus are accelerated continuously.
For even higher frequencies, the refraction index drops below zero, indicating that
the wave can not propagate at all. The dispersion relation can then under the
assumptions ω < ωce, ωce � ωpe and ω � ωpe be writen as:

ν2 =
ω2
pe

ωωce

(
1 + ωci

ω
− ω

ωce

) (3.48)

In this range, three wave types can be identified. First, when having a slow wave
so that also the term ω

ωce
� 1, the relation turns constant, and gives as limit an

Alfven wave as solution for very slow oscillations:

ν2 =
ω2
pe

ωce(ωci + ω)
(3.49)

On the other side, for oscillations that are close to the electron cyclotron resonance,
the term ωci

ω
� 1 can be dropped out so that the dispersion gives:

ν2 =
ω2
pe

ωωce

(
1− ω

ωce

) (3.50)

When operating in this regime, the heating is very efficient, as it is close to the
resonance. Finally, there are the helicon waves to be covered. The dispersion
relation has a minimum at ω ≈ 0.5ωce.For frequencies below that, ν2 does increase
again. This is the helicon regime. In this, ions can be considered static so that
ωci
ω
� 1 and the electron inertia ω

ωce
� 1 can be dropped. Or in other terms,

ωci � ω � ωce. This yield the simple relation for helicon waves:

ν2 =
ω2
pe

ωceω
(3.51)
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This calculations have been done under the assumption of perfectly aligned waves
in relation to the magnetic field. For imperfect alignment, as it might happen
under experimental conditions, this changes to [12]:

ν2 =
ωpe

ω(ωce cos Θ− ω)
(3.52)

This is in so far of impact for the laboratory experiment as it shows that there
is a maximum misalignment angle for which the wave can propagate. Further
investigation reveals that the permitted angle of misalignment is even smaller, as
for the group velocity of the wave an even smaller angle is permitted [5]. Further
attention must be given to the fact, that for the initial derivation, a boundary free
plasma was assumed. In this, the helicon waves have the shape of a spiral turning
in the right sense. When exited in a cylinder, the boundary conditions give the
solution for the magnetic component as follows [5]. With an arbitrary amplitude
H (kz being the wave vector in the B-field direction, kr perpendicular outwards
to this in cylindrical coordinates and k2 = k2

z + k2
r) this gives a more complicated

picture:

Br =H [(k + kz) Jm−1(krr) + (k − kz) Jm+1(krr)] = −kz
ω
EΘ (3.53)

BΘ =− iH [(k + kz) Jm−1(krr)− (k − kz) Jm+1(krr)] =
kz
ω
Er (3.54)

Bz =− 2HiJm(krr)) and Ez = 0 (3.55)

In this solution calculated by [13], Jm denotes the Bessel function of m-th order.
In this context, the different values are called modes. This term of ”modes” is
not to be confused with other modes and only refers to the Besselfunction without
connection to operation regimes in a plasma, that are also called modes. Graphic
representation of how the electric field looks like are given for the m=0 mode in
figure 3.2 and for the m=1 mode in figure 3.3 The main research focus has been the
modes +1, 0 and -1. The m=-1 mode however performs very poorly and couples
badly to the plasma, and it is rather a side product of research into the m=1 mode,
as antennas designed to excite the m=1 mode can excite the m=-1 too. The m=1
is very good for plasma sources as it couples very well. As antennas designed to
excite the m=1 mode have an axial length l, there are also axial modes to be
considered and an axial mode number χ is also defined via:

kz = (2χ+ 1)
π

l
(3.56)

What makes the helicon so efficient at plasma creation is the fact that unlike the
other two RF mechanisms, capacitive and inductive heating, helicon heating takes
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Figure 3.2: Representation of the helicon mode 0 in a cylinder, taken from [13]
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Figure 3.3: Representation of the helicon mode 1 in a cylinder, taken from [13]
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place through collision-less mechanisms (like in capacitive and inductive heating)
as well as also through collision mechanisms. But it can also operate by means
of pure collision-less mechanisms. It is handy to imagine a step-like process when
generating a plasma with a helicon source. The source starts in E-mode, which
means a thin, capacitively coupled plasma. Most of the heating takes place by
the energy being deposited in the sheath, not unlike the picture of the electric
field acting as kind of a piston. As the RF power increases, this switches to the
inductive coupled H-mode and the plasma density increases. Here, at least for
higher plasma densities, a transformer analogy has been proven to be valid [5].
The one end is the RF source and the plasma is considered a one-turn secondary
coil. Further increase then finally leads to operation in the helicon W-mode with
even higher plasma density and very high ionization degree.

3.4 Double Layers

A double layer represents a category of special space charge structures. The basic
idea is that of a smooth transition step from a high potential to a lower potential.
In literature, they are often considered as related to the physics of sheaths [2], [8],
and they are even seen forming from simple sheaths that have a potential drop
strong enough to ionize the background gas, creating a second plasma [1]. The
step in plasma potential over a certain distance has several implications. First, it
is obvious by taking the second derivative of this step, that there has to exist two
distinct, separate layers of charge carrier species next to each other. From there,
two mechanisms of creation are to be considered, as it is obvious that two layers
of opposite charge are not naturally stable. If the potential step is kept up by an
external influence, then four distinct species emerge. Ions and electrons that due
to low kinetic energy get reflected by the double layer when moving towards it
and those that have enough energy to move freely through the double layer. Or
even get energy by running through the potential drop, charge sign and movement
direction are proper. This can give rise to the charge carrier densities. The other
way is that at least three of those species are present so that the existence of local
heightened carrier density gives rise to the potential drop. For reference of the
geometry in this situation also see figure 3.4. Having two layers of higher density
of a species also give the double layer its name. The height of particles on the
potential axis indicates how much kinetic energy equivalent to potential energy in
an electric field they have and the arrow indicates in which direction they move in
relation to the double layer.

Far from being a purely theoretical concept, double layers appear in nature and
can be created in the laboratory in several ways. The easiest way in the laboratory
is a simple dc discharge that has to pass through a constriction. At the end of
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Figure 3.4: Figure of the basic setup of a double layer

this constriction, a double layer forms [14]. Another easy way is to create two
separate plasmas and provide an interface area between the two plasmas, which
automatically requires the formation of a double layer. Or as stated before, by
simply using a sufficiently biased anode in a cathodic plasma. This creates a
complex, three dimensional space charge structure known as a fireball. On a side
note of interest, the fact should be stated that those fireballs even can contain
several double layers in onion-like layering [15]. Other concepts include so called
Q machines, that create a quiet plasma in a strongly magnetized tube between an
anode and a cathode plate. Common of all the concepts stated before is the fact
that they are kept up by a current running in the plasma. But concepts for double
layer exists [1], that do not require a current. The older one is that of a device
where two distinct electron populations are created and allowed to expand [16].
This was done by timed injection of neutral gas for example. The most complex
and challenging formation of double layers however is taking place when a plasma
is locally created via RF and then ejected into an expanding geometry via an
expanding magnetic field as shown in figure 3.5. This creates a double layer that
also is current free. The class of these experiments is referred to as current-free
double layers or CFDL [1]. Utilizing the fact that the double layer is current free
and thus no neutralizer is needed, the interest has been to fashion this phenomenon
into a kind of a plasma thruster for satellites [17]. The experiments on magnetic
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Figure 3.5: Schematic of the NJORD experiment, a typical HDLT creating a CFDL

expansion with RF created plasmas have been conducted with RF setups operating
near the helicon regime. As a result, the experiment on which this thesis was
conducted is similar to experiments called ”Helicon Double Layer Thrusters” or
short HDLT. While the work to harness the capabilities of HDLTs has progressed
far already, topping with a demonstration of the feasibility of a thruster [1], the
physics behind the exact mechanisms on the double layer formation are not yet
fully understood and subject to ongoing academic discussion. Three points of view
published in recent publications are listed here [1][16][18]. A finite answer to what
creates this double layer however is beyond the scope of this thesis.

3.4.1 CFDL Formation according to Charles and Lieber-
mann

When the first current free double layers where diagnosed in HDLTs [1], an ex-
planatory model was given by Liebermann et. al. [19] that, when setup up prop-
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erly, could reproduce the results via numerical simulation. It is a simulation of
the interaction between two plasmas of different potential. To make the double
layer free of current transport, more electrons passing through the potential barrier
are needed. The argumentation is that electrons get accelerated inwards into the
source in the first step. In the source, those electrons get reflected by the backplate
and for the sake of the model are considered as a fifths species of particles. This
species substantially adds to the high energetic tail of electrons with enough kinetic
energy to cross the double layer and move into the expansion chamber, and is sup-
posed to be numerous enough to balance out the ion current streaming outwards.
The numerical model used was able to reproduce the double layer behavior. In de-
tail, there is some deviation between prediction and measurement as the potential
rises more in the experiments than anticipated, but the general trend is preserved.
A big difference between the theoretical and measured ion beam density has been
reported too. It is also noted about this difference, that the measurements are
very sensitive and the theoretical assumptions not perfect. Also, the double layer
creation is enforced by setting very strict boundary conditions for high and also
low potential side, and as such, not emerging from first principles.

3.4.2 CFDL Formation according to Chen

By Chen a very simple, yet compelling analytical breakdown of double layers has
been published [18]. The perhaps most important statement by Chen is that,
when following through with his line argumentation, the perceived double layers
reduces to simple singular sheaths. For this reason, and because it is a first prin-
ciple argument, his theory is to be included in detail in this thesis. Starting with
the assumption of a plasma that is frozen to the field lines, the drop in the mag-
netic field strength and density by expansion can be linked to the radius r of the
expanding plasma:

B

Bsource

=
n

nsource
=
(rsource

r

)2

(3.57)

With Maxwellian electrons, the density drop must mean for the electrons also a
drop in plasma potential as they follow the Boltzmann relationship for density to
potential relation (note, in the source, both electrons and ions have the density
nsource and the source potential is chosen to be 0 for convenience, else a relative
potential would be required):

ne = nsource exp

(
− eΦ

κTe

)
(3.58)

The ions, being cold and like in a sheath are governed by their momentum term
and first fall through the potential drop created by the electron density drop. At
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a certain point, namely when:

− eΦ

κTe
=

1

2
(3.59)

the ions have accumulated a kinetic energy that is equal to the energy when trav-
eling at the ion acoustic speed, which mean, they are fulfilling the Bohm criterion.
A quickly dropping electron density and ions at the ion acoustic speed in turn
means, that sheath formation has to take place. The exact position in space at
which the sheath must form can be determined by looking at the ratio of radii in
comparison to the required density drop and gives for the radii ratio the value of
1.28, meaning that the sheath must form when the plasma has expanded by 28%
in radius. The ion and electron densities drop, forming a sheath with a related
sheath potential until the floating potential is reached:

Φfloat =
1

2

κTe
e

(
1 + ln

(
mi

2πme

))
≈ 5, 18 · κTe

e
for Ar (3.60)

The potential can not fall further as now the flux is balanced. On the contrary, a
further fall would require a biased electrode to supply energy to the ions. This is
without doubt an elegant argument for the potential drops observed, but Chens
model is not without open questions either. An imbalance is in the energy flow
to the walls. Calculating the flux after the sheath, the energy lost to the wall per
unit area can be expressed for ions:

Wi =
eΦfloat

κTe
n0 exp−

1
2

√
κT 3

e

mi

(3.61)

and for the electrons the lost energy to the wall per unit area is:

We = n0 exp

(
−eΦfloat

κTe

)√
2κT 3

e

πme

(3.62)

If now energy conservation requires that those two to be equal, this gives for the
required potential on the low potential side the result that:

eΦrequired

κTe
ln

(
eΦrequired

κTe

)
=
eΦfloat

κTe
+ ln (2) (3.63)

This shows, that another source of energy is needed, as the required and the floating
potential do not balance out. Chen points out, that usually far more energy is
supplied. For helicon devices, parts of this energy could form a source, that has
not been fully researched yet, as it shows that the perpendicular and parallel ion
temperatures seem to interact and interchange energy. After the sheath, device
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specific circumstances smooth out the knee when transitioning from sheath to a
plasma on floating potential. For the physical process it only plays a minor role and
measurements have found the electron part of double layers that fit this model to
be very thin only. The ion beam kinetic energy can be at most the energy acquired
by dropping through the sheath, or, if the beam undergoes collisions, even lower.
Chen states, that this has been experimentally validated by Charles and other
measurements [18].

3.4.3 CFDL formation according to Singh

In strong contrast to the explanation given by Chen, a topical review about dou-
ble layers is published by Singh [16]. The main point of disagreement is the fact
that the density drop across the double layer is overestimated strongly, as the
measured density ratio is more than 3 times smaller than what would be expected
from the simulations. The one dimensionality of the former models is seen as
cause for this. Very recently published measurements give two dimensional po-
tential contours for HDLT [20]. In those, very strong perpendicular electric fields
can be observed directly at the throat of the source region. The model proposed
by Singh to describe the double layer puts emphasis on giving an explanation for
the strong perpendicular drop at the throat and the relatively low drop in parallel
direction. It is argued for the fact, that within the source, only the electrons have
a considerable magnetic moment whereas the ions have a large Lamor radius and
negligible magnetic moment. As such, only the electrons are influenced by the
diverging magnetic field and are dispersed outwards, while the ions do not follow
the field lines and move out of the source region in axial direction. This generates
an outward charge separation, resulting in the strong perpendicular electric field.
This process creating strong perpendicular electric field also generates an electric
field that drops in parallel direction, leading to a u-shaped double layer. This
strong perpendicularly electric field then pull the ion beam perpendicularly out-
wards, resulting in distinct horn shaped structures in the ion density [20]. This is a
model that is more encompassing concerning kinetic effects than the one proposed
by Chen, and it also states that not all CFDL‘s created in HDLTs are necessarily
current free.

3.4.4 Ion Beams

In the discussion of double layer, already the term ion beam has been mentioned.
This is in reference to two distinct ion populations at different potentials that
have been measured in HDLTs. RFEAs turned towards the source show those two
distributions, while RFEAs turned 90 degrees away from the source do not show
the higher energy distribution but only the lower energy one. From this, it has
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been determined that the second distribution must represent kind of an ion beam
directed outwards in axial direction, while the lower distribution is representing
the background plasma.
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Chapter 4

Probe Theory

As the use of an emissive probe is the main topic of this thesis, this chapter is
dedicated to give a broad look on emissive probes and the different theories used
to describe their behavior. The model picture of an emissive probe has been
continuously refined but still, many strong restraints and assumptions are in place
to make the mathematics tractable. But even with those assumptions slightly
violated, the results obtained by this concept of measurement are reliable and
stand up to comparison with other methods.

4.1 Cold Langmuir Probe

Before discussing the fineries of an emissive probe, it is appropriate to look at the
theory guiding the behavior a cold probe, also known as Langmuir probe. The
idea of this probe is to determine several plasma parameters by applying various
voltage and monitoring the current drawn from the plasma. The behavior of this
curve, called I-V trace, is in parts governed by the sheath theory.
Three distinct regions have to be accounted for when looking at I-V traces. Ion
saturation area, electron collection and electron saturation are identifiable. There
is no detailed consideration for the ion collection, as the differences between elec-
trons and ions caused by the different masses cause the ion saturation current to
be already so small that it is difficult to look further into the ion collection process
and although possible, is cause for problems when using cold probes (The whole
concept of an emissive probe described in chapter 4.2 is even to compensate for
this small ion current). A typical probe bias versus collected current trace plot
obtained with a cold probe is displayed in figure 4.1.

If the probe is sufficiently negatively biased from the floating potential Φfloat,
it can be assumed that it only draws an ion current. The current to a surface
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Figure 4.1: I-V Trace for a cold probe, obtained via the simulation code given in
appendix A
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Aprobe in a plasma (containing only singly charged ions) is then given by:

Iionsaturation = −1

4
eAprobe (nivi) (4.1)

The density can be estimated by looking at the conditions derived for the sheath
edge in 3.1. All ions moving through the sheath must fulfill the Bohm criterion,
and thus have the velocity:

cs =

√
κTe
mi

(4.2)

With Maxwellian electrons and the concept of quasi-neutrality, the density of ions
at the sheath edge is then:

nisheathedge = nesheathedge = n0 · exp

(
eΦsheath−edge

κTe

)
≈ 0, 61n0 (4.3)

This gives for the ion saturation current:

Iionsaturation ≈ 0, 62︸︷︷︸
Scalingfactor

n0

√
κTe
mi

Aprobe (4.4)

At this point it should also be noted that this is a very small current that normally
is not accounted for at all when analyzing the IV curve in the electron rich part.
Even in the established plasma literature, the treatment is often rough and nor-
mally not discussed further, resulting in different scaling factors given. In the book
by Boyd and Sandersson [4] the scaling factor is given as 0,24 ,because the ions
are considered far more strict and accurate via the general formula for the electron
density at a given point, that also takes care of electrons not being reflected by
the presheath drop:

ne (x) = n0 exp

(
eΦ(x)

κTe

)
· 1

2
·
√

1 +
2

√
π
∫ Φ(x)−Φbulk

0
e−y2dy · e

κTe

(4.5)

In the books by Hutchinson and Chen [6] [2], all electrons are considered as re-
flected like in this thesis. For practical purposes, Chen however suggests to use 0,5
instead. The other end of assumptions is found in the book by Bellan [3]. There,
no distinction between density in the bulk plasma and density at the sheath edge
is made, and the scaling between is taken to be simply 1. Once the probe bias is
above floating potential but underneath the plasma potential (so, it is still nega-
tive in respect to the plasma), a certain amount of electrons will be drawn to the
probe. Only electrons with a kinetic energy higher that the barrier imposed by
the probe can strike it. As stated earlier, there should be no sheath present, so
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the striking current is the random current reduced by the Boltzmann factor given
in equation 2.5:

Ielectroncollection =
n0eAprobe

2

√
2κTe
πme

exp

(
eV

κTe

)
(4.6)

With this knowledge, an easy way to access the electron temperature opens up by
using the derivative of the total current. This is:

dI

dV
=

e

κTe
Ie +

dIi
dV

(4.7)

Neglecting the addition given by the ion current and subtracting the ion saturation
current from the total current, the I-V trace can be plotted in logarithmic scaling,
and the inclination, that directly corresponds to the electron temperature be read
off immediately. With the electron temperature known, the floating potential
Φfloat can be used to obtain ΦPlasma. The prerequisite for the currents to cancel
out each other is: √

2κTe
mi

=

√
κTe

2πme

exp

(
eΦrelative

κTe

)
(4.8)

This happens when:
eΦrelative

κTe
= ln

√
mi

4πme

(4.9)

This gives a good way to asses the plasma potential, as the transition from electron
collection to electron saturation is no well defined knee that would enable easy
determination of the plasma potential. Under perfect theoretical conditions, where
the probe behaves that simple, once the probe bias is equal or greater the plasma
potential, one should only see the electron saturation current. As this is not the
case, the equation 4.9 is convenient to determine the plasma potential:

ΦPlasma = Φfloat +
κTe
e

ln

√
mi

4πme

(4.10)

4.1.1 Consideration of the probe area

In the previous chapter, the ion current was considered to be drawn to an area
equal to the probe area, because the probe dimensions are assumed to be far bigger
than the sheath thickness. This however is a simplification that is of use at a first
glance only. To achieve more precise results, a look at the relation between the
sheath surface and the probe surface is required, as the sheath has to grow when
the probe bias is more negative. This kind of treatment is necessary to understand
the dynamics of the saturation currents when taking sweeps in NJORD that cover
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range of over 80V. The starting point for this is the assumption to drop any
contribution from electrons, as the probe is considered sufficiently negative. This
gives the Poisson equation for an area A [6]:

∆Φ =
−e
ε0

Iion
A

√
mi

−2eΦ
(4.11)

This can be solved to give a value for the sheath thickness by looking at a one
dimensional slab only. The complete integration can be found in literature [6] and
is not to be detailed here as it is rather lengthy and not highly relevant to the use
of emissive probes. It should just be noted that the derivative dΦ

dx
is assumed to be

0 at the sheath edge. The mathematics yield a relation for the sheath thickness
closely related to the so called Child Langmuir law for space-charge limited current.
The sheath thickness xsheaththickness given by this relation is:

xsheaththickness
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2

3
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2
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) 1
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2
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(4.12)

This can be used to determine the sheath thickness. Simple geometric approxima-
tions then give the relation between the probe of dimension a and its surface area
and the actual surface area created via the sheath expansion. For a spheric probe
this would amount to:

Asheath ≈ Aprobe

(
1 +

xsheaththickness
a

)2

(4.13)

And for a cylindrical probe

Asheath ≈ Aprobe

(
1 +

xsheaththickness
a

)
(4.14)

More drastically strict, numerical solutions have been calculated too, with better
attuned assumptions. Comparison with the analytical solution shows, that if con-
sidering the fact that in laboratory experiments the accuracy of Langmuir probes
is limited by default, the results are fairly close to each other and the analytical
solutions are good enough. In practice, another good path to take is to design
the probe in a way, that minimizes the impact of the geometry. Noteworthy for
example is the switch from a single pin probe to a planar probe with insulated
backside and rim. Even stricter and more advanced is the guard ring concept.
This takes the insulated planar probe but eliminates the rim effects. It is a planar
probe, where the actual probe area is embedded in a ring that is biased at the
same voltage as the probe. This nearly eliminates any geometric effects, and thus,
influence of the sheath thickness. But it is a relative complex electric setup, that
requires perfect matching between the probe and the ring. So, for more complex,
RF driven plasmas, this solution again gets less viable.
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Figure 4.2: Situation sketch of orbit collection

4.1.2 Orbit limited collisonless collection

Another factor to take into account are effects taking place once the probe tip size
and the Debye length are on comparable scale, or the probe tip is even smaller than
the Debye length. This happens, if very small wires are used to minimize plasma
perturbation. The simple approximations for the sheath thickness made in 4.1.1
are not valid anymore in that case, and instead it is necessary to treat this process
by looking at the orbits of singular particles. This is done by taking into account
energy conservation and angular momentum conservation for a charged particle
that is moving towards a biased probe with Vbias. For a setup of the situation see
figure 4.2. When at a the closest distance to the probe center, the particle is a
distance r away and has no radial velocity. Only an angular velocity. This gives
the following relation for the angular momentum:

mbv∞ = mrvΘ = mr

√
2

m

(
1

2
mv2
∞ − q(Vbias − ΦPlasma)

)
(4.15)

This gives a condition for the parameter b so that the particle will be collected:

b ≤ a

√
1− q(Vbias − ΦPlasma)

1
2
mv2
∞

(4.16)

Further analysis of this problem is in the realm of theoretical mechanics and ana-
logue to any treatment of a moving particle towards a attracting potential like
gravity, with all implications like the potential barrier posed for the radial velocity
by the momentum conservation. Detailed treatments about this can be found in
most works about theoretical mechanics, and reveal that it is a necessary but not
sufficient condition. Considering that, Langmuir devised a way to work around
this. Assuming a sheath, it is safe to say that all particles with an impact pa-
rameter smaller than the sheath thickness are collected. Integrating a Maxwellian
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distribution, this gives for a cylindrical probe the scaling factor:

Iorbitcollection = Isaturation

√
1 +

qVbias − ΦPlasma

κTe︸ ︷︷ ︸
Orbit increased current factor f

(4.17)

For spherical probes this relation resolves to:

Iorbitcollection = Isaturation

(
1 +

qVbias − ΦPlasma

κTe

)
︸ ︷︷ ︸
Orbit increased current factor f

(4.18)

This orbit collection current increase factor has been implemented in the numerical
simulations done in parts of this thesis.

4.2 Emissive Langmuir Probe

The standard Langmiur probe can asses a variety of plasma parameters. As out-
lined before, the accuracy of the data obtained is not the best. The emissive probe
can be seen as a specialization of this concept. Several parameters, like density
and temperature are dropped, and not obtainable. The one remaining parameter
in contrast can be measured with a greater accuracy and precision than it would
ever be possible by Langmuir probes. Also, it is, at least in theory, easier to read
out the parameter from the data, so that the time to analyze is reduced. The
basic idea of an emissive probe is to balance out the currents. In a cold probe,
the ion current is very low in comparison to the electron current. By making the
probe emit electrons, this can be countered, as emitted electrons from the probe in
essence behave like collected ions in the measurement data. In the first iteration
of this concept, one could say, the emitted electrons deliver the difference between
ion saturation and electron saturation current, so that the floating potential is the
same as ΦPlasma. It is not that simple in reality, but the floating potential gets
substantially shifted towards the plasma potential. An ideal I-V trace obtained by
this concept can be seen in figure 4.3

To construct an emissive probe, one needs a Langmuir probe setup with the
ability to heat the probe tip, so that Richardson Emission takes place. With Σ
defined as the work function of the material the tip consists out of, this gives a
temperature limited current of:

IeRichardson = R︸︷︷︸
Richardson Constant

T 2
ProbetipAProbe exp

(
e · Σ

TProbetip

)
(4.19)
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Figure 4.3: I-V Trace for an emissive probe, obtained via the simulation code given
in appendix A
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The most common way to achieve heating is to just drive a current through some
kind of probe tip loop (for details see chapter 5.2). Other methods used by Schrit-
twieser et al. include systems to heat the probe tip by laser, but are not covered
in this thesis. The current drawn by the probe can be separated into two parts.
Current drawn when the probe is biased negatively and current drawn when it is
biased positively in respect to the plasma. The main equations used in literature
[21] are given here, but later (see chapter 4.2.6), other models in use will also
be discussed. Here, the ion current is completely neglected, as it is magnitudes
smaller than the emitted electron current and as such does not really affect the
measurements:

Itotalcurrent = Icollected electrons + Iemitted electrons (4.20)

Icollected electrons =

{
Iesat · exp

(
eΦrelative

κTe

)
for VBias < ΦPlasma

Iesat · f(Φrelative) for ΦPlasma < VBias
(4.21)

Iemitted electrons =

{
Ieemisat for VBias < ΦPlasma

Iemisat exp
(
−e(Vbias−ΦPlasma)

κTw

)
· g(Vbias − ΦPlasma) for ΦPlasma < VBias

(4.22)
Note that the factor f is as discussed in 4.1.2

4.2.1 Potential Determination by Separation Point

The separation point technique is historically the first method that was deployed
to measure the plasma potential. The thought behind it is rather simple and so
far, only a qualitative argument exists, but no quantitative. The idea is, that
the I-V traces of a cold and a hot probe only differ in the added part due to
electron emission. In the most basic assumption, the emission starts sharply at
the plasma potential. So when overlaying both traces taken at the same time and
same spot, they should start separating at the plasma potential. In reality however,
it is seldom a separation, but rather a crossing, as there are more influences on
the emissive probe. Also, as discussed in chapter 4.2.6, the picture of a simple,
Heaviside-like step is wrong, leading to a systematic error. Further complications
stem from the fact that the probes can not be arbitrarily close in experimental
setups, but have to be at a certain distance for mechanical reasons. Adding to that
comes the problem that the probes might influence each other and it is difficult
to maintain exactly the same voltage on both probes constantly. Combines with
the cumbersome heating-setup used in earlier days, this gave the emissive probe
the reputation of a diagnostic that is unnecessarily difficult to use for a relative
small gain which still resonates in literature like in the book ”Principles of Plasma
Diagnostics”’ [6]

45



4.2.2 Potential Determination by Floating Point

Another, quick way is through the assumption, that the emitted electrons help
balancing the particle flow to the probe. So it is a good first assumption that
the floating potential is equal to the plasma potential. This was published first
in detail in by Kemp and Sellen [22]. Just driving the emissive probe with a very
strong emission current where the floating potential only changes very little with
any further increase, however is attached to a small systemic error. Namely the
formation of a virtual cathode by the emitted electrons, as not all electrons can
escape into the plasma, and thus some form an area of higher space charge and
some are also even reflected back into the probe whilst others escape. This process
leads to a dip in the sheath potential that forms the virtual cathode, and shifts the
floating potential. Further relatively new, thorough theoretical treatments of this
process can be found e.g. in papers like Takamura [23] and numerical simulations
[24] put the shift at about 1.5 · Te . A proposed method to cut down the influence
of the error proposed in the paper by Kemp and Sellen is to gradually increase the
heating. Two distinct regions are then visible. The region, where the emission is
not yet enough to fully compensate and balance out the floating potential to the
plasma potential. In this, the floating potential increases rapidly with emission
area temperature, which is proportional to the heating current use. In the second
region, after a short knee in the curve, the emission is high enough and the floating
potential increases only very slowly, as the energy of the emitted electrons changes
a bit and thus also the virtual cathode. The proposed method then advises to
make linear interpolation of these two regions and look for the intersection, which
should be very near the plasma potential. The claim was made that this method
is accurate to 0.01 V, which is to be viewed a bit critically, as advanced probe
theory predicts that the minimum uncertainty is about 0.2V [21].

4.2.3 Potential Determination by Double Cross

As described in [25], another method is the double cross method. This is compared
to all other methods of I-V trace analysis a method that is giving far more data.
Namely, Te and TProbetip in eV as well as ΦPlasma. For this kind of analysis to work
however, very strict basic conditions have to be met. Explicitly, this is the demand
that the emission saturation current as well as the electron collection current show
no no-linear behavior when strongly biased in relation to ΦPlasma, or the nonlinear
behavior can be described analytically. For this to happen either a probe with a
known geometry is needed or the probe has to be constructed the way to eliminate
this geometric influence, increasing the construction difficulties (see chapter 5.2.2).
But even with those conditions fulfilled, this would not hold up in a plasma that
drives nonlinear I-V trace behavior such as RF plasmas. As such, this method is of
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hypothetical interest only for this thesis and included for completeness only. Also,
while conducting this thesis it came clear that a secondary electron population
exists, rendering the most basic premise of this method invalid (see chapter 6.3).
Without attention to detail the method consist of three steps. First, by plotting
the deviation of the measured current from a linear interpolation in a logarithmic
scale, the electron temperature and the temperature of the emitted electrons can
be determined. Then, the crossing of the curve obtained by plotting the deviation
from the interpolation with a shifted linear interpolation is determined. In the
third step, both crossing points are compared and should give the same potential,
which is then presumed to be the plasma potential.

4.2.4 Potential Determination by Inflection Point

The inflection method proposed by Smith et. al. [25] is a development from the
double cross method. Owning to its flexibility, precision and robustness towards
unexpected physics, it has become the de-facto standard method to determine the
plasma potential by emissive probes. The fact used is, that when transitioning
from emission to non emission, the governing mechanisms change very abruptly,
and as such a peak-like discontinuity should show up. See figure 4.4 for a sketch
showing the peak obtained for a simulated probe characteristic after the model in
chapter 4.2.6.

Some consideration has to be given to the wire temperature and to space charge
effects. It shows that the measured potential is shifted negatively with increasing
wire temperature due to this space charge. This shift, however is at the beginning
comparatively linear, so this flaw can even be fashioned into a feat. By taking
several measurements at different wire temperatures, the measured potential can
be plotted against the ratio of emitted current to electron saturation current. Then,
a linear interpolation can be done to find the so called zero emission limit, which
is supposed to represent the true ΦPlasma and theoretical models state the error
to be ≈ Te

10e
[26]. The use of several data points to interpolate is also statistical

helpful in reducing the measurement error. The size of the probe also impacts
this method, as smaller heads lead to a steeper curve for the zero emission limit.
But as seen later in in chapter 5.2.2, this is a trade off, because smaller heads are
also far more prone to burn through. On the other hand, the thicker the wire, the
stronger the half width-half maximum value growth with increased heating.

Influence of magnetic fields

It is has to be noted that strong magnetic fields pose problems for emissive probes
use via inflection point method, a fact that was already stated when the method
was proposed [25]. The for thinner probe wires, the whole potential measured
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Figure 4.4: Peak obtained when differentiating an emissive probe trace, obtained
via the simulation code given in appendix A
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shifts downwards, independent of the heating, as the slope of the zero emission
line stays more or less the same. For thicker wires however, it might be completly
impossible to determine the potential at all. Also, reportedly, with higher mag-
netic field, the half width-half maximum value is increased and growth stronger
for increased heating which has been attributed to space charge effects. Still, no
detailed treatment of this problem has been reported [21], only qualitative notes
that the problem is rooted in the fact that the magnetic field modifies the effec-
tive probe area as electrons that are emitted in a direction perpendicular to the
magnetic field get trapped in a gyromotion, which can cause an impact on the
measuremend if the probe is oriented along a field line. Also, it is advised to bear
in mind that strong magnetic fields can deform the heating filament, if a current
is used for heating. From the data published by Smith et al. [25] a rough estimate
for the error can be made. For a 0.016 T magnetic field, the ΦPlasma measured
seems to be shifted by about 0.2V in the zero emission limit.

4.2.5 Emissive Probes in RF-Driven Plasmas

The RF oscillation has a strong impact on the sheath behavior. This also translates
to influence on probe measurements. So, the most important effects are to be
illuminated here as they have been treated in the basic paper by Wang et. al. [27].
First, as stated in chapter 3.1.1, the floating potential takes a shift to lower values.
For sweep from 0V to 20V RF amplitude the floating potential was reported to shift
by 5,2V. Without exact knowledge of the oscillation, it is hard to reconstruct the
exact value of the shift. So in RF plasmas, floating emissive probes measurements
have to be considered below the actual potential and to be viewed somewhat
critically. Also, the rest of the current drawn to the probe behaves non-linearly, as
the current bias relations is expanded by an oscillation term in the exponent like
in the following:

Ielectroncollection =
n0eAprobe

2

√
2κTe
πme

exp

(
e(Vbias + Φoscillation sin(ωt))

κTe

)
(4.23)

In addition, depending on the chosen model for the emission current, also the
current mechanics vary nonlinearly under RF, depending on the instantaneous
potential in relation to the plasma potential. In a plasma with a tunable, variable
RF oscillation, the proposed solution is to first take I-V traces with and without
RF. Those should show a crossing point. Now using a resistor that forces the
load line through this crossing point should by theory make the measured trace
insensitive to the RF, irrespective to the applied RF. Limits to this methods are
plasmas with density changes or when the emission current is to low. Also, in
some experiments, like NJORD, there is no way to have a plasma without RF, as
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Figure 4.5: An I-V trace with the same parameters as in figure 4.3 but an added
RF oscillation of the plasma potential,obtained via the simulation code given in
appendix A

the RF is part of the plasma source. For comparison to normal emissive probe
traces, in figure 4.5 a trace simulated with the same parameters as in figure 4.3 is
given, with only the addition of an RF oscillation of the plasma potential.

Peak Broadening and Double Peaks when using the inflection method

The better method is to again use the inflection point method. The afore men-
tioned paper [27] reported that the single peak in the derivative separates into two
peaks under RF oscillation. The mid point between those two peaks however is the
same as the peak in a RF-free plasma. And while the lower peak is not influenced
by changes in probe heating, the upper peak is. This one moves towards lower
plasma potential with increased heating. The effect is a negative shift in measured
potential with increased heating which fits to the peak shift used when applying
the the zero emission current method. The broadening between the two peaks is
roughly equal to twice the applied RF-amplitude, as will be shown for the two
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Figure 4.6: Peak broadening in the derivative of an emissive probe I-V trace due
to RF oscillation, obtained via the simulation code given in appendix A

simpler emission models. See figure 4.6 for a sketch of how the derivative of the
I-V traces broadens.

Numeric simulations done with the model 4.2.6 for this thesis also show that
for oscillations concerning of several harmonics, the number of recognizable double
peaks not necessary increases proportional with the amount of harmonics present.

Influence of RF-Waveforms

It should be pointed out, that taking midpoint between the two peaks is only
a valid method, if the plasma is driven by a waveform that can be considered
in good approximation sinusoidal. When the waveform was half wave rectified,
the peak ratio changes significantly [27], with the lower peak dominating and the
midpoint between the two peaks moved to a higher potential. To have an estimate
of how deformed the waveform is, waveform monitoring is advised (see chapter
5.2.5). This can be understood in a more general sense by picturing that taking
the derivative gives a histogram of the plasma potential over several oscillations
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[28]. And when the driving waveform is imbalanced, this also reflects in how the
histogram weighting shifts. Also, the impact strength of this shift on the peak
ratio is linked to the RF frequency, as the experiments where carried out in the
KHz range and it was stated that an increase in frequency means a behavior more
similar to pure sinusoidal oscillations [27]. NJORD operates in the MHz range, so
it can be taken to have a near sinusoidal oscillation.

4.2.6 Emission Models

Describing the emission properly is an act of balance between a thorough and
correct model and one that is easy to handle when it comes to usability in the
laboratory to make predictions while the experiment is running. In this thesis,
an intermediate level of description complexity was chosen for all analytical and
numerical treatment with an exponential decrease of the emitted electrons. An
overview over other models used will also be given.

Heaviside Step

The simplest, yet useful model for emission is that of a step given by [27]. If
the probe is below ΦPlasma, the full emission current takes place. If it is above,
no emission occurs at all, but the collection saturation current is drawn. If the
potential now oscillates with a single frequency amplitude Φosci around the plasma
potential, the average current for the emission can be determined for one full pass.
This gives for the current an average over time for an electron emission current
Ieemi and an collection saturation current Iecoll :

〈I〉 =



Iecol for Φosci < Vbias − ΦPlasma

1
2
(Ieemi + Iecoll) + 1

π
(Iecol − Ieemi) arcsin Vbias−ΦPlasma

Φosci

for − Φosci ≤ Vbias − ΦPlasma ≤ Φosci

Ieemi for Vbias − ΦPlasma < −Φosci

(4.24)

Taking the derivative gives the required double peak. Another step model is given
by Wiebold et al. [28]. Under the assumption that the probe is not fast enough
to follow the oscillation, they give a model for the time averaged current that is
a bit more smoothed out and is described with a generic current I0 and another
scaling parameter Γ:

I(Vbias) = I0 tanh [Γ (Vbias − ΦPlasma)] (4.25)
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For modeling purposes, the parameters have to be set to match the measured
values, and this model is more to explain than to give exact predictions. While
being set up a little bit different with regard to the basic assumptions, both models
fare well in explaining the basic phenomenon of double peaks in RF plasmas.

Smooth Step

A little bit more advanced, but still away from reality, Wang et al. proposed a
more realistic model with a smoother transition too [27]. This model too, lacks to
include how the electron flux changes due to sheath dynamics nor does it consider
any kind of advanced effects discussed in this chapter. So, having the currents
Ieemi and Iecoll again and defining two biases, when the emission and collection
saturation is reached, Φemi and Φcoll. The current in this case is not a step function
but described by:

I =



Iecoll for Φcoll < Vbias − ΦPlasma

(Iecoll−Ieemi )
(Φcoll−Φemi)

(Vbias − ΦPlasma) + 1
2
(Ieemi + Iecoll)

for Φemi ≤ Vbias − ΦPlasma ≤ Φcoll

Ieemi forVbias − ΦPlasma < Φemi

(4.26)

53



Calculating the average for an oscillating potential this leads to the expression
[27]:

〈I〉 =
1

π



Iecoll for Φosci + Φcoll < Vbias − ΦPlasma

∫ arcsin
(
Vbias−ΦPlasma−Φcoll

ΦOsci

)
−π
2

IecolldΘ+

+
∫ π

2

arcsin
(
Vbias−ΦPlasma−Φcoll

ΦOsci

) I(Vbias − ΦPlasma − ΦOsci sin Θ)dΘ

for ΦOsci + Φemi < Vbias − ΦPlasma < ΦOsci + ΦColl

∫ arcsin
(
Vbias−ΦPlasma−Φcoll

ΦOsci

)
−π
2

IecolldΘ+

+
∫ π

2

arcsin
(
Vbias−ΦPlasma−Φemi

ΦOsci

) IeemidΘ+

+
∫ arcsin

(
Vbias−ΦPlasma−Φemi

ΦOsci

)
arcsin

(
Vbias−ΦPlasma−Φcoll

ΦOsci

) I(Vbias − ΦPlasma − ΦOsci sin Θ)dΘ

for − ΦOsci + Φcoll < Vbias − ΦPlasma < Φosci + Φemi

∫ π
2

arcsin
(
Vbias−ΦPlasma−Φemi

ΦOsci

) IeemidΘ+

+
∫ arcsin

(
Vbias−ΦPlasma−Φemi

ΦOsci

)
−π
2

I(Vbias − ΦPlasma − ΦOsci sin Θ)dΘ

for − Φosci + Φemi < Vbias − ΦPlasma < −Φosci + Φcoll

Ieemi for Vbias − ΦPlasma < −ΦOsci + Φemi

(4.27)
While this is a complicated model that does not even consider any kind of sheath
formation or Boltzman retardation, it still fulfills one very important task. It gives
an easy modeling understanding into why the potential shifts towards negative
value when the heating is increased, and also why this phenomenon is perfectly
conserved when using emissive probes in RF-plasmas. When increasing the heating
of the wire, Φemi has to adjust downwards, as with a higher emission also a bigger
virtual cathode forms in front of the probe, which required a higher potential
pushing the electrons through it. Meanwhile, the collection current and thus the
onset potential for this current is not affected. As such, the lower peak, which is
determined by Φcoll does not move but the higher peak, which is at Φosci + Φemi

moves towards lower potential, resulting in the total potential shift downwards.
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Exponential

The perhaps most common model used for modeling emissive probes is composed
of an exponetially increasing collection current and an exponentially declining
emission current, as given in [21]. The equation for the collected current with a
saturation current Icollsat and geometric factor f as discussed in chapter 4.1.2:

Icoll =

{
Icollsat · exp

(
−e(ΦPlasma−Vbias)

κTe

)
for Vbias ≤ ΦPlasma

Icollsatf(Vbias − ΦPlasma) for Vbias > ΦPlasma

(4.28)

Quite analogue, the emission current is defined with a geometric factor g, a wire
temperature Tw determining the emission current (see eq. 4.19) and a saturation
current Iemisat :

Iemi =

{
Iemisat for Vbias < ΦPlasma

Iemisat exp
(
−e(Vbias−ΦPlasma)

κTw

)
· g(Vbias − ΦPlasma) for Vbias ≥ ΦPlasma

(4.29)
With no analytical solution given and the nonlinearities making it more difficult

to obtain such, numerical simulation was chosen. This model is able to reproduce
important phenomena, while being very easy to implement and fast to execute
in numerics. The full code is given in appendix A. Whilst comparing with other
models and real data, one mistake of this model sticks out. The order of relative
height between the peaks in main electron distribution seems to be mirrored. This
stems from the fact that in reality and other models better suited to this detail,
the potential correlating to full saturation current is negative in relation to the
plasma potential and the emitted current onset is at Vbias = ΦPlasma. In the
exponential model, this is shifted and the emitted current is fully saturated at
Vbias = ΦPlasma while the onset is already at a higher bias. This can be seen as if
the onset behavior has been mirrored around ΦPlasma and as such, also the peaks
in the derivative trace are mirrored. Knowing this flaw and accounting for it, the
model is very useful and fits the observed data very well.

Exact Modelling

The up to date most thorough and complex simulation of the situation in an
emissive probe was done by Ye and Takamura [26], and while a lot of thoughts be-
hind it are not fully represented, the mathematics are given for comparison to the
other models. The collected current was combined from three currents, an electron
emissive current Iemi, an electron collection current Icollelectron and an ion collection
current Icollion and the whole calculations where carried out for a cylindrical geom-
etry. The emissive current was broken down into three distinct regions. One region
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where it is zero because the probe is biased above the plasma potential, one region
where the current is governed by space charge effects, and one where it is governed
by temperature limit. In the temperature limited region IemiT−Region it is simply
the current given by Richardson emission discussed previously in the Richardson
equation 4.19. In the space charge limited region, the current, IemiS−Region was
derived by enforcing that the electric field on the probe has to be zero and gives:

IemiS−Region = 0, 5 ·G(1 +G)−1enesheathedge

√
8Te
πme

√
e(Vbias − ΦPlasma)

κTe
(4.30)

With:

G =
−β1 +

√
β2

1 − 4β0β2

2β2

(4.31)

And a normalized sheath voltage:

N =
e(Vbias − ΦPlasma)

κTe
(4.32)

Using the definitions:

β0 =− 4 (N)2 − 2N(F 2 − 2F ) (4.33)

β1 =4(−2F − 1) (N)2 + 8F ·N − F 2 (4.34)

β2 = (N)2 − 8 (N)3 (4.35)

F = exp ((N))− 1 (4.36)

(4.37)

The potential Φs at which the transition from S-region to T-region takes place is
simply defined as the the value Vbias fulfilling IemiT−Region = IemiS−Region and is as
such depending on the probe temperature. The ion current is given by:

Icollion =

{
−enisheathedge

√
1+g

1+ g
2N
vsAprobe forVbias < ΦPlasma

0 for Vbias ≥ ΦPlasma

(4.38)

With g a parameter depending whether Vbias is above or below Φs:

g =


IemiT−Region

enisheathedge

√
8Te
πme

√
−0,25πN−IemiT−Region

for Vbias < Φs

G for Φs ≤ Vbias < ΦPlasma

(4.39)
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Figure 4.7: I-V Trace with exact modelling, taken from [26]

With the electron saturation current given as Ielectronsat = 1
4
ensheathedge

√
8Te
πme

Aprobe,

the collected electron current Icollelectron is expressed as:

Icollelectron =


Ielectronsat

1+g
for Vbias < ΦPlasma

Ielectronsat

√
1 + e(Vbias−ΦPlasma)

Te
for Vbias ≥ ΦPlasma

(4.40)

As long and over the top for application in the laboratory this model seems on the
first glance, it delivers a very important insight into the boundaries of precision
and accuracy of emissive probes. Also, with this model, the limiting conditions
can be determined, for which useful emissive probe characteristics are obtainable.
The model predicts, that the inflection point methods underestimates the plasma
potential by ≈ Te

10e
. A graphic of an I-V trace calculated with this model is shown

in figure 4.7.
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Chapter 5

Experimental Setup

In this chapter the peculiarities and design specifications of the NJORD experiment
as well as considerations about the construction of plasma probes are presented.
RF-driven plasma-sources are a common sight in laboratories around the world,
but lack a level of standardization so that direct comparison between the sources
is often made difficult by differences in design and dimension. In the case of
NJORD, the most similar devices are the Chi-Kung [20], Wombat [12] and Piglet
[29] operated by the ANU. This chapter consists of three parts: an overview of
NJORD, emissive probe operation and retarding field analyzer operation.

5.1 NJORD

NJORD consists of several parts of distinct function. A rough overview over the
specifications and physical principles is given here. A schematic drawing of NJORD
is given in chapter 3.4 with figure 3.5. The exact measurements for dimensions of
the vessel and further technical details can be found in the Tribulato master thesis
[30]

5.1.1 Vacuum-System

The vacuum system consist of two parts. First, a pump system is in place to
create the necessary pressure range for experimental operation coupled with a
controllable gas inlet to fill the chamber with a known gas mixture. Second to
be describe is the vacuum gauges and monitoring system to enable reproduction
of the same conditions repeatedly and to enable calculations for comparison, as
in chapter 2.1, pressure and density have already been noted as fundamentally
important.
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Pump System and Gas Inlet

In general, two main principles can be used to create lower pressure as stated in
[31]. Those two principles are compression pumps, that remove gas from the area
to be pumped down via mechanical means or a momentum change, and getter
pumps, that condense, adsorb or absorb the gas. In NJORD, only pumps of the
first type are used, so no large explanation is given about the later type, that
includes pumps with extremely large absorption areas and cryopumps that freeze
out the remaining gas via condensation.
There are several pumping mechanisms, and each of them has its specific work
range for its intake and output. Hence the vacuum system has to be made up
from different pumps, that work in stages. First, one or several roughing pumps
creates a prevacuum. Only in this prevacuum, the high-vacuum pumps can oper-
ate, as the principles guiding the pumping mechanism are very susceptible to too
high pressures (for example, condensation pumps would cover up extremely fast
and in turbomolecular pumps the friction becomes too large, which can damage
the rotor mechanism).
In NJORD the system consists of a turbomolecular pump and an rotary pump to
provide the prevacuum. The principle of a rotary pump is a two step mechanism.
In the first step, the certain volume is opened up to allow gas from the inlet side
to flow in. Then this section is sealed off and the volume compressed towards the
exhaust. There are several geometrical configurations to utilizes this, ranging from
the Gaede rotary mercury pump of 1905 to more evolved designs like the trochoid
pump. The used pump is a rotary-vane pump. Two extending vanes provide seal-
ing to the area that is first opened up to the inlet and then compressed outwards
through the exit. A schematic drawing of this concept can be seen in figure 5.1.
It is worth noting, that to make the sealing better and to keep the pump sys-
tem lubricated, the whole pump-body is immersed in oil. This makes it necessary
to have a shutter between the rotary vane pump and the turbomolecular pump.
Once the turbomolecular pump is switched off, the shutter is closed to prevent oil
from polluting the experiment chamber. In NJORD, this shutter is pressure op-
erated and directly connected to the computer controlling the pumps, making the
closure automatic and instantaneous once the turbomolecuar pump is switched off.

Utilizing such kind of a pump, it is easy to reach the pressure range of 10−1mbar,
also called a rough vacuum. From that range on, turbomolecular pumps can be
run. The principle behind turbomolecular pumps is not compression and exhaus-
tion but rather a continuous change of momentum for every particle that hits the
pumps fans. Several fan-blades in a tower-like row change the momentum more
and more downwards. The blades are separated in the rotor-set used for the ac-
tive act of molecule removal and the stator-set for guidance, like in most turbine
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InletExhaust

Extending Vanes

Rotation Direction

Figure 5.1: Simple schematic of the rotary vane pump principle

like arrays. Trying to hit particles moving at thermal speed requires fast moving
fan-blades. A simple calculation from [31] gives a good estimate for the minimum
rotation frequency needed for this pumping system to work properly. A molecule
at room temperature moves with a speed in the vicinity of 500m

s
. An ordinary

turbo pump has a radius of something near 5cm. For the blades to rotate with
this speed, simple math gives a frequency of 1,6 kHz, which translates to about
90000 revolutions per minute. These high speeds require special magnetic bear-
ings to reduce friction. Also, for this concept to work properly at gas removal,
the gas flow has to be in the molecular range to be dominated by the interaction
between walls and the gas particles. This is expressed in the Knudsen number,
which is defined as Kn = Mean free path

characteristic dimensions of system
being above unity. A quick

check at NJORDs pressure measurement setup while under full operation and a
measurement of the inlet diameter yields a Knudsen number above one. So, this
condition is clearly fulfilled.

Measurement System

There is a wide variety of measurement methods available to determine the pres-
sure. In this work, only the systems used in NJORD are described. The principles
applied in vacuum gauges can be generally separated into two categories apart
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Figure 5.2: Schematic of a basic capacitance vacuum gauge

from the different ranges they operate in. First, there are systems that deliver a
pressure reading independent of the gas in which the gauge is measuring. A second
class are systems with readings dependent on the type of gas.
In NJORD, one gauge of the first type is installed, a capacitance manometer. This
consists of a diaphragm facing the vacuum, and an electrode behind it. Diaphragm
and electrode together form a capacitor. As the diaphragm bulges due to the pres-
sure difference, the capacitance changes, and this can be read out as the pressure.
The principle of construction is also detailed in figure 5.2. The advantage of this
gauge is the fact that it is completely independent of the gas used. The downside
is that this principle can be applied until 10−4mbar is reached but not further, as
it grows inaccurate at lower pressures. It is the only independent method to be
able to measure at such low pressures, but in NJORD, experiments are conducted
at pressures between from 1, 3 · 10−3 down to 0, 24 · 10−3mbar, so the validity of
measurements given is to be questioned, especially considering the fact, that the
used device, a MKS Baratron, is only rated down to 0, 27 ·10−3mbar. So the lowest
pressure measurements are out of range and this makes the Baratron more useful
to ensure proper reproducible conditions in the experimental chamber at higher
gasflows.

Of the gas type dependent gauges, NJORD has a Boc Edwards WRG-S. This is
a sophisticated wide range gauge utilizing two different concepts to cover a larger
range. Further, a micro controller automatically switches between the gauges and
normalizes the readings into a voltage that can be converted to an accurate pres-
sure reading and also displayes a detailed error code in case of malfunctions. The
first step for pressure ranges between 1013 mbar and 10−4mbar is a thermal con-
ductivity gauge. The notion behind this concept is that the heat conductivity of
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Figure 5.3: Schematic of a Pirani gauge

a gas can be seen as reasonably constant until the gas is showing molecular flow.
At this point, it drops rapidly and in relation to the mean free path length. This
continues until the mean free path length is larger than the distance from the hot
source to the cold, where it is constant again, as it is now dominated by radiation
and heat conduction through the connection of the hot source. In gauges of the
Pirani type this is used by constructing a Wheatstone bridge as shown in figure
5.3. The bridge is alway kept balanced, which means that the temperature is kept
constant irrespective of the heat loss taking place. The change in voltage required
to do so is correlated to the pressure inside the gauge. This method allows us
to measure from 1013 mbar down to 10−4mbar, with the constriction that the
measurement uncertainty change strongly over this range. The best range for ap-
plication is between 1 mbar and 10−3mbar. Also, after obtaining the pressure on
a scale calibrated for an Oxygen-Nitrogen mix as in air, it has to be converted
into the corresponding pressure in the used operating gas, like Argon. For this,
calibration curves are available from the manufacturer.

The second gauge included is a cold cathode in the inverted magnetron config-
uration. The basis is a self sustaining discharge between two unheated electrodes.
And the current running through the discharge links a given voltage to pressure
as it is proportional to the particle density. There is no electron source,so the
initial charge has to be randomly created by cosmic radiation or radioactive decay
or in the WGR-S, a separate striking filament to supply the initial electrons. The
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Figure 5.4: Schematic of a Cold Cathode in inverted magnetron setup

geometry consists of a strong magnet encasing the whole setup. Inside this magnet
is an outer cathode, then to reduce the influx of field emission electrons some kind
of ceramics spacer and finally an anode pin. See figure 5.4 for a schematic draw-
ing. The strong magnetic field forces the charge carriers on a gyrating orbit. The
added electric field, which is perpendicular to ~B for the most part of the gauge this
creates an E×B drift spiraling around the anode pin, increasing the chance of col-
lisions to keep up the discharge. Between the electrodes several kV are applied to
keep the discharge up, limiting the use in higher pressure ranges, as the discharge
would change into a glow discharge that has only a very weak dependence on the
pressure. So, usefull operation should only begin in the vicinity of 10−2mbar. The
inverted magnetron, as a special case of cold cathode geometries can be used to
measure down to the ultra high vacuum regime of 10−11mbar without any bigger
loss of precision, even though trying to start the gauge discharge unassisted might
take hours up to days. In addition, it is an easy, robust principle, resistant to
mechanical shocks and sudden air intake that is not to costly to install. Sadly,
the cold cathode suffers from one big drawback. The principle of operation is the
same as that of an ion sputter pump with pump rates up to 10−2 l

s
[31]. As such,

first of all, the gauge acts as such and can show significant pumping speed because
discharge ions are retained in the cathode wall and also because sputtered cathode
material acts as getter particles. This leads to a high inaccuracy in the measure-
ment, that can amount up to 50%. Also, like the Pirani gauge, a calibration for
the the different kind of gas used is necessary. Further, as it is a discharge to be
measured, this gauge should not be facing the plasma directly to avoid drawing
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Ar flow WRG-S , for O2N2 for Ar MKS B.
in sccm in 10−3 mbar in 10−3 mbar in 10−3 mbar
1,2 0,14±0,07 0,11± 0,04 0,25
1,5 0,27±0,135 0,22± 0,1 0,31
2 0,54±0,27 0,48± 0,21 0,39
2,5 0,8 ±0,4 0,74± 0,34 0,5
3 1,1 ±0,55 1,05± 0,49 0,6
4 1 ±0,5 0,94± 0,44 0,77
5 1,1 ±0,55 1,05± 0,49 0,99
7 1,1 ±0,5 1,05± 0,49 1,38

Table 5.1: Conversion table between gas flow and pressure

current from the plasma, and is installed in a small setup slightly removed from
the main chamber.

For the WRG-S the calibration data to convert from shown pressure (which is
the pressure for a O2 N2 mixture) to the pressure that is prevalent in the cham-
ber with Argon was supplied by the manufacturer. From this the graph 5.5 was
calculated. The fitting power relation between the pressures in mbar is found to
be:

PArgon = 2, 1424 · P 1,118
O2 N2 Mix (5.1)

Note that arround 10−3 mbar,the system switches from Pirani to cold cathode
system, as the pressure relation show a knee that is not visible when looking at
the calibration graph between pressure and gauge output voltage. As such, the
power law can be seen as systemic error source in that region, due to lack of finer
data for calibration.

The gas flow into the experiment chamber is regulated through an automated
flow controller. A flow rate can be chosen, so that the system goes into a pressure
range, where an equilibrium between gas flow inwards and pump speed is created.
As it is simpler to use the gas flow that can be set directly by PC, a conversion
table between gas flow and pressure is given here. When the experimental data is
analyzed, only the gas flow is given for convenience reasons. A variety of different
gas types can be selected for experimentation, albeit in this thesis only argon was
used.

This table also shows how the ranges detailed before are behaving in experi-
mental operation. In the area of 10−4mbar the wide range seems to operate the
cold cathode with evenly spaced pressure steps, and the capacitance seems to jump
in its pressure steps. Upon reaching a gasflow that results in a pressure around
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Figure 5.5: Pressure conversion graph for Boc Edwards WRG-S between Air Mix-
ture and Argon
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10−3mbar, however, the wide range gauge seems to switch to the Pirani system
and does not show any change at all. The capacitance principle reaches the range
for which it was designed and the pressure steps are evenly spaced.

5.1.2 Source Region

There are several plasma generation concepts. One major category is sources that
inject charge carriers and accelerate them to ionize the background gas and the
other one is the group of sources that use existing charge carriers from ionization
through e.g. cosmic radiation or a radioactive decay source and apply strong
oscillating fields to those [32]. NJORD is of the latter type and its source consists
of magnets to create a B field to enable helicon modes to propagate as discussed
in chapter 3.3 and a RF antenna.

Magnetic Field Coils

NJORD has several coils to create the desired magentic fields. Two coils in the
source region and three coils in the expansion chamber. The expansion chamber
coils have not been used in this thesis, as too strong magnetic fields pose a problem
(see chapter 4.2.4). The source coils consist, starting from the gas inlet, of a coil
with 525 windings and a second coil with 550 windings. The wire used has a diam-
eter of 2mm, and as such, the physical extention of the coils has to be considered,
rendering the classical approximative coil formulas imprecise. To determine the
magnetic field on the center axis, a numeric code is employed. In this thesis, both
coils were run at 5A for all experiments, giving the magnetic profil in figure 5.6.
Detailed simulations for other current configurations are available [30].

RF-Source

The NJORD RF source is a RF antenna in what is known as Boswell or saddle type
antenna. For the basic geometry see figure 5.7. This antenna is designed to evoke
a helicon wave in a field configuration known as m-1 mode. See 3.3 for further
details. The length in z-direction determines, which kind of ξ-modes can and will
be evoked. The antenna is driven by a setup of several radio frequency amplifiers.
A small signal with a frequency of 13,6 MHz is created by a waveform generator and
guided through several amplification steps until it is finally coupled to the antenna.
The antenna is connected via two variable capacitors, to minimize reflectionl. It
is necessary to ensure good coupling of the RF signal to the plasma and prevent
to0 much reflection back into the amplifier stack, as it could damage them. Also,
over the course of an experiment, especially short after having initiated the plasma
discharge, regular checks of the refections are of importance, as the coupling can
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Figure 5.6: Plot of the magnetic field strength along the center axis in the source
of NJORD. Sourcecoils set to 5A current,
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Figure 5.7: Geometry of a saddle type antenna

change a bit as the experiment runs. The amplifiers can provide a RF-wave with
a power from 300W to 1kW. Under normal operation with 600W a minimum of
about 5W are reflected back. For further details of the RF setup see [30].

5.2 Emissive Probe

5.2.1 Electric Setup

Historically, the emissive probe underwent a pragmatism shift in construction. In
earlier days, the dominant design was one where a sinus waveform current was used
to drive the heating. One half-form of the current would be used to heat the probe
tip, while the other half was held back by use of a diode and the measurement
was taken in this short window. The major problem with this approach is the
fact, that for a plasma not dense enough, the current drawn when taking the I-V
traces is not strong enough to keep up the temperature, thus resulting in a drop
of temperature while measuring. Modern-day setups circumvent this problem.

As shown in figure 5.8, the heating is continuously provided by the heating cir-
cuit. Attached to this circuit is between two resistances an exemplary Langmuir
probe setup to take the I-V trace. When the resistances for taking the measure-
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Figure 5.8: Schematic of the heating setup used and a simple setup to take I-V
traces
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ment are balanced properly, only a minimal current runs to the ground and the
applied voltage bias corresponds to the middle of the probe tip. By increasing the
bias voltage on the connection from the ground, the whole circuit is biased. Then,
a current can be drawn from probe tip to ground. This setup enables a continuous
heating, so that the problem of dropping temperatures and short time frames to
take a measurement are avoided
The probe data is sampled via an automated system. The probe is biased at a
certain voltage, the current then sampled and then the process repeated. In this
thesis, 201 samples were taken per bias voltage before moving on to the next bias
voltage. In a second automated step, the average of those 201 samples is taken.
This serves to compensate for the noise that would occur without averaging. Meth-
ods to compensate for the RF noise include compensation circuits, that filter out
the main RF frequency and some higher harmonics. In addition, some probe rods
are shielded against the RF influence on the wires leading up to the tip by a metal
casing. After one bias has been saved to disc, the next bias voltage is set and
the process repeats. The Labview program is set to take 201 evenly spaced steps
between the minimum and maximum bias voltage. This is done for the whole
sweeping range and afterwards saved in a txt file containing all measurements. If
set, afterwards a step motor moves forward and repeats the measurement process.
Although full radial profiles over the entire diameter were taken, only the positions
when moving up to the center where considered for further analysis, as a quick
preliminary view revealed that after moving through the center the probe seemed
to influence the plasma significantly and a constant distortion in the derived traces
could be observed. Dropping this data should amount to no information loss, as
the experiment is rotational symmetric around the center axis. It can be further
argued for this drastic measure of dropping half the readings, when looking at the
measurements performed by Takahashi and Charles [33] on the CHI KUNG device,
which has the same geometric layout and antenna setup as NJORD. They show
exactly the same ”drag along”’ effect, that distorts the profile in a way that is
difficult to bring into overlap with a source that is cylindrically symmetric. To get
the maximum data within the range of a proper system response of the sweeping
voltage source, the whole probe bias voltage was shifted upwards with respect to
the ground via a battery box consisting of several batteries connected in a row.
This is necessary, because ΦPlasma was anticipated to be in the area of 50V to 70V
while the voltage source could only sweep from -60V to 60V. The battery shift
voltage was measured and added to all bias voltages afterwards.
The way of averaging is easy to implement, but bears the danger of a small sys-
tematic error when determining the bias voltage of roughly up to 1,5V (see chapter
5.2.5 for measurments of the oscillation amplitude). The explanation lies in the
beat between the frequency of measurement and the RF-oscillation. If the mea-
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surement on average takes place more often when the potential is raised above
the set bias voltage than below, the whole measurement can be seen as shifted
upwards. The huge difference between the the two frequencies as well as the fact
that the RF-oscillation can be made up of several strong harmonics, whose compo-
sition change between measurements, further complicates this problem. So far no
easy laboratory applicable solutions is found, so that for all measurements this sys-
temic error is always assumed to be maximal, which is probably an overestimation.

5.2.2 General Considerations in Probe Design

But also the design of the probe tip and rod needs some consideration, as not
every design is viable. Several factors have to be taken into account and balanced
against each other. The criteria used to compare the two designs tested in this
thesis had to fulfill the following points:

• Easy to manufacture, as it is not uncommon that a probe tip burns up and
has to be replaced.

• Mechanical stability, because there is some vibration and tugging while in-
serting the probe as well as when it is moved by the step motor. Also, heating
produces some mechanical stress on the probe.

• Precise control over the length of wire that is heated. Else, unwanted heating
in the probe tube is to be considered. Those two last points make the method
of friction connection, that is often used for quick probe setups, unfavorable.

The heating filament of choice was in both cases a 0.125mm diameter Tungsten
wire. Thicker wires are more robust and last longer in plasma thrusters. Thinner
wires produce a steeper slope when interpolating the true plasma potential via the
zero emission limit method (see chapter 4.2.4) [25] . The chosen wire strength has
shown itself as a good compromise between these two requirements in the labora-
tory. Also, the shape of the head has some influence. Again, the same shape was
chosen for both probes, the commonly used hairpin-style, as shown in figure 5.9.
This is by far the most widely used shape as it excels in ease of fabrication. Nev-
ertheless, some limitations should be remembered. First and foremost, the hairpin
is becoming unreliable once the radius of the bend is within range of rL. Also, a
U-turn is quite a step removed from the underlying probe theory assumption of

72



Figure 5.9: Hairpin and Straight Shape for Probe Tips

a cylindrical probe head. The lower the density of the plasma the more impact
those effects have, up to an error of 0,2V in a plasma density of 106cm−3. At last,
the spatial resolution suffers under the more complex shape of the probe tip. A
probe tip that is closer to the basic assumptions is the straight wire as introduced
in the paper by Kemp and Sellen [22], which eliminates this unfavorable geometric
attribute and gives a far higher spatial resolution. The problem with this design is
its higher complexity when fabricating it and the fact that the mechanical stress
due to heating coupled with the increased brittleness of a Tungsten wire after
heating, that the probe will break after one use (unless one curves the wire again).
This way it stays more of a concept in comparison to the hairpin design until an
easier way to fabricate it is devised.
The wire leading up to the tip was in both cases a Nickel wire of 0.5mm. Nickel is
easy to solder, a fact that make the connection of the probe end to the Lemo plug
far easier. The size of the Lemo plug connection area as area to solder in while
avoiding strong mechanical stress to the probe tip so it does not break, already
amounts to a mechanical task of certain difficulty, without an ”unsolderable” wire
as added obstacle. The diameter ratio between the two wires ensure, that the
biggest voltage drop is only over the Tungsten tip part.
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Figure 5.10: Schematic of first used Probe Design

Figure 5.11: Schematic of the second used Probe Design

5.2.3 First Design

The first design, shown in 5.10 is in resemblance to the design published by Sieben-
forcher and Schrittwieser [34], in which the connection is made by a Copper braid
wire. In addition, a cap of ceramic glue was added. This was supposed to prevent
any contact between the ends of the Copper braid and the plasma, as the ends
are very thin, fine tips. Those very fine, pronounced ends could build up signifi-
cant charge when the probe bias is applied. The probe design proved not viable
due to two main reasons. The probe showed unpredictable behavior when heated,
leading to jumps in the heating current needed. Further, and far more grave was
the response of the ceramic glue to the attempts to heat. Every probe showed
cracking in the ceramic glue cap that had enough force to destroy the tip. After
several tries, this design was abandoned as no other way to fabricate a cap was
within reach.

5.2.4 Second Design

The second design proved easier to fabricate and mechanical more stable, and
has in akin ways been used since 1966 [22]. To understand details of the design
in figure 5.11, it seems in order to describe the fabrication process in little more
detail. First, a long stretch of the thin Tungsten wire is inserted into the ceramic
tube and the tip is shaped by pulling it down until only the hairpin tip of intended
size is visible. Then the two Nickel wires are shoved down the tube hole from the
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tip direction, while the tip is kept in position by a tweezer. Once the Nickel wires
are extending only about 1-2cm, the tweezer is used to pull out the Tungsten wire
again. Then, the tip of the Nickel wires are spot welded to the Tungsten wire. This
is done to have some maneuvering space while welding, as it is feasible e.g. to turn
the angle from time to time when trying to weld wires of this size. After the two
welds are in place, all four wires have to be pulled down the ceramic tube. This
has to happen very evenly, else the Tungsten wire might break. A good suggestion
is to take a flat nose plier and grip all wires at the same time. Once the Nickel tips
are sunk just a little into the tube, the probe tip is done, the remaining part of the
wires at the plug end can be pinched off and the Lemo plug soldered on. On a side
note, it is a good way to get rid of the Tungsten wire end by applying a drop of
solder between Nickel wire and Lemo connector. While this drop is still liquid, the
Tungsten can be pressed into it, trapping it mechanically into position once the
solder cools down. The resulting probe is complying with all points stated in 5.2.2.
The only complication that could arise, apart from the Tungsten wire breaking if
pulled too uneven, is if too much torque was applied on the Nickel wires. The
torsion is translated via the welding spots into an already tense Tungsten wire,
where this can lead to the wire cracking into several smaller strands, that are not
visible by eye. This fault shows itself once heating is applied, and the probe burns
up extremely fast and sudden at relatively low heating currents.

5.2.5 Measurement Data Post Processing

Despite the steps taken prior to the measurements to ensure accuracy and a low
noise level, some post processing is necessary. All data analysis and clean up is car-
ried out via the commercially available software package Origin Lab. This package
has several functions useful for the determination of ΦPlasma already built in, and
it is designed to handle large datasets. In some works with emissive probes in RF
plasmas, before determining the peaks, the data is smoothed out using filter pack-
ages for Savitzky Golay smoothing and related approaches. However, in this work
this is not done. Doing so has a massive impact on the accuracy of the analysis, as
in NJORD, the signal is on the level of the noise. So, if the noise is smoothed out,
the peaks needed to determine ΦPlasma via the inflection method are completely
lost. Also, the smoothing can create a distortion in the identified medium peaks,
as illustrated in 5.12. As the peak ratio in the unsmoothed function changes, the
peak of the smoothed out function changes to. This change in peak ratio can for
example be observed when moving the probe tip inwards, leading to the impression
of a far greater change in potential than can be accounted for when using a more
thorough approach without smoothing. Two techniques to improve the quality
of the obtained results are presented here in detail as they are unique responses
to the challenges of emissive probe measurements in RF plasmas. They make it
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Figure 5.12: Shifting of a peak when smoothing out due to different peak height
ratios

possible to improve the data-quality, but so far, no automation has been done so
the process of analysis is very long and cumbersome.

Waveform Monitoring

The first method is no pure post processing method, but needs some preparation
by taking an actual measurement. The emissive probe is set to floating potential
and the time evolution of the floating potential is observed on an oscilloscope.
Two types of information can be obtained. First, the distance between minimum
and maximum floating potential gives a good estimate of the amplitude of RF
caused oscillation effects reaching the probe. This is very useful, as this is also
determining the distance between the outer most double peaks [27] (see chapter
4.2.5 for explanation). With this knowledge it is possible to sort out strong peaks
that are too far away, and thus have to be caused by other reasons and focus on
identifying peaks within plausible range. A small graph with the amplitudes at
increasing gas flow (and as such, pressure) is given in figure 5.13. The conditions
under which the graph was taken are in Argon, both source coils supplied with 5A,
600W forward RF-power and 5W reflected RF-power. The graphs were taken over
several days, with the plasma switched off in between. Regardless, the oscillation
amplitude for this voltage proves to be stable between 1,5V and 2V. This is in
accordance this the recorded I-V traces, so this can be seen as a good first sift for
useful data points.

Second, the waveform created by the floating potential can be recorded to
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Figure 5.13: Graph for the floating potential oscillation amplitude

reveal more about the peak ratios. By using Fourier transformation, the frequency
harmonics driving the particular waveform can be estimated (see figure 5.14 for
an example of a time dependent floating potential taken at 4sccm. This is a
common quiet plasma with only one harmonic present). The composition can not
be determined exactly from this, as for phase locked harmonic waveforms the total
self bias dampens out a bit, as explained in [5]. Compared to how the self bias
would behave, if all components would be treated on their own and then added up,
the floating potential is a bit lower. Still it is of particular use to have a comparable
size when trying to match numerical simulations to the data for explanation of the
phenomena observed. In those numerical simulations it can also be observed, that
when having an oscillation with several harmonics in the potential oscillation, the
actual amplitudes do not show up as the peak to peak distance in the dI

dV
graph,

but rather combinations of the several amplitudes, added up nonlinearly. See
figure 5.15 for an illustration. In this run, 3 harmonics are oscillating (Base with
an amplitude of 2,5 V, 1st harmonic with an amplitude of 2 V and 2nd harmonic
with an amplitude of 1,5V), and if added up linearly, they should amount to a
maximum oscillation of 12V between the peaks. The max distance between the
peaks however, amounts only to 9,3V.
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Figure 5.14: FFT of a floating potential, taken at a gas flow of 4sccm, to mon-
itor the behavior of the RF in NJORD. The FFT (in red) shows that the base
frequency of 13,6 MHz is the strongest peak with the first harmonic at 27,2 MHz
also containing significant power

Figure 5.15: Illustration of the nonlinear addition of several harmonics concerning
the peak to peak distance. Obtained via the simulation code given in appendix A
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5.2.6 Peak versus Noise discrimination

A big advantage in trying to reduce noise and erroneous identification of peaks is
the fact that several I-V traces are taken at several positions in one experimental
run. Comparing those sets of data from one run against each other provides a
possibility to identify re-occurring peaks and separate them from random peaks
only present in one specific characteristic or peaks that got lost due to too small
intensity (see figure 5.16). A far more powerful tool however, is to utilize the fact
that in the derivative of the I-V-trace, even for several peaks the middle point
between every pair should be the same. So the procedure proposed in this thesis is
to take pairs around the expected potential. Monitoring the waveform or assessing
the floating potential are helpful to do this, as is simple inspection of shape of the
derived trace. The mid points of all pairs are then compared. If the midpoints
show strong fluctuations, then one of the pair points chosen was a random peak
due to noise and not a peak created by the RF distortion of the I-V-trace. An
illustration of this is given by figure 5.17 and 5.18. As in figure 5.17 the peak
pairs are chosen properly, the mid point is moving only 0,2V. In comparison, to
illustrate, in figure 5.18 a fourth pair was chosen, to include a peak that was noise
and not signal. The midpoint in this example is moving by a total of 0,65V. Also,
the statistic spread is clearly higher.

5.2.7 Empirical Mode Decomposition

Another method that was explored in the process of this thesis is application of
the EMD. The idea is based around a concept used recently by the Max Planck
Institute in Greifswald, but apart from being mentioned in a talk at the EPS/ICPP
2012, it has not been published [35]. The goal is to apply strong signal processing
to clear up the data and get a better I-V trace. The empirical mode decomposition
method is detailed in a base paper by Huang et. al. [36]. It actually consist of two
steps, the sifting of a signal into several intrinsic mode functions and the Huang-
Hilbert transform to obtain amplitude and frequency resolved spectra from these.
The EMD is far more robust than the commonly used Fourier transform, as it
does not have the same set of strict prerequisites. For a Fourier transformation to
be truly valid, the signal is required to be either periodic or stationary. Also, the
underlying system generating the signal must behave linearly [36]. In the method
presented by Sarasola [35], a probe was swept very slowly in a RF plasma with
respect to the RF. Afterwards, the main mode was extracted by sifting and the
phase was determined for every point in the main mode. Afterwards, points of
same phase where binned together to obtain I-V traces at different phases of the
oscillation. In NJORD, this scheme is not directly applicable, as often the signal
consist of several equal harmonics plus a good deal of noise that make it hard to
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Figure 5.16: Peak identification via comparison between two probe characteristics
that are presumed to be on the same potential
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Figure 5.17: Fitting of several properly chosen peak pairs and their midpoints.

identify a dominant mode and the measurment system was not originally designed
to do this. However, it is proposed here to just extract the general trend and try
to analyze it. The assumption is that the oscillations are of such high frequency
compared to the sweep that when sifted out, they should not impact the probe
characteristic. Then, the base mode should reproduce a clean I-V trace with
all important phenomena conserved. A free available EMD package for Mathlab
was used, offered to the public online by Rilling from the ENS Lyon. In short,
the concept of the EMD can be seen as a more powerful, generalized Fourier
transformation. A time dependend signal is represented via Fourier transformation
as follows:

X(t) =
∞∑
j=1

aj exp (iωjt) (5.2)

The EMD in comparison is representing the signal with a time variable aj and ωj:

X(t) =
n∑
j=1

aj(t) exp

(
i

∫
ωj(t)dt

)
(5.3)
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Figure 5.18: Fitting of several peak pairs, but with wrongly chosen pairs.

Sifting for intrinsic mode functions

The most useful part of EMD for this thesis was the sifting process. To sift for an
intrinsic mode the following steps are taken to obtain the several modes.

1. The maxima of X(t) are determined.

2. The maxima are connected via cubic spline, giving the upper envelope.

3. The minima of X(t) are determined.

4. The minima are connected via cubic spline, giving the lower envelope.

5. The mean m1 between upper and lower envelope is determined.

6. Calculate the first sift, h1 = X(t)−m1.

7. Repeat steps 1 to 5 with h1 instead of X(t) to determine m11 .

8. Calculate h11 = h1 −m11 .

9. Repeat steps 7 and 8 until the sifting process gives h1k+1
= h1k −m1k .
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10. Take h1k as c1, the first intrinsic mode function

11. Calculate the residue r1 = X(t)− c1.

12. Repeat the whole process with r1 instead of X(t) to determine c2 etc.

13. At the end, the signal should be decomposed into n intrinsic mode functions
and a base trend, X(t) =

∑n
i=1 ci + cbase trend

It is pointed out, that while this rigorous sifting is mathematical valid, in real
physics care should be taken not to over-sift [36]. As such, as a stop condition for
the sifting process to obtain an intrinsic mode function, the standard deviation
SD is used:

SD =
T∑
t=0

[∣∣(h1k−1
(t)− h1k(t))

∣∣2
h2

1k−1
(t)

]
(5.4)

The recommendation is to take a value of SD between 0,2 and 0,3 as an abort
parameter for the sifting to proceed and take h1k−1

= c1 and continue to sift for
the next intrinsic mode function. The mode functions are by this sifting ordered
hierarchical by frequency. Care has to be taken as to what functions are used to
initiate the sifting, as discrete steps can throw the process of balance, and thus
create artifacts that are not existent in the original data. Also a critical thought
about phenomena observed in the intrinsic mode functions is in order, as the data
EMD makes it easy to fall for false assumptions. It is worth a notion too that this
step requires far more computing power than e.g. FFT.

Hilbert Transformation and instantaneous frequency

For an arbitrary time series X(t), the Hilbert transform Y(t) can be determined
with P indicating that the Cauchy principal value is taken to get a solution to the
improper integral:

Y (t) =
1

π
P

∫ inf

− inf

X(a)

t− τ
dτ (5.5)

If this transform exists (note that this is not always given), a complex number Z(t)
is defined as:

Z(t) = X(t) + iY (t) = a(t) exp (iθ(t)) (5.6)

With:

a(t) =
√
X2(t) + Y 2(t) and θ(t) arctan

(
Y (t)

X(t)

)
(5.7)

From this, finally the instantaneous frequency can be determined as:

ωinstant =
dθ(t)

dt
(5.8)
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This should then be done for all intrinsic mode functions. Knowing the instanta-
neous frequency, the phase can be determined and as shown by Sarasola [35] when
there is only one dominant intrinsic mode, with a slow sweep it is even possible to
obtain several I-V traces corresponding to certain points in the RF oscillation. This
however was not done in this thesis as explained earlier, but given an experimental
setup specifically towards this goal, it should be possible too.

5.3 Retarding Field Analyzer

The reference tool used in most HDLT experiments is the retarding field energy
analyzer, RFEA or sometimes called ion energy analyzer, IEA, capable of giving
reliable information about the ions in the experiment. Like Langmuir and emissive
probes, RFEAs belong to the group of measurement to determine plasma parame-
ters by measuring a current drawn with a certain bias. But the design of a RFEA
is more intricate. Going through the probe coming from the plasma, first comes
a housing, which can be set ground to provide shielding against the RF in a he-
licon driven plasma. Also, the entrance hole (or slit depending on manufacturing
method) has to be as small as possible, but still big enough to allow a reasonable
number of particles to enter into the analyzer. The opening angle also impacts to
an extend the form of the real energy distribution measured in comparison to an
ideal, one-dimensional distribution [37]. Then comes after a short distance (inside
the probe head, Hutchinson recommends under the assumption of a one dimen-
sional distribution at a max a distance of ≈ 4λD [6]), a grid. This first grid is biased
appropriate negative with regards to the plasma to repel electron so that only ions
enter the probe. Then comes a second grid, that is biased positive in relation
to the first grid. This is to repel ions below a certain kinetic energy. Sweeping
this grid bias gives the current to relative voltage characteristic that gives as a
derivative the ion energy distribution. The third and last grid is biased negative
again, being biased more negative than the collector which comes after the grid.
This is to suppress the collection of electrons to the second grid, that stem from
secondary electron emission as the ions hit the collector. Without, every electron
emission from the collector would add to the ion current, effectively increasing it.
A schematic of this concept as well as the potential inside the probe can be found
in figure 5.19. The small opening angle gives the option to measure ion energy
distributions in several directions. By doing so, ion beams can be distinguished
from the background plasma as well as their direction can be calculated. In ad-
dition, from this distribution functions Φ can be determined. Not having to rely
on assumptions like Maxwellian distribution but instead being able to access the
real distribution is also a big plus, and as lot of data about HDLTs is won by
means of RFEAs. As stated in [37], a bit of caution is still appropriate about

84



Figure 5.19: Schematic of the RFEA principle and the potential inside

the values for ΦPlasma, as simulation of RFEAs show the peak in the derivative of
the obtained distribution functions to be shifted downwards in real plasma with
multidimensional velocities, which corresponds to a lower ΦPlasma measured. Also
the construction, compared to emissive probes, is a more demanding mechanical
task.
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Chapter 6

Experimental Results via
Inflection Point Method

When using an emissive probe in an experiment like NJORD, the obtained I-V
traces and their derivatives are different from the standard traces described in
literature. In figures 6.1 and 6.2, an exemplary cold trace as well as traces at
different heating currents are given for a gas flow of 2sccm. In figure 6.3 and 6.4
the corresponding derivatives are given. In figure 6.5 and 6.6 I-V traces taken at
the same heating currents are given with a gas flow that has been doubled to 4sccm.
The corresponding derivatives are given in figure 6.7 and 6.8. While the cold trace
is in qualitative accordance to the discussions in chapter 4 and the simulations,
the heated I-V traces reveal a more complicated situation. Identifying, explaining
an modeling the physical principles that amount to the measured I-V traces is the
main goal of this chapter.

6.1 Classification of Features

The original goal of obtaining good potential measurements is difficult to attain
with an emissive probe in NJORD, but insight into the physics of the discharge
is a benefit. The three features deviating from standard characteristics are shown
in figure 6.9. They consist of a capacitance effect, a second peak shaped feature,
that has been linked to a second electron distribution and a distinct peak in the
set of peaks used for the inflection point method. While varying heating and
pressure, the impact of the features varied too. So in chapter 6.8 an overview of
the behavior over different pressure is given. Those features in combination with
noise and strong restraints on what constitutes a good heating current reduces the
amount of well and unambiguously determined potential points. The capacitance
effect is of no greater interest, as it is just caused by the electronics, an artificially
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Figure 6.1: The I-V traces of a cold probe (top) and at a heating of 2,55A (bot-
tom).Taken at a gas flow of 2sccm Argon, with 5 A in both source coils.
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Figure 6.2: The I-V traces of a probe heated with 2.65 A (top) and at a heating
of 2,7A (bottom). Taken at a gas flow of 2sccm Argon, with 5 A in both source
coils.
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Figure 6.3: The derivatives of the I-V traces given in figure 6.1
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Figure 6.4: The derivatives of the I-V traces given in figure 6.2
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Figure 6.5: The I-V traces of a cold probe (top) and at a heating of 2,55A (bot-
tom).Taken at a gas flow of 4sccm Argon, with 5 A in both source coils.
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Figure 6.6: The I-V traces of a probe heated with 2.65 A (top) and at a heating
of 2,7A (bottom). Taken at a gas flow of 4sccm Argon, with 5 A in both source
coils.
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Figure 6.7: The derivatives of the I-V traces given in figure 6.5
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Figure 6.8: The derivatives of the I-V traces given in figure 6.6
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Figure 6.9: Exemplary differentiated I-V trace marking important phenomena
deviating from a standard characteristic expected by modeling

induced artifact. The second shape always consists of a sharp peak and an extended
hump. Quicker, less discriminating analysis might yield better results at first,
however it might take in the features and as such miss the real potential by quite
an amount. E.g. is it very tempting for the human eye to follow an imaginary
curve that includes both features as one double peak predicted by the models
for the in inflection point mehtod in some of the differentiated I-V traces (see
chapters 4.2.5 and 6.3), taking the imagined curve peak as the potential while
ignoring the steep drop in the differentiated trace. Investigating the cause for
those disturbances however confirms physics that have been observed under certain
difficulties with other methods. The last effect mentioned is a peak of unexplained,
but reproducible behavior in the peak set of the derivative caused due to the
transition from emitted current to collected current, which is the set used for the
inflection point determination. Lacking a good explanation, this peak is referred
to as the ”stable tooth” in this thesis.
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Figure 6.10: Derivative of a probe that, with 2,5 A, is heated too low. It is hard
to discern the inflection point of the first distribution from the noise.

6.2 Probe Heating

As stated, the heating current is crucial in obtaining good results. If the probe is
heated too little, no useful details can be obtained from the derivative of the I-V
trace. The inflection point of the base electron distribution and the peak caused
by the second electron distribution are on the same low level and it is very hard
to discern them. If the probe is heated too much, the derivative is completely
dominated by the first peak. This suppresses any clear signs of the second elec-
tron distribution. Also, the ”stable tooth” forms and increases in intensity with
increased heating. This distorts the inflection point peak, and makes peak iden-
tification more and more difficult. Factoring in this, the viable range for probe
heating for the probe design used in this thesis was found to be between 2,55A
and 2,65A. See figures 6.10, 6.11 and 6.12 for an illustration of this and figure 6.13
for a direct comparison between the derivative traces of different heating currents.

6.3 Second Electron Population

When the probe is heated, in a medium heating range a secondary peak formation
can be observed (see e.g. figure 6.13) in addition to the peaks expected via inflec-
tion method. In figure 6.14 and 6.15,more detailed traces are given to compare
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Figure 6.11: Derivative of a probe that is at a good temperature with 2,6 A. The
inflection point for the first distribution is visible as well as the second electron
distribution

the derivative with the original trace. As pointed out before, the second peak that
is getting distinct with heating carries information about the plasma. From mon-
itoring of the floating potential (see chapter 5.2.5), an effect linking to a strong
oscillation can be ruled out. With numerical simulation, it is possible to link this
peak to a second electron distribution appearing at a higher potential. In figure
6.16 a comparison between the derivative of a measured I-V trace an a numerical
simulation via the code given in appendix A, set to fit the peaks of this trace, is
given. No second electron population was considered, to rule out the possibility
of the second peak being a result of nonlinear interaction between the different
harmonics. In figure 6.17, the same trace is given, but in the simulation, a second
electron population was considered. Note that the second peak in the derivative
always consists of a sharp peak followed by a drawn out hump. Using the same
model as for the base electron distribution and applying an RF-oscillation, this
is reproduced in the simulated derivatives. The shape of the second distribution
makes it easy to take the two distributions as one and to ignore the distinct sepa-
ration between them, especially as it is drowned in the derivative when increasing
the heating due to dominance of the emissive population. No reports of this kind
of feature in emissive probe traces was found in literature published.
However, in support of the theory of a second electron distribution are measure-
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Figure 6.12: Derivative of a probe that, with 2,7 A, is heated too strongly. The
inflection point of the first distribution and the stable tooth suppress the peak
caused by the second electron distribution.

ments published by Charles [20] taken in an experiment of same geometry.In this
paper, the electron distribution function was determined, and change in inclina-
tion was found on the higher velocity side, which was linked to a second electron
distribution at a higher temperature bulging out the distribution function on one
side. Combining the two observations, it is proposed here, that it is not a higher
temperature, but electrons moving away from the probe in yet undetermined di-
rection. The qualitative argument for this is as follows: Observing an electron
distribution at a higher potential within the same plasma is from a physics point
of view not very reasonable. A plasma should have one potential only. Tempera-
tures might be different, but there can only be one resulting potential. But trying
to pull in an electron current from electron that move away from the probe at
a certain speed should result in a shift of observed potential equal to the energy
needed to compensate for the kinetic energy. This fits with the observation of a
higher temperature, that in essence, as explained in chapter 2.2, is a direct link to
kinetic energy too.
From a theoretical point of view, this kind of electron motion is useful too. As
stated in chapter 3.4.2, the model for double layer formation in experiments hav-
ing a geometry like NJORD is not balanced concerning the energy flux to the
walls, as for the electron energy flux, the term is too small. With this energetic
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Figure 6.13: Direct comparison between different probe heating currents
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Figure 6.14: I-V Trace and derivative of a probe heated at 2,6 A positioned in
the middle of NJORD at a gas-flow of 1,5 sccm. Potential calculated by different
methods is given.

electrons, an explanation could be given from the experimental side, which was
already hinted at by Chen when noting that in helicon devices there seems to be
a mechanism that transfers temperature directed radially outwards in the source
cylinder geometry into temperature directed parallel along the main axis.

6.4 ”Stable Tooth” Phenomenon

Over the course of this thesis, no satisfying explanation for the phenomenon named
”stable tooth” was found. It is a strong peak in the derivative of the I-V trace that
forms, when the heating current in the probe is increased. Stronger heating makes
the peak more distinct. The name stable peak was chosen, because the peak stays
at the same potential while the probe tip is heated further. If the peak would be
only linked to the multiple peaks created by RF oscillation, it would move towards
lower potential with increased heating. This however is not the case, and the
peak stays pretty much at the same potential with increased heating. With higher
pressure the peak also appears but moves downwards, indicating a link to the
plasma potential. Also, it takes more heating current to see the peak form, which
is in accordance with the need for a higher heating to archive good I-V Traces
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Figure 6.15: I-V Trace and derivative of a probe heated at 2,65 A positioned in
the middle of NJORD at a gas-flow of 1,5 sccm. Potential calculated by different
methods is given.

at higher pressure. If the physics driving this phenomenon can be uncovered in
full, this might be another easy way to determine the plasma potential. At the
moment, however, the modeling of emissive probes does not reproduce this peak
fully and the secondary electron distribution might have an influx too. Assuming
that the stable tooth is linked to the oscillation, however, it should be above the
plasma potential, which can be seen in chapter 6.6.

6.5 Loss of saturation current at high bias and

pressure

When the probe tip is strongly heated, and the pressure is comparatively high
(gasflow rates of 5sccm and above) another deviation from ordinary I-V traces
appears, that has not yet been mentioned in this thesis. At higher probe bias,
only the electron saturation current governed by the orbit collection scaling factor
should be visible. This however is not the case. As illustrated in figure 6.18, the
saturation current declines for a probe bias roughly 20V above the plasma po-
tential (when taking the floating potential as reference). As explanation for this
phenomenon was proposed [38], that the electrons in the saturation area hit the
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Figure 6.16: Derivative of a measured trace compared to the derivative of numerical
simulation of a trace with two harmonics. No second electron population was
added.

Figure 6.17: Derivative of a measured trace compared to the derivative of numerical
simulation of a trace with two harmonics and a second electron distribution
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probe with higher energies as the probe bias goes up. This leads to additional
heating, that drives another, additional emission current. Emitted electrons are
indistinguishable from collected ions, leading to the apparent loss of current. Ac-
cording to this model, limiting the loss is the Child-Langmuir law, which restricts a
space-charge current from a virtual cathode that is supposed to form and as such,
no arbitrarily strong current can be lost. In this thesis, the loss was observed to
increase in strength with increasing pressure. This fits the description, as higher
pressure means a higher particle density and as such, more heating. However, some
questions remain open, especially in application to the phenomenon observed in
NJORD. First, in NJORD current loss appears a good deal above both first and
second electron distribution, which should result in a space charge current limit
near zero (most models even assume the emitted current to be completely zero
there, as stated in chapter 4.2.6) over the whole dip. In some of the graphs pub-
lished by Lho [38], the appearance of this dip can be seen at potential higher than
the plasma potential too, but no detailed discussion is given. Another open issue
that needs care is the secondary electron distribution. Being a topic on its own,
the interaction between the secondary electron distribution and the current loss
need attention on its own. If, however a good model is available that includes both
phenomena, it could pose a viable solution for quick data analysis to fit the model
to the derivative of the I-V trace and discern the plasma potential immediately
from this. As the current loss should directly be connected to the plasma poten-
tial, this would save the cumbersome process of varying the probe heating to get
the zero emission limit.

6.6 Radial Potential Profile

Of interest for the validity of the concept of emissive probes in NJORD is a com-
parision between the potential profiles obtained via the RFEA method that is
known to deliver realistic results and the radial profile obtained via the emissive
probe. In figure 6.19, this comparison is given for a gasflow of 1,5 sccm, equaling
a pressure between 0,22·10−3mbar and 0,31 ·10−3mbar, depending on the gauge
used to read out the pressure. The measured potentials are expected to have the
following values in relation to the real plasma potential:

• The ”Stable Tooth” is expected to be above the plasma potential (see chapter
6.4)

• The floating potential, taken here just as floating potential in the strongly
emitting region should give a value above the plasma potential (see chapter
4.2.2), albeit reduced by a small shift due to the RF induced selfbias (see
chapter 3.1.1)
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Figure 6.18: An I-V trace taken at a gas-flow of 7sccm. Note the loss of current
around a probe of 60V bias.
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Figure 6.19: Radial Scan of the Plasma Potential, determined with different meth-
ods.

• The RFEA measurements should underestimate the plasma potential [37]

• The zero emission limit method should be the closest to the true plasma
potential (see chapter 4.2.4)

The measurements in figure 6.19 show good accordance with this, which can
also be seen as validation of the method proposed in chapter 5.2.6 to improve the
data quality. The linear interpolation of several measurements at different heating
also gives the opportunity to calculate error bars for every point measured. The
error, however, is very large. This is due to the fact that only limited, discrete po-
tential steps are recorded, and due to the difficulty of calibrating the probe heating
in more detailed steps as well. With increased resolution in the scanning voltage
and a finer heating control, if should be possible to reduce the error significantly.
At a position of -8cm there is a slight increase in the plasma potential measured
with the zero emission limit. It is not necessarily a point with bad data. As the
source radius is a bit over 7cm, this could be an effect of the ion density conics
measured by Charles [20] and thus it could be argued for a higher sensitivity of
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Figure 6.20: Potential determined at the center. Note that the gas flow is given.
See table 5.1 for a conversion to pressure.

the zero emission limit method when applied in NJORD, compared to the RFEA
or the floating potential.

6.7 Pressure Profile

To further ensure that the zero emission limit method can be trusted, the plasma
potential in the center was determined for increased pressure. In figure 6.20 the
potential is plotted for increasing gas flow which corresponds to pressure. This
representation was chosen due to the availability of two different pressure readings
from different gauges. See table 5.1 for more details and conversion to pressure.
The qualitative behavior is the same as reported with other measurement methods
[30], giving further credibility to the application of emissive probes in NJORD.
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6.8 Radial I-V trace derivatives for different gas

flow

In this section, the I-V trace derivatives where smoothed out, contrary to the points
stated in chapter 5.2.5. This was done to show how the general composition of
the I-V trace derivative and features within change with increased pressure. Also,
with the waterfall setup, the radial probe positions are included to show that
the behavior does not show strong changes with radial variation. Note that the
potential in those graphs is given without the battery shift of +37,2V.
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Figure 6.21: Smoothed waterfall graphs of the derivatives, radially measured. Top
at 1,2sccm and bottom at 1,5sccm Argon.
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Figure 6.22: Smoothed waterfall graphs of the derivatives, radially measured. Top
at 2sccm and bottom at 2,5sccm Argon.
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Figure 6.23: Smoothed waterfall graphs of the derivatives, radially measured. Top
at 3sccm and bottom at 4sccm Argon.
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Figure 6.24: Smoothed waterfall graphs of the derivatives, radially measured. Top
at 5sccm and bottom at 7sccm Argon.
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Chapter 7

EMD application results

In this chapter, the EMD was used to see if the strong sifting capabilities of the
EMD could be used to create an analysis method that is mostly automated to
save work. Two runs of taking an emissive probe characteristic and subsequently
analyzing it with EMD where taken. The lack of accessible computing power
made for a slow analysis. The problem was exaggerated by in retrospective poorly
chosen data in the first run. The measurement system consisted of an emissive
probe, the heating circuit detailed in 5.2.1, an box containing a ramp generator
and a Langmuir probe circuit, a battery box with 6 activated batteries to shift
the sweep and a digital oscilloscope. The ramps sweep was set to cover 90V. For
both runs comparatively well known experimental conditions where chosen. Both
source coils where set to 5A, the gas flow was 1,5sccm Argon, the RF power 600W
forward and the probe heated with 2,65A. In the analysis, the sifting for modes
was done with the internal oscilloscope time count as the x-axis of the signal and
the potential equivalent to the drawn current delivered by the Langmuir box as the
y-axis. The oscilloscope was set to acquire 10 million data points over a duration
of 100ms. With one sweep on the display, the sweep frequency is 10Hz, which can
be seen as slow enough compared to the 13,6 Mhz helicon frequency.

7.1 First Run

In the first run, more than one full sweep ramp was included in the data. Also,
the mode the plasma was driven in was very ”noisy” with several harmonics. The
discreet step from highest ramp bias voltage to lowest ramp bias. This caused
as many 35 modes to be sifted out, many only containing a signal at the steps,
which can be linked to the Gibbs phenomenon and the sifting process reducing the
discrete step in steps which size was guided by numerical abort parameters after
too many iterations. Figure 7.1 shows some of the sifted modes. Clearly the two
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Figure 7.1: In the upper row, starting from the upper left corner, the 2nd, 4th
mode. In the lower row the 6th and 32nd mode of the first EMD run

narrow peaks can be seen that mark the discreet steps, and how those spots grow
more dominant in the higher modes. Also, the amplitude of all modes shows some
fluctuation that seems to be connected to a beat frequency. Figure 7.2 shows the
base trend. No features where visible probably connected to the problems of the
numerics trying to apply a mathematical scheme incompatible with the discrete
steps. So the run is considered to have given no usefull results.

7.2 Second Run

With the lesson from the first run, this time it was avoided to take in the steps.
Also, it should be noted that fast fourier transformation of the floating potential
revealed that one dominant harmonic was present with only a minor harmonic.
This probably helped the second run to function far smoother than the first run.
The sifting found quite a lot of modes again, but this time, the termination cri-
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Figure 7.2: Base trend of the first EMD run
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Figure 7.3: Original I-V trace used for the second EMD run

terion for standard deviation was reached always before the iteration limit was
reached, which can be considered as a sign for better suited data (see chapter 5.2.7
for details. If the standard deviation between the points of two sifting iterations is
below a certain threshold, they are considered the same and the function obtained
in that iteration is taken as an intrinsic mode function).

Before discussing the sifted results, a look at the performance of the electronics
is in order. Three effects potentially impacting the analysis come to mind. First,
for small bias voltage, there seems to be a huge distortion in the current, as seen in
figure 7.3. This is probably the result of a capacitance in the Langmuir sweep-box
not being able to cope with the sweeping frequency and as such inducing a large
slope with no physical basis at the beginning of each sweep. Also catching the
eye in figure 7.3 are the low frequency peaks over the whole slope. They only
occur when the sweep system is operated and not while letting the probe float
(see figure 7.7), so again this is accredited to the electronics. The last problem is
that the ramp voltage provided by the sweep-box to bias the probe is showing a
high frequent oscillation with an amplitude of 1,6V. The voltage signal is shown
against the internal oscilloscope time counter in figure 7.8. The first problem could
be addressed by dropping the first part of the ramp, but as the potential is ex-
pected above 40V and the slope impact is expanding not further even in the in
26th mode, which should contain the slowest and thus furthest reaching compo-
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Figure 7.4: In the upper row, starting from the upper left corner, the 1st and 2nd
mode. In the lower row the 3rd and 10th mode of the second EMD run

Figure 7.5: In the upper row, starting from the upper left corner, the 11th, and
12th mode. In the lower row the 25th and 26nd mode of the second EMD run
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Figure 7.6: Base trend of the second EMD run

nents, it is simply ignored instead of cutting the data (see figure 7.5). The other
two problems are problems of oscillatory nature and both seem to have a fixed
frequency. As the EMD sifting is designed to filter out oscillating modes, it is
proposed to simply ignore those issues as they should just create extra modes of
low mode number, as they are high frequent. This can be seen in e.g. mode 2
(see figure 7.4), that seems to contain a big part of the artificial oscillation. For
comparison, in figure 7.9, the modes are given against the oscilloscope time count,
which cleans up the data significant. For the analysis there was no impact and the
modes can be grouped in three groups, that are to be illustrated by the choice of
mode sets printed in this thesis. A set of high frequency modes like mode 1 to 3,
that carry the rapid oscillating probe signal. The medium frequency modes in the
vicinity of mode 11, that probably carry some kind of noise and the low frequency
modes near the base trend that are closely connected to ”oscillation-like-changes”’
in the base trend. ”Oscillation-like-modes”’ can be understood the way that an
upward step-like function will be detected as a low frequency oscillation and a
straight line trend directed upwards by the EMD. Looking at the simulations done
for emissive probes in RF plasmas, it shows the I-V trace like a smooth step func-
tion, with steps around the potential. Looking at mode 25 in figure 7.5 backs
up this assumption, as around the two peaks in figure 7.10 there is some distinct
localized low frequency oscillation. This is why the normal peak broadening in RF
plasmas should not be expected when using EMD. Figure 7.10 is the derivative of
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the base trend obtained by sifting. The two peaks are at ≈ 67, 5V and ≈ 82, 5V .
The first peak should be the plasma potential. This is unusually high, yet not
completely out of the expected frame. It could be due to experimental conditions,
as the plasma was only showing one dominant mode while waveform monitoring.
The second potential, which has previously been identified as a second electron
distribution is visible to. The difference is with 15V a bit higher than observed
in other comparable runs. However as explained in chapter 5.2.5, smoothing can
shift a perceived peak upwards, as the new peak created by one sharp and one
flat peak moves away from the sharp peak. A setup that is found when looking
at the feature that makes up the second distribution in the derivative of normal
characteristics like in figure 6.17. When applying a smoothing to the data, the
second peak was found at up to 13V away for a gas flow of 1,5 sccm in the mea-
surements for this thesis. So the unusual big potential distance between the two
electron distribution is accredited to the smoothing effect of the EMD.
While the arguments given here are only qualitative, and not quantitative, in
conclusion the EMD seems like a viable approach. Further experimentation is cer-
tainly necessary to evolve the concept further, but the first results look promising.
As the physics are conserved, but noise is suppressed, the EMD inflection analysis
method could prove to be a good approach when it comes to automating the data
acquisition in plasmas with difficult RF oscillations close to noise. The distinction
method between noise and peak that is described in 5.2.6, that makes the anal-
ysis of the I-V traces so slow, is with EMD exchanged for a numerical problem,
whose solution speed is only dependent on available computing power. Also the
Langmuir sweep box need a closer look as in the analysis process it is revealed to
be quite a source of problems. But even under those complicating circumstances
the approach gave a realistic appearing result.
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Figure 7.7: The probe in floating operation before taking the data for the second
EMD run. Also, an FFT is visible to monitor the waveform as discussed in 5.2.5
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Figure 7.8: Short time frame of the bias potential in the second EMD run

Figure 7.9: In the first row, starting from the upper left corner, the 1st and 12th
mode. In the lower row the 25th and the base trend of the second EMD run. Not
with voltage as x-Axis but with the oscilloscope internal time count, clearing up
the data
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Figure 7.10: Derivative of figure 7.6 to determine the potential via inflection
method
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Chapter 8

Conclusion and further work

The emissive probe has been found to be a viable diagnosis tool in NJORD. A
careful application has been able not only to give good measurements of the plasma
potential but also to reveal other physical mechanisms.
Most important of these findings is the second electron distribution. Using an
emissive probe to measure two distinct populations is novel, and might be bet-
ter suited to do so than the standard procedure. In the standard procedure, the
Druyvesteyn method, the second derivative of a cold Langmuir probe is taken and
a change in slope indicates a change in temperature. With very similar tempera-
tures and a high level of noise, it is possible that the change in slope is not visible.
In an emissive probe, however, the features should still be visible, providing an
easy acess.
Further insight into the physics of the plasma discharge could be gained by inves-
tigating the reason for the stable tooth and the loss of current that shows with
emissive probes at higher pressure and strong positive bias. By using electronics
with higher resolution and better control over the applied voltages and currents,
the precision of the measurements should show some improvement. From the
point of analyzing the plasma potential, the emissive probe, in combination with
the already good accuracy, holds quite some potential. This is of use especially
in relation to questions concerning electrons, which is a topic that is not easily
assessed with RFEAs.
The main argument against emissive probes is, however, the high amount of
work involved with the process of obtaining good measurements. Every measured
plasma potential at some point is backed up by several potential measurements at
different probe heating. As long as the phenomena noted earlier are not all fully
understood, this requires inspection of the I-V traces in person and is not to be
automated very well. Smoothing, as explained in the thesis, is also no truly viable
option. From a point of efficiency, the emissive probe as such, is not the best way
to obtain quick profiles for potential mapping, but rather a method to be applied
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to predetermined points of interest in NJORD.
One approach taken to enable automated analysis was the use of empirical mode
decomposition. While still having open issues, the preliminary results where
promising. With a better Langmuir system that supplies a more stable voltage,
further investigation into signal processing theory and access to more comput-
ing power, this avenue of approach could pose another opportunity to resolve the
problem of cumbersome I-V trace analysis by hand.
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Appendix A

Phyton Simulation Code

This code was used in simulating the probe in accordance with the model discussed
in chapter 4.2.6. First, all arrays are created and the user is asked to enter his
parameters. Then, two nested loops are called up to calculate every bias point
defined in the array. The outer loop is a timeloop to go through twenty full os-
cillation of the slowest frequency. In every step, two things are done. First, the
instantaneous potential is determined. Then, the inner loop is called up with this
potential. In the inner loop, it is determined which current to used and then the
current for every potential step is calculated and added to the array. After both
loops have run, the arrays are divided by the amount of iterations that were added
up and the result is given out. The program is also able to incorporate a secondary
electron distribution and several RF harmonics. Note that the model is not fully
calibrated an lacks hard-coded use of constants like e.g. κ, so that the results are
qualitative and not quantitative.

# RF-Emissive Probe Sim for NJORD
# (c) by Christian Schregel
# Space Physics Group, Aurolab
# Universitaetet i Tromsoe, 2012
import math
#Initiate Datamatrix
Volt = [’Voltage’,’V’]
ColCur = [’CollectedCurrent’,’A’]
ColCur2 = [’CollectedCurrentBeam’,’A’]
EmCur = [’EmittedCurrent’,’A’]
ComCur = [’CombinedCurrent’,’A’]
MainList = [Volt,ColCur,ColCur2,EmCur,ComCur]
#Initiate Variables
calcbeam = input(’Calculate with Beam? (Yes or No)’)
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calcharmon = input(’Calculate with n Harmonics? (Yes or No)’)
Iel = float((input (’Electron Collection Saturation Current in A? (Standart:5)’)))
Iem =float( input (’Electron Emission Saturation Current in A? (Standart:6)’))
Sweeprange= int(input (’Sweeprange in V?(Standart: 40)’))*10
Te =float( input (’Electron Temperature in eV? (Standart 3)’))
Tw = float(input (’Emitted Electron Temperature in eV? (Standart 0.3)’))
if calcbeam == ’Yes’:

secondpot = int((input (’Relative Beam Potential in regard to Plasmapoten-
tial in V? (Standart:20)’)))*10

if secondpot <0:
print (’Beam has to have higher Potential then Plasma...’)
print (’Just what do you think you‘re doing, Dave?’)

else:
Iel2 = float(input (’Beam Collection Saturation Current in A? (Standart:

1)’))
Te2= float(input(’Beam Electron Temperature in eV? (Standart 3)’))

RFAmp = float(input(’RF-Osci-Amplitude in V? (Standart: 25)’))
if calcharmon== ’Yes’:

nharmon = int(input(’How many Harmonics modes? (BaseRF is 1st Mode,
Standart 3)’))

RFAmparr = [RFAmp]
for d in range (2,nharmon+1,1):

print (’RF-’, d,’. Harmonic’)
RFAmparr.append(float(input (’Amplitude in V ?’)))

#RFAmp3 = float(input(’RF-3rd-Harmonic-Osci-Amplitude in V?(Standart 10)’))
print(’Starting Calculations. Please wait’)
#RFLoop
for c in range (2,(Sweeprange+1)*2+1):

Volt.append(0)
ColCur.append(0)

ColCur2.append(0)
EmCur.append(0)
ComCur.append(0)

for t in range (2,2002,1):
if calcharmon==’Yes’:

VRF = 0
for e in range (0,len(RFAmparr),1):

VRF=VRF+RFAmparr[e]*math.sin((e+1)*math.pi/100*t)
else:
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VRF=RFAmp*math.sin(math.pi/100*t)
for V in range (-1*Sweeprange-1,Sweeprange,1):

V = V+1
RFLC = V+Sweeprange+2 #Marker for saving Data in Arrays
Volt[RFLC]=V/10
if V<VRF:

ColCurh = Iel*math.exp((V-VRF)/10/Te)
ColCur2h = 0
if calcbeam == ’Yes’:

if V <= secondpot+VRF:
ColCur2h = Iel2*math.exp((V-(VRF+secondpot))/10/Te)

elif V> secondpot+VRF:
ColCur2h = Iel2*math.sqrt(1+((V-(VRF+secondpot))/10/Te))

EmCurh = -1*Iem
ComCurh = (ColCurh+ColCur2h+EmCurh)
ColCur[RFLC] = ColCur[RFLC]+ColCurh
ColCur2[RFLC] = ColCur2[RFLC]+ColCur2h
EmCur[RFLC] = EmCur[RFLC]+EmCurh
ComCur[RFLC] = ComCur[RFLC]+ComCurh

#print (V/10,ColCur,EmCur,ColCur2,ComCur)
elif V == VRF:

ColCurh = Iel*math.exp((V-VRF)/10/Te)
EmCurh = -1*Iem*math.exp(-(V-VRF)/10/Tw)
ColCur2h = 0
if calcbeam == ’Yes’:

if V<=secondpot+VRF:
ColCur2h = Iel2*math.exp((V-(VRF+secondpot))/10/Te)

elif V>secondpot+VRF:
ColCur2h = Iel2*math.sqrt(1+((V-(VRF+secondpot))/10/Te))

ComCurh = (ColCurh+ColCur2h+EmCurh)
ColCur[RFLC] = ColCur[RFLC]+ColCurh
ColCur2[RFLC] = ColCur2[RFLC]+ColCur2h
EmCur[RFLC] = EmCur[RFLC]+EmCurh
ComCur[RFLC] = ComCur[RFLC]+ComCurh

#print (V/10,ColCur,EmCur,ColCur2,ComCur)
elif V>VRF:

ColCurh = Iel*math.sqrt((1+(V-VRF)/10/Te))
EmCurh = -1*Iem*math.exp(-(V-VRF)/10/Tw)*math.sqrt((1+(V-

VRF)/10/Tw))
ColCur2h = 0
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if calcbeam == ’Yes’:
if V<=secondpot+VRF:

ColCur2h = Iel2*math.exp((V-(VRF+secondpot))/10/Te)
elif V>secondpot+VRF:

ColCur2h = Iel2*math.sqrt(1+((V-(VRF+secondpot))/10/Te))
ComCurh = (ColCurh+ColCur2h+EmCurh)
ColCur[RFLC] = ColCur[RFLC]+ColCurh
ColCur2[RFLC] = ColCur2[RFLC]+ColCur2h
EmCur[RFLC] = EmCur[RFLC]+EmCurh
ComCur[RFLC] = ComCur[RFLC]+ComCurh

# print (V/10,ColCur,EmCur,ColCur2,ComCur)
for b in range (2,len(Volt)):

ColCur[b]=ColCur[b]/2000
ColCur2[b]=ColCur2[b]/2000
EmCur[b]=EmCur[b]/2000
ComCur[b]=ComCur[b]/2000

print (’Calculation Complete,Begin Result Output.’)
for a in range (0,len(Volt),1):

print (Volt[a],ColCur[a],ColCur2[a],EmCur[a],ComCur[a])
print (’Done. Simulation Finished’)
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Appendix B

EPS/ICPP 2012 Poster

Preliminary results of this thesis were presented on the EPS/ICPP 2012 conference
taking place in Stockholm. For documentation purposes, the poster presented is
included here.
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The most commonly used method for plasma potential 
determination in Helicon devices is the Retarding Field 
Energy Analyser (RFEA). In this work, emissive probes 
where applied to the same problem. Facing unique 
difficulties, they deliver a fresh look and reveal the 
presence of a two electron populations in the downstream 
plasma.

Abstract

 

Although some issues remain when using emissive probes in Helicon-
devices, there is given good potential. Care has to be taken to obtain 
good and useful data to avoid missassumptions. But data fulfilling 
those requirements matches the data obtained by RFEA 
measurements and gives strong indication for the presence of two 
distinct electron populations. The origin of the second population has 
so far not been determined.

Conclusion

Emissive probe measurement in a Helicon device
C. Schregel, A. Fredriksen
Dept. Of Physics and Technology

Experimental Setup

I Combined=ICollected+I Emitted

I Collected= I e0∗e
eΔV
T e for V bias<V Plasma , I e0∗g (ΔV ) for V Plasma<V bias

I Emitted=I em0 for V bias<V Plasma , I em0∗e
−eΔV
T Wire ∗ f (ΔV ) for V Plasma<V bias

Monitoring the behavior of the two distributions 
over pressure range 

Determining a radial potential profile 
by emissive Probes

The plasma potential has been measured over a pressure range of ???? to ?????. For better visibility of important features is its feasible 
to smooth the data by a 2nd order 7 point Savitsky Golay filter. A certain loss of information is inevitable as the peak broadening is on the 
same level as the noise, but the ratio of saturation currents for the  two electron distributions is kept. Of interest in this case is the 
behavior of the second electron distribution. The difference between the plasma potential, which drops with increasing pressure, and 
the second distribution stays roughly at an value of 9V. The saturation current ratio increases strong with pressure. This is in agreement 
with increased plasma density with pressure, as is commonly observed in our plasma Another finding is, that especially at higher 
pressure it is an easy fallacy to take the two populations as two peaks, which leads to a too high estimate of the plasma potential. This 
can be avoided by monitoring of the probe behavior while increasing the pressure. 

Device[1]:
Chamber: Length 1,2m + Half-Dome 0,3m; Diameter 0.6m
Vacuum: Base pressure 1x10-6 Torr
Source: Inductively coupled RF through pyrex cylinder 

(Length 0.305m;Inner Diameter 0,138m), Saddle 
Antenna (Boswell Type), coupled to a 13,5Mhz  RF-
signal, 0,3-1kW

Magnetic: 3 Coils, 2 in Source, 1 Guidecoil (unused) at 1.8cm, 
23.3cm and 58cm from end of source

Typical Parameters:
Gas: Argon
Plasma Potential: 70V-100V in source, 30-60V at 50cm (radial 

probe position)
Densities: 1-7x10^17m-3 in source, 0.2-5x10^17m-3 at 

50cm 
Electron Temperature: 3-6eV

Comparison  middle-point with and w/o inclusion of peaks created by noise 

The most widely used method of plasma potential identification is the inflection point 
method by Smith et al.[2]. Using linear approximation of the plasma-potential-shift 
with increasing emission saturation current it is in theory possible to determine the 
plasma potential within a range of Te/10e [3]. In RF plasmas with several dominating 
harmonics, a part of this accuracy is lost, as the peaks overlap and make identification 
of the potential difficult. Another problem is posed by strong noise creating false peaks. 
A useful method to identify the potential amidst RF noise in a given I-V Trace is to look 
at many peaks in the derivative (and deformations in inclination) and determine the 
mid-point between pairs. Around the potential, the matching pairs should show a 
similar, stable midpoint. If wrongly a pair of peaks caused by noise has been included, 
the midpoint, due to the randomness of noise, reflects this by moving. Further methods 
to narrow down to the exact number of RF-caused peaks include monitoring the time-
resolved behaviour of the floating potential of an emissive probe to get an estimate for 
the expected peak-to-peak distance and, by Fourier transformation, the number and 
amplitude-ratio of the harmonics

Care should also be taken about the intensity of heating, as features of interest get 
suppressed in the derivative if the emission current is to high. Also, at to high 
emission, the distortion is too high to gain useful data, as e.g. on the right hand side, 
a distinct, stable peak forms. Further research is required to determine the cause for 
this peak. The obtained profiles show expected   values for the potential and also 
behavior at the edge of the source region seen with RFEAs

References:
[1]Fredriksen A., Mishra L.N. Et al.;Plasma Sources Sci. and Technol., 19 034009 (2010)
[2] Smith J.R., Hershkowitz N. Et al.; Rev. Sci. Instrum. 50, 210 (1979)
[3] Ye M.Y. & Takamura S.; Phys. Plasmas 7, 3457 (2000)
[4] Sheehan J.P. &Hershkowitz N.;Plasma Sources Sci. Technol. 20 (2011) 063001

The emissive probe  is driven by a continuous DC heating and the 
current. The spot welds serve to ensure good control over the region 
of heated wire so that no heating takes place within the ceramic tube.  
Heating can be controlled by simply varying the current. Probe 
temperature can be monitored with a spectrometer and be 
determined by fitting an a Planck-Spectrum to it. The current is 
sampled 201 times for each out of 201 bias steps and the average 
current and bias voltage of each step written to disk. Averaging is 
necessary to reduce noise as nonlinear dynamics in the plasma make it 
difficult to determine the potential otherwise.  

Numerical Simulation
A basic numeric simulation can simulate expected I-V-traces and their respective derivatives..The 
program does not consider more advanced modeling for the emitted current given by Ye & 
Takamura [3] but use the simpler approach given by Hershkowitz et. al.[4]:  

A time averaging over several periods of an oscillating space potential is done like in the 
experimental setup. The amplitude, number and order of harmonics can be chosen to simulate a 
potential behaving as close as possible to the experiment. It show quite clearly that the measured 
data can be explained with two distributions at different potentials if the values for harmonic 
number, order and amplitude are chosen within observed ranges.

Slightly too low 
heated probe

Probe at right 
temperature

Too strongly heated 
probe, emission 
dominates, also 
distortion features 
visible

Comparison  between simulations

Geometry sketch of the 
NJORD experimental setup

Sketch of the  Emissive Probe used

Radial Plasma profile

PD4.002

Smoothed I-V-Trace derivatives for several pressures
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