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The first principle is that you must not fool yourself
— and you are the easiest person to fool.

— Richard P. Feynman





Abstract

This thesis is concerned with synthetic aperture focusing of ultrasonic pulse-
echo measurements, with application to multilayered media and cylindrical
structures. The work is motivated by the need for accurate methods for
non-destructive testing of pipelines, particularly water distribution pipelines.
By improving the lateral resolution in ultrasonic measurements, the synthetic
aperture algorithms presented in the thesis enable accurate detection and sizing
of corrosion damage, holes, and other pipe defects.

In ultrasonic inspection of water-filled pipelines, the water and the pipe
wall constitute a multilayered structure, and multilayer synthetic aperture
algorithms are therefore needed. We present a number of such multilayer
algorithms, formulated in both the time and Fourier domains, and show that
the Fourier-domain algorithms generally require a significantly lower processing
time. An algorithm combining two algorithms used in reflection seismology is
shown to require the least processing time for large data sets.

When the synthetic aperture is created by scanning over a straight line or a
flat plane, and the propagating medium is homogeneous, the lateral resolution
after focusing is approximately half the transducer diameter. We show that
this resolution limit also applies in the multilayer case, for both two- and three-
dimensional imaging, as long as the transducer beam is relatively narrow.

Ultrasonic measurements for pipe inspection are usually performed over a
cylindrical surface. We develop a new synthetic aperture algorithm, termed
cylindrical phase shift migration, to focus such scans. The algorithm is
applicable to concentrically layered media, and thus enables full volumetric
synthetic aperture imaging in pipes and similar structures. It is shown that the
lateral resolution along the cylinder axis is approximately half the transducer
diameter, and that the angular resolution is approximately D/(2R), where D
denotes transducer diameter and R denotes scan radius. The algorithm is also
adapted for use with focused transducers, and it is shown that it significantly
extends the range within which the transducer yields a high lateral resolution.
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Nomenclature

Coordinate systems

This thesis uses both Cartesian and cylindrical coordinate systems. The three
perpendicular axes in the Cartesian coordinate system are labeled x, y and z,
and in two-dimensional geometries, only x and z are used. In the cylindrical
coordinate system, the cylinder axis is labeled z, and the length and angle of
the polar axis is labeled r and φ, respectively.

Symbols

c Wave velocity
ĉ Effective wave velocity for exploding reflector model, ĉ = c/2
crms Root-mean-square wave velocity, taken with respect to τ
D Transducer diameter
Dvs Effective diameter for virtual source
dl Thickness of layer l
∆n Angular wavenumber bandwidth
δφ Resolution along φ axis
δφs Sampling interval along φ axis
δs Arc length resolution in cylindrical scan, equal to δφ · r
∆t Temporal pulse length
∆θ Transducer beam width
∆x Beam width along x axis
δx Resolution along x axis
δxs Sampling interval along x axis
δy Resolution along y axis
∆z Distance from layer interface to image point
δz Resolution along z axis
δzs Sampling interval along z axis
F Transducer focal length
f Frequency
fc Transducer center frequency



xii Nomenclature

fmin Lower cut-off frequency of transducer passband
fmax Upper cut-off frequency of transducer passband
fs Sampling frequency
G Extrapolation transfer function in cylindrical coordinates
i Imaginary unit
ip Focused image
γ Angle relative to transducer normal in cylindrical scan
ω Angular frequency, 2πf
k Wavenumber, equal to ω/c
kx Wavenumber along x axis
ky Wavenumber along y axis
kz Wavenumber along z axis
kr Wavenumber in radial direction
L Number of layers in multilayer geometry
λ Wavelength
M Number of measurement positions
N Number of samples along the time or depth axis
n Order for Bessel and Hankel functions. Corresponds to angular

wavenumber.
Q Volume velocity of acoustic source
R Scanning radius in cylindrical scan
Rl Inner radius of layer l (for concentrical layers)
Rvs Effective scanning radius for virtual source
ρ Density
t Time
trms Approximate time-of-flight in a multilayer geometry, based on

RMS wave velocity
τ Normal incidence travel time
u0 Amplitude of normal velocity for oscillating acoustic source
x̂ Normalized x coordinate used in apodization functions.
Z z position of transducer measurement surface
Zl z position for interface on top of layer l

Functions

α(·) Apodization weight
Jn(·) Bessel function of the first kind, of order n
jinc(·) Directivity function for circular transducers. jinc(x) =

2J1(x)/x

H
(1,2)
n (·) Hankel function of the first or second kind, of order n

sgn(·) Sign function
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Notation

• The general sound pressure wave field is indicated with a lowercase p,
for example p(t, x, z). A Fourier transformation along one or multiple
coordinates is denoted with the F{·} operator, and inverse Fourier
transformation is denoted F−1{·}. The Fourier-domain wave field is
denoted with an uppercase P . An example:

P (ω, kx, z) = Ft,x{p(t, x, z)}

p(t, x, z) = F−1
t,x {P (ω, kx, z)}

• Transducer coordinates are marked with a prime. For example, in a
Cartesian coordinate system with coordinates (x, y, z), the transducer
position is denoted (x′, y′, z′).

• The asymptotic computational complexity of an algorithm is described
with “big O” notation, O(·).

Acronyms

BIT Breivoll Inspection Technologies
CPSM Cylindrical Phase Shift Migration
DAS Delay-And-Sum
FFT Fast Fourier Transform
FWHM Full Width at Half Maximum
MLDAS Multi-Layer Delay-And-Sum
MULOK MUlti-Layer Omega-K
NDT Non-Destructive Testing
PSF Point Spread Function
PSM Phase Shift Migration
RFEC Remote Field Eddy Current
RMS Root-Mean-Square
SAFT Synthetic Aperture Focusing Technique
SNR Signal-to-Noise Ratio
ZNCC Zero-mean Normalized Cross-Correlation





Chapter 1
Introduction

As the Earth’s population grows and the global climate is changing, it is
becoming ever more important to sustainably manage the fresh water resources.
However, many of the water distribution networks in use today are very old, and
large quantities of water are lost due to leakages and unexpected breaks. For
example, in Norway 25 % of the water distribution network was installed before
1970, and an estimated 31% of the water is lost on its way to the consumer
[Statistics Norway, 2010]. Throughout Europe, the amount of water loss varies
greatly, from 6-7 % in some countries and up to 40 % in others [EEA, 2009].

Replacing old pipelines is complicated and expensive, and the rate of
renewal is therefore relatively low. In Norway, the average yearly rate of renewal
in 2008-2011 was 0.71 % [Statistics Norway, 2010]. With limited resources,
it is important to monitor the condition of the pipelines, so that necessary
repairs can be made without prematurely replacing pipes with a long remaining
lifetime.

The Norwegian company Breivoll Inspection Technologies (BIT) performs
inspection of water pipelines, supplying the water managers with information
on remaining pipe wall thickness, corrosion, and a number of other pipeline
features [Kloosterman, 2009]. The inspection is based on ultrasonic measure-
ments, performed with the robot shown in Fig. 1.1.

The research presented in this thesis is the result of a project initiated by
BIT, the University of Tromsø, and the Northern Research Institute, called
“Innovative use of synthetic aperture sonar for inspection of water distribution
networks”. Synthetic aperture focusing is a technique which can be applied
in post-processing of acoustic and electromagnetic measurements, to increase
the lateral resolution and signal-to-noise ratio [Cumming and Wong, 2004].
The main goal of the project is to investigate whether synthetic aperture
focusing can be used to improve ultrasonic measurements of topography and
wall thickness in pipes. The project was the first to receive support through the
Norwegian Research Council’s Industrial Ph.D. program [Norwegian Research
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Figure 1.1: The inspection robot used by BIT to inspect water distribution
networks. 64 ultrasound transducers are to measure the inside topography and the
remaining wall thickness of the pipe. Photo: BIT

Council, 2012], which started in 2008.

1.1 Background and motivation

1.1.1 Pipe inspection

Pipe inspection has been an important topic in the field of non-destructive
testing (NDT) for several decades [Kriesz, 1979; Roman and Pellegrino, 1993].
Traditionally, the focus has mainly been on pipes in nuclear power plants and
oil and gas installations. However, technologies for inspection of other kinds of
pipes are now emerging, including sewage pipes [Duran et al., 2002], pipes used
in food processing [Lohr et al., 2003], and water pipes [Rajani and Kleiner,
2004].

One of the most widely used methods for pipe inspection is radiography,
performed by illuminating the pipe with an x-ray or gamma-ray source on one
side, and measuring transmission through the pipe wall by using a film on
the opposite side [Raj et al., 2002]. However, due to the risk of exposure to
radiation, and the inconvenience of using analog film, alternative methods like
ultrasound are becoming increasingly popular [Carvalho et al., 2008]. Also,
radiography cannot be used where only one side of the pipe is accessible, for
example in inspection of buried pipes.

It is also common to perform inspections of pipelines from the inside using
video cameras, often mounted on a remote controlled robot. However, for such
inspections to be successful, the pipe must either be empty or filled with a
transparent gas or liquid. The images produced by the camera also require
careful interpretation by a human operator [Duran et al., 2002].

In ultrasonic inspection of pipelines, one or multiple ultrasonic transducers
are used to generate a short ultrasonic pulse and record the reflected echoes
from the pipe wall. The time-of-flight for reflections from the inside and outside
of the pipe wall are used to estimate the inside topography and pipe wall
thickness. Ultrasonic inspection usually requires that the pipe wall is relatively
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clean and free of corrosion products for the ultrasonic pulse to enter the pipe
wall [Rajani and Kleiner, 2004]. Note, however, that the pipe wall thickness
can also be estimated from the resonance generated by multiple reflections
inside the pipe wall. This approach, which is used in the BIT inspection robot,
can be performed using lower transducer frequencies than traditional pulse-
echo testing, and is therefore less sensitive to non-ideal surface conditions
[Kloosterman, 2009]. Ultrasound is also employed in testing of pipes using
guided waves, where an external transducer array is used to generate waves
which travel along the pipe. Corrosion and other defects can be detected
through the reflection of these waves [Lowe et al., 1998]. However, the technique
requires access to the pipe from the outside, and the inspection range for pipes
buried in soil is limited to 20 meters or less [Demma et al., 2005].

Other common inspection technologies are based on measurements of
electromagnetic fields. One technique, called magnetic flux leakage, detects
corrosion pits and other defects by magnetizing the pipe wall and measuring
where the magnetic field leaks out of the wall. Another, called remote field eddy
current (RFEC), measures the pipe wall thickness through the attenuation and
phase shift of a low-frequency electromagnetic signal [Rajani and Kleiner, 2004].

In many cases, manual inspection of the pipeline is not practical, or even
possible, and the inspection is automated by using a robot traveling through
the pipe. In the petroleum industry, pipes are often inspected using so-called
pigs, which are pushed through the pipe by the oil or gas itself [Okamoto Jr.
et al., 1999; Reber et al., 2002]. In other cases, for example in sewer inspection,
the sensors are mounted on a platform with its own means of propulsion [Duran
et al., 2002].

Traditionally, automated in-pipeline inspections have not been performed
for water pipelines. Leakages in the pipes have been detected using alternative
methods, often involving listening devices for detection of leakage noise [Fuchs
and Reihle, 1991; Hunaidi, 2012]. However, such devices can not be used to
determine the structural condition of the pipes. The lack of commercially
available methods for water pipe inspection may be due to some of the
particular challenges posed by water pipes. The pipes are often covered with
corrosion products, which in oil and gas pipes are removed regularly using
cleaning pigs. However, water pipeline managers are reluctant to clean the
pipes, since it increases the internal corrosion rate and releases corrosion
products into the drinking water [Rajani and Kleiner, 2004]. Without cleaning,
technologies like magnetic flux leakage are often not effective, since they require
direct contact with the pipe wall. Ultrasonic and RFEC methods do not require
close contact with the pipe wall, and therefore do not have the same strict
cleaning requirements [Rajani and Kleiner, 2004]. Most water pipelines also
have not been designed to facilitate inspection, and inspection units therefore
have to be inserted via alternative entry points, e.g. fire hydrants, or by
installing a dedicated entry point on the pipeline [Koutsakos et al., 1997;
Kloosterman, 2009].

There are advantages and disadvantages to all available pipe inspection
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technologies, and multiple technologies are often combined on a single
inspection unit [Eiswirth et al., 2000; Beuker et al., 2009]. In this thesis we
focus on improving ultrasonic methods for pipe inspection.

1.1.2 Synthetic aperture focusing

The synthetic aperture concept is based on performing measurements of
a region of interest, in several different positions, and combining the
measurements in post-processing to synthesize a large effective aperture. An
illustration of the concept is shown in Fig. 1.2. In an unprocessed data set, the
lateral resolution decreases as the distance to the sensor increases, due to the
divergence of the sensor beam. Synthetic aperture processing yields a much
narrower beam and thus a higher lateral resolution, giving rise to the term
synthetic aperture focusing.

Synthetic aperture focusing is often used in active imaging systems like
radar [Tomiyasu, 1978; Cumming and Wong, 2004] and sonar [Hayes and
Gough, 2004; Hansen, 2011], in which an antenna or a transducer first emits
a wave and then records the backscattered echoes. With synthetic aperture
focusing, radar satellites in orbit hundreds of kilometers above Earth can
yield images with a lateral resolution on the scale of meters [Cumming and
Wong, 2004]. The concept can also be applied in passive systems like radio
interferometers, where the Earth’s rotation is used to synthesize apertures
thousands of kilometers long [Levanda and Leshem, 2010].

Building on previous work within sonar and radar imaging, synthetic
aperture focusing was introduced to the field of ultrasonics in the 1970s, and
became known as the Synthetic Aperture Focusing Technique (SAFT) [Doctor
et al., 1986]. Initially, SAFT was mainly used for non-destructive testing of
metal parts [Kino et al., 1980; Doctor et al., 1986; Müller et al., 1991], but
variations of the technique have also been introduced for medical imaging
[Karaman et al., 1995; Frazier and O’Brien Jr., 1998; Jensen et al., 2006]. There
is also a growing interest in similar algorithms for non-destructive testing with

Figure 1.2: Illustration of the synthetic aperture focusing concept. Several
overlapping measurements of the same point in space are combined to yield a large
synthetic aperture with a narrow beam, yielding high lateral resolution.
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ultrasonic transducer arrays [Holmes et al., 2005; Pörtzgen et al., 2007; Hunter
et al., 2008].

Synthetic aperture focusing is essentially a correlation of the recorded data
with the expected response from each point in the image. The correlation
can be performed both in the time domain, using so-called delay-and-sum
beamforming, or in the Fourier domain. Fourier domain algorithms generally
have a lower computational complexity [Nagai, 1985; Haun et al., 2002], and
the Fast Fourier Transform (FFT) algorithm also enables efficient conversion
of data between the two domains.

In a routine pipe inspection, BIT collects data from hundreds of meters of
pipe in one day. For SAFT to be applied to data sets of this scale, it is crucial
that the implementation is efficient, and this has been a priority in the work
on this thesis.

1.1.3 Multilayer imaging

Most SAFT algorithms are based on the assumption that the propagating
medium is homogeneous, with a constant wave velocity. However, for the main
application considered in this thesis, water pipe inspection, the ultrasonic wave
propagates through both water and the pipe wall material. Some pipes are also
lined with additional corrosion-resistant layers like epoxy or cement mortar. In
general, the wave velocity of each layer is different, and this has to be taken
into account in the SAFT algorithm. Multilayer SAFT imaging is therefore
one of the main research topics in this thesis.

Another important example of multilayer imaging is that of immersion
scans, in which an object is immersed in water, and imaging is performed
by scanning the transducer in the water layer above the object. The main
advantages of immersion scans, as opposed to contact scans, are that the water
layer acts as a good and uniform couplant for the acoustic waves, and that there
is no friction causing transducer wear. Immersion scans are routinely used
for inspection of parts in industry [ASNT, 2007]. An example of immersion
scanning is shown in Fig. 1.3.

The crust of the Earth consists of distinct layers, and thus the problem
of imaging in multilayered media is well known within the field of seismic
exploration. Synthetic aperture algorithms are also employed for processing of
seismic data, although in this field they are termed migration algorithms. In
this thesis we implement a number of such migration algorithms for ultrasonic
imaging in multilayered media.

1.1.4 Imaging with cylindrical apertures

In most applications of synthetic aperture ultrasound, the synthetic aperture is
created by moving a transducer along a line or over a flat plane. However, for
imaging in pipes and similar cylindrical structures, a cylindrical measurement
surface is more suitable. In this thesis, we consider the measurement geometry
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Figure 1.3: Example of immersion scanning. The photo is taken from an experiment
on imaging of outside pitting, simulated by profiles machined out of an aluminium
plate.

shown in Fig. 1.4(a), where pulse-echo measurements are performed with a
transducer on a rotating arm. The arm is mounted on an inspection robot
which moves through the pipe, creating a cylindrical measurement surface.
Similar configurations have previously been applied for sewer and borehole
inspection [Reber et al., 2002; Hayman et al., 1998]. Full angular coverage can
also be achieved by using a transducer array [Fleury et al., 2006] or a fixed
transducer with a rotating mirror [Birchall et al., 2007], but here we assume
that the transducer itself is moved mechanically. Figure 1.4(b) illustrates the
cylindrical coordinate system used in the pipe, where the transducer is moved
over the surface given by a constant radius R. The resulting data set is three-
dimensional, with axes of pulse-echo delay time t, angle φ, and distance along
the pipe, z.

The distance from the transducer to the pipe surface is given by the pulse-
echo delay time and the wave velocity of the liquid or gas in the pipe. Thus, a
cylindrical scan yields a map of the interior topography of the pipe, which can
be used to detect flaws like holes, pitting, and buildup of corrosion products
[Duran et al., 2002]. The pulse can also penetrate the pipe wall and be reflected
from the outer surface, enabling estimation of the pipe wall thickness [Reber
et al., 2002; Birchall et al., 2007].

The setup in Fig. 1.4 is slightly different from BIT’s scanner, shown in Fig.
1.1, which has a number of transducers in fixed angular positions. However,
successful synthetic aperture processing requires that the aperture is sampled
quite densely [Gough and Hawkins, 1997], and with the setup shown in Fig.
1.4(b), the spatial sampling intervals along both the φ and the z axis can be
adjusted according to need.

As a research topic, cylindrical synthetic aperture imaging has received
relatively little attention, although some contributions have been made [Haun
et al., 2002; Andresen et al., 2011]. Development of a Fourier-domain synthetic
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Figure 1.4: Internal ultrasonic inspection of buried pipes. (a) A transducer is
rotated inside the pipe, emitting pulses and receiving the backscattered echoes.
Pitting and buildup of corrosion products can be detected through changes in the
amplitude and delay time of the echoes. (b) Cylindrical coordinate system.

aperture algorithm for cylindrical apertures is therefore one of the main research
topics in this thesis. A theoretical analysis of the attainable lateral resolution
is given, and the effect of the angular sampling interval on grating lobes is also
studied.

1.1.5 Imaging with focused transducers

Focused transducers are often employed in ultrasonic NDT applications due to
their high lateral resolution and signal-to-noise ratio. Usually, such transducers
are made using an acoustic lens which focuses the ultrasonic beam at a given
distance from the transducer face, as shown in Fig. 1.5. Outside the focal zone,
the ultrasonic beam is divergent, and the lateral resolution quickly decreases
as the range to the target increases.

The pipe inspection geometry in Fig. 1.4 is well suited for a focused
transducer, since the distance from the transducer to the pipe wall is constant
and can be adjusted to fit the focal length. However, if the distance to the pipe
changes, for example due to de-centering of the inspection robot or a change
in the pipe diameter, the lateral resolution will decrease significantly. In this
thesis, we show that by combining focused transducers with SAFT, a high
lateral resolution can be obtained within a much wider range.
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Focal zone

Figure 1.5: Illustration of focused transducer. The ultrasonic beam is narrow in the
focal zone, but widens as the distance from the transducer increases.
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1.3 Outline

The remaining chapters of this thesis can be divided into three main
parts: Chapters 2 and 3 give an introduction to ultrasonic imaging and
synthetic aperture processing, Chapters 4 and 5 present methods for imaging
in multilayered media, and Chapters 6-8 describe methods for imaging in
cylindrical geometries, with application to pipeline inspection. Finally, the
thesis conclusions are given in Chapter 9, with suggestions for future work.

Chapter 2 describes the constituent elements of an ultrasonic imaging
system, and the signals transmitted to and received from an ultrasonic
transducer. The transducer directivity strongly affects the lateral resolution of
an ultrasonic image, both before and after synthetic aperture processing, and
is therefore discussed in some depth. The chapter also gives a short overview
of different visualization techniques used to display ultrasonic data.

Chapter 3 introduces the concept of aperture synthesis. It is shown that
monostatic pulse-echo measurements can be treated as array measurements of
the wave field produced by exploding reflectors, and time- and Fourier-domain
synthetic aperture algorithms are derived following the concept of wave field
back-propagation. An analysis of the attainable lateral resolution is given, and
the effects of synthetic aperture focusing are demonstrated on a point scatterer
data set.

Chapter 4 expands the synthetic aperture algorithms in Chapter 3 to the
case of multilayered media. The root-mean-square velocity is introduced as a
means of calculating the pulse-echo delay times for time-domain multilayer
imaging, and an efficient Fourier-domain algorithm is derived through a
combination of the phase shift migration and the Stolt migration algorithms.
The algorithms are compared in terms of both computational efficiency and
imaging performance. The chapter is based on [Skjelvareid and Birkelund,
2010] and [Skjelvareid et al., 2011c].

Chapter 5 expands multilayer synthetic aperture imaging to three dimen-
sions, and demonstrates its use in experiments on point-like scatterers and a
plate with artificial corrosion pits. A comparison of 2D and 3D focusing for 3D
data sets is also made. The chapter is based on [Skjelvareid et al., 2011b] and
[Skjelvareid et al., 2011a].

Chapter 6 describes a Fourier-domain algorithm for synthetic aperture
focusing of measurements performed over a cylindrical surface. A theoretical
expression for the lateral resolution is derived, and the expression is verified
through simulations and experiments. The effect of the angular sampling
interval on grating lobe levels is also studied. The chapter is based on
[Skjelvareid et al., 2012b].
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Chapter 7 describes how the algorithm in Chapter 6 can be adapted for
use with focused transducers, and demonstrates the modified algorithm in
a realistic pipe inspection experiment. Synthetic aperture focusing is shown
to significantly increase the lateral resolution in cases where the pipe wall is
outside the transducer focal zone. The chapter is based on [Skjelvareid et al.,
2012a].

Chapter 8 expands the algorithm described in Chapter 6 to multilayered
media, and presents simulations and an experiment demonstrating its use. The
research presented in this chapter has not yet been submitted to a journal.
However, it is included to complete the treatment of multilayer imaging in the
thesis.



Chapter 2
Ultrasonic imaging

Ultrasound is generally defined as all sound with a frequency above the
threshold of human hearing. Ultrasonic transmitters and receivers are used
in a large number of applications, for example medical imaging and treatment,
non-destructive testing in industry, sonar imaging, and general range finding
[Ensminger and Bond, 2012]. Ultrasonic waves are reflected or scattered by
objects which have a higher or lower acoustic impedance than the surrounding
medium. If multiple ultrasonic measurements are performed in a number of
different positions, the resulting data set can be displayed as an image of
acoustic reflectivity.

In this chapter, we present some of the basics of ultrasonic imaging,
including the equipment used to generate and record ultrasonic waves. Special
attention is given to the radiation patterns of ultrasonic transducers, and how
these in turn affect the lateral resolution in ultrasonic imaging. At the end of
the chapter, various visualization modes for one-, two- and three-dimensional
ultrasonic data are discussed.

2.1 Ultrasonic transducers

An ultrasonic transducer is a device which is used to convert electrical signals
to acoustic waves, and vice versa. Transducers are manufactured in a variety
of ways, according to their application, but piezoelectric transducers are the
most common. An illustration of a piezoelectric transducer is shown in Fig.
2.1.

The active element in the transducer is made of a piezoelectric material,
which changes shape when it is subject to change in the electric field. The
element can be made to expand or contract by applying a voltage across its
electrodes, which in turn generates an acoustic wave. Similarly, the electric
field in a piezoelectric material changes when it is subject to mechanical stress.
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Figure 2.1: Constituent elements of an ultrasonic transducer for immersion testing.

When the pressure of a reflected acoustic wave makes the active element expand
or contract, it generates a voltage across the electrodes, which can be read out
and stored for further analysis [Ensminger and Bond, 2012].

The active element is attached to a backing material with high acoustic
impedance and high acoustic attenuation, for example epoxy with tungsten
particles. Without the backing material, the element would reverberate
strongly at its resonance frequency, resulting in a long, resonant impulse and
poor temporal resolution. For transducers made for radiation into water, so-
called immersion transducers, an impedance matching layer is often applied to
the front of the active element, to optimize the energy transfer into the outside
medium. The thickness of the matching layer corresponds to a quarter of the
wavelength at the transducer’s center frequency [Olympus Corp., 2012].

2.2 Ultrasonic signal processing

This thesis is concerned with ultrasound systems in which the same transducer
is used in both transmission and reception, so-called monostatic systems. A
combined pulser/receiver is often used to generate the electrical excitation
pulse, and to amplify and digitize the signal generated by the reflected echoes.
A schematic of the elements in a pulser-receiver system is shown in Fig. 2.2.
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Figure 2.2: Schematic of elements in a pulser-receiver system. A pulse generator
creates a high-voltage pulse which is transmitted to the transducer. Low-voltage
signals created by backscattered echoes are first amplified and then digitized.

2.2.1 Excitation signals

The amplitude and shape of the transmitted pulse is determined by the
excitation signal applied to the transducer. To obtain a sufficient signal-to-noise
level, excitation signals are often several hundred volts in amplitude. The most
common excitation signals for ultrasonic imaging are spike and square pulses,
which can be generated with a simple RC circuit and a transistor switch [ASNT,
2007].

In radar and sonar imaging applications it is common to use long frequency
modulated signals, known as chirps, as excitation signals [Hayes and Gough,
1992; Cumming and Wong, 2004]. Compared to pulse excitation signals, chirps
increase the total transmitted energy without increasing the signal amplitude
or decreasing the signal bandwidth. This in turn increases the signal-to-noise
ratio of the measurement. The received signal is crosscorrelated with the
emitted signal to increase the temporal resolution, a process termed pulse
compression. A recent study by Misaridis and Jensen [2005] indicates that
modulated excitation signals can also be used to improve the signal-to-noise
ratio in ultrasonic imaging. Modulated excitation signals may thus become
more common as the hardware cababilities of ultrasonic systems improve.
However, in this thesis simple square excitation pulses have been used in all
experiments.

2.2.2 Received signals

Figure 2.3 shows an example of a short square excitation pulse, the received
signal from the transducer, and the frequency spectrum of the received signal.
The received signal was produced by a reflection from an aluminium plate
immersed in water. The pulse-echo response is a short wavelet, oscillating
at a resonant frequency given by the thickness of the active element in the
transducer. This frequency, often called the transducer center frequency, can
be determined from the frequency spectrum of the pulse, shown in Fig. 2.3(c).
For this transducer, the center frequency is approximately 1650 kHz. The
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Figure 2.3: Examples of excitation signal, pulse-echo response and pulse spectrum,
obtained using an aluminium plate immersed in water. The time axis in Fig. 2.3(b)
has been shifted so that the envelope peak occurs at t = 0, and the maximum
amplitude has been normalized to 1 for all plots.

frequency spectrum also indicates the band-limited nature of the transducer.

In most applications, time delay and amplitude are the most important
features of the received ultrasonic signal. These features are more easily
extracted from the envelope of the wavelet than from the wavelet itself. In
the example in Fig. 2.3(b), the envelope is shown as a red line. In many
ultrasound systems, the envelope is estimated by simply rectifying the wave
form, sometimes combined with low-pass filtering [Gammell, 1981]. However,
this approach leaves ripples in the envelope, and low-pass filtering also reduces
the temporal resolution. An alternative method is to calculate the analytic
equivalent of the received signal, using the Hilbert transform, and to calculate
the envelope by taking the absolute value of the analytic signal. This approach
is superior to rectification and filtering, since it creates a smooth envelope with
no reduction of temporal resolution [Gammell, 1981]. The envelope shown in
Fig. 2.3(b) was calculated using this approach, and the same method is used
consistently throughout the thesis. In practice, the analytic signal is calculated
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by taking the Fourier transform of the signal, setting negative frequency
components to zero, multiplying the positive frequency components by two,
and inverse Fourier transforming the resulting one-sided spectrum [Gammell,
1981].

2.3 Modes of wave propagation

In this thesis we only consider bulk waves, which are waves that can propagate
through the volume of its medium, and not just along the surface. In liquid
or gaseous media, the only type of bulk wave which can propagate is called a
longitudinal wave, in which the particles of the medium move parallel to the
direction of wave propagation. Solid media can support an additional type of
bulk wave called shear wave, in which the particles move perpendicularly to
the direction of the wave. Longitudinal and shear waves usually propagate at
different velocities through the medium [Ensminger and Bond, 2012].

Wave energy can be converted between these two propagation modes when
impinging on a defect or an interface between two layers. However, in the
measurements we consider in this thesis, the waves emitted by the transducer
are longitudinal, and impinge on layer interfaces with a normal or near-normal
incidence. In this case the effect of mode conversion at interfaces is negligible
[Ensminger and Bond, 2012, Sec. 4.2], and we will therefore assume that only
longitudinal waves are present in the insonified region. When the term wave
velocity is used, it refers to the velocity of longitudinal waves in the medium.

2.4 Transducer directivity

Most ultrasonic transducers are directive in nature, meaning that in transmis-
sion, acoustic waves are radiated within a limited beam. The shape of the beam
determines the lateral resolution of the imaging system. To analyze the wave
field generated by different transducer shapes, we assume that the sources are
driven at a single angular frequency ω, and that the wave field is in a steady
state. Thus, at an arbitrary observation point ~r in space, the sound pressure
is given by

p(t, ~r) = A(ω,~r) · eiωt, (2.1)

where A(ω,~r) denotes the complex amplitude of the wave field. The physically
observed wave field is obtained by taking the real part of p(t, ~r). For broadband
excitation signals, like a short pulse, the wave field is given by a combination
of all single-frequency solutions,

p(t, ~r) =

∞∫
−∞

A(ω,~r)eiωtdω , (2.2)

that is, the inverse Fourier transform of the frequency-domain solution. To
simplify notation, the eiωt term is omitted from the following discussion.
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2.4.1 Boundary conditions

To derive analytical solutions for the emitted wave field of acoustic sources,
we assume the following simplifying boundary conditions [Kinsler et al., 1999;
Williams, 1999]:

• Piston source: The amplitude and phase of the normal velocity is
uniform across the source. This model has proven to be valid for many
commercial transducers [Schmerr and Song, 2007, Ch. 8].

• Rigid baffle: The source is mounted in an infinite baffle, a boundary
flush with the surface of the source. The baffle is completely rigid, i.e., the
normal velocity of the baffle is zero at all times. In practice, the infinite
baffle model is also a good approximation for ultrasound transducers
without a baffle, as long as the transducer diameter is significantly larger
than the wave length [Schmerr and Song, 2007, Ch. 8].

2.4.2 Point source

For a simple baffled point source with volume velocity Q1, located at the origin
of the coordinate system, the sound field at an arbitrary observation point ~r is
given by [Kinsler et al., 1999]

p(~r) =
iρcQ

λ︸ ︷︷ ︸
AP

· e
ikr

r︸︷︷︸
H(r)

, (2.3)

where ρ and c denotes the density and wave velocity of the propagating medium,
λ denotes wave length, and k = ω/c. The length of ~r is denoted simply as r.
The wave field is given by a constant factor, denoted AP , and a second factor,
denoted H(r), whose phase and amplitude changes with the distance to the
source. The physical explanation for the amplitude decreasing with distance is
that the wave energy is spread out over a spherical wave front, whose surface
increases with distance. This effect is termed geometrical spreading, and is also
observed for finite-sized sources [Kinsler et al., 1999].

2.4.3 Circular source

The geometry of a flat, circular source is illustrated in Fig. 2.4. Because of the
circular geometry, the wave field is symmetric about the z axis, and we can
assume that the observation point is in the x−z plane without loss of generality.
The angle between the ~r and the z axis is denoted θ.

Close to the source, the wave field produced by the source is quite complex,
with several local minima and maxima. However, in the far field of the source,
where r � D, the wave field takes on a simpler form which can be described

1Q = dV
dt

. where V denotes the source volume
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Figure 2.4: Circular source in baffle. Left: 3D source geometry. Right: Source
geometry in plane intersecting with z axis.

with approximate analytical expressions. The end of the near field is usually
defined as N = D2/(4λ), and for r > 3N , far field approximations are very
accurate [Schmerr and Song, 2007, Ch. 8].

It can be shown [Williams, 1999, Eq. 2.106] that under far field conditions,
the wave field from a circular source with uniform velocity amplitude u0 is
given by

p(r, θ) ≈ iπρcD2u0

4λ︸ ︷︷ ︸
AC

· e
ikr

r︸︷︷︸
H(r)

·
2J1

(
πDλ sin θ

)
πDλ sin θ︸ ︷︷ ︸
DC(θ)

, (2.4)

where J1 is a Bessel function of the first kind, of order 1. Thus, the wave field
in the observation point (r, θ) is given by three terms, denoted AL, H(r) and
DC(θ). Noting that the volume velocity of the source is given by Q = πu0D

2/4,
we see that the AC and H(r) terms correspond to the wave field produced by
a point source. The additional DC(θ) term, called the directivity function of
the source, represents an angle-dependent scaling of the wave field amplitude.

The directivity function is on the form J1(x)/x and is similar in shape to
the sinc function. Because of this similarity it is referred to as the jinc function
[Goodman, 1996]:

jinc(x) = 2 · J1(x)

x
. (2.5)

The factor 2 is included in the definition to make lim
x→0

jinc(x) = 1. Using the

jinc function, we rewrite the directivity function in (2.4) as

DC(θ) = jinc

(
π
D

λ
sin θ

)
. (2.6)
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Figure 2.5: Directivity functions for a circular source with D/λ = 10, for
transmission (Fig. (a) and (c)) and combined transmission and reception (Fig. (b)
and (d)).

2.4.4 Pulse-echo directivity

In this thesis we are mainly concerned with pulse-echo applications, in which
the same transducer is used for both transmission and reception. Because
of acoustic reciprocity, the directivity function is identical in transmission and
reception, and the combined pulse-echo directivity function is given by squaring
the transmission directivity function [Kinsler et al., 1999, Sec. 7.7].

DC,PE(θ) = D2
C(θ) = jinc2

(
π
D

λ
sin θ

)
. (2.7)

A comparison of the transmission and pulse-echo directivity functions for
a circular source with D/λ = 10 is shown in Fig. 2.5. Even though the zero
crossings are the same for both cases, the pulse-echo directivity has a sharper
main lobe and significantly lower sidelobes.

We will use the Full Width at Half Maximum (FWHM), also known as the
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Figure 2.6: Illustration of focused transducer, with indication of focal length, F ,
and angular beamwidth at the focal point, ∆θ.

-6 dB width2, as a practical measure of the pulse-echo beamwidth. The squared
jinc function in (2.7) drops to half its maximum value when

sin θ = ±0.515
λ

D
. (2.8)

When D � λ, which is the case for most ultrasound transducers, the main
lobe is relatively narrow, and the small terms approximation sin θ ≈ θ can be
applied. Rounding off 0.515 to 0.5, we obtain a simple, approximate expression
for the -6 dB beamwidth:

∆θ ≈ λ

D
. (2.9)

2.4.5 Focused source

For a circular, focused source with uniform velocity, the directivity function at
the focal point is approximately given by a jinc function [O’Neil, 1949],

DC,F (θ)|z=F = jinc

(
π
D

λ
sin θ

)
, (2.10)

where z = F is the focal length, as indicated in Fig. 2.6. Comparing (2.10) with
(2.6), we see that at the focal point, the directivity function for the focused
transducer has the same form as for the plane, unfocused transducer. However,
while plane transducers are usually operated in far field conditions, the focal
point of a focused transducer is usually within the near field [Schmerr and Song,
2007]. A focused transducer can therefore yield a higher lateral resolution than
a plane transducer of the same size. Note that beyond the focal point the beam
is strongly divergent, and the beamwidth is larger than that given by (2.10).

2.5 Axial and lateral resolution

The resolution of an ultrasonic imaging system is determined through its point
spread function (PSF), the response produced by an infinitely small scatterer.

2The dB scale is described in Section 2.6.1
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Figure 2.7: Illustration of linear scan of two point scatterers. (a) Measurement
geometry. (b) Pulse-echo response.

In practice, the PSF is measured using very small scatterers, for example thin
steel wires.

Figure 2.7(a) illustrates an ultrasonic scan of two point scatterers, where
the transducer is scanned along the x axis, continuously emitting pulses. When
one or both of the point scatterers are within the transducer beam, given by
the beamwidth ∆θ, the pulses are reflected back towards the transducer. The
pulse-echo response of the scan is shown in Fig. 2.7(b), plotted as a 2D image
with two-way delay time on the vertical axis and transducer position on the
horizontal axis. This presentation mode is called a B-scan3.

The scatterers yield two slightly curved responses, whose widths are given
by the width of the transducer beam. The responses are curved because the
transducer-scatterer distance varies within the beam. For scatterer coordinates
(xi, zi) the distance is given by the hyperbola ri =

√
(xi − x′)2 + z2

i . The
thickness of each response is given by the pulse duration ∆t, which yields a
resolution along the z axis approximately equal to

∆z ≈ ∆t · c
2
. (2.11)

Since the transducer beam expands in the x direction as z increases, the
response from the second scatterer is wider that that of the first scatterer. The
width of the transducer beam along the x axis is given by

∆x(z) = 2z · sin
(

∆θ

2

)
≈ z∆θ . (2.12)

∆z and ∆x determine the axial and lateral resolution of the ultrasonic
image, respectively. Whereas ∆z does not change significantly with depth, ∆x

3Different modes of presentation are discussed further in Section 2.6.
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Figure 2.8: Point scatterer response from lateral ultrasound scan, with correspond-
ing frequency spectrum.

increases linearly with depth. At large depths, this effect causes a significant
lateral smearing of the ultrasonic image, limiting the usable range of the
imaging system.

An example of a B-scan for a real point-like scatterer is shown in Fig.
2.8(a). The B-scan was produced with a plane, circular transducer, with 2.25
MHz center frequency and 6 mm diameter, scanning a 1.5 mm thick steel wire
at a distance of 93 mm. The B-scan illustrates that the beam profile varies
smoothly with lateral offset, and that it does not have sharply defined side
edges, as suggested by the drawing in Fig. 2.7.

In the discussion on directivity functions in Section 2.4, it was assumed
that the sources were driven at a single angular frequency, ω. However, most
transducers used in ultrasonic imaging are made to have a short pulse length
∆t, and thus also a relatively wide frequency range. The beamwidth, given by
∆θ ≈ λ/D, can therefore vary significantly within the transducer passband.
This is illustrated in Fig. 2.8(b), which shows the frequency spectrum of the
point scatterer response in Fig. 2.8(a). The triangular shape of the spectrum
shows that the transducer beam is broad at low frequencies and narrower at
high frequencies.

2.6 Displaying ultrasonic data

2.6.1 Decibel

The decibel (dB) is often used to indicate the ratio between two measurements
of power or intensity. If for example the acoustic intensity in a reference point
is denoted by I0, and the acoustic intensity in another point is denoted with I,
the ratio between the two can be expressed as

LdB = 10 log10(I/I0) . (2.13)
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For harmonic waves in free space, the acoustic intensity is proportional to
the square of the acoustic pressure amplitude, I ∝ p2. Thus, the dB level in
(2.13) can also be expressed in terms of the acoustic pressure [Kinsler et al.,
1999, Sec. 5.12],

LdB = 10 log10(I/I0) = 10 log10(p2/p2
0) = 20 log10(p/p0) . (2.14)

This has led to the convention that when the ratio of two sound pressure
amplitudes is expressed in dB, the logarithm of the ratio is multiplied by 20
rather than 10. In this thesis, all measured ultrasonic signals are amplitude
values, and whenever the decibel is applied, a multiplication factor of 20 is
used.

The features of an ultrasonic image are usually observed as variations in
the backscattered amplitude, and the absolute amplitude values are often not
relevant. It is then convenient to use the maximum amplitude as the reference
for the dB level. For example, if e(t) represents the envelope of an ultrasonic
pulse, the time-continuous envelope dB level is calculated as

edB(t) = 20 log10

(
e(t)

max{e(t)}

)
, (2.15)

so that max{edB(t)} = 0. In this thesis, such normalization with the maximum
value is applied consistently whenever dB values are plotted. For 2D and 3D
data sets the global maximum is used.

2.6.2 A-scan

The term A-scan is used to describe the plot of a single ultrasonic measurement,
with time on the horizontal axis and amplitude on the vertical axis. The A-scan
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Figure 2.9: Example of A-scan, obtained by pulse-echo measurement of immersed
aluminium plate.



2.6. Displaying ultrasonic data 23

display is used for studying the exact shape of the ultrasonic signal, and for
determining the amplitude and time delay of different reflections.

An example A-scan, obtained by pulse-echo measurement of an aluminium
plate immersed in water, is shown in Fig. 2.9. The low-amplitude wavelets
following the main reflection are caused by internal reflections within the plate,
and the time delay between the wavelets can be used to estimate the plate
thickness.

2.6.3 B-scan

An ultrasonic B-scan is a presentation of multiple ultrasonic waveforms,
acquired at different spatial positions, typically along a straight line. The
ultrasonic data is displayed as an image, with pulse-echo delay time on one
axis and spatial displacement on the other.

A B-scan can be displayed in several different ways, depending on the
application. Figure 2.10 shows an example of the same B-scan plotted in four
different versions. The B-scan is part of the experiment described in Section
4.5, and was made by scanning an acrylic glass block with four side-drilled
holes.

In Fig. 2.10(a), the amplitude of the raw waveform is displayed, with
positive values shown as light and negative values shown as dark. The
corresponding B-scan envelope is shown in Fig. 2.10(b), plotted on a linear
scale. It is very common for ultrasonic data to have a high dynamic range,
and in many cases it is better to display the envelope on a logarithmic scale.
Two examples of this are shown in Figs. 2.10(c) and 2.10(d), with dynamic
ranges of 30 and 60 dB, respectively. When a large dynamic range is used, more
low-amplitude details are shown in the image, including background noise.

Envelope images are often shown using a continuous gray scale. However,
in some cases the image can be made less cluttered by displaying it as a contour
plot, where a number of threshold values are traced out with a contour line,
and values between the threshold values are given a single color. In Fig. 2.11,
one of the reflections shown in 2.10 is shown both as a continuous grayscale
image and as a contour plot. The latter enables us to easily determine the
width of the response at different contour values.

2.6.4 C-scan

The term C-scan is used to describe an image where both the horizontal and
vertical axis represent spatial coordinates, and the color or gray level of the
image represents some feature of the ultrasonic signal. The amplitude and
time-of-flight of the backscattered ultrasonic pulse are the two most commonly
used features, extracted by detecting the maximum envelope value at each
measurement position. The time-of-flight is used to indicate the distance to
a scatterer, and time gating can be applied to study reflections from within a
limited distance interval. Figure 2.12 illustrates how two-dimensional images
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Figure 2.10: B-scan of side-drilled holes in acrylic glass block, displayed in four
different ways.
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(b) Contour plot

Figure 2.11: Comparison of continuous grayscale plot and contour plot.
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Figure 2.12: Creating amplitude and time-of-flight C-scans from 3D ultrasonic data.
A search for the maximum is performed along the t axis of the 3D envelope data set
e(t, φ, z), and the amplitudes and positions of the detected maxima are shown as 2D
images A(φ, z) and T (φ, z).

of amplitude and time-of-flight, termed A(φ, z) and T (φ, z), are extracted from
a three-dimensional envelope data set, with time on one axis and cylindrical
coordinates φ and z other.

An example of the use of C-scans is given in Fig. 2.13. Four metal
objects were placed inside a pipe, as shown in Fig. 2.13(a), and a transducer
was scanned over a cylindrical measurement surface centered inside the pipe.
C-scans of amplitude and distance were extracted, and the results are shown
in Figure 2.13(b) and 2.13(c). The example is taken from the experiment
described in Section 7.A.
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Figure 2.13: Example C-scans of objects in pipe, taken from the experiment
described in Section 7.A.



Chapter 3
Synthetic aperture imaging

In the previous chapter, we saw that the divergence of the ultrasonic beam
causes the lateral resolution in ultrasound images to decrease with increasing
range. However, the lateral resolution can be significantly increased by applying
synthetic aperture focusing in post-processing. In this chapter, we introduce
the synthetic aperture concept, and describe the algorithms which form the
basis for Chapters 4 and 5.

The first algorithms for synthetic aperture ultrasound imaging were based
on delay-and-sum beamforming in the time domain [Doctor et al., 1986;
Kino et al., 1980; Burch and Burton, 1984], and time domain methods are
still actively researched [Jensen et al., 2006; Lingvall and Olofsson, 2007;
Andresen et al., 2011]. However, several Fourier-domain algorithms have also
been introduced, enabling more efficient algorithm execution [Nagai, 1985;
Langenberg et al., 1986; Mayer et al., 1990; Busse, 1992; Ylitalo and Ermert,
1994; Stepinski, 2007]. In this chapter we present three synthetic aperture
algorithms; the delay-and-sum (DAS) algorithm, the phase shift migration
algorithm [Gazdag, 1978], and the Stolt migration algorithm [Stolt, 1978]. The
two latter were initially introduced for processing of seismic data, but have been
used in both radar, sonar and ultrasound applications [Gough and Hawkins,
1998; Cumming and Wong, 2004; Stepinski, 2007; Olofsson, 2010]. The Stolt
migration algorithm is also known as ω−k migration [Cafforio et al., 1991],
f−k migration [Margrave, 2003], and the wavenumber algorithm [Gough and
Hawkins, 1998].

Even though many ultrasound imaging applications are three-dimensional
in nature, we describe the algorithms in this chapter assuming a two-
dimensional geometry. This simplifies the discussion of synthetic aperture
concepts, and enables easy comparison with the two-dimensional algorithms
used in synthetic aperture radar and sonar. Full three-dimensional imaging is
discussed in later chapters.

Towards the end of the chapter, we discuss the theoretical lateral resolution
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attainable with synthetic aperture focusing, and how this relates to the
spatial sampling interval. Finally, the effect of synthetic aperture focusing
is demonstrated on a scan of a point-like scatterer.

3.1 Aperture synthesis

The term synthetic aperture is used as an analogy with traditional imaging
systems, where the physical size of the aperture determines the attainable
resolution. Consider for example the two focused transducers shown in Fig.
3.1. Both transducers have the same size L, but they are focused at different
depths, z1 and z2, where z2 > z1. We know from (2.9) and Section 2.4.5 that
the -6 dB width of the beam at the focal depth zi is approximately

∆x ≈ λ

L
· zi. (3.1)

Thus, since z2 > z1, the beamwidth at the focal point is larger for transducer
2 than for transducer 1. To make the beamwidth of transducer 2 similar to
transducer 1, and obtain the same lateral resolution, we would have to increase
the size of transducer 2 1.

Now consider the synthetic aperture measurement geometry shown in Fig.
3.2. An unfocused transducer with beamwidth ∆θ is scanned along the x axis,
performing pulse-echo measurements in a large number of positions. These
individual measurements can be used to synthesize a focused aperture. At any

1Alternatively, we could increase resolution by decreasing the wave length λ, but we will
assume here that λ is constant.

Figure 3.1: Transducers focused at two different depths.
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Figure 3.2: Synthetic aperture measurement geometry. The effective aperture size
grows as the distance to the target increases.

depth z, a point is insonified by the transducer from the same range of angles,
∆θ. The effective size of the synthetic aperture, L(z), grows as z increases,

L(z) = 2z tan
∆θ

2
≈ z ·∆θ. (3.2)

This effect is illustrated in Fig. 3.2, where L(z2) > L(z1). Because the aperture
grows proportionally to the depth, the lateral resolution after synthetic
aperture processing is the same in the entire imaged region. For a plane
transducer of length L, the lateral resolution is [Gough and Hawkins, 1998]

∆xsynth. ap. ≈
L

2
. (3.3)

A detailed derivation of this relation is given in Section 3.6.1. Thus, while the
resolution of a physically focused transducer depends on transducer size, wave
length and focal depth, the lateral resolution after synthetic aperture focusing
depends purely on the transducer size. The resolution is also high in the entire
imaged region, and not only in a limited focal zone. These properties make
synthetic aperture systems very flexible, and enable high-resolution imaging at
large distances.

3.2 Exploding reflector model

In this thesis we are mainly concerned with measurements in which a single
transducer transmits a pulse and records the backscattered echoes, for a
number of different measurement positions. An illustration of such pulse-
echo measurements of a single scatterer is shown in Fig. 3.3(a). In the



30 Chapter 3. Synthetic aperture imaging

(a) (b)

Figure 3.3: Exploding reflector model. A number of pulse-echo measurements of a
point scatterer, shown in (a), can be modeled as an array measurement of an exploding
reflector, as shown in (b). The effective wave velocity is then half the actual wave
velocity.

resulting ultrasonic data set, the response from the point scatterer is given by
a hyperbolic curve, t = 2r/c, where t denotes pulse-echo delay and r denotes
the transducer-scatterer distance.

To simplify the derivation of synthetic aperture algorithms, these pulse-echo
measurements can be interpreted as an array measurement of a single acoustic
event, as shown in Fig. 3.3(b). If we assume that the scatterer acts like a source,
emitting a pulse at t = 0, and that the effective wave velocity is half the actual
velocity, ĉ = c/2, the wave field recorded by the transducer array has the same
hyperbolic shape as for the pulse-echo case. The same interpretation can be
applied for scatterers of finite size.

This interpretation, which is often referred to as the exploding reflector
model, is commonly used in processing of seismic data [Claerbout, 1985;
Margrave, 2003]. It is valid for both homogeneous and layered media, and
we will apply it consistently throughout this thesis. The application of the
model is identified in equations and figures by the use of the effective wave
velocity, ĉ. In the derivations presented in this chapter, the exploding reflector
model enables us to consider point sources rather than point scatterers.

3.3 Backpropagation concept

Consider a point source emitting a spherical wave, as shown in Fig. 3.4. If
the wave field is recorded by an array, reversed in time, and re-emitted, it
will create a new wave field which converges on the point source. The same
will occur for any source, independent of shape. This self-focusing effect is
sometimes termed time reversal, and it is possible due to the symmetry of the
wave equation with regard to time [Fink, 1997].

The wave field from the source is maximally concentrated at the time
instant when the pulse is emitted, which we define as t = 0, without loss of
generality. This is true both for the initial transmission of the pulse, and for
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(a) (b)

Figure 3.4: (a) Array measurement of point source wave field. (b) Backpropagation
of wave field by time reversal.

the time-reversed, backpropagated wave field. Thus, at t = 0 the wave field
represents a focused image of the source. This is the basis for imaging through
backpropagation [Margrave, 2003]:

• Record the wave field using a transducer array

• Emulate the backpropagation of the wave field in software.

• Evaluate the wave field at t=0 to create a focused image

Note that accurate backpropagation requires that the wave velocity in the
insonified region is known. The concept is valid for complex source geometries
as well as simple point sources, but only for waves which follow a direct path
from the source to the transducer array.

3.4 Time-domain backpropagation

3.4.1 Algorithm formulation

Consider the geometry shown in Fig. 3.5. A point source is located in (x, z),
and emits a short pulse at t = 0, denoted s0(t). The wave field is then recorded
along a the x-axis at depth Z. For the single layer case described here, Z is
often set equal to zero, but we will use Z to be consistent with the notation in
subsequent chapters. The signal recorded at (x′, Z) is scaled and time delayed
according to the distance r to the source [Kinsler et al., 1999],

s(t, x′) =
s0(t− r/ĉ)

r
, (3.4)

where r =
√

(x− x′)2 + (z − Z)2. Assume now that at every measurement
position x′, the signals are time-reversed and emitted back into the propagating
medium. We denote the time-reversed signals s∗(t, x′). At (x, z) the wave field
is given by the superposition of the waves emitted from all points along the
measurement line,

p(t, x, z) =

∫
s∗(t− r

ĉ , x
′)

r
dx′ =

∫
s( rĉ−t, x

′)

r
dx′, (3.5)



32 Chapter 3. Synthetic aperture imaging

x

(x,z)
z  

x'

r

Z

x-x'

z-Z

Figure 3.5: Point source geometry.

where the relation s∗(t) = s(−t) is used in the last transition. Applying the
imaging condition t = 0, as discussed in Section 3.3, and replacing the 1/r scale
factor with a general apodization weight α(x), the focused image pixel value
at (x0, z0) is given by [Langenberg et al., 1986]

ip(x, z) =

∫
α(x) · s(r/ĉ, x′) dx′. (3.6)

Thus, the formation of a single pixel corresponds to an integration along
the hyperbola t = r/ĉ in the t− x′ domain, weighted with apodization factors
α. With a finite number of measurement positions, the integration corresponds
to a summation of recorded signals with different time delays applied, and the
approach is therefore often called delay-and-sum (DAS). We will use this term
throughout the thesis.

In practice, the shape and location of the source(s) generating the wave field
is not known, and the imaging procedure given by (3.6) must be repeated for
all points of interest. This is essentially a two-dimensional correlation between
the recorded data and the hyperbolic shape of the point source response, as
shown in Fig. 3.6. A flow-chart summarizing the delay-and-sum algorithm is
shown in Fig. 3.7.

3.4.2 Apodization

Apodization is often applied in time-domain synthetic aperture focusing to
reduce the effect of sidelobe artifacts in the focused image [Frazier and O’Brien
Jr., 1998; Martinez et al., 1999]. The synthetic aperture is usually weighted
with a function approaching zero at the edges.

Since the size of the synthetic aperture increases with the distance from
the transducer, as shown in Fig. 3.2, the width of the apodization function
should be adjusted accordingly. An example for scatterers at two different
depths is shown in Fig. 3.8. The width of the synthetic aperture at z is given
by ∆x(z) = 2z tan(∆θ/2), where ∆θ denotes the angular beamwidth of the



3.4. Time-domain backpropagation 33

Figure 3.6: Time-domain backpropagation shown as 2D correlation with the point
spread function in the t − x domain. The solid black line is the response from a
point source at (x0, z0), and the gray dashed line is the imaging integration path. (a)
Mismatch between integration path and point spread function. (b) Integration path
and point spread function perfectly overlapping. (c) Final image. Only the source
position indicates strong correlation.

Figure 3.7: Algorithm flowchart for time-domain backpropagation. For every pixel
position (x, z), a one-dimensional vector corresponding to t = r/ĉ is extracted from
the two-dimensional data set. The vector is multiplied with apodization weights α
and summed, producing the image pixel ip(x, z).



34 Chapter 3. Synthetic aperture imaging

Figure 3.8: Illustration of synthetic aperture apodization for scatterers at different
depths z. The size of the synthetic aperture grows with increasing distance, and the
width of the apodization function must be adjusted accordingly.

transducer. The apodization function can be adjusted to the synthetic aperture
by using normalized x coordinates,

x̂ =
x− x′

∆x(z)
. (3.7)

In Section 3.7, imaging is performed with two different apodization
functions; the rectangular function (uniform apodization) and the Hann
function. The apodization coefficients for these can be expressed as

α(x̂)rect =

{
1, |x̂| < 1/2,

0, otherwise,
(3.8)

and

α(x̂)Hann =

{
1
2 [1 + cos(2πx̂)] , |x̂| < 1/2,

0, otherwise.
(3.9)

Note that the width of the apodization function depends on the value used
for the beamwidth ∆θ. The beamwidth is frequency-dependent, as shown in
Section 2.5, and the width of the apodization function can not match the
beamwidth for all frequencies within the transducer passband. To include the
complete synthetic aperture, the apodization function must be adjusted to
the beamwidth at the lower edge frequency of the passband. The effect of
apodization function width on the focused point spread function is discussed
in Section 3.7.
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3.4.3 Time-domain interpolation

The imaging integral given by (3.6) requires a summation of the recorded data,
p(t, x′) along the hyperbola

tdas =
1

ĉ
·
√

(x− x′)2 + (z − Z)2. (3.10)

In practice, the wave field is recorded at discrete time instants,

t = [0, 1, 2, . . . , (Nt − 1)]/fs + t0, (3.11)

where Nt denotes the number of samples, fs denotes the sampling frequency,
and t0 denotes the time at which recording starts. However, tdas can take on
any value, and thus may not coincide with any of the discrete time instants.
An approximate value for p(tdas, x

′) can be obtained by picking the closest data
point, often called nearest-neighbour interpolation. If the sampling frequency is
much higher than the transducer center frequency, fs � fc, the average error
introduced by nearest-neighbour interpolation is relatively small. With lower
sampling frequencies, more sophisticated interpolation methods are necessary.
Alternatively, the wave field can be resampled to a higher sampling frequency,
followed by nearest-neighbour interpolation [Lingvall et al., 2003].

3.5 Fourier-domain backpropagation

3.5.1 Fourier transforms

In a 2D geometry, solutions to the scalar wave equation are in the form of plane
waves,

p(t, x, z) ∝ ei(kxx+kzz−ωt), (3.12)

where kx and kz are the wavenumbers in the x and z direction, respectively.
The relationship between kx, kz and ω is given by the dispersion relation

ω2

ĉ2
= k2

x + k2
z , (3.13)

and thus only two of the three variables are independent. In this thesis we
choose kz as the dependent variable. The most general solution to the wave
equation is a combination of all possible solutions,

p(t, x, z) =

∞∫∫
−∞

A(ω, kx)ei(kxx+kzz−ωt) dkx dω, (3.14)

where A(ω, kx) denotes the complex amplitude for every (ω, kx) combination.
If we group the A(ω, kx) and eikzz terms into a single term, denoted P (ω, kx, z),
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we see that (3.14) corresponds to a two-dimensional inverse Fourier transform:

p(t, x, z) =

∞∫∫
−∞

A(ω, kx)eikzz︸ ︷︷ ︸
P (ω,kx,z)

eikxxe−iωt dkx dω. (3.15)

Thus, P (ω, kx, z) is the Fourier-domain equivalent to p(t, x, z). Note the
negative sign in the ω exponential in (3.15), which is usually positive in
definitions of the inverse Fourier transform. However, when the Fourier
transform is applied to 2D or 3D wave phenomena, it is common to use opposite
signs for the wavenumber and frequency exponents [Claerbout, 1985]. With this
convention, positive values for ω, kx and kz correspond to a wave which moves
in the positive direction along the spatial axes. The forward Fourier transform
is given by

P (ω, kx, z) =
1

4π2

∞∫∫
−∞

p(t, x, z) e−ikxxeiωt dx dt, (3.16)

where 1
4π2 is included in the definition as a normalization factor.

3.5.2 Wave field extrapolation

We assume that all sources are confined to the half-space z > Z, and that
the wave field is recorded along the line z = Z, so that P (ω, kx, Z) is known.
Inserting this into (3.15), we can solve for A(ω, kx), and obtain the expression

P (ω, kx, z) = P (ω, kx, Z) · eikz(z−Z). (3.17)

Thus, the Fourier domain wave field can be extrapolated from Z to z by
multiplication with the phase term eikz(z−Z). This is known as extrapolation
of the angular spectrum [Ratcliffe, 1956; Goodman, 1996; Williams, 1999]. We
obtain an expression for kz by rearranging (3.13), yielding

kz = ±
√
ω2

ĉ2
− k2

x . (3.18)

There are two possible solutions for kz, with opposite signs. However, since all
sources are located in the half-space z > Z, all recorded waves are moving in
the negative z direction. With the sign convention established in Section 3.5.1,
this corresponds to ω and kz having opposite signs, and thus the solution for
kz is given by

kz(ω, kx) = −sgn(ω) ·
√
ω2

ĉ2
− k2

x . (3.19)

Note that if all sources are not confined to a half-space on one side of the
measurement surface, it is necessary to measure both the sound pressure p and
its normal derivative ∂p

∂z to perform wave field extrapolation [Margrave, 2003].
Both solutions for kz in (3.18) are then used.
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3.5.3 Phase shift migration

We obtain an expression for the extrapolated wave field in time-space
coordinates by inserting (3.17) into (3.15):

p(t, x, z) =

∞∫∫
−∞

P (ω, kx, Z) · eikz(z−Z) · eikxxe−iωt dkx dω. (3.20)

As in Section 3.4 we apply the imaging condition t = 0 to obtain a focused
image ip(x, z) from the extrapolated wave field. Since e−iω·0 = 1, the inverse
Fourier transform from ω to t is reduced to a simple integration over ω:

ip(x, z) =

∞∫∫
−∞

P (ω, kx, Z) · eikz(z−Z) · eikxx dkx dω. (3.21)

Equation 3.21 produces a focused image line corresponding to the depth z. A
focused 2D image can be made by applying (3.21) for every depth of interest.

Figure 3.9: Flowchart for PSM algorithm. The recorded wave field is first Fourier
transformed, and for every depth z of interest, the wave field is extrapolated to z,
integrated over ω, and inverse Fourier transformed, producing a focused image line
ip(x, z).
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This approach, termed Phase Shift Migration (PSM), was first introduced by
J. Gazdag in 1978 [Gazdag, 1978], for focusing of seismic data. A flowchart for
the PSM algorithm is shown in Fig. 3.9.

Note that in practical implementation, calculation of the complex exponen-
tial eikz(z−Z) for every z value can be very time consuming. A more efficient
approach is to calculate the exponential for a small shift in z, and apply it
recursively to extrapolate the wave field step by step. In this way, only one
complex exponential has to be calculated. The approach is further described
in [Olofsson et al., 2010], and is applied in the PSM algorithm implementations
used in this thesis.

3.5.4 Stolt migration

Equation 3.21 is very similar to an inverse Fourier transform of P (ω, kx, Z),
but it has an eikz(z−Z) kernel rather than an e−iωt kernel. The integral can
be recast into a proper inverse Fourier transform by a change of integration
variable from ω to kz [Stolt, 1978].

We obtain an expression for ω by using the relation given in (3.13), and
assuming, as in Section 3.5.2, that ω and kz have opposite signs, so that

ω(kz, kx) = −sgn(kz) · ĉ ·
√
k2
x + k2

z . (3.22)

By substituting (3.22) into (3.21), and setting z = Z + ∆z, we get

ip(x, Z+∆z) =

∞∫∫
−∞

P (kz, kx, Z) eikz∆zeikxx dkxdkz, (3.23)

where
P (kz, kx, Z) = A(kz, kx) · P

(
ω(kx, kz), kx, Z

)
, (3.24)

and

A(kz, kx) =
∂ω(kz, kx)

∂kz
=

ĉ√
1 +

k2x
k2z

. (3.25)

The right side of (3.23) is in the form of a regular inverse Fourier transform.
Thus, a complete two-dimensional focused image ip(z, Z+∆z) can be obtained
in a single operation, through inverse Fourier transform of the wave field
P (kz, kx, Z). From (3.24), we see that relative to the original wave field
P (ω, kx, Z), the substitution of variables leads to a multiplication with an
amplitude factor A(kz, kx) and a remapping to new ω coordinates. Note that
the substitution requires that the effective wave velocity ĉ is constant.

In practice, the P (ω, kx, Z) wave field is discretely sampled in both time
and space, and the new ω coordinates given by (3.22) may not match the
equispaced grid of original sampled ω coordinates, as shown in Fig. 3.10. Thus,
Stolt migration requires a resampling of the complex Fourier domain wave field.
The accuracy of the interpolation method used for this resampling determines
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Figure 3.10: Resampling of (ω− kx) spectrum for Stolt migration. Original ω− kx
coordinates shown as black dots, new coordinates shown as gray crosses.

the quality of the focused image, since interpolation errors introduce artifacts
in the image. If some low-amplitude artifacts can be tolerated, Stolt migration
is generally very efficient [Margrave, 2003]. A flow chart showing the individual
steps of the Stolt migration algorithm is given in Fig. 3.11.

3.6 Lateral resolution and spatial sampling
criteria

3.6.1 Lateral resolution

Consider the measurement geometry shown in Fig. 3.12. A transducer located
in (x′, Z) emits a wave which is backscatterered by a reflector in (x, z). The
distance between the two is given by r =

√
(x− x′)2 + (z − Z)2, and thus the

phase of the backscattered signal is given by

ξ(x′, x, z) = ω · 2r/c

=
4π

λ

√
(x− x′)2 + (z − Z)2 ,

(3.26)

where in the last transition we have used that ω/c = 2π/λ. Note that we
use the real wave velocity c here, and not the effective velocity ĉ. The kx
wavenumber is found by calculating the derivative of the phase with regard to
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Figure 3.11: Flowchart for the Stolt migration algorithm. The recorded wave field is
first Fourier transformed, and then resampled to a new set of ω coordinates, given by
the kz coordinates defined for the image. The resampled wave field is multiplied with
an amplitude factor and inverse Fourier transformed, yielding a focused 2D image
ip(x, z).

Figure 3.12: Measurement geometry for linear scan of point scatterer.
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the transducer x′ coordinate:

kx =
∂ξ

∂x′
=

4π

λ
· x− x′√

(x− x′)2 + (z − Z)2

=
4π

λ
· x− x

′

r

=
4π

λ
· sin θ.

(3.27)

The range of kx values, denoted ∆kx, is thus determined by the transducer
beamwidth, ∆θ. Note that this makes ∆kx independent of depth z. In Section
2.4.4 it was shown that for a planar, uniformly excited source of diameter D,
the beamwidth is ∆θ ≈ λ/D. Inserting this into (3.27), and using the small
terms approximation sin θ ≈ θ, we get that

∆kx ≈
4π

λ
·∆θ

≈ 4π

λ
· λ
D

=
4π

D
,

(3.28)

yielding a theoretical resolution along the x axis of

δx ≈ 2π

∆kx
≈ D

2
. (3.29)

3.6.2 Spatial sampling criteria

According to the spatial sampling theorem, the spacing δxs between measure-
ment positions x′ should fulfill the requirement δxs < 2π/∆kx [Goodman, 1996,
Sec. 2.4]. Again using the relationship in (3.28), we find that this corresponds
to δxs < D/2. However, in the derivation of ∆kx in the previous section we
did not take the full transducer directivity function into account. The jinc
directivity function given in (2.7) is non-zero outside the -6 dB beamwidth
∆θ ≈ λ/D, and sampling at δxs < D/2 may result in aliasing in the focused
image. In practice, a spatial sampling interval of δxs < D/4 is recommended to
avoid any significant aliasing effects [Gough and Hawkins, 1997; Callow, 2003].

3.7 Experiment: Point scatterer in water

An experiment was performed to demonstrate the application of synthetic
aperture focusing on real data. A linear scan of a 1.5-mm steel wire was
performed using a transducer with 2.25 MHz center frequency and 6 mm
diameter. The scan was performed perpendicular to the wire, with a spatial
sampling interval of δxs = 0.5 mm, and a temporal sampling frequency of 25
MHz. The raw data envelope for the wire target is shown in Fig. 3.13.

The raw data was processed with both the DAS algorithm and the PSM
algorithm. The Stolt migration algorithm was not included, since its results
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Figure 3.13: Raw data envelope from scan of wire target in water.

are identical to those of PSM when perfect interpolation is applied. Before
processing with the DAS algorithm, the data set was upsampled from 12.5 to
200 MHz along the t axis, using zero-filling and low-pass filtering with a FIR
filter of 321 elements. Such oversampling enables the use of nearest-neighbour
interpolation without introducing large errors, as discussed in Section 3.4.3.
Two different apodization functions were used; a rectangular function and a
Hann function. Both functions were applied in narrow and wide versions,
corresponding to the -20 and -40 dB width of the raw data response. The
apodization functions and the corresponding focused images are shown in Fig.
3.14.

With the narrow rectangular apodization, the point target is well focused,
with a -6 dB width of 2.92 mm. However, there are wide sidelobes present
on each side of the point response. In comparison, the wide rectangular
apodization yields a -6 dB width of 2.72 mm, slightly smaller than for the
narrow apodization. The shape of the sidelobes is also changed; the lobes are
further away from the point response, and have a slightly reduced amplitude.

Comparing these images with the images focused with Hann apodization,
it is seen that Hann apodization reduces the sidelobes to the point that they
are no longer visible in the displayed dynamic range. However, the -6 dB
widths are slightly larger with Hann apodization. This effect is common for
all non-uniform apodization windows; there is a trade-off between the sidelobe
amplitudes and the width of the main lobe. [Martinez et al., 1999].

Figure 3.15 shows the focused image produced by the PSM algorithm. The
-6 dB width of the point target is 2.70 mm, which is approximately the same
as for the DAS processing with the wide rectangular apodization. However,
similarly to the DAS images with Hann apodization, there are no visible
sidelobes. Thus, PSM processing appears to yield the high resolution of DAS
with rectangular apodization, but with a lower sidelobe level.

To compare DAS and PSM further, amplitude profile plots were made for
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(d) PSF, wide rect. apodization
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Figure 3.14: Apodization functions and focused images for DAS processing of data
from wire target.
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Figure 3.15: Focused image for PSM processing of data from wire target.
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Figure 3.16: Comparison of maximum amplitude profile plots made from the DAS
images shown in Fig. 3.14(d) and 3.14(h), and from the PSM image shown in Fig.
3.15.

the DAS images with wide apodization, as well as for the PSM image. The
profile plots were made by detecting the maximum amplitude of the focused
image in each x position. The results, plotted in Fig. 3.16, clearly indicate
the high-amplitude sidelobes produced by DAS with rectangular apodization.
Note also that close to the main lobe, PSM has lower sidelobes than both DAS
images. The low-amplitude peak seen at x = -15 mm is due to an additional
reflection received in the experiment, and is not related to the main point
spread function.

This simple experiment shows that there are some small differences in
image quality between DAS and PSM, and that these depend on the choice
of apodization for the DAS algorithm. Note that it is possible to apply
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apodization in Fourier-domain algorithms like PSM and Stolt migration by
low-pass filtering the kx spectrum [Cumming and Wong, 2004], but since the
sidelobe levels of these algorithms are relatively low even without apodization,
we have not included apodization in the algorithm descriptions.

Differences between delay-and-sum focusing and Fourier domain focusing
have been observed in a number of papers [Stepinski, 2007; Hunter et al., 2008].
Hunter et al. [2008] point out that Fourier domain algorithms like PSM yield an
exact backpropagation of the wave field, while the time-domain DAS algorithm
is more heuristic in nature. In [Velichko and Wilcox, 2010], an analytical
comparison is made between a number of time-domain and frequency-domain
algorithms for array imaging, and it is shown that the algorithms differ in how
they weight signals from different spatial positions.

A thorough quantitative comparison of time- and Fourier-domain algo-
rithms would require a large number of simulations and experiments, and is
outside the scope of this thesis. It is widely accepted within the field of synthetic
aperture imaging the image quality of time- and frequency domain algorithms
is approximately the same [Ulander et al., 2003], and the choice between the
two is usually based on other factors, for example processing time, hardware
platform and positional accuracy.





Chapter 4
Imaging in multilayered media

The synthetic aperture algorithms presented in the previous chapter are all
based on the assumption of a homogeneous propagating medium with a
constant wave velocity. There are, however, several applications for ultrasonic
imaging where the medium consists of a number of horizontal layers with
different wave velocities. In order to properly focus backscattered echoes from
within the layers, synthetic aperture algorithms for multilayered structures
need to take the thickness and wave velocity of each layer into account.

Figure 4.1(a) shows the raw data from a multilayer experiment which is
further described in Section 4.5. From top to bottom, the imaged region
consists of water, acrylic glass and aluminium layers, with four point-like
scatterers in each. Figure 4.1(b) shows the image from a single-layer PSM
processing of the data, where the wave velocity of water was used for the entire
image. The scatterers in the water layer are well focused, but due to the
difference in wave velocity, the focusing effect diminishes in the acrylic glass
and aluminium layers. Processing the same data set with multilayer synthetic
aperture algorithms significantly improves the lateral resolution, as we shall see
in this chapter.

In the field of seismic exploration, the interior structure of the Earth is
imaged by emitting low-frequency sonic waves into the geological layers, and
recording the backscattered echoes. Different types of rock often have different
wave velocities, and the wave velocity generally increases with depth. In
general, the velocity is a function of the position in three-dimensional space,
but in practice it is often assumed to vary with depth only, c(z) [Claerbout,
2010]. Such a model is also suitable for describing the multilayered structures
we consider here.

Versions of the DAS algorithm are often used for processing of seismic data,
where the delay-and-sum operations are often referred to as Normal Moveout
Correction (NMO) and Common Depth Point Stack (CDP Stack) [Wood and
Treitel, 1975]. The DAS algorithm can be modified to handle c(z) velocity
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variations, based on the concept of root-mean-square velocity, and in this
chapter we describe the modified algorithm for the case of multilayered media.

In the PSM algorithm, the wave field is extrapolated from one depth to
another by multiplication with a complex exponential, exp

(
ikz∆z

)
, where kz

is a function of wave velocity. kz be recalculated to accommodate changes
in wave velocity as the wave field is extrapolated, and thus PSM is valid for
any velocity function c(z). The application of PSM for ultrasonic imaging in
multilayered media was introduced first in [Olofsson, 2010], and is explained
further in this chapter.

Due to its high efficiency, the Stolt migration algorithm is attractive for
multilayer imaging as well as single-layer imaging, but the substitution of
variables in the algorithm requires that the wave velocity is constant. The Stolt
migration algorithm is therefore not applicable for data which spans more than
one layer. However, as we show in this chapter, the PSM algorithm can be used
to extrapolate the measurements from one layer to the next, leaving imaging
within each layer to the Stolt algorithm. This approach was first introduced
for seismic imaging in [Kim et al., 1989], and is adapted here for ultrasonic
imaging.
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(b) Focused image

Figure 4.1: Comparison of raw data and image produced by single-layer PSM
processing. The image was focused using the wave velocity of water for the entire
image.
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4.1 Multilayer delay-and-sum

4.1.1 RMS velocity

Consider first the single-layer geometry shown in Fig. 4.2(a). The transducer
position is denoted (x′, Z), and the scatterer position is denoted (x, z). In
Section 3.4.1, it was shown that in the DAS algorithm, the pulse-echo wave field
is integrated along curves corresponding to the two-way delay time t between
the transducer and the scatterer. For a single layer geometry with wave velocity
c, the delay time is given by

t(x− x′, z) =
2

c

√
(x− x′)2 + (z − Z)2. (4.1)

Now, consider the multilayered geometry shown in Fig. 4.2(b). The layers
are numbered 1, 2, . . . , L, and the thickness and wave velocity of layer l is
denoted with dl and cl, respectively. The transducer is scanned along the top
of layer 1, denoted Z1. The different sound velocities give rise to reflection and
refraction at the layer interfaces, making the path of the wave irregular. Given
the incident angle of a wave at an interface, the angle of the refracted wave can
be calculated using Snell’s law. However, given the position of the transducer
and the scatterer, it is not possible to calculate the exact wave path between
the two analytically [Schneider, 1984; Margrave, 2003]. Numerical ray tracing
methods can be employed [Johnson and Barna, 1983; Kraus, 1983; Margrave,
2003; Shlivinski and Langenberg, 2007], but in practical applications these are
often slow and complicated to implement. Here we will employ an approximate
solution which is often used in processing of seismic data [Schneider, 1984;
Schultz, 1984]. The solution is based on the concept of root-mean-square (RMS)
velocity.
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Figure 4.2: Measurement geometry for homogeneous and multilayered media.
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The wave velocity c is assumed to be a function of depth, c(z). The one-way
travel time for a pulse following a vertical path from Z to z, termed the normal
incidence travel time, is then given by

τ(z) =

z∫
Z

1

c(z̃)
dz̃. (4.2)

In the layered geometry shown in Fig. 4.2(b), the integral in (4.2) is reduced
to a sum,

τ(z) =

(
L−1∑
l=1

dl
cl

)
+

∆z

cL
. (4.3)

There is a monotonous relationship between z and τ , and thus the wave
velocity can also be expressed as a function of τ , c(τ). The RMS velocity is
the root-mean-square velocity with respect to τ ,

crms =

√√√√√1

τ

τ∫
0

c2(τ̃) dτ̃ , (4.4)

which for the layered geometry can be rewritten as

crms(z) =

√√√√√L−1∑
l=1

cldl + cL∆z

τ(z)
. (4.5)

The one-way delay time between a transducer and a scatterer in a
multilayered geometry can be expressed as a Taylor series,

t2(x− x′, z) = τ2(z) + a2(x−x′)2 + a4(x−x′)4 + . . . , (4.6)

where only even terms are included due to symmetry. It can be shown
[Schneider, 1984] that a2, the coefficient for the quadratic term, is equal to
1/c2rms(z). Omitting all higher order terms, we obtain an expression for the
travel time which is approximate but accurate for small offsets (x− x′):

trms(x− x′, z) = 2 ·

√
τ2(z) +

(x− x′)2

c2rms(z)
. (4.7)

4.1.2 Multilayer DAS

Equation (4.7) enables the formulation of a DAS algorithm for multilayered
media which is very similar to the single-layer algorithm described in Section
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3.4.1. Let s(t, x′) denote the backscattered signal recorded in the transducer
position x′. The focused image pixel ip(x, z) is then given by

ip(x, z) =

∫
α(x̂) · s

(
trms(x− x′, z), x′

)
dx′, (4.8)

where α(x̂) denotes general apodization weights. We will refer to this algorithm
as Multi-Layer Delay-And-Sum (MLDAS).

The normalized x coordinate used for the apodization weights is given
by x̂ = (x − x′)/∆x(z), where ∆x(z) denotes the transducer beamwidth, as
discussed in Section 3.4.2. In a multilayered geometry, the refraction at each
interface changes the shape of the transducer beam, as illustrated in Fig. 4.3.
If the beamwidth in the first layer is given by ∆θ, the angle of the beam edge
in layer l is given by

θl = sin−1

(
cl
c1
· sin(∆θ/2)

)
, (4.9)

and the beamwidth ∆x at depth z is given by

∆x(z) = 2 ·

(
l−1∑
i=1

dl · tan(θl) + ∆z · tan(θl)

)
. (4.10)

In the implementation of the MLDAS algorithm in this thesis we employ the
Hann apodization function given in (3.9).
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Figure 4.3: Transducer beam shape in multilayered geometry. The divergence of
the beam changes from layer to layer due to refraction at the layer interfaces.
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4.2 Multilayer Fourier-domain imaging

4.2.1 Multilayer phase shift migration

We assume the same multilayer geometry as in the preceding section, with
layers numbered l = 1, 2, ..., L, and dl and cl denoting the thickness and wave
velocity of layer l, respectively. The top of the uppermost layer is denoted by
Z1, and the interfaces between the layers are denoted by Zl, so that the top of
layer l is given by Zl = Z1 +

∑l−1
m=1 dm.

We know from Section 3.5.2 that in a medium with constant sound speed,
the wave field at an arbitrary depth z, P (ω, kx, z), can be calculated by
multiplying a reference wave field P (ω, kx, Z) with a phase factor eikz(z−Z).
In the multilayer case, the field cannot be extrapolated through several layers
directly, since kz is a function of the medium velocity cl,

kzl = −sgn(ω) ·

√
ω2

ĉ2l
− k2

x, (4.11)

where the layer dependence is indicated by index l. However, extrapolation
within each layer is still possible,

P (ω, kx, Zl + ∆z) = P (ω, kx, Zl) · eikzl∆z, if ∆z < dl, (4.12)

where P (ω, kx, Zl) denotes the field at interface Zl, and P (ω, kx, Zl + ∆z)
denotes the field at depth z = Zl + ∆z.

If the wave field is to be extrapolated through more than one layer,
the transmission through the layer interfaces has to be considered. The
transmission factor between different media is generally a complex function,
dependent on both incident angle and the acoustic impedances of the media
[Brekhovskikh and Godin, 1990]. However, for most commonly available
ultrasound transducers, the directivity of the transducer limits the emitted
and received wave fields to a relatively small angle interval. We will therefore
assume that the transmission factors are approximately independent of incident
angle, so that the wave fields directly above and directly below an interface are
proportional;

P (ω, kx, Z
−
l ) ∝ P (ω, kx, Z

+
l ), (4.13)

where the plus and minus signs are used to indicate the upper and lower side of
the interface, respectively. Since we are mainly interested in relative amplitudes
within each layer, the amplitude scaling effect imposed by the interfaces is here
deemed unimportant to the imaging problem.

Assuming proportionality across interfaces, the wave field at an arbitrary
interface Zl can, within a scaling factor, be calculated from the wave field
measured at Z1,

P (ω, kx, Zl) ∝ P (ω, kx, Z1) · exp

(
i
l−1∑
m=1

kzmdm

)
. (4.14)
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The equations (4.12) and (4.14) constitute the basis for PSM imaging of
several layers. The imaging procedure for layer l can be summarized as follows:

1. Calculate the wave field at the top of the layer interface, P (ω, kx, Zl),
using (4.14)

2. For each depth Zl + ∆z to be imaged within the layer:

(a) Shift the wave field downwards with ∆z by multiplying with a phase
factor, according to (4.12), to obtain P (ω, kx, Zl + ∆z)

(b) Create an image line ip(x, Zl + ∆z) by integrating with regard to ω
and inverse transforming with regard to kx, similarly to (3.21).

4.2.2 Multilayer Stolt migration

In Section 3.5.4, it was shown that Stolt migration enables focusing of the
complete pulse-echo wave field in a single operation, through a substitution of
variables. The substitution requires that the wave velocity is constant, and
Stolt migration can therefore only be performed inside a single layer. Thus, to
use Stolt migration in layer l, the wave field must first be extrapolated to the
interface Zl using (4.14). The focused image for layer l is then given by

ip,l(x,∆z) =

∞∫∫
−∞

Al(kx, kz) · P (ωl(kx, kz), kx, Zl)︸ ︷︷ ︸
P (kx,kz,Zl)

· eikz∆zeikxx dkxdkz, (4.15)

where

Al(kx, kz) =
ĉl√

1 +
k2x
k2z

, and (4.16)

ωl(kx, kz) = −sgn(kz) · ĉl
√
k2
x + k2

z . (4.17)

The imaging procedure to create an image of layer l can be summarized in
the following way:

1. Calculate the wave field at the top of the layer, P (ω, kx, Zl), using (4.14)

2. Use (4.16) and (4.17) to obtain the remapped wave field P (kx, kz, Zl).

3. Inverse transform to obtain the image within the layer, ip,l(x,∆z), given
by (4.15)

We will refer to this algorithm as the MUlti-Layer Omega-K algorithm
(MULOK). The term Omega-K is used rather than Stolt migration because it
is more common in radar literature [Cumming and Wong, 2004].

As for many engineering problems, the mathematics of the PSM and
MULOK algorithms conceal the complexity of practical implementation.
Further implementation details are given in Appendix 4.A.
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4.3 Lateral resolution in multilayered media

In Section 3.6.1 it was shown that the lateral resolution of an synthetic aperture
image is dependent on the bandwidth of the kx spectrum, and that the
bandwidth is limited by the effective length D of the transducer, so that the
lateral resolution is approximately D/2. But is this also true for the multilayer
case?

According to Snell’s law, the kx wavenumber of a wave incident on a layer
interface must remain the same after transmission into the next medium. Thus,
the refraction of the wave does not in itself alter the horizontal wavenumber, but
the transmission factors between media are generally dependent on incidence
angle, making the interface a low-pass filter for the kx spectrum [Brekhovskikh
and Godin, 1990]. Above the critical angle of the interface, the incident wave is
totally reflected. The bandwidth of the kx spectrum is only maintained as long
as the transmission factors are approximately uniform within the divergence
angle of the transducer. In practice, this requirement is fulfilled for many
transducer designs and material combinations of interest. For example, for
a immersion scan of copper using a 2.25 MHz 10 mm diameter transducer,
the two-way transmission factor varies by only approximately 6% within the
transducer beam [Olofsson, 2010]. As long as the kx spectrum bandwidth
can be assumed to be the same for the single-layer and multilayer case, the
theoretical lateral resolution of D/2 is also the same.

4.4 Algorithm efficiency

4.4.1 Asymptotic complexity

The efficiency of an algorithm is often quantified by analyzing how the number
of operations grow as the size of the input data tends towards infinity, and
this asymptotic complexity is denoted using “Big O” notation. In the case
of the PSM and MULOK algorithms, the size of the input data is given by
the number of time samples, N , the number of measurement positions, M ,
and the number of layers, L. Note that the sampling frequency is assumed to
be constant, so that the number of frequency samples within the transducer
bandwidth is proportional to the number of time samples.

In the MLDAS algorithm, each image pixel is formed by delaying and
summing the signals recorded within the synthetic aperture. In general, the
effective size of the synthetic aperture increases with depth, as shown in Section
4.1.2, but to simplify the analysis we will assume that the synthetic aperture
size is constant within the imaged range.

The delay operation requires an interpolation step, as discussed in Section
3.4.3. As long as the synthetic aperture size is constant, the number of
operations needed for interpolation and summation for each image pixel is
also constant. Thus, since there are NM pixels in the image, the MLDAS
algorithm is O(NM) for a synthetic aperture of constant size. Note however
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Table 4.1: Complexity for the individual steps of the PSM algorithm

Operation Complexity
Initial Fourier transform O

(
MN logMN

)
Phase shift to Zl O(LMN)
Phase shift to Zl + ∆zl O(MN2)
Summation over ω O(MN2)
Inverse transform (kx) O(MN logM)

Table 4.2: Complexity of the individual steps of the MULOK algorithm

Operation Complexity
Initial Fourier transform O

(
MN logMN

)
Phase shift to Zl O(LMN)
Interpolation from ω to kz O(LMN logN)
Amplitude scaling O(LMN)
Inverse Fourier transform O

(
LMN · logMN

)
that in similar analyses, for example in [Nagai, 1985] and [Ulander et al., 2003],
it is assumed that all M transducer positions are included in the synthetic
aperture, for all pixels in the image. With this assumption, the number of
operations needed to focus a single pixel grows with M , and the algorithm is
O(NM2). However, in the following discussion we maintain the assumption
that the synthetic aperture size is constant, and that MLDAS is O(NM).

The analysis of the PSM and MLDAS algorithms is slightly more
complicated and has therefore been placed in Appendix 4.A.5. A summary
of the complexity for each algorithm step is given in Tables 4.1 and 4.2. The
overall complexity of each algorithm is given by the algorithm step with the
highest order complexity. To analyze this, we consider the complexities with
regard to N , M and L separately, assuming that the two remaining variables
are kept constant. The highest order complexities are summarized in Table 4.3.
MULOK is seen to have a lower complexity than PSM with regard to N , since
N logN < N2, while the complexity with regard to M and L is the same for
both algorithms. The MLDAS algorithm has a lower complexity than PSM and
MULOK in terms of both N and M , and its processing time is independent of
L. However, a large number of operations are involved in forming each pixel,
yielding large constant factors not included in the analysis.

Table 4.3: Asymptotic complexities of MLDAS, PSM and MULOK, with respect to
N , M and L separately.

Algorithm N M L
MLDAS O(N) O(M) –
PSM O(N2) O(M logM) O(L)
MULOK O(N logN) O(M logM) O(L)
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4.4.2 Empirical evaluation of execution times

To compare the execution times for practical implementations of the algo-
rithms, a number of simulated processings were performed in Matlab. For
convenience, test data sets were made using matrices with random numbers
rather than actual ultrasonic scans. This should not affect the execution times
of the algorithms, as they are only dependent on the size of the data sets,
and not on their content. The number of pixels in the output images was set
equal to that of the raw data input. For the MLDAS algorithm, the input
data was upsampled before focusing to enable nearest-neighbour interpolation,
as discussed in Section 3.4.3. The time required to perform this upsampling
is relatively small, and was not included in the execution time measurements.
Also, the angular beamwidth used for the MLDAS apodization was set to
13◦ for all the layers. This beamwidth corresponds approximately to the
apodization beamwidth used for a 2.25 MHz transducer with 6 mm diameter in
water. The simulations were performed on a dual-core 2 GHz laptop, running
a 64-bit Linux version of Matlab R2011b (The Mathworks, Natick, MA, USA).

Two series of simulations were performed, to study the dependence on
number of time samples, N , and number of measurement positions, M . In the
first series, M was kept constant at 256, and N was varied within the range
[64, 8192]. The results are shown in Fig. 4.4(a) and (b), corresponding to
simulations with 2 and 5 layers, respectively. Lines indicating the asymptotic
complexity with regard to N were added to the results for each algorithm,
normalized to match the values for N = 8192. In the second experiment series,
N was kept constant at 256, and M was varied in the range [64, 8192]. The
results are shown in Fig. 4.4(c) and (d), with similar lines as in Fig. 4.4(a) and
(b) indicating the asymptotic complexity with regard to M . Note that both
axes in the plots are logarithmic.

In general, the results match the asymptotic complexities in Table 4.3
closely, especially for high values of N and M . This indicates that the general
trends seen here can be assumed to be valid in general, even if the execution
times presented here are valid only for one specific implementation of the
algorithms.

In Fig. 4.4(a), it is seen that the PSM algorithm has the lowest processing
time for small N , but that its rate of increase is also significantly higher
than that of the other algorithms. Thus, even though the processing time for
MLDAS is significantly higher than PSM and MULOK for small N , the PSM
line crosses the MLDAS line at N ≈ 4096. However, the MULOK processing
time is consistently lower than the MLDAS processing time by a large factor.
For N = 8192, the processing times are 140 s, 70 s and 3.6 s for PSM, MLDAS
and MULOK, respectively.

Fig. 4.4(b) shows how the processing times are affected by changing the
number of layers from 2 to 5. The PSM and MLDAS results are practically
identical to the 2-layer case in Fig. 4.4(a), but the MULOK processing time is
increased for all N . At N = 8192, the MULOK processing time is 7.3 s, an
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Figure 4.4: Comparison of execution times for MLDAS, PSM and MULOK
algorithms.

increase from the 2-layer case of approximately 100%.
With N constant and M increasing, the asymptotic rate of increase for the

three algorithms is very similar, since the additional logM factor for PSM and
MULOK is relatively small even for large M . This is clearly seen in Fig. 4.4(c),
where the MLDAS processing time is consistently higher than the PSM and
MULOK processing time for all M . At M = 8192, the processing times are 56
s, 5.2 s, and 4.2, for MLDAS, PSM and MULOK, respectively.

Finally, Fig. 4.4(d) is similar to Fig. 4.4(b) in showing that increasing the
number of layers also increases the MULOK processing time, while the MLDAS
and PSM processing times remain unchanged. The reason that MULOK
is more heavily influenced by L than PSM can be found by comparing the
complexities for each algorithmic step, listed in Table 4.1 and Table 4.2. PSM
has only one step whose complexity is proportional to L, while almost all steps
in MULOK are have complexities proportional to L.
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4.5 Experiment with three-layer structure

4.5.1 Experimental setup

An experiment was performed to study the imaging performance of the
multilayer algorithms for real ultrasound data. Two test blocks with side-
drilled holes were placed on top of each other and immersed in a water tank,
and an array of four steel pins was placed over the two blocks, as shown in Fig.
4.5. A B-scan of the arrangement was performed using a 2.25 MHz transducer
with 6 mm diameter, moved in steps of 1 mm, with a sampling frequency of
12.5 MHz. 1040 time samples were recorded in 111 measurement positions.

The test blocks were made of acrylic glass and aluminium, and were 31 and
50 mm thick, respectively. Each of the blocks had four side-drilled holes, which
were all 1.6 mm in diameter and 30 mm deep. The vertical spacing between the
holes was 6 mm in the acrylic glass block and 10 mm in the aluminium block,
while the horizontal spacing was 20 mm for both blocks. The blocks were also
shifted approximately 10 mm horizontally, so that the upper holes would not
create a dominating “shadow” for the lower holes. The steel pins were 0.3 mm
in diameter, with a vertical spacing of 5 mm and a horizontal spacing of 20

ø

ø

Figure 4.5: Measurement geometry for experiment with point-like scatterers in
water, acrylic glass and aluminium layers.
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mm.
To compensate for limited dynamic range in the signal acquisition system,

a time-dependent damping/amplification was applied during the scan. The
reflection from the interface between water and acrylic glass was damped by
10 dB, and the reflections from within the aluminium layer were amplified by
20 dB.

The raw data was processed with both the MLDAS, PSM and MULOK
algorithms, assuming a longitudinal wave velocity for water, acrylic glass and
aluminium of 1480 m/s, 2730 m/s and 6320 m/s, respectively. In the MLDAS
algorithm, a Hann window was applied, as discussed in Section 3.4.2 and 4.1.2.
The beamwidth, which determines the size of the synthetic aperture in the
MLDAS algorithm, was set to 15.7 degrees, corresponding to 2.5 λ/D at the
transducer center frequency. A relatively wide beam was used to maintain
a high lateral resolution, as discussed in Section 3.7. Also, for the MLDAS
algorithm the raw data was upsampled from 12.5 MHz to 200 MHz to enable
accurate nearest-neighbour interpolation, as discussed in Section 3.4.3. The
resampling was performed by zero-filling and low-pass filtering with a FIR
filter with 321 elements.

4.5.2 Results after synthetic aperture focusing

The raw data envelope image and the focused images are shown in Fig. 4.6,
plotted on a dB intensity scale with 40 dB dynamic range.

In the raw image in Fig. 4.6(a), the front echo from the acrylic glass surface
is seen as a horizontal line at approximately 100 µs, and echoes from the acrylic
glass - aluminium and aluminium - water interfaces are visible at approximately
123 and 137 µs, respectively. Note that due to the difference in wave velocity,
the apparent thickness of the layers on the time axis is far from their actual
thickness. Reflections from the steel pins and the side-drilled holes are seen as
four reflections in each of the layers, with the width of the reflections increasing
with depth due to the divergence of the transducer beam. There are also some
weaker reflections cluttering the image in both the acrylic glass and aluminium
layers, caused by multiple reflections of the scatterers.

It is evident from Fig. 4.6(b)-(d) that the images produced by PSM and
MULOK are visually very similar. The reflections from the scatterers have been
focused, resulting in an improved lateral resolution that is approximately the
same for all scatterers, independent of depth or layer. Multiple reflections have
been partially focused or defocused, depending on how close they are in time to
their original scatterers. For example, the reflection seen at approximately t =
130 µs, x = 30 mm in the raw data appears to be caused by a scatterer in the
aluminium layer, but it is actually a multiple reflection of the leftmost scatterer
in the water layer. In the focused images, the reflection has been defocused
into a curve. Note also that the scatterers in the aluminium layer seem to have
low-amplitude side lobes. These may be caused by so-called “creeping waves”
in the side-drilled holes. [Lopez-Sanchez et al., 2005].
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(d) Focused image, MULOK

Figure 4.6: Raw data and focused images from experiment with point-like scatterers
in water, acrylic glass and aluminium.
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Comparing the MLDAS image to the PSM and MULOK images, it is
seen that MLDAS yields a slightly higher level of processing noise. The
curved artifacts in the aluminium layer are also more pronounced. To study
the differences between the images further, difference images were produced,
and the results are shown in Fig. 4.7. The difference was taken between
the dB values of the images, corresponding to a power ratio in linear units.
The MLDAS-PSM and MLDAS-MULOK difference images were found to be
practically identical, and therefore only the MLDAS-PSM image is shown.

The MLDAS-PSM difference image shows the two images are almost
identical at the scatterers and interfaces. However, outside these areas the
noise floor is higher for the MLDAS algorithm. To further visualize this effect,
a single A-scan was extracted from each of the images, from the x position
indicated with dashed lines in Fig. 4.7. The A-scans are shown in Fig. 4.8. The
plots indicate that in the water and acrylic glass layers, the noise floor in the
MLDAS image 10-15 dB higher than in the PSM and MULOK images.

The difference image in Fig. 4.7(b) shows that the differences between the
PSM and MULOK images are very small, and mainly located outside the
scatterer and interface areas. The differences are probably caused by imperfect
interpolation of the ω−kx spectrum in the MULOK algorithm.
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Figure 4.7: Difference images. The dashed line indicates the position of the example
A-scan shown in Fig. 4.8.
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Figure 4.8: Comparison of A-scans from MLDAS, PSM and MULOK images. The
amplitude of the reflections from scatterers and interfaces are approximately equal,
but the noise floor is slightly higher for MLDAS.

4.5.3 -6 dB width of scatterers

The -6 dB width of the point scatterers was analyzed for both the raw data and
the focused images, and the results are shown in Fig. 4.9. In Fig. 4.9(a), we
see that in the raw data, the scatterer width increases significantly throughout
the layered structure, from approximately 5 mm for the closest scatterer in
water, to approximately 24 mm for the deepest scatterer in the aluminium
layer. The raw data for the aluminium layer was slightly corrupted by multiple
reflections and background noise, as seen in Fig. 4.6(a), and it was therefore
hard to determine the -6 dB width accurately. This is probably the reason why
the estimated -6 dB width does not increase monotonically with depth in the
aluminium layer.

Figure 4.9(b) shows that in the focused images, the -6 dB width is 3-4
mm for all the scatterers, almost independent of depth. This corresponds well
with the theoretical resolution of half the transducer diameter, which in this
case is 3 mm (see Section 3.6.1). In the aluminium layer, the scatterers are
slightly wider than in the other two layers, probably due to the higher level
of background noise. Another possible explanation is that the transmission
into the aluminium layer slightly decreases the kx bandwidth, as discussed in
Section 4.3.

The MLDAS algorithm is seen to yield -6 dB widths which are slightly
higher than those of PSM and MULOK. This may be due to the use of Hann
windowing of the synthetic aperture, as demonstrated in Section 3.7. The
approximate nature of (4.7), which is used to calculate the pulse-echo delay
time in MLDAS, may also affect the resolution of the focused image.
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Figure 4.9: -6 dB width of scatterers in three-layer structure of water, acrylic glass
and aluminium. The interfaces between the layers are indicated with vertical dashed
lines.
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Figure 4.10: Comparison of point spread functions for rightmost scatterer in each
layer. Rows, top to bottom: Water, acrylic glass, and aluminium layers. Columns,
left to right: Raw data, MLDAS image, PSM image, MULOK image. The amplitude
difference between each contour is 6 dB.
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4.5.4 Example point spread functions

To study the point spread functions of the raw and focused images in more
detail, zoomed-in contour plots of the rightmost scatterer in each layer were
made. The plots are shown in Fig. 4.10, with 6 dB difference between each
contour. Note that there is a difference in scale between the horizontal and
vertical axis.

The plots of the raw data PSF show how the width of the response
increases with depth and layer, and that the background noise level increases
correspondingly. The focused PSFs are all relatively similar, except for the
background noise, which is relatively high in the aluminium layer. Note that
the background noise is slightly higher for MLDAS, in both the acrylic glass
and the aluminium layer.

4.6 Discussion

In theory, the algorithms presented in this chapter can be applied to structures
with an arbitrary number of layers. However, since the transmission factor
between layers is generally lower than one, both the transmitted pulse and the
backscattered echo will be significantly damped at each interface. Thus, the
signal-to-noise ratio is likely to limit the number of layers that can be imaged
in practice. In addition, multiple reflections from within the first layers will
interfere with echoes from layers further down, as seen in the experiment in
Section 4.5.

In Section 4.4.2, the execution times of the MLDAS, PSM and MULOK
algorithms were analyzed for simulated data sets of different sizes. The results
indicated that the MLDAS algorithm generally has a higher execution time
than PSM and MULOK. However, the execution time of the PSM algorithm
increases quickly with the number of time samples, N , and thus it is less
efficient than MLDAS as N grows large. MULOK, on the other hand, was
consistently more efficient than MLDAS for all the simulations. The MULOK
execution time increases with the number of layers, L, but due to the issues
discussed in the preceding paragraph, the number of layers will probably be
limited to two or three. Thus, MULOK should generally yield a lower execution
time than MLDAS and PSM. Note, however, that time-domain methods like
MLDAS may be simpler to implement than Fourier-domain algorithms on some
computational platforms.

Note also that for Fourier-domain methods to make use of the FFT
algorithm, the measurement positions are required to be equally spaced along
a straight line. Small deviations from the line can be compensated for, but this
reduces the efficiency of the algorithm [Ulander et al., 2003]. Time-domain
methods do not have the same strict requirements regarding measurement
position, and are therefore more easily adapted to applications where the
transducer follows an irregular scanning path [Callow, 2003].
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The experiment in Section 4.5 demonstrated that all three algorithms yield
a significant focusing of data from multilayered structures. The PSM and
MULOK algorithms were shown to perform slightly better than MLDAS in
terms of signal-to-noise level and lateral resolution. According to the theory
presented in Section 3.5 and 4.2, PSM and MULOK should yield identical
results, and the small differences observed between the two are probably mainly
due to inaccuracies in the resampling of the ω−kx spectrum in the MULOK
algorithm. In practice, the accuracy of the interpolation used for resampling
can be adjusted according to the requirements of the specific application. Note
also that there are variations of the ω−k algorithm which perform resampling
without any interpolation, for example using the chirp z-transform [Lanari,
1995]. Modifying MULOK to accommodate such methods is seen as a subject
for future work.

In the multilayered geometry considered here, it is assumed that the layers
are all horizontal. This assumption is not valid if the layers are tilted relative to
the transducer scan line, which may often be the case in practical applications.
However, if the tilt is relatively small, the problem can be circumvented by
extrapolating the wave field to a line parallel to the layers, yielding a new
data set with a rotated coordinate system. This is shown in [Olofsson et al.,
2010], and also in Appendix 4.B. The new data set can then be processed by
multilayer algorithms without further modifications.

4.7 Summary

In this chapter we have presented three algorithms for 2D multilayer synthetic
aperture imaging, called MLDAS, PSM and MULOK. MLDAS is based in
the time domain, while PSM and MULOK are based in the Fourier domain.
Comparison of execution times revealed that MLDAS is relatively inefficient
due to the large number of operations needed to focus each image pixel. PSM
is efficient as long as the depth range is relatively small, while MULOK is
efficient for both small and large ranges, as long as the number of layers is
small. The algorithms were applied to data from an experiment with water,
acrylic glass and aluminium layers, and the results showed that the lateral
resolution after focusing was approximately the same for all three algorithms.
The -6 dB width of point scatterers in the focused images was approximately
equal to half the transducer diameter, independent of depth or layer. However,
the processing noise level was generally higher for MLDAS than for PSM and
MULOK.
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4.A Implementation details for PSM and MU-
LOK algorithms

4.A.1 Matrix representation of discrete data

In Section 4.2, the theory for the PSM and MULOK algorithms was outlined
for the case of continuous signals, and it was also assumed that the wave field
in the measurement plane is known for all x and t. In practice, the wave field
must be sampled discretely both in time and space, for a finite time period and
over a finite section of the x axis.

We assume that at each measurement position, a pulse is emitted, and
Nt time samples are recorded, corresponding to time instants t1, t2, . . . , tNt .
The measurement is performed at M different x positions, x1, x2, . . . , xM .
Time samples are equally spaced with δts = 1/fs, where fs is the sampling
frequency, and the x positions are equally spaced with δxs. Assuming that
the measurement is done at depth Z1, the discrete data set can be organized
in a matrix Ptx[Z1], with element pij corresponding to time instant ti of the
pulse-echo measurement at position xj :

Ptx[Z1] =

x1 x2 . . . xM

t1
t2
...

tNt


p11 p12 . . . p1M

p21 p22

...
...

. . .
...

pNt1 . . . . . . pNtM

 . (4.18)

Note that some zero-padding of Ptx in the x direction may be required
to avoid spatial aliasing in the focused image [Gu et al., 2004]. Additional
zero-padding can be applied to make the dimensions of Ptx equal to powers
of two, or products of small prime factors, to speed up the FFT algorithm.
Assuming that Nt and M includes zero-padding, the discrete Fourier transform
of Ptx[Z1] is also an Nt times M matrix, and we denote this matrix P̂ωkx [Z1].
The elements of P̂ωkx [Z1] correspond to ω in the range [−πfs, πfs], but only
elements that correspond to the transducer passband are significantly different
from zero. Because the frequency spectra of real valued signals are symmetric,
we can also limit the processing to positive ω values, effectively reducing the
size of the data set and speeding up the algorithm. Denoting the upper and
lower cutoff frequency for the transducer by fmin and fmax, we define Pωkx [Z1]
as the subset of P̂ωkx [Z1] corresponding to ω ∈ 2π[fmin, fmax]:

Pωkx [Z1] =

kx1 kx2 . . . kxM

ω1

ω2

...
ωNω


P11 P12 . . . P1M

P21 P22

...
...

. . .
...

PNω1 . . . . . . PNωM

 , (4.19)
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where ω1 = 2π
⌊
Nt

fmin

fs

⌋
, ωNω

= 2π
⌈
Nt

fmax

fs

⌉
, and the step size is ∆ω =

2πfs/Nt. The relationship between Nω and Nt is given by the ratio of
transducer bandwidth to sampling frequency:

Nω/Nt ≈ (fmax − fmin)/fs. (4.20)

Also, assuming that the Fourier transform output is arranged so that the
zero wavenumber is centered, and that M is even, the kx wavenumbers are
given by

kx =
2π

δxs ·M
· [−M/2,−M/2 + 1, · · · , 0, · · · ,M/2− 1] . (4.21)

4.A.2 Wave field extrapolation

We know from Section 4.2.1 that a wave field at depth Zl can be shifted to
an arbitrary depth Zl + ∆z within layer l by multiplication with a complex
exponential eikzl∆z, where kzl is given by

kzl = −sgn(ω) ·

√
ω2

ĉ2l
− k2

x. (4.22)

The frequency-wavenumber spectrum should be limited to propagating waves,
corresponding to real-valued kzl, and this requirement is fulfilled as long as
the square root argument of (4.22) is positive. All elements of Pωkx for which
ω2

ĉ2l
− k2

x < 0 should therefore be set to zero.

Let Kzl be the discrete matrix representation of kzl. It is an Nω times M
matrix given by

Kzl =

 kzl(ω1, kx1) . . . kzl(ω1, kxM )
...

. . .
...

kzl(ωNω
, kx1) . . . kzl(ωNω

, kxM )

 . (4.23)

The extrapolation from depth Zl to depth Zl + ∆z is performed with an
entrywise multiplication:

Pωkx [Zl + ∆z] = Pωkx [Zl] ◦ exp (iKzl∆z) . (4.24)

4.A.3 Stolt migration

The Stolt migration algorithm requires a substitution of variables given by
(4.15), (4.16) and (4.17). The discrete version of P (ω, kx, Zl), denoted Pωkx [Zl],
is computed for a finite, equally spaced set of ω values. Similarly, the discrete
version of P (kx, kzl, Zl), denoted by Pkzkx [Zl], should be computed for an
equally spaced set of kz. However, the mapping given by ωl(kx, kzl) does not in
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general coincide with the equispaced values of ω in P (ω, kx, Zl), and therefore
an interpolation step is needed.

Using (4.17), we find that for a given kxj , the ω values to be interpolated
for are given by the vector

ωipl (j) = ĉl ·
√
k2
xj + k2

z , (4.25)

where the sign function is omitted because only positive ω values are included
in the processing. The kz vector contains the discrete kz values, and is squared
element by element. The interpolated values also have to be scaled according
to (4.16), and the amplitude factors for kxj are given by

al(j) =
ĉl√

1 + k2
xj/k

2
z

. (4.26)

Assuming that all kz values are negative, the kz vector is given by

kz = −δkz · [0, 1, . . . , Nkz−1]
T
, (4.27)

where δkz is the step size between each kz, and Nkz is the total number of
values. These should be chosen to cover the range of possible kz values and
also avoid any aliasing. This is fulfilled if

δkz ≤
2π

ĉl
· fs
Nt

(4.28)

and

Nkz ≥
2πfmax/ĉl

δkz
. (4.29)

4.A.4 Detailed algorithm descriptions

Figure 4.11 illustrates the flow of the PSM and the MULOK algorithms, from
the input ultrasonic data (denoted by Ptx[Z1]) to the focused image (denoted
by Izx). Ptx[Z1] is first Fourier transformed, and the elements corresponding
to the transducer passband are extracted. Then, for each layer, the wave field

is multiplied with the phase factor exp
(
i
∑l−1
m=1 Kzmdm

)
to shift it from Z1

down to the top of the layer l, given by Zl. For the first layer, the phase
factor is set equal to 1, resulting in zero phase shift. The shifted wave field
is a common starting point for both algorithms, and the subsequent steps for
PSM and MULOK are shown on the left and the right side of the flowchart,
respectively.

The PSM algorithm is based on forming an image line i(Zl + ∆z) for each
depth to be imaged. The first operation is to compute Pωkx [Zl + ∆zl] by
multiplying with the additional phase factor exp (iKzl∆zl). An image line
is then formed by summing over all ω and inverse Fourier transforming the
resulting vector.
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For the Stolt imaging algorithm, the next step after calculating Pωkx [Zl] is
to interpolate from the original ω−kx grid to a new ω−kx grid. This is done
by looping through all kx values, interpolating for each column of Pωkx [Zl]
with the ω values given by the ωipl (j) vector, and multiplying with the al(j)
vector. Only part of the result corresponds to z values within the layer, that
is, ∆z ∈ [0, dl]. For each layer, this part is cut out and saved as the local image
Izx[l].

When all the layers have been processed, the subimages Izx[l] are stacked
on top of each other to form the complete image of all the layers.

4.A.5 Analysis of asymptotic complexity

Having defined both the PSM and the MULOK implementations, it is possible
to study the computational complexity of the two. Big O notation is used to
describe the growth rate of operations as function of the size of the input data.
As described in Section 4.A.4, the raw data Ptx[Z1] is a Nt times M matrix,
corresponding to Nt time samples and M measurement positions. After Fourier
transforming the data, a Nω times M submatrix of the result is extracted for
use in the subsequent processing, where Nω is proportional to Nt. The number
of z lines for the PSM algorithm, denoted byNz, and the number of kz values for
the MULOK algorithm, denoted by Nkz , are also proportional to Nt. For the
sake of asymptotic complexity analysis, we can ignore all such proportionality
constants, and set Nt = Nω = Nz = Nkz = N . The number of layers is denoted
by L.

The initial Fourier transform, from (t, x) to (ω, kx) coordinates, is a
two-dimensional transform with complexity O(MN logMN). The following
multiplication with a phase factor to calculate Pωkx [Zl] is an entrywise
multiplication that is performed L− 1 times. The complexity of this operation
is thus O(NML).

For the phase shift migration algorithm, the wave field is multiplied with
yet another phase factor. This multiplication is performed N times, once for
each image line, and thus the complexity for all image lines is O(MN2). The
summation over ω is also performed N times, resulting in a total complexity
of O(MN2). Finally, the last operation is the inverse Fourier transform of an
M-length vector, performed N times, which is O(MN logM). The complexities
of the individual steps of the PSM algorithm are summarized in Table 4.1.

For the MULOK algorithm, the calculation of Pωkx [Zl] is followed by
an interpolation step. The complexity of this step depends on the type
of interpolation utilized, but in this work, the following method was used:
Pωkx [Zl] was first interpolated to a denser rectangular grid by inverse Fourier
transforming along the ω dimension, zeropadding, and Fourier transforming
back again. This operation is O(MN logN). The final interpolation was
subsequently performed by linear interpolation between points on this denser
grid. This operation consists of a search to find the two closest ω values
and calculating a weighted sum of P for these values, and the corresponding
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Figure 4.11: Flowchart for Stolt and phase shift migration algorithms, employing
matrix representation of discrete data.
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complexity is O(MN logN). Since the 2D interpolation is performed once for
each layer, the overall complexity is then O(LMN logN). Multiplication with
the amplitude factors al(j) is O(LMN), and the inverse Fourier transform to
produce the image is O(LMN logMN). The complexities of the different steps
of the MULOK algorithm are summarized in Table 4.2.

4.B Tilt compensation

The multilayer algorithms presented in Chapter 4 and 5 require that the
velocity is a function of depth only, c(z). This assumption is violated if the
interfaces between layers are non-planar. Variants of phase shift migration have
been developed to treat more general velocity variations, see [Stoffa et al., 1990]
and references therein. In ultrasonic scanning of man-made objects, which are
often planar, the assumption can still be violated if the object is not placed
parallel to the scanning plane. In practical applications it may be difficult to
avoid tilting completely, and a method to robustly treat non-horizontal layers
is therefore needed. The simple tilt-compensation method described here is
based on extrapolating the measured wave field to a virtual measurement line
that is parallel to the object surface. For simplicity, the method will only be
presented for the 2D case, but an extension to 3D is straightforward.

The situation is illustrated in Fig. 4.12. An object is tilted with an angle
θ relative to the measurement coordinate system. The tilt of the object is
compensated by extrapolating the measured wave field from z = Z to the
virtual measurement line given by z = Z + ax, where a = tan θ.

The starting point for the tilt compensation is the wave field extrapolation
given by (3.20). We set Z = 0, without loss of generality, and denote
P (ω, kx, z = 0) as P (ω, kx) to simplify notation, yielding the following
expression for the extrapolated wave field;

Figure 4.12: Rotated coordinate system for a tilted layer.
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p(t, x, z) =

∞∫∫
−∞

P (ω, kx) · eikzz · eikxx · e−iωt dkx dω, (4.30)

where kz is a function of ω and kx, as given by (3.19). We want to calculate
the wave field along a tilted line z = ax, and insert this into (4.30):

p(t, x, z = ax) =

∞∫∫
−∞

P (ω, kx) · eikzax · eikxxe−iωt dkx dω. (4.31)

Combining the eikzax and eikxx terms, we obtain

p(t, x, z = ax) =

∞∫∫
−∞

P (ω, kx) · eik̂xx · e−iωt dkx dω, (4.32)

where k̂x is given by

k̂x = kx + akz (4.33)

= kx − a · sgn(ω) ·
√
ω2

ĉ2
− k2

x. (4.34)

The integral in (4.32) can be recast as a proper inverse Fourier Transform by
a substitution of variables. Rearranging (4.34), we obtain

kx(ω, k̂x, a) =
1

1 + a2

(
k̂x + a

√
(1 + a2) · ω

2

ĉ2
− k̂2

x

)
. (4.35)

By using the calculus rules of substitution, (4.32) is transformed to

p(t, x, z = ax) =

∫∫
P (ω, k̂x) eik̂xxe−iωtdk̂xdω, (4.36)

where

P (ω, k̂x) = A(k̂x, ω, a) · P
(
ω, kx(ω, k̂x, a)

)
, and (4.37)

A(ω, k̂x, a) =
∂kx

∂k̂x
=

1

1 + a2

1− ak̂x√
(1 + a2) · ω2

ĉ2 − k̂2
x

 . (4.38)

In practice, the substitution of kx with k̂x is performed by an interpolation
in the kx domain, similar to the interpolation performed for Stolt migration,
as described in Section 3.5.4. Note also that if the wave field is sampled with
a spacing of δxs in the original coordinate system, it is sampled with δx̂s =
δxs/ cos θ in the rotated coordinate system.
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After the transformation to the rotated coordinate system, the Fourier-
domain wave field P (ω, k̂x) given by (4.37) can be used directly by the PSM
algorithm as the starting point for wave field extrapolation.

A simple experiment was performed to demonstrate tilt compensation on
real data. A copper block with a number of side-drilled holes was scanned using
a 2.25 MHz transducer with 10 mm diameter. The copper block was tilted
approximately 2 degrees relative to the transducer scan line. In the resulting
raw data set, shown in Fig. 4.13(a), the front and back surface reflections are
seen as tilted lines, and the side-drilled holes are seen as a number of curved
reflections from inside the block.

The tilt compensation method described above was applied, extrapolating
the wave field to the virtual scan line indicated in Fig. 4.13(a). The resulting
wave field, shown in Fig. 4.13(b), was focused using the multilayer PSM
algorithm, and the focused image is shown in Fig. 4.13(c).
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(a) Raw data
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(b) Raw data, compensated for tilt
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(c) Focused image

Figure 4.13: Raw data, tilt compensated data, and PSM focused image from
experiment with side-drilled holes in copper block.



Chapter 5
3D multilayer synthetic aperture
imaging

In the two previous chapters, the SAFT algorithms were presented for a
two-dimensional geometry. In some synthetic aperture applications, such as
synthetic aperture radar and sonar, the region being imaged is essentially two-
dimensional, and such algorithms are sufficient. However, in ultrasonic imaging
the region of interest is often a three-dimensional volume, and to image such
a volume, the transducer must be moved over a surface rather than along a
line. This produces a 3D data set with pulse-echo time on one axis and surface
coordinates on the other two axes.

3D versions of SAFT have been developed alongside 2D algorithms since
SAFT came into use [Doctor et al., 1986; Mayer et al., 1990; Doctor et al.,
1996], and experiments have shown that they can yield a significant increase
in resolution along both lateral axes. In this chapter, we expand the PSM
algorithm to enable multilayer 3D imaging. A similar expansion of the MLDAS
and MULOK algorithms is relatively simple, but is not included here. The
performance of the 3D PSM algorithm is evaluated through an experiment with
point-like scatterers in acrylic glass and aluminium layers. To demonstrate the
difference between 2D and 3D focusing, the 2D PSM algorithm is also applied
for the same experiment, by independently processing 2D slices from the 3D
data set.

One of the potential uses of multilayer SAFT is imaging of pitting corrosion
where the object under test can only be accessed from the non-corroded side.
An example of pitting corrosion is shown in Fig. 5.1(a), and the corresponding
two-layer measurement geometry is illustrated in Fig. 5.1(b). At the end of the
chapter, we present an experiment with 3D SAFT imaging of artificial pitting
in an aluminium plate.
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(a) (b)

Figure 5.1: (a) Example of pitting corrosion. (b) Measurement geometry for outside
pitting corrosion.

5.1 Expansion of PSM to 3D

The derivation of the PSM algorithm for the 2D case is given in Section 3.5, and
this derivation follows along the same lines. In a three-dimensional Cartesian
coordinate system, plane wave solutions to the acoustic wave equation are on
the form

p(t, x, z) ∝ ei(kxx+kyy+kzz−ωt) (5.1)

where kx, ky and kz are the wavenumbers along the x, y and z axes. The
wavenumbers are related to ω through the dispersion relation(ω

ĉ

)2

= k2
x + k2

y + k2
z (5.2)

where we have used the effective wave velocity ĉ = c/2 according to the
exploding reflector model described in Section 3.2. We choose kz as the
dependent variable, and assume that all recorded waves propagate in the
negative direction along the z axis, so that kz and ω have opposite signs:

kz(ω, kx, ky, ĉ) = −sgn(ω) ·
√
ω2

ĉ2
− k2

x − k2
y. (5.3)

We denote the Fourier transform of a 3D wave field at depth z as

P (ω, kx, ky, z) = Ft,x,y
{
p(t, x, y, z)

}
, (5.4)

and the inverse transform as

p(t, x, y, z) = F−1
t,x,y

{
P (ω, kx, ky, z)

}
. (5.5)

The pulse-echo wave field is recorded in the x−y plane given by z = Z. As
for the 2D case, the wave field can be extrapolated to an arbitrary depth z by
a phase shift in the Fourier domain;

P (ω, kx, ky, Z + ∆z) = P (ω, kx, ky, Z) · exp (ikz∆z) . (5.6)
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A focused 2D image plane at depth z is obtained by integrating over ω and
inverse Fourier transforming from (kx, ky) to (x, y) coordinates:

ip(x, y, Z + ∆z) = F−1
x,y


∞∫
−∞

P (ω, kx, ky, Z) · exp (ikz∆z) dω

 . (5.7)

A full 3D image is formed by applying (5.7) for all depths of interest. The
adaptation of 3D PSM to multilayer imaging follows that of Section 4.2.1
exactly, and will not be repeated here.

5.2 Point scatterer experiment

To test 3D imaging in multilayered media, an experiment similar to that
described in Section 4.5 was performed. The experimental setup is shown in
Fig. 5.2. Two test blocks, one made of acrylic glass and the other of aluminium,
were manufactured for the experiment. Each block had four flat-bottom holes
with 3 mm diameter, spaced 20 mm apart. The holes in the acrylic glass block
were 6, 12, 18 and 24 mm deep, and the holes in the aluminium block were
10, 20, 30 and 40 mm deep. The acrylic glass block was placed on top of
the aluminium block, and the arrangement was immersed in water to create a
three-layer structure. The blocks were also placed with a 10 mm offset in both
the x and y directions, to ensure that the holes in the aluminium block would
not be shadowed by the holes in the acrylic glass block. A 3D plot of the holes
in the blocks is shown in Fig. 5.3.

3D raw data for the two blocks was acquired by scanning a 2.25 MHz, 6
mm diameter transducer 63 mm above the surface of the acrylic glass block,

40
30

20 10

6121824

50

30
Acrylic glass

Aluminium

63

z

x x

y

20 20 20

20 20 20

10

Acr. glass
holes
Alu.
holes

(a) (b)

Figure 5.2: Experimental setup, acrylic glass and aluminium blocks with flat-bottom
holes. (a) Seen from side. (b) Seen from above. All dimensions are in mm.
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Figure 5.3: 3D plot of flat-bottom holes drilled into acrylic glass (top) and
aluminium (bottom).

as shown in Fig. 5.2. The spatial sampling interval was 1 mm along both axes.
Figure 5.4 shows an isosurface plot of the raw data. In each layer, the isosurfaces
encapsulate all voxels with amplitudes above 1/5 of the maximum amplitude
in the layer, which was found to be a suitable threshold for visualization. The
layer interfaces are indicated with simple green planes. The plot shows that the
scatterer responses are disc-shaped, and that the responses in the aluminium
layer are wider than in the acrylic glass layer, due to the divergence of the
transducer beam. Because of the transmission loss at the interface between the
layers, the responses from the aluminium layer are also quite noisy.

To illustrate the difference between 2D and 3D SAFT, the data set was
processed using both the 2D and 3D version of the PSM algorithm. With
the 2D version, each x− z plane of the raw data was processed separately.
Isosurfaces for both focused data sets, generated in the same way as for Fig.
5.4, are shown in Fig. 5.5. For the 2D focused data in Fig. 5.5(a), the SAFT
processing has significantly reduced the PSF width along the x axis, while the
width along the y axis is unchanged. In comparison, Fig. 5.5(b) shows that 3D
focusing reduces the PSF width equally along both axes.

As an alternative visualization of the data, amplitude C-scans were made,
by detecting the maximum amplitude along the depth axis within each layer.
The results are shown in Fig. 5.6. As in Fig. 5.4 and 5.5, it is seen that 2D
SAFT improves the lateral resolution along the x axis only, while 3D PSM yields
significant improvement along both axes. Note that in the aluminium layer,
the 2D SAFT yields some reduction of the background noise relative to the
raw data, and 3D SAFT yields an even further improvement. This is because
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Figure 5.4: 3D plot of raw data from flat-bottom holes in acrylic glass and
aluminium layers. In each layer, the scatterers are shown as isosurfaces encapsulating
all voxels with amplitudes above 1/5 of the maximum amplitude.

(a) 2D focused (b) 3D focused

Figure 5.5: Isosurface plots of focused data from experiment with point scatterers
in acrylic glass and aluminium layers. (a) Data focused using the 2D PSM algorithm
for each x− z plane. (b) Data focused using the full 3D PSM algorithm.
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Figure 5.6: C-scans obtained from 3D data sets. Left: Acrylic glass layer. Right:
Aluminium layer. Top to bottom: Raw data, image focused with 2D PSM for x− z
planes, and image focused with 3D PSM. The images have been normalized relative
to the highest amplitude in each image.

the responses from the scatterers are coherently added in synthetic aperture
processing, while random measurement noise tends to cancel itself out [Frazier
and O’Brien Jr., 1998]. The improvement is more significant for the 3D case
because the coherent summation includes a larger number of measurements.

The average -6 dB diameter of the PSF for each scatterer was estimated for
raw and 3D focused data, by measuring the -6 dB area a in the C-scan, and
setting the diameter d =

√
π/a. The results are shown in Fig. 5.7, with -6 dB

diameter plotted against the z position of each scatterer.

In the acrylic glass layer, the diameter is approximately 10 mm for all the
scatterers. However, after the experiment was performed, it was found that
the responses from the two uppermost scatterers were clipped in the signal
acquisition, resulting in an overestimation of the diameter for these scatterers.
In the aluminium layer, the diameter increases with depth, up to approximately
22 mm for the deepest scatterer.

After focusing, the diameter is approximately the same for each scatterer,
with a mean diameter of 2.3 mm in the acrylic glass and 2.7 mm in
the aluminium. This corresponds well to the theoretical resolution of
approximately half the transducer diameter, as derived in Section 3.6.1.
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Figure 5.7: Estimated -6 dB diameter of scatterers. The interface between the
acrylic glass and aluminium layers is indicated with a vertical dashed line.

5.3 Experiment with artificial pitting corrosion

A second experiment was conducted to test the application of 3D SAFT for
imaging of pitting corrosion. Several pits of various sizes were machined out of
a 30 mm aluminium plate, as shown in Fig. 5.8(a). The pitting profile is shown
as a 3D surface plot in Fig. 5.8(b), and as a plot of remaining plate thickness
in Fig. 5.8(c). The test block was immersed in water, and a transducer with
2.25 MHz center frequency and 6 mm diameter was used to perform a 3D scan
of the block. The distance from the scanning surface to the block was 50 mm,
as shown in Fig. 5.8(d), and the spatial sampling interval was 0.5 mm along
both axes.

The raw data was processed with the 3D PSM algorithm, and for both the
raw and the focused data sets, the maximum amplitude below the front surface
was detected. The resulting amplitude C-scans are shown in Fig. 5.9(a) and
5.9(b). The plate thickness was also estimated, through the depth difference
between the front surface echo and the maximum amplitude reflection within
the plate. Figures 5.9(c) and 5.9(d) show the estimated thickness of the plate
for the raw and focused data, respectively.

In the raw data amplitude C-scan in Fig. 5.9(a), the back-scattered
amplitude is generally lower in the pitting area, due to increased scattering.
The general shape of the low-amplitude area matches the shape of the pitting
profile, but no further details can be seen. In comparison, the focused amplitude
image in Fig. 5.9(b) shows several localized areas with strong backscattering,
which closely match the local peaks of the pitting profile. Note that in areas
where the pitting surface is oblique relative to the transducer scanning plane,
for example along the circumference of the pitting area, the amplitude is very
low. This is because the oblique surfaces deflect the ultrasonic pulse, reflecting
little or no energy back towards the transducer.
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(a) Machined pits on outside of plate (b) 3D plot of artificial pitting.
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Figure 5.8: Pitting profile and measurement geometry for experiment with 3D
imaging of pitting in aluminium plate.

The images of estimated thickness in Fig. 5.9(c) and 5.9(d) should ideally
be identical to Fig. 5.8(c). However, the thickness estimated from raw data is
seen as a collection of irregularly shaped patches. The thickness for the patches
matches the thickness for parts of the pitting profile, but the overall shape is not
close to the true pitting shape. In comparison, the thickness plot for the focused
data is relatively accurate, although the individual peaks appear somewhat
flattened. Sections with back-scattered amplitude below -20 dB were masked
out with a white color, since they were found to yield erroneous thickness
estimates.

The lateral resolution of the focused images is generally slightly better in
the x direction than in the y direction. It is assumed that this is due to a
difference in the scanner positioning accuracy between the two axes.
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(a) Amplitude C-scan, raw data (b) Amplitude C-scan, focused image

(c) Estimated thickness, raw data (d) Estimated thickness, focused image

Figure 5.9: Amplitude and thickness plots based on the maximum amplitude
detected below the surface echo of the aluminium plate. In (d), thickness estimates
for reflections below -20 dB relative to the maximum amplitude are masked with
white color.

5.4 Discussion

The experiment with point scatterers in Section 5.2 demonstrated that using
2D SAFT on a 3D data set yields a focusing effect along only one of the two
lateral axes. In some applications this can be sufficient, for example if the
transducer is physically focused along the other axis. However, to achieve a
high lateral resolution along both axes using an unfocused transducer, the full
3D SAFT algorithm is required.

For Fourier domain algorithms for 3D SAFT, like the PSM algorithm
presented in this chapter, the memory requirements are quite high. The full
3D data set, which easily grows to several million points even for moderately
sized scans, has to be Fourier transformed and stored in memory. In practical



84 Chapter 5. 3D multilayer synthetic aperture imaging

applications, the data set can be segmented into smaller blocks, whose size are
adjusted to the available memory. Some overlap between the blocks is then
required to properly focus objects close to the block edges, reducing the overall
efficiency of the imaging algorithm. Time-domain SAFT algorithms focus
each pixel independently, only requiring that data from within the synthetic
aperture are available. Thus, even though Fourier-domain algorithms are
generally faster than time-domain algorithms, as shown in Section 4.4.2, a
time-domain algorithm like MLDAS may in some cases be preferred for 3D
multilayer imaging, due to its small memory footprint.

The experiment with artificial pitting in Section 5.3 showed that parts of
the pitting profile yielded very little backscattered energy. This effect is due
to specular reflections at oblique surfaces, and is well known within the field of
ultrasonic NDT [Kino et al., 1980; ASNT, 2007]. However, the pitting profile
used in the experiment was very smooth, and the irregular surface created
by real pitting corrosion may yield more backscattered energy from oblique
surfaces.

5.5 Summary

In this chapter we have extended the PSM algorithm for three-dimensional
imaging. Through an experiment on point-like scatterers in a multilayered
geometry, we have shown that the attainable resolution along both lateral axes
is approximately half the transducer diameter, independent of depth or layer.
In a second experiment, we have demonstrated that 3D multilayer SAFT can be
used for high-resolution imaging and sizing of pitting corrosion on the outside
of a plate. However, the experiment also indicated that it is difficult to form
a complete image of the pitting shape, due to specular reflections at oblique
surfaces.



Chapter 6
Imaging in cylindrical geometries

In the previous chapters, synthetic aperture algorithms for measurements
performed along a straight line or over a flat plane were presented. However, in
some applications, for example imaging in blood vessels or pipes, a cylindrical
measurement geometry is more suitable [Haun et al., 2002; Duran et al., 2002].
In this chapter we consider the measurement geometry shown in Fig. 6.1, where
a transducer is moved over a cylindrical surface, performing outward pulse-echo
measurements.

SAFT algorithms for similar measurement geometries have previously been
proposed. O’Donnell and Thomas [1992] describe a time-domain SAFT
algorithm for internal coronary imaging using circular arrays, and in a follow-
up paper [O’Donnell et al., 1997], practical results from a catheter-mounted
array are reported. An approximate Fourier-domain algorithm for a similar
circular array is described in [Vray et al., 2001]. However, the circular array
yields a two-dimensional image, and in order to create a three-dimensional
focused image, the full cylindrical measurement surface has to be used. Haun
et al. [2002] present a Fourier domain algorithm for three-dimensional imaging
using a cylindrical measurement geometry. The algorithm is derived using an
approximate expression for the transducer-target distance, and the transducer
beam is required to be relatively narrow for the algorithm to be accurate.

In this chapter, we present a SAFT algorithm for cylindrical scans which has
no restrictions on the transducer beamwidth. The algorithm is based directly
on the Fourier domain solutions to the scalar wave equation, and in this sense
the algorithm is exact. Thus, compared to the algorithm in [Haun et al., 2002],
the proposed algorithm extends Fourier-domain SAFT for cylindrical scans to
the general case.

In a practical implementation of the algorithm, it is important to have a
good estimate of the attainable resolution. In Section 3.6.1 it was shown that
for a linear scan, the lateral resolution after SAFT focusing is approximately
equal to half the transducer diameter. In this chapter, we derive a similarly
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Figure 6.1: Cylindrical scanning geometry. A transducer is scanned over a
cylindrical surface given by a constant radius R. The transducer coordinates are
denoted (R,φ′, z′), and the coordinates of a point scatterer are denoted (r, φ, z). The
distance between the transducer and the scatterer is denoted r′.

simple expression for the attainable resolution of a cylindrical scan.

To test the performance of the new algorithm, we apply it in a number
of numerical simulations and experiments on point-like scatterers. We also
demonstrate the difference between the proposed algorithm and the algorithm
in [Haun et al., 2002], through a simulation with a wide-beam transducer.

6.1 Theory

6.1.1 Wave equation solutions in cylindrical coordinates

In cylindrical coordinates, solutions to the scalar acoustic wave equation are
on the form [Williams, 1999]

p(t, φ, z, r) ∝ H(1),(2)
n (krr)e

±inφe±ikzze−iωt, (6.1)

where H
(1),(2)
n (krr) denotes a Hankel function of the first or second kind, of

order n. The wavenumbers along the r and z axes are denoted kr and kz,
respectively, and ω denotes angular frequency. The relationship between kr, kz
and ω is given by

kr =

√(ω
ĉ

)2

− k2
z , (6.2)
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where we have used the effective wave velocity ĉ = c/2 according to the
exploding reflector model described in Section 3.2. The Hankel functions of
first and second order correspond to outward and inward traveling waves,
respectively. We assume here that the wave field is measured on the cylindrical
surface given by r = R, and that all sources are located in the space r > R. In
this case, only inward traveling waves are recorded, and thus the wave equation
solutions are limited to Hankel functions of the second kind. The most general
solution is a combination of all possible solutions,

p(t, φ, z, r) =
∞∑

n=−∞
einφ

∞∫∫
−∞

An(kz, ω)H(2)
n (krr) e

ikzze−iωt dkzdω, (6.3)

where An(kz, ω) denotes the complex amplitude for each individual solution.

6.1.2 Wave field extrapolation

The sound pressure at the cylindrical plane given by r = R is denoted by
p(t, φ, z, R). Since φ is periodic with 2π, the transformation of p(t, φ, z, R)
from the time-space domain to the Fourier domain is given by a Fourier series
expansion in φ and a Fourier transform in z and t:

Pn(ω, kz, R) =

(
1

2π

)3

·
2π∫
0

dφ

∞∫∫
−∞

p(t, φ, z, R) e−inφe−ikzzeiωt dz dt, (6.4)

where
(

1
2π

)3
is a normalization factor. The inverse transform is given by

p(t, φ, z, R) =

∞∑
n=−∞

einφ
∞∫∫

−∞

Pn(ω, kz, R) eikzze−iωt dkz dω. (6.5)

To simplify notation, the transforms will be denoted Ft,φ,z{·} and F−1
t,φ,z{·},

for the forward and inverse transform, respectively. Comparing (6.5) with
(6.3) and solving for An(kz, ω), we obtain an expression for extrapolating the
wave field measured at r = R to an arbitrary range r,

p(t, φ, z, r) = F−1
t,φ,z

{
Pn(ω, kz, R) · H

(2)
n (krr)

H
(2)
n (krR)

}
. (6.6)

Thus, in the Fourier domain the wave field is extrapolated from R to r through
multiplication with the transfer function

G(ω, n, kz, r, R, ĉ) =
H

(2)
n (r

√
(ω/ĉ)2 − k2

z)

H
(2)
n (R

√
(ω/ĉ)2 − k2

z)
, (6.7)
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where the expression for kr from (6.2) has been inserted to show the dependence
on ω and kz.

In the measurement geometry shown in Fig. 6.1, the positions of the
transducer and a point scatterer are given by cylindrical coordinates (R,φ′, z′)
and (r, φ, z), respectively. The transducer-scatterer distance is given by

r′ =
√
R2 + r2 − 2Rr cos(φ− φ′) + (z − z′)2. (6.8)

Haun et al. [2002] use the Rayleigh-Sommerfeld diffraction formula to derive
an approximate expression for the transfer function G,

Ĝ(ω, n, kz, r, R, ĉ) ≈
√
r

R
exp

(
i(r −R)

√
ω2

ĉ2
− n2

Rr
− k2

z

)
. (6.9)

Ĝ is accurate as long as the term cos(φ− φ′) in (6.8) can be approximated as
1 − (φ − φ′)2/2. If the transducer has a narrow beamwidth, this is valid, and
Ĝ can be used for wave field extrapolation. An analysis of the accuracy of the
approximation is included in [Haun et al., 2002].

6.1.3 Imaging

To obtain a focused image from the extrapolated wave field, we apply the
imaging condition for the exploding reflector model, t = 0, to (6.6). This
reduces the inverse transform from ω to t to a simple integral over ω, and
yields the following expression for the image plane ip at range r:

ip(r, φ, z) = F−1
φ,z


∞∫

−∞

Pn(ω, kz, R) ·G(ω, n, kz, r, R, ĉ) dω

 . (6.10)

Equation (6.10) can be used iteratively to build a three-dimensional image for
a set of ranges r. A flow chart illustrating this algorithm is shown in Fig.
6.2. The pulse-echo measurements p(t, φ, z, R) are first Fourier transformed to
obtain Pn(ω, kz, R), and then for each range r, the wave field is extrapolated
from R to r by multiplication with the transfer function G(ω, n, kz, r, R, ĉ). A
focused image plane ip(φ, z, r) is obtained by integration over ω and inverse
Fourier transformation to spatial coordinates. The procedure is similar to the
PSM algorithm described in Section 3.5 and 5.1, and we will therefore refer to
it as the Cylindrical Phase Shift Migration algorithm (CPSM).

6.1.4 Lateral resolution

The attainable angular resolution is given by the bandwidth of the angular
wavenumber, ∆n [Haun et al., 2002]. To determine ∆n, an expression for the
minimum and maximum n must be found. In the following analysis we use the
real wave velocity, c, rather than the effective wave velocity, ĉ.
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Figure 6.2: Flow-chart of the focusing algorithm described in Section 6.1.3. The
3D raw data is first Fourier transformed, and then focused for constant r planes, by
multiplication with the transfer function G, summation over ω, and inverse Fourier
transformation.

The phase of a signal that is emitted from the transducer and reflected back
is given by 2ω · (r′/c), where r′ is given by (6.8). Using the same approach as
in Section 3.6.1, we obtain an expression for n by calculating the derivative of
the phase with regard to φ, yielding

n =
ω

c/2
· Rr sin(φ− φ′)

r′
. (6.11)

From (6.8) and (6.11) it is seen that with regard to z, |n| is maximum if
z − z′ = 0, and thus it is sufficient to look at the 2D case where z = z′. This
case is shown in Fig. 6.3. The angle γ indicated in Fig. 6.3 represents the
angular coordinate in a polar coordinate system that follows the transducer.
The relation between φ, φ′ and γ is given by the law of sines, which enables us
to rewrite (6.11) as

n =
4π

λ
·R sin γ. (6.12)
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Figure 6.3: Circular scan geometry, where (r, φ) denotes the global coordinate
system, and (r′, γ) denotes the coordinate system following the transducer.

Thus, the range of n depends on the range of γ, which is given by the width
of the transducer beam. If the transducer is flat and circular with diameter D,
its directivity is given by the jinc function in (2.4), and for the pulse-echo case,
the -6 dB points are given by

sin γ = ±0.515
λ

D
. (6.13)

Inserting (6.13) into (6.12), and rounding off 0.515 to 0.5, we find that the
range of n is approximately given by

n ∈
[
−2πR

D
,

2πR

D

]
, (6.14)

so that the bandwidth of n is ∆n ≈ 4π RD . Thus, the attainable resolution in φ
is

δφ =
2π

∆n
≈ D

2R
. (6.15)

This indicates that the angular resolution after focusing is approximately
constant with regard to range, only depending on the size of the transducer and
the radius of the measurement arc. δφ is also an expression for the maximum
angular step size that can be used, if the spatial sampling criterion is to be
satisfied.

The attainable resolution along the z axis can be derived from the kz
bandwidth, following the same approach as above. |kz| is maximum for the
2D case φ′ = φ, which is similar to the linear scan case described in Section
3.6.1. The attainable resolution is therefore

δz ≈ D

2
. (6.16)
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The angular resolution in (6.15) corresponds to a spatial resolution which
depends on the range r. This “arc length” resolution is given by

δs = δφ · r =
Dr

2R
, (6.17)

which is equal to δz for r = R, and larger than δz for all r > R.

6.2 Numerical simulations

6.2.1 Model

A number of numerical simulations were performed to study the performance of
the CPSM algorithm with different system parameters. It was assumed that the
propagating medium was water, with wave velocity 1500 m/s, and that a single
point scatterer was present in the medium. The transducer face was assumed
to be flat and circular, with uniform excitation, and the emitted signal, s0(t),
was modeled as a Gaussian-modulated sinusoidal pulse with center frequency
1.5 MHz and 60% relative band width. Absorption in water is relatively low in
this frequency range, and absorption was therefore not included in the model.

For each transducer position (φ′, z′), the transducer-scatterer distance r′

was calculated using (6.8). The backscattered signal received by the transducer
was modeled as

s(t, φ′, z′) =

(
1

r′

)2
∞∫
−∞

S0(ω) · eiω2r′/c ·DC,PE(ω, γ) · e−iωt dω, (6.18)

where the factor (1/r′)2 is due to the two-way geometrical spreading of the
wave front, S0(ω) denotes the Fourier transform of s0(t), and the phase shift
given by eiω2r′/c accounts for the two-way travel time of the pulse. DC,PE(ω, γ)
denotes the pulse-echo jinc directivity function in (2.7). The simulations were
performed with discretely sampled signals, but (6.18) is presented in continuous
time for consistency with the theory as presented in Section 6.1. All simulations
were performed in Matlab.

The envelope of the simulated raw data was found by first applying
the Hilbert transform and then taking the absolute value of the resulting
analytic signal. The CPSM algorithm produces complex-valued images, and
the envelope of each focused image was found directly by its absolute value.

Although the CPSM algorithm is three-dimensional in nature, it is the
angular dimension that is of most interest here. The simulations were therefore
limited to two-dimensional angular scans, with the transducer and scatterer
placed at the same z coordinate, z′=z. Since an angular scan is a special case
of the cylindrical scan, it can be processed with the CPSM algorithm without
any modifications.
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(c) Focused with approximate transfer function

Figure 6.4: Raw data and focused images for simulated point scatterer with scanning
radius R = 50 mm and scatterer range r = 150 mm. Note that the axis ranges are
smaller for the focused images.

6.2.2 Comparison of exact and approximate algorithm for
wide beam transducer

A simulation was conducted to compare the performance of the algorithm
proposed here with the algorithm presented in [Haun et al., 2002]. The only
difference between the two is that the proposed algorithm uses the exact
transfer function given in (6.7), while the algorithm in [Haun et al., 2002]
uses the approximate transfer function in (6.9).

A point reflector located at r =150 mm was scanned by a 1.5 mm diameter
circular transducer, moved along a circular arc with 50 mm radius. Using (2.4),
the -6 dB width of the transducer beam is found to be approximately ∆γ = 56◦

at the center frequency. The raw data envelope of the scan is shown in Fig.
6.4(a), illustrating that the point scatterer response is curved and very wide.

The simulated data was processed with both the exact and the approximate
algorithm, and the focused point responses are shown in Figs. 6.4(b) and 6.4(c).
Note that the axis ranges are different from those of Fig. 6.4(a). The exact
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algorithm produces a round, focused point, while the approximate algorithm
produces a point with low-amplitude sidelobes. For the exact algorithm, the
-6 and -40 dB width of the focused point is 0.81 and 2.01 degrees, respectively.
In comparison, the -6 and -40 dB width for the approximate algorithm is 0.89
and 8.39 degrees. Thus, the sidelobes of the approximate algorithm make the
response relatively wide at low amplitudes.

6.2.3 Effect of transducer size and scanning radius on
lateral resolution

In Section 6.1.4 it was found that for a circular transducer of diameter D, the
angular resolution after focusing should be approximately D/(2R). A number
of 2D scans were simulated to study the effect of D and R on the angular
resolution.

Simulations with D = [2,4,6] mm and R = [50,100,150] mm were performed,
with a point scatterer placed 100 mm outside the measurement arc. The scans
were processed with the CPSM algorithm, and the -6 dB width of the point
scatterer response was found. The results are shown in Fig. 6.5(a). The -6
dB width is approximately proportional to the transducer diameter D, and
decreases with increasing radius R. In Fig. 6.5(b), the -6 dB widths are
plotted normalized with D/(2R). It can be seen that although there are small
individual differences, the -6 dB width is close to 0.92 D/(2R) for all the focused
points.
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Figure 6.5: Absolute and normalized width of point scatterers after focusing, for
different transducer diameters D and scanning radii R.
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Figure 6.6: Ratio of grating lobe amplitude relative to main lobe amplitude, for
different angular sampling intervals δφs and scanning radii R. The grating lobe
amplitudes increase with increasing sampling interval, and are slightly higher for
small scanning radii.

6.2.4 Effect of angular step size on grating lobe levels

In Section 6.1.4 it was suggested that if the step size along the φ axis is less
than D/(2R), the spatial sampling criterion will be satisfied, and grating lobes
in the focused image can be avoided. However, the complete transducer beam
pattern was not taken into account in the derivation, and in practice a smaller
sampling interval may be required. A number of 2D simulations with a point
scatterer and different angular step sizes were performed to study this further.

The simulations were conducted with a transducer with diameter D = 5
mm, scanning radii R = [50, 100, 150] mm, and a point scatterer placed at 100
mm from the transducer. The raw data was sampled with angular sampling
interval δφs = [ 1

8 ,
1
6 ,

1
4 ,

1
3 ,

1
2 ] times D/R, and for each simulation, the grating

lobe levels were compared with the main lobe levels. The results are shown
in Fig. 6.6. In general, the grating lobes grow in amplitude as the sampling
interval increases. The grating lobes are also slightly higher for small scanning
radii R. At δφs = D/(2R), the grating lobes are only approximately 20-25 dB
below the main lobe, which is probably too high for most practical applications.
A smaller sampling interval can be chosen according to the requirements of the
individual application.

Examples of point scatterer responses for scans with R = 100 mm and three
different angular sampling intervals are shown in Fig. 6.7. These illustrate
how the grating lobes change in amplitude and shape as the angular sampling
interval increases.
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Figure 6.7: Focused images of point scatterers, based on raw data acquired with
different sampling intervals δφs. Grating lobes are clearly visible in (b) and (c).

6.3 Point scatterer experiment

An experiment was performed to test the performance of the CPSM algorithm
on real data. The experimental setup is shown in Fig. 6.8. Five small lead
bullets, 2.5 mm in diameter, were used as point-like scatterers. The bullets
were placed on 0.12 mm diameter nylon string, which was strung between
two metal plates. The nylon string frame was put into a water tank, and the
bullets were aligned at the same position along the z axis of the scanner, with a
30 mm horizontal and a 20 mm vertical offset between each bullet. Pulse-echo
measurements were performed with a 1.5 MHz transducer with 5 mm diameter,
with a scanning radius of R = 62 mm. The distance from the measurement
surface was 82 mm to the closest bullet and 160 mm to the farthest bullet.

The raw 3D data set was processed by the CPSM algorithm, and the
envelope for both the raw and the focused data set was calculated. Amplitude
C-scans were generated by detecting the maximum envelope amplitude at each
measurement position (φ, z), and these are shown in Figs. 6.9(a) and 6.9(c).
In the raw data C-scan, the responses from the five scatterers are seen as five
diffuse areas. In comparison, the C-scan for the focused data shows them as
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62

30

20
ø 2.5 

Equal spacing 
between each 
point scatterer

z

82

160

Figure 6.8: Experimental setup with point scatterers and cylindrically sweeped
transducer. The z axis is perpendicular to the displayed plane, pointing towards the
reader. All dimensions are in mm.

sharply defined, relatively small points. Note that for three of scatterers, the
reflections from the nylon string can be seen as weak horizontal lines. Such lines
are also present for the last two scatterers, but these are outside the displayed
dynamic range.

2D slices centered on the bullets were extracted from each data set. The
positions of the slices are indicated with dashed lines in the C-scans, and the
raw and focused slices are shown in Fig. 6.9(b), and 6.9(d), respectively. The
increase in lateral resolution after focusing is clearly visible. Note also that the
main reflections from the lead bullets are followed by a tail of weaker echoes,
which are probably caused by internal reverberation in the bullets.

To study the change in PSF after focusing, zoomed-in plots of the raw and
focused response from the middle scatterer were made. The raw PSF, shown in
Fig. 6.10(a), is curved and relatively broad, with a high amount of background
noise. In comparison the focused PSF, shown in Fig. 6.10(b) is a round point
with significantly increased signal-to-noise ratio. The beginning of the trailing
echoes are seen below the main reflection. Note that these echoes also become
narrower in the focused image.

The -6 dB width of each scatterer along the φ and z axes, denoted δφ
and δz, was measured for both the raw and the focused image. The results
are shown in Fig. 6.11. In Fig. 6.11(a), the widths are normalized with the
theoretical expressions for the lateral resolution. For the raw data, δz increases
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Figure 6.9: Comparison of C-scans and B-scan slices from raw and focused images
of lead bullets. The position of the slices is indicated with dashed lines in (a) and (c).
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Figure 6.10: Point spread functions for middle scatterer before and after focusing.
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Figure 6.11: -6 dB widths of lead bullets in raw and focused images. In (a), the
widths are displayed normalized with D/2R for the φ axis and D/2 for the z axis. In
(b), the z width is displayed without any normalization, and the φ width is multiplied
with r, to show the spatial resolution.

with distance, from approximately 8 to 14, while δφ is at an almost constant
level, slightly below 4. However, in the focused image the normalized δφ and
δz are all in the range 0.85-1. This indicates that the resolution is close to that
predicted by theory, independent of the distance to the transducer.

In Fig. 6.11(b), the spatial width of the point spread function is plotted in
mm for both axes. For the φ axis, the spatial width at range r is given by
the arc length width δs = δφ · r. The plot shows that in the raw image, δs
and δz are very similar, increasing almost linearly from approximately 20 mm
for the closest scatterer to 35 mm for the farthest. In the focused image, δs
increases linearly from approximately 5 mm to 8 mm, while δz is constant at
approximately 2-2.5 mm. The results show that there is a significant difference
in resolution along the two scanning axes after focusing, and that the difference
increases with distance.

Note that the experimental data was also processed with the approximate
algorithm proposed in [Haun et al., 2002]. In contrast to the simulation
presented in Section 6.2.2, the transducer beamwidth in the experiment was
sufficiently narrow for the approximate transfer function to be accurate, and the
results were therefore essentially the same as when the exact transfer function
was used.
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6.4 Discussion

In Sec 6.2.2 it was shown that the performance of the proposed CPSM algorithm
can be better than that of the approximate algorithm presented in [Haun et al.,
2002] when the ultrasonic beam is wide. Note, however, that the approximate
transfer function in (6.9) may be simpler to implement in practice than the
exact transfer function in (6.7), since complex exponentials are generally
simpler to compute than Hankel functions. This will make a difference if the
transfer function has to be calculated in real time. In order to speed up the
CPSM algorithm while still retaining much of its accuracy, an accurate closed-
form approximation to the Hankel function [Gardner and Collin, 2000] can be
used. Since the transfer function is independent of the recorded data, it can also
be precalculated and stored in lookup tables, removing the need for fast real-
time calculation. Thus, the choice between using the exact or the approximate
transfer function generally depends on the details of the implementation.

In Section 6.1.4 it was found that for a circular transducer of diameter D,
the theoretical angular resolution after focusing is approximately D/2R. The
simulations in Section 6.2.3 resulted in -6 dB widths of 0.92 to 0.94 times D/2R,
which is relatively close. The experiment on point scatterers also yielded -6 dB
widths close to the theoretical angular resolution, for both the φ and the z axis.
Thus, the obtained resolution is close to the theoretical resolution for several
different transducer diameters, scanning radii and target ranges. We therefore
propose keeping δφ ≈ D/2R and δz ≈ D/2 as an approximate measure of the
attainable resolution in practical applications.

In a synthetic aperture application, the spatial sampling interval should be
small enough to keep the grating lobes below an acceptable level. The number
of measurements should at the same time be kept at a minimum to avoid
generating an unnecessarily large amount of data. The simulations in Section
6.2.4 showed that an angular sampling interval of δφs = D/4R resulted in
grating lobe levels 40 to 50 dB below the main lobe, and we see this as a
suitable compromise for practical applications. This is also consistent with the
recommendation in [Gough and Hawkins, 1997] that the sampling interval for
a linear scan with a transducer of length L should be L/4.

The cylindrical measurement geometry considered in this chapter is
basically a combination of a circular scan and a linear scan, and the difference
between these affects the size of the synthetic aperture along the two scanning
axes. For a linear scan, the synthetic aperture grows in proportion with the
distance to the image point, as discussed in Section 3.1 and shown in Fig. 3.2.
This makes the lateral resolution along the linear scan axis constant in the
whole imaged region. However, for a circular scan, the synthetic aperture size
is not proportional with the distance to the image point. An illustration of the
synthetic aperture formation for a circular scan is shown in Fig. 6.12. The size
of the synthetic aperture is ultimately limited by the diameter of the scanning
circle, and if the transducer is directional, the maximum synthetic aperture
is even smaller. Thus, synthetic aperture focusing for circular scans can not
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provide a constant absolute lateral resolution, as for the linear scan, but rather
provides a constant angular resolution.

The difference between the two scanning axes was demonstrated in the
experiment in Section 6.3. The width of the synthetic aperture corresponds to
the width of the PSF in raw data, and thus the difference in synthetic aperture
size can be seen in Fig. 6.11(a); for the z axis, the width of the PSF increases
with range, while for the φ axis, the width is approximately constant. Fig.
6.11(b) shows that as a result, the PSF width after focusing is constant for
the z axis, while it increases with range for the φ axis. The expression for
δs in (6.17) indicates that for cases where r � R, the difference in resolution
between the two axes can become quite large. It is important to be aware
of this difference in the design of practical imaging systems with cylindrical
apertures.

Figure 6.12: Synthetic aperture formation for circular scan. The size of the synthetic
aperture, here denoted with L(r), grows as the distance r to the imaging point
increases. However, contrary to the linear scan case, L is not proportional to r.
As r tends towards infinity, L tends towards a constant value.
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6.5 Summary

In this chapter, we have presented an algorithm for synthetic aperture focusing
of pulse-echo measurements performed over a cylindrical surface, called CPSM.
The algorithm is based directly on the Fourier-domain solutions to the scalar
wave equation in cylindrical coordinates, and in this sense the algorithm is
exact. Comparison with a similar but approximate algorithm demonstrated
that the proposed algorithm yields a higher resolution and lower sidelobes when
the transducer beamwidth is large. We have also shown that for a circular
transducer of diameter D, the attainable angular resolution after focusing
is approximately D/(2R), where R is the scanning radius. The attainable
resolution along the z axis is approximately D/2, consistent with the lateral
resolution for two-dimensional linear scan. By studying the effect of the angular
sampling interval on grating lobes in the focused image, we found that a
sampling interval of D/(4R) or less should be sufficient in most applications.





Chapter 7
Application of CPSM in pipe
inspection

In the previous chapter, we introduced a general algorithm for SAFT focusing
of cylindrical scans, and in this chapter we apply it in imaging of pipes from the
inside. Internal pipeline inspections are often performed using a robot traveling
through the pipeline [Rajani and Kleiner, 2004; Eiswirth et al., 2000], and we
assume here that the inspection system outlined in Fig. 1.4 is used.

The pipe geometry in Fig. 1.4 is well suited for a focused transducer, since
the distance from the transducer to the pipe wall is constant and can be
adjusted to fit the focal length. However, if the distance to the pipe wall
changes during an inspection, the pipe wall will no longer be in the focal zone,
and the lateral resolution will be poor. There are several scenarios in practical
pipe inspection where this can occur, e.g. where the inspection robot meets
an obstacle in the pipe, the pipe diameter changes, or there is a bend in the
pipeline, as shown in Fig. 7.1(a), (b) and (c), respectively.

SAFT can be applied to scans performed with focused transducers, to
improve the lateral resolution outside the focal zone. The focal point of the
transducer is then treated as a small, virtual source [Passmann and Ermert,
1996; Frazier and O’Brien Jr., 1998; Haun et al., 2002]. For linear scans, the
virtual source method can yield a lateral resolution comparable to the focal
point, for all ranges [Frazier and O’Brien Jr., 1998]. In this chapter we adapt
the CPSM algorithm to the virtual source method, and determine its lateral
resolution.

The performance of the proposed method for pipe inspection is also
evaluated through experiments on a severely corroded pipe. A comparison
is made between a scan where the transducer is placed close enough for the
pipe wall to be in focus, and another where the pipe wall is completely out of
focus, with CPSM focusing applied in postprocessing.
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(a)

(b)

(c)

Figure 7.1: Distance from transducer to pipe wall changing during scan, due to a)
an obstacle in the pipeline, b) the diameter of the pipeline changing, and c) a bend
in the pipeline.

An additional experiment, performed with an unfocused transducer, is
described in an appendix at the end of the chapter. In the experiment, CPSM
imaging is applied for a number of simple, clearly defined shapes, yielding an
intuitive demonstration of the focusing effect.

7.1 Theory

7.1.1 Virtual source

A focused transducer is made so that the time delay from all parts of the
transducer to the focal point is equal. This creates an ultrasonic beam that is
maximally focused at the focal distance F along the transducer axis, as shown
in Fig. 7.2. The beam pattern produced by a focused transducer is different
from that of a transducer with a flat aperture, and this has to be taken into
account in SAFT algorithms for focused transducers.

In principle, the complete spatial impulse response of the transducer can
be employed in the imaging process [Lingvall et al., 2003; Wennerström and
Stepinski, 2007]. However, the derivation of SAFT algorithms for focused
transducers can be simplified by assuming that the transducer focal point acts
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Figure 7.2: Focused transducer with diameter D moved along a circular arc of
radius R. The focal point is treated as a virtual source with diameter Dvs moved
along an arc of radius Rvs = R+ F .

as a virtual point source [Passmann and Ermert, 1996; Frazier and O’Brien Jr.,
1998; Haun et al., 2002], and we will make the same assumption here. For the
CPSM algorithm, this implies that the virtual source has an effective radius
Rvs = R+F , and an effective diameter Dvs that is smaller than the transducer
diameter D, as shown in Fig. 7.2.

Since the focal point of the transducer is treated as the origin of the
ultrasonic wave, the additional time delay between the transducer and the
focal point has to be compensated for. For the pulse-echo case a negative time
shift of ∆t = −F/ĉ should be applied, which in the Fourier domain corresponds
to multiplication with the phasor exp(iω ·F/ĉ). In addition, the system transfer
function G has to be calculated with reference to the scanning radius of the
virtual source, Rvs, rather then the real scanning radius R. A flowchart for the
modified algorithm is shown in Fig. 7.3.

7.1.2 Lateral resolution

At the focal spot of a circular, focused transducer, the directivity function is
approximately given by the jinc function in (2.10). The zeros to each side of
the main lobe are given by sin γ = ±1.22λ/D, where γ is the angle relative
to the transducer axis of symmetry. We define the distance between the zeros
as the effective diameter of the virtual source, and employing the small terms
approximation sin γ ≈ γ we obtain

Dvs ≈ 2.44
λF

D
. (7.1)
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Approximate expressions for the lateral resolution after CPSM focusing are
found by inserting Rvs and Dvs into (6.15), (6.16) and (6.17):

δφ = Dvs/(2Rvs) (7.2)

δz = Dvs/2 (7.3)

δs = δφ · r =
Dvs

2
· r

Rvs
(7.4)

Figure 7.3: Algorithm flowchart for the CPSM algorithm, adapted to the virtual
source method. Compared to the CPSM algorithm in Fig. 6.2, the modified algorithm
requires an additional time shift exp(iω · 2F/c), and uses the virtual source radius
Rvs = R+ F in the calculation of G.



7.2. Experiments 107

7.2 Experiments

7.2.1 Experimental setup

Ultrasonic pulse-echo measurements were performed with a scanner made for
moving a transducer along a cylindrical surface. The object under inspection
was placed in a water tank, and the scanner was placed above the tank, so that
the scanner arm and the transducer was submerged in water. The transducer
was 12.7 mm in diameter, with a center frequency of 2.25 MHz and a focal
length of approximately 20 mm.

Raw ultrasonic data was processed with the CPSM algorithm, as described
in Section 7.1. The envelope of the image was calculated by taking the absolute
value of the complex data produced by the algorithm. Similarly, the envelope
of raw data was obtained by first applying the Hilbert transform along the time
axis, and then taking the absolute value of the resulting analytic signal.

7.2.2 Point scatterer experiment

An experiment on point-like scatterers was performed to determine the size and
shape of the point scatterer response before and after CPSM focusing. 1.5 mm
thick steel wires were used as scatterers, and 2D scans were performed along

r

122

173

223

273

z

(a)

100

(b)

1

2

3

4

1

2

3

4

100

Figure 7.4: Experimental setup for scan of wire targets. a) Scan along z axis. b)
Scan along φ axis. The scatterers are numbered 1 to 4 with increasing distance to
the transducer.
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(a) Raw data PSF, scatterer 1
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(b) Raw data PSF, scatterer 3
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(c) Focused PSF, scatterer 3

Figure 7.5: Example point spread functions from angular scan of wire targets.
Scatterer 1 is located in the focal zone of the transducer, while scatterer 3 is located
far beyond the focal zone.

both the φ and z axis, with the wires placed perpendicular to the scanning
direction, as shown in Fig. 7.4. The scanning radius R was 100 mm.

Due to the divergence of the transducer beam beyond the focal zone,
the width of the raw data PSF increases rapidly with the range r. This is
clearly seen in Fig. 7.5(a) and 7.5(b), which shows the angular scan PSF for
scatterer number 1 and 3, located approximately 22 and 123 mm from the
transducer, respectively. Scatterer number 1 is inside the focal zone of the
transducer, and thus the PSF is small and well focused. In contrast, the PSF
from scatterer number 3 is curved and relatively broad. There are also some
additional artifacts present above and below the curve of the main reflection.
These artifacts were not present in the experiment in Section 6.3, in which
an unfocused transducer was used, and it is assumed that they are due to
edge waves from the focused transducer [Djelouah et al., 1991; Wennerström
and Stepinski, 2007]. Figure 7.5(c) shows the PSF of scatterer 3 after CPSM
focusing. The focusing effect is clearly visible, and the width of the response is
similar to that of scatterer 1. However, the artifacts observed in the unfocused
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Figure 7.6: -6 dB width of point scatterers along both scanning axes. Note that
the y-axis limits are different in the two plots. In (b), the theoretical resolution is
indicated with a dashed and a dash-dot line for δs and δz, respectively.

PSF seem to also affect the focused PSF, creating sidelobes which widen the
response at low amplitudes.

The -6 dB widths of the PSFs, denoted δφ and δz, were measured for
all the scatterers. δφ was multiplied with the range r of each scatterer, to
produce the arc length resolution δs. The raw data results are plotted in
Fig. 7.6(a), showing that before focusing, δs and δz are very similar. In the
focal region δs and δz are small, approximately 1.3-1.4 mm, but both increase
rapidly with increasing transducer-scatterer distance, up to approximately 50
mm for the furthermost scatterer. In comparison, Fig. 7.6(b) shows that CPSM
focusing significantly reduces δs and δz for all scatterers outside the focal
region. δs increases approximately linearly with distance, from 1.4 mm up
to approximately 3.4 mm for the furthermost scatterer, while δz is in the range
1.2–1.6 mm for all scatterers. The theoretical resolution after focusing is shown
together with the measurements, plotted as a dashed and a dash-dot line for
δs and δz, respectively. The theoretical resolution was calculated using (7.1),
(7.3) and (7.4), with λ = c/fc, where fc denotes transducer center frequency.
The correspondence between measurements and theoretical resolution is seen
to be relatively good for both axes.

7.2.3 Corroded pipe experiment

In the second experiment a section of cast iron pipe with severe corrosion
damage was scanned. The complex and irregular surface of the pipe was chosen
as a test case to demonstrate the performance of CPSM focusing with a virtual
source in a practical application. The pipe was originally part of a water
pipeline in Skien, Norway, and was in service from 1883 to 2009. The inner
diameter of the pipe was originally approximately 360 mm. When the pipe was
dug up, it was sandblasted to reveal the underlying pitting damage. A picture
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Figure 7.7: Photograph of interior surface of pipe section. The four screws used as
reference points are indicated with white rings.

of the section is shown in Fig. 7.7. The photo was taken with a light source
placed low, to the right of the pipe, to create shadows revealing the structure
of the surface. Four small holes were drilled through the pipe, and machine
screws were placed in the holes to act as reference points. The placement of
the screws is indicated by white rings.

To obtain an independent estimate of the surface topography of the pipe,
a stereo vision depth estimation technique was employed. Two images of the
pipe surface were taken, with a lateral displacement (“baseline”) of b = 70
mm, using a Nikon D40 camera and a lens with focal distance f = 18 mm.
The images were corrected for lens distortion using J.-Y. Bouget’s Camera
Calibration Toolbox for Matlab [Bouget, 2010], and subsequently rectified and
stereo matched using Peter Corke’s Machine Vision Toolbox [Corke, 2011a,b].
The stereo matching produces a map of the relative displacement of pixels
between the images, the disparity d, which is related to the distance zc from
the camera by the equation

zc =
fb

ρd
, (7.5)

where ρ is the pixel side length [Corke, 2011b]. To remove the effect of the
pipe curvature on the depth image, a 2nd-degree polynomial surface was fitted
to the depth map and subsequently subtracted from it. Finally, a 3x3 mm
median filter was applied to remove erroneous outliers. The resulting surface
topography map is shown in Fig. 7.9(a). A number of large pits, identified by
bright spots, are clearly seen. Comparison with Fig. 7.7 shows that all the fine
detail may not be incorporated in the stereo vision topography plot, but that
the location and shape of the largest pits is accurately imaged.

Two ultrasonic scans of the pipe were performed; one where the scanning
radius was set to 160 mm, so that the pipe surface was in the transducer focal
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Figure 7.8: Experimental setup for cylindrical scan of pipe section. The z axis
is perpendicular to the displayed plane, pointing towards the reader. Scan A:
Transducer scanned at 160 mm radius, pipe surface in focal zone of transducer. Scan
B: Transducer scanned at 100 mm radius, pipe surface far beyond focal zone.

zone, and another with a 100 mm scanning radius, where the pipe surface was
far beyond the focal zone. The scans were labeled scan A and B, respectively,
as shown in Fig. 7.8.

The topography of the pipe was then estimated from three different data
sets: Scan A, which is inherently focused, scan B without CPSM focusing, and
scan B with CPSM focusing. For each data set, the range r to the pipe surface
was estimated by detecting the maximum envelope value in each measurement
position (φ, z). We will refer to the resulting 2D data sets as topography
C-scans. The mean range was subtracted from each C-scan, revealing mm-scale
topography variations, and a 3x3 mm median filter was applied to remove a
few erroneous estimates. The results are shown in Fig. 7.9(b)-(d).

To illustrate the appearance of the data in the range dimension, a 2D slice
was also extracted from each 3D data set. The slice positions are indicated
with dashed lines in Fig. 7.9(b)-(d), and the slices are shown in Fig. 7.10.

Comparing Fig. 7.9(b) with Fig. 7.9(a), it is seen that scan A yields a
topography map very similar to that of the stereo vision technique. Since the
two topography estimates are independent, the similarity is an indication that
both are relatively accurate. The slice from scan A, shown in Fig. 7.10(a),
shows that the reflection from the pipe surface is clearly defined, and smoothly
changing with lateral offset z.

Without focusing, scan B yields a topography estimate where the pits have
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(b) Ultrasound, Scan A
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(c) Ultrasound, scan B, raw
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(d) Ultrasound, scan B, focused

Figure 7.9: Topography of pipe surface estimated with stereo vision and ultrasound
scans. Reference points indicated are with white rings, and the position of the slices
shown in Fig. 7.10 are indicated with dashed lines in (b)-(d).

a very irregular shape, as seen in Fig. 7.9(c). The reason for this is clearly
seen in the slice plot in Fig. 7.10(b): Since the pipe wall is outside the focal
zone, reflections from different parts of the pipe are smeared together laterally.
Because of this smearing, there is no clearly defined reflection from the pipe
surface, and the estimation of the topography is less accurate. Note for example
that the two largest pits appear smaller than they really are.

Applying CPSM focusing to scan B yields a significant improvement of
the topography C-scan, as seen in Fig. 7.9(d). Comparison with Fig. 7.9(b)
shows that the accuracy of the topography estimation is similar that of scan A.
This impression is confirmed by the slice plot in Fig. 7.10(c), which is similar
to the slice plot from scan A in Fig. 7.10(a). The surface reflection appears
slightly more irregular, and there are some additional echoes below the surface
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(b) Scan B, unfocused

z [mm]

r 
[m

m
]

 

 

0 50 100 150

176

178

180

182

184

d
B

−30

−25

−20

−15

−10

−5

0

(c) Scan B, focused with CPSM

Figure 7.10: Slices from ultrasound scans, taken at s ≈ 60 mm, as indicated
with dashed lines in Fig. 7.9(b)-(d). The topography estimated from the maximum
envelope amplitude is indicated with a black line.
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Stereo 
vision

Scan A

Scan B Scan B,
focused
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Figure 7.11: ZNCC similarity measure between the four different topography
estimates. A value of 1 indicates a perfect match.

reflection, but the improvement from Fig. 7.10(b) is clear.
To quantify the similarity between the different topography C-scans, the

zero-mean normalized crosscorrelation (ZNCC) between them was calculated.
ZNCC normalizes the pixel values of the images so that any shift or difference
in scale is removed, and only the shapes are compared [Corke, 2011b]. A
ZNCC value of 1 indicates a perfect match. The results are summarized in Fig
7.11. The unfocused version of scan B has a ZNCC of 0.56 and 0.63 with the
stereo vision and scan A topography estimates, respectively. In comparison, the
focused version of scan B has a corresponding ZNCC match of 0.86 and 0.96,
confirming that focusing significantly improves the topography estimation.

7.3 Discussion

The point scatterer experiment presented in Section 7.2.2 demonstrated that
CPSM processing can significantly improve the lateral resolution outside the
focal region of a focused transducer. The results also corresponded well with
the expressions for theoretical resolution derived in Section 7.1.2.

The discussion on resolution and synthetic aperture size in Section 6.4 is also
valid for the modified algorithm in this chapter. From (7.3) and (7.4) we find
that the ratio of the arc length resolution to the z resolution is δs/δz = r/Rvs,
and for r � Rvs, the difference in resolution is large. However, for scan B in the
pipe imaging experiment in Section 7.2.3, the ratio r/Rvs was approximately
1.5, and thus the resolution along the two axes was relatively similar.

In the previous chapter it was found that for an unfocused transducer with
diameter D, the angular resolution along the z and φ axis is approximately
D/2 and D/(2R), respectively. Thus, to achieve a high resolution with an
unfocused transducer, the transducer diameter should be as small as possible.
However, small transducers generally yield a low signal-to-noise ratio (SNR).
Using a relatively large, focused transducer to create a small virtual source,
as we have in this chapter, we obtain both a relatively high SNR and a high
lateral resolution. This makes the proposed virtual source method well suited
for practical applications.

The experiment in Section 7.2.3 demonstrated the use of CPSM focusing in a
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pipe inspection scenario. The two scans of the pipe surface yielded topography
maps of approximately the same quality, even though one of the scans was
performed with the pipe wall was far beyond the transducer focal region.
Although the experiment is not representative for all pipe inspection scenarios,
it demonstrates that CPSM can increase the range within which the transducer
yields a high resolution. Thus, CPSM focusing can be applied to improve
the lateral resolution in cases where the distance between the transducer and
the pipe wall changes, for example where the pipe diameter increases or the
inspection robot is imperfectly centered in the pipe.

In both this and the preceding chapter, we have assumed that the pipe
inspection is performed with a single, rotating transducer. However, full
angular coverage could also be achieved by using a circular array transducer. If
the array is used to emulate a transducer with a fixed focus depth, the virtual
source method described in this chapter can be used in the same way as for a
physically focused transducer.

7.4 Summary

In this chapter we have adapted the CPSM algorithm for use with a focused
transducer, by treating the focal point of the transducer as a virtual source.
We have shown, through experiments on point-like scatters, that the modified
algorithm significantly extends the range in which the focused transducer
produces a high lateral resolution. A theoretical expression for the attainable
lateral resolution was suggested, based on the effective size and scanning
radius of the virtual source, and this was found to correspond well to the
lateral resolution achieved in experiments. Some low-amplitude artifacts
were observed in the focused images of point scatterers, but these were
probably caused by edge waves from the focused transducer, and not the
CPSM algorithm itself. The algorithm was also applied in a pipe inspection
experiment, to focus a 3D scan of a severely corroded pipe. It was shown that
with CPSM focusing, the surface topography of the pipe could be estimated
with high resolution, even if the transducer was placed several focal lengths
away from the pipe surface.
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7.A Imaging of metal objects in pipe

In this appendix, we describe an additional experiment with surface topography
estimation in a pipe geometry. The experiment was not performed with a
focused transducer and was therefore not included in the main body of the
chapter. However, it is included here because it gives an intuitive demonstration
of the effect of CPSM focusing, for a number of objects with clearly defined
shapes.

7.A.1 Experimental setup

A section of 300 mm diameter pipe was placed in a tank, and four different
metal objects were arranged on the inside surface of the pipe. The objects, a
key, a tuning fork, a drum tuning key, and a ring, are shown in Fig. 7.12(a).
A cylindrical scan of the objects in the pipe was performed using a 1.5 MHz
transducer with a 5 mm diameter, mounted on a carriage with a rotating arm.
The carriage was placed on a linear rail above the water tank, and adjusted
to make the rotation axis for the arm coincide with the center of the pipe.
The scanning radius of the transducer, R, was 58 mm. A schematic of the
experimental setup is shown in Fig. 7.12(b).

The raw data was processed with the CPSM algorithm. Amplitude C-scans
were made for both the raw and focused data sets, by detecting the maximum
envelope value for all r less than the pipe radius. The pipe surface was excluded
from the maximum search because this was found to produce a less cluttered
image of the objects. The maxima positions were also used to create topography
C-scans for both data sets. In positions where the amplitude C-scan was below
-20 dB, there was no significant echo from the objects, and the topography

(a)

z

ϕ

150

58

(b)

Figure 7.12: Experimental setup with metal objects placed in a section of pipe. (a)
The objects, clockwise from top: A turning fork, a ring, a drum tuning key, and a
regular key. (b) Cylindrical scan geometry.
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range was set equal to the pipe radius.

7.A.2 Results

The amplitude and topography C-scans are shown in Fig. 7.13. In order to
make the units on both axes equal, the arc length on the pipe surface is plotted
on the vertical axis, rather than the angular coordinate φ. The arc length is
given by s = φ · rpipe, where rpipe denotes the inner radius of the pipe.

The raw amplitude C-scan in Fig. 7.13(a) clearly shows the lateral smearing
effect caused by the wide transducer beam. For example, the sharp edges of
the ring are imaged as a round, diffuse area. Note also the local maxima
and minima in the image of the turning fork. This effect is probably caused
by interference between reflections from the two arms. The raw topography
C-scan in Fig. 7.13(b), suffers from the same smearing effect as Fig. 7.13(a),
making interpretation of the shapes difficult.

In the amplitude C-scan for the focused image, shown in Fig. 7.13(c), the
lateral resolution is significantly better than in Fig. 7.13(a). The shape of the
ring is clearly defined, and the two arms of the tuning fork are well separated.
Note, however, that some parts of the objects are hardly visible, for example
parts of the key on the left, and the three end points of the drum tuning
key. In these areas, the objects are curved or tilted relative to the cylindrical
measurement plane, and thus the amount of energy reflected back towards the
transducer is small.

Finally, Fig. 7.13(d) illustrates how focusing also improves the topography
estimation, yielding an accurate image of the range to each object. Note for
example that the edge of the drum tuning key, slightly elevated from the rest
of the key, is clearly visible.

The results of the cylindrical scan can be combined into a single 3D surface
image, in which the color and shape of the surface is given by the amplitude and
topography C-scan, respectively. This mode of plotting enables an intuitive and
simple interpretation of the 3D data. Surface images for the raw and focused
data set are shown in Fig. 7.14.
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(a) Amplitude C-scan, raw data
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(b) Topography C-scan, raw data
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(c) Amplitude C-scan, image

z [mm]

s
 [
m

m
]

 

 

0 50 100 150

−50

0

50
r 

[m
m

]

135

140

145

150

(d) Topography C-scan, image

Figure 7.13: Amplitude and topography C-scans of metal objects in pipe.
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(a) Raw data surface plot

(b) Focused image surface plot

Figure 7.14: Surface plots for raw and focused images of metal objects in pipe.
The objects are colored according to the backscattered amplitude (Figs. 7.13(a)
and 7.13(c)), and shaped according to the estimated topography (Figs. 7.13(b) and
7.13(d))





Chapter 8
Multilayer imaging in cylindrical
geometries

In Chapter 6, we described an algorithm for synthetic aperture imaging with
cylindrical apertures, assuming a constant wave velocity. This assumption is
valid for imaging in media where there are only small variations in the wave
velocity, for example inside the the human body. The assumption is also valid
for imaging of the inside topography of a pipe, as demonstrated in Chapter
7, since the liquid in the pipe is the only propagating medium. However, for
accurate imaging of defects inside the pipe wall, or corrosion damage on the
outside of the wall, the SAFT algorithm must treat the wall as a separate layer.

In this chapter we therefore expand the CPSM algorithm to the case of
multiple concentric layers. The modification for multilayer imaging is similar
to that of 2D linear scans described in Section 4.2. A ray-tracing model
for two-layer simulations is presented, and the multilayer CPSM algorithm is
demonstrated for both simulated and real data. It is shown that the single-layer
CPSM algorithm yields images which are increasingly defocused as the range
inside the second layer increases, while the multilayer algorithm maintains a
high, approximately constant lateral resolution.

8.1 Theory

We assume here that the measurement geometry consists two or more
concentric layers, as shown in Fig. 8.1. The transducer is scanned over a
cylindrical surface given by a constant radius R1, and the interfaces between
the layers are labeled R2, R3, ... RL, where L is the total number of layers.
Similarly, the wave velocities of the layers are labeled c1, c2, ..., cL.

The recorded pulse-echo wave field is denoted p(t, φ, z, R1), and the
corresponding Fourier transformed wave field is denoted Pn(ω, kz, R1). In
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Figure 8.1: Illustration of geometry with concentric layers. The z axis is
perpendicular to the page, pointing towards the reader.

Section 6.1.2 it was shown that the wave field can be extrapolated between
two arbitrary ranges r1 and r2 by multiplication with the transfer function G,

Pn(ω, kz, r2) = Pn(ω, kz, r1) ·G(ω, n, kz, r1, r2, ĉ), (8.1)

where G is given by

G(ω, n, kz, r1, r2, ĉ) =
H

(2)
n (r2

√
(ω/ĉ)2 − k2

z)

H
(2)
n (r1

√
(ω/ĉ)2 − k2

z)
. (8.2)

From here on, we will simplify the notation of G by omitting the ω, n and kz
terms, writing G(ω, n, kz, R1, r, ĉ) as G(r1, r2, ĉ).

We assume now that we want to extrapolate the wave field from R1 to an
arbitrary range rl in layer l, where l ∈ [1, 2, . . . , L]. The wave field must first
be extrapolated through the preceding layers, up to the interface Rl, and then
be extrapolated from Rl to rl:

Pn(ω, kz, rl) =

Pn(ω, kz, R1) ·
l−1∏
m=1

[
G(Rm, Rm+1, ĉm)

]
︸ ︷︷ ︸

Extrap. from R1 to Rl

· G(Rl, rl, ĉl)︸ ︷︷ ︸
Extrap. from Rl to rl

. (8.3)

Using the expression in (8.3) to extrapolate the wave field, it is possible to
perform imaging in the same way as for the single layer case, as described
in Section 6.1.3. The imaging algorithm is summarized in Fig. 8.2. The
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recorded pulse-echo wave field is Fourier transformed to obtain Pn(ω, kz, R1),
and then, for every layer l, it is extrapolated from R1 to Rl by multiplication

with
∏l−1
m=1

[
G(Rm, Rm+1, ĉm)

]
. No such extrapolation is needed for the case

l = 1, but to simplify the figure, this is not shown as a special case. For all
ranges rl within the layer, the wave field is then extrapolated from Rl to rl,
integrated over ω, and inverse Fourier transformed, yielding the focused image
plane ip(φ, z, rl).

Figure 8.2: Flowchart for the multilayer CPSM algorithm. The pulse-echo wave
field is Fourier transformed and extrapolated from R1 to rl, via multiplication with
transfer functions for each layer. A focused image plane ip(φ, z, rl) is obtained by
integration over ω and inverse Fourier transformation.
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Figure 8.3: Geometry used in simulations of ultrasound scan in two concentric
layers. The transmitted and back-scattered wave is refracted at the point (R2, φ1,2)
on the interface between the two layers.

8.2 Numerical simulation model

A numerical simulation model was developed to test the proposed algorithm.
The model is presented for a two-layer structure only, but can be extended to
an arbitrary number of layers following the same principles. The simulations
are limited to two-dimensional, circular scans, as in Chapter 6.

8.2.1 Geometry

The two-layer geometry is shown in Fig. 8.3. The transducer position is given
by coordinates (R1, φ

′), and we consider transmission of a wave between the
transducer and a point scatterer in the second layer, given by coordinates (r, φ).
The wave is refracted at the interface between the two layers, at a point given by
(R2, φ1,2). The distance from the transducer to the refraction point is denoted
r′1, and the distance from the refraction point to the point scatterer is denoted
r′2. The angle relative to the surface normal in layer 1 is denoted α1, and the
corresponding angle in layer 2 is denoted α2.

The path between the transducer and the scatterer can be computed
numerically using Fermat’s principle, which states that the path taken
by a wave between two points is the path that can be traversed in the
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least time. Such ray tracing is exact only at the limit of infinitely small
wavelength, but accurate enough to be applied in simulations of seismic and
ultrasonic measurements in inhomogeneous media [Margrave, 2003; Shlivinski
and Langenberg, 2007]. The propagation paths in each medium are given by
the law of cosines;

r′1 = R2
1 +R2

2 − 2R1R2 · cos(φ1,2 − φ′), (8.4)

r′2 = r2 +R2
2 − 2rR2 · cos(φ− φ1,2), (8.5)

and the total propagation time is

t =
r′1
c1

+
r′2
c2
. (8.6)

When the point of refraction, φ1,2, is known, all other variables are also known.
We therefore apply Fermat’s principle to (8.6) to find φ1,2:

φ1,2 = arg min
φ1,2

[
t(φ1,2)

]
. (8.7)

8.2.2 Transmission through interfaces

In a pulse-echo measurement of a point in layer 2, the ultrasonic wave passes
twice through the interface between layer 1 and 2. Due to the difference in
acoustic impedance, only part of the wave is transmitted from one layer to the
next. In general, the transmission factor between the layers is a function of
both the layer impedances and the angles α1 and α2, with large angles yielding
low transmission factors [Brekhovskikh and Godin, 1990].

However, most ultrasonic transducers have relatively narrow beams, and
thus the transmission factor is approximately uniform within the beam.
Ignoring the angle dependence, the transmission through the interface
effectively scales all backscattered echoes from the second layer with a constant
factor. In the simulations described here, we are mainly interested in the
relative amplitudes within each layer, and the scaling effect of the interface is
therefore not included.

8.2.3 Transducer directivity

It is assumed that the transducer is circular and uniformly excited, and as
discussed in Section 2.4.3, this yields the pulse-echo directivity function

DC,PE(ω, γ) = jinc2

(
ωD sin γ

2c1

)
, (8.8)

where γ is the angle between the transducer normal and the propagation
direction in layer 1. The relationship between γ and φ1,2 is given by the law of
sines:

γ = sin−1

(
R2

r′1
· sin(φ1,2 − φ′)

)
. (8.9)



126 Chapter 8. Multilayer imaging in cylindrical geometries

8.2.4 Complete model

The signal received from the point scatterer is modelled as

s(t, φ′) =
1

(r′1 + r′2)2
· F−1

t

{
S0(ω) · eiω·2t ·DC,PE(ω, γ)

}
(8.10)

where S0(ω) denotes the Fourier transform of the original pulse transmitted
by the transducer. The factor 1

(r′1+r′2)2 accounts for the two-way geometrical

spreading in each layer. The pulse is delayed by a phase shift of ω ·2t, where t is
given by (8.6), and scaled by the pulse-echo transducer directivity DC,PE(ω, γ).

8.3 Simulation results

A transducer model with 2.5 mm diameter and 2.25 MHz center frequency
was used, emitting a Gaussian modulated sinusoidal pulse with 60 % relative
bandwidth. The simulated geometry consisted of water and steel layers, with
wave velocities set to 1500 and 5500 m/s and densities set to 1000 and 7700
kg/m3, respectively. The transducer was scanned at R1 = 100 mm, and the
interface between the layers was placed at R2 = 200 mm. Three point scatterers
were placed in the water layer, and five were placed in the steel layer, all
evenly spaced within the range interval r ∈ [175,245] mm. The raw data of
the simulated scan is plotted in Fig. 8.4(a), with a dashed line indicating the
interface between the two layers. Note that because the wave velocity is higher
in steel than in water, the scatterer responses appear closer to each other in
the steel layer.

To illustrate the difference between the single- and multilayer CPSM
algorithm, the raw data was processed with both algorithms, and the results
are shown in Figs. 8.4(b) and 8.4(c). For the single-layer algorithm, the wave
velocity of water, 1500 m/s, was used for the entire image. Fig. 8.4(b) shows
that this yields a focused image of the scatterers in the water layer, while
the scatterers in the steel layer become increasingly unfocused as the range
increases. However, when the multilayer algorithm is applied, the scatterers
are focused equally well in both layers, as seen in Fig. 8.4(c). Note that since
the wavelength is longer in the steel layer compared to the water layer, the
scatterers appear larger in the range direction in the steel layer.

The -6 dB width of the point scatterers in both images were measured, and
the results are shown in Fig. 8.5. The plot clearly shows how the multilayer
processing yields an approximately constant angular resolution, while the
resolution in the single-layer processing decreases in the steel layer. However,
close to the interface the single-layer processing still yields a high resolution.
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(a) Raw data

(b) Image focused with single-layer CPSM, assuming
water in the entire imaged region

(c) Image focused with multilayer CPSM

Figure 8.4: Raw data and focused images from a simulation with scatterers in
water and steel layers. The interface between the layers, located at R2 = 200 mm, is
indicated with a dashed line.
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Figure 8.6: Experimental setup for scan of plastic pipe with three side-drilled holes.

8.4 Point scatterer experiment

An experiment was performed to test the multilayer CPSM algorithm on real
data. The experimental setup is shown in Fig. 8.6. A 2.25 MHz focused
transducer with 12.7 mm diameter and 20 mm focal length was used, scanned
at a radius of 63 mm. The focal point of the transducer was treated as a virtual
source, as described in Chapter 7. Three holes of 2 mm diameter were drilled
into the side of a plastic pipe with 145 mm inner diameter, and the transducer
was scanned perpendicularly to the holes.
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(c) Focused image, multi-layer CPSM

Figure 8.7: Raw data and focused images from experiment with side-drilled holes
in plastic pipe.

The raw data from the scan was processed with both the single- and
multilayer CPSM algorithm, assuming wave velocities in water and plastic of
1480 and 2450 m/s, respectively. The results are shown in Fig. 8.7.

The responses from the scatterers are similar to those seen in the virtual
source experiment in Section 7.2.2, in that there are artifacts surrounding the
main focused point, making the response similar to an “X”. The two focused
images are quite similar, but the image produced by single-layer processing
shows some signs of defocusing as the range increases. This effect is seen more
clearly in Fig. 8.7, in which the detailed point spread functions for each scatterer
are shown. Note that for the deepest scatterer, the -6 dB width for the single-
layer processing is approximately double that of the multilayer processing.
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8.5 Discussion

In the derivation of the multilayer CPSM algorithm we assumed that the
layers are all concentric, and that the measurement surface is perfectly centered
relative to the layers. However, in practical pipe inspection, the measurement
surface can become de-centered, as discussed in the introduction to Chapter 7.
This problem can possibly be alleviated by extrapolating the wave field to a
virtual measurement surface which is centered in the pipe, using (6.6). Such
preprocessing is would be similar to the tilt compensation method described in
Appendix 4.B.

The simulation and the experiment presented in Section 8.3 and 8.4 both
demonstrated that with single-layer processing, the lateral resolution in the
second layer decreases with increasing range, while the multilayer algorithm
maintains a high resolution. However, for small depths inside the second
layer, the difference between the two is relatively small. Also, the difference
in resolution between single- and multilayer processing was smaller in the
experiment than in the simulation. This is probably because the difference
in wave velocity between the two layers was also smaller in the experiment.
These results suggest that for thin pipe walls or structures with wave velocities
close to that of water, single-layer processing may in some cases be sufficient.
Single-layer processing also would not require compensation of measurement
surface de-centering, as discussed above.

8.6 Summary

In this chapter, we have extended the CPSM algorithm to the case of multiple
concentric layers, enabling pipeline inspection with full volumetric imaging. A
simulation model for circular scans of two-layered geometries was presented,
and the single-layer and multilayer CPSM algorithms were compared for both
simulated and experimental scans of two-layered geometries. The results
demonstrated that the images produced by the single-layer CPSM algorithm
become defocused in the second layer, while the multilayer algorithm maintains
a high lateral resolution in both layers. However, single-layer processing may
be sufficient for inspection of pipes with thin walls.
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Conclusions

In this thesis, we have described several algorithms for synthetic aperture
ultrasound imaging of multilayered media and cylindrical structures. The
development of these algorithms was motivated by the need for accurate meth-
ods for non-destructive testing of pipelines, in particular water distribution
pipelines.

We have formulated algorithms for two-dimensional imaging in horizontally
layered media, in both the time domain and the Fourier domain. For time-
domain algorithms, determination of focusing delays is complicated due to
the refraction of waves at interfaces. We have shown that an approximate
expression for these delays can be derived based on the root-mean-square wave
velocity in the layered media, and have used this approximation to develop
an algorithm termed Multi-Layer Delay-And-Sum (MLDAS). We have also
described two Fourier-domain algorithms for multilayer imaging, called Phase
Shift Migration (PSM) and Multi-Layer Omega-K (MULOK). Both algorithms
are based on the concept of wave field extrapolation, which implicitly takes
the effect of refraction into account. The PSM algorithm performs focusing
by iteratively extrapolating the wave field into the imaged region, and it
can therefore handle arbitrary variations in wave velocity. However, within
each layer the wave field can be focused efficiently through Stolt migration,
performed as a resampling of the Fourier-domain wave field. The MULOK
algorithm exploits this, and combines PSM and Stolt migration into an efficient
algorithm for multilayer imaging.

By applying the multilayer algorithms to simulated data sets, we have shown
that the processing times of the Fourier-domain algorithms are generally lower
than those of the MLDAS algorithm, in many cases orders of magnitude lower.
However, the processing time of the PSM algorithm grows quickly as the depth
range of the ultrasonic image increases, and the MULOK processing time is
substantially lower for large-range data sets.

In raw ultrasonic data, the lateral resolution decreases as the distance
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from the transducer increases, due to the divergence of the ultrasonic beam.
However, by applying synthetic aperture focusing in post-processing the lateral
resolution can be increased significantly. For ultrasonic scans performed along
a line or over a flat plane, the lateral resolution after focusing is approximately
half the transducer diameter, independent of the distance to the transducer.
In this thesis, we have shown that this resolution limit is also valid in the
multilayer case, provided that the transducer beam is relatively narrow. For
wide beams, transmission of the beam through multiple layers may be limited
by the critical angles of the layer interfaces, resulting in decreased resolution.

In most descriptions of synthetic aperture algorithms in the ultrasound
literature, it is assumed that the measurements are performed along a straight
line or over a flat plane. However, when inspecting pipelines or other cylindrical
structures from the inside, a cylindrical measurement surface is better suited.
In this thesis, we have derived a new Fourier-domain synthetic aperture
algorithm for cylindrical scans, termed Cylindrical Phase Shift Migration
(CPSM). The algorithm is based directly on the solutions to the scalar wave
equation in cylindrical coordinates, and in this sense the algorithm is exact. We
have compared the algorithm to a similar, previously published algorithm, and
shown that CPSM is superior for scans performed with wide-beam transducers.

We have studied the lateral resolution achieved by the CPSM algorithm
both theoretically and experimentally. The lateral resolution along the axis
of the cylindrical measurement surface is approximately equal to half the
transducer diameter in the entire focused image, as for a linear scan. However,
the angular resolution was shown to be equal to D/(2R), where R denotes the
radius of the measurement surface. This yields a spatial resolution along the
angular axis which decreases with the distance from the transducer. At large
distances, there is a significant difference in resolution between the two lateral
axes.

We have also shown that the CPSM algorithm can be applied to scans
performed with focused transducers, by treating the focal point of the
transducer as a small virtual source. In an experiment with a severely corroded
pipe, we compared the estimated topography for two cases; one scan where the
pipe wall was in the transducer focal zone, and another where the transducer
was several focal lengths away from the pipe, focused with CPSM in post-
processing. The results showed that the quality of the topography estimate
was approximately the same in both cases. This demonstrates that CPSM
can be used to significantly extend the range of focused transducers in pipe
inspection applications.

Finally, we have shown that the CPSM algorithm can be extended for
synthetic aperture focusing in multiple concentric layers. This combination
of multilayer focusing and focusing in cylindrical coordinates enables high-
resolution volumetric imaging in pipelines and similar structures. In practice,
this can improve the ability of ultrasonic pipe inspection systems to detect
and size defects, for example outside corrosion damage. Note, however, that
the algorithm is based on the assumption that the layer interfaces are smooth
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and concentric, and that focusing performance will be lower in pipes with
irregular interfaces. We have also shown, through an experiment with artificial
pitting corrosion, that accurate determination of pitting shapes is difficult
due to specular reflections at oblique surfaces. The practical applicability of
the algorithm can only be determined through large-scale implementation and
testing in real pipelines.

9.1 Thesis contributions

The novel contributions in this thesis to the research area of non-destructive
testing using synthetic aperture ultrasound are, in order of appearance:

• The application of RMS velocity for time-domain synthetic aperture
ultrasound imaging in multilayered media, first presented in [Skjelvareid
and Birkelund, 2010] and described here in Section 4.1.

• The combination of the phase shift migration and Stolt migration
algorithms for efficient Fourier-domain synthetic aperture imaging in
multilayered media, first presented in [Skjelvareid et al., 2011c], and
described here in Section 4.2.1.

• The derivation of a Fourier-domain remapping method for tilt compen-
sation in multilayer scans, first presented in [Olofsson et al., 2010] and
described in Section 4.B.

• The introduction of an exact algorithm for Fourier-domain synthetic aper-
ture imaging using cylindrical apertures, first presented in [Skjelvareid
et al., 2012b] and described in Section 6.1.

• The derivation of a simple expression for the achievable lateral resolution
in synthetic aperture imaging using cylindrical apertures, first presented
in [Skjelvareid et al., 2012b], and described in Section 6.1.4.

• Providing new insights into the practical use of synthetic aperture
ultrasound, for non-destructive testing in general and pipeline inspection
in particular. The experiments first presented in [Skjelvareid et al.,
2011a] and [Skjelvareid et al., 2012a] and described in Chapter 5 and 7
demonstrate some of the possibilities and limitations of three-dimensional
synthetic aperture ultrasound.

• Expansion of synthetic aperture imaging using cylindrical apertures to
the case of multilayered media, presented here in Chapter 8.

9.2 Suggested future work

Although synthetic aperture ultrasound has been actively researched for
decades, there are still a large number of possibilities to be investigated. It



136 Chapter 9. Conclusions

is also, as we have seen examples of in this thesis, much to be gained from
research conducted in the fields of seismic exploration and synthetic aperture
radar and sonar. Here we list some suggestions for future research which extend
the work in this thesis:

• The imaging systems treated in this thesis have been limited to
monostatic systems. However, use of transducer arrays has become the
standard in medical ultrasound imaging, and are also coming into use
for non-destructive testing [Drinkwater and Wilcox, 2006]. The use of
arrays simplifies the ultrasonic scanning process by removing the need
to mechanically move the transducer, which can be a great advantage
in demanding environments like pipelines. Arrays also enable imaging
schemes involving multiple transmitters and receivers, which can yield a
higher signal-to-noise ratio than monostatic systems [Chiao and Thomas,
1994; Holmes et al., 2005]. Adapting the algorithms presented in this
thesis to a general array imaging framework could both improve their
performance and widen their area of application.

• The multilayer algorithms presented in Chapter 4 require that the
layers are horizontal, or, with the addition of the tilt compensation
described in 4.B, that they are planar. Similarly, the algorithm described
in 8 requires that the layers are concentric. In practice, however,
the interfaces between different layers may be irregular, and to make
multilayer synthetic aperture imaging more generally applicable, it should
be extended to two- or three-dimensional wave velocity models. This
topic has been researched extensively in the field of seismic exploration,
[Gazdag and Sguazzero, 1984; Stoffa et al., 1990; Margrave and Ferguson,
1999; Margrave, 2003], and some of the suggested solutions may also be
applicable to ultrasound imaging.

• In this thesis, we have included only longitudinal waves in the theoretical
treatment of wave fields. However, solid media can also propagate shear
waves, as discussed in Section 2.3. Extending the multilayer algorithms to
include shear waves would therefore make them more generally applicable
to solid media.

• The experiments performed in this thesis have given several insights
into the possibilities and limitations of synthetic aperture ultrasound,
especially with application to multilayered media and pipe geometries.
However, ultimately the experiments are limited in their range of
transducer parameters, the imaging geometry applied, and the types of
defects tested. Further experiments and large-scale testing could give a
more thorough understanding of when synthetic aperture focusing should
be applied.
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