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Abstract. Graphics processors (GPUs) are emerging as a promising platform for
highly parallel, compute-intensive, general-purpose computations, which usually
need support for inter-process synchronization. Using the traditional lock-based
synchronization (e.g. mutual exclusion) makes the computation vulnerable to
faults caused by both scientists’ inexperience and hardware transient errors. It
is notoriously difficult for scientists to deal with deadlocks when their compu-
tation needs to lock many objects concurrently. Hardware transient errors may
make a process, which is holding a lock, stop progressing (or crash). While such
hardware transient errors are a non-issue for graphics processors used by graph-
ics computation (e.g. an error in a single pixel may not be noticeable), this no
longer holds for graphics processors used for scientific computation. Such scien-
tific computation requires a fault-tolerant synchronization mechanism. However,
most of the powerful GPUs aimed at high-performance computing (e.g. NVIDIA
Tesla series) do not support any strong synchronization primitives like test-and-
set and compare-and-swap, which are usually used to construct fault-tolerant syn-
chronization mechanisms.
This paper presents an experimental study of fault-tolerant synchronization mech-
anisms for NVIDIA’s Compute Unified Device Architecture (CUDA) without the
need of strong synchronization primitives in hardware. We implement a lock-
free synchronization mechanism that eliminates lock-related problems like the
deadlock and, moreover, can tolerate process crash-failure. We address the exper-
imental issues that arise in the implementation of the mechanism and evaluate its
performance on commodity NVIDIA GeForce 8800 graphics cards.

1 Introduction

Graphics processors (GPUs) are now considered the most powerful computation hard-
ware available for the price. Contemporary commodity GPUs can theoretically achieve
up to 624 GFLOPS (e.g. NVIDIA’s GeForce 8800 GTS (G92)) [9], more than triple
the throughput of the fastest supercomputer in the world about a decade ago [1] and
about thirty times of the throughput of current commodity dual-core CPUs [5]. GPU
computational power doubles every ten months, surpassing Moore’s Law for traditional
microprocessors. This results from the fact that GPUs are specialized for computation-
intensive, highly-parallel, graphics computations, and thus GPUs devote more transis-
tors to data processing than to data caching and flow control as in CPUs. As a result,
GPUs are emerging as a promising platform for highly parallel, compute-intensive,
general-purpose computation.



However, unlike graphics computation, general-purpose computation usually needs
support for reliability and inter-process synchronization. Errors in computation domains
like radiology, in which GPUs are used for medical image processing, are very costly
and potentially harmful to people. Although hardware transient errors in logic have not
occurred frequently, such errors are expected to become a significant problem within the
next five years [8]. Such hardware transient errors are a non-issue for graphics proces-
sors used by graphics computation (e.g. an error in a single pixel may not be noticeable)
[6], but this no longer holds for graphics processors used for general-purpose computa-
tion. Realizing the problem, researchers have recently proposed a hardware redundancy
and recovery mechanism for reliable computation on GPUs [7].

In this paper, we try to address the GPU reliability issues at the software layer. In
particular, we are looking at fault-tolerant synchronization mechanisms. Using the tra-
ditional lock-based synchronization (e.g. mutual exclusion) makes the computation vul-
nerable to faults caused by both scientists’ inexperience and hardware transient errors.
It is notoriously difficult for scientists to deal with deadlocks when their computation
needs to lock many objects concurrently. Hardware transient errors may make a process,
which is holding a lock, stop progressing (or crash). However, most of the powerful
GPUs aimed at high-performance computing (e.g. NVIDIA Tesla series) do not support
any strong synchronization primitives like test-and-set and compare-and-swap, which
are usually used to construct fault-tolerant synchronization mechanisms. These facts
motivated us to carry out an experimental study of fault-tolerant synchronization mech-
anisms for NVIDIA’s Compute Unified Device Architecture (CUDA) without the need
for strong synchronization primitives in hardware. We implemented a lock-free syn-
chronization mechanism that eliminates lock-related problems like the deadlock and,
moreover, can tolerate process crash-failure. The correctness of the synchronization
mechanism has been theoretically analyzed in [3] and thus in this paper we concentrate
on the practical aspect of the mechanism’s implementation on commodity graphics pro-
cessors. We employ the CUDA capability of reading and writing several words to/from
global memory in one instruction called coalesced memory accesses [2] to establish an
agreement between warps of threads. This agreement is fundamental to constructing
fault-tolerant synchronization primitives for threads running on different processors.

This paper makes two contributions: (i) a CUDA kernel supporting fault-tolerant
synchronization mechanisms in global and shared GPU memory, and (ii) a performance
comparison between software and hardware support of fault-tolerant synchronization.

2 The Compute Unified Device Architecture

The Compute Unified Device Architecture (CUDA) is the latest GPGPU technology
from NVIDIA [2]. It enables developers to write programs to be executed on a GPU
without first mapping them to a graphics API. CUDA improves memory access by
giving the programmer full read/write support to the entire device memory with some
minor exceptions. From the programmers perspective, the GPU can be seen as a set
of highly parallel multi-core processors. Each processor is capable of running multiple
threads in parallel in a SIMD fashion.



The CUDA memory architecture comprises several memory layers. Each processor
has 4 different types of on-chip memory:

– Each core has their own set of on-chip registers
– Each processor has on-chip shared memory which is shared by the processor cores.

Reads and writes to the shared memory are serialized in case of bank conflicts
– Each processor has an on-chip read-only constant cache
– Each processor has an on-chip read-only texture cache

The processors share device memory, which is divided into global memory, texture
memory and constant memory. Reads from texture and constant memory are cached
using the on-chip, read-only, constant and texture cache. Global device memory is not
cached.

Fig. 1. The Compute Unified Device Architecture

A CUDA compiled program is referred to as a kernel. The kernel is organized as
a grid of thread blocks. These thread blocks are organized into batches and executed
on the processors. A block is processed by only one processor to maximize the utiliza-
tion of the shared memory. A block is split into SIMD groups of threads called warps
and each of the threads within the warp is executed on the processor cores in a SIMD
fashion. The warps of a running block are time-sliced to maximize the utilization of the
processor. The way a block is split into warps is always the same, but the issue order of
the different warps is undefined. The time-slicing is hardware scheduled, yielding little
overhead for context switches. Threads within the same block can communicate using
the processors’ on-chip shared memory.

NVIDIA uses the term "Compute Capability" to separate the different architectures
of their CUDA cards. A card’s compute capability is defined by a major revision number
and a minor revision number. Devices of the same major revision number have the



same core architecture. The minor revision number corresponds to minor updates to the
core architecture. Currently, there are two compute capabilities, 1.0 and 1.1. The major
difference between these two capabilities is that cards with compute capability 1.1 have
atomic operations for global memory. Cards with compute capability 1.0 have no safe
way of communicating through global memory. This implies that processors on a card
with compute capability 1.0 can’t communicate in a safe manner. However, access to
global memory has one property that can be used to create synchronization primitives.
The device is capable of reading and writing 32-bit, 64-bit and 128 bit words to or from
global memory in one step. This requires the variable type to be a multiple of 4, 8 or
16, and the read or write instructions must be arranged so that the memory accesses can
be coalesced into a single contiguous, aligned memory address [2].

3 Design and Implementation

The algorithm used to create synchronization primitives is based on previous work [3].
The mechanisms in the algorithm are based on a long-lived consensus, which is used to
achieve an agreement between participants. The algorithm has been theoretically proven
in previous work [3]. We now apply the mechanisms of the algorithm to the Compute
Unified Device Architecture.

For global memory, we utilize the property of coalesced memory access to establish
an agreement between threads of warps running in different blocks. By arranging warp
writes from each block as described in the LongLivedConsensus [3] (shown in figure
2), we can establish an agreement about a common winner. For shared memory, the
writes do not need to fulfill the requirement of coalesced memory access, but memory
writes do need to be arranged according to the LongLivedConsensus. From the proper-
ties of the long-lived consensus we construct a read-modify-write (RMW) object that
encapsulates a memory region that different warps can communicate through.

The operation RMW(X, f ), where X is a shared variable and f is a mapping, is
defined to be equivalent to the indivisible execution of the following function [4]:

function RMW(X, f)
begin

temp← X;
X ← f(X);
return temp;

end

The RMW object is implemented by combining the LongLivedConsensus algorithm
with a round numbering scheme. Basically, a warp that invokes an operation on the
RMW object is assigned to a round. If more than one warp invokes the RMW object
within the same round, the RMW algorithm [3] ensures that all warps will agree upon
a common sequence of accesses, and thereby ensure the integrity of the RMW object.
Each of the warps belonging to the same round suggests an order of accesses in that
round. The LongLivedConsensus algorithm is used to achieve an agreement on the order
to use. All warps that invoke the RMW object will pass a function and some arguments
to the RMW object. The function and arguments of each warp that invokes the RMW



object is written to the warp’s part of a shared memory location. This memory location
is readable from all warps that invoke the RMW object. Each warp reads the function
and parameters from all other warps that participate in the round, calculates a value
of the RMW object based on its own sequence of the functions, and then writes the
result to a known memory location that can be read by every participating warp. Then
the warp invokes the LongLivedConsensus using the memory location of its proposal.
For global memory, five threads of a half-warp in each block write to global memory
in one coalesced memory operation. For shared memory, the first sixteen threads of a
warp (the first half-warp) write to shared memory. After the writes, each memory entry
is compared to the others in order to find the warp that wrote first. This is done using
the Ordering algorithm in combination with a RoundCheck algorithm described in [3].
After the execution of the Ordering algorithm, the warp that wrote first will be known
by all warps participating in that round. All warps then accept the buffer as the sequence
of functions for that round. Since each of the warps executes one function on the RMW
object at a time, functions are ordered according to both the round they participate in
and the order agreed upon by warps in the same round.

Fig. 2. The coalesced access pattern to global memory from each of the processor warps.
Each processor has 5 active threads that fulfills the requirement of coalesced memory
access

The current implementation of the algorithm supports wait-free synchronization be-
tween five blocks of warps using global memory and sixteen warps using shared mem-
ory, independent of the device compute capability. However, the actual number of warps
synchronized through shared memory is limited to five because the data structures that
encapsulate the RMW object consume too much on-chip memory when the number of
warps exceeds this limit. This will be optimized for future implementations of the al-
gorithm. The algorithm is designed for an asynchronous memory model. For CUDA,
the access speed to shared memory is the same as for registers if no bank conflicts oc-
cur [2]. For this reason, the shared memory version contains many duplicates that can



be removed in future optimizations of the implementation. However, the duplicates are
kept for the current implementation to ensure correctness.

The RMW object supports any read-modify-write operation such as the atomic op-
erations in graphics cards with compute capability 1.1. That is: ADD, SUB, EXCH,
MIN, MAX, INC, DEC and CAS. In addition, the RMW object supports atomic opera-
tions on floating point numbers, which currently is not supported by any CUDA card of
any compute capability. Further, the RMW object guarantees that the atomic operation
is wait-free if the number of failing warps is less than or equal to four for global mem-
ory and less than or equal to fifteen for the shared memory version. This ensures that
no failure or corruption can make the atomic operation hang.

4 Experiments

4.1 Methodology

To evaluate the RMW object implemented in both global and shared memory we have
conducted two experiments.

The first experiment was conducted to determine the extra overhead involved using
software synchronization in global memory. For this experiment the RMW object was
invoked 30 000 times recording the time for all iterations to complete. We compared
the results with a graphics card with compute capability 1.1 to evaluate the additional
overhead of software synchronization in global memory. We used the atomic operation
atomicAdd for hardware support. The experiment was repeated with 1 to 5 blocks, each
block having 16 threads. Each of the configurations was repeated 10 times.

For the second experiment we compare synchronization between hardware support
in global memory and software support in shared memory. For this experiment the
RMW object is invoked 30 000 times recording the time for all iterations to complete.
We repeated the experiment for 1 to 5 warps, and each of the configurations was re-
peated 10 times.

The hardware used in the experiments was: (i) a NVIDIA Geforce 8800GT PCX
graphics card with CUDA compute capability 1.1, and (ii) a NVIDIA Geforce 8800GTS
graphics card with CUDA compute capability 1.0. Each graphics card is powered by an
Intel Pentium 4 EM64T 3.2 GHz computer with 2 GB of RAM. The Geforce 8800GT
card is used as a reference for the atomic operations in hardware. Both graphics cards
are used to evaluate the software implementation.

4.2 Results

Figure 3 shows the time used to invoke the RMW object in global memory compared
to hardware support. As the figure illustrates hardware support is an order of magnitude
faster than software support. For 1 block, the atomic operation in hardware uses 0.0124
seconds to complete. For the Geforce 8800GT card, the time to invoke the RMW ob-
jects is 0.89 seconds and the Geforce 8800GTS card uses 0.935 seconds. For 5 blocks,
atomic operation in hardware takes 0.062 seconds for 30 000 iterations. For software
synchronization, the time is 2.38 for the 8800GT card and 2.56 for the 8800GTS card.
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Fig. 3. The time used for 30 0000 invocations of the RMW object in global memory
compared to atomic support in hardware (global memory)
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Fig. 4. The ratio between synchronization in software and hardware (global memory)
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Fig. 5. The time used for 30 000 invocations of the RMW object in shared memory
compared to atomic support in hardware (global memory).
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Fig. 6. The ratio between software synchronization support in shared memory and hard-
ware support in global memory



The figure indicates a linear increase in time for both software and hardware support as
the number of blocks increase.

Figure 4 shows the ratio between software support in global memory and hardware
support in global memory. The graph is generated by dividing the time for software
synchronization by the time used for hardware support. For 1 block, hardware support
is 72.16 times faster than software support for the 8800GT card and 75.45 times faster
for the 8800GTS card. However, for 5 blocks this factor has decreased to 38.33 for the
8800GT card and 41.17 for the 8800GTS card. The graph indicates that the software to
hardware ratio decreases as the number of blocks increase.

Figure 5 shows the time used to invoke the RMW object in shared memory com-
pared to hardware support in global memory. For 1 warp, the hardware supported atomic
operation uses 0.01239 seconds to complete compared to 0.303 seconds for the 8800GT
card and 0.396 for the 8800GTS card. For 5 warps, the atomic operation in hardware
uses 0.0621 seconds and the shared memory version uses 1.07 seconds for the 8800GT
card and 1.471 seconds for the 8800GTS card. The time to do synchronization in shared
memory is greater than hardware support in global memory for all warp configurations.
This indicates that the computation steps of the RMW object is the factor limiting the
speed of the software synchronization, as accessing shared memory is two orders of
magnitude faster than global memory.

Figure 6 shows the ratio between software support using shared memory and hard-
ware support in global memory. The graph is generated by dividing the shared mem-
ory software synchronization time by the time for hardware support in global memory.
For 1 warp, the factor is 24.46 for the 8800GT card and 31.95 for the 8800GTS card.
For 5 warps, the factor has decreased to 17.22 for the 8000GT card and 23.67 for the
8800GTS card. As opposed to software synchronization in global memory, software
synchronization in shared memory seems to flatten out between four and five warps.

5 Conclusion

We have presented an experimental study of a fault-tolerant synchronization mecha-
nism for NVIDIA’s Compute Unified Device Architecture without the need for strong
synchronization primitives in hardware. The current prototype has been implemented
as a proof of concept showing that read-modify-write objects can be constructed and
mapped to the architecture of CUDA. The RMW object enables processors of CUDA
graphics cards with compute capability 1.0 to communicate through global memory
and graphics cards with either compute capability 1.1 or 1.0 to use atomic operations
through shared memory. The current version of the RMW object implemented in global
memory supports five blocks, and the synchronization is guaranteed to be wait-free for
up to four failing blocks. For the shared memory version the synchronization primitive
has a limit of sixteen warps. However, the amount of on-chip shared memory reduces
the actual warp number to five.

The experiments conducted indicate that the performance bottleneck of the RMW
objects are the computation steps needed to ensure consensus between the participating
blocks and warps. The hardware implementation is an order of magnitude faster than
the software implementation. However, as the number of blocks (global memory) and



warps (shared memory) increases from one to five, the performance gap between soft-
ware and hardware is reduced from 72.16 times to 38.33 times for global memory, and
24.46 times to 17.22 times for shared memory. We are working on improvements to
the implementation of the algorithm in order to increase its performance and allow for
more blocks and warps for both global and shared memory.
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