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ABSTRACT

Integrative multi-species prediction (IMP) is an inter-
active web server that enables molecular biologists
to interpret experimental results and to generate
hypotheses in the context of a large cross-organism
compendium of functional predictions and networks.
The system provides a framework for biologists
to analyze their candidate gene sets in the context
of functional networks, as they expand or focus
these sets by mining functional relationships pre-
dicted from integrated high-throughput data. IMP
integrates prior knowledge and data collections
from multiple organisms in its analyses. Through
flexible and interactive visualizations, researchers
can compare functional contexts and interpret the
behavior of their gene sets across organisms.
Additionally, IMP identifies homologs with conserved
functional roles for knowledge transfer, allowing
for accurate function predictions even for biological
processes that have very few experimental annota-
tions in a given organism. IMP currently supports
seven organisms (Homo sapiens, Mus musculus,
Rattus novegicus, Drosophila melanogaster, Danio
rerio, Caenorhabditis elegans and Saccharomyces
cerevisiae), does not require any registration or
installation and is freely available for use at http://
imp.princeton.edu.

INTRODUCTION

As high-throughput experiments become increasingly
common, biologists face substantial challenges effectively

leveraging genome-scale data from diverse organisms to
inform new hypotheses. Experimental data coverage for
an organism can be sparse, and prior functional know-
ledge (i.e. low-throughput experiments validating a
gene’s function) can be notably limited. These impedi-
ments affect the breadth and accuracy of bioinformatic
methods (e.g. machine-learning algorithms) that apply
prior knowledge in learning novel biology. As a conse-
quence, the applicability of these methods is often
limited to biological processes and pathways that are
already well characterized for an organism.

For example, a common challenge for biological re-
searchers is interpreting the results of a genome-wide ex-
periment (e.g. a list of candidate genes from a microarray
experiment) and generating hypotheses for experimental
follow-up. There are several effective resources, some
network based, for researchers to analyze their gene sets
(1–6). These resources cover a wide range of organisms
and address different needs of biologists by applying a
variety of methods: from pathway enrichment analysis
of a gene list to machine learning algorithms that predict
a gene’s function. All these resources’ methods require
known examples (i.e. pathways with at least a few
annotated genes) in an organism. Consequently, the effect-
iveness of these applications is constrained by the extent of
prior knowledge and available experimental data in the
queried organism.

Other resources address the problem of disparate data
coverage among organisms by focusing on methods to
transfer high-throughput data (e.g. microarray and
physical interaction experiments) between organisms
(7,8). However, these efforts are limited to learning gene
association networks, and none of them solve the problem
of making accurate functional predictions and associ-
ations for biological processes that have not been well
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studied in a given organism. For example, most of the
discovered genes involved in neuromuscular process have
been in mouse [65 known genes according to gene
ontology (9)]. Relatively few genes are definitively
known in mammalian systems outside of this model
organism. Consequently, many existing methods will not
be able to predict genes to that biological process in rat
(where only one such gene is experimentally annotated),
and a biologist using a rat model system with existing
resources will not be able to leverage the known biology
in mouse. Biologists need a technology that allows for the
systematic application of prior functional knowledge from
other organisms to their organism of study, at multiple
points in an analytic workflow: from interpreting experi-
mental results to generating hypotheses for functional
assays. Integrative multi-species prediction (IMP) is an
interactive web server designed to meet this burgeoning
need.

IMP is an exploratory tool that, in addition to
providing a high-quality interface for functional interro-
gation, solves several specific challenges encountered by
biologists that benefit from integrating cross-organism
biological knowledge. First, although biologists can inter-
pret their experimental results in the context of functional
networks, other servers do not allow them to adequately
accomplish this task due to their limited workflow support
and the incomplete prior knowledge in an organism. With
IMP, biologists can save their custom genes sets and
overlay their genes on functional networks, expanding or
focusing their gene list by mining functional relationships
within the networks. IMP can integrate cross-organism
knowledge with a method that goes beyond the standard
Basic Local Alignment Search Tool (10) search by iden-
tifying enriched biological processes among the genes,
using gene-pathway annotations from the queried
organism and annotations from other organisms mapped
by functional analogy (11). In this way, pathways that are
better characterized in a different organism will be
included in an enrichment analysis, facilitating biological
connections that would otherwise be hindered by limited
functional knowledge. Moreover, no existing server
provides a way to interactively examine putative functions
and gene–gene interactions in functional networks
across organisms. With IMP, biologists can compare
functional contexts and interpret the behavior of their
gene sets across organisms using flexible and interactive
visualizations.

Finally, the results from a genome-wide experiment can
elucidate a biological question but are often inconclusive
and require experimental follow-up. Computational pre-
dictions of gene function can guide subsequent experi-
ments. However, accurate assignments have previously
been limited to pathways and processes that are already
well characterized in an organism, as such information is
necessary for training examples. Transferring functional
annotations between homologous genes is a common
method to improve coverage for a studied pathway and
to generate hypotheses for functional assays, but
high-quality transfers have historically been limited
to smaller scale, manual curation efforts (12). IMP sys-
tematically identifies functionally similar homologs,

using state-of-the-art homolog identification methods
that use genomic data compendia (11) to transfer
pathway annotations between organisms for learning.
This allows for accurate gene-process predictions, even
for processes that have few experimental annotations in
an organism.

IMP SYSTEM DETAILS

An analysis in IMP begins with a biological process, gene
or set of genes of interest. The biological questions that
IMP can help answer depend on the provided input. For
example, a researcher may have a group of co-expressed
genes from an messenger ribonucleic acid experiment and
want to determine the common biological functions and
pathways among the genes. The researcher may also want
to compare the behavior of this gene set in different or-
ganisms and identify additional genes predicted to be
interacting with the input set. Alternatively, a biologist
may be interested in a specific pathway and seek add-
itional candidate genes that may be involved in or inter-
acting with this pathway to investigate. Using IMP,
biologists can answer these questions with the functional
knowledge acquired in the organism of interest and poten-
tially better-studied organisms.
IMP currently supports seven organisms, with plans to

add more in future updates. The functional networks are
constructed using previously described methods (4,5,13)
and integrate genomic data from an array of public data
sources (9,14–17). These data can cover diverse tissues and
developmental time points. Our integration method sum-
marizes them into a global picture of gene–gene relation-
ships. The complete list of data sources is accessible
directly on the web server (http://imp.princeton.edu/
networks/data/).
Although functional networks of IMP are constructed

using organism-specific data, IMP leverages biological
knowledge from multiple organisms in several functional
analyses. To accomplish this, IMP transfers functional
knowledge (experimental gene ontology (GO) biological
process annotations) using our previously developed
method to identify appropriate homologs for annotation
transfer (11). This method from Chikina and Troyanskaya
(11) extends beyond simple annotation transfer by
sequence similarity. Instead, a network-based similarity
score is used to identify all homologs [defined as genes
separated by a speciation or duplication event in a
TreeFam family (18)] with similar functional profiles. In
effect, a more specific relationship is identified for anno-
tation transfer than when using sequence alone—func-
tional knowledge is transferred between genes with a
shared evolutionary history that also exhibit similar bio-
logical function.

ANALYZING CUSTOM GENE SETS

With IMP, biologists create custom gene sets for any
organism, assign them informative labels and colors and
submit genes for analysis (Figure 1). These gene sets can
be saved on the user’s local machine by cookies and persist
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as long as cookies are kept (usually one year by default),
or they can be saved to a server and shared with
collaborators. In the analysis, a graphical search of an
organism’s gene network is performed on the gene
set to retrieve predicted functional neighbors (those
likely to participate in the same pathway). Small gene
sets (1–10 genes), which have been reported to be the
majority of user inputs to other web servers (2), benefit
particularly from this network-based analysis. A small
and statistically underpowered gene set can be expanded
with functionally similar genes to improve biological
interpretation and meet significance cutoffs for pathway
enrichment.
IMP presents these results as highly interactive

networks: users can adjust layout by moving genes,
query evidence supporting a functional relationship by
hovering over an edge and modify graphical options to
customize the display. Users can control the number of
genes displayed by adjusting the confidence cutoff for the
returned functional relationships or by filtering based on

connectivity in the returned network. An enrichment
analysis updates in real time as the network specificity
is narrowed or broadened. The analysis identifies
overrepresented pathways among the displayed genes
using annotations from numerous public databases
(9,17,19,20). Statistical significance is calculated using
the hypergeometric distribution, and multiple test correc-
tion is performed using false-discovery rates (21).

The enrichment analysis can incorporate pathway
annotations transferred from other organisms. The appro-
priate homologs of the network genes are identified, and
any corresponding pathway annotations can be included.
Thus, pathways that are not well characterized in a biolo-
gist’s organism of interest, but better studied in another
organism, will be included in the results.

Finally, any gene set created by the user persists
throughout IMP and is automatically overlaid on any
relevant network presented to the user. Any gene from
a custom set is rendered with the set’s user-defined color
and labeled in the network legend. In this way, IMP serves

Figure 1. The workflow for creating and analyzing a custom gene set in IMP. (A) The interface for creating a gene set, where users can select an
organism, add their genes and assign a label and informative color. This can be reached by following the ‘My Gene Sets’ link at the top right of every
page. (B) The returned sub-network for the submitted gene set (large nodes), with the nodes colored using the user-assigned color for the custom set
(red). Edge colors correspond to the confidence of a functional relationship between genes. Users can hover over any edge to examine the top data
sets contributing to that score. (C) The added genes in the displayed network are functionally related to the queried genes at a confidence cutoff
controlled by the user. (D) A biological process enrichment calculation is updated in real time as genes are added or removed from the network
display. The user can choose to include annotations transferred from other organisms in the enrichment calculation.
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as an exploratory tool that is also anchored by a user’s
experimental results or genes of interest.

CROSS-ORGANISM NETWORK ANALYSIS

The accuracy and coverage of gene association networks
depend largely on the extent of publicly available experi-
mental data. Because some organisms are developed to
elucidate certain biological processes, data coverage for
a studied pathway can vary considerably by organism.
Using IMP, biologists can compare functional contexts
of interest, whether a user submitted gene set or a previ-
ously defined pathway in IMP, across multiple organisms.
They can visually assess whether the predicted functional
relationships for their gene set are supported in other or-
ganisms and can discover what data support connections
in each organism.

The cross-organism network layout is shown in Figure 2.
The relevant process network for a user-submitted gene
set is visually aligned against the networks of other organ-
isms. The alignment uses a coordinated layout where genes
are mapped by functional analogy (11) and user inter-
actions with the queried network are simultaneously
updated in the other organisms’ networks. This interactive
view of predicted pathways across organisms can help
answer broad and important biological questions. In
particular, this helps biologists address a key challenge in
the study of human disease: identifying the best model
system for a given disease, with the most appropriate
ortholog for a disease gene of interest.

For example, Figure 2 shows the pathway for double-
strand break repair, a critical process that, when defective,
can lead to genome rearrangements that ultimately lead to
cancerous cells [reviewed in (22)]. This process is highly
conserved across evolutionarily distant organisms, which
is reflected in the network comparison. Data coverage is
high across the three organisms (human, mouse and
yeast), as evidenced by the high confidence edges
between most of the genes in the pathway. Moreover, it
is apparent that many genes (e.g. RAD51, POLA1 and
RPA2) have conserved functional relationships and
would be potentially good candidates for study in mouse
or yeast.

KNOWLEDGE-TRANSFERRED FUNCTION
PREDICTIONS

A biologist can also use IMP to generate hypotheses
for follow-up experiments. Users can query IMP by gene
or GO biological process to retrieve gene-pathway predic-
tions. IMP applies a previously developed and validated
method (23), which uses a functional network as input to
a support vector machine (SVM), to classify genes to
biological processes. The predictions in IMP leverage
the functional knowledge from multiple organisms by
using the transferred and directly assigned annotations
in an organism as positive examples in the SVM
(Supplemental Figure S1). An SVM is trained with
5-fold cross-validation for each GO biological process
term using this expanded set of annotations. Thus, IMP

can accurately assign genes to processes that have few
experimental annotations in a queried organism.
Figure 3A shows the result page for querying BRCA2 in

human. The relevant local network of predicted functional
relationships and putative biological processes are
returned to the user. All the networks visualized in IMP
can be exported as a high-quality figure (SVG format) for
inclusion in publications. IMP result pages use interactive
elements and advanced visualizations. These features
make information accessible that would otherwise be cum-
bersome to present. For example, a user can click on the
edge connecting BRCA1 and BRCA2 in the network to
bring up a detailed view of the top data sets contributing
to the predicted functional relationship. Additionally,
users can search the list of predicted processes and sort
or filter by process specificity. Researchers can perform all
these tasks without leaving the result page through the
dynamic, interactive elements.
In addition to queries by gene, a scientist can explore a

biological process of interest (Figure 3B). The result page
for a biological process query contains a list of genes
predicted to participate in the process and the functional
network of genes already annotated to the process. Users
can click on a gene’s description to update the displayed
network with functional relationships between the
selected gene and the genes used as positive examples in
the classifier. In this way, a researcher can visually assess
the relationships that support the prediction of the gene
to the biological process.
The predictions in IMP have been validated using a

conservative 1-year holdout evaluation: all biological
process annotations available on June 2010 are used
for training the SVM classifiers and annotations
made in the subsequent year (through June 2011)
are held out for evaluation. We assess performance
with standard machine learning metrics (Supplemental
Figure S2), and our performance is competitive among
state-of-the-art function prediction methods
(Supplemental Figure S3), even though many of these
GO terms have too few annotations to make predictions
without our annotation transfer method. Regularly
updated plots of prediction performance are available
directly on the web server.

CASE STUDY: THE FUNCTIONAL ROLE OF EVE1
IN DANIO RERIO

An example workflow illustrates some (though not all)
of the capabilities of IMP. eve1 is a Danio rerio tran-
scription factor implicated in a conserved role in body
patterning in a variety of species (24). However, little is
known about the biological mechanism of eve1 beyond its
global role in patterning. A researcher may be interested in
identifying the specific processes that eve1 participates in.
To generate testable hypotheses for the functional role

of eve1, a biologist can query IMP for the gene. They can
search IMP using a variety of identifiers for eve1 (Entrez,
Ensembl and Zfin), in addition to its standard name. The
result page for this query contains a list of biological
processes predicted for eve1 and a network with genes
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predicted to be functionally related. Consistent with prior
functional knowledge, the top prediction for eve1 is
pattern specification process (GO:0007389), which
reflects our understanding of eve1 in patterning. To
identify a more specific functional role of eve1, the biolo-
gist can filter the prediction list by process size directly
from the result page. The biological process of anterior–
posterior pattern formation (122 genes) is both more
specific than its grandparent in the GO hierarchy,
pattern specification process (299 genes), and predicted
with high confidence (85% probability).
In a recent publication, with experimental results not

included in IMP, authors show that eve1 is an important
regulator in posteriorisation and neural induction through
a series of loss and gain of function experiments (25).
Thus, in this case, IMP predicts a functional role (anter-
ior–posterior pattern formation) for eve1 that was inde-
pendently confirmed. Additionally, although the role of
eve1 in neural induction was not directly predicted, a
higher level but related process was predicted with high
confidence (central nervous system development with 78%
probability).

SUMMARY

IMP is a highly interactive and flexible web server that
serves as an intuitive and accessible resource for functional
interrogation. It addresses the current limitations of other
web resources by integrating the prior knowledge and
current experimental data from other organisms in its
analyses. Its functional networks and predictions are
generated using an automated analysis pipeline and will
be updated semi-annually with additional organisms and
data sets. The user interface is under active development,
and features are constantly added based on the feedback.
By automating the transfer of functional annotations
between organisms and integrating this expanded know-
ledge in its analysis tools, IMP provides a unique suite of
resources for biological researchers.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–3 and Supplementary
Reference [26].

Figure 2. The cross-organism network view in IMP. The functional networks for the double-strand break repair pathway are visually aligned, and
any interactions in the queried network (human) are simultaneously updated in the other networks (mouse and yeast). Yellow nodes indicate genes
that are annotated to the double-strand break repair pathway in the respective organism. Gray nodes are genes with a homolog in the query
organism.
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Figure 3. The result pages for a gene and biological process query. (A) A gene query returns the relevant local network and a list of biological
processes predicted for the gene. The predicted processes can be searched by name or filtered by specificity (process size). (B) A biological process
query returns a list of predicted genes likely to participate in the process. Clicking on a gene description will update the network on the left with
relationships between the selected gene (large red node) and genes already known to be involved in the process (yellow nodes).
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