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Abstract

This thesis addresses change detection from multipolarization, multilooked SAR im-
ages. Change detection can be viewed as a particular case of the multitemporal image
classification problem. Change detection from SAR images is particular challenging
due to several intrinsic properties related to the way these images are formed. SAR im-
ages are affected by physical properties such as target permittivity, imaging geometry,
and surface topography, which call for accurate pre-processing and co-registration. In
addition, SAR images of distributed targets are disturbed by speckle, a noise-like phe-
nomenon, which complicates analysis and interpretation. On the other hand, radar
signals in the micro frequency bands commonly used in satellite borne SAR systems,
are almost insensitive to light and atmospheric conditions. This makes the possibility
of performing change detection from SAR interesting, especially in the Northern and
Arctic regions.

We discuss two main approaches: a post-classification comparison algorithm and a
direct change detection algorithm.

We consider the complete processing chain associated with performing postclassi-
fication change detection from time series of multi-polarimetric SAR (PolSAR) images
acquired with different imaging geometries and polarimetric configurations. The ap-
plication is connected to monitoring of changes in Arctic glaciers. The images are cor-
rected for terrain effects by thoroughly reducing topographic effects on both geoloca-
tion, radiometry and polarization signature, and subsequently stacked into proper time
series for further analysis. Multilooked, multi-polarimetric SAR images are generally
represented as matrix-variates. The matrix-variate U/;-distribution is found to enable
proper statistical representation of the variable texture observed in our multitemporal
PolSAR data. An unsupervised Markov random field (MRF) based contextual non-
Gaussian clustering algorithm, named the /-MRF segmentation algorithm, is employed
for segmentation of the terrain corrected images. This algorithm has built in contextual
smoothing by MRF modeling, and yields homogeneous segmentation, leading to robust
change detection results. The clustered PolSAR data is subsequently labeled into glacier
zones with the aid of ground truth data. The consistency of the segmentation algorithm
is also demonstrated by characterizing the expected random error level for SAR images
under different imaging conditions. This allows us to determine whether an observed
variation is statistically significant and therefore can be used for glaciers change detec-
tion. Finally, the classified images of succeeding years are compared and analyzed, and
changes are identified as the detected temporal changes in the location of boundaries
between glacier distinct zones.

The thesis also proposes a novel method for direct unsupervised change detection
from PolSAR data. We assume that the matrix variates follow the complex Wishart dis-
tribution, and the complex Hotelling-Lawley (HL) trace statistic is applied as a new test
statistic for measuring the similarity between two complex covariance matrices. In the
null hypothesis (no change), the statistical moments of the HL statistic are functions of
the number of looks and the number of polarimetric channels. The sampling distribu-



tion of the test statistic is then approximated by a Fisher-Snedecor (FS) distribution. The
proposed method is to match the empirical population moments of the FS distribution
with those of the HL statistic. The no change hypothesis of equal covariance matrices
may then be rejected at a predefined false alarm rate. The performance of the proposed
method is demonstrated with good results on simulated and real PolSAR data sets.

To ease the reading for non-expert readers, the thesis also provides several chapter
of appropriate background material.
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Chapter

Introduction

This chapter is intended to give an overall overview of the whole thesis. It introduces
the motivation for the research, summarizes and discusses the three research articles
that make up the main content, and lists associated conference works.

1.1 Motivation

Advances in Earth Observation (EO) technologies have improved our abilities to mon-
itor and study processes on the Earth’s surface. One of the main applications of remote
sensing data is to detect and monitor changes in surface cover in multitemporal im-
ages. A number of different applications relies on robust and accurate change detection
algorithms. Examples of such applications are; detection and monitoring of volcanic
activity, surveillance of disasters (e.g. landslides, floods, forest fires), monitoring and
tracking of sea-ice motion, monitoring glaciers, mapping of snow cover areas, and sur-
veillance of coastal areas and growth of urban areas.

Imaging synthetic aperture radar (SAR) is presently a key instrument onboard EO
satellites. Images acquired by SARs have to a lesser extent (contrary to optical sensors)
been exploited in the context of change detection. This is due to the fact that SAR images
suffer from the presence of speckle phenomenon, which largely complicates the analysis.
Also, itis difficult to directly compare SAR images acquired with different polarizations,
different incidence angles, different satellite fight paths and different look directions.
However, the use of SAR sensors is attractive in temporal studies from an operational
viewpoint, because microwave SAR systems offer the advantage of being insensitive to
atmospheric and light conditions. Research studies demonstrate that the use of SAR
images have great potential in change detection and time series analysis.

Radar polarimetry use the complete information which can be gained with microwave
remote sensing about targets of any kind. This technology has advanced rapidly the last
10-18 years, and is now at a stage where full-polarimetric radar systems operating on
many different frequencies are deployed on EO satellites (ALOS PALSAR, RADARSAT-



2, TerraSAR-X, COSMO-SkyMed). The polarimetric SAR (PolSAR) systems are expec-
ted to improve the ability to infer change information from multitemporal data. This is
due to the fact that PolSAR data also allow for classification of scattering mechanisms,
which potentially may provide an increased discrimination capability.

The overall objective of the thesis “Multitemporal Analysis of Multipolarization Syn-
thetic Aperture Radar Images for Robust Surface Change Detection" is to develop stat-
istical models, divergence measures and analysis strategies for temporal analysis of SAR
and PolSAR data, which can result in robust change detection algorithms. Our goal is
to adapt and improve existing, and develop new methods for analyzing these data.
The usefulness of remote sensing data in monitoring various phenomena and detect-
ing change is highly dependent on the ability to create reliable time series of images,
which can reveal dynamics at high temporal and spatial resolution. Through the thesis,
we want to develop algorithms that can do this, by enhancing the information retrieval
from multidimensional and multitemporal SAR data. We note that a difference in radar
backscattering between multitemporal data may be caused by several factors such as
actual change in land cover, differences in viewing geometry, differences in satellite
path, differences in sensor calibration, differences in atmospheric moisture conditions,
differences in meteorological conditions, and differences in the colocation of the mul-
titemporal images. We will study some of these factors, adapt and improve existing
algorithms, and develop new methods for analyzing time series of SAR data. In partic-
ular, we will:

e Demonstrate the capability of more advanced non-Gaussian matrix-variate distri-
butions for representing the variable texture observed in multilooked, multitem-
poral PolSAR data sets. This includes studies of the added value of combining
non-Gaussian modeling and Markov random field (MRF) contextual smoothing
with respect to improving accuracy and reliability of POISAR image segmentation.

e Investigate the impact of DEM-based radiometric terrain correction and polariza-
tion orientation angle compensation of multitemporal multipolarization SAR data
acquired with different imaging conditions on land cover change detection in mul-
tilooked, multitemporal PolSAR data.

e Study and evaluate the appropriateness of new and existing test statistics for un-
supervised direct change detection in multilooked, multitemporal PolSAR images.

The application will be related to the surveillance of polar areas, with emphasis on
detecting and monitoring changes in glacier surfaces. Glacier variability is known to be
important indicator of global climate change, and hence of great importance for climate
research.



Introduction 3

1.2 Organization of the Thesis

Chapter 2 provides an introduction to the SAR imagery. We describe the geometry in
side-looking SAR, SAR spatial resolution in range and azimuth directions, speckle phe-
nomenon, and geometric distortions. The material presented here is a review of earlier
work.

Chapter[3|gives an introduction to the PoISAR concepts and data models for PoISAR.
We look at the data formats delivered by polarimetric radars, starting with single-look
complex (SLC) data and moving on to multilook complex (MLC) data, while explaining
the concept of multilooking. The chapter ends with definition of the doubly stochastic
product model for SLC and MLC data and finally some matrix-variate statistical distri-
butions for multilook data.

Chapter [4 an overview on the contextual MRF-based classification of PolSAR data.
This chapter address the problem of contextual PoISAR image clustering by combining
pixelwise statistical distributions for multilook data and contextual information. In the
context of this chapter, we first detail the MRF theory and then the algorithm steps of
the Bayesian classification are described.

Chapter [5| describes the geometric and radiometric terrain correction of PoISAR data.
Surface topography has influence on the geometric and radiometric quality of SAR im-
ages. In this chapter, precise SAR geocoding using digital elevation model (DEM) and
orbital information is described. Then, radiometric correction of multilook PolSAR data
is addressed that utilizes the pixel size area normalization on each element of covariance
matrix data. Finally, polarimetric orientation angle compensation which is an important
correction for PolISAR data in rugged terrain areas is introduced.

Chapter [6] describes the concept of direct change detection in multipolarizarion SAR
data, and also reviews some test statistics useful for polarimetric changes detection in
addition to our detector.

Chapter contains three manuscripts, forming the basis of the thesis. These are
separately described in the next section, where we summarize the main findings and
highlight the original contribution of the authors.

Chapter (10 gives the summary and the concluding remarks and points out some sug-
gestions for future work based on the work documented in the thesis.

Appendix [A|is a conference paper (referenced as Paper 11 in the list of Section
which contains the clustering method used in the processing chain of the post-classification
change detection described in the Chapter



Appendix B is a supporting document for Paper 3 (referenced as Paper 10 in the
list of Section[I.4). It introduces the complex Hotelling-Lawley (HL) trace statistic and
expressions for the moments of the HL statistic under the complex Wishart distribution.

1.2.1 Publication Review

The main body of this thesis is presented as three journal publications which are in-
cluded as Chapters [/} [8|land 0} A summary is given for each article, describing the key
tindings and highlighting the original contributions of the authors. The papers appear
in chronological order to reflect the progress of the research itself. Paper 1 introduces
the non-Gaussian contextual clustering algorithm for multilook covariance matrix data.
Paper 2 introduces a processing chain for the post-classification change detection of
Arctic glaciers from multitemporal multipolarization SAR data, where Paper 1 makes a
foundation of the clustering method used in Paper 2. Paper 3 introduces a novel direct
change detection in multilook PolSAR data under the complex Wishart distribution .

Paper 1

V. Akbari, A. P. Doulgeris, G. Moser, T. Eltoft, S. N. Anfinsen, and S. B. Serpico, "A
Textural-Contextual Model for Unsupervised Segmentation of Multipolarization Syn-
thetic Aperture Radar Images," IEEE Transactions on Geoscience and Remote Sensing, vol.
51, no. 4, pp. 2442-2453, Apr. 2013.

In this paper, a novel unsupervised, non-Gaussian, and contextual segmentation al-
gorithm for PolSAR imagery has been developed by combining an advanced statistical
distribution with spatial contextual information. This extends on previous studies that
have shown the added value of both non-Gaussian modeling and contextual smoothing
individually or for intensity channels only. We use the non-Gaussian X-Wishart distri-
bution, which accounts for potential textural differences in the classes, to represent the
individual pixelwise statistical properties. The classifier based on pixel statistics only
is severely affected by overlapping class statistics due to speckle noise. This problem
is reduced by incorporating spatial contextual information of the associated image data
in the analysis process by MRF modeling. The proposed contextual clustering method
uses a specific Markovian energy function for integrating the C-Wishart distribution for
the PolSAR data statistics conditioned to each image cluster and a Potts model for the
spatial context. Specifically, the proposed algorithm is constructed based upon the iter-
ative stochastic expectation maximization (SEM) algorithm. A new formulation of SEM
is developed to jointly address both the data clustering and parameter estimation of the
K-Wishart distribution and the MRF model.

The clustering algorithm requires that some parameters are given in advance. One
key parameter in unsupervised image segmentation is the appropriate number of clusters
which was determined in a preclustering process. The clustering also should be initial-
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ized using either K-Means clustering of the logarithm intensities of the individual po-
larimetric channels or random initialization. The parameter of Potts MRF model needs
also to be initialized. Moreover, the effective or equivalent number of looks (ENL) is a
key parameter in all pixelwise distributions for multilook PolSAR data and had to be
estimated using the method of matrix log-cumulants (MoMLC) in a preanalysis of the
image.

The added value of combining the flexible non-Gaussian -Wishart distribution and
the Potts MRF model was tested on three simulated and real data. The segmentation res-
ults before and after MRF modeling for both the standard Wishart and the C-Wishart
classifier have been obtained. The segmentations have been compared in terms of dis-
criminability of non-Gaussian regions with -Wishart with respect to standard Wishart
model and contextual smoothing with MRFE. The effectiveness of MRF models in im-
proving the accuracy (quantified for simulated data) and reliability of PolISAR image
clustering has been remarked for all examples. The results show improvement with re-
spect to segmentation of pixelwise clustering. With regard to the computation time, the
whole process is slightly slower than the original pixelwise SEM algorithm due to the
additional MRF stage in the clustering scheme. Even on the basis of data with a low
number of looks (and therefore a high degree of speckle), the proposed approach is able
to generate homogeneous and reliable clustering results.

Paper 2

V. Akbari, A. P. Doulgeris, and T. Eltoft, "Monitoring Glacier Changes by Multitem-
poral Multipolarization SAR Images," submitted June 2012, and under review in IEEE
Transactions on Geoscience and Remote Sensing.

This paper presents a processing chain for post-classification change detection of
Arctic glaciers from multitemporal multipolarization SAR images acquired with differ-
ent polarization configurations, different satellite fight paths and different look direc-
tions. The algorithm has been tested on dual polarization ENVISAT ASAR images for
the period 2004-2006 over the Arctic glacier, Konsvegen, Svalbard. We first produced
terrain corrected multilook complex covariance data by reducing the effects of topo-
graphy on both geolocation and SAR radiometry as well as azimuth slope variations
on polarization signature. Terrain correction is a prerequisite for intercomparisions of
multitemporal SAR images.

We showed in Paper 1 that the K-Wishart distribution can be used to model SAR
image texture. However, the analysis shows that this model does not always represent
the data well. The GJ has already been included as a choice of model for extremely
heterogeneous area. The Kummer-U distribution has been introduced in [Bombrun
et al., 2011] to represent POISAR vector data . We use its multilook extension, named
the multivariate U;-distribution, for multilook covariance matrix data. The flexibility of
this model with respect to K-Wishart and G with an extra texture parameter is evident



that covers more of the space of matrix log-cumulant observed in multitemporal multi-
polarization SAR data. The U, distribution covers the manifold between the K-Wishart
distribution and the G9 distribution, but not below either of them. It is expected to yield
improved results because of its flexibility to model more varied textures. The matrix
log-cumulant diagram was demonstrated for each scene to visualize the capability of
the U;-distribution to model texture in the multitemporal dual polarization SAR data
over this glacier.

Unsupervised contextual non-Gaussian clustering method was then performed us-
ing the U/-MREF classifier over the terrain corrected SAR scenes. The basis of the textural-
contextual classifier was made in Paper 1/Chapter [/, More details about clustering al-
gorithm can be found in Appendix[Al The contextual smoothing yields homogeneous
segmentation which leads to more robust change detection results. Ground truth data
are used to label segmented images into the three major classes of glacier facies, i.e.,
tirn, glacier ice (GI), and superimposed ice (SI) and to investigate the classification ac-
curacies.

We then characterized the consistency of the classification as the total variation of
tirn/SI boundary between two no change images to obtain the expected variation just
due to processing errors in the processing chain. Finally, we did post-classification
change detection analysis based on the classified images on a pixel-by-pixel based ana-
lysis. The variations of the boundaries between glacier facies were clearly detected
within the period of study. The variation for the two-year period, 2004-2006, exceeds
the measured classification variation and thus shows significant change for this period
although one year differences were not significant. These procedures may form the
basis for more operational monitoring of Arctic areas.

Paper 3

V. Akbari, S. N. Anfinsen, A. P. Doulgeris, and T. Eltoft, G. Moser, and S. B. Serpico,
"Change Detection for Polarimetric SAR Data with the Hotelling-Lawley Trace Stat-
istic under the Complex Wishart Distribution," submitted May 2013, and under review
in IEEE Transactions on Geoscience and Remote Sensing.

In this paper, we propose a new test statistic for unsupervised change detection in
multilook PolSAR data under the complex Wishart distribution. We apply the complex
HL trace statistic as a test statistic on multitemporal PolSAR images for measuring the
similarity of two covariance matrices. Moments of the HL statistic under the complex
Wishart model were derived in the paper of Apendix Bl The sampling distribution of
the HL statistic is then approximated by a Fisher-Snedecor (FS) distribution. The model
parameters of FS distribution is calculated by estimated ENL for each image and po-
larimetric dimension. ENL estimation is an important input to the proposed change
detection method and needs to be estimated accurately in preanalysis. The proposed
method is to match the population moments of the FS distribution with those of the
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HL statistic. Eventually, a binary decision can be made to get a final change map at a
predefined false alarm rate.

In brief, the proposed change detection algorithm is made up of four main steps: 1)
separate ENL estimation of the input PolSAR images, 2) generation of the HL test stat-
istic image, 3) FS modeling of the test statistic image, and 4) thresholding. We compare
the change detection results obtained from our proposed method with the Wishart like-
lihood ratio test (LRT) statistic proposed in [Conradsen et al., 2003] in terms of detection
accuracy, false alarm rate, overall error rate and receiver operating characteristic (ROC)
plots.

We have found that FS can model the null hypothesis which corresponds to no
change hypothesis. This was confirmed by testing on synthesized Gaussian polarimet-
ric pairs with different number of looks and dimensions. This experiment was then
extended on this pair with simulated change in terms of polarimetry and intensity vari-
ations. In this case, the HL statistic performed slightly better performance than the LRT
statistic to detect changes. The HL and LRT change detectors are then compared in de-
tail on two real PolSAR pairs, with modified and real change in the data sets. Compared
to the LRT statistic, the HL statistic represents higher sensitivity to the differences in po-
larimetric information, and hence a better performance in detecting changes. In cases
of a bad fit of the histograms to the estimated PDF, it may be due to presence of texture
that make deviation from the Wishart distribution. To reduce this problem, we suggest
to multilook the original SLC data with high degree of smoothing as a simple solution.

1.3 My Contributions to the Journal Publications

e Paper 1 (Chapter[7): The suitability of non-Gaussian modeling in PolSAR classific-
ation has been reported in [Doulgeris et al., 2008]. The idea of incorporating spatial
contextual information in image classification has for example been investigated
in the research of the IPRS research group at the University of Genoa (e.g., [Serpico
and Moser, 2006]), where I worked on the problem of contextual MRF-based clas-
sification. My contribution to this paper is on combining non-Gaussian modeling
and contextual smoothing for clustering of multilook PolSAR data. The experi-
mental setup was designed by me, and I have conducted all the practical experi-
ments. The clustering algorithm in this paper is a basis for the Paper 2.

e Paper 2 (Chapter[8): My contribution to this paper is the development of the work-
flow for analyzing multitemporal multipolarizarion SAR data for glacier change
detection. The workflow consists of five major steps: 1) SAR data selection and
multilooking, 2) terrain correction, 3) PDF selection, 4) unsupervised segmenta-
tion, and 5) post-classification change detection. The experiments have been im-
plemented by myself. Another major contribution of mine in this paper is the
extension of the theory of RTC to the polarimetric case. Based on the projection
cosine approach in [Ulander, 1996] for the radiometric slope correction of SAR im-



agery, I extended the method to multilook PolSAR data to allow running the RTC
on all covariance matrix elements and project them to the ground range area. I also
implemented the algorithm for the OAC of PolSAR data proposed in [Lee et al.,
2000].

To choose an appropriate PDF to better model the variable texture in multitem-
poral PolSAR data, in the third step I used the implemented matrix log-cumulant
diagram proposed in [Anfinsen and Eltoft, 2011]. Paper 2 represents an extension
with respect to Paper 1 by applying a more flexible distribution to model the vari-
able texture in multitemporal PolSAR data in the segmentation algorithm. This
was worked out in collaboration with the second author.

e Paper 3 (Chapter[9): The complex HL trace statistic was first introduced by the first
author of the paper in Appendix[B] The first three moments of the HL trace statistic
were also derived by the first author. My contribution to this paper is to study the
usefulness of the HL trace statistic as a new test statistic for change detection in
polarimetric radar images. Thus, the experimental setup was completely done by
myself. I started to simulate multilook polarimetric pairs with different number
of looks and dimensions under the null (no change) hypothesis. I tested if the
FS distribution can model the null hypothesis. Then I moved on to simulating a
change in the data by introducing polarimetry and intensity variations to mimic
both land cover and seasonal change. I should mention that the HL statistic can
detect any type of changes in the data. Finding suitable real PoISAR data was a
big challenge for me in the experiments. In order to show how the proposed test
statistic works on real data, I created a change in PolSAR data from a rainforest
area in the Amazon, and I could show that the proposed change detection test
statistic has higher sensitivity in detecting polarimetric changes than the Wishart
LRT.

1.4 Other Publications and Presentations

As first author:

1. V. Akbari, S. N. Anfinsen, A. P. Doulgeris, and T. Eltoft, “The Hotelling-Lawley
trace Statistic for change detection in polarimetric SAR data under the complex
Wishart distribution", submitted to IEEE Geoscience and Remote Sensing Symposium
(IGARSS2013), Melbourne, Australia, 21-26 Jul. 2013.

2. V. Akbari, Y. Larsen, A. P. Doulgeris, and T. Eltoft, “The impact of terrain correc-
tion of polarimetric SAR data on glacier change detection", Proc. IEEE Geoscience
and Remote Sensing Symposium (IGARSS2012), Munich, Germany, pp. 5129-5132,
22-27 Jul. 2012.
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. V. Akbari and M. Motagh, “Improved ground subsidence monitoring using small

baseline SAR interferograms and a weighted least squares inversion algorithm",
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agery", Proc. IEEE Geoscience and Remote Sensing Symposium (IGARSS2011), Van-
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V. Akbari, A. P. Doulgeris, and T. Eltoft, “Glacier change detection from SAR data
by contextual non-Gaussian clustering", Nordic Remote Sensing Days (NRSD) Conf.,
Tromg, 30-31 Aug. 2011, presentation only.
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ning (NOBIM2010), Tromse, Norway, Jun. 2010, oral presentation.
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Chapter 2

Synthetic Aperture Radar Imaging

In this chapter, we give an introduction to the synthetic aperture radar (SAR), followed
by its geometric configuration and SAR spatial resolution. A detailed introduction to
SAR can be found in text books such as [Oliver and Quegan, 2004], [Cumming and
Wang, 2005], [Elachi and Van Zyl, 2006], [Curlander and McDonough, 1991], and [Mas-
sonnet and Souyris, 2008].

2.1 Synthetic Aperture Radar

SAR is a coherent and microwave imaging radar to obtain high spatial resolution two-
dimensional (2-D) reflectivity images of the Earth’s surface in nearly all weather con-
ditions and independently of the day-night cycle. The imaging SAR system is an act-
ive radar system operating in the microwave region of the electromagnetic spectrum,
usually between P-band and Ka-band, as presented in Table The radar is usually
mounted on a flying platform such as an airplane or a satellite and operates in a side-
looking geometry with an illumination perpendicular to the flight line direction. Similar
to other active systems, it emits microwave radiation to the ground and measures the
electromagnetic signal backscattered from the illuminated area. The aim of SAR signal
processing is to synthesize a 2-D high spatial resolution image of the Earth’s surface
reflectivity from all the received signals.

2.1.1 Imaging Geometry

Figure [2.1]illustrates the geometry of the imaging radar often employed for Earth ob-
servation. The radar antenna illuminates a surface trip to one side of the nadir track.
The direction in which the platform moves is called the azimuth direction. The direction
in which the radar transmits and receives radiation is called range. The radar trans-
mits a cone-shaped microwave beam to the ground continuously with a side-looking
angle ¢ in the direction perpendicular to the flying track (azimuth direction). This side-
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Table 2.1: The microwave bands for radar remote sensing.

Band | Wavelength (cm) | Frequency (GHz)

K, 0.75-1.1 40-26.5

K 1.1-1.67 26.5-18

K, 1.67-2.4 18-12.5

X 2.4-3.75 12.5-8

C 3.75-7.5 8-4

S 7.5-15 4-2

L 15-30 2-1

P 30-100 1-0.3

looking geometry is important to eliminate right-left ambiguities from two symmetric
equidistant points [Elachi and Van Zyl, 2006,/Swart, 2000]: if they would see points on
either side of the ground track, the radar would not be able to distinguish them, because
they have the same range. The radial axis or radar-line-of-sight (RLOS) is referred to as
slant-range (R). The area covered by the antenna beam in the ground range (Y) and azi-
muth (X) directions is the antenna footprint. This area consists of many small cells. The
echo backscattered from each ground cell within the footprint is received and recorded
as a pixel in the image plane according to the slant range between the antenna and the

ground cell.

Antenna

- Flying height

=
o
o
=

X Footpriﬁt

f ™ Flying track (orbit)

Projected orbit

1
¥ Mid slant range Ry,

/ ,
,” Cross-track
Y

Figure 2.1: Radar imaging geometry-the sensor flies in the flying (azimuth) direction
and looks in the cross-track (range) direction (figure taken from [Li et al., 2004]).

The platform moving along the azimuth direction provides the scanning. The area
scanned by the antenna beam is called the radar swath. The antenna apertures (or named
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the antenna beam width) in the cross-track (range) direction and the flying (azimuth)
direction are given by

Wy R = W N = (2.1)

where M and D correspond to the physical dimensions of the antenna in the range and
azimuth directions, respectively, and X is the wavelength corresponding to the carrier
frequency of the transmitted signal. The swath W can be then approximated by:

_ AR, AHg
~ Mcos M cos?f

where R, is the slant range from the center of the antenna to the center of the footprint;
Hyy is the height of the satellite orbit above the Earth; and 6 is the radar look angle.

Wa

(2.2)

2.1.2 SAR Spatial Resolution

The resolution is expressed as the minimum distance that two scatter points must have
in order to be solved. The resolution of a radar image for Earth observation is defined
by the azimuth resolution in the flying direction and the ground range resolution in the
range direction, as illustrated in Figure If an infinitely short pulse is transmitted
toward a point target a distance R away, an infinitely short echo will be received at time
t = 2R/c, where c is the speed of light. The factor 2 represents the fact the radar signal
travels two times the distance R. If the pulse has a length 7, the echo will have a length
7. If there are two targets separated by a distance 4,, the shortest separation 9, which is
measured as the range achievable resolution is given by [Elachi and Van Zyl, 2006]

cT ¢
where B is the bandwidth of the signal. If we project this onto the ground with incid-
ence angle ¢, we get the ground range resolution which is coarser than the slant range
resolution.

Op cT

(2.4)

5 = =

9 sinf, 2siné,
Thus, in order to achieve a resolution as high as possible, a short pulse or a wide-
bandwidth pulse is required. The energy in a pulse is equal to

E =Pt (2.5)

where P is the instantaneous peak power. The energy in a pulse characterizes the cap-
ability of the pulse to detect a target, and a high pulse energy is desired. This can
be obtained by increasing the peak power P. However, in particular for radar imaging
satellites the maximum power is limited by the sensor hardware. The other possibility is
to increase pulse duration to transmit sufficient energy to receive a certain backscattered
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Figure 2.2: Resolution of radar images (figure taken from [Li et al., 2004]).

energy. But, according to a long pulse, corresponds to a narrow bandwidth B, res-
ults in a poor range resolution. Thus, in order to have a high detection ability and a
high resolution, a pulse with characteristics of large 7 and large B is needed [Elachi and
Van Zyl, 2006, Cumming and Wang, 2005]. This is made possible to change the nature
of the pulse by modulating it during its transmission. In other word, a linear frequency
modulated signal called the chirp is transmitted. Using a chirp the energy of the signal
is spread over a large bandwidth 5. The energy is compressed again in a short time
interval in the receiver using a matching filter. By this way, the pulse duration and
signal-to-noise ratio (SNR) are increased without decreasing the range resolution.

According to the electromagnetic wave theory, the azimuth resolution for conven-
tional radar systems is given by [Curlander and McDonough, 1991]

5 NR)\i H )\
“~ "D " Dcosf

(2.6)

where D, as already denoted, is the length of the aperture of the radar antenna. To il-
lustrate, if Hgyy = 785 km, A = 5.66 cm, 6 = 23°, and D = 10 m, then ¢, = 4.8 km, which
is considered a low resolution for imaging applications. To get an azimuth resolution
of 10 m from 785 km away, the required length of its aperture is longer than 3 km. This
is impossible for any flying platform to carry such a long antenna and when high res-
olution is desired, the real-aperture technique is not appropriate for such applications.
In order to improve the azimuth resolution, a synthetic-aperture technique developed in
the 1960s is used which is based on the construction of a longer effective antenna by
moving the real sensor antenna along the flight direction [Oliver and Quegan, 2004]. It
is based on the principle of the Doppler frequency shift [Wiley, 1954] caused by the relative
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Figure 2.3: Imaging geometry of SAR-The scatterer point is seen by the antenna from
different positions (figure taken from [Li et al., 2004]).

movement between the antenna and the target. This technique is based on the fact that
the response of a scatterer is contained in more than one single radar echo. A scatterer
point, in fact, remains in the antenna beam for a significant amount of time. So a scatter
point is observed by the radar from different positions during the movement of the an-
tenna on its orbit (Figure 2.3). Therefore, instead of usage of a large antenna, coherent
combination of different echoes relative to a scatterer point realize a synthetic enlarged
antenna, a sort of antenna array. Compared to the azimuth resolution of a real aperture
radar, the azimuth resolution of the SAR is much improved and is given as:

5y = — (2.7)

This means that the azimuth resolution of an SAR is only determined by the length of
the real aperture, independent of the distance between the sensor and the area being
imaged. It is clear that a finer resolution can be obtained by making the real antenna
length very small. This is true, but there some are ambiguities which place some cer-
tain limits on this, in particular, related to the pulse repetition frequency (PRF) and the
ground coverage capability of the SAR [Elachi and Van Zyl, 2006]. The corresponding
azimuthal resolution expression for an orbital SAR imaging system, which considers
neither the Earth’s curvature nor the curved flight path of the satellite.

Ry D

a == —-—— 2-
5 RE +Hsat 2 ( 8)

where Rp is the Earth’s radius.
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Figure 2.4: Composite return from an area with multiple scatters.

2.2 SAR Complex Images

Some specific signal processing operations are required to convert the collected raw
data into into a well focused image. A SAR raw data is not an image yet since point
targets are spread out in range and in azimuth. The echo of a target point is received
from the moving antenna for a time defined as integration time. The SAR processor is
to combine all these echoes coherently referred to the same target point received during
the integration time. The focusing is needed both in azimuth and in range dimension,
in order to create the image. After processing of SAR raw data with some advanced
techniques such as Omega-k and Range-Doppler algorithms [Cumming and Wang, 2005,
each pixel of the SAR image contains not only the gray value (i.e., amplitude image)
but also the phase value related to the radar slant range. These two components can be
expressed by a complex number. Therefore, the SAR image can also be called a radar
complex image.

2.2.1 Speckle

The coherent interference of waves reflected from many small elementary scattererﬂ
generates the so-called speckle. This effect causes a pixel-to-pixel variation in intensity
even over homogeneous areas, and gives the SAR image its noisy appearance. This ef-
fect is a sort of salt and pepper screen superimposed on a uniform amplitude image and a
phase randomly distributed [Ferretti et al., 2007]. In distributed targets, each resolution
cell contains a number of discrete scatterers (Figure 2.4). As the wave interacts with
the target, each scatterer contributes a backscattered wave with a phase and amplitude
change, so the total returned modulation of the incident wave is

N
S = 18]’ = " |Si[e* (2.9)
=1

'Those with a dimension on the scale of the radar wavelength
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i being the index of individual scatterer with amplitude |S;| and phase ¢;, and N the

number of scatterers in the resolution cell [Sarbandi, 1992} Jakeman and Pusey, 1976,
[Elachi and Van Zyl, 2006, /Oliver and Quegan, 2004].
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Figure 2.5: ERS-2 SAR detected image of the Linate airport. The speckle effect is

clearly visible on the homogeneous fields nearby the airport (figure taken from [Ferretti
et al., 2007]).

Fange direction [pixel]

Figure 2.6: Average of multiple ERS SAR images of the Linate airport. The speckle is

suppressed on the homogeneous fields nearby the airport (figure taken from [Ferretti
et al., 2007]).

An example of speckle is shown in Figure 2.5/ in which the salt and pepper effect
is visible by visual inspection on homogeneous fields surrounding the Linate Airport.
The speckle in SAR images complicates the interpretation of images and influences the
usefulness of SAR images. Generally, image classification suffers severely from speckle.
One optimum solution to reduce speckle is taking more images of the same area at
different times or from slightly different look angles, provided that land cover change
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does not occur significantly. Figure shows an example of speckle reduction. The
average of 60 SAR images acquired bye ERS-1 and ERS-2 of the area surrounding the
Linate airport in Milan is illustrated. Another way of speckle reduction is an incoher-
ent averaging of neighboring pixels together to spread the aberration out at the cost of
resolution. Several algorithms have been developed for speckle reduction in the last
decade [Lee et al., 1991], [Lopes et al., 1993, [Touzi and Lopes, 1994].

2.2.2 SAR Geometrical Effects

When terrain is imaged using a radar sensor, each SAR resolution cell depends on the
look angle and the local topography. The ground objects are imaged as a function of
their distance from the antenna - not as a function of their distance from each other
on the ground. Figure 2.7|shows how slant-range is projected onto the ground. Side-
looking geometry of the radar causes the three inherent distortions: foreshortening, lay-
over and shadowing.

Antenna Imageplane e f  Slantrange R
>

J

Far slant range

-~
~—
~-— -

Near slant range

-

A P ///,_y///llllll////////////////lh
Nadir E F Cross-track

Figure 2.7: Projection of radar image. The part of the terrain imaged in each resolution
cell clearly depends on the surface topography (figure taken from [Li et al., 2004]).

As the terrain slope increases with respect to a flat horizontal surface (forslope areas,
i.e., the normal to the ground moves toward the RLOS direction), the ground resolution
cell dimension in range increases. This effect is called foreshortening. Suppose that points
A, B, and C, which are equally spaced on the ground, are imaged by the radar sensor.
Because the SAR is viewing from an angle, a cross-track compression of the radiometric
information backscattered from foreslope areas is inevitable [Lee and Pottier, 2009]. As
seen in Figure the length of A'B’ is considerably shortened compared to the length
of B'C’ on the ground providing a tilting of the top of the mountain towards the sensor.

When the terrain slope exceeds the radar look angle, the scatterers are imaged in
reverse order and superimposed on the contribution coming from other areas. This
effect is called layover and is illustrated in Figure The point B on the top of the
mountain is closer to the radar sensor, therefore it is imaged on the image plane earlier
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Figure 2.8: SAR geometrical distortions - Foreshortening, layover and shadowing ef-
fects in areas with strong topography.

than the point A at the bottom of the mountain. Consequently, the echo from AB is
distributed in a reverse order on the image plane (A'B’), as shown in Figure .

The other effect of vertical structures is to produce shadows in the SAR image. Be-
cause of the side-looking geometry there will be a region of ground behind the vertical
structure that the beam cannot reach. Thus for the time period corresponding to that
ground area, no echoes will be returned. This results in a black area on the image which
is called shadow. As seen in Figure Backscattered information is lost and no signal
is collected from point A to point B. This causes an area A'B’ on the image plane con-
taining only systems noise. The minimum slant range resolution is achieved when the
terrain is parallel to the RLOS which is the lower slope limit for a SAR system, since
below this angle the terrain is in shadow [Ferretti et al., 2007].
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Chapter 3

SAR Polarimetry

In this chapter, the principle of polarimetric SAR imaging is briefly introduced to give
the necessary keys for understanding polarimetric measurements. Many studies have
concerned only with the information carried by a single SAR image. SAR systems with
multiple frequencies or polarizations provide a much enhanced capacity for extracting
information from the images.

3.1 Scattering Matrix

SAR polarimetry is concerned with exploring the target properties from the behavi-
ors of backscattered polarized electromagnetic waves. The effects of the interactions
between the electromagnetic waves and the observed targets are associated with ima-
ging systems such as the frequency of the radar signal, polarization, incident angle or
orientation of the target with respect to the radar antenna, scattering directions and tar-
get characteristics such as geometrical structure and dielectric properties [Elachi and
Van Zyl, 2000].

Polarimetric SAR systems use antennae designed to transmit and receive electro-
magnetic waves of a specific polarization, being the two most common ones the hori-
zontal linear or H, and vertical linear or V. Due to the possible change in polarization
of the scattered wave, radar antennae are designed to receive the different polarization
components simultaneously and, therefore, HH, VV, HV and VH data will be available
in a full polarimetric system [Lee and Pottier, 2009], see Figure Any polarization
state of the transmitted wave can be described by an electric field vector of the form

E° = Epuy, + B, (8.1)
or equivalently

B - { b } | 3.2)
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Figure 3.1: A polarimetric radar is implemented by alternatively transmitting signals out
of horizontally and vertically polarized antennas, and receiving at both polarizations
simultaneously. Two pulses are needed to measure all the elements in the scattering
matrix (figure taken from [Elachi and Van Zyl, 2006]).

where the subscript ¢ denotes incident and (uy, u,) are two unit vectors, i.e., the linear
horizontal and vertical polarization basis: H,V [Oliver and Quegan, 2004]. The electric
fields E° and E’ of the scattered wave and the incident wave are related by a complex
2 x 2 scattering matrix [S] associated with each resolution cell in the image according
to [Lee and Pottier, 2009, Touzi et al., 2004]

e —jkR

E = -[S]- E
E=— ]

-(5]- (5]

Here k denotes the wavenumber, R is the distance between radar and target, and j =
v/—11is the imaginary unit. The superscript of the electromagnetlc tield components in-

(8.3)

dicates incident (i) or scattered (s) wave. The term “—— " takes into account the propaga-
tion effects both in amplitude and phase. Expression (3.3) is only valid for the far field
zone, where the planar wave assumption is considered for the incident and the scattered
fields [Lee and Pottier, 2009]. The [S] matrix is called Sinclair matrix [Sinclair, 1950] or
target scattering matrix. This matrix for a monostatic SAR system, in which the same
antenna transmits and receives, is given in the horizontal-vertical polarization basis as
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follows:

St She
|: Svh va 1 ’ (34)

where thescattering coefficients S,, are subscripted with the associated receive () and
transmit (¢) polarization, which is horizontal (/) or vertical (V). It is worth to note
that the backscattered alignment (BSA) convention is the preferred system in the area
of monostatic SAR polarimetry. Matrix elements denote the corresponding components
of the backscattered electric fields, with the first subscript indicating the polarization of
the transmitted electric field and the second subscript indicating the polarization of the
detected component of the backscattered electric field. Terms S}, and S,, are named
“co-polar”, whereas terms S}, and S, are named “cross-polar".

If the observed media contain reciprocal material and if the wave propagation between
the radar and the ground does not involve non-reciprocal phenomena (such as when
low frequencies cross the ionosphere), then applying the reciprocity theorem [Kong,
1990] to the target-radar system implies that the off-diagonal terms of [S] are equal,
Shy = Sun [Massonnet and Souyris, 2008,|Lee et al., 1994b,Cloude and Pottier, 1996|]. The
scattering matrix is consequently a symmetric matrix, defined by six parameters, three
amplitude terms and three phase terms. If we factor out a term of absolute phase, the
number of independent parameters is reduced to five parameters: the three amplitudes
and the two relative phases [Lee and Pottier, 2009, Massonnet and Souyris, 2008]:

Sh'u S’U’U

. j'd)hh . |Shh| |Shv| . ej(¢hv_¢hh)
=e | S| - €7 @no=0mn) |G | e (Goo=dnn) |

CRIR -

3.2 Scattering Vector

The scattering matrix [S] can be vectorized and represented as the target scattering vec-
tor k = [k’o, ]{31, l{ig, ]{33]T by
ki = tr([S] - [®4)), (3.6)

where the superscript 7' is the matrix transpose and tr(-) denotes the trace operator and
[W;] is a complete set of 2 x 2 basis matrices which are constructed as an orthogonal
set under the Hermitian inner product [Lee and Pottier, 2009]. There are two groups
for choosing the structure of [¥,], from either the {¥p} or the {W¥} families. The first
group is made of from the Pauli basis matrices set {¥ p} given by

on=f [ [ A [ [T e
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and the corresponding 4-D Pauli scattering vector becomes

Shh + va
1 Shh - va
k=— ) 3.8
- \/§ Shv + Svh ( )
j(Shv - vh)

When Assuming that the reciprocity, Sy, = S,, the Pauli basis will only contain the first
three matrices from {Wp} family given in (3.7), and we obtain 3-D Pauli scattering vector

1 Shh + va
k=— Shi — Svo . (39)
\/§ 2Shv

The second group is the Lexicographic matrix basis set {¥,} given by

10 01 00 00
wo=tlos oo Ve fon] e
and the corresponding 4-D Lexicographic scattering vector becomes

Shh
Shv
Svh ’
SU'U

Q= (3.11)

For a reciprocal medium, in the monostatic backscattering case, the Lexicographic mat-
rix basis set, {¥} is given as

wo-{L A0t

and the corresponding 3-D Lexicographic basis scattering vector becomes

Q:

Shh
\/§Shv ’ (313)
va

where v/2 in (3.12) and (3.13) arises from the requirement to conserve the total scattered
power, so that

Span = |Shh|2 + 2|S}w|2 + |S’L)v‘2

=k k= [k (3.14)
=070 =9
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where the superscript (-)? stands for the Hermitian or complex conjugate transpose.
The vectors k and Q are single-look complex (SLC) format representations of polari-
metric SAR data. The transformation between these two vectors is given as [Cloude,
1986, Lee and Pottier, 2009]

k = Uyr-p)2, (3.15)

where U1 p) is a special unitary SU(4) transformation from the Lexicographic scatter-
ing vector to the Pauli scattering vector as follows

10 0 1
1 10 0 -1
07 -5 O

and satisfies |Uy(;—,p)| = +1and Uz(lL p) = Uﬂ [P The unitary transformation matrix
between the two 3-D polarimetric scattering vectors is given as

0 1
0 -1 (3.17)

1
U3(L—>P) - =
\/§ \/§ 0

O = =

3.3 Radar Brightness

This section provides the default product calibrations that we will need later for ra-
diometric terrain correction of the multilook radar data in Section[5.2
The radar brightness (RB), 3°, is defined as the radar cross section (RCS) per unit im-
age area in range-azimuth coordinates [Frey et al., 2013]]. The RB of a given target meas-
ured in the slant range plane for linear polarizations r,t € {H, V'} can be obtained from
the elements of target scattering matrix as follows [Freeman, 1992, Oliver and Quegan,
2004]:
o Am|Sn|?
rt T AB )

(3.18)

where Az represents the reference area of 3° backscatter coefficient which contributes to
the recorded signal. Both S,; and %, are functions of wave frequency, viewing geometry,
wave polarization, geometrical structure and dielectric properties of the object [Lee and

Pottier, 2009]]. The area normalized scattering vector in the slant range plane (subscript
BY) is defined as [Akbari et al., 2012al:

Qﬁo - (319)

Q2
VAs



26

3.4 Multilook Complex Data

Usually, polarimetric data are transformed into the form of multilooked sample covari-
ance matrices in order to reduce the statistical variation due to speckle effects and data
compression of SAR data by spatial averaging of several neighboring SLC image pixels.
From the target scattering vector, the polarimetric coherency matrix and the covariance
matrix are generated from the complex product of the associated target vector with its
conjugate transpose. The L-look sample covariance matrix is then defined as

L
1 H
C-I2 9
<|Shh|2> <ShhS;v> <ShhS:h> <ShhS:v> (3-20)
<ShvSl>:h> <|Shv|2> <ShvS':h> <ShvS:v>

<Svhs;;h> <Svh5;kw> <|Svh|2> <SvhS:v> ’

<vaslth> <SUUS;;U> <vaS:h> <‘SUU‘2>

where (-)* means the complex conjugation, L is the nominal number of looks used for
averaging and (- - -) denotes temporal and spatial ensemble averaging, and | - | refers
to absolute magnitude. The diagonal elements of the covariance matrix represent the
multilook intensities of the linear polarizations and the off-diagonal elements are the
complex cross-correlation between channels and may also hold valuable polarimetric
information. Hence, after multilooking, each pixel in the image is a realization of the
d x d stochastic matrix variable denoted C, and the image is referred to as the multilook
complex (MLC) covariance image. For a reciprocal medium, the 4-D covariance matrix
reduces to the 3-D covariance matrix

L
S, 0f
(=1
(

C:

~ =

SnP) (V2SS (SuSi) 821
= <\/§Sh'uslth> <2|Shv|2> <\/§ShvS:v>
<va52h> <\/§vas;kw> <‘SUU|2>

And the polarimetric coherency matrix is constructed from the spatial average of k:

T=-> k ki (3.22)

1

S

L
(=

The two matrices [C] and [T] carry the same information about polarimetric scat-
tering amplitudes, phase angles, and correlations; both are Hermitian positive semi-
definite and both have the identical eigenvalues but different eigenvectors [Cloude and
Pottier, 1996]. It is worth to note that it is always feasible to generate the MLC data from
the SLC data by multilook averaging, but the averaging is not reversible, so it is not
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always possible to re-generate the unique SLC scattering matrix back from the MLC co-
variance matrix, because the multilook averaging is a many-to-one operation and thus
irreversible [Elachi and Van Zyl, 2006].

There is also another representation of the polarimetric covariance matrix given in

(3-21) [Ziegler et al., 1992]

1 V2-e-4/e 09
C=om-| V2-e /e 2-e V2. fe g |, (3.23)
0 G V2-xJeg g

where this parametric form of covariance matrix [C] includes nine parameters:

e an energy parameter

T = (Shn * Shn)s (3.24)
e two real parameters (e and g)
(Syw - Siw) (Shy - Sho)
g= T = 2Thy Chol (3.25)
<Shh ) Shh) <Shh ) Shh>

where g and e characterize the ratios of co-polarized energies [Massonnet and
Souyris, 2008, Lee and Pottier, 2009]

e three complex numbers (thus six real parameters ) o, € and s,

0= <Shh ’ SUU> e = <Si:<h ) Shv) - (326)
\/<Shh ’ S;;h> ’ <va ) S$u> \/<Shh ) Shh) ’ <Shv ’ Shv)
<va ’ S;kw>

\/<va ' S:;”U> ' <Shv ’ S;kw>
which are the complex cross-correlation between channels (polarimetric intercor-
relation) and quantify the amount of similarity of responses backscattered by a tar-
get under different transmission and reception conditions [Massonnet and Souyris,
2008].

In the case of a natural media, such as soil and forest, the correlation between co- and
cross-polarized channels is assumed to be zero, referred to as reflection symmetry [van
Zyl, 1993], and the corresponding covariance matrix [C] can then be expressed as

(1) 0 {(ShnSi) 1 0 09
C= 0 <2|S}w|2> 0 = Ohph * 0 2-e 0 s

(SowSin) 0 ([Swl?) Vg 0y
Therefore, the only remaining cross-correlation is o, which expresses the correlation
between the co-polarized channels.

(3.27)
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3.5 Models for Polarimetric Data

It has been verified that the product (or named multiplicative) model [Lee et al., 1994b,
Oliver and Quegan, 2004, |Freitas et al., 2005, Eltoft et al., 2006] is proper to represent
the statistical properties of SAR data which decomposes the target scattering vector as
a product of two independent stochastic variables

Q=VZY, (3.28)

where the strictly positive, unit mean scalar random variable Z models texture, and rep-
resents the backscatter variability due to heterogeneity of the sensed area. The texture
term is scalar because of the assumption of equal textural variations for all polarimetric
channels. The random vector Y represents the polarimetric speckle noise and follows
a circular complex multivariate Gaussian distribution [van den Bos, 1995|, denoted as
NE£(0,X), with zero mean and covariance matrix 3, and polarimetric dimension d. The
probability density function (PDF) of Y is given as

py(Y) = exp (-Y"27'Y), (3.29)

1
%]
where | - | is the determinant of a matrix. As the random variable Z models the vari-
ance of the signal rather than its amplitude, the texture component is introduced with

a square root [Oliver and Quegan, 2004]. Using the definition given in (3.21) with the
decomposition presented in (3.28), the multilook covariance matrix becomes

L L
> 9, Z . (3.30)

(=1
The texture variable is assumed constant over each area for which the pixels are being
averages. Therefore, for a small number of looks, we can assume that Z, is independent
of L for pixels included in the multilook averaging i.e., Z, = Z for every / [Lee et al.,
1994b), |Lopes and Sery, 1997, Frery et al., 2010, Doulgeris et al., 2008] and then (3.30)
becomes

b«IH
m

L
:%ZL.X;{:ZW. (3.31)

It follows from the Gaussian assumption that if L > d and the {Y;}}-_, are independent,
thenY =32/, Y, - Y/, follows the complex Wishart distribution [Goodman, 1963,[Lee
etal., 1994a]], denoted W(d, L, X), with parameters L, the nominal number of looks, and
> =FE{Y, Y/} = E{Y}. The PDF of Y is given as

|Y’L_d

w(Y) = FsE

exp (—tr(X7'Y)), (3.32)
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Table 3.1: Texture and covariance matrix distributions under the multilook product model
given in (3.31) [Anfinsen et al., 2011]

pz(z) of texture variable Z pc(C) of covariance matrix C
Ld L—d

Cons. | d(z—1) SWE(L,Z) | Losis oxp (—Lir(£71C))
- o an1 AC (1) (tr(21C)) T Ko (2/a Lt (2 1C
() Ty exp (—az) Ka(L, 3, o) Srrmre (L) (tr( ) La—Ld ( aLtr( ))
__ —1)n n— LEd|CE—4 T(Ld+n) (n—1)" — —n—Ld
70| Gl e (<11 | GUL.E) | TapmE -ty (H(ETC) +0-1)

e\l , Ld

LI Lhd |4 TEt+g) (¢ -
T80 | rsth & ((;z)ﬂ))w Us(L, D60 | s o el (a) D(Ld+¢) x U(Ld+ ¢, Ld — € + 1, Lr(S'C)/(¢ — 1))

where I';(L) is a normalization constant

d
Ty(L)=n"7 J[T(L—i+1), (3.33)

=1

named the complex-kind multivariate gamma function in [Anfinsen et al., 2009], while
I'(-) is the standard Euler gamma function. L > d ensures that W is nonsingular. Due
to normalization by L, the speckle noise term W follows a scaled complex Wishart distri-
bution [Anfinsen and Eltoft, 2011], denoted sW(d, L, ¥), whose PDF is

LLd’W|L_d

A V71

exp (—Ltr(E_1W)) : (3.34)
The marginal distribution for C may be obtained by integrating the conditional PDF
over the prior distribution of Z, that is

pe(C)= / T poi(Clpz()dz,  Clz ~ sWI(L, 23). (3.35)

The PDF of C depends on the specific model for the scalar texture variable Z. Several
distributions have been proposed in the literature, for the backscatter Z, in order to
model homogeneous, heterogeneous and extremely heterogeneous clutter. Tabel 3.1|lists the
Dirac delta function, 6(z — 1), gamma (7), inverse gamma (') and Fisher-Snedecor
(FS) distribution as possible choices of pz(z) and the resulting distributions for C as
follows, depending on the homogeneity of the target.

e Homogeneous surfaces: the texture random variable is constant, i.e., the Dirac
delta function §(z — 1) and the PDF for C is the scaled Wishart distribution.

e Heterogeneous surfaces: in this case the texture is assumed to be a gamma distri-
bution, denoted ¥(«), leading to the Ky model [Jakeman and Pusey, 1976/Jakeman,
1980,Jakeman and Tough, 1987] for C. Usefulness of of the multivariate multilook
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polarimetric K; model and its use in analysis and clustering are presented in [Yueh
et al., 1989, Lee et al., 1994b, Doulgeris et al., 2008]. Note that the PDF is paramet-
erized by the shape parameter a > 0, the number of looks L and the scale matrix
3.

e Extremely heterogeneous surfaces: in this case the texture is assumed to be an
inverse gamma, denoted 77!(n), leading to the G} model [Freitas et al., 2005, Frery
et al., 2007)|Frery et al., 2010] for C, where n < 0.

e All the mentioned distributions above are special cases of the multivariate 4/;-
distribution from FS distributed texture, such that

Cli%rn Ua(L, 3, €, ) = Ka(L, 3, @) (3.36)
dim Ua(L, 3., C) = Ga(L. 2, ) (3.37)
lim  Uy(L,2,&,¢) = sWT(L, %) (3.38)

E—00,(—00

Bombrun et al. in [Bombrun et al., 2011, Bombrun and Beaulieu, 2008]have shown
the potential of the U/; PDF to model both extremely heterogeneous, heterogen-
eous, and homogeneous surfaces. Therefore, U, distribution with extra texture
parameter provides flexible model with less restrictions with respect to K, and GY.

Parameter estimation of the above distributions is achieved with the method of mat-
rix log-cumulants (MoMLC) because it has been proved to be a feasible and effective
estimation technique with multilook polarimetric product model [Anfinsen and Eltoft,
2011]).



Chapter I

Contextual MRF-based Classification for
PolSAR Data

Most of the classification techniques for PolSAR data only consider information con-
tained within a pixel, even though intensity levels of neighboring pixels of images are
known to have significant correlation. This is our motivation for the current chapter
to address the problem of contextual polarimetric SAR image clustering by combining
pixelwise matrix-variate statistical distributions for the multilook data, described in the
previous chapter, and contextual information.

4.1 Bayesian Classification Scheme

Bayesian estimation theory has been widely used for the classification of remotely sensed
data. In order to achieve maximum a posteriori (MAP) estimation (i.e., maximize the
posterior probability), it is obligatory to model both class-conditional and prior prob-
abilities. We model each class in PolSAR data by the matix-variate statistical distribu-
tions. We propose to use the pixelwise statistical information in a Bayesian classification
scheme and to improve the classification by using the spatial context in a Markovian
framework. The Markov random field (MRF) theory is first detailed; then, the algorithm
steps of the classification method are explained.

4.1.1 Markov Random Fields Theory

MREF theory have been widely used in remote sensing to address many image-analysis
problems, including (supervised and unsupervised) classification, segmentation, tex-
ture extraction, denoising, and change detection (see, e.g., [Schou and Skriver, 2001,
Tison et al., 2004,Serpico and Moser, 2006,Li, 2006,Moser and Serpico, 2009/Akbari et al.,
2013, Doulgeris et al., 2012]). Huge number of applications have concentrated especially
on statistical applications regarding contextual modeling and spatial data analysis. To
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Figure 4.1: Neighborhood systems and corresponding cliques, first and second-order
neighborhood systems and cliques of different orders.

introduce the MRF is necessary to first explain the concepts of neighborhood systems
and cliques (figure[4.T).

Let 8§ = {s;;;1 <i < R,1 < j < M} be regarded as a 2-D pixel lattice, where s, ;
is site (¢, 7), R and M are the number of rows and columns of the image, respectively,
and let £ = {1,2, ..., J} denote the set of all possible labels in the clustering map. A
neighborhood system for the set § is defined as

N = {N,|Vs € 8} (4.1)

where N is the set of neighbors of the site s. The neighboring relationship has two
properties:

e A site s is not neighbor to itself: s ¢ N;Vs € §;

e The relation is mutual: s € N; < j € N;

Commonly two structures are used for N; in case of a 2-dimensional lattice 8: the first-
order neighborhood system and the second-order neighborhood system. As seen in
tigure the first-order neighborhood system is usually defined as the four pixels sur-
rounding a given pixel, and higher orders are defined by adding corner pixels to a lower
order neighborhood system.

A clique is a set of sites where each member of the set is a neighbor of all the other
members. A clique can be of different order. Normally, first-order and second-order
cliques are used, because higher order cliques cause too much computational burden.
First-order and second-order cliques over 8 are denoted by ¢; = {s|s € 8§} and ¢, =
{s,7ls € 8 j € N;}. The interaction between sites in a clique is referred as pixel in-
teraction and is modeled by a cligue potential. The collection of all cliques with different
orders with respect to the adopted neighborhood system is denoted by C = ¢; Uco U+ - -.
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Figure 4.2: (a) Andrei Andreyevich Markov (1856 - 1922); (b) Josiah Willard Gibbs (1839
- 1903).

A label random field X = {X; X, € £, s € 8} defined on 8 is an MRF with respect
to a given neighborhood system if, and only if, the following two conditions hold
2006, Celeux and Diebolt, 1985]:

p(X) >0 (4.2)

p(Xs|X8\s> :p(Xs|X/\/'s> (43)

where 8\ s denotes the set containing all sites in § except s. The first condition is related

to the positivity of the joint distribution. The second condition, named Markovianity,

implies that the the information of one site s depends only on the information carried by

its neighbors belonging to the considered neighborhood system. This second property
allows to model the spatial interactions between sites.

According to the Hammersley-Clifford theorem, an MRF can equivalently be charac-
terized by a Gibbs distribution [Hammersley and Clitford, 1971]. This enables the field
to be characterized by its local, instead of its global, properties. The local characteristics
of the MRF can be transformed to a brief energy function U(X) of the Gibbs random
tield (GRF); hence, it is possible to implement the MRFE. A random field X on &8 is called
a GRF if and only if the joint distribution is

P(X) = - exp (~U(X/T)), (4.4)

where 7' is the temperature controlling the shape. In practice, 7' can be taken as a con-
stant and thus be omitted. U is an energy function

UX) =) VelXo). (4.5)
ceC

cis a clique and C is the collection of all cliques with respect to the adopted neighbor-
hood system, X. is the set of samples X, such that s belongs to ¢, and V. is the potential
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Figure 4.3: An example of non-isotropic second-order system which allows to change
the -parameter in different directions.

associated with clique c. W = ) "y exp (—U(X/T)) is a normalization constant called the
partition function [Li, 2006].

Consequently, the local spatial correlations of X, with respect to its neighbors are
modeled by defining suitable potential functions V.. This actually is an essential prob-
lem in all MRF models. For simplicity of computations, we may confine the neighbor-
hood system to an isotropic second-order system, with the related set of pairwise cliques

depicted in Figure

Potts MRF Model

We will use the classical homogeneous Potts model to model the spatial correlation
between pixels. According to this model, a single global parameter 5 > 0, which is
known as the spatial interaction parameter, regulates the pairwise pixel interactionsﬂ
With cliques consisting of up to two sites, the second-order energy function of the ho-
mogeneous MRF model is given as [Li, 2006, Celeux and Diebolt, 1985]

s€S s€S reNs

where X; is the label of the central pixel s, X, is the label of a neighboring pixel in
the neighborhood system of s. The first term of the energy function, > _¢ Vi(Xj), is
determined by the pixelwise matrix-variate statistical distribution, as introduced in the
previous chapter, and the second term conveys the contextual information. For a single
pixel, s, the contextual energy term is the sum over the second-order cliques of the

Spatially inhomogeneous MRF models allow the 3-parameter to change over the field, in which case
the models are defined by a set of local conditional density functions [Levada et al., 2008].
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neighborhood, i.e.,
UXXp,) = > Val(X,, X,), (4.7)
reNs
which for the global Potts model is given as
B ifX, =X,
0 otherwise

V(X X)) = —8(X., X,) = { (4.8)

This potential function results in the following conditional probability mass function
(PMF) of X, given its neighbors [Yamazaki and Gingras, 1995]:

exp (3, e, Vo(Xe, X))
> X,cc €XP (Zre/\/s Va( X, X,)) (4.9)
__exp(fmx,(s))
> ier exp (Bm(s))’

where my,(s) is the number of neighbors of pixel s with label equal to X.

P(Xs| X, 8) =

4.1.2 MRF Parameter Estimation

The main difficulty of MRF parameter estimation is that the ML method is computa-
tionally intractable for most MRF models. An alternative is to adopt the maximum
pseudo-likelihood (MPL) technique, which is computationally feasible and simple to
implement. The pseudo-likelihood (PL) approach consists in approximating the likeli-
hood in as follows [Besag, 1977,(Wang et al., 2000]:

PL(X; 8) = [ [ p(Xs[Xn: B), (4.10)

seS

By substituting the local conditional probabilities from into (4.10), the mode-field
approximation of p(X) in (4.4) is obtained by

PL(X; 8) = [ [ p(Xo X e B)

o 4.11
exp (B, () @1
s > tec exp (Brmu(s))”
Taking the logarithm, the above equation leads to the maximization of
d(p) = Z [Bmxs(s) —log (Z exp (ﬂml(s))> : (4.12)
seS lel

This function is optimized by a simulated annealing algorithm [Geman and Geman,
1984] to estimate the MRF parameter /3, a computationally intensive global minimiza-
tion approach [Wang et al., 2000, Yu and Cheng, 2003]. Simulated annealing procedure
to estimate (3 is implemented by following steps:
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e Step 0. Initialization of temperature Ty, 5, t=1, v and maximum number of itera-
tions. n.

e Step 1. Sampling 3 ~ N(:|3:, 1)
e Step 2. 3’ is accepted with probability

a(f', B;) = min {1, exp (M) } (4.13)

If 3" accepted then 5,1, = 3, otherwise 3,1 = f;.

e Step 3. Incrementing t; if t > 0 set 7, = 77}_; and goto Step 1, otherwise stop.
By choosing v and n we thus define the final temperature 7;, = Tyy"
The final estimate 5* is chosen by averaging the estimates on the last ¢ itations.

RN
B = > B (4.14)

i=n—1

4.1.3 MRF-MAP Framework

The image classification problem involves assigning to each pixel a class label taking a
value from the set £. Let C={C;;s € S} be an MLC image, and let X = {X; X € L,
s € S} be the class labels of C. We seek a labeling X, which is an estimate of the true
labeling X, according to MAP criterion

A~

X = argmax{p(X|C)} = arg max{p(C|X)p(X)} (4.15)

where X is referred as a MAP estimate of the field of class labels that maximizes the
posterior probability p(X|C). We need to compute the prior probability of the class
p(X) and the likelihood probability of the observation p(C|X). Note that the estimate of
becomes the noncontextual pixelwise classifier if the prior probability does not con-
sider contextual information in the expression (4.15). In order to develop the contextual
classifier using the MAP criterion, X is considered as a realization of an MREF, then its
prior probability can be derived from (4.4). The unobserved class labels, X, are now
considered as a discrete Potts MRF with the energy function U(X) depending on the
parameter /5 [Celeux and Diebolt, 1985]. The MLC image is statistically modeled as a
mixture of matrix-variate distributions, where the pixels are assumed to be condition-
ally independent and identically distributed given the label field X, i.e.,

p(CIX) = [ »(C.IX.), (4.16)
seS

where the pixel covariance matrix C, follows a matrix-variate distribution with vector
of the parameters 6, given the class label X = [

p(CS|XS) :p(csvgl) (417)
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Together with the joint class-conditional distribution and prior distribution of (4.4),
the MAP estimates of true class labels as given by (4.15) become

A~

X = argm}én{U(X]C)} = arg m}én {—logp(C|X) +U(X)} (4.18)
where
UX[C) =D —logp(CalX,) + > > Ve(Xo, X,), (4.19)
seS s€S reNs

The minimization of is necessary to derive a MAP estimate of X. In order to
approximate X, a feasible and computationally affordable approach is the iterated con-
ditional mode (ICM) technique for the energy minimization [Li, 2006,Jackson and Land-
grebe, 2002]. Accordingly, we need to obtain the conditional probability mass function
of the label random field X given an observation of the MLC image C. In the homogen-
eous Potts MRF model, for each individual site s, X is then estimated by

~

Xy = arg max{p(X,[C,, X ©)}

(4.20)
= arg )rgg{p(Cs!Xs; 0)p(Xs|Xn; 8)},

and © = (6, ) has to be estimated in the iterative segmentation process. The posterior

probability of X given C, becomes

_ exp (—U(X[Cs, X5 ©))
sze[ eXp <_U(XS‘CS7 X‘-/\/s’ 9)) 7

p(X;|Cs, Xr,; ©) (4.21)

and the associated local posterior energy function [Jackson and Landgrebe, 2002]

U(Xs‘csv X./\/'s; 6) = U<XS|XN53 B) + U(Cs|Xs; 0)

4.22
= —fmx,(s) + log (Z exp(ﬁml(s))> —log p(Cy| X 0). (4.22)
leL
And the total posterior energy is given by
U(X|C) = [[U(X,|Cs, X ©). (4.23)

seS

4.1.4 Incomplete Data Problem

Since both the class labels and the parameters are unknown and must be estimated
from the observations, we have a so-called incomplete data problem. Many techniques
have been proposed to solve this problem, among which the expectation maximiza-
tion (EM) algorithm [Dempster et al., 1977]], [McLachlan and Krishnan, 1996] is the one
most widely used. The EM is an iterative parameter estimation technique developed
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for parametric modeling problems characterized by data incompleteness. The EM al-
gorithm starts with an initial segmentation with .J classes and parameter vector ®° and
works in an iterative manner where, in each iteration, the current cluster parameter es-
timates are used to segment the image and the new segments are used to recompute
the cluster parameters. We attempt to maximize the expectation of the complete-data
log likelihood E{logp(X,C;®)}. Each iteration of the EM algorithm consists of two
processes:

e Expectation step (E-step): The missing data are estimated given the observed data
and current estimate of the model parameters. This is achieved using the condi-
tional expectation of the unobservable labels X given the observed data C and the
current estimation ®" based on the information collected on the previous itera-

tion.
Q(O|0") = E{logp(C; 0X,0")} (4.24)

e Maximization step (M- step): Find the parameter that maximizes this quantity:

0" = arg max Q(e|e") (4.25)



Chapter 5

Geometric and Radiometric Terrain
Correction of PolSAR Data

Spaceborne SAR instruments have proven to be a very useful tool for multitemporal
image analysis. However, terrain topography has significant impact on the geometric
and radiometric quality of SAR images [Wivell et al., 1992, Goering et al., 1995} Loew
and Mauser, 2007]. To utilize SAR data fully in the study of terrestrial processes, these
topographical effects must be characterized and corrected. The objective of this chapter
is extension of the theory of SAR terrain correction to polarimetric case, where correc-
tion is performed explicitly based on multilooked PolSAR data, and therefore utilize the
all polarimetric signature available.

For the geometric correction of topographic effect, precise terrain geocoding of SAR
data is required. This can be accomplished by using a DEM and precise satellite state
vector. In addition to geometric distortions, surface slopes modulates SAR backscatter
which can be split into two main effects. The first effect is changes in radar cross sections
(RCS) per unit image area [van Zyl et al., 1993| Luckman, 1998, |Ulander, 1996, Shimada,
2010,Small, 2011 Frey et al., 2013] and the second effect is that polarization states are also
affected since the terrain slopes specially azimuthal slopes induce polarization orienta-
tion changes [Lee et al., 2000,Sabry et al., 2011]. Hence, before analyzing the data, terrain
correction is a prerequisite for intercomparisions of multitemporal SAR images. This
chapter first addresses the precise geocoding and geometric terrain correction (GTC) of
SAR data and then radiometric terrain correction (RTC) of PoISAR data that utilizes the
pixel size normalization on each element of the covariance matrix [Atwood et al., 2012].
Moreover, a discussion of orientation angle compensation (OAC) [Lee et al., 2002, |Lee
and Ainsworth, 2011] is followed after radiometric normalization.

Accurate backscatter estimates enable more robust use of the retrieved values for
some applications such as land cover classification, change detection, urban area mon-
itoring, and retrieval of geophysical parameters [Schuler et al., 1999 Hajnsek, 2001]. We
have studied the impact of terrain correction of multitemporal PolSAR data on post-
classification change detection of Arctic glaciers in [Akbari et al., 2012b]]. The procedure
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Figure 5.1: Precise terrain Geocoding is performed using a high resolution DEM and
additional information about the orbit of the sensor platform.

for terrain correction of PoISAR data is therefore implemented in three steps:
e Precise geocoding and geometric terrain correction (GTC)
e Radiometric terrain correction (RTC)

e Orientation angle compensation (OAC) .

5.1 Precise Geocoding and Geometric Terrain Correc-
tion

The objective of the SAR geocoding is to find for each image pixel, the correspond-
ing position on the Earth. With the known satellite state vector, the position of each
SAR pixel is estimated on a given Earth model (possibly including a DEM) which has a
given slant range from the satellite, and yields zero Doppler shift. If we assume an el-
lipsoidal earth model such as WGS-84, the problem may be formulated mathematically
by solving the so called range-Doppler-Earth model (RDE) equations [Curlander and
McDonough, 1991, Kampes, 1999] as follows:
Xe, +Ye | Z;

( Rtaii— 7 ta;Q thr =1 (Earth model equation) (5.1)
e tar D

|| — Leatl| = R(7, ) (Range equation ) (5.2)
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[Xsat]T (P — Tene) = 0 (Zero Doppler centroid), (5.3)

where (i, j) is the row-column number of the pixels in the original SAR image, R. and R,
are the semimajor axis (or equatorial radius) and semimnor axis (or polar radius) of the
given Earth model, r,, = (Xtar, Yiar; Ztar) is target position vector in the Earth Centered
Earth Fixed (ECEF) reference frame [Zhu, 1994], r,, is the sensor position vector, v,
is the sensor velocity vector, Hy, is the local target elevation relative to the assumed
model, and R(3, j) is the slant range of the pixel.

The three unknown target position parameters as given by (Xir, Yiar, Ztar) is de-
termined from the simultaneous solution of the RDE equations in a iterative manner.
Geometrically, the solution of RDE equations corresponds to finding the intersection
between the Earth (geoid) surface, a sphere with radius R around the radar antenna,
and the zero-Doppler plane described by [Elachi and Van Zyl, 2006]. When the
slant range distance R is greater than the flying hight above the Earth, there are exactly
two points in this intersection. Using the knowledge of the sensor’s pointing direction
we may exclude one of these, such that a unique solution exists [Larsen, 2011]. The
accuracy of this geo-location procedure depends on the accuracy of the available orbit
data and velocity vectors, the SAR system parameters, the measurement accuracy of
the pulse delay time, and knowledge of the target height relative to the assumed Earth
model [Wegmuller, 1999]]. From the first-step geolocation procedure, the initial geocod-
ing lookup tables (LUTs) are obtained and any errors are corrected in a refinement step.
To refine initial LUTs, the input SAR image and a corresponding DEM are used to create
a simulated SAR image. Then, an automatic cross correlation analysis between the sim-
ulated and the real SAR image is done to determine the geocoding refinement [Wivell
et al., 1992, Wegmuller, 1999, Wang et al., 2011]. At highest cross correlation, the ra-
diometric values of the real SAR image are placed by inverting the mapping from the
DEM to the SAR image [Wang et al., 2011]].

5.2 Radiometric Terrain Correction

The radiometric values of the geocoded-terrain corrected imagery are usually on the
Earth model. In other word, although the position of the backscatter estimate has been
corrected by the GTC, the radiometry of the goecoded image remains in ellipsoid-model
based. Therefore, RTC is applied to correct distortions due to the side-looking geometry
of SAR systems and hill-slope modulations. This section details the RTC of SAR imagery
for topographically induced changes in the pixel scattering area. In areas affected by
terrain relief, the scattering area is dependent on the local slope as well as the radar look
angle [van Zyl et al., 1993]. Hence, the effective pixel area varies due to the variation in
ground surface area contributing to each pixel backscatter. The SAR image is commonly
calibrated to ¢” backscatter coefficient, which is defined as the average RCS per unit
ground area, or to 7, which is defined as the average RCS per unit area obtained by
the projecting the ground area into the plane perpendicular to the RLOS. The reference
areas of backscatter conventions 3, 6°, and 7 are illustrated in Figure[5.2] The o and 7,
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Figure 5.2: The reference areas for the three radar backscatter conventions: standard
ellipsoidal 3°, ¢°, and ~° (figure taken from [Small, 2011].)

backscatter coefficients are obtained by relating the RB given in (3.18)) to the respective
reference areas Ag, A,, and A, as follows [Small, 2011]:

o0 = BO% (5.4)

g

A
0 _ p048
= (5.5)
For the standard ellipsoid-based products, the ellipsoidal incidence angle 6 makes the

relationships between these reference areas [Luckman, 1998, Frey et al., 2013]:

Ag 840,
72 sin(fg)  sin(fp) (56)
A
Ay, = Ag, cos(0p) = 8ady cos(0) = (ZE> (5.7)

where ¢, and ¢, are the dimensions of the scattering area in the slant range and azimuth
directions, respectively. The ellipsoidal incidence angles 0 in the above equations are
calculated based on the knowledge of the Earth model in the geocoding step, which
are used to calculate the ¢ and 1°. In the presence of rugged topography, obviously
the 0%, and 79, may be terrain-geocoded and a high resolution DEM is required to give
an accurate estimate of the projected area on the ground. Ulander [Ulander, 1996] pro-
posed a projection cosine (PC) approach, which was applied for terrain corrected SAR
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Figure 5.3: The radar imaging geometry which relates the orientation angle to ground
slopes and the projection angle ¥ relates the unit image area to the unit ground area.
0 is the radar look angle and 6, is the local incidence angle (figure taken and modified
from [Lee et al., 2002]).

geocoding in [Loew and Mauser, 2007]. Area reference areas are related to each other
by a projection angle (PA) W:

_ A
T cos(W) (5.8)
A, = A, _cos(0p) (5.9)

where U, as depicted in Figure is the angle between the surface normal and the
image plane normal, which is assumed to vary between 0 ° and 90 © and exclude layover
areas [Ulander, 1996]. The terrain corrected radar backscattering coefficient 4. is related
to the radar brightness as

o9 = 8% cos() (5.10)
Ulander parametrized this angle by using spherical angles v and v as follows:
cos(¥) = sin(f) cos(u) + cos(#) sin(u) sin(v), (5.11)

where v and v are the terrain slope and aspect angles with respect to the vertical and
sensor azimuth directions, respectively, and ¢ is the radar look angle. We now extend
the theory of radiometric slope correction using the PC method to reduce the influence
of the terrain topography on the multilook PolSAR data. We first normalize the scatter-
ing coefficients with respect to the 8° reference area (Ag) according to (3.19). To perform
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a precise radiometric correction, we need to estimate the changing scattering area in the
radar geometry, caused by the terrain topography, parameterized by the PA. Provided
that the data are already calibrated with respect to the elevation antenna pattern, range
spreading loss, and channel to channel calibration, all elements of covariance matrix in
can be simultaneously radiometrically corrected to the ground range area by [Ak-
bari et al., 2012b]]

7 D (20),(20)¢ = cos(¥) - Cp, (5.12)

cos(\If L
=1

All covariance matrix values now correspond to the o° backscatter coefficient, which is
equivalent to (5.10). The conventional radiometric normalization method, which relies
on the local incidence angle only, is adequate for flatlands or for pixels with zero slope
(u = 0) in (5.71). The expected results are radiometrically “flattened" SAR images.
The required parameters for performing the RTC are estimated in the geocoding step
using an available DEM and the satellite state vector. In cases of an unavailable DEM,
ellipsoid-based radiometric correction is achieved over an Earth model.

5.3 Orientation Angle Compensation

When applying the RTC to PolSAR data, the polarimetric components associated with
a pixel are compensated equally by the same factor. This section addresses the need for
PolSAR data compensation for the second effect on the RCS as function of polarization
states. For reflection symmetrical media, such as horizontal surface, the polarization ori-
entation angle (POA) E| is about zero and the surface normal is in the incidence plane.
For rugged terrain areas, the POA is shifted from zero and the surface normal is no
longer in the incidence plane. These shifts are induced by surfaces with nonzero azi-
muth slopes and also by man-made targets such as buildings that are not aligned in the
azimuth direction [Lee and Ainsworth, 2011]. For the distributed media, in general, the
higher is the radar frequency, the lower is the POA sensitivity to the surface slopes. The
induced POA shift ¥ is the angle that rotates the incidence plane about the RLOS to the
surface normal [Lee et al., 2002]]. Lee et al. showed in [Lee et al., 2000] that the induced
POA 7 is related to the azimuth and range slopes by the following equation

tan(w)
— tan(y) cos(#) + sin(0)

tan(v) = (5.13)

where w is the azimuth slope angle and v is the slope angle in the ground range direc-
tion. These shifts produce higher cross-polarization (HV) intensity and make coherency
or covariance matrix reflection asymmetrical [Lee et al., 2000]. Several methods have been
proposed in the literature to extract the POA. The most accurate approach is use of the

'is the angle of rotation about the RLOS
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DEM to compute the POA in (5.13). In cases of unavailable DEM, the POA is derived
directly from either coherency matrix or covariance matrix [Lee et al., 2000]. The most
promising results have been obtained by the phase difference between right-right and
left-left circular polarizations. The POA is computed using either single look complex
or multilook data within the range of 7/4 to 7/4 as [Lee and Ainsworth, 2011]]

1
V= 1 |:arg(SRRS}:L) + 77]

5.14
ot (A 50y ] 14
4 —([Shn = Suw[?) + 4(|5no[?) ’
where R(A) denotes the real part of A. (5.14) is equivalent to:
2R{ T3} )
Y = arctan | ———— | . 5.15
(Tzz — T3 (5:15)

To account for negative orientation angles the above equation has to be modified

™ ™
For ¥>—, 9J=19--. A
or > 7 5 (5.16)
Once the POA induced by the azimuth slope is obtained, the compensation for this
slope effect is straightforward, which involves rotating the data along the RLOS by the
negative of the induced POA. For the radiometrically terrain corrected multilook co-

herency matrix, the compensation can be done by [Lee et al., 2002, Yamaguchi et al.,
2011]

1 0 0
Toac = R(W)T,RT(¥), with R(W)= | 0 cos(20) sin(20) |. (5.17)
0 —sin(29) cos(2v)

where T;o and T are the coherency matrix before (after the RTC) and after rotation,
respectively, and R(?) is a unitary rotation matrix f] The compensation reduces the
cross-polarization power, 733, but increases 75, power by the same amount.

For the radiometrically terrain corrected multilook covariance matrix given in (5.12),
the data compensation can be achieved by [Lee et al., 2000]

N cos(29)  V/2sin(29) 1 — cos(20)
Coac = R()CoRT(¥), with R(V) = 3 [ —/25in(209)  2cos(29)  /2sin(20) ]
1 —cos(29) —+/2sin(20) 14 cos(20)
(5.18)
where C,y and Cp, are the covariance matrix before (after the RTC) and after rotation,
respectively.

2RT(9) = R™1()



46




Chapter 6

Direct Change Detection in Multilook
PoISAR Data

Change detection is a particular application in multitemporal SAR image analysis. Two
distinct approaches have been proposed: post-classification comparison and direct change
detection.

The post-classification change detection classifies the images separately, after they
have been co-registered and co-calibrated. Then the classified images are compared
and analyzed to form a change matrix which described the mapping of classes between
the images. From this matrix we can extract a simple map of change versus no change,
but also more detailed information on the nature of the change. Paper 2 of Chapter §|is
an example of post-classification change detection over glaciers.

In direct change detection, two co-registered and co-calibrated MLC images are com-
pared directly on a pixel-by-pixel basis by a desired test statistic, without going through
any classification stage. This only yields a binary map of change versus no change.
The objective of this chapter is discussion on the direct change detection in multilook
PolSAR data, which is also the topic of Paper 3 in Chapter 9]

6.1 Problem Formulation

Let A ={A(,j);1 <i<[,1<j<J}tand B = {B(i,j);1 <i < I,1 <j<J}be
two equal-sized co-registered MLC images acquired over the same geographical area
at times ty and t; (t; > ty), where I and J are the number of rows and columns of the
images, respectively. It is assumed that A and B are geometrically and radiometrically
terrain corrected (as discussed in Chapter [5) and registered. Our objective is to pro-
duce a map representing the changes occurring in the scene between ¢, and ¢,. The final
goal of a change detection analysis is to produce a binary map corresponding to the
two classes: change and no change. The problem can be decomposed into two steps:
the generation of a test statistic image which compacts the matrix-variate polarimetric
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information into a scalar feature and the thresholding of the test statistic image in or-
der to produce the binary change map. Figure 6.1/ shows a block diagram describing a
general change detection processing chain in multilook PolSAR data. The overall per-
formance of the polarimetric change detector depends on both the quality of the chosen
test statistic image and the quality of the thresholding.

Original SLC image Original SLC image
(time t1> (tlme tg)
[ MLC image (A) } { MLC image (B) ]

‘ Generation of the test statistic image

{ Thresholding ]

Change/No change

Figure 6.1: General block diagram of the direct change detection algorithms for mutlilook
PolSAR data.

Let the d x d Hermitian and positive definite matrices A and B be independent,
nonsingular, and scaled complex Wishart distributed, with the PDF given in (3.34), i.e.,

A ~sW(d, L., S,) and B ~ sW(d, Ly, =). (6.1)

We use a desired test statistic between the two covariance matrices A and B, denoted
as 7(A, B), to decide between the hypotheses:

Hy: X3, =3,
S, £ %, 62
Hjy and H, correspond to the no change hypothesis and the change hypothesis, respect-
ively. A threshold selection process can be applied to the test statistic to distinguish
quantitatively between H, and H;. Several unsupervised change image thresholding
algorithms have been proposed in the literature, such as Otsu’s method [Otsu, 1979],
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the Kittler and Illingworth (K&I) algorithm [Kittler and Illingworth, 1986], the entropy-
based Kapur algorithm [Kapur et al., 1985], and Liu’s method [Liu and Feng, 2006]. It
is worth to note that some of these algorithms require statistical modeling of the test
statistic.

6.2 Test Statistics for Polarimetric Change Detection

This section reviews well-known test statistics, whereof some have previously been
used for change detection in PolSAR images. It is commonly preferred to use matrix
distance measures as polarimetric test statistics for change detection. Typically differ-
ent matrix distance measures used as polarimetric change detectors fall into one of two
classes: metric and semimetric. To be classified as metric, a distance between two matrices
A and B must obey the following rules:

1. The distance must be non-negative, i.e., 7(A,B) > 0.

2. The distance must be symmetric, so that the distance from A to B is the same as
the distance from B to A, i.e, 7(A,B) = 7(B, A). This is sometimes called the
symmetry rule.

3. Two identical covariance matrices have zero distance value, i.e., 7(A,B) = 0 &
A = B. This is called the identity of indiscernibles.

4. When considering three matrices, A, B and C, the distance from A to C is always
less than or equal to the sum of the distance from A to B and the distance from B
to C,ie., 7(A,C) < 7(A,B) + 7(B, C). This is called either the triangle inequality
or the subadditivity. The triangle inequality also implies that if matrices A and B
are similar and B and C are similar, then A and C must also be similar.

Distance measures that obey the first three rules, but fail to obey rule 4 are referred to
as semimetric. We now group matrix distance measures for multilook data into two
types: those that cannot (Type I) and those that can (Type II) be directly related to the
statistical distribution of the covariance matrix through a probabilistic or an information
theoretical interpretation.

6.2.1 Matrix Distance Measures of Type |

In this section, we review some matrix distance measures that meet the requirements for
being a metric. However, they cannot be directly related to the statistical distribution
of the covariance matrix through probability or information theory. For matrix distance
measures of this type introduced below, under the null (no change) hypothesis both co-
variance matrices A and B are identical, so 7(A, B) = 0. The null hypothesis is rejected
if 7(A,B) > Threshold.



50

Contrast Ratio

The contrast ratio (CR) (or Rayleigh Quotient) is defined in terms of the eigenvalues of
the following matrix [Kersten et al., 2005a]:

Ca = (A 2)BA 3, (6.3)

C.b is also a positive definite Hermitian matrix since both A and B are. Then the CR is
defined as
7er(A, B) = In(max(A .y, Anin) ) (6.4)

where A, and A, are the largest and smallest eigenvalue of C,, in (6.3). Under the
null hypothesis, the expectation of C,, is an identity matrix, whose eigenvalues are all
unity. The performance of the CR for polarimetric change detection has been shown

in [Kersten et al., 2005a].

Ellipticity

The ellipticity [Muirhead, 2009] is also defined in terms of the eigenvalues of the matrix
Cab, given in (6.3). It is defined as

d d
(A, B)=—In][ X\ +dln GZA) (6.5)
i=1 =1

Also the ellipticity has been assessed in [Kersten et al., 2005a] as a test statistic for change
detection.

Minkowski Distance

The Minkowski distance of order v between two complex covariance matrices is defined
as:

1/v
(A, B) = (Z abs (a;; — bl,j)”> : (6.6)
i<y

where the variables a; ; and b; ; refer to the elements of the matrices A and B. In order
to avoid confusion with the determinant, the absolute value of the scalar x is denoted
abs(x). The Minkowski distance is typically used with v being 1 or 2. The latter is the Eu-
clidean distance, while the former is known as the Manhattan distance. The Euclidean
matrix distance is a natural candidate to contrast matrices that follow the matrix-variate
Gaussian distribution, but neither the Euclidean nor the Manhattan distance match the
geometry of the covariance matrix domain. This is seen as they cannot be related to
the complex Wishart distribution by probabilistic consideration or information theory.
Accordingly, they are also reported to produce poor results when applied to clustering
of PolSAR data ( [Anfinsen et al., 2007]]; [Dabboor et al., 2013b]).That is why that there
is a less interest to use this distance measure for change detection.
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Euclidean Distance

Th /¢, metric refers to the Euclidean distance between two matrices A and B, which is
defined as

Zabs (a;; —bi )" (6.7)

1<J

The value of the Euclidean distance belongs to the interval of [0, o).

Manhattan Distance

The Manhattan distance is given as

(A, B) =) abs (R(ai; —bij) + Y _abs (S(ai; — bij)) . (6.8)

i<j i<j

where &t and < are the real and imaginary parts, respectively. This distance is also
known as the rectilinear distance, Minkowski’s ¢; distance, the taxi cab metric, or the
city block distance.

Chebyshev Distance

In the limiting case of v reaching infinity in the Minkowski distance, we obtain the
Chebyshev distance. It is also called the Tchebychev distance, the Maximum metric, or
the /., metric [Cantrell, 2000].

1/v
Tcu(A,B) = Vh_}rgo (Z abs (a;; — bm)”> = max (abs (a;; — bij)) - (6.9)
i<J

Canberra Distance

The Canberra distance (CAD) was introduced in [Lance and Williams, 1966] and refined
in [Lance and Williams, 1967]. The CAD between two covariance matrices is given as
follows:

abs (a; ; — b; ;)
AB) =Y A, A
TCAD( ’ ) — abs (aij) +abs (bij)’ (6 O)

z<] ), ,

6.2.2 Matrix Distance Measures of Type Il

In this section, we present some matrix distance measures that are related to the statist-
ical distribution of the covariance matrix. The matrix distance measures of this section
are based on the assumption that PolSAR data follow the scaled complex Wishart dis-
tribution, characterized by the density given in (3.34).
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Wishart Distance

Lee et al. derived a distance measure called the Wishart distance under the complex
Wishart distribution and defined by [Lee et al., 1994a]

7w(A,B) = In |B| + tr(B~'A). (6.11)

The revised Wishart distance is derived by [Kersten et al., 2005b]]

A
TRw<A, B) =In % + tI‘(AilB) —d. (612)
The revised Wishart distance is asymmetric, which makes the use of the distance meas-

ure more difficult for change detection. Anfinsen et al. derived a symmetric meas-
ure [Anfinsen et al., 2007] as follows:

TSRW(A7 B) = %(TRw(A, B) + TRw(B, A))

_ tr(A7'B) +tr(B7'A) p

(6.13)

It satisfies all conditions, except the triangle inequality, an is thus a semimetric and the
form of the rejection region is similar to the matrix distance measures of Type 1. The
application of the symmetrized Wishart distance for spectral clustering of PolSAR data
has been reported in [Anfinsen et al., 2007]. It can be used as a test statistic for change
detection and we may threshold the test statistic by the algorithms mentioned in Section
to discriminate change and no change areas.

Bartlett Distance

The Bartlett distance or dissimilarity measure is given as in [Kersten et al., 2005b]]

|A + B| |A + B
A B) =1 | — 2dlog 2
A+B )
= ZIOgQ — 2dlog 2
|A|[B]

This dissimilarity represents the ratio of two averaging methods (the geometric mean
of the determinants to the determinant of the arithmetic mean). The distance is called
Bartlett, since Bartlett first proposed the ratio of the arithmetic and geometric means
of the sample variances as a robust test for the equality of two distributions [Hampel
et al., 2011]. It is easy to prove that the distance satisfies symmetry. However, triangle
inequality does not hold, so the Bartlett distance is a semimetric only. Under the null hy-
pothesis both A and B are identical, so 73(A, B) = 0. The efficacy of the Bartlett distance
in polarimetric change detection was first demonstrated in [Kersten et al., 2005a].
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Hellinger Distance

The Hellinger distance is also used to quantify the similarity between two probability
distributions [Beran, 1977] and is defined as

TH(A,B) = 1 —/\/PAPBa (615)

where pa and pg are the PDF of two populations. The values of 75(A, B) lie between
zero and unity. The Hellinger distance of two scaled complex Wishart distributions is
derived in [Frery et al., 2011] as:

-1
<LEA*1+L,,B*1)
2

\/WH M0 (g
2 v /T (La — )T (Ly, — i)

B

La+Lb

TH(A,B) =1-

La

|A[=
If L, =L, = L, we get
L
()
(A, B) = . (6.17)
|Alz B[z

It is possible to prove that the distance satisfies all conditions in Section so the
Hellinger distance is a metric. The Hellinger distance is equivalent to the Bartlett dis-
tance for practical purposes, such as implementation as a test statistic in change detec-
tion, as seen from (6.14). Therefore, it should produce exactly the same results as the
Bartlett distance.

Bhattacharyya Distance

The Bhattacharyya distance [Bhattacharyya, 1943] measures the similarity of two dis-
crete or continuous probability distributions and is defined as

mu(A,B) = _10g/\/pApB
= —log(l — (A, B)).

(6.18)

Clearly 0 < m(A,B) < oo, and therefore the distance is non-negative. The Bhat-
tacharyya distance of two scaled complex Wishart populations with unequal covariance
matrices was derived in [Frery et al., 2011] as follows:

—1 L,log |A Lylog |B
b)+ g||+bg|’

VI(L, —i)T(L
TBH<A,B) Zlog F(La+Lb — @) 9 9
=0

L, + Ly ‘ <LaA1 4 LbBl)‘1
5 log 5 .

(6.19)

d
— §<La log L, + Lylog Ly) —
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If L, = L, = L, then the distance is simplified to the following derivation,

TBH(A, B) =L

log |A] +1log |B| log Al4B 1\
2 2

} . (6.20)

It can be shown that the distance satisfies symmetry. However, it does not obey the
triangle inequality, so the Bhattacharyya distance is a semimetric.

Kullback-Leibler Distance

The Kullback-Leibler(KL) distance in a symmetric form is defined as [Jeffreys and Jef-
treys, 1946]

a(8,8) = 5 [ (oa — pm)iox (22). 6.21)

The value of 7« (A, B) is zero if A = B, which implies that the two covariance matrices
are identical. The KL distance of two scaled complex Wishart populations is given as
[Erery et al., 2011]:

(A, B) = Lo [l "A’ +d[ VO (L, —d+1) = VO(L, —d+ 1))

2 B|
L, = i
—dlog =% + (Ly — Lq , , (6.22)
8, );(La—z)(Lb—z)}
d(Lo+ Ly)  tr(LyB~'A + L,A'B)
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If L, =L, =L, we get
B'A+A'B
(A, B) =L (tr( ; ) _ d) . (6.23)

Then 7./ L becomes the revised Wishart distance given in (6.13). It satisfies all require-
ments of the distance measure, except the triangle inequality, an is also a semimetric. It
was shown in [Inglada and Mercier, 2007] that the KL distance can be applied for change
detection in mulitemporal single-channel SAR data, but no literature is available but for
PolSAR data.

Wishart Chernoff Distance

The Wishart-Chernoff (WC) distance was proposed in [Dabboor et al., 2013a]] for the
agglomerative clustering of POISAR data and is given as:

ITA'+(1-T1)B "
mwc(A,B) = —1In ( ARB[T) , (6.24)
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where T is a parameter, 0 < T < 1. The optimum WC distance that best describes the
similarity between the two scaled complex Wishart distributions is obtained by find-
ing the optimum value of T that minimizes ¢(Y) = exp{—7wc(A,B)} [Dabboor et al.,
2013b]. The WC distance is symmetric. The proposed distance measures the similarity
between two complex Wishart distributed covariance matrices. This distance measure
is also a potenial test statistic for change detection applications, but it has not been re-
ported anywhere.

6.3 Proposed Polarimetric Change Detector

We now introduce our test statistic called the complex Hotelling-Lawley (HL) trace stat-
istic that can be used for polarimetric change detection.

T, = tr(A7'B). (6.25)

The proposed test statistic does not obey all requirements for being a metric in Section
However, it maps the no change case to values centered around the polarimetric
dimension d, and the change case to values much smaller or much larger than that,
such that indications of change can be clearly identified.

Moments of the HL statitics under the scaled complex Wishart distribution was de-
rived in [Anfinsen and Akbari, 2013]. The expressions of the first three moments are
given below, and the derivation is given in Appendix Bl

dL,

M — B} = o (6.26)
where Q, = L, — d.
mf™ = B{riy}
ot e(E)
m§™ = E{riy}
= Q2_5g§+4Qa X [d?’ ((Q§—1)+3%+Lig)

e <3Qa N 3(Q2Lb+ 2) , 622%) (6.28)
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It is seen that these moments are functions of the number of looks and the number of
polarimetric channels under the null hypothesis. We then approximate the sampling
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distribution of the complex HL statistic by a FS distribution [Galland et al., 2009], de-
noted.

where i = E{ry } > 0is the mean and ¢ > 0 and ¢ > 0 are two shape parameters. The
FS distribution is given by [Anfinsen, 2010]

-1
_rero ¢ ()
pr(t) = LT p(¢ = 1) ( ot 1)5% o0

The flexibility of the FS distribution is controlled with the shape parameters to steer
between heavy-headed and heavy-tailed distributions [Bombrun et al., 2011]. The v
order moment relations, in terms of the PDF parameters, are shown in [Galland et al.,

2009] to be
mE 1y — C—Dp\"TE+v)T(C—v)
o AT ( : ) NGRGE (6.31)

The proposed method is to match the population moments of the FS distribution in
(6.31) with the population moments of the 7y, i.e.,

mi (&, ¢, p) = mE (L, Ly, d). (6.32)

The location parameter ;. of the FS distribution is computed analytically, but, to match
the second and third-order moments, we use minimum distance optimization [Parr and
Schucany, 1982] for shape parameters £ and ¢ as.

3

Z HL) (FS) ’ (633)
(£,¢) = rg{r(rglcr)l{e 133 (6.34)

In this numerical problem, { and (¢ are the unknown variables, while the values of L,
and L; are assumed to be given as inputs and need to be replaced with the estimated
ENLs of the input PolSAR images.

By assuming nontextured data, the ENL can be estimated from the first-order matrix
log-cumulant equation of the scaled complex Wishart distribution as follows [Anfinsen
et al., 2009]:

(ki{C}) =In|Z| + (L) —dIn L (6.35)

where ¢(-) is the multivariate digamma function [Anfinsen and Eltoft, 2011] and Lis
the ML estimator of the number of looks. The Newton-Raphson numerical optimization
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technique is used for solving (6.35). We must insert the first-order sample matrix log-
cumulant given by

(i {C}) = + Zlog G| (6.36)

and an estimate of 3 before solving for L. The ML estimator of ¥ is given by the sample

mean as follows:
53
N =1

In order to avoid manual selection of regions of interest, we apply the method pro-
posed in [Anfinsen et al., 2009] to estimate the ENLs in an unsupervised manner. This
method is based on (6.35), and the ENL estimate is extracted from the empirical dens-
ity of small sample estimates calculated in a sliding window which traverses the whole
image. The overall distribution of estimates is expected to be dominated by estimates
computed from truly Wishart distributed samples, because of the no-texture assump-
tion. Therefore, the greatest mode value can be used as an estimate of the ENL [Anfin-
sen et al., 2009]].

Using the approximated distribution of the test statistic, the change detection is per-
formed at a given probability of false alarm, and as the approximated distribution is
dependent of the parameters contained in the HL moment expressions, the proposed
change detector belongs to the class of constant false alarm rate (CFAR) detectors, mak-
ing it easy to use for multilook PolSAR images. Paper 3 demonstrates the usefulness
of the HL statistic for polarimetric change detection. It is compared to the Wishart LRT
statistic developed in [Conradsen et al., 2003]]. The superior sensitivity to changes of the
HL test statistic compared to the LRT statistic is pointed out on real PoISAR data sets in
Paper 3.
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Chapter 7

Paper 1: published

A Textural-Contextual Model for
Unsupervised Segmentation of
Multipolarization Synthetic Aperture
Radar Images



60




Chapter 8

Paper 2: under review

Monitoring Glacier Changes by
Multitemporal Multipolarization SAR
images
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Chapter 9

Paper 3: under review

Change Detection for Polarimetric SAR
Data with the Hotelling-Lawley Trace
Statistic under the Complex Wishart
Distribution
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Conclusions and Future Research

In this chapter, we give summary, concluding remarks, and suggestions for future re-
search.

10.1 Summary

The research topic of this study has been multitemporal analysis of multipolarization
SAR data. In Chapter [2/and |3 of this thesis, we presented a brief background on the
principles behind SAR imaging and an introduction to the PolSAR concept.

Chapter @ described a contextual MRF-based classification for PolSAR data. The
classification scheme is combing the pixelwise matrix-variate statistical distributions
for mutilook data with contextual information.

Chapter 5| explained the terrain correction of PolSAR data in three steps. The first
step is geometric terrain correction to correct the position of the backscatter value before
analyzing the data. The next step is the radiometric terrain correction due to rugged
terrain areas and the SAR geometry. The last step of terrain correction is to compensate
the polarization signature which is due to azimuthal and range slopes.

Chapter [6] discussed the concept of direct change detection in multilook PolSAR
data and reviewed some matrix distance measures that can be used as test statistics
for change detection in addition to our proposed test statistic.

Chapters include the 3 papers that make up the core of the thesis. The first
paper, which studied the use of the textual-contextual classification algorithm, makes
a foundation for the second paper. The second paper described a processing chain for
post-classification change detection in multitemporal PolSAR data over glaciers. The
third paper and paper in Appendix B are linked to each other. In the Appendix paper,
the complex Hotelling-Lawley (HL) trace statistic was introduced and the moments of
complex-kind HL trace statistics were derived. Paper 3 demonstrated the capability of
the HL test statistics for change detection in PolSAR data.

This thesis described two separate approaches for change detection in multipolariz-
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ation SAR data; (1) comparative analysis of independently produced classifications for
different dates called post-classification change detection (PCCD) and (2) simultaneous
analysis of multitemporal SAR data called direct change detection (DCD).

The first approach involves a methodology for a PCCD of Arctic glaciers from mul-
titemporal polarimetric images with different configurations. Using the matrix log-
cumulant diagrams, we demonstrate the capability of the matrix-variate non-Gaussian-
based U,-distribution to model the variable texture in the multitemporal PolSAR data
set. The post-classification comparison change detection requires the comparison of in-
dependently produced classified images. Therefore, the DEM-based terrain corrected
multilook images are separately clustered into thematic maps, using fully unsupervised,
contextual non-Gaussian image segmentation described in Appendix |[Al The contex-
tual smoothing by the MRF model yields homogeneous segmentations and minimizes
the impact of speckle on the change detection results. The ground truth data are then
used to label the segmented images into glacier facies and to investigate the classific-
ation accuracies. Finally, the classified images are compared pixel by pixel to produce
change maps which show a complete matrix of changes. The variations of the bound-
aries between glacier facies can be detected within the period of study from the change
matrix. The proposed method shows promising potential for operational firn-line mon-
itoring from multitemporal multipolarization images.

The second approach describes a new approach for DCD in polarimetric SAR data
under the complex Wishart distribution. We employ the complex HL trace statistic for
equality of two complex covariance matrices. Then the distribution of the HL statistic
is approximated by a Fisher-Snedecor distribution. Thus, we tested whether two co-
variance matrices belong to the same population and changes are detected when the
hypothesis is rejected. Experiments with simulated and real data sets demonstrate the
effectiveness of the algorithm.

10.2 Concluding Remarks

It may be appreciated that when a difference in radar backscattering between multitem-
poral data is taken as a change indicator, the difference may be due to several factors
such as actual land cover change, viewing geometry (like satellite orbit and look angle),
surface topography and other external factors (like meteorological conditions, that are
minimized by using radar frequencies and choosing the scenes wisely). These consid-
erations were the main reason for developing the workflow in Paper 2, and where we
also choose our SAR images to avoid the wet weather conditions. Models accounting
for temporal variation in multitemporal SAR images should separate useful temporal
variation, i.e., land cover or seasonal changes from variation arising due to other factors
mentioned above.

As discussed in Chapter [5, challenges for multitemporal SAR image analysis in-
crease when topography is introduced. So of the various requirements of pre-processing
for change detection in SAR images, precise terrain geocoding accounting for geomet-
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rical distortions and radiometric terrain correction between multitemporal images are
the most important and critical. The importance of accurate geometric registration of
multitemporal imagery is obvious because largely spurious results of change detection
will be produced if there is misregistration. In cases of misregistration, a number of
false alarms, especially in the region of rapid intensity change such as edges, occur. This
necessitates the use of precise terrain geocoding of SAR data that not only registers the
images to a standard map projection by using a high resolution DEM and precise orbital
information, but also performs the geometric terrain correction. Regarding the effects
of both terrain topography and SAR geometry on radar backscattering, we refer readers
to the results of Figure 4 in Paper 2, where it plots the effect of the terrain correction on
four candidate images of dual polarization ASAR scenes. It shows the suppression of
the topographical effect and the viewing geometry on the covariance matrix data sets
such that the images are comparable for the monitoring purpose.

In general, change detection techniques can be grouped into two types: (1) those
detecting binary change/no change information; and (2) those detecting detailed "from-
to" change.

The PCCD approach falls into type (1) which can provide a complete matrix of
change information. The major advantage of the developed workflow for the PCCD
in Paper 2 is that the unsupervised segmentation algorithm together with the DEM-
based terrain correction are reliable and robust enough to give consistent change de-
tection results. It should be mentioned that the example glacier was only a very slow
moving glacier and the annual change is small. A faster glacier, or other more drastic
change examples like deforestation, would likely work much better. Another import-
ant point about this approach is that the method is based on the classified images, in
which the quality and quantity of the ground truth data are crucial to label the seg-
mentation results and produce high-quality classification results. However, selection of
high-quality and sufficient ground truth data for labeling image segmentation results is
often difficult, in particular for historical image data classification. When high-quality
ground truth data are not available, production of highly accurate classifications from
the segmented scenes is a difficult task and post-classification comparison from classi-
fied historical image data often seriously affects the change detection results. The key
is to create accurate thematic classification images. The errors of individual-date them-
atic images will affect the final change detection accuracy. High accuracy GPR-based
ground truth data and consistent segmentation results in the glacier example of Paper 2
guarantee to obtain high classification accuracies, which was evaluated on classification
of the year 2005, and thus robust change detection.

The DCD approach falls into type (2) which can only provide change/no change
information. On the other hand, one advantage of the DCD approach compared to the
PCCD approach is that it does not need any ground truth data to label every class. So we
get "less" information, but we need "less" inputs to get it. The approach belongs to the
class of CFAR detectors which makes it easy to use for multilook PolSAR images. One
critical step in using the DCD for change /no change detection is to select an appropriate
false alarm rate to threshold the test statistic in order to separate areas of change from
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those of no change.

The comparison of the results of the proposed test statistic with those of the Wishart
LRT statistic for Experiments II and III of Paper 3 reports higher sensitivity of the HL
statistic in detecting changes, and thus better detection performance with respect to the
LRT detector. For Experiment III, in particular, the HL statistic represents higher sensit-
ivity to the differences in polarimetric information with respect to the LRT detector. In
order to better evaluate the change detection test statistics quantitatively, receiver op-
erating characteristic (ROC) curves were plotted for both detectors versus the reference
change maps. For both experiments, the ROC plot of the HL is above the LRT indicating
better detection performance obtained from the HL statistic.

The statistical modeling of the test statistic in the direct change detection algorithm
requires the ENL estimation for each image in the pair of multitemporal PoISAR images
in advance. Underestimation of the ENL results in a mismatch of the HL histogram and
the estimated PDF of no change class (after thresholding at a predefined false alarm
rate). Another source of the mismatch of the HL histogram to the estimated PDF could
be due to presence of texture that makes deviation from the Wishart distribution. To
reduce this problem, we multilook the original SLC data with high degree of smoothing.

10.3 Suggestions for Future Work

There are still some possibilities to be investigated. Here we list some suggestions for
future research which extends the work in this thesis.

e We proposed a method for the post-classification change detection by mutlitem-
poral multipolarization SAR data acquired over glaciers in the second paper. Fu-
ture studies will consider how to relate the variations of the boundaries between
glacier facies to the glacier mass-balance which is an important indicator of global
climate change, and hence wider scientific importance for climate studies.

e The change detection algorithm proposed in the third paper assumes Gaussian-
based Wishart distribution for covariance matrices and the distribution of HL trace
statistic was approximated under the complex Wishart model. We have found
some sets of data with an extreme texture provide partially bad fit between the test
statistic histogram and the estimated PDF. Further developments of this study will
include extending the HL statistic moments to include texture under the multilook
polarimetric product model.

e The change detection method in the third paper is aimed at extracting a scalar
feature that accurately discriminates changed and unchanged areas. We have
currently only performed this method for CFAR detection. Further possible ex-
tensions of this work could be the combination of this feature with automatic
Bayesian thresholding techniques, based for example on generalizations of the
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K&I approach [Moser and Serpico, 2006], or with contextual unsupervised seg-
mentation methods proposed in Paper 1 for minimizing the impact of speckle on
the resulting change map.
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Automatic PolSAR Segmentation with
the U-distribution and Markov Random
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Abstract

A novel unsupervised, non-Gaussian and contextual clustering algorithm is demonstrated for segmentation of Polarimetric
SAR images. Previous works have shown the added value of both non-Gaussian modelling and contextual smoothing
individually, and goodness-of-fit techniques were introduced to determine the appropriate number of statistically distinct
classes. This paper extends our previous work by using the more flexible, two parameter, {/-distribution model and
includes a Markov Random Field approach for contextual smoothing, without losing the benefits of the goodness-of-fit
testing. The proposed, fully automatic, algorithm is demonstrated with both simulated and real data-sets.

1 Introduction

We develop and demonstrate an improved automatic clus-
tering algorithm that combines a more flexible non-
Gaussian class model, a Markov random field (MRF) for
contextual smoothing, and goodness-of-fit testing to opti-
mise the segmentation and determine an appropriate num-
ber of classes.

Satellite-borne Polarimetric Synthetic Aperture Radar
(PoISAR) systems have many benefits, but analysis is hin-
dered by complicated non-Gaussian statistical methods.
PolSAR data models are generally derived from the prod-
uct model [1], which states that the backscattered signal
results from the product between a Gaussian speckle noise
component and the textured terrain backscatter.

The scaled Wishart distribution, Wj, is the simplest multi-
looked PolSAR model to analyse but contains no texture
parameter, describing purely Gaussian speckle. The Ky (or
K-Wishart) distribution [2, 3] and the gg—distribution [4, 5]
are more flexible, with one texture parameter, and success-
ful examples for many PolSAR scenes. The two param-
eter Kummer-U distribution has been used to model Pol-
SAR vector data [6], with promising contiguous segmenta-
tion results and demonstrated that the two parameter model
is more flexible to fit real data classes. The multivariate
extension of the Kummer-U distribution for multi-looked
complex (MLC) matrix data, hereafter simply called the
Ug-distribution, has not previously been demonstrated, but
is expected to yield improved results because of its flexibil-
ity to model more varied textures and because it includes
the Wy, K4 and gg models as asymptotic cases.

As with many of these product models, the probability
density functions (PDFs) are complicated and maximum
likelihood parameter estimators are not usually available

with closed-form solutions. A practical solution is to esti-
mate the model parameters with the method of matrix log-
cumulants [7], because they have relatively simple numer-
ical expressions and possess lower bias and variance com-
pared to single channel (marginal) estimates or moment
methods for product based distributions. The method of
matrix log-cumulants shall be used for parameter estima-
tion within the expectation maximisation algorithm (EM-
algorithm) as well as for the goodness-of-fit testing stage
that performs the split-and-merge operations to arrive at an
appropriate number of classes [8, 9].

Contextual smoothing is desired to improve the accuracy
and robustness of the image segmentation. It is achieved
in the clustering algorithm with an MRF approach that in-
tegrates the Uy-distribution for the PolSAR data statistics
conditioned to each image cluster and a Potts model for the
spatial context. The parameters of the MRF model are es-
timated with a mean-field like method [10]. The inclusion
of the MRF is not expected to compromise the goodness-
of-fit testing stage, because the MRF only affects the local
priors and the underlying model remains a mixture of {/;-
distributions.

The proposed algorithm combines all the benefits of a flex-
ible, two-parameter, non-Gaussian model for the covari-
ance matrix data classes, an MRF for contextual smooth-
ing, and goodness-of-fit testing to optimise the segmenta-
tion and determine an appropriate number of classes.

This state-of-the-art algorithm is described in Section 2
and shown to give excellent results for both simulated and
real data-sets in Section 3. Its main drawback seems to be
computation time, but this can be partly alleviated with a
sub-sampling approach, as in [9], that still finds the major
classes of interest but sacrifices smaller sub/side classes for
reduced computation time.



2 Method

The scope of this algorithm is to analyse multi-look MLC
data images, where the data is an image of covariance ma-
trices, C. We assume the scalar product model is valid and
that the MLC data is formed by a simple box-car multi-
look average from the single-look complex scattering coef-
ficients such that we can assume a global number of looks
and “simpler” statistical models. The number of looks, L
is in practise substituted with an effective number of looks
(ENL) due to pixel correlations. The ENL is optimised
during the iterations by a minimum distance method us-
ing the log-cumulant expressions given all the current class
model parameters simultaneously.

Our main objective is to segment the image pixels into sep-
arate clusters based upon the U -distribution model. The
statistical approach for clustering the images uses the iter-
ative expectation maximisation algorithm with a few mod-
ifications, as has been described in detail in [8, 9]. The ex-
tension proposed here, is that each class is modelled with
the U4-distribution PDF and that context has been incorpo-
rated with an MRF technique based upon the Potts model.

2.1 Non-Gaussian modelling:
the Kummer-U distribution

Table 1 lists the probability density functions and the ma-
trix log-cumulant expressions for the matrix variate Wy,
Ka, GY, and Uy distributions.

Bombrun et al. [11] have shown the potential of the Uy
PDF, with texture parameters o and A, to model both ex-
tremely heterogeneous, moderately heterogeneous and ho-
mogeneous clutter. It encompasses the other models as
special cases, such that it reverts to the Ky as A — oo,
the G§ as @ — oo, and the WS as both o, A — oc. There-
fore, this one model supersedes many previous modelling
algorithms.

Parameter estimation is achieved with the method of ma-
trix log-cumulants (MoMLC) because they are fast to com-
pute and achieve the most accurate results [7].

2.2 Markov Random Fields

Markov Random Field modelling is a contextual smooth-
ing technique which gives more weight to the class mem-
berships of spatially neighbouring classes. The class label
image is modelled as an MRF together with an isotropic
second-order neighbourhood system, defining the eight
surrounding pixels as the neighbourhood for each site.
The class label MRF easily combines with a finite mix-
ture model’s spectral clustering, i.e., based on the pixel co-
variance matrix distributions, by replacing the global class
prior probabilities with spatially varying local prior proba-
bilities determined from the local neighbourhoods.

We introduce the MRF for the class labels, £ with sites S,
as a Gibbs distribution with the energy function being pro-
portional to the local neighbourhood counts for each class,
asin [12, 10, 13].

Therefore, the k£ class mixture model for the matrix-variate
data at the 5™ location, C(®, may be summarised as:

Po(C%) Zud (CY; L, 35, a5, \j)m

Jj=1

Ys.L)

where the local priors for each class, W(i)

Q]

are derived from

the neighbourhood counts, m; " at each site thus

exp <ﬂm§l))
S exp (Bmy”)

(8, L) = @

and the MRF spatial parameter 8 > 0, which is a mea-
sure of correlation between neighbouring pixels, is found,
at each iteration, by maximising

k
B=argmaxy Y P(LD=j|CD, B, L)logn\" (8, L)

i€S j=1
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Table 1: PDFs and MoMLC equations for the covariance matrix distributions under the product model [7].
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2.3 Goodness-of-fit test stage:
Split and Merge

The goodness-of-fit test stage performs a few tasks wor-
thy of mention here. Each cluster’s goodness-of-fit to the
data is tested at regular intervals and may “split” poorly
fitting clusters, and “merge” competing clusters. This pro-
cess solves two prime problems with general clustering
algorithms: initialisation and the number of classes. Al-
ways starting as one, undoubtedly “poor”, cluster for the
whole image, and letting it adapt from that consistent level
has proven a robust initialisation method, and the adap-
tive number of clusters results in the number of statis-
tically distinct classes, given the image data, the model
PDF and a chosen confidence level. The current algorithm
includes the adaptive sensitivity and sub-sampling ability
previously described in [8, 9].

3 Results

3.1 Evidence for Kummer-U:
Log-Cumulant Diagrams

Recent investigations have found that a single texture pa-
rameter model is sometimes insufficient to capture the
range of data distributions observed in PolSAR images.
Figure 1 shows a log-cumulant diagram (discussed in [7])
for an ENVISAT ASAR dual-pol scene of an arctic glacier
on Svalbard. The blue, green and yellow sample data clus-
ters are plotted for known regions of glacier ice, super-
imposed ice and firn, respectively. The black circle rep-
resents the (non-textured) YW; model, the red and blue
lines represent the KCy and gg models, respectively, and
the yellow region depicts the parametric coverage of the
U,-distribution. (The more extreme Wittaker W and M
models are not considered here.) The data clusters clearly
fall within the region of the U/;-distribution, which should,
therefore, achieve a better fit to the data classes, and im-
prove the clustering results.
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Figure 1: Log-cumulant diagram for real dual-polarisation
ASAR scene of an Arctic glacier, showing clusters for firn,
superimposed and glacier ice regions. Note that the clus-
ters are clearly within the yellow U-distribution region in
the diagram.

3.2 Simulated Data-set

We generated a six-class Ug-distribution test image to val-
idate the clustering algorithm. The simulated data was
5-look, dual-pol, with a range of texture, brightness and
polarimetry values taken from real images. The cluster-
ing algorithm was given only the MLC covariance matrix
image as input, with no prior knowledge about the num-
ber of clusters, and resulted in the perfect clustering into
six classes. Figure 2 shows the clustering result, which
perfectly matches the original simulated image. Figure 3
shows the resulting log-cumulant space with an ellipse for
each model cluster found, and indicates the spread in tex-
ture space covered by the simulated U/;-distribution data.
These figures clearly demonstrate a successful clustering
of the simulated data image.
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Figure 2: Perfect clustering result of a six-class simulated
test image.
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Figure 3: Log-cumulant diagram of simulated cluster-
ing result. The coloured ellipses indicate the six different
classes and their expected sample scatter, and the red and
blue curved lines indicate the Ky and G% models, respec-
tively. Note that several classes are nearly W, distributed
where the curves meet, but others vary in texture.

3.3 Real Data Example

Our real data example is the same Arctic glacier, Kongsve-
gen, on the Svalbard archipelago, as the log-cumulant dia-
gram in Figure 1 and is an ENVISAT, dual-pol VV/VH,
image from May 2005, MLC processed with 24-looks.



Figure 4 shows the pseudo-Pauli RGB image (top) and
the automatically clustered image (below) which found six
clusters. A visual inspection of the found clusters supports
that it has found real, distinct classes in the image, although
a rigorous investigation with ground truth has not yet been
performed. This segmentation compares favourably to our
earlier work [8], using the K; model without contextual
smoothing, which showed a much more fragmented clus-
ter image.

Figure 4: Real ENVISAT, dual-pol, 24-look example of an
Arctic glacier. Pseudo-Pauli RGB image (top) and the au-
tomatically clustered image (below) which found six clus-
ters in good (visual) correspondence to real glacier classes.

4 Conclusions

We have proposed an improved non-Gaussian clustering
algorithm which incorporates the U/;-distribution for multi-
look covariance matrix data classes, Markov random fields
for contextual smoothing, and goodness-of-fit testing to
optimise the number of clusters. Visual inspection indi-
cates that it achieves good results that appear valid for real
data images.

Further real examples using this algorithm for post classi-
fication change detection may be seen in another EUSAR
2012 submission by the authors.
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Statistical Characterisation of the Complex
Hotelling-Lawley Trace Statistic

Stian Normann Anfinsen and Vahid Akbari

Abstract—The paper introduces a complex version of the
Hotelling-Lawley (HL) trace statistic, whose real case equivalent
is an important test statistic in the field of multivariate analysis
and in multivariate analysis of variance in particular. The
first, second and third-order moments of the HL trace statistic
are derived. These are used to specify the parameters of a
Fisher-Snedecor distribution, which approximates the sampling
distribution of the test statistic. The application of the model to
change detection in polarimetric radar images is discussed.

Index Terms—Complex Wishart distribution, Hotelling-Lawley
trace statistic, matrix moments, change detection

I. INTRODUCTION

The Hotelling-Lawley (HL) trace statistic is an important
test statistic in real multivariate analysis, where it is used to
test two or more multidimensional populations for equality
of means. This is done in a procedure known as multivariate
analysis of variance (MANOVA) [1], [2], where the sample
covariance matrices are used to test the statistical significance
of differences in the mean vectors, under the assumption that
the populations are multivariate Gaussian. The HL trace is
one of the common choices for the test statistic, together with
Wilks’ lambda, the Pillai-Bartlett trace statistic, and Roy’s
greatest root [3].

By its definition, the HL trace statistic directly compares
two sample covariance matrices, that are usually assumed to
follow a central or noncentral Wishart distribution. It can thus
be used to test if the sample covariance matrices come from
the same population, under the preassumption that their means
are equal. This is our motivation for studying the complex
HL trace statistic: It can be used for change detection in
polarimetric synthetic aperture radar (PolSAR) images, where
each pixel is represented by a sample covariance matrix
commonly modelled with the complex Wishart distribution [4],
[5]. To be useful in this context, the HL trace statistic must
be extended to the complex case. The purpose of this paper
is thus to characterise the complex kind HL trace statistic in
terms of its moments and its sampling distribution.

The signal processing community has witnessed an in-
creasing interest in complex matrix-variate statistics, after
these have become important tools in the analysis of wireless
communications systems [6] and polarimetric radar images [7],
[8]. As specific examples, complex Wishart matrices occur
frequently in the performance analysis of wireless networks,
such as derivations of channel and receiver capacity [9]-[11].
In polarimetric radar imaging, the complex Wishart distribu-
tion is the default model for the sample covariance of the
scattering vector, which is the measurement most commonly
used in monitoring of natural surfaces. In both areas, the

phase information of the information carrying signal requires a
complex-valued description, and leads to problems that require
analysis of complex random matrices, their determinants,
traces and eigenvalues.

Returning to the comparison of covariance matrices, we be-
lieve that the complex HL trace makes a good test statistic for
change detection in PoISAR images, both in terms of accuracy,
computational cost and ease of implementation. In parallel
with this work, we have therefore proposed an algorithm which
uses this statistic to compare sample covariance matrices
representing multitemporal polarimetric measurements [12].
The current paper provides the underlying theory for the
proposed change detector. Most importantly, it provides a
sampling distribution for the test statistic, which is needed to
determine an appropriate threshold for testing the hypotheses
of change versus no change.

For all of the test statistics commonly used in MANOVA,
it is difficult to derive an exact sampling distributions in the
the most general case specified by a finite data dimension and
degrees of freedom of the sample covariance matrix [13]. The
true sampling distribution of the real case HL trace statistic
was first derived for two-dimensional data by Hotelling [14].
Expressions for a general data dimension were then given in
[15] and [16], although the complexity of the solutions limit
their applicability. An approximation for the general sampling
distribution based on matching moments of the F-distribution
and the HL trace statistic was first proposed in [17], and then
improved in [18], before McKeon [19] gave an alternative
which is reported to be the superior one [3].

Whereas much of the literature of multivariate statistics has
been extended from the real to the complex case, little work
has been done on the HL trace statistic. An exception is Kabe’s
discussion of what is referred to as Hotelling’s complex T2
statistic [20], which is proportional to the complex HL trace
statistic. In the absence of other results, we therefore copy
the approach used in the real scenario [17]-[19] to produce
an approximation for the sampling distribution of the complex
HL trace. The Fisher-Snedecor (FS) distribution [21], which
is an F-distribution extended with a location parameter, is
taken as the approximate density model for the complex HL
trace. We then match three of its population moments with the
corresponding theoretical moments of the HL trace statistic,
and solve the equation system for the parameters of the FS
distribution.

The paper proceeds as follows. Section II introduces the
central complex Wishart distribution and reviews previous
results on moments of the trace of a Wishart matrix. A
new derivation of cumulants of the Wishart matrix trace is
also presented. Section III defines the complex HL trace
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statistic. Moments of the HL trace are then derived from the
moments of the trace of complex Wishart matrices and inverse
complex Wishart matrices. The section further introduces the
Fisher-Snedecor distribution and its moment expressions, and
explains procedure used to solve for its parameters. This
concludes the theoretical results.

The notational convention of the paper is that matrices are
written as boldface upper case letters and vectors as boldface
lower case letters. Scalars are written as letters with standard
weight. Ordinary and Hermitian transposition of vectors and
matrices are denoted as (-)7 and (-)¥, respectively. The trace
function is denoted as tr(-),
the expectation operator with respect to the random variate X
as Ex{-}. The distinction between random variates and their
realisations must be ascertained through context.

II. THE COMPLEX WISHART MATRIX

This section presents the complex Wishart and its density
function, the complex Wishart distribution. We make the dis-
tinction between the true complex Wishart matrix, as defined
in the seminal study of Goodman [22], and the scaled complex
Wishart matrix [23], a term used to distinguish the sample
covariance matrix normalised (or scaled) by the number of
vector samples used in its computation. We then summarise
moment expression for the trace of products of complex
Wishart matrices and inverse complex Wishart matrices, that
are needed in subsequent derivations.

A. The complex Wishart distribution

Assume that Z={z;}?_, is a sample of size d x 1 vectors
drawn from a circular, complex and zero-mean multivariate
Gaussian distribution, given as [24]

p2(2;0,3) = |E‘ exp {—z"¥27 'z} . (1)
This is denoted as z; ~ N5 (0, %), where 0 is a zero vector
and ¥ = E{z;z/’} is the population covariance matrix.

Further let the random matrix W be defined as
L
W = Z 2zl . 2)

We then refer to W as a complex Wishart matrix whose size
is d x d. It is defined on the cone of positive definite and
Hermitian matrices, a domain denoted as 2,, and follows
the nonsingular central complex Wishart distribution, whose
probability density function (pdf) is [22]
|W|E—d

|Z[*Ta(L)
provided that L > d. This is written as W ~ WY(L, %),
where L is the shape parameter (or the degrees of freedom)
and X = E{W}/L is the scale matrix. The complex Wishart

pdf contains the multivariate gamma function of the complex
kind,

pw(W; L, %) = exp{—tr(Z7'W)}, (3

Tu(L) = /Q W] exp{— tr(W)} dW

d—1 “
=gl T (L ),

=0

as a normalisation constant.
Let C be a sample covariance matrix, which is computed
from Z by the sample mean estimator as

L
E lel 5

=1

h\*—‘

which is also the maximum likelihood estimate of 3 based on
Z. It is then known that C ~ W$(L,X/L), and the pdf of
C becomes [23]

LLd |C‘L d

pe(CiL2) = ¢ s s

exp{-Ltx(Z7'C)}. (5
This is denoted C ~ sW$(L,X), and the pdf is referred to
as the scaled complex Wishart distribution, to distinguish it
from (3). Accordingly, we refer to C as the scaled complex
Wishart matrix. From here on, we shall use C instead of W
in our derivations, since it represents the sample covariance
matrix which is the relevant observation in most practical
cases, including polarimetric radar imaging.

We finally note that mean of the scaled complex Wishart
matrix and its inverse are given by [25], [26]

E{C} =13, (6)
E{C™'} = éz—l. (7

B. Trace moments of the complex Wishart matrix

Let C* = C..-C denote the matrix power, defined
as a repeated matrix product of n scaled complex Wishart
matrices. The matrix power may also be extended by pre-
multiplication with a constant matrix A € €2, such that
(AC)" = (AC)---(AC). In the following, we are in-
terested in population moments of the trace of such ma-
trix products, Ec{tr((AC)™)}, and also in the moments
of compositions of such trace expressions, for instance
Ec{tr((AC)™) tr((AC)™)}. These expressions are referred
to as trace moments of order m + n, where the order is the
multiplicity of the trace terms. They are needed to derive
moments of the complex HL trace statistic.

The derivation of the required trace moments was explained
and exemplified for low orders by Maiwald and Kraus [25],
[27], but only some of the moments were given explicitly,
and sometimes in a truncated version. We therefore turn to
Graczyk et al., who used theory of the symmetric group of
permutations to derive elegant formulas for trace moments of
general orders [26]. We here provide explicit results of their
method for the convenience of the reader.

The first-order trace moment is

Ec{tr(AC)} = tr(AS). @)

The second-order moments are

Ec{tr(AC)?} = tr(AX)? tr((AX)?), )

Ec{tr((AC)?)} = tr((AX)?) + %w(Az)2 . (10)
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The third-order moments are
Ec{tr(AC)*} = tr(AX)?
+ %tr(AE) tr((AX)?) + % tr((AZ)?).
Ec{tr(AC) tr((AC)2)} = tr(AX) tr((AE)2)

(1D

+ %(2 tr((AX)?) + tr(AX)?)

+ %tr(AE) tr((AX)?).
Ec{tr(AC)tr((AC)?)} = tr((AX)?)

(12)

+ %tr(AZ) tr((AX)?)

1
+ ﬁ(tr(AE)B +tr((AX)?)).
The linearity of the trace operator together with W = LC
asserts that the equivalent trace moments of the complex
Wishart matrix W can be found as

Ew{f(W)} = L"Ec{f(C)}

where n is the moment order and f(-) is any of the trace
expressions subjected to the expectation operator in Egs. (8)-
(13).

(13)

(14)

C. Trace moments of the inverse complex Wishart matrix

Trace moments of the inverse scaled complex Wishart
matrix, C~1, are also derived in [25]. However, to obtain full
versions of all the required expressions, we must also in this
case use the methods introduced in [26].

The first-order moment is

Ec{tr(C™'A)} = gtr(zflA) :

For the second-order moments, Theorem 2 in [26] provides
the equation system

(oA | =

% o [H{laE A )

where we define Q = L — d. The system is inverted to yield
E{tr(CTtA)?} =

(15)

(16)

L’ a2 Ciayzy D
m(Qtr(E A)? +r((Z71A)Y),
E{tr((CT'A)?)} =
L(Q tr(Z7A)?) + tr(Z7TA)? (19
@Q*—-Q '

In the same manner, we find that the third order moments are
defined by the equation system

tr(Z7'A)3 Q> -3Q* 2Q
tr(Z7'A)?) tr(Z7'A) -Q? Q*2Q —2Q?
tr((Z'A)3) Q —3Q° Q+Q
. (19)
1 tr(C~1A)3
x —E{ [tr((CT'A)?) tr(CT'A) | 3 |

o tr((C'A)?)

which can be inverted into

E{tr(C"'A)’} = L
{tx( VY= s a0
x <(Q2 —2)tr(Z7'A)? 20)
+3Qtr(ZrA)Y) tr(Z7HA)
+ 4tr((2_1A)3)> ;
3
E{ir((C'A)*) tr(C'A)} = m
x (Qtr(2‘1A>3 @1
H(@+2) (A (S 1A)
+ 2Qtr((zlA)3)> :
E{tr((CT'A)*)} = Lk
{tx(( )°)} = Q5 —50° + 40
X <2t1‘(21A)3 (22)

+3Qtr(ZrA)Y) tr(=71A)
+Q? tr((zlA)3)> .

Again, the equivalent nth-order trace moments of W~ are
found as

Bwl{f(W )} =~ Ec{/C)}. @3

III. THE COMPLEX HOTELLING-LAWLEY TRACE STATISTIC

Let X ~ sWY(L,,¥) and Y ~ sWY(L,, %) be two
random matrices that follow the scaled complex Wishart dis-
tribution in (5). Further assume that X and Y are statistically
independent, which is a reasonable assumption if the matrices
represent time separated polarimetric measurements of a target
which exhibits distributed scattering. The complex HL trace
statistic is then defined as

L = tr(X71Y). (24)

The order of the matrices in (24) can of course be reversed. In
the context of change detection, it can be relevant to consider
both tr(X~1Y) and tr(Y~'X) if we want to apply these
test statistics sequentially and thus use the same procedure to
test for changes both in the direction of increase and decrease
of the radar backscatter. In the following, we analyse only
tr(X~1Y), since the results are equivalent.

A. Moment derivation

We now want to derive some lower-order moments of 7x,.
The derivation is aided by the assumed independency of X and
Y, since we can apply the expectation operator sequentially
with respect to X and Y. With the moment expressions
listed in sections II-B and II-C, we are now equipped for the
derivation.
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The mean of 7x;, is found by use of Egs. (6) and (7) as
Ls
Qq

where QQ, = L, — d. The second-order moment of 7y, is
found from Egs. (9), (17) and (10) as

B{tr(X7TY)} = tr(Ex{X T} Ey{Y}) = =%d, (25

E{tr(X~1Y)?} = Ex{Ey{tr(X~1Y)2}}
— B {tr(X 1)) + Li Ex {tr(X ' SX ' 5)}

_ L 2 1 Qu
= gq (#erg)ra(T )

From Egs. (11), (20), (21) and (22), we obtain the third-order
moment as

E{tr(X7'Y)3} = Ex{Ey{tr(X"1Y)3}}

(26)

— Ex {tr(X12)3} + L% (XD tr(X ')

+ 2tr((X12)3)}

Ly
s (@) 7
+ d? <3QI + 3(62%; 2 + 6%”)
+d <4+ 62;” + 2]%?“)} :

The moments above represent the hypothesis that X and Y
come from populations with the same scale matrix 3. This
would be the null hypothesis in a change detection algorithm
for PolSAR data on covariance matrix format, where X
characterises the polarimetric radar reflectivity of the imaged
surface. We may further assume that L, = L,, such that we
are testing for totally identical populations. This is an even
more realistic case for change detection in PoISAR images,
as the multitemporal images are likely to be processed with
the same parameters, including the level of averaging and
noise suppression, which is effectively expressed as the shape
parameter L.

Note that the moments we obtain in this final case are
identical to those we get by assuming that X and Y follow
the true complex Wishart distribution in (3).

B. The Fisher-Snedecor distribution

We shall approximate the distribution of the complex kind
Hotelling-Lawley statistic (77) by a FS distribution. The
motivation is that this is the true distribution in the univariate
case [18], [19], and therefore it is assumed to be an acceptable
model also in the general matrix-variate case.

The FS distribution is given as [21], [28]

a—1
aT
1 [0 ((Afl),u)

a, ) (A=1)p <()\g;)H R 1)o¢+)\ )

fT(T;/j,,Oé,A) = B(

(28)

where o > 0 and A\ > 0 are shape parameters, u = E{7} >
0 is a location parameter, and B(«, A) is the beta function
defined as

1
B(z,y) :/ w1 —z)¥ N du
0

_T@r()
Nz +y)

(29)

If 7 follows the FS distribution, denoted as 7 ~ FS(p, a, ),
then the vth-order moment of 7 is given by

| (A =Dp\"T(a+v)T(A—v)
my{q-,,u,oz,)\}—( o ) () INOV

(30)

From (30), we can extract the first three moments and simplify
them as

mi{r} = p, €2))

matr) = (“54) (355 (32
_@+Dhla+2) (=12 4

mAT = e -9 &9

C. Distribution parameters

The method used to specify the FS distribution which
approximates the sampling distribution of 7z, is to match the
population moments of the FS distribution from Egs. (31)-(33)
with the population moments of 7z, found in Egs. (25)-(27).
This results in a system of equations which we have solved
with the Mathematica software package [29] to obtain Egs.
(34)-(36) on page 5.
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