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Abstract 

 

The Svalbard rock ptarmigan (Lagopus muta hyperborea) is a resident bird on the 

Svalbard achipelago, living in an environment where it experiences extreme climatic 

and photoperiodic conditions. The bird’s most striking adaption to this environment 

is, prior to the onset of winter, its deposition of fat, comprising up to 30% of body 

mass. Moving around with this excess mass may prove difficult as it is likely to infer 

an extra energetic cost, especially at a time of food deprivation and low 

temperatures, where saving of energy is at prime concern. In order to study the 

impact of locomotion on the birds’ energy budget, treadmill studies have previously 

been carried out looking into both the bird’s energetics and biomechanical 

parameters. To validate these treadmill studies, I have conducted overground 

running studies to compare the running patterns of the two experimental 

environments. Do the birds display the same biomechanical patterns on the 

treadmill and in the natural environment? Additionally, blood gas and lactate 

analysis have been carried out while birds ran on the treadmill in order to assess 

their aerobic capacity, to validate the use of indirect calorimetry in the previous 

energetic studies. 
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I: Introduction 

 

Treadmill experiments have long been used to study animal locomotion under 

controlled conditions. Having an animal run indoors in a closely controlled 

environment provides stable conditions and allows the person carrying out the 

experiment to carefully regulate experimental conditions, such as ambient 

temperature, running speed and duration, according to needs and the hypothesis to 

be tested, and to observe the animals closely. This is, however, an artificial 

environment in which to study animal locomotion, and there is evidently a need to 

validate treadmill-based data in a more realistic setting. Various factors like 

substrate material and composition, incline of the ground, temperature and air 

friction are all likely to differ in nature as compared to in the laboratory. By 

conducting and comparing treadmill data with outdoor studies, and in the long term 

field studies, we would be able to assess the relevance of treadmill experiments for 

field conditions. This master thesis deals with locomotory biomechanics in the 

Svalbard ptarmigan during overground running, and with bloodgas chemistry during 

treadmill running, and partially supplements previously conducted studies on 

treadmill running in this bird, as performed by a team lead by Professor Jonathan M. 

Codd, University of Manchester, UK [1, 2, 3, 4, 5]. 

 

Study species: the Svalbard ptarmigan 

 

The Svalbard ptarmigan (Lagopus muta hyperborea), a sub-species of the rock 

ptarmigan (Lagopus muta), is a ground-dwelling bird species resident on, and 

exclusive to, the Svalbard archipelago and Franz Josef Land [6]. Living under the 

harsh conditions in Svalbard, it experiences long, dark winters with grim climate 

conditions and food shortage. Alternating sub-zero temperatures and rain, causing 

freezing of the range, may periodically make food even more scarce. Thus, the 

Svalbard ptarmigan has acquired a set of morphological and physiological traits that 

enable the species to endure these very challenging conditions to which it is 

exposed, the most remarkable being its profound seasonal fluctuations in body 
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mass. The birds are between 35-40 cm long, and weigh between 500-550g in 

summer, and 900-1200g in winter [7]. Birds also undergo changes in plumage (fig. 1), 

with summer birds displaying a golden brown molt much like that of the willow 

ptarmigan (Lagopus lagopus) (females) or white molt, and winter birds (both female 

and male) having a white plumage with black outer tail feathers.  

  

Figure 1: Svalbard ptarmigan. Hen in summer plumage (left) and cock in winter plumage (right). 

(Photos: Eirik Reierth (left) and Bob van Oort (right). 

 

Males additionally display red coloured supraorbital combs above the eyes during 

the breeding season [8]. Both seasons plumages provide the birds with excellent 

camouflage, with the white snow during winter and rocky terrain during summer. 

Molting is casually related to changes in daylength [9, 10]. Mating takes place in late 

May, and egglaying takes place in early to mid-June. These eggs are usually hatched 

in late June to early July. All this takes place in a period when ambient temperature 

is favourable, and plants are most nutritious, ensuring increased survival for the 

chicks [8]. From late August to mid November, body mass increases by up to 50-

100% [9, 7], with fat comprising up to 30% of total body mass [7]. The fat reserves 

are used during the long winter, and are almost all gone by late February, by which 

time birds are very lean and continue to be so throughout the spring and summer 

months. Interestingly, body mass increase coincides with a decrease in feed intake 

during the autumn. Feeding resumes in April, to peak in June [9]. Metabolic rate is 

reduced during the winter months [11]. Since the birds still keep feeding to some 

extent during winter, the fat reserves are thus more of a safety margin during 

periods of acute food shortage than a pure reservoir [12]. The mass and feeding 
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changes coincide with conspicious day length changes on Svalbard (fig.2), and 

appears to be brought about by a photoperiodically controlled endocrine pathway, 

via melatonin and metabolic hormones like GH or thyroid hormone [13, 14, 15]. 

 

Figure 2: Seasonal changes in body mass (BM) (closed circles) and food intake expressed as gram · Kg 
total BM

-0.75
· day

-1
 (open circles) and as gram · Kg  fat free BM

-1
· day

-1
 (open squares) (bottom) in 

captive Svalbard rock ptarmigan exposed to natural temperature and light (top) conditions for 13 mo 
at Svalbard (79°N). During this period, birds were given standardized high-quality feed and snow or 
water ad libitum. Period when sun is above horizon is shown in white, night in black, and civil twilight 
by hatched area. Number of birds is indicated on abscissa, and vertical bars indicate SE (Stokkan et al., 
1986). 

 

 

Having all this excess body mass in autumn/winter may theoretically impose extra 

energetic costs for the birds when it comes to moving around. Even though the birds 

are fairly inactive during winter [9, 16], lying still in snow burrows which also 

protects them from wind and predators and give extra insulation against the cold, 

they must occasionally move around to search for what little food is available, often 

in places where patches of grass have been exposed by the digging activities of the 

Svalbard reindeer (Rangifer tarandus platyrhynchus) [6]. This poses yet another 

problem when it comes to the birds’ energy requirement, which is crucial to 

maintain at a minimum during this time of food scarcity, so there is a dilemma 

between finding fuel and not using too much energy. Excess mass would seem to 

imply that it is energetically more costly for the animal to move around, especially in 
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the snowy terrain, and also put excess strain on the respiratory system, considering 

respiration is mostly brought about through sternal movements [17]. Since the fat is 

predominantly deposited around the sternum and trunk walls, structures that play a 

vital part in respiration, a heavier load has to be lifted during respiration inferring an 

increased energetic cost in the form of heavier muscle work [18], and loading 

experiments in other species have already shown that excess weight on the sternum 

may have substantial impact on energy use during respiration [17]. The use of more 

energy could be fatal if the search for food is inadequate or if it fails altogether. Still, 

these birds survive the winter and manage to overcome these problems, posing a 

question related to whether they may display different locomotory mechanics at 

different times of the year, depending on body mass. 

Recent treadmill experiments suggest that this is indeed the case, as the birds, 

somewhat paradoxically, have been shown to use less energy when moving during 

winter than during summer, despite them being up to 47% heavier [1].   

 

Locomotory biomechanics 

 

For all animals, locomotion is a normal activity of daily life, and essential to the 

survival of the species. Being able to move allow animals to hunt, graze, migrate and 

escape from potential predators. Like previously stated, locomotion is an 

energetically costly process that needs to be balanced by energy intake in order for 

the body to be in energy homeostasis, and this is particularly challenging in species 

experiencing extreme climates. The mechanics of locomotion are therefore closely 

related to the energetic costs of an organism, and it is thought that animals are gait-

selective for various speeds in order to minimize energy expenditure during 

locomotion [19]. Most of the existing studies on terrestrial locomotion and on the 

cost of transport (COT), have been done on humans (walk and run), horses (walk, 

trot, gallop) and kangaroos (hopping) (fig. 3), but in later years more focus has been 

directed towards birds. COT is mainly determined by the force that must be 

generated during stance phase to support and accelerate the animals centre of mass 

(COM), coupled with the time available for generation of this force [20]. Variations of 
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this parameter with speed U are steeped in the optimality approach, and this may 

give indication to evolutionary significant speeds (fig. 3). Being a bipedal species, 

birds typically walk at lower speeds, and adopt an aerial running phase, in which 

both feet are off the ground at once, at top running speeds. In addition, there is an 

intermediate gait known as grounded running, or ”groucho running”, used at 

intermediate speeds [21, 22, 23]. The birds are then running, but without an aerial 

phase.  

 

Figure 3: Generalized relationships between the COT (J kg
-1

m
-1

) and forward speed (U) across 

different gaits for: (a) horse; (b) human, donkey and camel; (c) ostrich and kangaroo; and (d) barnacle 

goose (dotted line), and platypus and small mammals (solid line). In (c) grounded and aerial running 

refers to the ostrich, and hopping refers to the kangaroo. In (d) the type of running (grounded or 

aerial) is not known. (Nudds et al., 2011). 

 

The body can be viewed in light of models of physics. When an animal moves at its 

lowest speeds, essentially walking, the body behaves like an inverted pendulum, 

where the gravitational kinetic and potential energies of the body’s COM relative to 

the limbs fluctuate close to 180° out of phase, causing a transfer of energy between 

kinetic energy, Ek and potential energy, Ep, resulting in saving of metabolic energy 
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[19]. At higher speeds, the phase relationships goes awry, more active muscle power 

is invested, and Ek and Ep are no longer exchanged to the same extent (fig. 4). 

Instead, during running, energy is saved from the transfer between the COMs Ek and 

the elastic energy stored in elastic muscles and tendons [24], thus leading to the 

body acting like a spring.  

 

Figure 4: Examples of typical COM energy fluctuations for (a) walking at 0.50 m s
-1

 and (b) grounded 

running at 1.11 m s
-1

. The solid lines and right y-axis represent potential plus vertical kinetic energy, 

and the dashed lines and left y-axis the horizontal kinetic energy of the COM. (Nudds et al., 2011). 

 

Along with this mechanical explanation between the walk-run transition, another 

unit-less variable known as duty factor (DF), the proportion of time of a stride cycle 

when one foot is on the ground, is used. A DF > 0.5 corresponds to walking, while a 

DF < 0.5 is related to aerial running [25]. Still, many argue that a shift in DF is not 

clear enough to describe the walk-run transition, especially in the transition between 

grounded and aerial running seen in birds [26]. In some species, this decrease in duty 

factor towards aerial running occurs gradually [22], while in others the transition is 

more abrupt [27].  

http://rspb.royalsocietypublishing.org/content/early/2011/01/25/rspb.2010.2742/F2.expansion.html
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Other kinetic parameters commonly investigated during locomotion studies are 

stride frequency (SF), stride length (SL), swing phase (tswing) and stance phase (tstance).  

Stride frequency is the number of strides taken in unit time. In order for an animal to 

increase its speed, it must either increase its stride length, its stride frequency or 

both [25]. Stride length is the distance travelled in a stride, seen defined as a 

complete cycle of movements, i. e. from one foot leaves the ground until it again 

touches and leaves the ground [25]. Swing phase, the time that one foot is off the 

ground, is more or less even throughout all speeds, while stance phase, which is the 

time one foot is in contact with the ground, decreases with increasing speed. All 

these variables are normally quantified in studies of the biomechanics of locomotion, 

including in the treadmill studies of Svalbard ptarmigan [1, 2]. Indeed, the birds 

display a lowered cost of locomotion when adopting an aerial running mode during 

summer when they are able to reach their top running speeds [2]. Furthermore, 

male birds have been shown to run with an increased locomotor performance and a 

lower cost of locomotion at high speeds than females [3]. This may be due to 

differences in morphology, specifically the shorter leg length in females compared to 

males, and sexual selection for improved male performance, but the exact 

mechanisms still remain unclear [3].  

 

Problems and hypotheses 

 

The process of making the birds run in the lab, however, may not coincide with 

reality. On Svalbard, the birds navigate through uneven, sometimes rocky terrain 

during summer, and often on snow in winter. The purpose of the present study was 

to investigate the biomechanics of locomotion in ptarmigans during overground 

running on a natural substrate, without the influence of the mechanically driven 

treadmill, in order to give some insights to the extent to which artificial laboratory 

conditions represent a reliable model for ptarmigan locomotion in the field. 

In addition to investigate kinematics, studies have also been conducted of the 

energetics of the Svalbard ptarmigan’s locomotion, both during the birds’ lean 

summer months, and fat winter months [1, 2]. In these studies, indirect calorimetry 
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recordings of O2-uptake were used to assess metabolic rate during running, and for 

this method to be useful it is a requirement that the birds work aerobically. To 

validate this, I also investigated the blood gas chemistry of summer- and winter-

adapted birds running on a treadmill, and measured blood plasma lactate levels for 

the same speeds at which the birds were running in the study by Lees et. al., using 

the very same individuals.  The main goals of this study were: 

 

1. To compare laboratory and semi-field studies of biomechanical  parameters 

of birds running on a treadmill and birds running outside on a natural 

substrate, to investigate to what extent running in a more natural 

environment coincide with the artificial conditions of treadmill-running. 

2. Validate the use of indirect calorimetry as a method of measuring energy 

expenditure in running birds by investigating their blood gas chemistry and 

blood plasma lactate levels at different speeds, to conclude to what extent 

the birds work aerobically. 
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II: Materials and Methods 

 

Biomechanics of locomotion 

 

Animals 

 

10 individuals – 6 females and 4 males, all juveniles that were hatched and raised in 

captivity at the animal research facilities of the Department of Arctic and Marine 

Biology, University of Tromsø (69°, 46’N) (mean body mass  s.e. = 0.465  0.015 kg 

(females), = 0.556  0.024 kg (males))– were used for the outside running trials. The 

trials were carried out in August and December of 2010, and the birds were yearlings 

hatched during the summer of 2010. Between experiments, all birds were housed in 

double outdoor cages (2x90x90cm) at the animal research facility, where they were 

exposed to natural climate conditions and light cycles at Tromsø, with ad libitum 

access to high quality feed (Prydfugl Rype Komplett, TKM αNO00000324 C) and 

water or snow.  

All use of animals had been approved by the Norwegian National Animal Research 

Authority (approval no. 2636). 

 

Running 

 

Birds were run several times back and forth in a running tunnel on a grass field 

outside the animal facility, in order to study running biomechanics on a natural 

substrate. The tunnel measured 6.0 m length/0.5 m height/0.5 m width and 

consisted of wood and netting that allowed visual inspection. One end of the tunnel 

was closed, while the other was open, making catching easier and motivating the 

birds to run in that direction. The back of the mid-section was lined with marks every 

20cm, as a scale for later data analysis.  A camera (Sony Handycam HDR-SR12E, 

SONY Japan) was placed away from the tunnel in lateral view, zooming in to fit the 

entire middle section with the markers. To make the birds run, a broomstick was 

used to tap the side of the cages, provoking the running. As they ran, the camera 
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took high-speed footage of each run. Each bird was allowed to rest 5 minutes prior 

to running, and ran continuously for no more than 30 minutes, or until at least 15-20 

acceptable runs at various speeds determined/chosen by the birds, were filmed. 

Acceptable films were defined as trials where the birds ran in the middle of the 

runway, and contained at least 3 continuous stride cycles, one stride cycle being foot 

on ground-foot off ground-foot on ground.  

All experiments were conducted at the same time of day, for a total period of 8 

hours a day for two-three weeks, in summer (August/September) and winter 

(December). In addition to run on level ground the birds were allowed to run on 

inclines. 

 

Tracker analysis 

 

Videos of acceptable running trials were converted from a Sony .mte format to 

Quickplayer .mov files, and analysed using TRACKER software v. 4.0 (Open Source 

Physics, Cabrillo, CA, USA) by tracking the foot nearest the camera over a minimum 

of 3 continuous strides (fig. 5). Stride frequency, stride length, swing and stance 

time, duty factor and average speed were the parameters calculated. 
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Figure 5: Screencapture of video analysis using Tracker software v. 4.0 (Open Source Physics, Cabrillo, 

CA, USA). The blue marker in the back adjusts analysis to the actual measurements taken (in this case, 

20 cm between each bar). Markers were placed on the foot nearest to the camera (red dots) when 

foot was on ground, and at foot take-off, then touch down again. One stride consists of “foot on-foot 

off-foot on”, and this was done for a minimum of 3 strides. Additionally, a marker was placed on the 

birds beak at the first and last foot on, to calculate the distance and time run, thus calculating average 

speed.  

 

Stride frequency is the number of strides taken by the bird over a certain time period 

measured in Hz. In this case the number of strides taken by the bird during the time 

spent running from the analysis started to it ended. 

Stride length is the distance between two successive placements of the same foot, 

consisting of two step lengths. 

Swing time is measured as the time used by the foot in the air during each stride. 

Likewise, stance time is the time used by this foot on ground during each stride. 

Together swing and stance time make up the period of one stride. 

Duty factor was calculated as the fraction of one stride cycle where the foot is on the 

ground. 

Lastly, running speed was calculated by dividing the distance (x) ran by the bird, by 

the time (t) used to run this distance. 

 

Blood chemistry analysis 

 

Animals 

 

Indoor treadmill trials were conducted according to the same exact protocol as 

employed in Lees et al., 2010, for energetic study, and using the very same birds, all 

males, (9 birds in winter (mean body mass  s.e. = 0.615  0.1042 kg), and 8 birds in 

summer (mean body mass  s.e. = 0.703  0.0629 kg)). These individuals were kept 

in cages inside the department (90x90cm), under controlled thermoneutral 

conditions [28] and simulated light cycles of Tromsø (69°46’N) for summer and 

winter birds. The birds had ad libitum access to (Prydfugl Rype Komplett, TKM 

αNO00000324 C) and water. 
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Blood sampling and blood gas analysis 

 

The birds were run on a treadmill (Bremshey Trail Sport, Finland) at various speeds in 

winter (0, 0.8, 2.7, 3.3 and 4.5 km/h)/(0, 0.22, 0.75, 0.92 and 1.25 m/s-1) and summer 

(0, 1.8, 4.5 and 6.8 km/h)/(0, 0.5, 1.25 and 1.89 m/s-1) for 5 minutes, each bird 

running only at one speed per day. Animals were collected individually for their 

respective trials, straight from the cage and immediately placed in a Perspex® 

chamber (30 x 26 x 61.7cm) placed on the treadmill edges, through which air was 

pulled at a fixed flow rate of ~52 l min-1, by use of a vacuum pump. The birds were 

left to rest for initially 5 minutes before the running or control (0 km/h), to allow 

them to settle after the initial handling [1]. Then the birds ran (or rested as in case of 

the control run at 0 km/h) for 5 min. 

After each run or control, the birds were immediately secured by wrapping them in a 

blanket with either their right or left wing exposed, and a blood sample was taken 

from the exposed branchial vein in one of the two wings within 1-3 min of end of 

running, using a 1ml heparinized syringe. The blood was then promptly (within max. 

15 sec of sampling), injected into a blood analyzing machine (Radiometer ABL 700 

(Bergmann Diagnostika AS, Oslo, Norway)) for analysis of plasma O2-tension (pO2), 

plasma pCO2-tension (pCO2), hematocrit (Hct) and pH. The analyzer was calibrated as 

per usual protocol (Radiometer ABL 700 User Manual) prior to analysis and running 

of the birds. Care was taken to prevent blood from coming into contact with air. The 

remaining blood was transferred to Eppendorff tubes and then on ice for up to 2 

hours, sentrifuged and plasma was extracted, to be frozen at -78 degrees for later 

lactate assay. 

 

Lactate analysis 

 

Analyses were carried out using a lactate assay kit (BioVision, Inc.; Mountain View, 

CA, USA) 18 (winter) and 10 (summer) months after sampling. A standard curve was 

made using lactate standard, and the plasma was then thawed and used to prepare 

the lactate samples as per standard protocol (BioVision). After a 30 minute 
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incubation at room temperature, the samples were measured 

spectrophotometrically at a wavelength of 570nm in a colorimetric assay using 

SpectraMax® PLUS384 (Molecular Devices, Sunnyvale, CA, USA) and sample 

readings were applied to the standard curve, to give the amount of lactate in each of 

the samples. Lactate concentration (mM/l) in each of the samples were plotted 

against their respective collection speeds. The amount of plasma only allowed for 

duplicates to be tested. 

 

 

Data analysis 

 

The data from the kinematics trials included 10 birds, 6 females and 4 males, which 

each gave a different amount of runs each. Because of this uneven amount of trials 

per individual, a linear mixed model approach was used with a p-value of 0.05 (95% 

confidence level) set as threshold. Since the term individual*speed was found 

insignificant, and thus showed no signs of pseudoreplication, we ran an analysis of 

covariance (ANCOVA) for the samples. We then checked if the interaction term 

gender*speed was significant, and since the interaction term was found insignificant, 

we removed it and the ANCOVA was re-run without it. 

Lactate and blood gas data were displayed as mean + s.d. 

Test for statistical analysis were conducted using SPSS v.19.0 (SPSS inc, Chicago, IL, 

USA), while plots were made using Sigmaplot v.12 (Systat Software Inc., Chicago, IL, 

USA). 
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III: Results 

 

Biomechanics 

 

Although experiments were carried out both during summer and winter, the winter 

trials yielded no usable data material as the birds would not run steadily enough, or 

even at all even though provoked to do so. Likewise, running on inclines proved to 

be impossible, as the birds either stayed put when provoked or started taking off. 

Our data is solely based on the data from the summer trials and it is this data I have 

compared to the treadmill studies by Nudds et al. [2]. 

The same kinematic parametres (stride frequency, stride length, duty factor, swing 

time and stance time) that were quantified in the initial study [2] were measured 

while the birds ran overground. 

 

Figure 6: Stride frequency (SF) plotted against running speed (U) for males (open circles) and females 

(filled circles). The regression line fitted through the data is derived from the linear regression output, 

and is SF = 1.54 + 1.23U (n = 389, r
2
= 0.840, p < 0.0001) 
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Stride frequency displayed an expected and typical linear relationship with running 

speed (U) (fig. 6). The regression line was described by SF = 1.54 + 1.23U (n = 389, r2= 

0.840, p < 0.0001) for both genders pooled together. There were no obvious gender 

differences, although statistics comparison showed that gender was an important 

factor describing stride frequency when plotted against U (F397,2 = 24.88, p = 0.0001). 

Their respective regression lines were given by SFF = 1.59 + 1.21U (n = 240, r2= 0.850, 

p < 0.0001) and SFM = 1.46 + 1.24U (n = 149, r2= 0.826, p < 0.0001). 

 

Figure 7: Stride length (SL) plotted against running speed (U) for males (open circles) and females 

(filled circles). The regression line fitted through the data is derived from the linear regression output, 

and is SL = 0.20 + 0.16U (n = 389, r
2
= 0.831, p < 0.0001). 

 

Also, stride length (SL) showed a close linear relationship with U, with SL = 0.20 + 

0.16U (n = 389, r2= 0.831, p < 0.0001, (fig. 7). Again, the increase in SL with increasing 

U were different for the genders (F397,2= 32.91, p = 0.0001). Their respective 

regression lines were given by SFF = 0.20 + 0.16U (n = 240, r2= 0.858, p < 0.0001) and 

SFM = 0.22 + 0.16U (n = 149, r2= 0.788, p < 0.0001). 
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Figure 8: Duty factor (DF) plotted against running speed (U) for males (open circles) and females 

(filled circles). The regression line fitted through the data is derived from the linear regression output, 

and is DF = 0.55 – 0.17U (n = 389, r
2
= 0.470, p < 0.0001). 

 

Duty factor (DF) was inversely related to U (fig. 8), as expected, described by the 

equation DF = 0.55 – 0.17U (n = 389, r2= 0.470, p < 0.0001). There were no significant 

differences between genders in the relationship between DF and U  (F397,2= 0.465, p 

= 0.496). 
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Figure 9: Swing time (tswing) plotted against running speed (U) for males (open circles) and females 

(filled circles). The regression line fitted through the data is derived from the nonlinear regression 

output, and is tswing  = 0.25 – 0.03U (n = 389, r
2
= 0.185, p < 0.0001). 

 

In accordance with previous studies and that of the treadmill, swing time (tswing) did 

not change much during the various speeds and remained around 0.2-0.25 s (fig. 9). 

The relation is described by the equation tswing  = 0.25 – 0.03U (n = 389, r2= 0.185, p < 

0.0001). There were significant differences between genders in the relationship 

between tswing  and U (F397,2= 6.698, p = 0.010). Their respective regression lines were 

given by SFF = 0.25 – 0.03U (n = 240, r2= 0.156, p < 0.0001) and SFM = 0.26 – 0.03U (n 

= 149, r2= 0.250, p < 0.0001). 
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Figure 10: Stance time (tstance) plotted against running speed (U) for males (open circles) and females 

(filled circles). The regression line fitted through the data is derived from the nonlinear regression 

output, and is tstance = 0.41e
-1.07U 

(n = 389, r
2
= 0.721, p < 0.0001). 

 

Stance time (tstance) decreased with running speed (fig. 10), as shown by the equation 

tstance = 0.41e-1.07U (n = 389, r2= 0.721, p < 0.0001). There were no significant 

differences in the relationship between tstance and U (F397,2= 2.973, p = 0.085). 
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Blood gases and lactate 

 

Figure 11: Plasma venous O2 tension (pO2) (a) and plasma venous CO2 tension (pCO2) (b) in mmHg 

plotted against speed (U). Open circles display results for summer and filled circles display results for 
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winter. Data points are displayed as means ± s.d. Numbers in parantheses indicate number of 

individuals used (n). 
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Figure 12: Blood venous pH values plotted against speed (U). The open circles display summer data 

while filled circles display winter data. Data points are displayed as means  ± s.d. Numbers in 

parantheses indicate number of individuals used (n). 

 

From figure 11 (a) one can see that pO2 showed a somewhat stable course with 

increasing speed, both during winter and summer. At the same time, there was a 

tendency for pCO2 to decrease with increasing speed during both seasons (fig. 11, b), 

while pH tended to increase (fig. 12). 
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Figure 13: Plasma venous lactate levels (mM) plotted against speed (U). Open circles display winter 

data, while filled circles display summer data. Data points are displayed in mean ± s.d. Numbers in 

parantheses indicate number of individuals used (n). 

 

Mean plasma lactate levels remained between 1 and 2mM for all speeds used (fig. 

13), both during winter and summer trials.  
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IV: Discussion 

 

Biomechanics 

 

In order to better visualize the comparison between my studies and that of Nudds et 

al. [2], I have made a combine plot of their and mine regression lines for all the 

kinematic parameters (fig. 14). Note that in these regression plots we have used 

both females (n=6) and males (n=4), while their study used only males (n=6) [2], 

since I either found that differences between genders were non-significant, or in 

those cases where a significant gender effect was observed (stride frequency, stride 

length and swing time), this was very small (see figs. 6, 7 and 9). 
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Figure 14: Comparison regression lines between my studies (solid lines) and those of Nudds et al. 

(2011) (dotted lines) for stride frequency (a), stride length (b) and duty factor (c), swing time (d) and 

stance time (e), plotted against speed (U) – within the range of speeds that were represented in both 

studies. 

 

Comparing the present study’s results with those of Nudds et al. [2], we can see 

more or less the same qualitative trends for all parameters.  

There are, however, differences in values, and in particular for duty factor (fig. 14, c) 

and stance time (fig. 14, e). Thus, while Nudds’ values for duty factor were in consent 

a) b) 

c) 
d) 

e) 
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with other studies from running birds on treadmill [22], my data displayed much 

lower values. For most part, DF of birds running overground were well below the 0.5 

value at which gait changes into aerial running [25], and this for all speeds – even 

walking speeds. They imply the birds had little ground contact throughout the 

various gait regimes in my study. It should be noted that these two parametres are 

related, since low stance times will naturally give a lower duty factor as seen by the 

mathematical relationship  

 

DF = stance time/ (stance time + swing time) 

 

Conclusion from this study was that it was difficult to judge at what speeds gait 

changes occured, between walking and grounded running, and between grounded 

running and aerial running since DF values (which are typically used to differentiate 

between gaits) were always < 0.5, implying aerial running. Based on DF from the 

treadmill study, the transitional speeds for walking/grounded and grounded/aerial 

were judged to be at 0.75-1.0 and 1.5-1.67 m s-1, respectively [2]. Judging from our 

duty factor values, the birds running on grass were aerial way before the 1.5 m s-1-

mark, which seems very unlikely judging from previous studies. Explaining why the 

foot contact with the ground is so short, we tried to look into the running pattern of 

the birds when they run outside versus them running on a treadmill. Such inspection 

showed that the legs seemed to be lifted higher when the birds were 

walking/running outside, probably due to a less flat terrain and vegetation obstacles 

compared to on the level treadmill. This would cause the foot to spend more time in 

the air for a given stride cycle, i.e. aerial, than it would on the treadmill, which 

implies that locomotion on terrain gives other biomechanics than on the treadmill.  

It has been suggested that the need for stability, in other words being able to 

maintain the same kinematics while locomoting in uneven terrain, require animals to 

adjust limb parametres as necessary to avoid stumbling or falling and return the 

system to a steady periodic motion [29]. In humans, this can be done by adjusting leg 

stiffness [30, 31] and leg contact angle [32], thereby maintaining similar COM 

motions over surfaces of varying compliance. 
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Another possible theory may be the effects of the treadmill itself, and the friction 

created between the foot and the substrate. The moving band of the treadmill might 

leave the foot on the moving belt as it moves, thereby actively elongating the stance 

time by causing the foot to stay in contact with the band for a longer period of time. 

Outside, in the grassy terrain, we don’t have this effect, and the foot leaves the 

ground earlier. A moving band might also cause the foot to make contact with the 

substrate earlier than on natural ground, also increasing the duration of foot contact 

with the substrate. This all leads to the foot spending a substantial longer time of the 

stride cycle on the band, leading to a higher stance time and thus a larger duty 

factor. Indeed, in one study comparing overground and treadmill running in humans, 

it was found that the runners tended to stretch out the lead leg and let the support 

foot move with the belt backwards, leading to an increased time of support and thus 

a longer stance time [33]. Although these findings were seen in human subjects, 

both birds and humans locomote bipedally and there would be no reason they 

should differ too much in this aspect. 

The active effect of the treadmill may also have an impact on stride length, as one 

would think such an elongation of the contact with the leg would produce a longer 

stride length on the treadmill. However, our results correlate very well with the 

treadmill results for stride length. 

Stride frequency is also very well correlated with the treadmill results, if not a little 

bit higher in our studies (fig. 14, a).  Usually larger birds like the ostrich and emu tend 

to increase stride frequency as a mean of achieving greater speed, more so than 

smaller birds like the quail and kiwi, which increase speed mainly by increasing stride 

length relative to their size [23]. These differences have also been found to be 

related to posture, where a more upright posture, like that of the ostrich, leads to 

shorter strides than the more “horizontal”, crouched posture of the quail [34]. The 

Svalbard ptarmigan utilizes a more upright posture and judging from the videos of 

the birds running on the treadmill and those of them running outside on the grass, it 

seems like they run more upright in the latter case than on the treadmill (fig. 15). 
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Figure 15: Screenshots of ptarmigan running on (a) treadmill and (b) grass.  

 

One reason for this might, again, come from the need for stability when moving 

around. The Svalbard ptarmigan’s natural habitat consists of uneven and partly rocky 

terrain, both summer and winter, with the latter season adding the problem of snow 

and slippery ice. Birds, like the Svalbard ptarmigan, possess several interesting 

mechanical features in their locomotor system (fig. 16). They have a lower center of 

gravity due to the fact that their COM is located under the hip near the knee, and 

this should confer a higher level of stability [35]. 

a) 

b) 
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Figure 16: (Side view) X-ray image of quail with lead balls to mark vertebral column anterior point 
(VCa), vertebral column posterior point (VCp), hip joint (H), knee joint (K), ankle joint (A), foot joint 
(F), toe tip (T), head point (Hd), and sternum keel point (StK). The center of mass is located 
approximately between the knees. Lead balls were stuck along one leg only to avoid confusion during 
the coordinate-extraction process. Coordinate frame is fixed to the hip joint. X0 is in the direction of 
motion.  Z0 is the vertical axis. (from Hugel et al. 2011.) 

 

Another point where treadmill studies may deviate from overground studies is in the 

intrastride variations observed on the treadmill caused by energy transfer between 

the runner and the treadmill [36]. This happens because the vertical component of 

the  ground reaction force (GRF) increases friction between the belt and the 

supporting surface, resisting sliding movements, while the horizontal component of 

the GRF opposes the movement of the belt during the terminal stance. The force and 

the horizontal velocity emounts to mechanical power, in essence the rate of energy 

transfer between the runner and the treadmill, and all this is caused by speed 

variations between different treadmills, and it may very well contribute to the many 

conflicting results seen in the studies between treadmill and overground running 

biomechanics. 

Errors in judging the time when the foot is on or off the ground during analyzing - 

mainly putting on the foot markers - poses yet another problem that may account 

for the conflicting results seen. If there is a delay in the prediction of foot-on/-off, 
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one might overestimate the stance phase, and the opposite happens when one is 

too quick [36]. This may very well be the case in my study, were the birds ran in the 

grass, which may have impaired detailed visibility when analyzing movies. 

The accomodation to running, both on the treadmill and overground, may have yet 

an effect of the differences. In my study and those of Lees et al. [1], birds were 

trained to run for weeks prior to the experiments on the treadmill.  As I ran my 

bloodsampling experiments right after they ended their experiments, the birds was 

well accustomed to run on the treadmill. For the birds running overground they 

were trained for a few days prior to filming, mostly to see which individuals could be 

used for the trials. These birds were also used for treadmill experiments indoors just 

prior to the outside experiments [2]. It has been experienced that trained runners 

may adjust better to the mechanical differences in surface between treadmill and 

running overground, than novice runners, indicating that training and experience 

most likely can influence results [36]. 

Running stability in uneven terrain is another plausible explanation to the 

differences between the treadmill and overground running. Stability is defined as the 

system’s ability to reduce a deviation in the COM trajectory caused by onetime 

perturbation [37]. Unlike humans, birds do not adjust leg stiffness to accomodate for 

varying substrates [22]. Adjusting leg stiffness reduces the perturbations 

experienced by the runner when changing underlayers, and is most caused by 

inherent properties of the animals muscoskeletal system [30]. This means the runner 

can maintain similar running kinematics (i.e. same SF, stance time etc.) despite the 

difference in forward speed. If not adjusted, the ground contact time and 

displacement of COM will increase as surface stiffness decreases. As stated, birds 

cannot use this strategy for coping with surfaces of different properties and heights. 

Instead, they utilize a crouched leg posture both able of shortening and lengthening, 

providing a greater robustness for changes in terrain height, like that typically 

experienced by the Svalbard ptarmigan in its natural environment.  

This is done by lengthening the leg before foot touchdown, thus coping with a large 

amount of distrurbances [37], for example as demonstrated by bird in fig. 15 (b. 

Also, by running upright, the Svalbard ptarmigan aligns its sternal mass, which is 

significantly increased during winter due to fat accumulation, with their COM, and 
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this may improve their mechanical advantage. The findings of a more upright 

posture were also seen on the treadmill during the winter experiments when the 

birds were at their fattest [1]. The birds, although at this time they weren’t able to 

reach the aerial phase of running, were found to overall locomote more 

economically per unit body mass during winter than summer, despite being twice as 

heavy. The theory of posture influencing the mechanics of running were found as the 

most plausible argument that the birds could carry this excess weight as 

economically as they did [1]. 

 

Blood gases and lactate 

 

From the results we got from the blood gas sampling (fig. 11 and 12) and lactate (fig. 

13), there was nothing to indicate that the birds were relying on anaerobic 

metabolism during the range of speeds tested (the same speeds used during the 

calorimetry experiments by Lees et al., [1].  

Lactate levels, which were probably the most interesting factor in this respect, were 

all under 2 mM, with the exception of a few outliers, and showed no clear relation to 

speed. Higher intensity of mechanical work will increase the production of lactic 

acid, causing its concentration in the blood to rise, and the animal will rely on 

anaerobic metabolism. The anaerobic threshold is the body’s inability to rid itself of 

excess lactic acid that has accumulated in the blood, and a threshold of 4mM is set 

as a typical approximate for aerobic capacity [38]. Thus, my data indicate that the 

birds were relying on aerobic metabolism throughout [26]. On this basis it is 

concluded that the use of indirect calorimetry was appropriate for the range of 

speeds employed by Lees et al. [1]. The declining levels of pCO2 (fig. 11) with 

increasing speed, accompanied by an increase in pH (fig. 12) might indicate that the 

birds effectively are getting rid of more CO2 in the expired air as they run faster, and 

that this may be tuned to increase with increased activity. Indeed, birds have a very 

effective respiratory system to begin with more so than mammals [39], and this 

supports the theory that locomotion and respiration may be coupled in order to 

reduce energy expenditure [40]. Getting rid of excess pCO2 will also lower the acidity 



31 
 

and thus the pH effects of possible increases in lactate concentration, which may be 

one beneficial consequence of the observed speed-related changes in both pCO2 and 

pH.  
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V: Conclusion 

 

The results of my study imply that there is indeed a difference in locomotor 

mechanics between treadmill and overground running in these birds. Running 

outside on a natural substrate gives data that would represent a more natural 

situation for studying locomotion, as opposed to the artificial environment of the 

treadmill. This concern DF and stance time in particular, which were significantly 

lower overground than on the treadmill. This does not mean that the results of the 

treadmill experiments on Svalbard ptarmigan, on which my study was based, are 

non-valid, since they revealed between-season, between-gender and between-age 

class results that presumably apply both in the “treadmill” and the natural situation. 

Use of treadmill is not an ideal way of studying natural locomotion in the Svalbard 

ptarmigan, which underlines that supplementary field experiments are required to 

fully understand the locomotion energetics and biomechanics of these birds. 

Nevertheless the treadmill remains an important tool to study locomotion energetics 

and biomechanics due to the close control of exercise conditions that it offers, but 

its limitations, such as those revealed in the present study, must be appreciated! 
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