
MModel-Driven Software
Development for Continuity of
Care Information Systems
Toolchain design and evaluation

Ståle Walderhaug

I

As more people receive care services in their homes, the importance of information
systems supporting continuity of care increases. To develop such information
systems, major interoperability issues must be addressed with agreement on domain
standards and technical platforms. Lately, service oriented architectures have become
a popular technical solution for sharing information and services between systems in
healthcare. However, the reuse of domain software service is limited and the
standardization processes have just started.

Using models for designing software is best practice in software engineering, but few
developers are utilizing the models for code generation with model-driven
development tools. The key benefits claimed for model-driven development clearly
fits the challenges of developing reusable software service in healthcare.
Nevertheless, the scientific knowledge on how to utilize model-driven development
for creating standardized and reusable software in healthcare is scarce. Which
features of model-driven development are useful? Should tools be adapted to the
healthcare domain? Which type of software services can be reused? These are
questions being addressed in this thesis.

This thesis summarizes six years of design, development and evaluation of a model-
driven development toolchain and design of software services for continuity of care.
The overall research method has been design science, with a strong focus on creating
and evaluating the core artefact: the ModelHealth Toolchain. Three iterations with
toolchain design and assessments were deemed necessary to be able to draw valid
conclusions about tool design and development mechanisms.

A significant part of the work was carried out within the European research project
MPOWER. This allowed for both toolchain evaluations with professional developers,
and reference implementation of the identified software services. The services were
used as a foundation for development of two pilot systems that were evaluated with
end users.

Based on the contributions from ten papers, a total of eight findings connected to the
three research questions have been identified. To summarize, the research has shown
that model-driven development can aid developers in creating healthcare software
services, given that the modelling tool fulfills some important requirements. The tool
should be easy to use, provide project structure and process assistance, and support
core traceability services such as navigation and coverage analysis.

The ModelHealth Toolchain also successfully demonstrated incorporation of domain
knowledge such as continuity of care concepts from an international standard through
UML Profiles. The presentation of this domain knowledge must be carefully designed
so that it allows for easy and correct use by the developers.

The overall contributions of this thesis are

• A set of reusable software service designs for continuity of care, provided as
open source

 II

• The ModelHealth toolchain supporting model-driven development of
continuity of care web services, including reusable model elements and UML
Profiles

• A set of recommendations on how to tailor a model-driven development
toolchain for domain such as continuity of care.

A final important contribution is the comprehensive documentation of a complete
design science research project, where all the three research cycles are involved. This
increases the body of literature on design science research in software engineering.

 III

My first project at SINTEF was in the field of healthcare informatics. In the EU-
project TelemediCare (1999-2002) we developed a novel system for home monitoring
of children with chronic diseases. We spent significant resources on developing cross-
platform software and integrating with wireless sensors and dial-up networking. In the
end we managed to reach a state where the system could be evaluated with the SABH
unit at the Karolinska hospital in Stockholm, Sweden. We concluded that even though
the system was well received by the stakeholders involved, we needed a major
refinement.

In 2002-2006 I was the project manager for a collaboration project between the
Norwegian Military’s Joint Medical Services and the US Army Telemedicine and
Advanced Technology Research Center (TATRC). In the project we developed a
PDA and tablet based system for patient tracking and medical treatment
documentation and sharing. The goal was to replace the paper-based solution where
the documentation rarely made it to the patient’s medical record, and to facilitate the
maintenance of the soliders’ “complete longitudinal” medical record.

In the project, I worked closely with the people at the medical battalion in Norway as
well as TATRC. They were quite enthusiastic about our solution for information flow
in the “Medical Evacuation Chain”, and in December 2002 we evaluated the system
at the military exercise “Cooperation” in northern Norway. The conditions could not
have been better – or worse. It was dark, rainy, icy, windy and noisy. The evaluation
was a success, so the system could be refined. Of course the system was not perfect
the first time, but the rather thorough evaluation gave us invaluable feedback. I guess
this is where I really learned that software system evaluation is way more complicated
and important than the impression you get when you learn about the classic waterfall
model at the university.

An important part of the work with the joint medical services was to represent
Norway in the NATO Telemedicine Expert Panel. During these meetings I presented
the results from our systems development and I learned that using UML diagrams was
a powerful tool for discussing concepts and solutions across disciplines – military,
medical and technical.

John Ivar Brevik, MD, was the head of military medical research in the Norwegian
Joint Medical Services, and a scholar. John Ivar and his colleague Major/MD Terje
Sagen had a principle about “one soldier – one medical record”, and together they had
led the implementation and deployment of the Norwegian Military EHR (called
SANDOK) that was unique in NATO at the time. It was also during long discussions
with John Ivar that I decided (at a restaurant in Tampa, Florida, April 2004) to start
my doctoral education. The research topics we identified were continuity of care and
domain specific model driven software development. My boss at SINTEF gave me
permission to move to Tromsø to cooperate with the medical battalion, and connect
with the telemedicine people at the University of Tromsø and Norwegian Centre for
Telemedicine.

 IV

Unfortunately, in 2005 the research funding for John Ivar’s office were reduced to
zero. Ironically, the reason for killing the research funding was a (yet another)
software integration project that failed.

Almost one year later (October 2006), after working intensively with model-driven
traceability in the ModelWare EU-project, SINTEF started the MPOWER project
where I became the technical manager and work package leader for architecture and
development approach. The main objective of the project was to create model-driven
development approach and a SOA-based middleware platform for homecare. My boss
and I agreed that I could revitalize my doctoral studies, and in March 2007 I was
enrolled as a PhD student at computer science department at the university of Tromsø.

My roles as technical manager and leader of architecture and development approach
were quite challenging but also gave me the opportunity to test concepts and
implement solutions that normally would have been too resource demanding for a
doctoral project. Being responsible for the system architecture and designs, I was
involved in intense and fruitful discussions, with highly skilled computer scientists
and programmers in Croatia, Austria, Cyprus and Spain. It was really motivating to
work with the people in the MPOWER project.

I must also include that having Marius Mikalsen, a very good friend, colleague and
researcher as the project manager of MPOWER, made it possible and inspired me to
keep the focus on research during the project’s lifetime. Marius and I share the same
view on systems development and evaluation, and we’ve had numerous discussions
on evaluation methods and design science.

The evaluation of the SOA-based care systems in Norway and Poland were led by
Torhild Holthe at the Norwegian Center for Aging and Health, and Dariusz Duplaga,
MD at the Jagiellonian University Medical College in Krakow, Poland. In the 1-year
trial period for the Norwegian system, I had almost daily conversations with Torhild
about deployment, technical challenges and user evaluations. I also accompanied a
visiting nurse at a visit to the most active participant (a 82 year old lady) in
Trondheim, Norway. When I saw how positive influence our “simple” system was on
the activities of daily living for the old lady, I could for the first time in my work as
researcher clearly see the relevance of my research efforts. Almost a year later I was
in Lubomierz, Poland spending one week installing and testing the sensor-centric
SOA system in a nursing home for elderly. This was another strong experience for a
computer science researcher, where it once again became clear to me that
participations in evaluations in realistic environments should be a mandatory activity
for all healthcare software system developers.

The design and development of the reusable software services and the development
toolchain is well documented in the papers included in the thesis. Moreover, it should
be emphasized that a key factor contributing to the toolchain development was the
access to students at the computer science department at the university in Tromsø. In
parallel with the MPOWER project, I got the opportunity to carry out evaluations
with master students as part of their medical informatics and software engineering
courses. These evaluations were of utmost importance for the evolution of the
ModelHealth toolchain.

 V

In summary, I will say that the projects I’ve worked in, my roles in these projects, the
project partners, specific episodes in the project work, and people I’ve had the
pleasure to work with, have given me knowledge that I want to develop and share
with other students, researchers and stakeholders in the domain. This thesis presents a
complete design and evaluation process of a model-driven development toolchain for
the care domain. The toolchain is applied to web services design of reusable domain
software services that is further utilized by two pilot systems deployed to Norway and
Poland.

I hope that the research results, the development approach and the approach to
software service reuse will inspire you to join me in the work towards a more efficient
way to implement continuity of care.

 VI

This thesis is the result of not only reading papers, writing papers, project teamwork,
but also several factors outside my professional arena.

During this doctoral study period, I’ve gotten two fantastic and energetic boys with
the woman in my life – Ann-Katrine. I have no problems admitting that sleepless
nights, numerous ideas and unlimited creativity from my two boys, Adrian and
Benjamin, have challenged the work process. However, the same factors have given
me more energy and most of all, perspective on life. Ann-Katrine, you have put up
with a lot from my side in this period, but I’ve had your unlimited support at all times,
and many times you’ve assisted me in regaining focus on the correct objectives.
Without you I don’t think I could have done this.

Neither the work nor the thesis would have been completed if it were not for my good
friend and colleague Dr Erlend Stav. Erlend, your combination of excellent
architecture and design skills, programming skills and thoroughness, together with, to
my knowledge, unlimited patience, must be unique. When I contact you for advice or
guidance, I will get a highly qualified and nuanced answer, before I expect it. This is,
and has been of utmost importance.

During the PhD project, we have established a highly competent research group for
healthcare informatics at SINTEF ICT. Led by Marius Mikalsen, the group with Dr
Erlend Stav, Dr Babak Farshchian, Dr Anders Kofod-Petersen and myself has
developed a significant portfolio of research projects in healthcare informatics
domain. We’ve had important discussions and I’ve gotten strict review on my work. It
is a pleasure to work with you. I also strongly appreciate the flexibility and trust from
my research director at SINTEF, Eldfrid Øfsti Øvstedal. In a rather complicated
project and funding situation you have organized project staffing and resources so that
I could complete my studies.

The work on the ModelHealth toolchain could not have been done without the support
from the University of Tromsø. I wish to thank Professor Gunnar Hartvigsen for
supervision and facilitating my work with students at the university. I will also
express my appreciation to Dr Johan Gustav Bellika at the Computer Science
Department for interesting discussions and cooperation on student project
assignments. Being a part of the eHealth PhD student environment in Tromsø has
inspired me to work hard.

I guess I’ve always been focused and worked hard to reach my goals. A great
acknowledgement goes to my parents who have given me all opportunities to develop
my skills and follow my desires. You have supported me during sports and in all
phases in my life and I’m forever grateful for the foundation you have provided. I’ve
always known that you are proud of me, regardless of my achievements.

I’m grateful for having so many nice people around me.

 VII

AAL Ambient Assistive Technology

CIM Computation Independent Model

FDA Food and Drug Administration

HL7 Health Level 7

ICT Information and Communication Technology

MDA Model Driven Architecture

MDD Model-Driven Development

MDE Model-Driven Engineering

PIM Platform Independent Model

PSM Platform Specific Model

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

WSDL Web Service Description Language

XML eXtensible Markup Language

 VIII

 IX

 X

 XI

 XII

 XIII

 XIV

XV

1

This chapter will introduce the challenges addressed from a care and a software
engineering perspective. A mode detailed presentation is provided in chapter Chapter
2.

The European countries are facing a great challenge in dealing with a steadily aging
population. The 2009 Aging Report projects for 2060 that “Population structures
become increasingly dominated by old people rather than young” (European
Commision 2009). In the period until 2060, it is projected that the working
population (age 15-64) will drop by 15 per cent within the EU (starting from 2010),
and the number of elderly aged 65 or more will double. The total population will only
have a slight increase. Despite a trend of increasing employment rate of women, there
will be a shortage of labor to provide care for the elderly.

To maintain the same care service level as of today, there is a need for new care
concepts. Assistive services and new innovative information and communication
technologies are gradually becoming commercially available, opening for new care
concepts that may support elderly and people with cognitive impairments and
dementia in living independently at home. To be able to provide optimum care and
management of the users, timely access to updated and complete information is
essential. Herein lies the problem of providing “continuity of care”.

The EU’s IST programme glossary defines continuity of care to be:

“The co-ordination of care received by a patient over time and across multiple health-
care providers.“1

Haggerty et al provide a more extensive definition. They define three types of
continuity of care: informational, management and relational (Haggerty et al. 2003).
The two first are the most relevant for the scope of this thesis, and are defined as:

1 IST Glossary, available online at:
http://www.cordis.lu/ist/ka1/administrations/publications/glossary.htm

Introduction

 2

• Informational continuity—The use of information on past events and personal
circumstances to make current care appropriate for each individual

• Management continuity—A consistent and coherent approach to the
management of a health condition that is responsive to a patient's changing
needs

Informational and management continuity are major concerns for systems supporting
care coordination and independent living. New technology can empower people with
age related disabilities to stay active and avoid institutionalization, hence improving
quality of life for the elderly and reducing resource demands from health and social
care services. Independent living has been investigated in the BRAID (Bridging
Research in Ageing and ICT Development) project saying, “independent living is
characterised as being dependent on a safe, secure and suitable environment. A wide
range of assistive technologies has been identifiedin this area including: assistive
home-based technologies, living status monitoring, agenda manager, mobility aids
(including driving), companion robots and well-designed human-machine interfaces
that facilitate the use of technologies in general.” (BRAID Project 2012)

From a technological perspective, developing assistive services and information
systems that support independent living should focus on standardization and
interoperability - compulsory requirements but also a challenge for the developers.
System developers must implement a set of agreed standards so that the system can
exchange information and reuse services from other systems. Interoperability remains
one of the biggest challenges in healthcare information systems development.
(European Commision 2008; Grimson et al. 2000; Brailer 2005). Coping with this
challenge is a costly process, but the potential savings and improved quality are high.
Walker estimated that in US alone, a fully interoperable health information systems
would save nearly 80BN$ (Walker et al. 2005).

An important activity on dealing with interoperability is the development of
information and communication standards for health-related information. Standards
development organizations (SDOs) such as CEN TC251, CONTINUA Alliance, HL7,
ISO, OMG and OpenEHR work hard on providing standards that can assist in the
development of interoperable systems. With only a few exceptions, these standards
are provided to the developers as documents that must be read and interpreted as a
part of the development process. The Integrating Healthcare Enterprise (IHE) provide
“interpretation documents” through their “IHE Profiles” that assist developers in
making the correct decisions. To further verify “correct” interpretations of the
standard specification documents, events such as the IHE Connectathon2 and the
Continua Plugfest 3 are organized annually. Here developers can test their
implementation against other systems and solve integration issues. Other solutions
that verify correct interpretations of standards include XML message checking
through online test services. XML based documents such as those based on HL7 CDA

2 IHE Connectathon homepage: http://www.ihe.net/Connectathon/index.cfm

3 Continua Alliance plugfest homepage: http://plugfest.continuaalliance.org/

Background for the research

 3

can become complex, and extensive testing is required to ensure full interoperability
between the systems.

Developing large software systems such as a healthcare information system is a
complex process. Especially when the system needs to integrate with an existing and
often multiplatform, multi-standard and proprietary infrastructure. Adding a diverse
set of stakeholders to this picture, as is the case for healthcare, makes the
development process even more exposed for delays and overspendings.

In 1968 (Naur,Randell 1968), software engineers started talking about “software
crisis”. Since then, several reports have been published on how software projects run
over time, run over budget, do not meet the requirements and even fails to deliver at
all, e.g., the Standish CHAOS report (Standish Group International 1994). Boehm
summarizes the history of software engineering and presents a view of 20th and 21st
century software engineering in (Boehm 2006) and illustrates the core trends in a
block diagram along a timeline. From the SAGE methods for hardware engineering in
the 1950’s through the “code-and-fix” period in the 1960’s, the waterfall process is
the main focus in the 1970’s. The 1980s are dominated by 4GL and object-oriented
methods, whereas domain-specific architectures and enterprise architectures are
introduced 1990’s. Finally, Boehm ends up with service-oriented architectures, agile
methods and model-driven development in 2000-2010. He foresees global
connectivity and massive systems of systems for 2010’s. The trends are influenced
and formed from the need to support evolvability, reusability, scalability, integration
and rapid change.

Reusability and scalability of software components and services across systems and
organizations has received much attention since the specification of the service-
oriented architecture (SOA) reference model (OASIS Open 2006). OASIS describes
SOA as “a paradigm for organizing and utilizing distributed capabilities that may be
under the control of different ownership domains.” Furthermore, they claim the
“value of SOA is that it provides a simple scalable paradigm for organizing large
networks of systems that require interoperability to realize the value inherent in the
individual components.” This value proposition fits the needs of healthcare
information systems perfectly, and many national and international strategic plans
have adopted SOA as the integration platform (Kawamoto,Lobach 2007; Nasjonal
IKT 2011) or as the technological foundation (European Commision 2011).

The main focus for relevant healthcare SDOs are not on reusable service
specifications, rather on information models, coding and message design. However,
initiatives such as the Health Level 7/Object Management Group (HL7/OMG)
Healthcare Service Specification Project (HSSP) project (HSSP Project 2007) seek to
find reusable services and implement them through a defined process. Their current
service projects include entity management, resource identification, common
terminology, decision support, and directory services for providers. These services
represent core services of a healthcare network backbone, but are not sufficient as
building blocks for full-scale information system.

Introduction

 4

The concept of providing a reusable set of “middleware” software service
specifications in healthcare is supported by ISO TC215 in the 12976 Health
Information Services Architecture (HISA) standard (ISO/TC215 2009). HISA is
divided into enterprise, information and computation viewpoints and provides an
abstract framework that assists developers in the design of information models and
service interfaces. The framework is at a high level and has not received much
attention from the domain system developer. Even though the standard specifies
naming conventions and information model concepts, there is to my knowledge no
tool support for applying it.

Rine and Nada did an empirical survey on software reuse where they found the
leading indicators of successful reuse capability to be “product-line approach,
architecture which standardizes interfaces and data formats, common software
architecture across the product-line, design for manufacturing approach, domain
engineering, management which understands reuse issues, software reuse advocate(s)
in senior management, state-of-the-art tools and methods, precedence of reusing high
level software artifacts such as requirements and design versus just code reuse, and
trace end-user requirements to the components that support them.” Their studies also
found that reuse of software decreased the level of development effort and time,
increased product quality and shortened time to market. (Rine,Nada 2000)

Investigations on reuse and SOA reveals that there are still many challenges in
achieving service reuse, primarily because of poor documentation of functionality,
quality and underlying requirements (Dan et al. 2008). So, despite the specification of
a SOA reference models and applicable protocols, the challenges of reusing software
components persist. In 1992, Krueger did a survey on software reuse trying to find out
why software reuse is difficult. One of his key findings, also addressing the
challenges described by Dan et al., is what he calls “cognitive distance” (Krueger
1992). This is the effort required to reuse software in a new development phase or in
another project. Krueger states that the ideal solution to reduce the cognitive distance
would be a technology that allows the software developer to:

“quickly be able to select, specialize, and integrate abstraction specifications that
satisfied a particular set of informal requirements, and the abstraction specifications
would be automatically translated into an executable system.” [ibid.]

The “technology” Krueger predicts could take the form of an integrated development
environment with domain support for reusing abstract specifications of domain
concepts.

In 1987, Fred Brooks wrote his paper “No Silver Bullet” where he stated: “I believe
the hard part of building software to be the specification, design, and testing of this
conceptual construct, not the labor of representing it and testing the fidelity of the
representation. We still make syntax errors, to be sure; but they are fuzz compared
with the conceptual errors in most systems. If this is true, building software will
always be hard. There is inherently no silver bullet.”(Brooks 1987)

“Abstract specifications” of underlying concepts, and the ability to create complete
“conceptual constructs” is maybe the main value of using modelling languages for

Background for the research

 5

software engineering. Model-driven development (MDD), has been around for many
years, though in the context of computer assisted software engineering (CASE) tools
in the early nineteen eighties (Iivari, 1996; Lundell and Lings, 2004; Sharma and Rai,
2000). Today, the majority of software development teams use some kind of
modelling language to design the software artefacts to be developed (Hutchinson et al.
2011). Most of these languages are related to the Unified Modeling Language (UML),
either as specializations or languages built on the same principles (ibid.).
Unfortunately, UML is not used in the way it was originally planned (Fowler 2003;
Hutchinson et al. 2011) – namely as a modelling language allowing software
developers to create abstract designs that can be used as input to the production of
executable code.

To facilitate more comprehensive use of UML to include model-driven development,
the Object Management Group (OMG) has defined the Model-Driven Architecture
(MDA) approach. However MDA or MDD in general, has not yet created the
paradigm shift in software engineering that many people hoped for. Iivari explains the
“failure” of CASE/MDD tools by looking at the high tool expectations and the
missing return of investment (Iivari 1996).

Unfortunately, MDD tools are still a part of the reason why MDD adoption is still
low. The immaturity of current MDD tools has been identified as a problem in several
empirical studies (Iivari 1996; MacDonald et al. 2005; Mohagheghi,Dehlen 2008;
Staron 2006). To deal the MDD tool problems, it is possible to combine several tool
components into a model-driven toolchain that that ultimately can provide required
functionality. Building a proper toolchain is a challenging task and Mohagheghi et al
conclude that there “is no tool chain at the moment and companies must integrate
several tools and perform adaptation themselves” (Mohagheghi et al. 2009b).

The promises of the MDA/MDD technology are highly desirable for most application
domains: “The three primary goals of MDA are portability, interoperability and
reusability through architectural separation of concerns” (Miller and Mukerji, 2003).
For MDD to be successful, it is eminent that the quality of the models being
developed is satisfactory in terms of the goal of modelling. Whereas UML is the most
used language for modelling in a MDD environment, other languages are supported
and UML can be extended with the use of UML Profiles. In (Krogstie 2012), Krogstie
argues for modelling languages adaption to increase the language appropriateness:

“In many cases, the modelling language chosen is not appropriate for representing
the knowledge on the domain, thus making it very difficult to achieve completeness.
One important activity to address this is the adaptation of the meta-model of the
modelling language used to suit the domain, both by adding concepts, but also by
removing concepts (temporarily) from the language if they are not relevant for the
modelling of the particular domain.”(page 231)

MDD delivers many useful features to SOA development, e.g. focus on message
design, interface design and domain modeling with use cases, sequence and activity
diagrams. In 2005, Johnson published an article where he describes how SOA
concepts can be incorporated into UML using UML profiles (Johnston 2005). The
profile includes UML representations of important concepts from the SOA reference
model (OASIS Open 2006), making them available to software designers using a
UML modelling tool. In 2009, the SOA and UML work was standardized through

Introduction

 6

OMG’s SoaML (Object Management Group 2009). The standard is supported by
some MDD tools, but with various degree of completeness.

The introduction points to challenging areas where substantial research efforts are
spent. Still, there seems to be gaps in the research that should be investigated.

From the care perspective, the demographic trends with an aging population and
shortage of labor will require new care models and increased focus on continuity of
care and independent living. There are several barriers to providing continuity of care,
in which the lack of interoperable information systems is a major one. The healthcare
IT world has embraced SOA and many healthcare enterprises are currently integrating
systems on SOA-based platforms. Despite these efforts, one of the most attractive
features of SOA is scarcely reported on in the scientific community, namely the
ability to reuse services and get the demonstrated benefits of reuse (Rine,Nada 2000).

National governments and international unions have published reports and initiated
large research initiatives for social inclusion and independent living. Interoperable
and cost-effective IT systems play an important role in achieving these goals.
Standards development organizations (SDOs) working on interoperability in this
domain are gradually starting to address component and service reuse, but as of yet
there is to our knowledge no initiatives addressing reusable software service designs
for the care and welfare of elderly. There seems to be a lack of knowledge about how
SOA-based software services could be reused to provide social inclusion and
independent living with an underlying concern for continuity of care.

From the software engineering perspective, reuse and interoperability are two key
objectives of MDD. Hence, MDD should provide utility to developers of health and
welfare information systems. UML tools are broadly applied in industry, but only as
an exception for model-driven software development (Hutchinson et al. 2011). Some
industries such as aviation have successfully extended UML with UML profiles
having domain specific element to better support their needs (Fuhrmann et al. 2006;
Schulte 2005). This has not yet been demonstrated for healthcare or care in general.
There seems to be an opportunity for healthcare to explore using UML profiles to
improve the usefulness of modelling service-based software systems.

In general, there are few rigorous evaluations on using MDD. Some scientific articles
report on positive experiences from using model-driven techniques in the healthcare
domain (Blobel,Pharow 2005; Rubin et al. 2005; Jones et al. 2005; Raistrick 2005;
Kawamoto,Lobach 2007; Omar 2006), but the adoption of MDD in healthcare
software development is still low. As reported in (Mohagheghi,Dehlen 2008) the
evaluation of the effects of using MDD is scarce and more research should be
conducted to gain knowledge that could be used to improve MDD and software
engineering in general.

This thesis addresses the gap between the development of healthcare standards and
software services on the one hand and tailoring UML-based MDD tools on the other
hand.

Research problem and questions

 7

The overall research problem investigated in this thesis addresses the way IT systems
facilitating continuity of care and independent living are developed.

There is a lack of knowledge about how model-driven development can assist in
developing reusable software services that support continuity of care.

This places the research problem in the healthcare informatics field, with a strong
focus on the informatics part and software engineering.

Continuity of care is considered an overarching concern for all healthcare information
systems implementations. Focusing on the independent living for the elderly, the
overall goal of providing continuity of care will depend on the ability to extend the
information sharing from the traditional healthcare settings as general practitioners’
offices and hospitals, and into the homes of the elderly, In this perspective, the
research problem addresses the formal and informal care providers’ need for
information and management continuity. Many different care providers are involved
in the care and management process, each with special access rights and information
needs. The software services should be carefully designed and validated

In an informatics or software engineering perspective, the research problem definition
addresses how MDD tools can be tailored to assist developers in creating software
that can be reused in the domain. Reuse depends strongly on the services’
interoperability qualities, adherence to domain standards, and availability of a clear
design and documentation (Karlsson 1995) (chapter 7). Today, software developers in
the healthcare domain have no or limited tool support for creating software that
conform to relevant information structures and recommended architectural styles for
continuity of care. This leads to a research problem statement:

How can software developers utilize model-driven development to develop reusable
software services to support care and management of elderly in a homecare
environment?

To narrow the focus of the investigation, the research problem addressed by this
thesis can be summarized by the following research questions:

R1. How can a model-driven development toolchain with domain support aid the
development of reusable domain software services?

R2. How can relevant domain standards and knowledge be incorporated into a
model-driven development toolchain and what aid can they provide in the
design and development process?

R3. Which reusable software services are relevant in the care and management of
elderly living in their homes?

The research questions address practical challenges in both the healthcare and
software engineering research area. The research approach must establish a clear

Introduction

 8

understanding of the actual needs in the target application environment and use best
practices and methods from the two domains.

To investigate the research questions, two core artefacts are developed:

1. A model-driven development toolchain called the “ModelHealth Toolchain”
that incorporates domain knowledge and provide assistance to the software
developers in creating software services.

2. A set of reusable software services that support the needs of the domain –
designed using the ModelHealth toolchain

To create these artefacts rigorously, a design science (Hevner et al. 2004) approach is
applied. The approach has a strong focus on artefact creation and assessment, and
emphasizes the importance of strong relationships to the target application
environment and domain’s knowledge base. An imperative feature of the design
science research framework as defined by Hevner et al. is that an artefact may need to
be refined in one or more assessment cycles.

To illustrate the relationships between the artefact research, relevance to continuity of
care information systems, and the knowledge base, Figure 1 shows the applied
research framework based on Hevner et al.’s “Information System Research
Framework” in (Hevner et al. 2004). The framework specifies three important
“cycles” (Hevner 2007) – relevance (grey arrows), rigor (white arrows) and design
cycles (black arrows).

Figure 1: The applied research framework based on Hevner’s IS research framework

Research Approach

 9

• Relevance Cycle (grey arrows): The investigations in this thesis addressed the
relevance cycle through a close relationship with the people, organizations and
technology that are involved in the use and development of continuity of care
information systems. Requirements, problems and opportunities were applied in
creating the artefacts in the design cycle. A feedback loop was added from the
design cycle where the results (experience and artefacts) were fed back to the
environment for utilization and exploitation. The overall goal was to design and
implement reusable domain software services and to develop a model-driven
development toolchain (ModelHealth Toolchain) that could be applied by
software developers (students and professionals) to create software services
facilitating continuity of care.

• Design Cycle (black arrows): The design cycle is about creating, assessing and
refining the core artefacts:

o The ModelHealth Toolchain artefact was developed iteratively based on
requirements from professional developers, best practice MDD, SOA
design, and domain specific modelling language development. Within
each design cycle, an assessment using rigorous evaluation methods
initiated a refinement of the toolchain.

o The software services were designed and developed based on requirement
from relevant caregivers in the domain, best practice design methods. The
evaluation of these services involved a relevant domain scenario with real
end users.

o The results from the design cycle were the artefacts and experiences
acquired during the design cycle, and were communicated to the domain
and knowledge base through scientific publications and reusable software
artefacts.

• Rigor Cycle (white arrows): The rigor cycle entails the use of applicable
foundations and methodologies from the “Knowledge Base”. This can be sound
theories, models, methods, best practices, and analysis techniques for the research
domain.

o Existing knowledge about the foundations of model-driven development,
service oriented architectures, relevant standards for continuity of care,
and domain best practices, were important input to the design of software
services and the ModelHealth toolchain.

o The artefact assessment was conducted applying best practice scientific
methodologies.

o Experiences, additions and nuances of foundations and methods from
artefact design and evaluation, were fed back to “Knowledge Base”.

Details about the development of the ModelHealth Toolchain artefact and the
evaluation process and methods are described in detail in chapter Chapter 3 Research
Method and Design

Introduction

 10

This doctoral research project was initiated through the MPOWER project
(MPOWER Consortium 2008b) that launched in October 2006. The main objective of
the MPOWER project was to “define and implement an open platform to simplify and
speed up the task of developing and deploying services for persons with cognitive
disabilities and elderly.” Working as the technical manager as well as leader for all
the work on systems architecture and development approach, I had the possibility to
influence the methods and directions of the project. My role in the core project
activities is described in section 3.5.2. The MPOWER project successfully finished in
June 2009.

Upon completing of the MPOWER project, I found it necessary to further investigate
the research problems, and more investigations were conducted at the University of
Tromsø. Additionally, I was given the opportunity to do a survey at a developer
conference organized by the largest electronic health record developer in Norway,
DIPS ASA. The thesis was finalized when I was working as a researcher in the
universAAL project on developer tools and evaluations.

The work was conducted without a research scholarship. However, I was enrolled as a
PhD student at the department of Computer Science at the University of Tromsø,
Norway.

The main objective of the thesis is to investigate how model-driven development
extended with healthcare components can aid developers in creating reusable domain
software services. The work has been carried out in a design-science framework and I
claim that the thesis provides contributions in two areas:

• Model-driven development toolchain design for the healthcare domain: The
research has produced guidelines for domain knowledge incorporation into model-
driven development toolchains. The experience from building a DSML for a large
domain with many stakeholders and domain assets is documented in a scientific
paper. The key findings in the investigations strengthen the understanding of
utilities of MDD. The utilities identified are development process support,
traceability, transformation of code and documentation.

• Reusable software services for continuity of care: The research has produced
reusable designs and implementations of software services from rigorous user
scenario descriptions. The services are available open source through Source
Forge. A SOA-application for continuity of care have been developed and
evaluated in real life settings: A pilot study over one year found that relatively
simple services can provide improvements in activities of daily living

The contributions can be summarized by a list of key findings from the investigations.
Table 1 presents the eight key findings grouped into the two main contribution
categories.

Claimed contributions and included papers

 11

Table 1: List of key findings and the papers that address these findings

Ten papers are included in this thesis as presented in Table 2.

Table 2 List of included papers

Paper title and forum

P1 “Improving systems interoperability with model-driven software development for
healthcare”, MEDINFO (Walderhaug, Mikalsen, Hartvigsen, Stav and Aagedal 2007)

P2 “The MPOWER Tool Chain - Enabling Rapid Development of Standards-based and
Interoperable HomeCare Applications”, Norwegian Informatics Conference (Walderhaug,
Stav, Mikalsen and Jurisic 2007)

P3 “Factors affecting developers' use of MDSD in the Healthcare Domain: Evaluation from the
MPOWER Project”, C2M workshop at ECMDA (Walderhaug, Mikalsen, Benc, Loniewski

Finding Addressed
in paper(s)

Research
Question(s)

F1 Continuity of care standard concepts relevant for service design
can be modeled as UML Profiles

P1, P2, P4,
P6, P10

R2

F2 Ease of use and correct code generation is important for the
usefulness of MDD tools

P3, P10 R1

F3 Traceability services are considered an important utility in
healthcare software development and can be provided using
basic UML dependencies or using more sophisticated trace
models

P3, P5, P8,
P10

R1

F4 The toolchain should provide project structure and process
assistance.

P3, P5, P10 R1

F5 Presentation of domain information in the design tools should be
flexible, consistent and easy to use

P10 R2

F6 The modeling tool should provide design model verification and
validation

P4, P10 R1

F7 A relatively small number of reusable software services cover a
large part of the ICT support needs for independent living

P6, P9 R3

F8 Simple service-based applications have the potential to support
older people at home, particularly older people with memory
problems who need support in structuring the day and keeping
an overview of the daily activities and appointments

P7, P9 R3

Introduction

 12

and Stav 2008)

P4 “Experiences from model-driven development of homecare services: UML profiles and
domain models”, MOTHIS workshop at MODELS (Walderhaug, Stav and Mikalsen 2008)

P5 “Traceability in Model-driven Software Development”, in book chapter in Designing
Software-Intensive Software, IGI (Walderhaug, Stav, Johansen and Olsen 2008)

P6 “Reusing models of actors and services in smart homecare to improve sustainability”, MIE
(Walderhaug, Stav and Mikalsen 2008)

P7 “Older people with and without dementia participating in the development of an individual
plan with digital calendar and message board”, Journal of Assistive technology, (Holthe and
Walderhaug 2009)

P8 “Model-driven traceability in healthcare information systems development”, MEDINFO
(Walderhaug, Hartvigsen and Stav 2010)

P9 “Development and evaluation of SOA-based AAL services in real-life environments: A case
study and lessons learned.” International Journal of Medical Informatics, (Stav, Walderhaug,
Mikalsen, Hanke and Benc 2011)

P10 “Evaluation of a Model-Driven Development Toolchain for Healthcare”. Submitted to
Automated Software Engineering, (Walderhaug 2012)

The relevance to this thesis and my contribution to each paper are described next.

P1: Walderhaug, S., Mikalsen, M., Hartvigsen, G., Stav, E., Aagedal, J.:
Improving systems interoperability with model-driven software development
for healthcare. Stud Health Technol Inform 129(Pt 1), 122-126 (2007)

Relevance to this thesis: The objective of this paper was to introduce the
ModelHealth toolchain concepts and the mechanisms for incorporating
healthcare knowledge into software developer tools. The paper presents three
assertions addressing the overall problem of improving interoperability in
healthcare information systems. These assertions are: model-driven
development will improve interoperability between healthcare information
systems, healthcare information standards are appropriate as reusable model-
driven development artefacts, and healthcare information services in the
homecare domain can be reused across organizations. These assertions outline
the overall focus in the thesis.

My contribution: I wrote the problem definition and designed the toolchain
with the running example. I wrote the paper with useful comments from the
co-authors. I presented the paper at the MEDINFO 2007 conference in
Brisbane, Australia.

P2: Walderhaug, S., Stav, E., Mikalsen, M.: The MPOWER Tool Chain -
Enabling Rapid Development of Standards-based and Interoperable
HomeCare Applications. In: Sandnes, F.E. (ed.) Norsk Informatikk
Konferanse (NIK), Oslo, October 2007 2007, pp. 103-107. TAPIR (2007)

Claimed contributions and included papers

 13

Relevance to this thesis: This paper presents the scope and design of the first
version of the model-driven development toolchain. The main result presented
in this paper is the selection and configuration of three core toolchain
components: Sparx Enterprise Architect, NetBeans and SUN Application
Server.

My contribution: I was responsible for the design of the toolchain and led the
work on technology selection. Acting as the technical manager and
responsible for development approach in the MPOWER project, I conducted
the initial toolchain testing and developed training material for the toolchain
within the MPOWER project. I wrote the paper with useful comments from
the co-authors. I presented the paper as a poster at the Norwegian Informatics
Conference in 2007.

P3: Walderhaug, S., Mikalsen, M., Benc, I., Loniewski, G., Stav, E.: Factors
affecting developers' use of MDSD in the Healthcare Domain: Evaluation
from the MPOWER Project. In: Bailey, T. (ed.) From code-centric to model-
centric development, Workshop at European Conference on Model-Driven
Architecture, Berlin, Germany 2008. European Software Institute

Relevance to this thesis: This paper presents the evaluation of the toolchain
done in the context of the MPOWER project. 16 developers from four
European countries used the toolchain for one year, developing service
designs from domain use cases and features. The developers took part in a
survey addressing the ease of use, usefulness and work compatibility of the
toolchain. The main findings were that perceived usefulness and ease of use
are the most important factors for using a model-driven development
approach. Specific comments from the developers on traceability and the
correctness of the generated code resulted in a refinement of the toolchain.

My contribution: I was responsible for the design and conduction of the
survey together with Marius Mikalsen. I analysed the data in SPSS and wrote
the paper. Marius Mikalsen did data analysis review and provided useful
comments along with the other co-authors. I presented the paper at the “From
code-centric to model-centric software development” workshop at ECMDA-
FA 2008 in Berlin, Germany.

P4: Walderhaug, S., Stav, E.: Experiences from model-driven development of
homecare services: UML profiles and domain models. Paper presented at the
2nd International Workshop on Model-Based Design of Trustworthy Health
Information Systems (MOTHIS 2008) in Toulouse, France.

Relevance to this thesis: This paper presents the approach to designing the
domain specific modelling language as UML profiles for the target domain,
homecare. The paper focuses on which domain knowledge that should be
included into the language and how this can be utilized in the development
phases. The paper outlines three steps to create two UML profiles within the
MPOWER project. The UML profiles are: Homecare UML profile and
Homecare SOA Profile. The paper was selected as best paper for the MOTHIS
workshop at the MODELS 2008 conference.

Introduction

 14

My contribution: The work was done within the context of the MPOWER
project. Whereas the information model design in MPOWER was a joint
project effort, I did the UML Profile design having important discussions with
Dr Erlend Stav. Acting as the technical manager and responsible for the
model-driven development approach, I did the information modelling in
Enterprise Architect. I wrote the paper with useful discussions with Dr Erlend
Stav and Marius Mikalsen. I presented the paper at the MOTHIS workshop at
the MODELS conference in Toulouse, France. The paper was selected as the
session’s best paper.

P5: Walderhaug, S., Stav, E., Johansen, U., Olsen, G.K.: Traceability in Model-
driven Software Development. In: Tiako, P.F. (ed.) Designing Software-
Intensive Systems - Methods and Principles. pp. 133-160. IGI Global,
Information Science Reference, Hersey, PA (2008)

Relevance to this thesis: This book chapter describes the foundation and core
mechanisms of a central utility of model-driven development, namely
traceability. One of the early findings in the toolchain evaluation was that
traceability was considered a useful during development. This book chapter
outlines four core traceability services: trace navigation, orphan analysis,
coverage analysis and change impact analysis. The definition of the
metamodel for representing trace information in the traceability services was
necessary for the work on traceability in the ModelHealth toolchain.

My contribution: The work was carried out as a part of the EU project
ModelWare. I was managing the work on traceability, and responsible for
coordinating the effort with the other tasks in the project. The work was
primarily carried out by Ulrik Johansen, Dr Erlend Stav and myself. The book
chapter was written primarily by Ulrik Johansen, Erlend Stav and myself, with
input on MOFScript from Gøran Olsen.

P6: Walderhaug, S., Stav, E., Mikalsen, M.: Reusing models of actors and
services in smart homecare to improve sustainability. Stud Health Technol
Inform 136, 107-112 (2008)

Relevance to this thesis: This paper describes the process of creating the
domain actor library to be used by the domain specific modelling language.
Furthermore, it presents the set of reusable services that was implemented for
the proof-of-concept applications reported in P7 and P9. The paper concludes
that reusable model elements may reduce the gap between business processes
and IT system realization.

My contribution: I was in charge of the specification of the domain actor
library and carried out the harmonization with standards. Service specification
was done as a long-term process in the MPOWER project, and acting as the
technical manager and responsible for development approach I managed and
contributed to this process. I wrote the paper with useful comments from Dr
Erlend Stav and Marius Mikalsen, and presented the paper at the MIE 2008
conference in Gothenburg, Sweden.

Claimed contributions and included papers

 15

P7: Holthe, T., Walderhaug, S.: Older people with and without dementia
participating in the development of an individual plan with digital calendar
and message board. Journal of Assistive Technologies 4(2), 15-25 (2010)

Relevance to this thesis: This paper reports from the 14-month pilot trial of
the individual plan system developed in the MPOWER project. The evaluation
shows that the underlying services identified in P6 can be combined into an
useful support system for older people with cognitive impairments.
Furthermore, the paper also points to some network communication
challenges related to SOA as a concept for application deployment. The paper
concludes that this kind of system has a great potential for future health and
social care services.

My contribution: Torhild Holthe and her team handled the primary
recruitment and contact with the elderly. I attended one home visit to a user
and took part in the evaluation session. For all technical assistance and
problem solving in the installation and trial period, I was the primary contact
and responsible for communicating with the system developers. Acting as the
technical manager in the MPOWER project, I was strongly involved in the
system design and development process. I co-authored the paper with
responsibility for the technical parts of the paper.

P8: Walderhaug, S., Hartvigsen, G., Stav, E.: Model-driven traceability in
healthcare information systems development. Stud Health Technol Inform
160(Pt 1), 242-246 (2010)

Relevance to this thesis: This paper reports from the experience developing
two proof-of-concept systems in the MPOWER project in terms of model-
driven traceability. The paper demonstrates how the core traceability services
as defined in P5 can be implemented using the toolchain described in P3,
reusable actors in P6 and the profiles described in P4. The paper concludes
that traceability is both desired from a validation point of view (e.g. FDA
guidelines for software validation) and user utility point of view (as reported
in P3 and P10). Model-driven development allows for easy implementation of
the core traceability services.

My contribution: As the principal author of the paper and the creator of the
model-driven development toolchain, I did all the work on modelling and
concept creation. I wrote the paper with useful comments from Professor
Gunnar Hartvigsen and Dr Erlend Stav. Professor Gunnar Hartvigsen
presented the paper at the MEDINFO 2010 conference in Cape Town, South
Africa.

P9: Stav, E., Walderhaug, S., Mikalsen, M., Hanke, S., Benc, I.: Development
and evaluation of SOA-based AAL services in real-life environments: A case
study and lessons learned. International Journal of Medical Informatics
(2011). doi:10.1016/j.ijmedinf.2011.03.007

Relevance to this thesis: This paper summarizes the development and
evaluation of two SOA-based proof-of-concept applications in the MPOWER
project. The main research questions addressed are how developers perceive

Introduction

 16

the use of model-driven development and SOA for application development in
this domain, what are the reusable software services and are these sufficient to
build sustainable support system for the domain. The main experience is that
the chosen approach was found productive in developing information centric
homecare applications. The paper provides a detailed view on the complete
process from requirements elicitation to final evaluation of the realized
systems.

My contribution: I was strongly involved in all phases of the design,
development and evaluation of the development methods and system design. I
was responsible for and contributed to the formalization of user needs in UML
and the process of using these in the succeeding service identification and
design steps. I was in charge of the SOA evaluation with the developers as
part of the work presented in P3, and did the data analysis. I co-authored the
majority of the sections of the paper together with Dr Erlend Stav and Marius
Mikalsen. Input on medical and social information services as well as the
Norwegian POCA design was provided by Dr Ivan Benc, whereas Sten Hanke
wrote the communication services part.

P10: Walderhaug, S.: Evaluation of a Model-Driven Development Toolchain for
Healthcare. Automated Software Engineering Journal, revision submitted on
September 1st, 2012

Relevance to this thesis: This paper presents the empirical developer
investigations done in this doctoral project. It shows the evolution of the
ModelHealth toolchain in terms of a design cycle approach. The paper
addresses to which extent model-driven development with domain support aid
the developer in creating SOA-based healthcare information systems that
conform to interoperability standards in the domain. The main results are that
reusable domain modelling elements are useful for creating correct and
complete designs and that traceability and model transformation are important
utilities of MDD. Based on the empirical results, a set for guidelines for how
to incorporate domain knowledge into model-driven development toolchains
is provided.

My contribution: The work presented in the paper was carried out by me in
the period from 2007 to 2011. I designed the overall research process (design
cycle), designed and implemented the toolchain and transformations, designed
and conducted the evaluations, and analysed the results. Dr Erlend Stav gave
invaluable input to the technical toolchain solution, especially on the
MOFScript transformation, and did an extensive review of the paper prior to
submission. Marius Mikalsen provided feedback on the data analysis on the
final student experiment.

Thesis structure

 17

The remainder of this thesis consists of two parts.

PART I - Summary of the research process

Chapter Content

2 – Background This section introduces the problem domain and focus the scope of
investigations. The core domain and technological concepts are presented
with current state-of-the-art and challenges.

3 – Research Method
and Design

In this section, the design science approach is introduced and its
“instantiation” to this project is described in three phases. A large
subsection is dedicated to the description of the ModelHealth toolchain
evolution through the three phases. The final subsection presents an
overview of the evaluation methods applied.

4 – Results The results are organized according to the three research questions. For
each question, the findings addressing the question are presented together
with the supporting results from the individual papers.

5 – Discussion The three research questions are discussed in terms of the findings,
results and domain trends. A separate section is reserved for the
experience from applying the design science approach. Finally, the
chapter discusses implications for research and practices, limitations and
recommendation for future research.

6 – Conclusions Concludes the work based results and discussions of the research
questions.

PART II - Included publications

P1. Walderhaug, S., Mikalsen, M., Hartvigsen, G., Stav, E., Aagedal, J.:
Improving systems interoperability with model-driven software development for
healthcare. Stud Health Technol Inform 129(Pt 1), 122-126 (2007).

P2. Walderhaug, S., Stav, E., Mikalsen, M.: The MPOWER Tool Chain -
Enabling Rapid Development of Standards-based and Interoperable HomeCare
Applications. In: Sandnes, F.E. (ed.) Norsk Informatikk Konferanse (NIK), Oslo,
October 2007 2007, pp. 103-107. TAPIR (2007).

P3. Walderhaug, S., Mikalsen, M., Benc, I., Loniewski, G., Stav, E.: Factors
affecting developers' use of MDSD in the Healthcare Domain: Evaluation from the
MPOWER Project. In: Bailey, T. (ed.) From code-centric to model-centric
development, Workshop at European Conference on Model-Driven Architecture,
Berlin, Germany 2008. European Software Institute.

Introduction

 18

P4. Walderhaug, S., Stav, E.: Experiences from model-driven development of
homecare services: UML profiles and domain models. Paper presented at the 2nd
International Workshop on Model-Based Design of Trustworthy Health Information
Systems (MOTHIS 2008), Toulouse, France. Selected as session’s best paper.

P5. Walderhaug, S., Stav, E., Johansen, U., Olsen, G.K.: Traceability in Model-
driven Software Development. In: Tiako, P.F. (ed.) Designing Software-Intensive
Systems - Methods and Principles. pp. 133-160. IGI Global, Information Science
Reference, Hersey, PA (2008)

P6. Walderhaug, S., Stav, E., Mikalsen, M.: Reusing models of actors and services
in smart homecare to improve sustainability. Stud Health Technol Inform 136, 107-
112 (2008)

P7. Holthe, T., Walderhaug, S.: Older people with and without dementia
participating in the development of an individual plan with digital calendar and
message board. Journal of Assistive Technologies ›(2), 15-25 (2010)

P8. Walderhaug, S., Hartvigsen, G., Stav, E.: Model-driven traceability in
healthcare information systems development. Stud Health Technol Inform 160(Pt 1),
242-246 (2010).

P9. Stav, E., Walderhaug, S., Mikalsen, M., Hanke, S., Benc, I.: Development and
evaluation of SOA-based AAL services in real-life environments: A case study and
lessons learned. International Journal of Medical Informatics (2011).
doi:10.1016/j.ijmedinf.2011.03.007

P10. Walderhaug, S.: Evaluation of a Model-Driven Development Toolchain for
Healthcare. Automated Software Engineering Journal, revision submitted on
September 1st, 2012.

19

This chapter describes the core concepts address in the doctoral project. As the
included papers provide an extensive background description, the main purpose of
this chapter is to present a holistic view and complement the paper descriptions where
necessary.

The overall problem concepts are presented as shown in Figure 2. The figure shows
an overview of how concepts in the healthcare domain are related to software
engineering through the concept of interoperability and domain specific languages.

Figure 2 Overview of the core concepts and relationships in the research domain.

The focus of the research falls into the healthcare informatics area, focusing on how
to construct a domain specific modeling language that can facilitate the development
of interoperable software services. In the following, the core relationships and
concepts are presented.

Background

 20

Independent living is a goal for most people, and also for the care providers. The
consumers of care services, typically elderly, chronically ill and cognitive disabled are
empowered by state-of the art information and communication technology in their
homes to achieve the overall goal of aging in place (Demiris et al. 2004; Magnusson
et al. 2004; Wancata et al. 2003). An important challenges related to independent
living is to support “continuity of care” for the users, defined by Haggerty et al. as the

“… degree to which a series of discrete healthcare events is experienced as coherent
and connected and consistent with the patient's medical needs and personal context.
Continuity of care is distinguished from other attributes of care by two core
elements—care over time and the focus on individual patients.” (Haggerty et al.
2003).

From a system architecture point of view, having a clear understanding of the
stakeholders involved and their concerns, is of utmost importance for designing a
sound system. The IEEE 1471-2000 “Recommended Practice for Architectural
Description of Software-Intensive Systems” standard describes that “concerns are
those interests which pertain to the system’s development, its operation or any other
aspects that are critical or otherwise important to one or more stakeholders.” Having
a clear understanding of this “lay a foundation for quality and cost gains through
standardization of elements and practices for architectural description.”(IEEE 2000)

In terms of healthcare and continuity of care, the TC 251 group in CEN4 has
developed the EN-13940-1: 2005 standard (also called CONTSYS) that defines the
core concepts and stakeholders related to Continuity of Care using a UML class
diagram notation (CEN TC251 2006). ISO TC215 is now developing the CONTSYS
standard to become an ISO standard that will “cover the generic concepts needed to
achieve continuity of care.” and provide “a clear conceptual framework to establish
the terms of reference of health information systems. The system of concept as well as
the process and workflow descriptions are meant as tools for the development of
information systems.”(ISO TC 215 under development).

To illustrate how the CONTSYS standard defines a concept, Figure 3 shows the
Subject of Care with its relationships to other healthcare concepts that may be
relevant for the design of a software service to be used in e.g. systems integration.

4 CEN TC 251 website: http://www.centc251.org

Independent living and continuity of care

 21

Figure 3 The Subject of Care concept from ISO 13940 (ISO TC 215 under development)

New technological solutions may facilitate independent living for older frail people
and support carers taking care of people with dementia (Hagen et al. 2005). Increased
attention has been given to both the role and potential of new technological solutions
to support frail older people and their carers at home, as well as supporting health care
staff in improving optimal use of time at work (Magnusson et al. 2004). Many
technological solutions are present today, however, there is little knowledge about
how to utilize this technology for older people as well as for people with dementia
(ibid.). Few products are based upon involving these user groups in product
development.

To create information systems that support the coordination of care across disciplines,
interoperable and multi-disciplinary software services play an important role.

The technological solutions supporting independent living must operate in an existing
IT environment in order to provide continuity of care. A main obstacle in achieving
this is the lack of systems interoperability (Brailer 2005; Walker et al. 2005). New
ways of providing continuity of care are being evaluated, based on teamwork
treatment – demanding support from interoperable information systems.
Interoperability in healthcare has been identified as an important area of research and
development by many organizations, including the European Union (EU)5, the Object
Management Group (Object Management Group (OMG)) and other national
organizations (Norwegian Ministry of Social Affairs,Norwegian Ministry of Health
2004). The ability to exchange information and share services across departmental,
organizational and national borders can reduce the administrative overhead and costs
(Walker et al. 2005), and as a result improve the effectiveness of healthcare provided.
Consequently, more patients can be treated faster with the same amount of (care)
resources.

5 EU Life sciences, genomics and biotechnology for health website:
http://cordis.europa.eu/lifescihealth/home.html

Background

 22

The demographic change in Europe requires require that we rethink traditional models
of care. One prominent aspect of new care models used for chronic conditions is the
cooperation of several different stakeholders (e.g., nurses, general practitioners,
visiting nurses, the patient’s relatives and the patient himself) in the care process
(Winnem,Walderhaug 2002). These care models are often denoted continuity of care.

With continuity of care, patients are no longer passive consumers of health care
services, but are instead demanding more and more control over their own treatment,
together with increased responsiveness and improved quality of care services
provided by the involved healthcare institutions. Today, healthcare systems are
expected to maintain the continuity of care, shared care, and the empowerment of
patients in the management process (Tattersall 2002).

The treatment and management of homecare consumers, typically elderly, chronically
ill and cognitive disabled, require a coordinated effort from healthcare and social
welfare services. To effectively support these care services with information systems,
interoperability of core information such as patient care plan, calendar and
medication-list is a prerequisite.

To improve interoperability between systems, the leading standardization bodies in
healthcare information, HL7, CEN TC251 and OpenEHR, have specified standards
that address systems architecture and information exchange. Although these standards
have been available to the Health Information Systems (HIS) vendors for some time,
the different HIS are not interoperable, requiring the development of software
adapters to be able to exchange information about the patients. There is an urgent
need for a standardized interface and method to realize this information exchange.

The new models of care, characterized by increasingly cooperating stakeholders and
empowered users, would benefit from interoperable health information systems. The
healthcare information systems are no longer stand-alone applications with a
database, some specific business logic and a product-specific graphical user interface,
but a distributed system of resource and functional services. To share information,
different middleware services are used, including CORBA, Java RMI, DCOM or
Message-oriented Middleware (MoM). Syntactic compatibility is achieved using
messaging standards based on e.g., HL7 messages and EDIFact. However, this is not
sufficient to benefit fully from an interoperable health information network. Guise
and Kuhn says in (Giuse,Kuhn 2003), with references to (Bleich,Slack 1992; Stead
2000):

“Open architectures for HIS are not widespread; today’s commercial systems seldom
go beyond providing simple HL7 interfaces for data exchanges at the syntactical
level. Many systems are still strongly tied to internal databases in a ‘vertical
stovepipe’ model, and their data definitions are not transparent enough to support
ready functional integration.”

The standardization bodies provide limited tool support to the developers of health
information systems. To incorporate standard healthcare concepts in the systems’
design, an operational software engineering artefact that provides both semantic and
syntactic interoperability functionality (Beale 2002; Park 2004) should be available
for the system architects and developers (Kuhn et al. 2003; Lenz et al. 2007;
Lenz,Kuhn 2004).

Interoperability with Service Oriented Architectures in the Healthcare Domain

 23

Interoperability has many definitions, and the definition of working interoperability
from HL7 is considered appropriate for this thesis. In the Service-Aware
Interoperability Framework (SAIF) 6 from Health Level 7 (HL7) working
interoperability is defined as: “The collection of structures, processes, and
components that support Computable Semantic Interoperability (CSI) between two
parties (“trading partners”) who are interacting (for example, exchanging
information, coordinating behavior) to achieve one or more business goals.
Interoperability, in this context, is further defined to be the deterministic exchange of
data or information in a manner that preserves shared meaning.”

Healthcare interoperability is addressed by the European Commission in
“Commission recommendation of 2 July 2008 on cross-border interoperability of
electronic health record systems” stating that: “Lack of interoperability of electronic
health record systems is one of the major obstacles for realising the social and
economic benefits of eHealth in the Community. Market fragmentation in eHealth is
aggravated by the lack of technical and semantic interoperability.”(European
Commision 2008). A recent survey among the EU member states revealed that there is
huge variation between the European countries with respect to implementing the EU
eHealth interoperability recommendations. The member states express a need for
more guidance on interoperability implementation (Calliope Network 2008).

To aid the implementation of interoperable support systems, standards and reusable
components may play an important role (Sametinger 1997). Standards developing
organizations (SDOs) in the healthcare domain are working on standardization efforts
that aim to provide information interoperability in healthcare (Eichelberg et al. 2005).

Some of the latest additions to the information sharing standards are those addressing
the use of Service Oriented Architecture (SOA) (Erl 2006) in healthcare as a means to
overcome interoperability and reuse challenges in the domain. The OMG/HL7
Healthcare Service Specification Project (HSSP Project 2007) and IHE (IHE 2012)
have proposed architecture and methodology documents for designing service
systems that adhere to the core principles and standards in the domain (Honey,Lund
2006; Honey et al. 2006).

SOA specifies “a paradigm for organizing and utilizing distributed capabilities that
may be under the control of different ownership domains” (OASIS Open 2006). The
SOA paradigm reflects the way patient information is distributed in different systems
owned by different organizations, and provides an architectural framework for sharing
data and services. An example of a popular implementation of SOA is Web Services
that specifies the main transport protocols and formats to use, focusing on web
technologies such as XML, SOAP and HTTP (World Wide Web Consortium (W3C)
2004, 2007). From an interoperability viewpoint, technical interoperability is

6 SAIF: http://wiki.hl7.org/index.php?title=Product_SAIF

Background

 24

achieved through the use of a Web Services-based integration approach. Information
interoperability on the other hand, is about agreeing on basic domain concepts, and
using this agreement correctly in the design and development of the information
systems. The use of web services does not provide direct support for information
interoperability.

The trend towards a service-oriented architecture (SOA) for healthcare information
systems represents a new area of research in the healthcare informatics field. The
domain is characterized by a large number of stakeholders having an interest in the
system, and a plethora of existing information systems that should be interfaced
(Grimson et al. 2000). SOA have become an important strategy to implementing
interoperability in many domains, also the healthcare domain (Kawamoto,Lobach
2007). The Danish MEDCOM has developed a guide to “The Good WebService”
where they provide a “profile” for how they would like to design web services in the
Danish Health system7. This profile has information about protocols, information
formats, error coding, security mechanisms and other design specific decisions. As
the healthcare enterprises and welfare services are moving towards SOA based
architecture, it will be of utmost importance that the system developers adhere to
these profiles and reuse service designs wherever relevant.

One way to improve systems interoperability is to share service designs and reference
implementations, including documentation of how a standard or guideline is
interpreted and implemented. A SOA-based implementation of a healthcare system is
evaluated in (Raghupathi,Kesh 2008). The authors present the evaluation of a
prototype implementation of a SOA-based interoperable electronic health record
(EHR), identifying the main design challenges. They conclude that SOA provides
potential value to interoperable EHRs, but there are some challenges with SOA
design: “The health care industry particularly faces the challenges of incomplete
standards (e.g., of medical terminology) and lack of robust development and
modeling tools”. [ibid]

The acronym for model-driven development, MDD (Mellor 2004), labels the
development technique where models are applied as the main artifacts in the
development process to create application code and corresponding documentation.
The models are developed by creating diagrams with a graphical representation of the
underlying language’s elements. OMG’s MDA® (Miller,Mukerji 2003) is a specific
approach to doing MDD, whereas model-driven engineering (MDE) is considered a
broader term. Model-driven software development (MDSD) as presented in
(Stahl,Völter 2006) is a more narrow term than MDD with a strong focus on the
application code creation. MDD is the main term used to describe model-driven
development in this thesis.

MDD has been around for many years, in the context of computer assisted software
engineering (CASE) tools in the early nineteen eighties (Iivari 1996; Lundell,Lings

7 Danish Medcom – The good webservice: http://www.medcom.dk/wm110731

Model-Driven Development process, utilities and tools

 25

2004; Sharma,Rai 2000), and revitalized through the popularity of UML (Object
Management Group (OMG) 2007) and OMG’s MDA approach (Mellor 2004;
Miller,Mukerji 2003). Miller and Mukerji states in the MDA Guide (Miller,Mukerji
2003): “The three primary goals of MDA are portability, interoperability and
reusability through architectural separation of concerns.” Recently, there has been
an increased interest in software development using Model-Driven Development
(MDD) techniques (Hailpern,Tarr 2006).

Adherence to design guidelines and profiles can be imposed by software developer
tools. The majority of software developers use advanced tools in their work to assist
the process of creating artefacts such as application code, design diagrams,
application documentation and test reports. There is a potential for improving these
tools to provide more contextual support based on the target environment or system
platform.

In 2002, the Object Management Group (OMG) introduced the Model-Driven
Architecture (MDA)(Miller,Mukerji 2003), an approach focusing on using models
(e.g., UML models(Object Management Group (OMG) 2005)) as first-class entities in
the development of software systems. In practice, this means that the models are used
directly in the implementation of an information system, either as system blueprints or
as input to code generation engines that produce executable code. MDA is the most
known model-driven development (MDD) approach, and the overall idea is to
separate business functions (in Platform Independent Models - PIM) from its
technological implementations (in Platform Specific Models – PSM), enabling code
generation and reuse of components. The overall benefit is improved interoperability
and reduced development time and cost.

Using a MDD approach in the development of healthcare information system services
could facilitate the use of standards through specification of reusable standards-based
PIMs. Advanced UML mechanisms such as UML Profiles could be used to further
extend the expressiveness of the modeling language and force the use of standardized
healthcare concepts. As a result, the developed systems can increase the level of
interoperability, and at the same time development and maintenance costs will
decrease. The goals of MDD described in (Stahl,Völter 2006) can be summarized as
follows:

• Increase development speed and software quality through automation

• Higher level of reusability as the architectures, modeling languages and
transformations are generic for the domain (abstract)

• Improved manageability of complexity through abstraction

• MDSD is based on the Object Management Group’s Model Driven Architecture
® (MDA). OMG’s focus in on interoperability, portability and reusability through
architectural separation of concerns (Object Management Group (OMG) 2003)

MDD seeks to use models (a formal graphical notation) to represent all artefacts
involved in the development of a software system. Models are both abstract and
formal at the same time, meaning that irrelevant details are abstracted away and the
core is described (modeled) unambiguously. The models are used in diagrams that

Background

 26

specify a static or dynamic (behavior) view of the target system. Diagrams are
typically created using a top-down approach where the high-level concepts are
identified and documented before they are broken down into sub-concepts, workflows
and information models. The low-level detailed models can be transformed into new
and technology specific models (including concepts from J2EE or .Net). From the
technology specific models, executable code can be generated.

The best known model-driven development approach is OMG's Model Driven
Architecture (MDA)(Mellor 2004; Miller,Mukerji 2003). MDA provides an open,
vendor-neutral approach to the challenge of business and technology change. Based
on OMG's established standards, the MDA separates business and application logic
from underlying platform technology. The platform-independent models (PIM) of an
application or integrated system's business functionality and behavior, built using
UML and the other associated OMG Modeling standards, can be realized through
MDA on virtually any platform, open or proprietary, including Web Services, .Net,
CORBA, J2EE, and others. These platform-independent models document the
business functionality and behavior of an application separate from the technology-
specific code that implements it, enabling interoperability both within and across
platform boundaries. No longer tied to each other, the business and technical aspects
of an application or integrated system can each evolve at its own pace – business logic
responding to business need, and technology taking advantage of new developments –
as the business requires (Object Management Group (OMG) 2003).

One of the core features of MDA (and MDD) is the ability to transform one model of
the system into a new technology specific model, which in turn can be used to
generate executable code. The overall concept is to model the system from different
viewpoints, each viewpoint having its own goal and role in the development process.
MDA describes three different viewpoints and their corresponding models, namely
the Computation Independent Model (CIM), Platform8 Independent Model (PIM) and
Platform Specific Model (PSM)(Object Management Group (OMG) 2003).

• CIM: The CIM is a model that focuses on the on the environment of the system,
and the requirements for the system; the details of the structure and processing of
the system are hidden or as yet undetermined.

• PIM: The platform independent viewpoint focuses on the operation of a system
while hiding the details necessary for a particular platform. A platform
independent view shows that part of the complete specification that does not
change from one platform to another.

8 A Platform in MDA is defined as a set of subsystems and technologies that provide a coherent set of
functionality through interfaces and specified usage patterns, which any application supported by that
platform can use without concern for the details of how the functionality provided by the platform is
implemented

Model-Driven Development process, utilities and tools

 27

• PSM: The platform specific viewpoint combines the platform independent
viewpoint with an additional focus on the detail of the use of a specific platform
by a system.

Figure 4: The MDA models. Figure based on (Rosen 2004)

MDD is a promising development approach where the development cost is reduced
through extensive model reuse, model transformation and code generation techniques.
In addition, the quality of the final executable code will be better due to reuse of
verified code and software patterns. Many organizations have reported significant
improvements in the development process and on software quality (Hartman 2006;
Guttman,Parodi 2006), but the scientific evidence is still scarce (Mohagheghi,Dehlen
2008).

A domain specific modeling language (DSML) incorporates modeling elements and
design structures that are specific for a domain, and typically allows for more
effective and precise modeling (Fowler 2010). DSMLs are being developed for many
domains to improve the efficiency and usefulness of modeling in the development
process (Kärnä et al. 2009; Tolvanen,Rossi 2003), the majority involving hardware
interaction such as cell phone software and heart rate monitor watches. A DSML can
take the form of a complete meta model or as an extension of an existing metamodel
such as UML. The objective is to increase the expressiveness and thus be able execute
the semantic models directly and improve the generated artefacts (code,
documentation and scripts) (Fowler 2010). In this thesis, the terms DSML and DSL
are used interchangeably. Domain specific modeling languages, reusable models and
model-structures, model checking, transformations and traceability are the main
mechanisms that can aid the developers in designing software systems that adhere to
the design guidelines and profiles.

Computation Independent Model (CIM)

Platform Independent Model (PIM)

Platform Specific Model (PSM)

Code

Architect /
Designer

Developer /
Tester

Business
Analyst

Business Process Management
models in UML / BPMN / BPEL

UML with UML Profiles
for BPMN, BPEL and SOA.

Platform Specific UML models.

Code for e.g. Web Services in C#, Java etc.

Background

 28

One way to achieve semantically and syntactical information interoperability is to
have a common metamodel. A metamodel describes the semantics of a language, such
as an information standard in healthcare, and must be described formally. In a model-
driven development project one may use several metamodels, but to ensure
interoperability one should have a mapping model between the different metamodels.
A metamodel may be domain specific, e.g. a metamodel for continuity of care,
providing a familiar language to the people modelling information systems for this
domain.

OMG has specified the Unified Modeling language (Object Management Group
(OMG) 2005), a formal modelling language that can be used to specify (model) both
static and behavioral aspects of a system. Using the Object Constraint Language
(OCL)(Object Management Group (OMG) 2006; Warmer 2003) together with UML
enables the modeller to enrich the models with enough detail to render it possible to
generate high-quality source code. Another mechanism offered by UML is the use of
UML Profiles. A profile is used to add domain specific concepts and terms to the
modeling language. Stereotypes, tagged values that can be applied to elements,
attributes, associations etc., to enable accurate modeling for a specific domain.

In (Khambati et al. 2008a), Khambati et al presents a model-driven development of a
prototype for creating care plans using a tailored DSML based on a meta language.
The evaluations of the prototype show positive results, and especially for improved
collaboration and reuse on care plans. Khambati et al states in (Khambati et al. 2008b)
that “An important direction for this sort of work is to achieve alignment with key
international standards”.

As described in Paper 10 (Walderhaug 2012), Khambati et al is uses a small DSL for
care plans that has high “closeness of mapping” that was perceived positive in expert
evaluations. In (Kosar et al. 2012), the authors report from a study where they
compared the comprehension correctness and efficiency of students creating feature
diagrams in a DSL and a GPL (Java). The results clearly showed that the DSL
performed better than the GPL. Also in the study by Cao et al, the DSL/DSM solution
performs better than plain UML with respect to correctness, comprehension and
changeability (Cao et al. 2009). However, the construction of a DSL is resource
demanding as shown in (van den Bos,van der Storm 2011; Fister Jr et al. 2011),
which may be a barrier to creation and adoption of DSLs. Mernik et al discuss when
and how a DSL should be developed in (Mernik et al. 2005). Even though most of the
DSLs discussed are textual DSLs, many of the challenges are relevant for domain
specific modelling languages, e.g. “How can DSL development tools generated by
language development systems and toolkits be integrated with other software
development tools?”

Traceability, being a core aspect of MDD, has recently been subject to increased
research. Winkler and Pilgrim presents a survey of traceability in MDD in
(Winkler,Pilgrim 2009) where they conclude that: “traceability methods are not used
in practice as much as they could. One of the main reasons is lack of good tool
support” - and that more research should be conducted in a coordinated manner.

Model-Driven Development process, utilities and tools

 29

Increasing understanding and communication in the development team can benefit
from a working traceability scheme (Limón,Garbajosa 2005). The ability to conduct
traceability analyses is an imperative feature of MDD tools (Aizenbud-Reshef et al.
2006; Walderhaug et al. 2008b; Winkler,Pilgrim 2009) that can be defined as “the
ability to track any relationship that exists between artifacts involved in the software-
engineering life cycle”(Walderhaug et al. 2008b). The importance of a clear
traceability scheme for software development in healthcare is explicitly outlined by
the Food and Drug Administration in (U.S. Department Of Health and Human
Services et al. 2002) saying that: “A traceability analysis should be conducted to
verify that the software design implements all of the software requirements” (page 19)
and that “a source code traceability analysis should be conducted and documented to
verify that: each element of the software design specification has been implemented in
code; modules and functions implemented in code can be traced back to an element in
the software design specification and to the risk analysis”(page 21).

In (Lago et al. 2009) the authors address the complexity of traceability in a “scoped
approach to traceability management” for traditional software development. The
approach reduces the number of links by identifying which tracelinks (trace paths)
that are important for a type of system or an application domain. This reduces the
complexity and management efforts required to maintain a complete and updated
traceability repository. In MDD, the scoped approach may not be necessary as most
tracelinks are implicit in the design models. Traceability is considered important by
Hailpern and Tarr: “the property of traceability (which enables creating or following
a trace) is core to the value proposition of MDD” (Hailpern,Tarr 2006).

The success of MDD depends on the quality of models creating using the
development approach.

A light-weight approach to evaluate the model quality is described as the 6C quality
criteria presented in (Mohagheghi et al. 2009a) were used as basis. While the 6C
model quality evaluation is rather simple, the SEQUAL framework presented in
(Krogstie 2012) provides a complete evaluation framework for models where the
quality is discussed on seven levels: physical, empirical, syntactic, semantic,
pragmatic, social, and deontic. An important element of the framework is that it takes
into account the “goal” of modelling which is a necessary inclusion because it is, as
stated in the framework: “For anything but extremely simple and highly
intersubjectively agreed domains, total validity, completeness, comprehension and
agreement as described above cannot be achieved”(ibid. chapter 4). The quality must
be achieved in terms of the goals of modelling.

Table 3 presents a summary of the most relevant quality criteria to be used in model
quality evaluation in the PhD project. As discussed in Paper 10 (Walderhaug 2012),
five of the six criteria from 6C were deemed relevant for the final student experiment.
As Krogstie’s book was published after submission of Paper 10, the 6C criteria were
used here. However, the criteria applied in the thesis corresponds to the more detailed
criteria defined in the SEQUAL framework (ibid.). To put the applied 6C criteria
(Mohagheghi et al. 2009a) in a broader perspective, the correspondence is shown in
the “SEQUAL Label” column in Table 3.

Background

 30

Table 3 The model quality criteria applied for quality evaluation

6C Criteria SEQUAL Quality Level Details

Correctness Perceived Semantic
Validity

The right elements and their relationships should
be included in the diagrams. Using the correct
syntax, terms (naming conventions) from the
domain are key factors to be evaluated. The
syntactic quality as described in SEQUAL is
ensured by the modelling tool in the majority of
cases.

Completeness Perceived Semantic
Completeness

As the models are the basis for documentation
and transformation, they need to be complete
with respect to elements and properties.

Consistency Social Quality Defined as no contradictions in the model. It
covers consistency between views or diagrams
that belong to the same level of abstraction or
development phase, and between models or
diagrams that represent the same aspect, but at
different levels of abstraction or in different
development phases. In addition, it covers
semantic consistency between models.

Comprehensibility Pragmatic Quality -
comprehension

How the users understand and select elements
from the modelling language. SEQUAL express
this as: “the interpretation by human
stakeholders of the model is correct relative
to what is meant to be expressed in the model.”
SEQUAL uses the term “comprehensibility” for
the model’s ability to be understood.

Confinement Deontic Quality –
feasible validity and
completeness

A measurement of the level of abstraction and
detail. The models should not have more details
than necessary. This quality is related to both
correctness and completeness.

Changeability N/A Defined as “supporting changes or improvements
so that models can be changed or evolved rapidly
and continuously”.

The core developer artefact in MDD is the MDD tool. The tool can be standalone or
toolchain configured from different standalone tools that together comprise a MDD

Model-Driven Development process, utilities and tools

 31

tool. There is not a single definition of what constitutes a proper MDD tool. However,
OMG maintains a list of MDA compliant tools on their webpage9.

The availability, cost and quality of tools are considered crucial for MDD adoption in
industry (Staron 2006). Unfortunately, MDD tools are part of the reason why MDD
adoption is still low. The immaturity of current MDD tools has been identified as a
problem in several empirical studies (Iivari 1996; MacDonald et al. 2005;
Mohagheghi,Dehlen 2008; Staron 2006), and important tool requirements have been
identified and specified by MacDonald et al. in (MacDonald et al. 2005) and Staron in
(Staron 2006). The requirements include cost estimation, availability of rich libraries,
support for domain knowledge, improve design quality by increasing understanding,
support communication within development team, and provision of traceability
throughout software development artefacts.

More generic requirement focusing on “Physical” qualities level is defined by
Krogstie in (Krogstie 2012) where he presents a list of requirements in three different
categories: model repository, model interchange and support for meta-modelling.
These requirements were developed in the ATHENA A1 EU-project.

An industry assessment of how model driven engineering (MDE) was being applied
and what are the success/failure factors was recently published by Hutchinson et al in
(Hutchinson et al. 2011). From a survey among 250 MDD users (approx. 85% using
UML and 40% using a DSL) and in-depth interview with 19 developers, they
identified several interesting aspects.

• 66% think that MDD improves the communication between stakeholders (a
quarter disagree)

• 47% of the respondents think that MDD will allow less experienced developers to
do development (35% disagree).

• 74% think that MDD will require extra training (less than 9% disagree)
• 43% think UML is too complex (32% disagree)
• 46% think that MDD tools are too expensive (24% disagree).
• And most importantly, 56% think that organizations are using inappropriate MDD

tools (12% disagree). From the interviews the authors report that “Some users
believe that had they adopted off-the-shelf tools, it would effectively have killed
that adoption of MDE.”

The authors conclude that MDD is far from complete.

The VTT report on “Model-Driven Development: Processes and practices”, the
Parviainen et al report from a survey with 69 respondents from both academia and
industry (Parviainen et al. 2009). The results show that about 50% say that the
purpose of using UML is to generate code, whereas the other half uses UML mainly
for documentation.

9 OMG’s list of MDA tools: http://www.omg.org/mda/committed-products.htm

Background

 32

There are many different tools available for the developers, both commercially and
free of charge. There is no sound statistics showing which is the most used tool, and
the VTT report shows that there is a large variance in the tools being used (see Figure
5.

Figure 5 UML tools in organizations. From the MOSIS report (Parviainen et al. 2009).

In the “Other” category, includes “MagicDraw, PoseidonUML, MetaEdit+, Papyrus,
Omundo / Eclipse, Bouml, IBM Rational Software Modeler, Topcased, Eclipse UML2,
Rational Software Architect, Eclipse UML2 Tools, GMF, RSA/RSM, ADONIS,
Objecteering, Telelogic Tau, Netbeans, Enterprise Architect, and Sparx’s Enterprise
Architect”.

The VTT report also includes an analysis of the practices that is in accordance with
the findings by Hutchinson (Hutchinson et al. 2011).

Since the late eighties, CASE has been developed, evaluated and discussed
passionately in the computer science / software engineering community. Many
software companies invested lots of time and money in CASE technology without
getting the desired return of investment. A common perception of CASE technology
from the late nineties was that it failed to deliver upon its promises.

In (Lundell,Lings 2004), Lundell and Lings state that successful deployment CASE
technologies are “at best variable”, and they suggest that the expectations to MDD (or
CASE tools in general) are unrealistic(Lundell,Lings 2004). In 1996, Iivari presented
and article on CASE tools adoption where he reports that perceived complexity of
tools has a negative effect of their usage, and that perceived tool effectiveness has a
strong positive effect(Iivari 1996). In 2000, Sharma and Rai published an empirical
investigation on CASE deployment in IS organizations where they report that CASE

UML tools

5
3

5

10 9

4

8

26

17

0

5

10

15

20

25

30

35

ArgoUML Borland
Together

Microsoft
Power
Point

Microsoft
Visio

Rational
Rose

Rhapsody StarUML Topcased Other,
what?

N
um

be
r o

f r
es

po
nd

en
ts

Empirical evaluations of model-based development approaches

 33

tools are used on half of the development tasks in just a small subset of the
development projects(Sharma,Rai 2000).

Despite significant investments and development efforts, the number of sound
scientific evaluation publications of the qualities of model driven software
development is low (Mohagheghi,Dehlen 2008). A few studies, like those conducted
by MacDonald et al (MacDonald et al. 2005) and Arisholm et al (Arisholm et al.
2006) found no or just minor differences between using model-driven development
techniques compared to traditional software development techniques. Others, like the
Middleware Company’ MDA productivity analysis (The Middleware Company
2003), found significant improvement with respect to productivity and code quality. A
more generic MDD evaluation was done in the ModelWare project where Hartman
reports “significant gains of 20-60% were observed in the execution of maintenance
task” for some experiments, but also significant productivity losses mainly due to
immature tools (Hartman 2006). The evaluation of MDD performance and utility
results vary, and there seems to be a common agreement that “model-driven
engineering is still in its infancy” and that there is still a need for more empirical
studies in this field. (Mohagheghi,Dehlen 2008; Staron 2006).

34

The introduction presented the adapted research framework applied in this thesis. This
chapter describes each cycle in detail.

As presented in the introduction (section 1.3 and Figure 1), the research was
organized in a design science framework, focusing on the development and
assessment of two core artefacts, namely the ModelHealth toolchain and the set of
reusable software services. Design science was considered appropriate for this
doctoral project as it “creates and evaluates IT artefacts intended to solve identified
organizational problems. Such artefacts are represented in a structured form that
may vary from software, formal logic, and rigorous mathematics to informal natural
language descriptions. As field studies enable behavioural- science researchers to
understand organizational phenomena in context, the process of constructing and
exercising innovative IT artefacts enable design-science researchers to understand
the problem addressed by the artefact and the feasibility of their approach to its
solution” (Nunamaker et al. 1991a).

Equally important as the artefact creation was the use of rigorous methods and
relationship to the target application domain. The design science approach to finding
relevant and rigor artefact solutions is built upon pertinent principles that are
presented below:

• Goal is to find utility – not truth. (Hevner et al. 2004). “Truth informs
design and utility informs theory. An artefact may have utility because of some
as yet undiscovered truth. A theory may het to be developed to the point where
its truth can be incorporated into design.” The investigation in this thesis
seeks identify reusable software services for continuity of care that support
independent living, and explore to which extent MDD can assist in developing
reusable software service for the domain.

• Design as a search process: design science prescribes an iterative approach to
artefact development with define/refine cycles. This approach is considered
useful for the research conducted in this thesis as:

o There is no single solution to the research problem addressed. The
design science approach allows for an explorative investigation where

Three phases of design and evaluation

 35

characteristics of both the users and the artefact can be evaluated.
Creating reusable software services requires several iterations.

o As presented in the introduction, there is no single model-driven
development tool available that provides domain specific support for
the defined target domain. A customized toolchain has to be developed
and evaluated in several cycles. This toolchain will be a core design
artefact along with the domain software services.

• Relevance plays a fundamental role in design science, thus the approach
stimulates incorporation of the real needs of the end users / community. The
reusable software services and the ModelHealth toolchain artefact address
accepted challenges in the target application domain.

• Reusing domain knowledge in the rigor cycle: Design science emphasizes the
importance of using knowledge from the “Knowledge base”. Building upon
best practice in the domain in terms of system integration approaches,
continuity of care standards, foundations of MDD and evaluation techniques,
is crucial for building a relevant and viable software services and tools for the
specified target application domain.

The next section describes how the activities in these cycles were organized in three
phases.

The artefact design process was split into three main phases as shown in Figure 6. The
figure shows the Phase element with time period and the main objectives in the phase.
Below each are the results from the process represented with artefact elements. Each
phase is described in detail in the proceeding subsections.

Research Method and Design

 36

Figure 6 Diagram showing the three design phases and the results from these

The main objective in phase 1 was to capture all relevant domain needs and state of
the art SOA and MDD modelling. Based on this information, the first design cycle
should be completed. Each activity and result is described in Table 4.

Table 4 The activities and results in Phase 1

Activity Result Comment

Identify domain
actors and needs

Domain user scenario and
needs report. The report
presents typical everyday
scenarios for the target users
and outlines the required
technology support. The report
uses both textual descriptions
and UML use cases.

To capture the needs for ICT-based assistive
service in the domain and model the actor to
use case relationships together with domain
experts and representatives. The process is
described in detail in Paper 6, 7 and 9.

Three phases of design and evaluation

 37

Specify Initial
ModelHealth
Toolchain
requirements

Initial toolchain requirements. The requirements were specified by the
technical partners in the MPOWER project.
The specification and the process are described
in section 3.3 and Paper 10.

Design and
evaluate
ModelHealth
toolchain V1

ModelHealth Toolchain V1

Evaluation report

A first evaluation of version 1 of the
ModelHealth toolchain. Details are presented
in Paper 2 and 10.

Identity best
practice MDD and
SOA modelling

MDD Toolchain best practice Survey existing tools and techniques in the
field of MDD and SOA. Focus on open source
/ low-cost solutions and solutions based on
standards from e.g. OMG.

Specify evaluation
approach

Evaluation plan Plan the evaluation of the toolchain and
services/application. Use best practice methods
within the limitations of the project.
Recruitment of users and allocation of
resources was found crucial. The evaluation
plan for applications was made as a deliverable
in the MPOWER project, whereas the
evaluation plan is described in section 3.3 and
Paper 10.

An illustration of the relationships between the activities and results in the three
cycles of Phase 1 is presented in Figure 7.

Figure 7: Diagram showing the first phase of the Design Science process. The work was carried out in 2007-
2008

Research Method and Design

 38

The main objectives of the second phase were to refine the toolchain with a DSML
based on evaluation from phase one, identify and design the reusable software
services, and create an application based on these using the new version of the
toolchain.

Table 5 The activities and results in Phase 2

Activity Result Comment

Identify reusable
services

A set of generic domain services
grouped in functional packages

The services are identified from a set of
features derived from the use cases. Services
are grouped into functional areas such as
security, patient management and sensors.
Details are presented in Paper 6.

Create reusable
domain actor
library

A UML profile with reusable
UML actor modeling elements.

UML profiles can contain a library of
reusable model elements (Selic 2007). These
are made available to the developer when the
UML profile is loaded in the modeling tool.
Using best practice DSML design, two
profiles are created. Details are reported in
Paper 4 and 6

Refine and
evaluate
ModelHealth
Toolchain V2

ModelHealth Toolchain V2

Evaluation report

The evaluation of the ModelHealth
Toolchain after the first revision. Done with
developers in the MPOWER project. Details
are reported in Paper 3 and 10.

Model and
implement
Homecare SOA
System

Specification of Reusable
Models in Continuity of care

Homecare Calendar and
Message System

The defined list of service from the relevance
cycle was used to design (model) and
implement the services. Furthermore, a
prioritized list of scenarios was realized with
a SOA-based application. The application
was developed by the development team in
the MPOWER project and is described in
Paper 7 and 9.

Design DSML for
Continuity of care
and SOA

ModelHealth DSML (design) Use best practice DSML design and solutions
to create a DSML for the target application
domain. Process and results are presented in
Paper 4.

An illustration of the relationships between the activities and results in the three
cycles of Phase 2 is presented in Figure 8

Three phases of design and evaluation

 39

Figure 8: Diagram showing Phase 2 of the Design Science process. The work was carried out in 2008-2009

The main objectives of the third and final phase were to refine and evaluate the third
version of the toolchain, and evaluate the pilot systems.

Table 6 The activities and results in Phase 3

Activity Result Comment

Evaluate
HomeCare SOA
System

Homecare SOA Evaluation
publication

Open Source Domain Service
Implementation

The implementation of the reusable software
service designs was applied in a SOA
application. The application realizes a
number of the initial scenarios defined by the
domain experts and was evaluated with in
real life settings for one year. Details are
found in Paper 7 and 9.

Refine and
evaluate
ModelHealth
Toolchain V3

ModelHealth Toolchain V3

Evaluation Report

Recommendations for
Healthcare DSML Tool Support

Refinement of the ModelHealth toolchain,
with a major update on the transformation
module. Evaluation was done with students
and professional developers. A set of
recommendations is formulated from the
evaluation results. Details are reported in
Paper 10

Research Method and Design

 40

An illustration of the relationships between the activities and results in the three
cycles of phase 3 is presented in Figure 9

Figure 9: Diagram showing Phase 3 of the Design Science process. The work was carried out in 2009-2010

This section presents the evolution of the ModelHealth toolchain as it was subject to
refinements and assessments in three project phases. This section is a refinement of
the toolchain development description from Paper 10. Figure 10 shows a summary of
the toolchain version and evaluation process for each version.

Figure 10: The ModelHealth Toolchain design cycle. Only a minor revision was required between Version 3
and the final version.

The ModelHealth Toolchain: design as a search process

 41

The work on the initial ModelHealth toolchain was carried out as a part of the
MPOWER project that aimed at developing tools that enable rapid and robust
development of smart home care systems. (The MPOWER Consoritum 2007).
Developers from research and industry partners in the MPOWER project were
involved in the requirements and design process. Table 7 shows the ten overall
toolchain requirements that the MPOWER project defined for the model-driven
development toolchain:

Table 7 The toolchain requirements

Req. # Requirement Details

TR1 The tools should be free
of charge, preferably
open source solutions

The tools should be possible to evaluate and use without any
charge. Students and other small companies/organizations
should see the toolchain as an affordable extension or
alternative to existing development tools such as Eclipse
IDE. Cost is an important factor in industry adoption (Staron
2006).

TR2 The tools should be easy
to learn

The tools should be easy to learn and provide an intuitive
interaction model to the developers. The ease of learning and
use were also identified as important factors in the survey by
Finnigan (Finnigan et al. 2000).

TR3 The tools should be easy
to use

The tools should not require extensive setup or configuration
to be used. Simple system designs should be simple to
create, and complex system designs should be supported

TR4 The tools should run on
standard computers

The tools should be possible to run satisfactory on a standard
off-the shelf computer. Preferably on Linux, Mac OSX and
Windows.

TR5 The tools should be
extendable with UML
profiles

The modeling tool should allow for domain specific
language extension of the UML meta model using UML
profiles. This requirement is inline with the
recommendations for the “The Perfect Tool” that should
allow for domain knowledge integration (MacDonald et al.
2005).

TR6 The tools should allow
for addition and / or
modification of
transformation scripts

It should be possible to modify the model transformation
scripts to fit the target domain and platform

TR7 The tools should generate
documentation

The model created in the tools should be possible to export
as documentation in different formats, minimum Rich Text
Format (RTF).

TR8 The tools should be
mature and in final

To reduce the risk for internal bugs in the tools, the tools
should be in a mature state and have a significant user group.

Research Method and Design

 42

release

TR9 The tools should support
developers from project
initiation to deployment
and testing

All phases of a development process should be supported in
a coherent way, from initial design/requirements
specification through development, testing and to
deployment. The tools should provide information to the
users about the context and rationale for design decisions,
preferably as a part of a traceability scheme.

TR10 The tools should support
a top-down SOA based
development approach

Though bottom-up and meet in the middle approaches are
relevant, the target tool chain was designed to support top-
down development. To incorporate domain concepts in the
design it is recommended to do this in a top-down manner.

The research approach follows a design science paradigm where an artifact is
designed and assessed in a search process (Hevner 2007; Hevner et al. 2004). Based
on the ten initial toolchain requirements TR1-TR10, a tool and tool component
investigation were conducted by a group of researchers from the MPOWER project
group. The six project partners provided their preferred tools to create the target SOA
artefacts and the results were summarized in a pros/cons matrix. As shown in Figure
11 the selection of tools for the first phase were:

• Sparx Enterprise Architect (EA) version 6.1 providing the Modeling Tool and
Transformation Tool: EA is a mature tool, and expected to be easy to use and
learn. It runs natively on Microsoft Windows, but can run on all other
platforms using emulators. EA is not free of charge, but the price for a license
was considered acceptable for both students and companies. In addition it did
not require a powerful computer to run satisfactory. EA has a large user
community that is active on the support forums. EA has a built-in tool and
script for generating WSDL files, html documentation and RTF
documentation.

• NetBeans version 5.5 with Derby DBMS and Glassfish v2.x (application
server): It provides all required functionality in one installation and was
considered easy to configure and maintain. A high-performance computer is
recommended, but not required. NetBeans 5.5 was at the time awarded the
best SOA IDE by Web Services Journal readers.10

The first design cycle was initiated with a student exercise employing Version 1 of
the ModelHealth Toolchain as illustrated in the diagram in Figure 11. The EA WSDL
script was modified by me to generate valid namespaces and correct basic types.

10 Sys-Con website: http://tv.sys-con.com/node/171304

The ModelHealth Toolchain: design as a search process

 43

Figure 11 The first version of the ModelHealth Toolchain. Enterprise Architect provides the modeling tool
and a transformation tool to generate HTML, RTF documents and WSDL files. NetBeans will use the
WSDL file to generate a Web Service that can run on the Glassfish application server.

As a part of the INF-3791 Telemedicine and e-health systems course (Spring 2008) at
the University of Tromsø, Norway, a group of five students were introduced to the
ModelHealth toolchain version 1. The assignment was to design a system for shared
medication information. As input to the work they were given introductory lectures,
and the lecture material was made available on the course’s homepage. The course is
international and the working language is English; hence all lectures, handout
material and communication were in English.

The assignment was carried out as a 6-week project where a set of tasks structured
according to the MDA approach (Miller,Mukerji 2003) should be completed and
discussed in a weekly one-hour meeting. All students should participate in the
meetings. During the weekly review meeting, the group presented and discussed their
results and plans for the next period. Technical issues were discussed and solved.

• The results were documented in a UML model file, notes from the meeting
and a final report.

Research Method and Design

 44

• All students were present at the weekly meetings for presentation of their
results and problems. The problems were in mainly two categories; UML
notation and model structure.

• The theoretical introductory course in UML was not sufficient when it came to
concrete modeling of system behavior and structure. The students referred to
Internet tutorials and compared their design to example diagrams found
online. In the context of MDD, model structure is of great importance to
utilize model transformation and code generation. Reusing design elements
across diagrams and model views is of utmost importance in order to maintain
consistency and model traceability.

• The first version of the tool chain provided limited assistance for creating
proper model structures. Reference material was given in separate documents
and presentations as well as references to online material. Literature such as
the SOA4HL7 guideline (Honey,Lund 2006) and the SOA book from Erl (Erl
2006) were found to be too comprehensive for this type of exercise and
developer group, even though the main principles for service identification
and design was presented in the lectures.

The students did not reach the implementation (coding) phase, but review of the
system architecture and design found that the design model had sufficient detail and
proper SOA structure to become a valid SOA system. The service candidate
identification, interface specification, message design and service modeling were
completed successfully and the design models would work fine individually as
documentation and paper-based software specification using traditional programming
tools. However, the lack of MDD experience made them create design models that did
not have the necessary quality (completeness / correctness / consistency)
(Mohagheghi et al. 2009a) to allow model transformation, code generation or even
proper documentation generation.

The aspects of MDD that they found important were related to documentation and
formalism. Modeling forced them to make a clear distinction between the target
system and the environment (systems). Furthermore, a consistent and correct use of
model element naming and the necessity of creating e.g. a complete information
model were deemed useful. All properties of an element should be considered at
design-time as the models are used for code generation. More advanced MDD
functions such as UML profile use for improved code generation was not evaluated,
but demonstrated in the final summary meeting. The verbal response from the
students was positive.

In summary, the group of students having limited or medium software engineering
experience successfully managed to design a SOA-based system for a given scenario
specification. Due to the lack of UML/MDD training, their design final model was
neither sufficiently detailed (complete) nor structured to be applicable for model
transformation and code generation.

As a supplement to Sparx Enterprise Architect, it was considered important to support
the developers in the modeling phase with a DSML for the relevant healthcare

The ModelHealth Toolchain: design as a search process

 45

subdomain, focusing on continuity of care. The DSML introduced in the tool
supports the developer on two levels: model content (e.g., the Actor model elements
shown in Figure 12) and project model structure shown in Figure 13.

• Project Model Structure: let the users load a preconfigured environment that
defines required diagrams and model elements that and provide guidance on how
it should be modeled and inspected (traceability view). The structure is part of a
ModelHealth Project Template called “Service Project” that was installed in the
modeling tool.
• Traceability viewer: A configuration of the internal Enterprise Architect

traceability tool to make it easy to visualize the relationships and dependencies
between the core model elements. The diagrams and guidelines provided in
the ModelHealth Service project template implicitly add traceability through
the software design phases. If the user follows the guidelines and makes a
complete design, using the traceability viewer allows the user to trace from
initial scenario through use case diagrams, feature diagrams, information
model and service designs, to code (WSDL). Details about this traceability
scheme are described in Paper 9.

• The project template:
o creates a package structure and diagrams required for use case models,

feature models, a information model and a complete service model.
The diagrams have example model elements that clearly show how a
service should be modeled. Notes in the diagrams provide short user
guidelines.

o Adds a new context menu for adding new services designs. A new
“service design” creates a new package with the required service and
message design diagrams and packages structure. This structure is
specified by the IBM Software and Services UML Profile (Johnston
2005). The stereotyped elements were also loaded into a diagram-
specific palette, showing only those elements that should be applied in
the current diagram.

• Model content:
• Loads stereotypes and tagged values for SOA service modeling from the IBM

“Software Service UML Profile” (Johnston 2005). The profile elements are
applied in the example models in the template.

• As a part of the project template, loads a library of healthcare domain actors
relevant for teamwork treatment and follow-up. These actors represent the
main stakeholders and systems in the care domain, and are harmonized with
international standards and known taxonomies on continuity of care and smart
home environments as discussed in Paper 6.

Research Method and Design

 46

Figure 12 The initial project structure and content. The actors library contains eight sub-packages to make
it easier to navigate and find the appropriate actor element.

Figure 13 The initial project template structure. In each package there is a sample diagaram that provide
instructions on how to carry out the modelling

The ModelHealth Toolchain: design as a search process

 47

Version 2 of the ModelHealth toolchain in shown in Figure 14 illustrating how the
modeling tool makes use of the project template and software service UML profile.

Figure 14 Version 2 of the ModelHealth Toolchain. The Project template and the UML profile (with actors
library) is used by the Modeling Tool. The Traceability viewer provided in EA allows for simple coverage
and orphan analyses.

When the developer starts the modeling tool (Enterprise Architect), the project
browser will list a structure that has packages for each development phase and
diagrams that must be completed in order to get a complete design model (see Figure
13.) The domain actor library provides a list of UML Actor elements named and
described according to the domain standards. The diagram in Figure 12 shows the
actor library elements.

The actors library is mainly used for use case and feature modelling, associating
activities and features (requirements) with actors. When the developer has completed
the usecase and feature modeling, the information model and service modeling is
done using the Software Service profile structures as shown in Figure 15. Service
interface operations and input/output message types can be easily defined using the
tailored element palette as shown in the left toolbox.

Research Method and Design

 48

Figure 15: Example of service design showing the PatientManagementService and its interface

As described in Paper 12, the coverage and orphan analysis traceability services are
provided by a simple relationship matrix as shown in Figure 16. Coverage analysis
gives an overview of which modelling elements (e.g. feature) that are related and
which are not related to other elements in a proceeding development phase (e.g.
realizing elements such as service). Orphan analysis gives an overview of model
elements that are not related to other elements, especially elements in the previous
development phase (e.g. services that are not connected to a feature). For each feature
(rows) that is supported by a service (columns) there is an upward arrow. For details
about the tracelink, the developer can double-click the arrow to inspect the details
about the tracelink and navigate to the link ends, e.g., view the details about a feature
for a feature-service tracelink.

The ModelHealth Toolchain: design as a search process

 49

Figure 16: Example of a relationship matrix showing traceability coverage of features to services

When the service designs are completed, code and documentation can be generated
using actions available in the modeling tool menu system.

As part of the MPOWER project (The MPOWER Consoritum 2007), a
comprehensive SOA design model was created using version 2 of the ModelHealth
toolchain. The design model included:

• 18 user scenarios, each with three to four sub-processes were described.
These were then subject for analysis by system architects using UML use
case modeling.

Research Method and Design

 50

• 113 UML use cases were described from the scenarios, separated in 10
groups.

• 82 actors (stakeholders and system actors) were identified and modeled.
• A total of 145 features were derived from the use cases and structured into

the logical groups.
• 25 software service designs were created to realize the features

The evaluation of the MPOWER project developers study was published at the
European Conference on Model Driven Architecture in 2008 (Paper 3). A
questionnaire was sent to each developer to which all developers responded. The
questionnaire was structured according to the technology acceptance model
addressing the easy of use, usefulness and compatibility with daily work processes
(Davis et al. 1989; Venkatesh,Davis 2000). The results show that the model-driven
toolchain supports the development, although some errors in the code generation
process can make the developers spend much time on debugging code that should be
flawless. Inherent aspects of model-driven development such as traceability and
generation of system documentation were found useful.

The evaluation results show that: “the respondents indicate that MDSD tools must be
perceived useful and should be easy to use. Tool performance does not have a direct
effect on MDSD use, although business analysis, traceability and code generation
were found useful. It is especially important that MDSD tools are stable and provide
complete and correct artefacts”. The main shortcoming of the toolchain was the
inflexibility of the built-in EA transformation component: “Using Model-Driven
development improves my job performance and productivity, only if everything works
well with the transformation of models... Otherwise you can find yourself spending
too much time trying to make things work (and doing the required changes manually).
If this is the case then using Model-Driven development takes too much time from my
normal duties.“ (Walderhaug et al. 2008a)

After the first student evaluation and the MPOWER evaluation it was found necessary
to replace the built-in transformation in the chosen UML modeling tool with a stand-
alone open solution. This solution was chosen to be Eclipse 3.3/3.4 (Java IDE and
modeling tools) with MOFScript plugin version 1.3.2. This is a generic model-to-text
engine that allows the developers to traverse the model and output any kind of text. A
script for MOFScript that generates a WSDL was developed and incorporated into the
Eclipse Project along with the necessary DSML support files.

To export the UML design models from Sparx Enterprise Architect to Eclipse, it was
necessary to develop a transformation stylesheet in XSLT. This required a significant
effort and resulted in a 1600 LoC stylesheet that transforms the EA XMI
representation into a XMI representation that Eclipse supports. The developed
stylesheet solution is a major extension of the solution presented by Kahn et al. in
(Khan 2008).

In addition, the internal SQL Script in EA was modified to support Derby databases,
allowing for easy database development (from the information model) and web

The ModelHealth Toolchain: design as a search process

 51

service testing on real data. The third and final version of the ModelHealth toolchain
is shown in Figure 17.

Figure 17 Third version of the ModelHealth Toolchain. Eclipse and MOFScript was introduced to generate
a error-free WSDL file. Support for Derby DB SQL was added

Version 3 of the ModelHealth Toolchain was evaluated in a 10-week student project
at the University in Tromsø. The development process was followed up closely by
using an agile development process with weekly standup-meetings (scrums). Ten
students in the Telemedicine and eHealth course (autumn 2009) were given an
assignment to develop a SOA based Shared Medication List system using the
ModelHealth toolchain version 2.

As preparation for the project, the students were given lectures on MDD in general
and the toolchain specifically. The ModelHealth Service Development Guideline (D1)
and the instruction videos (V1) were available on the course’s homepage. Paper 10
provides a detailed description of the evaluation process.

The students were divided into two groups based on a screening process of
development skills and experience. The assignment and process was described in

Research Method and Design

 52

detail and divided into three main phases. In addition, an optional phase was added in
case there where time. The phases were:

1) System design, modeling and transformation
2) Database creation, Web Service implementation and deployment
3) Application development
4) Change request and reimplementation of web services

A separate room was reserved for the project, with two high-performance
workstations set up for each group. Two whiteboards in the room were used to track
the design and development tasks using multi-colored stickers.

The results were documented in the EA UML model file, notes from the Scrum
Product Backlog and a final report. A brief evaluation of the process and results for
each phase is shown in Table 8.

Table 8 Summary of student exercise 2 results

Project
development
phase

Task Comment Domain knowledge, MDD utilities
and information needs

System Design
and modelling

Use case,
information
model, service
designs

Design quality OK.
Some orphan
elements (not
correctly deleted)
had to be fixed by
supervisor

The students used the scrum
meetings to discuss attribute details,
associations (relationships) and
naming conventions.

Model
transformation

Generate
documentation,
database schema
and WSDL files

All generation OK Students needed assistance when
generating the WSDL from Eclipse.

Database
creation, Web
Service
Implementation
and deployment

Create Derby
database,
generate web
service skeletons,
implement web
services, deploy
and test.

Database creation
OK

Students commented that they had to
spend time on populating the
database with test data. Would like
to have this generated from an object
model.

Application
development and
deployment

Create a SOA
desktop
application in
NetBeans

Partly OK. GUI ok,
controller logic
required
debugging

Students not familiar with Hibernate
and database connections. Some
assistance on Java programming
resolved issues.

Change request Update
information model
and service
design. Transform
new artefacts

Artefacts
retransformed,
database and web
service updated.

Students were really happy to see
how fast changes were implemented.
Main problem was that the database
had to be repopulated with test data.

The ModelHealth Service Design process

 53

Only minor bug fixes was done to the ModelHealth V3 toolchain after the second
student exercise.

The process of designing domain services with the ModelHealth toolchain is based on
the design guidelines in (Erl 2006; Honey,Lund 2006) .The process is a top-down
approach that normally starts with a specification of the target environment, its
requirements and concerns. Fig. shows a diagram of the main process divided into
three core phases. These phases correspond to the CIM, PIM and PSM levels of
OMG’s MDA approach (see section 2.3.1). Each step in the process in described in
Table 9.

Figure 18 Service development process

The software service development process is divided into three main phases:
Requirements specification, service design and service implementation. In each
phase, a set of diagrams are modelled and tracelinks are created.

Research Method and Design

 54

Table 9 Summary of main steps and artefacts in the service modelling process

Phase Activity Artefact
(diagram)

Comments

Requirements
Specification

Develop user
requirements

Scenario
descriptions, use
case models and
system feature
models

The scenarios should be included in
the use case properties (supported by
UML modelling tool). Features must
be derived from use cases using
<<trace>> dependency link.

Identify
service
candidates

Service classes and
interfaces (ports)

Group features and identify service
candidates. Separate read and write
interfaces according to best practice
SOA design in (Erl 2006) and
SOA4HL7 in (Honey,Lund 2006).
Each service must realize one or
more features that must be modelled
as a Service class – Feature
<<trace>> dependency.

Service
Specification

Specify
information
model

Information model Create a domain information model
that allows for specification of
relevant request and response
messages (documents) for the
interface operations. Use case and
feature model element should be
used as input.

Specify
interface
operations

<<Service
Specification>>

Use feature descriptions to specify
operations on the interfaces. Add
operations to the interface as needed.

Specify
service
messages

<<Message>>
diagram

Use the <<Message>> element from
the tool palette to create a message
diagram. Add properties to messages
using information model elements as
types in addition to UML primitive
types.

Iterate this process until all interface
operation parameters are set using
the message model elements

Service
Implementation

Generate
WSDL and
web service

WSDL file and
Web service
skeleton

Use the ModelHealth WSDL
transformation to generate WSDL
files for each service (multiple
service designs are supported in one
model). Use your preferred
development IDE to generate Web
Services skeletons for
implementation.

Generate DDL
and database

Database
description file
(SQL) and

Generate DDL from the information
model. The DDL file can be used by
database management tools to create

Evaluation methods and data collection

 55

database
instantiation

database instances.

Generate
service
documentation

RTF document and
html project (with
links)

Use the documentation generator to
create complete service
documentation in RTF documents
and HTML projects. The HTML
project provides traceability
navigation.

This PhD project follows what Oates refers to as a “design and creation” research
strategy. This strategy “…could offer a construct, model, method or instantiation as a
contribution to knowledge. Often the research outputs are a combination of
these”(Oates 2006). The ModelHealth Toolchain and the reusable software services
designs must be designed and evaluated using sound evaluation methods.

Selecting the correct evaluation method is essential for the quality of the evaluation
results. In (Easterbrook et al. 2008) Easterbrook et al review a set of empirical
methods and the process of selecting the appropriate method for different types of
research questions, theoretical stances and practical considerations (e.g., access to
subjects and resources). For each evaluation method, different data collection
methods can be used. In (Sim,Lethbridge 2008) , Sim and Lethbridge present a
taxonomy for field study data collection techniques. The taxonomy divides the
techniques into three main categories: direct, indirect and independent techniques.
Each technique has advantages and disadvantages, and can be used individually or in
combination to “allow for a more accurate picture of the studied phenomena”
(Sim,Lethbridge 2008) (page 30).

Details about the evaluation methods and data collection techniques are not provided
in detail here as the books “Guide to Advanced Empirical Software Engineering” by
Shull et al., (Shull et al. 2007) and “Researching Information Systems and
Computing” by Oates (Oates 2006), give excellent explanations of these.

In the following subsections, the evaluation method and data collection techniques are
briefly presented for the two core artefacts: the ModelHealth Toolchain and the set of
reusable software services (see section 1.3). Detailed references to the appropriate
literature are given.

As described by Easterbrook in (Easterbrook et al. 2008) it is often useful to apply
more than one technique to investigate a research question. A mixed-method
approach was used for evaluation the ModelHealth toolchain because of the
exploratory nature of the research questions and uncertainty of the access to
resources, such as developers to participate in experiments. The two methods mixed
were (ibid pages 294-303):

Research Method and Design

 56

• Action research: the toolchain was developed in three iterations involving
two groups of masters students in informatics, and 16 professional
developers in the MPOWER project. Collaborating with the students and
developers, the problem of utilizing the benefits of domain specific model
driven development was investigated by designing and implementing
software services with the ModelHealth toolchain. Data from the students
projects was collected using focus groups as part of a Scrum process. To
capture the data from the professional developers, a questionnaire based on
the “Technology Acceptance Model” (Davis et al. 1989; Venkatesh,Davis
2000) was used.

• Controlled experiment: the final version of the ModelHealth toolchain was
used in a controlled experiment with university students in the master’s
program in informatics. Data was collected using observation notes on
“Inspection Data Form” (Seaman 2008), semi-structured interviews (both
direct techniques), and development result analysis (independent technique).
In addition, the students were instructed to “think-aloud” during the
experiment (Van Someren et al. 1994). Interview data were transcribed and
analyzed using the “constant comparison method” (Miles,Huberman 1994).

• Survey: a survey with professional developer of healthcare information
systems was conducted after a demonstration of the final version of the
toolchain. Data was collected from a total 25 participants representing the
target user group for the toolchain, using a questionnaire addressing domain
specific MDD and SOA for healthcare.

Paper 10 describes the methods and materials for the toolchain evaluation in detail.

The process for evaluating the software services was to follow a rigorous design
approach and apply a reference implementation of the services in the development of
two pilot systems. Figure 19 from Paper 7 shows the main steps in defining and
evaluation the services.

Figure 19 The main steps in defining and evaluating the reusable software services

With reference to Figure 19 and Figure 20 (also in Papers 3 and 6):

• The “user needs” were developed from user workshops, expert interviews,
literature study and user questionnaires. The results were documented as
“user scenario specifications”.

• Doing use case modelling produced a use case model (including features)
and actors model.

Evaluation methods and data collection

 57

• From the features and use cases, a set of services were identified and
designed in a service model.

• Using model transformation, WSDLs were generated and used to create
reusable web services

• Building upon the reusable web services, two applications were developed
and deployed.

• Finally the applications were evaluated in realistic environments.

Figure 20: Detailed view of the design and development process for reusable software services and pilot
systems

To evaluate the software services, a case-study approach was applied. Two pilot
systems realizing a prioritized set of user scenario were developed using the reusable
software services. Practical considerations made it impossible to do long-term
evaluation on both pilot systems since they were deployed to two different
geographical locations; Norway and Poland. The system deployed to Norway was
evaluated using training sessions and follow-up interviews per phone by the vising
nurse.

To collect evaluation data about the system development and technical functionality a
combination of direct and independent techniques were applied. After the system
development a questionnaire was submitted to the developers addressing the use of
SOA in systems development, in terms of the MPOWER project. The results were
analyzed using descriptive statistics. To complement this “picture”, experience from
technical difficulties with installation and operation was logged, e.g., deployment
difficulties and network issues.

Research Method and Design

 58

The work described in was carried out within the frames of the MPOWER project.
Many of the activities outlined in section 3.5.2 were carried out in collaboration with
other researchers and programmers in the project. The list below clarifies my role in
these activities. With reference to Figure 20:

• I was involved in the literature study and questionnaire design to the domain
experts.

• I contributed to the scenario descriptions (activity and problem) and led the
work on use case modelling

• I made the actor model as described in Paper 6.
• I was strongly involved in service identification process and led the modelling

of services in Enterprise Architect.
• I was responsible and the creator of the information model, with contributions

from Ericsson Nikola Tesla in Zagreb, Croatia.
• I was the creator of the model transformation mechanisms, with valuable input

from Dr Erlend Stav, SINTEF.
• I was the lead programmer for the web service handling all person, patient,

provider, user and relationships information.
• As the technical manager I was the scrum master for application development.

TSB Solutions and Dimension-Informatica in Spain, Ericsson Nikola Tesla in
Croatia, University of Cyprus and AIT in Austria were the main application
development partners.

• I was responsible for deployment, testing and maintenance of the Norwegian
Pilot system for one year. I also attended evaluation sessions in Norway
together with Torhild Holthe and Ingrid Haug-Olsen from the Norwegian
Center for Dementia Research.

59

The results are organized according to the three research questions. For each research
question, the key findings are presented with references to the publications from
which they are synthesized. Each question is discussed in separate subsections: 4.1
addresses how a MDD toolchain can assist developers in creating reusable services,
4.2 addresses how domain standards and knowledge should be imported into a MDD
framework, and finally subsection 4.3 addresses which reusable services that are
relevant for care and management of elderly living in their homes. A summary of the
key findings is shown in Table 10

Table 10 Relationship between the findings, the papers and the research questions

Finding Addressed
in paper(s)

Research
Question(s)

F1 Continuity of care standard concepts relevant for service
design can be modeled as UML Profiles

P1, P2, P4,
P6, P10

R2

F2 Ease of use and correct code generation is important for the
usefulness of MDD tools

P3, P10 R1

F3 Traceability services are considered an important utility in
healthcare software development and can be provided using
basic UML dependencies or using more sophisticated trace
models

P3, P5, P8,
P10

R1

F4 The toolchain should provide project structure and process
assistance.

P3, P5, P10 R1

F5 Presentation of domain information in the design tools should
be flexible, consistent and easy to use

P10 R2

F6 The modeling tool should provide design model verification
and validation

P4, P10 R1

F7 A relatively small number of reusable software services cover
a large part of the ICT support needs for independent living

P6, P9 R3

F8 Simple service-based applications have the potential to
support older people at home, particularly older people with
memory problems who need support in structuring the day and
keeping an overview of the daily activities and appointments

P7, P9 R3

Results

 60

For each research question discussed in the following, a UML class diagram
illustrates the relationships between the concepts. The dashed arrow from finding to
research question e.g. F2 to R1 means that finding F2 contributes to answering the
research question R1. The dashed arrow from e.g. paper P3 to finding F2 means
paper 3 provides rationale for the finding F2. These relationships are shown for all
papers (P1-P10), findings (F1-F8) and research questions (R1-R2).

Using MDD to develop software services involves the creation of UML models and
model-to-text transformations. The challenge addressed in this doctoral project is how
to design a toolchain that software developers with limited MDD experience can
utilize to improve the process of developing reusable software services. The target
toolchain is called the ModelHealth Toolchain.

The Design Cycle described in 3.1 explains how the ModelHealth Toolchain artefact
was created and assessed in three cycles. An essential part of the ModelHealth
Toolchain is the approach to software services design where the developer identifies
key system features from which services can be derived and designed. To complete
the service design model, a set of diagrams must be created according to a required
structure. The final design model is then used as input to code and documentation
generation. The ModelHealth service development process is described in section 3.4.

From the toolchain assessments carried out in the design cycle, four findings were
specified as shown in Figure 21. In the following, each finding is discussed in terms
of its underlying investigations.

R1: How can a model-driven development toolchain with domain support assist the
development of reusable domain software services?

 61

Figure 21: Overview of the relationships between research question 1, the relevant findings and publications
reporting them

In the MPOWER project, 16 developers used the ModelHealth Toolchain Version 2
for designing reusable software services to support continuity of care. The design and
development process was carried out during a period of 12 months, resulting in 25
software services. Paper 3 reports from a survey done on this developer group using
an online questionnaire. The results from the survey identify usefulness, ease of use
and “correct code generation” as the essential factors for using MDD.

One of the developers explicitly states that:

“Using Model-Driven development improves my job performance and productivity, only if everything
works well with the transformation of models... Otherwise you can find yourself spending too much
time trying to make things work (and doing the required changes manually). If this is the case then
using Model-Driven development takes too much time from my normal duties.“

The refinement of the toolchain for version 3 resolved the problem of generating
incorrect code. In Paper 10, the results from the student experiment shows that no
problems were encountered during transformation and that generated artefacts such as
code and documentation were correct. The evaluation results also revealed that the
participants’ design model quality was sufficiently good to generate useful WSDL
files, databases and documentation of these. In the follow-up interviews, three main
utilities of the toolchain approach were identified: improved system overview, code
and documentation transformation, and traceability of artefacts.

Paper 10 reports from an “expert opinion” workshop where professional developers of
healthcare information systems were asked about their attitudes towards MDD in

Results

 62

healthcare. The developers were given a demonstration of the ModelHealth Toolchain
(version 3) and responded to a paper-based survey and gave oral feedback to the
workshop facilitator. The responses showed a clear indication that they believed that
MDD would be useful as it could improve the quality of the work process and results.
The majority would like to learn more about MDD, as the current use of core model-
driven development techniques was low.

Traceability has been identified as a core utility of MDD in the literature. However, a
unified traceability scheme is missing, and cross-tool traceability is hard to achieve.
Paper 5 provides a comprehensive specification of a traceability solution that would
allow for domain specialization and traceability information sharing. The proposed
solution supports the core traceability services:

1) Trace inspection: the purpose of trace inspection is to allow the trace user to
inspect trace information to get a better understanding of (parts of) the system
and its development, both during development and maintenance. Trace
inspection functionality should include the ability to visualize, navigate, and
query traces.

2) Coverage analysis: through coverage analysis, the trace user can determine
the degree to which some artifacts of the system are followed up by other
artifacts in the system.

3) Orphan analysis: Orphan analysis is used to find artifacts that are orphaned
with respect to some specified trace relations. The analysis should be able to
find single orphaned artifacts, but also isolated groups of artifacts with trace
relations of the specified types only internally in the group.

4) Change impact analysis: One use of trace information is to determine the
impact a change to an artifact will have on other artifacts. The results of a
change impact analysis can be used to estimate the cost, resources and time
required to perform the change, or even to determine if the change can be
allowed or realized at all.

Paper 5 describes a complete Traceability System (page 12) specifying how traces
between artefacts can be created according to a Trace Model and shared through a
Traceability Repository. The paper presents a complete system example
demonstrating the proposed solution.

In Paper 8, the importance of traceability is discussed in terms of software validations
recommendations from the Food and Drug Administration (FDA) (U.S. Department
Of Health and Human Services et al. 2002). FDA strongly recommends applying a
traceability scheme for managing requirements fulfillment, component dependencies
and testing. Applying one simple and one extended Trace Model, the paper
demonstrates how the aforementioned traceability services can be realized in the
ModelHealth Toolchain for web services development.

In the MPOWER developer study (Paper 3), the student experiment and the
professional developer study (both Paper 10), traceability services were outlined as

R1: How can a model-driven development toolchain with domain support assist the
development of reusable domain software services?

 63

important utilities improving development process, system understanding and
documentation. The professional developers report that traceability tools are used by a
few projects, and mostly for requirements to tests, but that MDD could improve the
use of traceability services.

In the ModelHealth service development process, some tracelinks had to be specified
manually, such as service to feature realization. This manual step was neither
considered time-consuming nor problematic, and the value of having a complete trace
model largely outweighed the efforts required to maintain it (Paper 10).

The investigations done in the project employed only a simple traceability scheme.
Paper 8 shows how the solution described in Paper 5 can be used for creating valuable
information for use with change impact analysis in particular. The traceability
analysis results can be displayed in several ways, and Paper 5 illustrates one way
based on UML Profiles and stereotype icons as shown in Figure 22. Here the amount
of effort required is illustrated using colored dashed dependency links – black is “no
impact, green is “low impact” and red is “high impact”. It can be easily detected that
the “define relationships between stakeholders” feature is the most difficult or
complex feature of the PatientActorControl software service.

Figure 22 Example of stereotyped change impact analysis results from Paper 5

A fundamental utility of MDD is the ability to generate development artefacts such as
code or scripts. As discussed in the previous section, it is of utmost importance that
the generated code is 100% correct so that the developer will not need to debug

Results

 64

generated code. When designing the ModelHealth Toolchain it was experienced that
developers could introduce unwanted model elements and create incomplete designs.
Hence, the generated code would become incomplete or incorrect.

The refinement from Version 1 to Version 2 introduced project templates, model
palettes and diagram examples (see section 3.3). The 16 service developers in the
MPOWER project used Version 2 for designing 25 software services. The evaluation
of 12 months design work found that much coordination was required for a distributed
service design project (Paper 3, Table 7). Having a common structure and process for
service design allowed for the complete design of 25 services derived from a common
actor model, use case model, feature model and information model.

The MPOWER developers identified traceability as a useful utility (Paper 3, Table 7),
improving the development process and understanding of the system. To fully benefit
from the traceability solution described in Paper 5, a common project structure and
process must be implemented. The quality of the traceability services strongly
depends on the completeness and correctness of the information in the Traceability
Repository.

In Paper 10, the design model qualities are evaluated in terms of correctness,
completeness comprehensibility, confinement and changeability. The students
participating in the experiment had limited experience in using MDD, and used the
ModelHealth toolchain Version 3 to create service design models having sufficient
quality for successful code and documentation generation. This is in large contrast to
the students with comparable experience using Version 1 of the toolchain that were
unable to create models that could be used for code generation.

The experience from developing the toolchain and the final student experiment show
that novice MDD users can make effective use of a MDD toolchain with sufficient
project structure and process assistance. This finding is also proposed as a toolchain
requirement in Paper 10.

Providing project structure and process assistance will help the developers create
models that are applicable for code generation. However, the developer must still
select the correct model elements, give them a proper name, associate the element to
other elements and keep the model file clean of orphan elements.

To validate models with respect to quality, will in most cases require human effort.
As stated in the SEQUAL framework: “In the area of semantic quality, general
automated tools are difficult to develop for the simple reason that the domain and
audience are beyond automatic manipulation” (Krogstie 2012). One way to address
this problem is training and adapting the modelling language to the domain. In terms
of UML, this can be done using the UML profile mechanism.

In Paper 4, the development of two UML profiles for SOA and HomeCare software
services is presented. The profiles contain domain specific constraints that should be
met in the service designs. These constraints, specified in OCL, should be validated at
modelling-time. As an example, one of the constraints requires that a patient

R1: How can a model-driven development toolchain with domain support assist the
development of reusable domain software services?

 65

<<SubjectOfCare>> element in a diagram should have at least one association to a
provided carer <<HealthCareProfessional>> element. A MDD toolchain should
provide functionality for easily validating such constraints. Figure 23 shows the
proposed UML profile for Homecare.

Figure 23 Proposed UML profile for Homecare presented in Paper 4

In addition to validation model constraints, syntactic model correctness can be
verified at modelling time. Simple modelling errors such as having duplicate elements
with the same name in the same package, properties without a specified type, and
orphan elements in the model file, should trigger a warning from the tool. Such errors
were encountered during the student exercises in the toolchain design process
described in section 3.3.6. In this case, the supervisor found the model errors during
model review in the scrum meetings.

In the student experiment reported in Paper 10, one of the student groups designed an
incorrect information model in the sense that it was not applicable for database
structure generation (DDL file). In the experiment, the round-trip time from model to
code was very short, allowing for quick fixes in the model without introducing ripple
effects in the coding. In a larger project this banal error in the design would have
caused unnecessary work for many people.

Related to validating model correctness is the ability to utilize traceability services at
modelling time. These should be readily accessible from the tool, allowing the
designer to navigate in the model, monitor coverage (e.g. requirements), and detect
orphans (e.g. features not realized or services not connected to features). In the
aforementioned student experiment, it was found that trace navigation using a html
browser was useful for maintaining a system overview.

This finding is one of the toolchain requirements reported in Paper 10, and is further
supported by discussions in Paper 6.

OtherCarer

HomecareDevice

- deviceType: String
- InterfaceType: HomecareDeviceInterface

HealthcareProfessional
«stereotype»
Attributes
- healthcareProfessionType: String

SubjectOfCare
«stereotype»
Attributes
- socType: String

HealthcareOrganization

- organizationType: String

«metaclass»
Actor

«metaclass»
Class

+ isActive: Boolean

«metaclass»
Association

+ direction: Direction = Source -> Desti...

HealthcareProfessionalForSubjectofCare

EmployedAtCarer

- roles: String

«enumeration»
HomecareDev iceInterface

 Konnex = 1
 Wired-Serial = 2
 USB = 3
 Bluetooth-Serial = 4
 Bluetooth-Medical = 5
 Proprietary = 6
 Other = 0

«extends»
«extends»

«extends»

«extends»«extends»

«extends»

«extends»

«extends»
«extends»

«extends»

Results

 66

There is a common agreement that standardization is an important criterion for
creating interoperable systems. The concept of continuity of care as defined in the
introduction should be supported by interoperable information systems allowing
involved stakeholders to access and update information relevant for the care
provision.

The vast majority of Standards Development Organizations (SDOs) provide their
standards mainly as documents. Software developers must read and understand these
documents and develop code that adheres to the recommended structures and best
practices. In many cases, design flaws will be revealed during integration testing.

The ModelHealth toolchain address these challenges by incorporating relevant
standards and best practices into developers’ tool suite. Evaluation of how this
solution worked identified two key findings discussed in the following. Figure 24
shows the relationships between research question 2, the two findings and the papers.

Figure 24: Overview of the relationships between research question 2, the relevant findings and publications
reporting them

R2 How can relevant domain standards and knowledge be incorporated into a model-
driven development toolchain, and what aid can they provide in the design and

development process?

 67

The overall concept of how domain specific knowledge could be incorporated into a
MDD toolchain was explained in Paper 1 providing a “CarePlan” example profile
with model transformation. In Paper 2, the process and first experiences from using
the toolchain with HL7 messages in the MPOWER project are reported. From these
initial investigations and ideas, the UML profiles were further developed and
explained in Paper 4. Figure 25 shows the overall process followed for developing the
UML profiles. This process is a key result from Paper 4 as such processes are poorly
explained in the literature (Selic 2007).

Figure 25 Process of creating UML profiles for homecare and SOA domains from Paper 4.

The results are two UML profiles:

• Homecare UML Profile: a profile classified as Virtual Metamodel Extensions
(Staron 2005). This implies that this profile is mainly used to increase the
expressiveness of the modelling language when designing systems for
homecare. A “virtual metamodel extension, restrictive” stereotype adds a
domain specific icon such as a picture of a nurse to the modelling element,
together with a well known domain specific label such as
HealthcareProfessional.

• SOA HomeCare UML Profile: a profile including elements from the “Code
generation, restrictive” category [ibid]. These stereotypes can improve code
generation by providing domain information so that code generation scripts
can create high-quality code.

The use of the profiles is discussed in Paper 4, but only reduced versions of the
profiles were subject for a developer evaluation. In the evaluations presented in Paper
3 and Paper 10, the core elements from the SOA HomeCare UML profile were

Activity 1: Capture
homecare domain

knowledge

Activity 2: Design
and evaluate a

MDA toolchain for
homecare service

development

Activity 3:
Develop a

Domain Specific
Modelling

Language for
homecare

Homecare SOA
UML Profiles

MDA Toolchain
experience

MDA Toolchain

Condeptual
Domain Models

The toolchain will use the Homecare SOA UML
profiles after the first iteration of the process

«flow»

use

«flow»

«flow»

use

use

«flow»

«use»

Results

 68

available together with an extensive “library” of reusable model elements. The
reusable elements are presented in Paper 6 and include 78 actor elements grouped into
8 packages. The actor elements are based on the CONTSYS standard, specializing
e.g., the HealthcareProfessional actor into a homecare actor labeled VisitingNurse.

The main evaluation of the UML Profile with the reusable elements is presented in
Paper 10. The unanimous response from the experiment participants is that it was
very useful for building a design model with the “correct” domain concepts. All the
five student groups reused the required actors model elements from the library, and
only one group found it necessary to create two new actor elements.

To summarize, a UML Profile providing key concepts from the CONTSYS standard
(CEN TC251 2006) was successfully developed and evaluation showed that it was
suitable for designing a relevant domain information system. The process of creating
a domain profile for healthcare can be applied other standards and domains.

Observations and interviews reported in Paper 10 comprise the main justifications for
this finding. In the student experiment, integrating domain specific information into
the models was in some cases perceived cumbersome. The domain actor library
containing 78 elements was hard to navigate, and the element names, though based on
the CONTSYS (CEN TC251 2006) standard, were not always adequate for making a
precise decision on use.

As a result, Paper 10 proposes two detailed recommendations for incorporating
domain information in a modelling tool:

• The DSL should provide a natural structure of reusable domain specific
elements. The elements should be named according to best practice from the
domain and it should be easy to get more information about the element and
its use. A detailed definition with examples of use is advisable along with the
possibility for keyword search.

• The DSL should provide a mechanism for adapting the element naming and
structure to different information standards. As there is a plethora of
information standard in healthcare, often covering the same domain area or
concepts, the DSL should allow for updates and switching of these, without
having to rebuild the tools or refactor existing models.

An important part of the doctoral project was the implementation and evaluation of
applications based on reusable software domain services. Figure 31 on page 39 shows
how the relevant need from domain actors (relevance cycle) were incorporated into
the design cycle as domain scenarios and needs, actor selection and definitions. Based
on this, a prioritized set of scenarios and services were implemented in the SOA-
based homecare applications, referred to as Proof-of-Concept-Applications (POCAs).

R3 Which reusable software services are relevant in the care and management of
elderly living in their homes?

 69

The findings supporting Research Question 3 are based on evaluations done of the
POCA development process and real-life use by elderly and their carers. Figure 26
shows the relationships between the research question, findings and publication.

Figure 26: Overview of the relationships between research question 3, the relevant findings and publications
reporting them

Paper 6 describes the process on how 18 problem and activity scenarios developed by
elderly and their families, caregivers and domain experts. (each 2-4 pages long).
These scenarios were analyzed, resulting in 145 domain system features. A feature
represents a specific system support functionality and must be related to one or more
use-cases. A use case is based on one or more activity scenarios that involve at least
one actor. Figure 22 shows an example of how the service for patient management is
related (traced) to its origin.

As described in Paper 9, applying the recommended best practice for service
candidate identification, a total of 25 service candidates were designed iteratively in
the ModelHealth Toolchain.

The first preliminary version of the services is presented in Paper 6 whereas Paper 9
gives a detailed description of the final version. A condensed summary of the 25
services described Paper 9 is provided in the following.

The medical and social middleware services design represents the cornerstone of the
Subject of Care individual plan support provided. Among the provided services are
the Calendar and Medication management features, which are central in this context.
The following services are offered:

Results

 70

• Medication management provides functions for managing and retrieving
medication information for a subject of care. HL7 supported.

• Calendar management provides functions for scheduling all kinds of social
and medical activities for subjects of care, caregivers, family, and friends.
HL7 supported.

• Message board provides functions allowing caregivers or family members to
exchange messages that could contain any patient’s related information that
needs to be shared. HL7 supported.

• Reminder provides set of operations for creating and managing various types
of reminders for upcoming medical and social activities and events. HL7
supported.

• Patient management provides information about the patients through a
common and standardized interface, and enables the developers to add, update
and delete stakeholders from the system. In addition, the interface allows for
querying for relationships between stakeholders such as patient- provider
relationships or patient-relative relationships. HL7 not supported.

The communication services support different kinds of communication between users
and systems, including alarm handling, sending messages and notifications, and calls
with voice and video. The following component and services are offered:

• Alarming service is designed to manage alarms in the system, and provides
operations to trigger new alarms, accepting and deactivating alarms, as well as
querying for current alarms and their status.

• Notification mechanism: To receive the notification message from the system
environment the application has to subscribe to the notification mechanism
using the notification service.

• External notification implements web-methods to interface external service
for sending emails and SMS messages, by connecting to email servers and a
public HTTP2SMS service.

• Voice-/video communication services provide the possibility to call other users
(audio live stream) and watch them (IP-camera live stream). The SIP-based
service includes methods for managing incoming, outgoing and active calls,
and for managing accounts and contacts.

The sensor services provide functionality for configuring (add, remove, adjust)
devices and retrieving sensor information. The following component and services are
offered:

• Frame Sensor Adapter (FSA) framework service provides unified access to
sensors and actuators that use different communication channels and different
data formats.

• Door control provides a service for accessing and operating a door lock.
• Door control management provides functionality for manage access to

different areas of a house.

R3 Which reusable software services are relevant in the care and management of
elderly living in their homes?

 71

• Camera Access is used for controlling and providing access to a camera
stream via a HTTP network protocol.

• Device manager is used to register several types of devices that are to be
installed in a system, including device types and protocols.

Interoperability services are providing an interface for external systems. This is
important, as medical and social relevant data have to be transferred to legacy
systems, etc. The following services are offered (see also Fig. 8):

• The Export to Google Health service: is providing all medical and social
relevant data in a standardized data record format.

• The Medication Plan Synchronizer Service: offers the functionality to
synchronize data of the internal MPOWER system with data records of any
legacy system (hospital information system or nursing sys- tem) using CCD or
CCR.

• The iCal and Google Calendar Export service: provides the possibility to
export and synchronize the calendar information from the internal Calendar
Management service with external calendar systems.

• With the Calendar Synchronizer a subscription to the iCal format is possible.
With such a subscription applications can get the latest updates of events and
reminders by downloading and parsing the iCal file.

• The UDDI Service Registry service provides a platform independent way of
describing and discovering Web services and Web service providers.

The security middleware is orthogonal to the other services in the way that it is
implicit a part of each service, ensuring a satisfying security level of any combination
of services in system. Authorization is based on a Role-Based Access Control
(RBAC) scheme; a set of permissions is associated with each defined role, and users
get permissions indirectly through the roles they are assigned. The following services
are offered:

• Authorization service: determines what operations and which data an
authenticated user can access, allowing access to resources only to legitimate,
authorized users.

• Authentication service: verifies a user’s credentials and allows access to the
system only to users with valid credentials.

• Token management service: is used by the authentication and authorization
services to manage the login sessions.

• Role management service: enables the Administrator to manage the roles of
the system. The Administrator may add/delete roles, assign users to roles, get
the role information, and get the user’s assigned role.

• Access management service: manages the permissions and access profiles
associated with the access control system.

Results

 72

• User management service: enables the Administrator to manage the users of
the system. The Administrator may: add/delete users, update the user’s roles,
and get the user information.

The services presented are all provided open source through the FREE MPOWER
project (MPOWER Consortium 2008a) and are designed using the ModelHealth
Toolchain.

Paper 9 reports from the development of the two SOA based pilot systems. The 16
developers involved in systems development filled in a questionnaire addressing the
perceived ease of use, usefulness, compatibility, and future use intentions. In addition
a set of questions about the claimed benefits of SOA were included.

The developers were positive to SOA development and planned to use SOA in future
development projects. A core advantage of the SOA architecture in the case of pilot
systems development was that the system through rapid development comparatively
easy could be tailored into similar systems, concerning the GUI or the interface in
general to the user. Likewise, in situations where only parts of the functionality
provided by an application is needed, it is easy to reuse selected parts (e.g., services or
service compositions) to produce a tailor made application with specific functionality.

As presented in section 3.5.2, two pilot systems (Norway and Poland) were
implemented using the reusable software services as foundation. Figure 27 shows a
screenshot from the Norwegian pilot system annotated with references to the
underlying reusable web services. Paper 9 describes how the pilot systems’
functionality is closely linked to the underlying services’ functionality.

R3 Which reusable software services are relevant in the care and management of
elderly living in their homes?

 73

Figure 27 An annotated screenshot from the Norwegian pilot system. The underlying services are linked to
elements in the user interface

The pilot systems were deployed to real sites and evaluated together with local care
providers and the patients’ family. Due to both organizational and technical
challenges, the Polish pilot system was only evaluated from a human-computer
interaction viewpoint that is outside the scope of this project.

Paper 7 reports from the trials done with the Norwegian pilot system (NPOCA).
Seven older people, aged 65–92 tested the pilot system at home. Five of these had
some memory problems. Figure 28 summarizes the evaluation results.

Results

 74

Figure 28 Table 2 from Paper 7 showing the evaluation summary of the Norwegian pilot system

Finding 8 is based on the knowledge about the underlying technical structure of the
Norwegian pilot system and the conclusions made in Paper 7 saying that the system:
“was an innovative approach that definitely enabled older people with memory
problems to live independently at home.”

Table 2 Overview of use and utility of POCA during the second iteration December 2008. Case histories of
 use and utility in third iteration

Respondent Time for Uses NPOCA Utility of POCA Comments
 testing NPOCA

NOR02 10 months Yes, every day Yes, needed the screen to ‘The calendar page is the most useful for me.
 verify which day it was I compare it to my paper calendar.’

NOR02Carer 10 months Yes, once or Yes, it gives us something to ‘I put all messages to mother on the calendar
 twice a week talk about when I call her page.’

NOR05 7 months Not the last No utility because nobody Might have been beneficial if family members
 5 months adds appointments had added appointments

NOR05Carer 7 months No Have not used it Uses e-mail instead

NOR06 3.5 months Yes, every day Very useful. Looks at the screen ‘This is my pal – I look at the screen every
 every morning in order to know morning.’
 what is to happen that day

NOR06Carer 3.5 months Yes, a couple Very useful ‘I think mother has become more aware of
 of times a week her surroundings since having had the screen.’

Domiciliary 10 months Occasionally Not for me, but I assume user Difficult to use at patient’s home, because the
services and carer benefit most from it keyboard and mouse are hidden and I have to
 use them on the floor or on my lap = tricky!

Project worker 10 months Yes, twice Very useful for those in need of Family carer should be in charge of adding
 a week help with remembering things messages

75

The previous section described the eight findings from developing the ModelHealth
Toolchain, designing the reusable software services, and implementing and evaluating
SOA-based pilot systems supporting continuity of care. In Figure 29, the overall
problem model presented in Figure 2 is refined with the results presented in section
Chapter 4.

Figure 29 The problem model from the introduction instantiated with the results from the project
investigations

The original concepts from Figure 2 are used as <<stereotypes>> on the result
concepts, and design artefacts such as the actor library, UML profiles, the script and
the service categories are shown as attributes on their owner result concepts:

• Independent living: building upon continuity of care, an information-centric
pilot system was evaluated in a 1-year trial in Norway. The knowledge about
the needs and standards in the domain was incorporated into the UML Profiles
and reusable element library.

• Reusable Web Services for Homecare: 25 services supporting continuity of
care and independent living were successfully applied in creating an
independent living application – the Norwegian pilot system trial. The services
are provided as open source in the FREE MPOWER project at SourceForge
(MPOWER Consortium 2008a).

Discussion

 76

• UML Profiles and reusable element library: The CONTSYS Actors library
and the two UML profiles demonstrated to improve model quality in the
design of the Reusable Web Services

• ModelHealth Toolchain: The toolchain utilities (transformations, templates
and traceability services) provided by the MDD concepts are utilized for
creating UML profiles and the library with reusable model elements. The
results demonstrated that the ModelHealth Toolchain was suitable for creating
reusable web services in a continuity of care environment.

• Web Services: Is the foundation for the design of reusable web services for
the homecare domain. The underlying SOA concept facilitates design of
Independent Living systems.

This section will discuss the results in terms of the research questions, the findings,
and existing knowledge in the field. A discussion on the experiences using the Design
Science Research framework is given at the end, commenting on the three research
cycles.

During three iterations in the “design cycle” the ModelHealth toolchain was refined
based on assessment feedback from both students and professionals. The initial ideas
for the development tool support as presented in Paper 1 were implemented in an
exploratory manner, starting out with functionality and processes assumed to be
practical based on existing knowledge. Version 1 of the toolchain assumed that a
MDA compliant UML tool with default configuration would be sufficient for
developers to do model-driven development, if they were given appropriate training
and proper written documentation. This turned out to be an optimistic assumption,
both with respect to students and professionals. The MDD tool had to be adapted to
the needs of the developers in order to be perceived useful in developing healthcare
software services.

The initial student experiment with ModelHealth Toolchain version 1 indicated that
the toolchain should provide assistance in creating the correct and required models
(F4). The students created models that contained duplicate elements and incorrect
model structures, indicating that the lectures and the written material (guidelines)
given did not provide the necessary support in the design process. The students
seemed to understand the approach and toolchain when the lecturer demonstrated it,
but still they made mistakes when working on their own. They expressed that it was
“too extensive”, and it seemed that the “cognitive distance” as discussed by Krueger
in (Krueger 1992), was too high between the abstract guidelines given in the written
documentation, and the required implementation tasks to be carried out in the
modelling tool. As a result from this first design/assess cycle, support for project
structure and process assistance was developed (see Section 3.3.3).

R1 How can a model-driven development toolchain with domain support assist the
development of reusable domain software services?

 77

For Version 2 of the ModelHealth toolchain, the Enterprise Architect UML modelling
tool was extended with a template project structure and UML profiles. The evaluation
was conducted in the MPOWER project where professional developers used it over a
one-year design period to design and develop reusable software services. The
developers shared a version controlled model repository that contained a complete use
case model, features model, a common information model and packages with services
designs. From the developer survey, it was found that ease of use, and correct and
complete code generation were important factors for the usefulness of the tool (F2).
One of the developers using the toolchain outlined the need for correct code
generation: “Otherwise you can find yourself spending too much time trying to make
things work (and doing the required changes manually).” This finding confirms other
studies such as (Anonsen 2005; Mattsson et al. 2007; Trask et al. 2006)

To fix the code generation problem, Version 3 of the ModelHealth toolchain was
created, utilizing an external MOFScript transformation engine provided as an Eclipse
plugin. Version 3 was used by university students in a project assignment, before it
was finally evaluated in a student experiment and a professional developer survey,
reported in Paper 10. The evaluations showed that the participants were able to create
complete and correct models, and found the process and approach to software design
useful and attractive. This indicates that the issues related to both F2 and F4 were
solved in the latest version of the ModelHealth toolchain.

The evaluations also identified the need for model validation and verification, stated
as F6. The Object Constrain Language (OCL) (Object Management Group (OMG)
2006; Warmer 2003) is a mechanism that can be utilized for this purpose, but it
requires the specification of constraints in a UML profile. Examples of such
constraints are presented in Paper 4 where domain-specific constraints are specified as
invariants. The use of OCL in modelling is a growing area of research where
especially performance and scalability issues are addressed. In (Shaikh et al. 2011),
the authors provide an evaluation of the most popular UML/OCL tools available.
They also describe an approach to overcome the performance problems, but conclude
that more research is required. The ModelHealth toolchain did not apply advanced
constraints checking, but identified this as an area for improvement.

The scenarios implemented in the student evaluations were relatively simple,
addressing only one system and three stakeholder groups (patient, relatives and
healthcare professionals). As the systems become larger, the complexity will increase
considerably. In the final student experiment, improved overview and system
understanding were outlined as important features. This is an inherit feature of MDD
if the design process is carried out in a proper way. System complexity and the use of
UML were investigated in 2005, when Arisholm et al published the results from a
controlled experiment with students using UML in systems design (Arisholm et al.
2006). They found that in terms of design correctness “both experiments show that,
for the most complex task, UML subjects perform significantly better than no-UML
subjects.” It is reason to believe that system design for continuity of care, or
healthcare in general could benefit from a MDD design and development approach
with proper tool support.

The findings discussed (F2, F4 and F6) address the design and functionality of the
MDD tool or toolchain itself, and can be viewed in light of the summary of CASE

Discussion

 78

tools given by Iivari (Iivari 1996). In his seminal paper, Iivari summarizes the use of
CASE tools in industry in 1996. His survey on factors affecting the adoption of CASE
tools found that in overall, the CASE tools tend to improve quality of developed
systems, and to some degree also productivity. Two of the factors relevant for the
work presented herein are that “relative advantage” has a positive impact, and that
“perceived tool complexity” has a negative impact on CASE tool productivity and
quality effects. The relative advantage was mainly measured in terms of increased
speed, quality, ease and effectiveness of respondents’ tasks. Iivari explains the
negative impact from “perceived complexity” with “CASE tools are often complex
and when their complexity is perceived to be high it is difficult to appreciate their
advantages.” As a result of this finding, Iivari states, “any means to affect these
perceptions [complexity] can be expected to be significant in the management of
CASE adoption.”

Staron confirmed the importance of modelling tools maturity in 2006 (Staron 2006).
In his case study of MDD adoption in two companies, he concluded that the
availability of mature modelling tools is the most important factor for adoption.

Most respondents involved in the ModelHealth toolchain investigations highlight the
utility of traceability in the toolchain (F3). The toolchain provided a lightweight
implementation of the core services associated with traceability; navigation,
coverage/orphan analyses and change impact analyses. The respondents found that
traceability had a positive impact on system overview and understanding, connecting
scenario descriptions, use cases, features, information model and service designs.

Traceability should be utilized for validation of medical software, and in Paper 10, the
ModelHealth approach to traceability is discussed in terms of FDA recommendations.
The approach builds upon the profiles presented in Paper 4, using visual notations to
present traceability analysis results. The proposed solution was not evaluated with
developers in the PhD project, but address a core challenge identified by Winkler and
Pilgrim:

“when it comes to using—and particularly visualizing—traceability links, current
tools provide no support at all, and consequently, traceability links can often not be
put to use.”(Winkler,Pilgrim 2009).

Traceability in MDD has become a central topic in MDD research, evolving from
requirements engineering to encompass all artefacts in the development process
[ibid.]. However, Winkler and Pilgrim found that “traceability methods are not used
in practice as much as they could. One of the main reasons is lack of good tool
support”[ibid.] The survey also identifies several other challenges such as recording
trace information, sharing trace information between tools and maintenance of trace
information. With respect to traceability information recording, the experiment
participants explicitly stated that benefits of using trace information largely
compensated for the effort required to manually create tracelinks. Sharing and
maintaining trace information will require substantial changes to the tools in terms of
standardization (Limón,Garbajosa 2005), repository creation and interfacing.

R1 How can a model-driven development toolchain with domain support assist the
development of reusable domain software services?

 79

The traceability solution presented in Paper 5 address the challenges presented by
Winkler and Pilgrim. Introducing a TraceRepository for storing information and a
TraceModel defining an extendable metamodel, the solution supports recording,
sharing and maintenance of trace information. If a MDD toolchain incorporates a
domain specific and interchangeable Trace Model, this would allow for better
traceability analyses (Paper 5). The solution presented in Paper 5 was not fully
implemented in the ModelHealth toolchain, but is a contribution to future design and
development of shared traceability solutions for MDD.

There is, and has been a plethora of MDD tools available targeting different domains
and user groups. Kleppe defines a set of requirements for MDD tool in (Kleppe 2003)
that are used as basis for the “Perfect Tool” by MacDonald et al. (MacDonald et al.
2005). The results presented in this PhD project nuance and extend these
requirements. To summarize, Figure 30 shows a diagram where the Findings 2, 3, 4
and 6 from the ModelHealth toolchain evaluation extend relevant requirements from
Kleppe and MacDonald.

Figure 30 The toolchain findings extending and nuancing the work by Kleppe and MacDonald. Only the
relevant requirements from Kleppe and MacDonald are included in the diagram

To which degree the findings can be realized in “one perfect tool” may vary. If one
tool realizes all recommended features, it is a danger that it will become too complex
and consequently violate one of the most important requirements, namely ease of use.

A software “plugin” framework such as the one provided by Eclipse could be a viable
solution for the perfect tool. Using Eclipse, a tool can be composed of a selection of
plugins forming a complete development environment supporting MDD. The most

Discussion

 80

popular open source plugin for Eclipse is Papyrus11 that became an official project in
the Eclipse Helios release in version 3.6 (June 2010). Papyrus is an open source
project that aims to be 100% aligned with the UML specifications from OMG.
However, the Papyrus tool is not yet complete and version 0.9 was released in with
Eclipse 4.2 (Juno) in June 2012.

The design science approach to developing the ModelHealth toolchain required three
iterations to reach an acceptable level of quality. Although the ModelHealth toolchain
became useful, there is still some way to go for the “perfect tool”. In 2009,
Mohagheghi et al published a paper on MDE adoption in industry using experience
from two large European companies. Their main conclusion is that there it is a
challenge providing a suitable domain language to both technical and non-technical
personnel, and that there “is no tool chain at the moment and companies must
integrate several tools and perform adaptation themselves” (Mohagheghi et al.
2009b). This is a resource demanding process that requires both special modelling
skills and time. It seems that the “perfect” tool for MDE is still to be developed.

There are many standards, and versions of these, in the healthcare informatics field. In
this PhD project focus has been on standards related to Continuity of Care such as the
CONTSYS standard from CEN/ISO (CEN TC251 2006; ISO TC 215 under
development). The ISO development version of the standard “provides a clear
conceptual framework to establish the terms of reference of health information
systems. The system of concept as well as the process and workflow descriptions are
meant as tools for the development of information systems”(ISO TC 215 under
development). The two findings related to RQ2 build upon the experience from this
single standard, but other and similar standards could replace or complement
CONTSYS. The findings are discussed in the following subsections.

The ModelHealth Toolchain incorporated the domain knowledge as UML profiles.
Knowledge can be expressed as a modelling language extension and a set of reusable
modelling elements (Selic 2007). The CONTSYS standard defines a UML model
with the core actors and roles in continuity of care such as “HealthcareProfessional”,
“SubjectOfCare” and “HealthcareOrganization”. As presented in Paper 6, these actors
are represented as generic reusable model elements. Based on a rigorous process
described in the paper, the actor model was extended with specialized actors from the
homecare domain, e.g, visting nurse and system components such medication plan.

11 Papyus webpage on the Eclipse website: http://www.eclipse.org/modeling/mdt/papyrus/

R2 How can Relevant Domain Standards and Knowledge be Incorporated into a
Model-Driven Development Toolchain, and what Aid can they provide in the Design

and Development Process?

 81

The results from the experiment in Paper 10 found that the students managed to reuse
the correct elements from the library based on a scenario description. In (Krueger
1992), Krüger states that “for a software reuse technique to be effective, it must
reduce the cognitive distance between the initial concept of a system and its final
executable implementation.” The specialization of actor modelling elements towards
the homecare domain reduces the “cognitive distance” between the generic concepts
defined in CONTSYS and the real actors in the domain. One of the students in the
experiment says about the actors library that: “I think it simplified the process. We
found many English terms for what we were looking for”. The statement confirms that
the elements can be reused, hence avoiding conflicts and errors in domain modelling.

To create a complete design of the software services for continuity of care, the
Software Services UML Profile from IBM (Johnston 2005) was incorporated and
utilized in the ModelHealth template diagrams. Evaluations with students and
professionals showed that the profiles were useful and assisted them in creating
correct and complete design models. Since the creation of the ModelHealth toolchain,
OMG has defined the SOAML standard with a comprehensive UML Profile for
modelling service oriented architectures called SoaML (Object Management Group
2009). SoaML was not implemented in the ModelHealth Toolchain as the original
modelling process and UML profile was considered sufficient for the scope of use for
the ModelHealth toolchain. The SoaML UML Profile is now available for use in
many UML modelling tools12.

Paper 4 describes the development of two UML profiles for the ModelHealth
toolchain. The students did not use the full version of two profiles presented in the
paper, as they were considered too advanced and not required by the experiment
scenario. The profiles were however demonstrated for professional developers of
healthcare information systems (Paper 10) who found the toolchain and approach
relevant and interesting.

The main difference from the profiles used by the students is that the advanced
profiles utilize stereotypes, tagged values and constraints to increase the
expressiveness of the modelling language when designing systems for homecare. A
“virtual metamodel extension, restrictive” as described by Staron (Staron 2005), is a
stereotype that adds a domain specific icon such as a picture of a nurse to the
modelling element, together with a well known domain specific label such as
“HealthcareProfessional”. The Homecare SOA UML Profile includes elements from
the “Code generation, restrictive” category. These stereotypes can improve code
generation by providing domain information so that code generation scripts can create
high-quality code. Extending the modelling language with UML profiles may increase
the complexity of the tool, and hence be counterproductive. Tool complexity has been
one of the main obstacles to MDD/CASE uptake, and extensions should be
considered carefully before being introduced.

12 SoaML tool support webpage: http://www.omgwiki.org/SoaML/doku.php?id=tool_support

Discussion

 82

Relevant and potentially useful extensions to the UML profiles are presented in
section 5.7

From the evaluations it is recommended that domain information should be an
integral part of a modelling tool. However, as the ModelHealth Toolchain did only
address one aspect, continuity of care, it is necessary to investigate how other
standards or variants of the same standard could be supported. From the evaluations
with students it was inferred that the presentation of domain information should be
flexible and easy to use (Finding 5). A developer may have preferences for a language
extension type, icon or a specific structure of model elements in the tool. The
underlying model of the standard must be the same, but the presentation of the model
concepts could be adapted to the users’ preferences. This finding is supported by
Purchase et al in (Purchase et al. 2002) where they conclude that “choices need to be
made regarding which notation to use between semantically equivalent variations
within the UML standard. Choosing the variation that most supports the users'
comprehension can only enhance the value of the tool or text: empirical studies can
assist in determining which of the variations are more suitable.”

Recently, Ricca did a series of experiments on stereotyped diagrams for web
application using subjects with different education level where the results “indicate
that, although, in general, it is not possible to observe any significant benefit
associated with the usage of stereotyped diagrams, the availability of stereotypes
reduces the gap between subjects with low skill or experience and highly skilled or
experienced subjects. Results suggest that organizations employing developers with
low experience can achieve a significant performance improvement by adopting
stereotyped UML diagrams for Web applications (Ricca et al. 2010).” The target user
group for the ModelHealth toolchain was inexperienced MDD tool users, a user group
that could benefit from stereotyped diagrams.

Using UML profiles, the model element presentation variation is mainly limited to
element name or label, icon, stereotype and package structure. If these mechanisms
are utilized correctly, positive effects similar to those in the ModelHealth toolchain
evaluation can be achieved. For instance, Kuzniarz, Staron and Wohlin report from an
experiment where the use of stereotypes had a positive effect on model
comprehension (Kuzniarz et al. 2004).

The work on scenario development in the MPOWER project resulted in 25 software
services designed with full traceability in the ModelHealth toolchain. The services
were developed utilized to develop two proof-of-concept applications. The
applications clearly reflect the functionality of the underlying services (see Figure 27
on page 73) demonstrating that the services support application design and
development.

R3 Which Reusable Software Services are Relevant in the Care and Management of
Elderly Living in their Homes?

 83

This section will discuss the software services in terms of domain needs and software
service reuse.

Finding 7 is derived from the comprehensive work on domain needs that led to the
specification of 25 software services through a rigorous design process. These
services were found to be useful during pilot application development and evaluation,
and indicates that definition and implementation of reusable software services is both
feasible and beneficial.

The validity of the services is based on both the design process and the pilot system
evaluations. A total of 143 persons (family carers, dementia experts, patients and care
providers) from four European countries participated in the user needs investigation in
the context of the MPOWER project (see table 2 in Paper 9).

The scenarios overlap largely with the BRAID project’s scenarios for ICT and active
aging (Luis M. Camarinha-Matos et al. 2011), especially with the “Independent
Living” area. The BRAID scenarios have been developed and rigorously validated by
the leading experts in Europe in the field of aging and independent living. This
implies that because of the overlap and similarity with BRAID, the scenarios from
which the 25 services are derived are representative for the domain. However, a main
difference between the two scenario descriptions is that the BRAID scenarios are not
applied in system specifications or service designs, but influence the definition of four
ICT related actions in the final report (BRAID Project 2012). The actions can be
summarized as:

1. Identify and promote standards in order to facilitate wider take-up,
interoperability and affordability of solutions.

2. Develop theoretical foundation for ICT and Ageing and promote a
consolidation of concepts and common ontologies.

3. Identify and promote technological development synergies between ICT and
Ageing and other focus areas, e.g. construction and building procedures,
intelligent transport systems, smart grid infrastructures development, etc.

4. Promote participatory design: Identify suitable approaches and promote pilot
experiments on the involvement of seniors in the processes of co-designing
systems for ICT and Ageing.

The work on reusable services and application development in this PhD project
(Papers 6, 7 and 9) is inline with actions 1, 2 and 4 that clearly focus on
standardization, interoperability, consolidation and user-driven development.

Like BRAID, most standards developing organizations (SDOs) don’t provide open
source reference implementations at the service or application levels of their
standards, but share written documents often containing UML diagrams for
information and interaction models. The survey with professional healthcare
information systems developers reported in Paper 10 found that standards are

Discussion

 84

important for development, they are hard to read and require interpretation before
they are used. A properly documented detailed design or reference implementation of
a standards-based component or service would resolve some of the challenges of
implementing a standard.

As presented in section 3.5.2 and 4.3.2 the services were developed and organised in
five categories covering both general and domain specific functionality. The results
from using the services in the implementation of the pilot systems showed that the
services are useful for system realisations including information centric features and
to some degree domotic sensors. While the results from using the services in the pilot
system development are promising, the development of additional systems based on
the services would add to the confidence in the reusability of the services.

The design rationale for the 25 reusable software services proposed is part of the
UML design model. This rather comprehensive UML model describes the domain
actors, use cases with scenario descriptions, and the features derived from these. From
these features, each service is completely defined with operations and parameters,
including full trace information back to the features and use cases motivating their
design. The availability of design rationale is considered an asset in software
development. An observation study done in 2007 of developers in Microsoft
discovered that the developers spent much resources on finding information about the
background for their code: “The most often deferred searches included knowledge
about design and program behavior, such as why code was written a particular way,
what a program was supposed to do, and the cause of a program state” (Ko et al.
2007). The authors suggest further research into what and how this knowledge could
be made readily available though the developer tools.

A UML design model having both design and design rationale is a mechanism to
reduce the “cognitive distance” between a requirements specification and the actual
system implementation (Krueger 1992). The approach can assist developers in
understanding and remembering how the services were related to the user needs and
be useful for understanding and comparing the domain user needs and services to
those from other projects and standards. An important aspect of this approach is that
domain experts can provide important contribution to the rationale models – scenario
and use cases, which has a positive impact on the model validity and quality. In (Lenz
et al. 2007), Lenz et al argue for a separation of domain concepts and system
implementation:

”in order to cope with domain evolution, modelling of domain concepts should be
separated from IT system implementation. IT systems should be implemented by IT
experts and medical knowledge should be modelled and maintained by domain
experts.”

In addition to requirements specification and domain best design practices, healthcare
software developers must implement software that adheres to a set of domain
standards. The results from the professional developer survey (Paper 10) shows that
standards relevant for systems development are of utmost importance, but can be hard
to understand and require interpretation before they can be applied. In some cases,

R3 Which Reusable Software Services are Relevant in the Care and Management of
Elderly Living in their Homes?

 85

interpretations done by different developers may lead to interoperability problems
between systems and / or components using the same standard.

To overcome the standards interpretation problem, events like the Continua Alliance
Plugfest 13 and Integrating Healthcare Enterprise Connectathon 14 are organized
annually. At these events healthcare IT industry can meet for performing
interoperability testing and go through a certification program. To facilitate software
reuse, the Continua Alliance maintains a repository of validated implementations of
their standards along with a test tool. These resources are only available to their
paying members15. The initiatives by Continua and IHE are positive, and they confirm
the need for improving the way standards can be utilized by software developers
today. Reusing open source software is not easy and there are many pitfalls that must
be avoided (Spinellis,Szyperski 2004). The process of reusing software components
and code is outside the main scope of this thesis and is not discussed in detail.

Finding 8 is based on the design and development experience presented in paper 7
and 9 where it was shown that the Norwegian MPOWER pilot system improved the
everyday life of the elderly and their family. In addition, the care providers (visiting
nurses) reported that they saved time during visits because the elderly users were
aware of and prepared for their visits. The Norwegian system was developed by
applying a participatory design process and was introduced to the users gradually. In
addition to user-friendliness (Demiris et al. 2004), proper training of careers, frequent
visits by the nurses in the initial phase, user training sessions and family motivation
were critical factors for system adoption and use (Paper 7).

The Norwegian pilot system was designed for information sharing, primarily using a
shared calendar and a messaging service. Both these functions were developed from
the reusable software services, including the required security services (authentication
and authorization) and patient management services (relationships, contact
information etc.)

One advantage of the service-oriented architecture in this case is that the system
through rapid development comparatively easy can be tailored into similar systems,
concerning the GUI or the interface in general to the user. In case there is a need for
services beyond those provided as reusable components, adding new services to the
application platform is easy.

The experience from pilot systems development substantiate that a rapid development
of applications for different kind of user groups or single end-users is possible (Paper

13 Continua Alliance Plugfest homepage: http://plugfest.continuaalliance.org/

14 IHE Connectathon homepage: http://www.ihe.net/Connectathon/index.cfm

15 Continua Reference Code libary:
http://members.continuaalliance.org/continua_align/products_services/

Discussion

 86

9). For systems addressing continuity of care and independent living this could be
even more important than for other domains. The end users in the domain would
benefit from a flexible tailoring of the systems to their individual capabilities and
needs (e.g. user interface personalization and configuration of sensors and actuators
for the home).

The answer to RQ3 is given by Finding 7 and 8, stating that a limited number of
reusable services can be utilized in the development of useful SOA-based applications
supporting continuity of care. The overlap between the rationale for the 25 services
and the BRAID scenarios indicates that it is reason to believe that the services can be
utilized for other types of applications in the domain.

As presented in section 3.1, the research followed a design science approach where
two main artefacts where developed and evaluated: the ModelHealth toolchain and
the set of reusable software services. The Design Science research framework
(Hevner et al. 2004) prescribes that the results produced in the design cycle (Hevner
2007) should be made available as useful artefacts in the target domain (relevance
cycle) and new knowledge (rigor cycle).

The Design Science framework presented in Figure 1 on page 8 was instantiated as
shown in Figure 31. The figure shows activities, results and relationships between
these for all three phases (see 3.2). The activities and results are placed in the
associated framework cycle to illustrate how the artefact development and assessment
activities are influenced by both rigor and relevance.

Design Science Experience

 87

Figure 31 The design science process followed in the PhD project

In the proceeding subsections the PhD project work is discussed in terms of these
three research cycles of design science.

The relevance cycle must address “opportunities and problems in an actual
application environment.” (Hevner 2007; Iivari 2007). In this thesis, the problem of
providing continuity of care in an independent living situation was addressed with
two artefacts representing opportunities in the domain: a model-driven development
toolchain and a set of reusable software services.

Both artefacts target developers of SOA-based software in the healthcare domain; an
“application environment” experiencing increased attention as a result of
digitalization and need for information integration in healthcare. The integration
process is both complex and expensive, and despite numerous standardization

Discussion

 88

initiatives and reference projects, system interoperability on the information level
remains a major challenge in health information systems design and implementation.

Information and communication standards are important to develop interoperable
systems, and sharing the same understanding of the underlying concepts is
fundamental. An “opportunity” to address this goal was identified in the use of MDD
with DSML support to create domain specific reusable SOA services. The initial
requirements and first version of the ModelHealth toolchain was developed with
software developers from Croatia, Cyprus, Spain, Austria and Norway, a process that
also involved 143 stakeholders from the healthcare domain. The toolchain allows for
alignment and reuse of architectural design (patterns) such as actor-component
relationships, service descriptions and information models. New requirements were
identified in the toolchain design cycle process as described in sections 3.2 and 3.3.

Version 2 of the toolchain was used to design the set of reusable software services
based on the results from a previous activity in the relevance cycle. The services that
were created were reused in two pilot systems as described in Paper 9. The experience
from the service design process resulted in a refined version of the toolchain that was
subject to a thorough investigation with both students and professional developers.

To complete the relevance cycle it is necessary to address if “…the design artefact
improve the environment and how can this improvement be measured? The output
from the design science research must be returned into the environment for study and
evaluation in the application domain.”(Hevner 2007).

• The ModelHealth toolchain was not fully studied in the target application
domain due to time and resource limitations. A “technology transfer” to a
software company will require substantial investment from the company’s
side, as well as a well-defined methodology for evaluating its utility. Yet, the
findings from the ModelHealth Toolchain design cycle may have relevance
implications.

• The ModelHealth toolchain was evaluated by professional developers in the
healthcare domain as presented in Paper 10.

• The pilot systems were evaluated with real life settings. The Norwegian pilot
system trial period was one year and was considered successful. Ideally, more
systems and new variants of the systems should be created and evaluated to
get more knowledge about the relevance of the reusable services.

Relevant for both artefacts is that the assessments revealed new requirements for tools
and services in the care domain, a result that Hevner also identifies: “Another result of
field testing may be that the requirements input to the design science research were
incorrect or incomplete with the resulting artifact satisfying the requirement but still
inadequate to the problem presented”(Hevner 2007).

The rigor cycle should ensure that the artefact represent real innovation and should
“guarantee that the designs produced are research contribution and not routine
designs based upon the application of well-known processes” (Hevner et al. 2004).
Important factors that were input to the artefacts design processes were:

Design Science Experience

 89

• Experience from and knowledge about other MDD frameworks that have
not reached their potential in terms of use in domains such as healthcare.
Many of these have failed due to poor user friendliness and high
complexity. Much effort was made in keeping the ModelHealth toolchain as
easy as possible, “restricting” the size and freedom of UML, and providing
domain support in the required design steps. The results indicate that the
ModelHealth toolchain was quite successful in doing this.

• Knowledge about the trends towards information integration in the
healthcare domain using web-based portal solutions. Service-orientation has
already proved to be feasible in other domains such as travel and finance.
Healthcare enterprises made strategies where SOA was a core approach to
interoperable systems.

To complete the rigor cycle the ultimate assessment is: ”What is new and interesting
contributions?” This can be answered with three types of contributions to the
knowledge base:

• The ModelHealth toolchain artefact: The ModelHealth toolchain provides
one solution to developing healthcare specific web services that are based
on a proper design and conform to selected healthcare standards. This
extends the “knowledge base” with experience about the use of UML
Profiles and reusable model element libraries in an UML-based MDD
toolchain. Non-expert developers can, with the aid of a domain specific
MDD toolchain, design and develop SOA software with decent quality. In
his “Epistemology of Design Science”, Iivari defines this as a prescriptive
research contribution (Iivari 2007) where the artefact demonstrates a
possible instantiation, but has no truth value.

• Foundations: Traceability in MDD has gained much attention recently,
broadening the focus from requirements and test to a complete traceability
scheme that includes all development artefacts. Several tool vendors have
implemented explicit traceability service functionality, but not much is
known about the real use of these. The results from the experiment
presented herein show that a basic implementation of the three traceability
services trace navigation, coverage and orphan analysis is found useful and
easy to use. The professional developer survey confirms the necessity for
traceability services.

• Reusable software service designs and open source reference
implementations: The service designs approach where each service interface
operation can be traced back to an user-specified design has received much
attention in conference and workshop presentations, and is clearly a
contribution to the knowledge base. Furthermore is the experience from
using the services in systems development a valuable case study which other
developers and researchers can learn from.

The design cycle includes three cycles of toolchain design, and one long cycle with
software service design:

Discussion

 90

• The initial toolchain was designed to fulfill the requirements specified by
professional developer in the MPOWER project (see Paper 10.) Following
the “design as a search process” approach, the ModelHealth Toolchain was
assessed and refined three times before the final evaluations. The initial
assessments were conducted on different subjects using different evaluation
techniques.

• The definition of the services was done using the user needs specification
and best practice SOA design principles as input. The process diagram in
Figure 31 shows only one iteration where the services were evaluated in the
pilot system development and evaluation. Minor updates to the services
where done during pilot system development, but was not considered a
complete design cycle.

The main challenge within the design cycle was as declared by Hevner, to balance the
efforts spent in constructing and evaluating the artefact. In the case of toolchain
design, it was clear already after the first student evaluation that the toolchain needed
to provide modelling support on both structure and content. The “Actors library” was
designed and specified in a systematic process to ensure domain compatibility
(Walderhaug et al. 2008c). The following evaluation demonstrated some utility, but
the transformation mechanism required a redesign (Walderhaug et al. 2008a). The
transformation component redesign required significant effort (3-400 hours including
testing) in developing the transformation stylesheet that allowed for export from
Sparx Enterprise Architect to Eclipse for use with the MOFScript plugin. The assess-
refine cycle from version 2 to 3 was longer than initially planned, but proved to be
worthwhile as the transformation component worked as intended in the following
evaluations.

In the case of software services design, the complete define / assess process required
much time as it was deemed necessary to test in realistic environments, with real users
and real environments. The application development and evaluation was mainly
carried out by project partners in the MPOWER project (see section 3.6). The
recruitment process of real users, training of carers (informal and formal) and setting
up the required hardware, took more time than initially planned. As a result, only one
major design cycle was completed. Minor service refinements such as adding
parameters or changing operation names were done as a part of the implementation
process and was not considered design cycles.

As for most development projects, the resources available restricted the choice of
evaluation methods. To keep the design cycles (assess-refine) as short as possible, the
“effort-balancing problem” allowed for relatively short and focused studies of the
toolchain. The evaluation methods and data collection used a combination of direct
and indirect techniques defined in the taxonomy from Singer et al. (Sim,Lethbridge
2008). As discussed in Paper 10 the low number of participants is a major threat to
validity, for both the student experiment and the processional developer survey. On
the other hand, a total of 28 students and 41 professional developers took part in the
overall design cycle from 2008-2010, implying that the results should be a valid basis
for further investigations, preferably in the “target application domain”.

It can also be seen as a necessity to do smaller investigations in areas where it doesn’t
exist much evidence. In (Arisholm et al. 2006), Arisholm et al concludes on their

Implications for research and practices

 91

experimental evaluation of UML documentation: “In terms of experimental
methodology, we have found it very useful to start with a smaller experiment and
dwell on qualitative analysis at first. This has allowed us to better understand what
issues might come up in subsequent, larger experiments. Based on the first experiment
we decided, for example, to use more complex change tasks in the second
experiment.”

In terms of Design Science, never reaching the “technology transfer” phase is not
uncommon, and as Iivari says in (Iivari 2007) “...artefacts developed in design
science should first be tested in laboratory and experimental situations as far as
possible. One should not start with testing in the real situations, except perhaps in
very exceptional special situations”.

The results from the work conducted in this project may have implications for
research and practices in the field of healthcare specific model driven development,
and in some cases model-driven development in general. In this section, the potential
implications are discussed in terms of the findings and the research approach. Some
of the implications are also discussed in Paper 9 and 10.

During the last decade, there seems to be an increased focus on domain specific
MDD. In 2007, France and Rumpe outlined a research roadmap for model-driven
development (engineering) of complex systems where they conclude that: “In the
MDE vision, domain architects will be able to produce domain specific application
development environments (DSAEs). Software developers will use DSAEs to produce
and evolve members of an application family”. A DSAE consists of tools to ”create,
evolve, analyze, and transform models to forms from which implementation,
deployment and runtime artifacts can be generated. Models are stored in a repository
that tracks relationships across modeled concepts and maintains metadata on the
manipulations that are performed on models.”(France,Rumpe 2007)

Findings 1-6 presented in this thesis indicate that the “perfect” tool or DSAE can or
should be many tools or a toolchain, tailored to the users’ preferences. The degree of
tool perfection depends on the user and the target application domain. For the
healthcare domain, the requirements related to information coding and representation
will have a high priority due to the interoperability challenges discussed. In this sense,
the approach to tool development followed by the OpenHealthTools project16 seems
promising. They see the tool as an essential part of an ecosystem and their technical
goal “is to assemble and/or develop a comprehensive harmonized tool suite to enable
the definition, development and deployment of interoperable Electronic Health
Records.” To manage this, they have defined a set of architecture principles that focus
strongly on “user needs”, “good enough” and “working code”.

16 OpenHealthTools website: http://openhealthtools.org/

Discussion

 92

Creating ecosystems could be a DSAE and represents a new approach to artefact
development where several tools and systems support the complete artefact lifecycle,
including design, development, evaluation, deployment and maintenance.
Development of a healthcare DSAE should consider the research presented in this
thesis about MDD tools and domain specialization with recommendations on which
utilities that are considered useful and how these should be provided.

The results in this thesis addressing MDD toolchain design and domain standard
incorporation into tools can provide valuable input to the OpenHealthTool project and
similar initiatives. Findings 1-6 all give relevant input to how tools and ecosystem
components should be designed. Moreover, the design science experience should
motivate tool researchers and developers to maintain a strong focus on all three
cycles: relevance, design and rigor.

Based on Findings 1-6, the recommendation for practices with respect to domain
specific MDD is to explicitly consider how to present and integrate utilities such as
domain libraries, traceability and transformation, as part of a complete MDD
toolchain with focus on usefulness, efficacy and ease of use.

Haux argues that it is necessary to explore new architectural styles to support trans-
institutional information sharing in healthcare (Haux 2004). The development of
systems to support independent living and continuity of care involves many
institutions and domains. Services supporting independent living do not and will not
exist in isolation and the domain consists of a large set of independently developed
systems and services. The European commission, the NHIN CONNECT in USA,
standards development organizations such as HL7, as well as other national initiatives
have launched large programs for standardizing information sharing in the healthcare
sector, many of which focus on SOA-based platforms. These platforms include “core
services” for e.g., addressing and security. It is reason to believe that the core services
will be extended with services closer to the application domain.

Findings 7 and 8 states that a relatively small number of reusable software services
can be utilized to create powerful homecare applications. The software services (see
section 4.3.1) are based on SOA by using the web services WSDL and SOAP
specifications. These are interoperability enablers, as the web service front end allows
heterogeneous platforms to interoperate (e.g. .NET and Java.). However, the main
challenge lies in developing reusable service designs. The methodology and tools for
designing the services described in section 3.4, as well as the SOA platform employed
in the pilot systems, may be useful to other designers and developers in care domain.
The services and the tools are provided as open source, and the referenced
publications document the methodology and lessons learned.

Some standards development organizations such as HL7 are working on standardizing
core software services. The Healthcare Service Specification Project (HSSP) is a joint
initiative by OMG and HL7 working towards definition and reference
implementations of reusable software services for healthcare. Since 2006, the HSSP

Limitations and threats to validity

 93

group has slowly grown in number of subprojects and partners. In June 2012, a
project called HSSP Care Coordination Service was initiated17. This is a first step
towards standardization of services that are relevant for independent living, and it is
reason to believe that other SDOs will follow with specifications. The experience
from service design and application development presented in this thesis is relevant
for this standardization work.

Based on Findings 7 and 8, the recommendation for practices in this area is to work
towards standardization of functional and reusable domain service designs and
verify these through reference implementations and application development.

The experience from applying a design science as described by Hevner (Hevner et al.
2004) was positive, and the explicit focus on relevance, assessment cycles and rigor
fits research in the healthcare informatics field perfectly. The characteristics of the
research domain with a plethora of stakeholders, systems, concerns and standards,
imply that a successful artefact should undergo repeated evaluations in realistic
environments using sound methodologies and foundations. The growing need and
provision of “ambient assistive living” technologies will require service
personalization and need requirements for quality in use (Walderhaug et al. 2012).
The experience from the work on this thesis is that Design science provides a
powerful research framework for innovative artefact development in this domain.

As previously pointed out, only one design cycle was carried out for the development
of reusable software services. The process of evaluating software systems with real
users in real environments requires significant resources. For some development
projects this is not possible, and simplifications in the evaluation process must be
made. This will be an unfortunate situation that can be improved by the development
of “design guidelines” similar to those provided for healthcare specific MDD in Paper
10. Design guidelines are provided by several standard development organizations,
e.g. IHE Profiles (IHE 2012) and HSSP’s SOA4HL7 methodology (Honey,Lund
2006).

From the experience in this PhD project, the recommendation for practices is to apply
design science for artefact development in the healthcare informatics domain, and
stress to keep the assess/refine cycles as short as possible.

The scope of the research presented in this thesis was limited by several factors that
were outside my control. Consequently, in order to get useful and valid research
results, the scope was carefully specified by:

• Target application domain

17 HSSP Care Coordination Service: http://hssp-carecoordination.wikispaces.com/home

Discussion

 94

o The software services should be applicable in the area of home care /
independent living, addressing both social and healthcare needs. The
target users are in general healthy people suffering from mild dementia
or similar cognitive impairments. The ModelHealth toolchain
addresses novice and medium skilled software developers working in
the healthcare information system area. They have no or medium
experience in model-driven development, but should have a basic
understanding of UML modelling. To increase adoption of MDD, it
was considered important to address the needs of non-expert MDD
users.

• Resources available in the project period
o Getting access to caregivers and elderly is a time-consuming activity

that often restricts research having a strong focus on engineering. As
this research was partly conducted as a part of the MPOWER project,
access to a large group of stakeholders from four European countries
was made possible. The selection of these stakeholders was part of the
MPOWER project plan.

o Getting access to software developers is hard and could require special
funding. The MPOWER project allowed for using professional
developers within the project as evaluation subjects. Furthermore,
students at the department for computer science at the University of
Tromsø, Norway were available for experiments through specific
courses taught at the institute. The number of students participating
was limited by the course.

o Time was considered a limitation in both toolchain design and
evaluation. This classical trade-off between technical perfection and
evaluation rigor is discussed later.

These limitations influenced the choice of research approach, and the selection of
evaluation methods were decided according to the guidelines given by (Easterbrook et
al. 2008).

In Paper 7 the weaknesses with the end user trial in Trondheim is discussed. Being a
development project, the trial suffers from several shortcomings with respect to
explanation of effects. The evaluation conducted face-to-face interviews and explicit
statements from the users involved were captured. These are presented in Paper 7 and
the positive claims are based on these. The rather long evaluation period by the
majority of the users (10 months) improves the validity of the statements.

In Paper 10, a thorough discussion of the internal and external threats to validity with
respect to the ModelHealth toolchain design and evaluation is provided. The core
factors from this discussion are:

• Researcher bias: The author is both the creator and evaluator of the tool, but has
no commercial or financial interest in its outcomes. The bias was addressed by
using several information sources in the experiment. Moreover, the results were
discussed with fellow researchers, and all raw materials are available to the
readers on request. Researcher bias is a common problem for such studies. This
affects the task description, observation, interviews, coding and interpretation of
the results. To address this, the results (models, codes, interview transcripts, and

Recommendations for future work

 95

analysis) are made available for others on request to the author. The results
presented are documented with at least two sources of information, e.g., an
interview statement that is supported by an observation

• Low number of subjects in the evaluations: Ideally, a larger group of
developers should be involved in both studies to be able to do more statistical
calculations on the material. In the case of the experiment, a larger group could
have changed the context from an open dialog between developer and researcher
to a more closed relationship where the students would feel stressed and observed.
Neither of these factors were mentioned as a problem during the interviews, nor
observed as a limitation during the exercise. The professional developer survey
was conducted in the largest health information system developer workshop
organized in Norway. The EHR developer company organizing the workshop has
a large market share and clear strategy on standardization and integration and is
the provider of the main integration software used in the between hospitals and
primary Norwegian Health Network. The workshop participants were all using or
working with the products from the organizers; hence it is reason to believe that
they represent the target developer community

• Lack of control group for toolchain experiment: The lack of a study control
group makes the interpretation of the study results more difficult. A control group
and a cross-study design would allow for comparison of methods. However the
problem of creating a baseline would create important validity issues with such an
approach as discussed by Kitchenham et al in (Kitchenham et al. 2002).

• Using Students: Using students as study subjects have been debated profoundly
in the field of empirical software engineering (Carver et al. 2003;
Jedlitschka,Briand 2007). There are pros and cons, but as stated in the report from
the working group on “The role of controlled experiments”: “there is no common
agreement on this point” (Jedlitschka,Briand 2007). Carver et al. conclude that
student experiments are useful under proper conditions. They provide guidelines
that were followed in this work (Carver et al. 2003).

As illustrated in Figure 29 on page 75, the scope of the work done in this PhD project
is focused on the intersection between independent living and continuity of care
specific model-driven development for SOA. Both the development of the
ModelHealth Toolchain and the design and appliance of the reusable software
services produced findings that should be pursued in future work. In section 5.5, a set
of expected implications were discussed. The recommendations for future work given
in this section are aligned with these implications:

• Domain specific model-driven development: it is a need for more investigations
on how domain libraries can be standardized and easily incorporated into MDD
tools.

o The UML profiles developed in this project should be aligned with
ongoing initiatives in healthcare SDOs as well as OMG. The
OpenHealthTools and the HSSP projects are existing arenas that could be
used as collaboration partners towards standardization of DSML for
independent living and continuity of care.

Discussion

 96

o More research should be conducted on how to present healthcare
knowledge in a coherent and unambiguously way using the limited set of
mechanisms available in UML Profiles.

o Similarly, the software service profile currently used by the ModelHealth
Toolchain should clearly be updated with a simplified version of the
SoaML UML profile from OMG. It is important that the toolchain ease of
use is not compromised.

• Reusable SOA services supporting independent living: even though the services
developed in this project were rigorously designed and found useful in two pilot
systems, more work should be done on refining their interfaces.

o Projects such as BRAID have documented domain knowledge that can be
utilized to check the “functionality coverage” of the services. It may
become necessary to refine the interface messages and add operations to
fully support important scenarios.

o The PhD project created complete service designs in UML for all the
identified services. The design methodology as well as the design language
should be introduced to SDOs and aligned with their ongoing processes in
order to provide reusable service designs that can be imported into the
most popular MDD tools for inclusion in service and application
development.

• Design science in healthcare informatics: an important part of the PhD project was
the focus on the three research cycles: relevance, design and rigor. Despite well-
known challenges such as the “effort balancing problem” between design and
assessment, the design science framework is considered highly relevant for
artefact development in healthcare informatics. Many researchers in the domain
follow one or more of the research cycles of the framework, but it seems that few
have a clear understanding of this. Based on the experience in this work, design
science, with a strong focus on all three cycles, should be presented and discussed
as the suggested approach to healthcare informatics research. In these discussions,
focus on short cycles and sound evaluation methods should receive much
attention.

97

The previous chapter discussed the answers to the three research questions posed in
Chapter 1. This final chapter presents the conclusions regarding the overall research
problem and questions, and lists the contributions made by this thesis.

The overall problem addressed in this thesis was motivated by the challenges
associated with IT systems for continuity of care, the increased focus on SOA
strategies in healthcare, and the advances in domain specific model-driven
development techniques. This led to the following research problem statement:

How can software developers utilize model-driven development to develop reusable
software services to support care and management of elderly in a homecare
environment?

To focus the investigation, the research problem was addressed by investigation three
research questions. Before answering the overall problem, each of the three questions
is answered based on the discussions in the previous.

R1: How can a model-driven development toolchain with domain support assist
the development of reusable domain software services?

The main conclusion regarding the first research question is that a MDD toolchain
can assist the development of reusable domain software services by providing
domain-specific mechanisms such as UML profiles stereotypes and design templates
that align the design with domain best practices. The toolchain should also provide
mechanisms for model validation and verification to improve the design model
quality.

It was shown with the evolution of the ModelHealth toolchain that default tool
configuration did not provide sufficient ease of use and usefulness for the users.
Through three design cycles, the toolchain was refined according to the findings in
the assessments. The users perceived the final version of the toolchain useful, and the
quality of the results produced in the experiment was satisfactory. The toolchain
supported the development with:

• Improved understanding of the target system environment by incorporating a
homecare UML profile. The UML profile contains a domain specific stereotypes
and a library of actor elements based on a standard for continuity of care.

Conclusions

 98

• Facilitating the creation of traceability information during the design process. This
allowed for traceability analysis and improved overview of the system under
design.

• Simplify the design process by providing project and design templates that
improved the design model correctness quality and toolchain ease of use.

In addition, it was found that model verification and validation could improve the
design model quality and hence the toolchains usefulness. All the reusable software
services were designed and developed with the ModelHealth toolchain, with positive
feedback from the developers.

Recent studies have found that MDD tools are still immature and there is no “Perfect
tool” available to the developers today. Hence, the MDD tools must be adaptable to
different needs in order to provide the required utility.

R2: How can relevant domain standards and knowledge be incorporated into a
model-driven development toolchain, and what aid can they provide in the
design and development process?

The main conclusion regarding the second research question is that for standards such
as the ISO Continuity of Care, UML profiles can incorporate the core concepts and
allow developers to utilize them during design model development. The presentation
of this domain knowledge must be carefully designed so that it allows for easy and
correct use by the developers.

A core objective of the ISO Continuity of Care standard is to assist developers in
developing interoperable software. The work in this PhD Project demonstrated that
the core parts of this standard could be incorporated into a UML Profile with
stereotypes and reusable UML actor elements. Furthermore, a model-driven
development toolchain can provide design process support that assist developers in
creating high quality design models.

The presentation of domain knowledge and concepts from the standards is often
limited by the tool’s meta language support. In terms of UML, the UML Profile only
allows for simple presentation using an icon and a label and it may be a challenge to
provide a powerful presentation of complex domain knowledge. The work shows that
repetitive user evaluations contribute to improving the users’ comprehension of the
domain knowledge in the tool.

R3: Which reusable software services are relevant in the care and management
of elderly living in their homes?

The main conclusion regarding the third research question is that services for medical
and social information, communication, sensor frameworks, interoperability and
security can cover a significant part of the system functionality required to support
the most typical user scenarios in the domain. Simple information systems reusing

 99

these services have the potential to provide important continuity of care functionality
such as sharing information between care providers.

Following a rigorous and resource demanding process, a set of 25 services were
identified, designed, developed and utilized in pilot system development within the
MPOWER project. The identification and design process involved many different
stakeholders and was carefully documented through scenarios, UML use cases,
feature diagrams and UML software service designs. The services are provided as
open source and are grouped in five categories: medical and social information,
communication, sensor framework, interoperability and security.

To evaluate the usefulness of the designed services, two pilot systems were created
using the services as building blocks. The development process and reuse of the
software services were found useful. The evaluation of the Norwegian information-
centric information system in a one-year period found that the system was valid and
useful.

The validity of the services was only evaluated through development of two systems.
Because the service designs can be traced back to the originating scenarios, the
domain validity can be compared to other domain knowledge documents such as
those provided by the BRAID project.

Overall conclusion

The main contribution of this PhD project is comprised by the answers to the three
research questions. The answer to the overall research problem is that developers
should be able to utilize model-driven development for developing reusable domain
software services. To succeed in doing so, the MDD toolchain should:

• Be easy to use and support development of high quality models and correct model
to code transformation.

• Incorporate domain knowledge in terms of stereotypes, reusable model elements,
project structures and design templates. The presentation of the knowledge should
be possible to adapt to the users’ needs.

• Provide a traceability mechanism that allows for full traceability from user
scenarios to reusable software service designs and code.

Refinements in the design should be done after sound evaluations in real
environments with end users.

100

Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model Traceability.
IBM Systems Journal 45(3), 515-526 (2006)

Anonsen, S.: Experiences in modeling for a domain specific language. UML
Modeling Languages and Applications, 187-197 (2005)

Arisholm, E., Briand, L.C., Hove, S.E., Labiche, Y.: The impact of UML
documentation on software maintenance: An experimental evaluation. IEEE
Transactions on Software Engineering 32(6), 365-381 (2006)

Beale, T.: Archetypes: Constraint-based Domain Models for Future-Proof
Information Systems. In: OOPSLA 2002 Workshop on behavioural semantics,
Portland, Oregon, USA 2002

Bleich, H.H.L., Slack, W.W.V.: Designing a hospital information system: a
comparison of interfaced and integrated systems. M.D. computing 9(5), 293-
296 (1992)

Blobel, B.B., Pharow, P.P.: A model-driven approach for the german health
telematics architectural framework and the related security infrastructure.
Studies in health technology and informatics 116, 391-396 (2005)

Boehm, B.: A view of 20th and 21st century software engineering. Paper presented at
the Proceedings of the 28th international conference on Software engineering,
Shanghai, China,

BRAID Project: Bridging Research in Ageing and ICT Development. Executive
Summary. In: Hadjri, K. (ed.). (2012)

Brailer, D.: Interoperability: the key to the future health care system. Health Affairs
Web Exclusive (2005)

Brooks, F.P.: No silver bullet. IEEE Computer 20(4), 10-19 (1987)
Calliope Network: EHealth Interoperability: State of play and future perspectives. An

assessment of European countries' responses to questionnaire on
recommendation (COM(2008)594). In. (2008)

CEN TC251: EN 13940-1: Health Informatics - System of Concepts to Support
Continuity of Care - Part 1: Basic Consepts. In., p. 105. European Committee
for Standardization, (2006)

Dan, A., Johnson, R.D., Carrato, T.: SOA service reuse by design. In: 2008, pp. 25-
28. ACM

Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User Acceptance of Computer
Technology: A Comparison of Two Theoretical Models. Management Science
35(8), 982-1003 (1989)

 101

Demiris, G., Rantz, M., Aud, M., Marek, K., Tyrer, H., Skubic, M., Hussam, A.:
Older adults attitudes towards and perceptions of smart home technologies: a
pilot study. Medical Informatics and the Internet in Medicine 29, 87-94 (2004)

Easterbrook, S., Singer, J., Storey, M., Damian, D.: Selecting empirical methods for
software engineering research. Guide to Advanced Empirical Software
Engineering, 285-311 (2008)

Eichelberg, M., Aden, T., Riesmeier, J., Dogac, A., Laleci, G.B.: A survey and
analysis of Electronic Healthcare Record standards, vol. 37. ACM Press,
(2005)

Erl, T.: Service-Oriented Architecture Concepts, Technology, and Design. The
Prentice Hall Service-Oriented Computing Series Prentice Hall,
Crawfordswille, Indiana, USA (2006)

European Commision: Commission Recommendation of 2 July 2008 on cross-border
interoperability of electronic health record systems (notified under document
number C(2008) 3282). In., vol. 32008H0594. (2008)

European Commision: The 2009 Ageing Report : Economic and budgetary
projections for the EU-27 Member States (2008-2060). In: European
Commision (DG ECFIN) and the Economic Policy Committee (AWG) (ed.)
2009 Aging report. European Commision, Brussels (2009)

European Commision: ICT Challenge 5: ICT for Health, Ageing Well, Inclusion and
Governance. http://cordis.europa.eu/fp7/ict/programme/challenge5_en.html
(2011). Accessed June 10 2011

Finnigan, D., Kemp, E.A., Mehandjiska, D.: Towards an ideal CASE tool. In: Kemp,
E.A. (ed.) Software Methods and Tools, 2000. SMT 2000. Proceedings.
International Conference on 2000, pp. 189-197

Fowler, M.: UML Modes. http://www.martinfowler.com/bliki/UmlMode.html (2003).
Accessed November 9 2012

Fowler, M.: Domain specific languages, 1 ed. Addison-Wesley Professional; , (2010)
France, R., Rumpe, B.: Model-driven development of complex software: A research

roadmap. In, Minneapolis, MN, United States 2007. FoSE 2007: Future of
Software Engineering, pp. 37-54. Institute of Electrical and Electronics
Engineers Computer Society, Piscataway, NJ 08855-1331, United States

Fuhrmann, H., von Hanxleden, R., Rennhack, J., Koch, J.: Model-Based System
Design of Time-Triggered Architectures - Avionics Case Study. In: 25th
Digital Avionics Systems Conference, 2006 IEEE/AIAA, 15-19 Oct. 2006
2006, pp. 1-12

Giuse, D.A., Kuhn, K.A.: Health information systems challenges: the Heidelberg
conference and the future. International Journal of Medical Informatics 69(2-
3), 105-114 (2003)

Grimson, J., Grimson, W., Hasselbring, W.: The SI Challenge in Health Care.
Commun. ACM 43(6), 48--55 (2000)

Guttman, M., Parodi, J.: REAL-LIFE MDA: Solving business problems with model
driven architecture. Morgan Kaufmann Publishers Inc, San Francisco, CA,
USA, (2006)

References

 102

Hagen, I., Cahill, S., Begley, E., Macijauskiene, J., Gilliard, J., Jones, K., Topo, P.,
Saarikalle, K., Holthe, T., Duff, p.: Assessment of usefulness of assistive
technologies for people with dementia. Assistive Technology: From Virtuality
to Reality, 348 - 352 (2005)

Haggerty, J., Reid, R., Freeman, G., Starfield, B., Adair, C., McKendry, R.:
Continuity of care: a multidisciplinary review. British Medical Journal
327(7425), 1219 (2003)

Hailpern, B., Tarr, P.: Model-driven development: The good, the bad, and the ugly.
IBM Systems Journal 45(3), 451-461 (2006)

Hartman, A.: Industrial ROI, Assessment, and Feedback - Master Document. In., p.
24. IBM Haifa Research Lab, (2006)

Haux, R.: Health information systems - past, present, future. International Journal of
Medical Informatics 75(3-4), 268-281 (2004)

Hevner, A.R.: A three cycle view of design science research. Scandinavian Journal of
Information Systems 19(2) (2007)

Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in Information Systems
research. Mis Quarterly 28(1), 75-105 (2004)

Honey, A., Dutta, A., Kumar, M., Christian, M.: SOA4HL7 Architecture Document.
In: Dutta, A. (ed.). p. 76. Health Level Seven, (2006)

Honey, A., Lund, B.: Service Oriented Architecture and HL7 v3: Methodology. In., p.
79. HL7 Service Oriented Architecture Special Interest Group (SOA SIG),
(2006)

HSSP Project: The HSSP Roadmap: HSSP, Version 1.0. In., p. 13. Joint HL7-OMG
Healthcare Services Specification Project, (2007)

Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assessment
of MDE in industry. In: 2011, pp. 471-480. ACM

IEEE: IEEE Recommended Practice for Architectural Description of Software-
Intensive Systems. In. IEEE, (2000)

IHE: Integrating the Healthcare Enterprise. http://www.ihe.net (2012). Accessed
November 9 2012

Iivari, J.: Why are CASE tools not used? Communications of the ACM 39(10), 94-
103 (1996)

Iivari, J.: A paradigmatic analysis of information systems as a design science.
Scandinavian Journal of Information Systems 19(2), 5 (2007)

ISO TC 215: ISO/CD 13940 Health informatics -- System of concepts to support
continuity of care. In: CONTSYS. (under development)

ISO/TC215: Health Informatics - Service Architecture. In: 12967-1/2/3:2009. ANSI,
(2009)

Johnston, S.: UML 2.0 Profile for Software Services.
http://www.ibm.com/developerworks/rational/library/05/419_soa/ (2005).
Accessed November 9 2012

 103

Jones, V., Rensink, A., Brinksma, E.: Modelling mobile health systems: an
application of augmented MDA for the extended healthcare enterprise. In:
2005, pp. 58-69

Karlsson, E.A.: Software reuse: a holistic approach. John Wiley & Sons, Inc., (1995)

Kawamoto, K., Lobach, D.F.: Proposal for Fulfilling Strategic Objectives of the U.S.
Roadmap for National Action on Decision Support through a Service-oriented
Architecture Leveraging HL7 Services. Journal of the American Medical
Informatics Association 14(2), 146-155 (2007)

Khan, M.U.: Architectural Constraints in the Model-Driven Development of Self-
Adaptive Applications. In: Roland, R., Kurt, G. (eds.), vol. 9. (2008)

Ko, A.J., DeLine, R., Venolia, G.: Information Needs in Collocated Software
Development Teams. Paper presented at the Proceedings of the 29th
international conference on Software Engineering,

Krogstie, J.: Model-Based Development and Evolution of Information Systems: A
quality approach, 2012 ed. Springer, (2012)

Krueger, C.W.: Software reuse. ACM Computing Surveys (CSUR) 24(2), 131-183
(1992)

Kuhn, K.A., Lenz, R., Elstner, T., Siegele, H., Moll, R.: Experiences with a generator
tool for building clinical application modules. Methods of information in
medicine 42(1), 37-44 (2003)

Kuzniarz, L., Staron, M., Wohlin, C.: An empirical study on using stereotypes to
improve understanding of UML models. In: 2004, pp. 14-23. IEEE

Kärnä, J., Tolvanen, J.P., Kelly, S.: Evaluating The Use of Domain-Specific
Modeling in Practice. (2009)

Lago, P., Muccini, H., van Vliet, H.: A scoped approach to traceability management.
Journal of Systems and Software 82(1), 168-182 (2009)

Lenz, R., Beyer, M., Kuhn, K.A.: Semantic integration in healthcare networks.
International journal of medical informatics 76(2-3), 201-207 (2007)

Lenz, R., Kuhn, K.A.: Towards a continuous evolution and adaptation of information
systems in healthcare. International journal of medical informatics 73(1), 75-
89 (2004)

Limón, A.E., Garbajosa, J.: The Need for a Unifying Traceability Scheme. In:
European Conference on Model Driven Architecture - Traceability Workshop
2005, Nuremberg, 2005, November 8 2005

Luis M. Camarinha-Matos, Rosas, J.o., Ferrada, F., Oliveira, A.I.s., Afsarmanesh, H.,
Brielmann, M.: ICT & Ageing Scenarios. In. BRAID Project, (2011)

Lundell, B., Lings, B.: Changing perceptions of CASE technology. The Journal of
Systems & Software 72(2), 271-280 (2004)

MacDonald, A., Russell, D., Atchison, B.: Model-driven development within a legacy
system: an industry experience report. Software Engineering Conference,
2005. Proceedings. 2005 Australian, 14-22 (2005)

References

 104

Magnusson, L., Hanson, E., Borg, M.: A literature review study of information and
communication technology as a support for frail older people living at home
and their family carers. Technology and Disability 16(4), 223-235 (2004)

Mattsson, A., Lundell, B., Lings, B., Fitzgerald, B.: Experiences from representing
software architecture in a large industrial project using model driven
development. In: Sharing and Reusing Architectural Knowledge-Architecture,
Rationale, and Design Intent, 2007. SHARK/ADI'07: ICSE Workshops 2007.
Second Workshop on 2007, pp. 6-6. IEEE

Mellor, S.J.: MDA Distilled: Principles of Model-Driven Architecture. Addison-
Wesley Professional, (2004)

Miles, M.B., Huberman, A.M.: Qualitative data analysis : an expanded sourcebook,
2nd ed. Sage Publications, Thousand Oaks (1994)

Miller, J., Mukerji, J.: MDA Guide Version 1.0.1. In: Miller, J., Mukerji, J. (eds.). pp.
1-62. Object Management Group (OMG), (2003)

Mohagheghi, P., Dehlen, V.: Where Is the Proof?-A Review of Experiences from
Applying MDE in Industry. Model-Drivern Architecture-Foundations and
Applications: 4th European Conference, Ecmda-Fa 2008, Berlin, Germany,
June 9-13, 2008, Proceedings (2008)

Mohagheghi, P., Dehlen, V., Neple, T.: Definitions and approaches to model quality
in model-based software development-A review of literature. Information and
Software Technology 51(12), 1646-1669 (2009a)

Mohagheghi, P., Fernandez, M., Martell, J., Fritzsche, M., Gilani, W.: MDE adoption
in industry: Challenges and success criteria. Models in Software Engineering,
54-59 (2009b)

MPOWER Consortium: FREE MPOWER. http://sourceforge.net/projects/free-
mpower (2008a). Accessed November 9 2012

MPOWER Consortium: Middleware platform for eMPOWERing cognitive disabled
and elderly. http://www.sintef.no/mpower (2008b). Accessed November 9
2012

Nasjonal IKT: Tjenesteorientert arkitektur i spesialisthelsetjenesten. In, vol. 2008.
vol. November 9. (2011)

Naur, P., Randell, B.: Software Engineering: Report on a conference sponsored by the
NATO SCIENCE COMMITTEE, Garmisch, Germany, 7th to 11th October
1968. Scientific Affairs Division, (1968)

Norwegian Ministry of Social Affairs, Norwegian Ministry of Health: Te@mwork
2007 - Electronic Interaction in the Health and Social Sector. In., p. 25.
Directorate for Health and Social Affairs, (2004)

OASIS Open: Reference Model for Service Oriented Architecture 1.0. In: C. Matthew
MacKenzie, Ken Laskey, Francis McCabe, Peter F Brown, Rebekah Metz
(eds.). OASIS Open, (2006)

Oates, B.J.: Researching information systems and computing. Sage Publications Ltd,
(2006)

 105

Object Management Group: Service oriented architecture Modeling Language
(SoaML). In: "In Process" Version of SoaML: 1.0 Beta 2. OMG, (2009)

Object Management Group (OMG). http://www.omg.org/. Accessed November 9
2012

Object Management Group (OMG): MDA Guide Version 1.0.1. In: Miller, J.,
Mukerji, J. (eds.). pp. 1-62. Object Management Group, (2003)

Object Management Group (OMG): UML 2.0 Superstructure FTF Rose model
containing the UML 2 metamodel. In., vol. 2006-08-31. Object Management
Group (OMG), (2005)

Object Management Group (OMG): Object Constraint Language (OCL), Version 2.0.
In., pp. 1-232. Object Management Group, (2006)

Object Management Group (OMG): UML 2.1.2 Superstructure and Infrastructure. In.,
vol. formal/2007-11-04. Object Management Group (OMG), (2007)

Omar, W.M.: E-health support services based on service-oriented architecture. IT
professional 8(2), 35 (2006)

Park, J.: Information systems interoperability: What lies beneath? ACM transactions
on information systems 22(4), 595 (2004)

Parviainen, P., Takalo, J., Teppola, S., Tihinen, M.: Model-Driven Development.
(2009)

Purchase, H.C., Colpoys, L., McGill, M., Carrington, D.: UML collaboration diagram
syntax: an empirical study of comprehension. In: 2002, pp. 13-22. IEEE

Raghupathi, W., Kesh, S.: Interoperable electronic health records design: towards a
service-oriented architecture. e-Service Journal 5(3), 39-57 (2008)

Raistrick, C.: Applying MDA and UML in the Development of a Healthcare System.
In: UML Modeling Languages and Applications, vol. Volume 3297/2005.
Lecture Notes in Computer Science, pp. 203-218. Springer Berlin /
Heidelberg, (2005)

Ricca, F., Di Penta, M., Torchiano, M., Tonella, P., Ceccato, M.: How Developers'
Experience and Ability Influence Web Application Comprehension Tasks
Supported by UML Stereotypes: A Series of Four Experiments. Software
Engineering, IEEE Transactions on 36(1), 96-118 (2010)

Rine, D.C., Nada, N.: An empirical study of a software reuse reference model.
Information and Software Technology 42(1), 47-65 (2000)

Rosen, M.: MDA, SOA, and Technology Convergence. In: David S. Frankel, John
Parodi (eds.) The MDA Journal Straight from the Masters. pp. 62-79.
Meghan-Kiffer Press, Tampa, Florida, USA (2004)

Rubin, K.S., Beale, T., Blobel, B.: Modeling for Health Care. In: Person-Centered
Health Records. Health Informatics, pp. 125-146. Springer New York, New
York (2005)

Sametinger, J.: Software engineering with reusable components. Springer Verlag,
(1997)

Schulte, M.: Model-based integration of reusable component-based avionics systems -
a case study. In: Object-Oriented Real-Time Distributed Computing, 2005.

References

 106

ISORC 2005. Eighth IEEE International Symposium on, 18-20 May 2005
2005, pp. 62-71

Seaman, C.B.: Qualitative Methods. In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds.)
Guide to Advanced Empirical Software Engineering. pp. 35-62. Springer
London, (2008)

Selic, B.: A Systematic Approach to Domain-Specific Language Design Using UML.
10th IEEE ISORC 7 (2007)

Shaikh, A., Wiil, U.K., Memon, N.: Evaluation of tools and slicing techniques for
efficient verification of UML/OCL class diagrams. Advances in Software
Engineering 2011, 5 (2011)

Sharma, S., Rai, A.: CASE deployment in IS organizations. Communications of the
ACM 43(1), 80-88 (2000)

Shull, F., Singer, J., Sjøberg, D.I.K.: Guide to Advanced Empirical Software
Engineering. Springer Verlag, London (2007)

Sim, S.E., Lethbridge, T.C.: Software Engineering Data Collection for Field Studies.
In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds.) Guide to Advanced Empirical
Software Engineering. pp. 9-34. Springer London, (2008)

Spinellis, D., Szyperski, C.: How is open source affecting software development?
IEEE software 21(1), 28-33 (2004)

Stahl, T., Völter, M.: Model-driven software development: technology, engineering,
management. Wiley, Chichester (2006)

Standish Group International: The Chaos Report. In. Standish Group International,
(1994)

Staron, M.: Improving modeling with UML by stereotype-based language
customization. Blekinge Institute of Technology (2005)

Staron, M.: Adopting Model Driven Software Development in Industry–A Case Study
at Two Companies. Proceedings of the MoDELS/UML conference (2006)

Stead, W.W.: Integration and Beyond. Journal of the American Medical Informatics
Association 7, 135 (2000)

Tattersall, R.: The expert patient: a new approach to chronic disease management for
the twenty-first century. Clin Med 2(3), 227-229 (2002)

The Middleware Company: Model Driven Development for J2EE Utilizing a Model
Driven Architecture (MDA) Approach. In: MDA Productivity Case Study.
(2003)

The MPOWER Consoritum: MPOWER Website. http://www.mpower-project.eu
(2007). Accessed June 15 2007

Tolvanen, J.P., Rossi, M.: MetaEdit+: defining and using domain-specific modeling
languages and code generators. In: 2003, pp. 92-93. ACM

Trask, B., Paniscotti, D., Roman, A., Bhanot, V.: Using model-driven engineering to
complement software product line engineering in developing software defined
radio components and applications. In: Companion to the 21st ACM
SIGPLAN symposium on Object-oriented programming systems, languages,
and applications 2006, pp. 846-853. ACM

 107

U.S. Department Of Health and Human Services, Food and Drug Administration
Center for Devices, Radiological Health Center for Biologics Evaluation and
Research: General Principles of Software Validation; Final Guidance for
Industry and FDA Staff. (2002).

Van Someren, M.W., Barnard, Y.F., Sandberg, J.A.C.: The think aloud method: A
practical guide to modelling cognitive processes. Academic Press London,
(1994)

Venkatesh, V., Davis, F.D.: A Theoretical Extension of the Technology Acceptance
Model: Four Longitudinal Field Studies. Management Science 46(2), 186-204
(2000)

Walderhaug, S.: Evaluation of a Model-Driven Development Toolchain for
Healthcare. Automated Software Engineering Journal Revision submitted on
September 1, 2012 (2012)

Walderhaug, S., Mikalsen, M., Benc, I., Loniewski, G., Stav, E.: Factors affecting
developers' use of MDSD in the Healthcare Domain: Evaluation from the
MPOWER Project. In: Bailey, T. (ed.) From code-centric to model-centric
development, Workshop at European Conference on Model-Driven
Architecture, Berlin, Germany 2008a. European Software Institiute

Walderhaug, S., Mikalsen, M., Salvi, D., Svagård, I., Ausen, D., Kofod-Petersen, A.:
Towards Quality Assurance of AAL Services. In: Blobel, B. (ed.) Phealth
2012: Proceedings of the 9th International Conference on Wearable Micro and
Nano Technologies for Personalized Health 2012, p. 296. IOS Press

Walderhaug, S., Stav, E., Johansen, U., Olsen, G.K.: Traceability in Model-driven
Software Development. In: Tiako, P.F. (ed.) Designing Software-Intensive
Systems - Methods and Principles. pp. 133-160. IGI Global, Information
Science Reference, Hersey, PA (2008b)

Walderhaug, S., Stav, E., Mikalsen, M.: Reusing models of actors and services in
smart homecare to improve sustainability. Stud Health Technol Inform 136,
107-112 (2008c)

Walker, J., Pan, E., Johnston, D., Adler-Milstein, J., Bates W., D., Middleton, B.: The
Value of Health Care Information Exchange and Interoperability. Health
Tracking 5(10) (2005)

Wancata, J., Musalek, M., Alexandrowicz, R., Krautgartner, M.: Number of dementia
sufferers in Europe between the years 2000 and 2050. European Psychiatry
18(6), 306-313 (2003)

Warmer, J.B.: "Object Constraint Language, The: Getting Your Models Ready for
MDA, Second Edition". (2003)

Winkler, S., Pilgrim, J.: A survey of traceability in requirements engineering and
model-driven development. Software & Systems Modeling 9, 529-565 (2009).
doi:10.1007/s10270-009-0145-0

Winnem, O.M., Walderhaug, S.: Distributed, role based, guideline based decision
support. In: E-he@lth in Common Europe 2002, pp. 101-109. Springer

References

 108

World Wide Web Consortium (W3C): Web Services Architecture. In: Booth, D.,
Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Orchard, D.
(eds.). W3C, (2004)

World Wide Web Consortium (W3C): Web Services Description Language (WSDL)
Version 2.0 Part 1: Core Language. In: Chinnic, R., Jean-Jacques Moreau,
Ryman, A., Weerawarana, S. (eds.). W3C, (2007)

 110

Part II Collection of papers

P1: Walderhaug, S., Mikalsen, M., Hartvigsen, G., Stav, E., Aagedal, J.:
Improving systems interoperability with model-driven software development
for healthcare. Stud Health Technol Inform 129(Pt 1), 122-126 (2007)

P2: Walderhaug, S., Stav, E., Mikalsen, M.: The MPOWER Tool Chain -
Enabling Rapid Development of Standards-based and Interoperable
HomeCare Applications. In: Sandnes, F.E. (ed.) Norsk Informatikk
Konferanse (NIK), Oslo, October 2007 2007, pp. 103-107. TAPIR (2007)

P3: Walderhaug, S., Mikalsen, M., Benc, I., Loniewski, G., Stav, E.: Factors
affecting developers' use of MDSD in the Healthcare Domain: Evaluation
from the MPOWER Project. In: Bailey, T. (ed.) From code-centric to model-
centric development, Workshop at European Conference on Model-Driven
Architecture, Berlin, Germany 2008. European Software Institute

P4: Walderhaug, S., Stav, E.: Experiences from model-driven development of
homecare services: UML profiles and domain models. Paper presented at the
2nd International Workshop on Model-Based Design of Trustworthy Health
Information Systems (MOTHIS 2008) in Toulouse, France. The paper was
selected as the session’s best paper.

P5: Walderhaug, S., Stav, E., Johansen, U., Olsen, G.K.: Traceability in Model-
driven Software Development. In: Tiako, P.F. (ed.) Designing Software-
Intensive Systems - Methods and Principles. pp. 133-160. IGI Global,
Information Science Reference, Hersey, PA (2008)

P6: Walderhaug, S., Stav, E., Mikalsen, M.: Reusing models of actors and
services in smart homecare to improve sustainability. Stud Health Technol
Inform 136, 107-112 (2008)

P7: Holthe, T., Walderhaug, S.: Older people with and without dementia
participating in the development of an individual plan with digital calendar
and message board. Journal of Assistive Technologies 4(2), 15-25 (2010)

P8: Walderhaug, S., Hartvigsen, G., Stav, E.: Model-driven traceability in
healthcare information systems development. Stud Health Technol Inform
160(Pt 1), 242-246 (2010)

P9: Stav, E., Walderhaug, S., Mikalsen, M., Hanke, S., Benc, I.: Development
and evaluation of SOA-based AAL services in real-life environments: A case
study and lessons learned. International Journal of Medical Informatics
(2011). doi:10.1016/j.ijmedinf.2011.03.007

P10: Walderhaug, S.: Evaluation of a Model-Driven Development Toolchain for
Healthcare. Automated Software Engineering Journal, revision submitted on
September 1st, 2012

 111

Related papers not included in this thesis:

1. Walderhaug, S., Stav, E., Johansen, U., Aagedal, J., 2006. Towards a Generic
Solution for Traceability in MDD, in: Aagedal, J., Neple, T., Oldevik, J.
(Eds.), European Concerence on Model Driven Architecture Traceability
Workshop (ECMDA-TW). SINTEF, Bilbao, Spain.

2. Droes, R.-M., Mulvenna, M., Nugent, C., Finlay, D., Donnelly, M., Mikalsen,
M., Walderhaug, S., Kasteren, T.v., Krose, B., Puglia, S., Scanu, F., Migliori,
M.O., Ucar, E., Atlig, C., Kilicaslan, Y., Ucar, O., Hou, J., 2007. Healthcare
Systems and Other Applications, in: Maurice, M. (Ed.), Pervasive Computing,
IEEE, pp. 59-63.

3. Mikalsen, M., Walderhaug, S., Meland, P.H., Winnem, O.M., 2007. Linkcare
-enabling continuity of care for the chronically ill across levels and
profession. Stud Health Technol Inform 129, 3-7.

4. Pitsillides, A., Themistokleous, E., Samaras, G., Walderhaug, S., Winnem,
O.M., 2007. Overview of MPOWER: Middleware Platform for the Cognitively
Impaired and Elderly, IST Africa 2007, Maputo, Mosambique.

5. Prazak, B., Hochgatterer, A., Holthe, T., Walderhaug, S., 2007. User
Requirements as Crucial Determinants for the Development of New
Technological Solutions for Elderly Care - Exemplified in an European
Project, in: G. Eizmendi, Azkoitia, J.M., Craddock, G.M. (Eds.), AAATE.
IOSPress, San Sebastian, Spain.

6. Loniewski, G., Ramon, E.L., Walderhaug, S., Franco, S.M., Esteve, J.J.C.,
Marco, E.S., 2008. Data Management in an Intelligent Environment for
Cognitive Disabled and Elderly People, EHealth 2008. Springer London, UK.

7. Mikalsen, M., Hanke, S., Fuxreiter, T., Walderhaug, S., Wienhofen, L., 2009.
Interoperability services in the MPOWER Ambient Assisted Living platform.
Stud Health Technol Inform 150, 366-370.

8. Mikalsen, M., Walderhaug, S., Salvi, D., Hanssen, G.K., 2012. Key
Technological Success Features for a Domain Specific Open Software
Ecosystem for Ambient Assisted Living, in: Eichler, G., Wienhofen, L.W.M.,
Kofod-Petersen, A., Unger, H. (Eds.), 12th International Conference on
Innovative Internet Community Systems. Springer Verlag, Trondheim,
Norway.

9. Walderhaug, S., Mikalsen, M., Salvi, D., Svagård, I., Ausen, D., Kofod-
Petersen, A., 2012. Towards Quality Assurance of AAL Services, in: Blobel, B.
(Ed.), Phealth 2012: Proceedings of the 9th International Conference on
Wearable Micro and Nano Technologies for Personalized Health. IOS Press,
p. 296.

 112

Walderhaug, S., Mikalsen, M., Hartvigsen, G., Stav, E., Aagedal, J.: Improving
systems interoperability with model-driven software development for healthcare. Stud
Health Technol Inform 129(Pt 1), 122-126 (2007)

 118

 123

 136

 151

 163

 170

 182

 188

 214

 66

Appendix A. Interview Guide (semi-structured)

• Please tell me about your education with focus on software engineering

courses, programming languages and other relevant course

• What do you think about the exercise?

• Did you understand the exercise scenario

o Was the difficulty ok?

• What do you thing about the first part of the exercise: the computation

independent modelling

o Use case modelling

 Did you use the actors library

 Did you find the actors you were looking for

o Feature modelling

o Trace link modelling

• What do you think about the second part: platform specific modelling

o Information modelling

 Which background information did you use to create the

information model

 Did you get all the details necessary?

o Service modelling

 How did you identify services

 How did you identify interface operations

 Service model template

 Which information did you use for message design

 Did you use the traceability information

• What did you think about the final part: platform specific modeling

o Generating RTF and HTML documentation

 What do you think was the most useful?

o Using HTML documentation for traceability

o DDL Transformation

o WSDL Transformation

• Using the DDL and WSDL files for database and

o General comments?

• Would you like to learn more about MDD

 67

o Take more courses at the university?

• Any other comments?

 68

Appendix B. Experiment Scenario description

MedList – Shared medication list

A common problem for patients, and especially elderly, is the management of

medication. The problems include:

1) Read information about dosage and description about when and how the

medication should be taken

2) Manage updated medication: change in dosage and amount

3) Share problems with medication between the patient’s family, visiting nurses

and the GP.

4) Report back to GP if medication has been taken or not.

In Ulvilla, a nice village just outside of Verdal in Nord-Trøndelag, the happy couple

Odd and Anna lives in a small house on their farm Elnes Nedre. They retired seven

years ago, and now their oldest son Harald is running the farm together with his wife

Åse.

Odd had a stroke 5 years ago, and has since then been on medication. Just recently

he got a new type of medicine from his GP, Dr Abbas. Odd and Anna went to see Dr.

Abbas together, but none of them really understood what he said, and they were

afraid to ask – after all he is a respected doctor in Verdal. As a result of this

uncertainty, Odd takes the medication too often – “to be on the safe side”

After one week of “misuse”, Odd feels sick and need to see the doctor. It is soon

revealed that he as taken to much medicine. Harald and Åse are really angry, and

after some phone calls, a new research project is started: MedList. This project will

address the problems 1-4 in the list above.

The project will:

a) Build upon a SOA platform, using web services in the local health network

b) Have an easy to use client installed at the GP, patient and the patient’s

relatives

 69

c) Share information about medication between the defined actors.

 70

Appendix C. Professional Survey Questionnaire

The questionnaire (in Norwegian) is available from the author on request.

 71

Appendix D. Interview analysis

Raw material and analysis results are available on request to the author.

