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Pyrazine excited states revisited using the extended
multi-state complete active space second-order
perturbation method†

Toru Shiozaki,z*a Clemens Woywod*b and Hans-Joachim Werner*a

We demonstrate that the recently developed extended multi-state complete active space second-order

perturbation theory (XMS-CASPT2) [Shiozaki et al., J. Chem. Phys., 2011, 135, 081106] provides

qualitatively correct potential energy surfaces for low-lying excited singlet states of pyrazine, while the

potential energy surfaces of the standard MS-CASPT2 methods are ill-behaved near the crossing point

of two reference potential energy surfaces. The XMS-CASPT2 method is based on the extended multi-

configuration quasi-degenerate perturbation theory proposed earlier by Granovsky [J. Chem. Phys.,

2011, 134, 214113]. We show that the conical intersection at the XMS-CASPT2 level can be described

without artifacts if the entire method is invariant with respect to any unitary rotations of the reference

functions. The photoabsorption spectra of the 11B3u and 11B2u states of pyrazine are simulated, based

on a vibronic-coupling model Hamiltonian. The XMS-CASPT2 spectrum of the 11B3u band is found to be

comparable to the one computed by a more expensive multireference configuration interaction (MRCI)

method, while the XMS-CASPT2 simulation of the 11B2u band is slightly inferior to the MRCI one.

1 Introduction

There are many chemical processes that must be modeled by
multireference electronic structure theories. Such processes
include those related to state crossings and those dependent
on global potential energy surfaces (PESs). Among others, the
complete active space second-order perturbation (CASPT2)
theories1–9 have been routinely used for such chemical applica-
tions. The CASPT2 method is based on a complete active space
reference wavefunction and describes the so-called dynamical
correlation using second-order perturbation theory. In CASPT2
the internal contraction scheme10,11 is mostly used to reduce
the dependence of the computational effort on the number of
reference configurations, while some other variants of multi-
reference perturbation theory use uncontracted configuration

state functions (CSFs) to expand the first-order wave func-
tions.12–16 Recently,17 a CASPT2 method with density matrix
renormalization group reference functions18,19 has also been
reported. A concise review on the current status of CASPT2 can
be found in ref. 20.

One of the shortcomings of the CASPT2 method has been,
however, that it is state-specific and it does not allow for a
relaxation of the reference coefficients in the first-order wave-
function. This is problematic, especially near conical intersec-
tions and avoided crossings. In order to rectify this problem, a
multi-state extension of the CASPT2 method (MS-CASPT2) has
been developed by Finley et al.5 on the basis of the multi-
configuration quasi-degenerate perturbation theory (MCQDPT),15

which was in turn based on earlier developments.21 In MS-CASPT2,
a second-order effective Hamiltonian is diagonalized at the end,
which allows for mixings of the zeroth and first-order wave func-
tions of different nearly degenerate states. There are also similar
approaches called generalized Van-Vleck perturbation theories.22,23

Although MS-CASPT2 improves the description of electronic
structures around conical intersections and avoided crossings
in comparison to the single state CASPT2, there are still many
cases where MS-CASPT2 PESs become singular at crossing
points.24 A remedy has been first proposed by Granovsky,25

who has proposed the ‘extended’ MCQDPT method, which is
a generalization of the uncontracted MCQDPT of Nakano.15
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An internally contracted CASPT2 variant has recently been
implemented (XMS-CASPT2) by Shiozaki et al., together with
its analytic nuclear energy gradients.26,27

The key idea in XMCQDPT and XMS-CASPT2 has been to use
a zeroth-order Hamiltonian that is invariant with respect to
any unitary rotations of the reference wavefunctions. For the
second order energy, this is technically equivalent (see below)
to use rotated reference functions, which diagonalize the Fock
operator within the space spanned by the reference functions
(or, the model space) when computing the perturbed wave
functions. As a result, the computational cost of XMS-CASPT2
energy and nuclear gradient computations is the same as that
of standard MS-CASPT2.

On the other hand, the XMS-CASPT2 method could introduce
some shortcomings as well. For instance, the intruder state pro-
blems could be more pronounced, since in XMS-CASPT2 some
states have a higher zeroth-order energy than in MS-CASPT2 due to
diagonalization of the Fock operator. Furthermore, in rare cases
when the reference functions span the complete active space, XMS-
CASPT2 transforms eigenfunctions of the active space Hamiltonian
back to CSFs, which is not desirable. Therefore, it is important to
carefully examine the accuracy of the XMS-CASPT2 method.

In order to assess the quality of PESs computed by the XMS-
CASPT2 approach we have in the current work employed this
method to parametrize a vibronic coupling Hamiltonian for the
11B3u and 11B2u states of pyrazine. The strong vibronic interaction
between these states is clearly manifested in the continuous
wave (CW) photoabsorption and resonance Raman spectra. The
11B3u–11B2u coupling has in fact become a showcase example
for the calibration of vibronic coupling models. Spectroscopic
properties of the two vibronically coupled electronic states have
been studied in detail both by experiment28–32 as well as by
theory.33–49

We first present a summary of the XMS-CASPT2 theory
(Section 2.1), followed by the methodology for the simulation
of CW photoabsorption bands (Section 2.2). In Section 3.1 we
show that the XMS-CASPT2 method provides smooth potential
energy functions for the 11B3u and 11B2u states of pyrazine,
which are free of artifacts and almost parallel to those com-
puted by the multireference configuration-interaction
approach, including the quasi-degenerate Davidson correction
(MRCI+Q). In Section 3.2 it will be demonstrated that the
invariant inclusion of level shifts50 in the XMS-CASPT2 theory
is crucial for description of electronic structures near conical
intersections. The simulations of the 11B3u and 11B2u photo-
absorption bands performed with this model are discussed in
Section 3.3 and compared with previous calculations, in parti-
cular ref. 48 and 49. Conclusions based on the computational
results are given in Section 4.

2 Theoretical background

In this section, we briefly review the XMS-CASPT2 theory
and the framework of computing photoabsorption spectra.
For details, the readers are referred to ref. 26 and 48,
respectively.

2.1 XMS-CASPT2 theory

The main idea of the extended multistate multireference per-
turbation theories, first proposed by Granovsky,25 is to make
the multistate theories invariant with respect to any unitary
rotations of reference [i.e., complete-active-space self-consistent-
field (CASSCF)] functions. As shown previously25,26 and herein, this
is essential for a consistent simulation of conical intersections and
avoided crossings.

The invariant form of the XMS-CASPT2 amplitude equations
and the effective Hamiltonian is

hOjĤð0Þ þ EshiftjCð1ÞN i

�
X
M

hOjCð1ÞM ihMjĤ
ð0ÞjNi þ hOjĤjNi ¼ 0;

ð1Þ

(Heff)MN = 1
2(hCM|Ĥ|Ni + hM|Ĥ|CNi) � EshifthC(1)

M |C(1)
N i, (2)

where O is the projection manifold, Ĥ is the electronic Hamil-
tonian, and |CNiR |Ni + |C(1)

N i. The zeroth order Hamiltonian
is defined as

Ĥ
ð0Þ ¼

X
MN

jNihNjf̂ jMihMj þ Q̂f̂ Q̂: ð3Þ

|Mi is the Mth state in an underlying CASSCF calculation, and Q̂
is the projector 1�

P
M jMihMj. If internally contracted func-

tions are used for |C(1)
N i, the first-order wave function for each

state should be expanded in terms of the union of the internally
contracted functions generated from all the references26,51 (the
so-called MS-MR-CASPT2 scheme in MOLPRO

52). f̂ is the general-
ized Fock operator

f̂ ¼
X
rs

hrs þ
X
ij

gavij Jij
rs �

1

2
Kij

rs

� �" #
Êrs ð4Þ

with the standard spin-free excitation operators Êrs and the
state-averaged density matrix gav

ij . Note that i and j label (doubly
and partially) occupied orbitals, while r and s label any orbitals.

The level shift Eshift has been introduced into CASPT2 in
order to circumvent intruder state problems.50 We have intro-
duced the level shift in the XMS-CASPT2 amplitude equations
[eqn (1)] in an invariant way with respect to any unitary rotation
of reference functions. The proof of invariance is straightfor-
ward.25 Thanks to this invariance, one can transform the
reference functions by means of a unitary matrix UMN so that

j ~Ni ¼
P

M jMiUMN diagonalizes Ĥ(0), i.e.,

Ĥ
ð0Þ ¼

X
N

~E
ð0Þ
N j ~Nih ~Nj þ Q̂f̂ Q̂; ð5Þ

with

hM̃|Ĥ(0)|Ñi = dMNẼ(0)
N . (6)

The amplitude equations are then decoupled as

hO|Ĥ(0) � Ẽ(0)
N + Eshift| ~C(1)

N i + hO|Ĥ|Ñi = 0, (7)

and the effective Hamiltonian becomes

(Heff)MN = 1
2(h ~CM|Ĥ|Ñi + hM̃|Ĥ| ~CNi) � Eshifth ~C(1)

M | ~C(1)
N i, (8)
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where j ~Cð1ÞN i ¼
P

N jC
ð1Þ
N iUNM and ~CN = |Ñi + | ~C(1)

N i. Note that
the first-order wave functions are generally not orthogonal to
each other, and the shift correction in the effective Hamiltonian
is therefore only invariant if the full overlap matrix h ~C(1)

M | ~C(1)
N i is

included in the last term of (Heff)MN. Previously,26 we used only
the diagonal (M = N) part of the correction term [the last term in
eqn (8)], which was, in turn, the default choice for the standard
MS-CASPT2 (which we hereafter denote ‘standard shifts’). The
fully invariant inclusion has turned out to be of vital importance
as we will see numerically later (hereafter denoted as ‘invariant
shifts’).

The modification of the analytic nuclear energy gradient
code due to the change of the level shift formula has been
trivial. The computer code that implements the above methods
is available in the latest release of MOLPRO.52 Other choices of the
zeroth-order Hamiltonian, such as the so-called IPEA shift,53

can also be used in conjunction with XMS-CASPT2. However,
the standard zeroth-order Hamiltonian has been used through-
out the current work.

2.2 Simulation of 11B3u and 11B2u continuous wave
absorption spectra

In this work, the vibronic coupling dynamics is treated in a quasi-
diabatic electronic basis ({FN(r,Q)}N=1,2) since this simplifies
numerical calculations. Here r denotes collectively the electronic
coordinates and Q the set of vibrational normal coordinates. F1

and F2 correspond to the 11B3u and 11B2u excited states of
pyrazine, respectively. The definition and generation of these
quasi-diabatic states from the adiabatic wavefunctions CN is
described in ref. 48. Expanding hFN(Q)|(Ĥ(Q)|FM(Q))i � V0(Q)dNM

(Ĥ denotes the electronic Hamiltonian) around the S0 equilibrium
geometry [Q = 0] to second order (except for bilinear terms) leads
to the approximate two-state multimode matrix Hamiltonian of
vibronic coupling theory (Table 1),54 in which g(n)

t and g(n)
10a are

parameters corresponding to the diagonal elements of the matrix
of second derivatives of the excitation energies of the 11B3u and
11B2u states with respect to the normal coordinates Qt and Q10a,
respectively. T̂nuc is the nuclear kinetic energy operator, and V0(Q)
is the nuclear ground-state potential of pyrazine in the harmonic
approximation. Qi denotes a dimensionless normal coordinate. En

are the vertical excitation energies, k(n)
t the first-order intrastate

and l10a the first-order 11B3u–11B2u interstate electron-vibrational
coupling constants. The summation index t includes all five
totally symmetric or ‘‘tuning’’ coordinates of pyrazine: Q1, Q2, Q6a,
Q8a and Q9a. Tuning modes nt are characterized by modulating the
energy gap between the two states.54 For symmetry reasons, only
nuclear displacements that transform according to the Ag and B1g

irreducible representations of the D2h point group can couple
linearly to one-photon transitions into the 11B3u and 11B2u states.

The parameters (k(n)
t , l10a, g(n)

t and g(n)
10a) are computed by the same

procedure as in ref. 48, see also below.
The photoabsorption line spectrum is computed using

Fermi’s golden rule,55

IðoÞ /
X
f

jhC0jĤ intjCf ij2dðo� Ef þ E0Þ; ð9Þ

where |C0i is the vibronic ground state of pyrazine with energy
E0, and |Cfi are the final vibronic states of pyrazine with
energies Ef. The operator Ĥint describes the interaction of the
molecule with the external electric field E(t):

Ĥ int ¼ �
X
N¼1;2

jFNilN0EðtÞhF0j þ h:c:; ð10Þ

where lN0 are the nonvanishing transition moments in the
diabatic representation.

The eigenvalues of the approximate two-state matrix Hamil-
ton operator Ĥvib [Table 1] are obtained by numerically solving
the time-independent vibronic Schrödinger equation with a
vibronic basis,56

jCf i ¼
X
N¼1;2

X
v

C
f
NvjFNijvi; ð11Þ

which is a complete direct-product basis of diabatic electronic
states |FNi and eigenfunctions |vii of one-dimensional harmonic
oscillators. Note that the matrix representation of Ĥvib decouples
into two submatrices H1 and H2, corresponding to the vibronic
levels of B3u and B2u symmetry, respectively.

The ground state |C0i of pyrazine is to a good approxi-
mation a Born–Oppenheimer product:

|C0i = |F0i|0i, (12)

where |F0i and |0i denote the electronic and the vibrational
ground states, respectively. The final vibronic states |Cfi, on the
other hand, are given by eqn (11). Ĥint is treated in the dipole
approximation. Applying the Condon approximation in the
diabatic basis, the transition matrix element from eqn (9)
becomes54

hC0|Ĥint|Cfip t1Cf
10 + t2Cf

20, (13)

where only the first component Cf
N0 of the eigenvectors of the

submatrices Hn (n = 1, 2) determines the intensity of the fth
line. Obviously, this drastically reduces the numerical effort. In
all computations of the present study, the oscillator strengths
t1 = 0.1 and t2 = 1.0 are assumed for the vibronic transitions.
The ratio of these values corresponds to the experimental
observation. In ref. 47, a ratio t1 : t2 of 1 : 4.7 has been
estimated by employing the same basis set (basis version 1)
and active space definition as for the calculation of vibronic
parameters in the present study. The oscillator strengths were

Table 1 The approximate two-state Hamiltonian of vibronic coupling theory. See the main text for the definition of the parameters

Ĥvib ¼ ðT̂nuc þ V0ðQÞÞ12 þ
E1 þ

P
t
½kð1Þt Qt þ gð1Þt Q2

t � þ gð1Þ10aQ
2
10a l10aQ10a

l10aQ10a E2 þ
P
t
½kð2Þt Qt þ gð2Þt Q2

t � þ gð2Þ10aQ
2
10a

2
64

3
75:
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computed by combining transition dipole moments and vertical
excitation energies obtained at the CASSCF and CASPT2 levels of
theory, respectively.47

3 Numerical results

Our numerical demonstration in this section is threefold. In
Section 3.1 we will first show that the artifacts one encounters
with the standard MS-CASPT2 method in regions that are
characterized by very small energy differences between two or
more CASSCF reference states can be removed by using the new
XMS-CASPT2 method. Secondly, in Section 3.2 we demonstrate
the importance of the invariant inclusion of level shifts when
the Fock operator has degenerate eigenvalues near state crossings.
Finally, based on the two-state vibronic model, we simulate the CW
photoabsorption spectra of the 11B3u and 11B2u states of pyrazine
and compare the results to experiment as well as to previous
theoretical spectra48,49 (Section 3.3).

We have used Dunning’s augmented triple-z basis set (aug-
cc-pVTZ), without the diffuse functions of highest angular
shells for each atom. In addition, we included four s-, three
p-, and three d-type diffuse functions located at the center of mass
of the molecule, whose exponents are s (0.021, 0.008, 0.0025,
0.0008), p (0.017, 0.009, 0.004), d (0.015, 0.008, 0.004). This basis
set has been employed in the calculations reported in ref. 47 (basis
version 1). In principle, the aug-cc-pVTZ basis set would be
sufficient for the description of the 11Ag, 11B3u and 11B2u states
of pyrazine, but we prefer this basis for consistency reasons.

The ground state geometry and force field have been deter-
mined by the single-state CASPT2 approach.57 The 11B3u and
11B2u excited states transform according to the Bu irreducible
representation if the C2h point group applies to the nuclear
frame. They are computed with state averaging and multi-state
treatments within the reduced symmetry. The active space was
constructed from 10 electrons in 8 orbitals (2 orbitals each in
ag, au, bu, and bg within C2h symmetry).47–49 A level shift of 0.3
Eh was used to avoid intruder state problems.

Note that although the 11B3u and 11B2u excitations are
frequently assigned as the S1 and S2 states at the ground state
equilibrium geometry and the 11B3u state is indeed the S1 state,
the true second excited state is of Au symmetry and 11B2u is in
reality S3.47 We therefore use 11B3u and 11B2u to label these
states in this article.

3.1 Excited state potential energy surfaces in the
Franck–Condon region

First we present the PESs of the 11B3u and 11B2u states of
pyrazine near the ground-state equilibrium geometry. Fig. 1
compares those computed by the standard MS-CASPT2 and
those by XMS-CASPT2. Apparently, the PESs from MS-CASPT2
have artifacts around Q10a = 0 and Q6a = �0.5, whereas those
from XMS-CASPT2 do not exhibit such erratic behavior. The
artifacts are ascribed to the rotation of the reference functions
due to a state crossing of the reference surfaces, as in the
examples reported earlier.25,26 This is supported by Fig. 2, which

shows the two-dimensional cut of the reference PESs along the
Q6a and Q10a modes.

In Fig. 3 we present a one-dimensional cut of the same PESs
along the Q10a coordinate computed by MS-CASPT2 and XMS-
CASPT2, as well as by MRCI+Q.58,59 The curves computed by the
standard MS-CASPT2 have an artificial dent near the equili-
brium structure, which is not present in the MRCI+Q curves.
The XMS-CASPT2 method removes this artifact and the curves
are almost parallel to the one from MRCI+Q. At the equilibrium
geometry, the MS-CASPT2 and XMS-CASPT2 energies become
identical since the off-diagonal element of the Fock operator in
the reference space (i.e., hM|f̂|Ni with M a N) is zero due to
symmetry. Therefore, the difference in the separation of two
excited states is ascribed to the insufficient treatment of
dynamical correlation at the CASPT2 level (and not to the
multi-state treatment). The quality of XMS-CASPT2 PESs will
be tested in what follows.

3.2 Conical intersection

Fig. 4 shows a one-dimensional cut of the same PESs along the
Q10a mode near the conical intersection [Q6a = �3.9]. The lower
panel corresponds to the zeroth-order energies (i.e., the eigen-
values of the Fock matrix in the reference space), showing that it
has degenerate eigenvalues near the state crossing. The standard
MS-CASPT2 has a smooth potential here (red curves). The erratic
behavior of the XMS-CASPT2 surfaces with the standard level
shift (black curves) is attributed to the degeneracy of the
eigenvalues of the Fock matrix: at the Q10a = 0 geometry, the
rotation angle in XMS is zero due to symmetry; but when the
geometry is slightly distorted along the Q10a mode, the off-
diagonal Fock elements become nonzero, while the difference
between two diagonal elements remains small. This leads to
significant rotation in XMS, and hence the artifact as shown in
the upper panel of Fig. 4. This problem has been fixed by using
the invariant level shift (blue curves). Note that the curves from
XMS-CASPT2 with the standard and invariant level shifts become
nearly identical apart from the crossing region. These observa-
tions are confirmed by the two-dimensional cuts in Fig. 5.

3.3 Simulation of 11B3u and 11B2u continuous wave
photoabsorption spectra

The parameters k(n)
t and g(n)

t for the 11B3u and 11B2u states evaluated
with the single-state CASPT2 method are compiled in the ESI.† 60

Since the 11B3u and 11B2u states cannot interact within D2h

symmetry, a state-averaged treatment of both states is not necessary
in this case. We have verified that the CASPT2 excitation energies of
both states computed in the D2h point group are very insensitive to
the optimization scheme applied to the reference functions: indi-
vidually converged CASSCF wave functions yield single-state
CASPT2 excitation energy functions that are almost identical to
those obtained by MS-CASPT2 calculations based on reference
functions that are obtained by including the 11B3u and 11B2u states
with equal weights in the CASSCF energy functional.

Since the MS-CASPT2 approach yields artifacts in the adia-
batic PESs of the 11Bu and 21Bu states for nonzero displacements
along Q10a in the vicinity of the degeneracy of the CASSCF
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reference states as we demonstrated above, a reliable determina-
tion of the Q10a vibronic coupling parameters is not possible. We
therefore concentrate only on a comparison of spectra calculated
using MRCI and XMS-CASPT2 parameters.

The k(n)
t parameters computed by XMS-CASPT2 show quali-

tative agreement with those by MRCI:49 for instance, k(1)
6a/k(2)

6a

and k(1)
8a/k(2)

8a have similar values. However, the magnitude of the

Fig. 2 The state crossing of the SA-CASSCF potential energy surfaces, which
coincides with the artifacts in the standard MS-CASPT2. The surfaces are
symmetric with respect to the inversion of the Q10a axis.

Fig. 3 Potential energy curves along the Q10a mode computed by MS-CASPT2,
XMS-CASPT2 and MRCI+Q.

Fig. 1 Potential energy surfaces of the adiabatic 11Bu and 21Bu states of pyrazine (using C2h labels) are shown in the Franck–Condon region. The electronic states are
computed at the standard (left) and extended (right) MS-CASPT2 levels of theory. The nuclear coordinate space is spanned by Q6a and Q10a. Note that at Q10a = 0,
MS- and XMS-CASPT2 give the same results due to symmetry.
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individual parameters differs significantly in some cases; the
most pronounced example is k(1)

1 (MRCI: �0.0470 eV, CASPT2:
�0.0299 eV). The set of vibronic coupling parameters for
Ĥvib (Table 1) is completed by l10a = 0.201 eV, g(1)

10a = �0.014 eV
and g10

(2)
a = �0.014 eV. l10a, g(1)

10a, and g(2)
10a have been determined

by a least-squares fit of the eigenvalues of the two-state model
potential energy matrix as a function of Q10a at the XMS-CASPT2
level of theory. The XMS-CASPT2 parameters deviate only slightly

from those obtained with the MRCI method (0.1825 eV,�0.0180 eV,
�0.0180 eV, respectively).48

Fig. 6 and 7 show the observed, XMS-CASPT2, and MRCI
photoabsorption spectra of the 11B3u and 11B2u states, respec-
tively. The coherence-decay constants are set to T2 = 400 fs and
T2 = 35 fs, respectively, to account for homogeneous broad-
ening of the individual vibronic transitions. For a discussion of
the microscopic origin of dephasing rates 1/T2 see, for instance,
ref. 62. The theoretical spectra shown as solid lines in panel
(b) of Fig. 6 and 7 have been blue-shifted by 0.165 eV and by
0.096 eV, respectively, in order to compensate for the underestima-
tion of 0–0 transitions of both bands by the CASPT2 method.
The MRCI-derived spectrum (solid line) is likewise red-shifted by
0.031 eV in Fig. 6(c). It is typical that CASPT2 underestimates
excitation energies, while MRCI slightly overestimates them.

Fig. 5 Two-dimensional maps with Q6a and Q10a around the conical intersection computed by MS-CASPT2 and XMS-CASPT2. Note that MS-CASPT2 and XMS-CASPT2
are identical when Q10a = 0 due to symmetry.

Fig. 4 Upper panel: a one dimensional cut of the potential energy surfaces
along the Q10a mode near the conical intersection (Q6a = �3.9), computed by
MS-CASPT2 and XMS-CASPT2 with the standard and invariant level shift
of 0.3 Eh. Lower panel: the zeroth-order energies along the same cut.

Fig. 6 CW photoabsorption spectra of the 11B3u state: (a) experimental,61

(b) XMS-CASPT2, and (c) MRCI (based on ref. 49). Unshifted (dotted) and shifted
(full) theoretical spectra are shown. See text for details. The assignments in the
experimental spectrum are based on an analysis of both theoretical spectra,
taking available information on experimental 11B3u frequencies into account.
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Note that the XMS-CASPT2 spectra in this work are com-
puted with a vibronic model that slightly differs from the
vibronic Hamiltonians used in the previous MRCI simula-
tions.48,49 In ref. 48 a 4-mode model was used, which included
the Q1, Q6a, Q9a tuning modes, as well as the Q10a coupling
mode. In ref. 49 the 4-mode model was augmented by including
also the Q8a, Q4, and Q14 modes, but the Q2 tuning mode was
still neglected. In the current work we employ a 6-mode model
that includes all five Ag tuning modes (Q1, Q2, Q6a, Q8a, Q9a), but
neglects the quadratic effect of the out-of-plane displacements
Q4 and Q14. Secondly, in this study the ground-state force field
is consistently constructed by CASPT2, while a second-order
Møller–Plesset (MP2) ground-state force field was used in
ref. 49. Third, diagonal quadratic intrastate coupling terms
with parameters g(n)

t have been introduced for the Ag vibrations,
which were absent in the model of ref. 49.

The 11B3u and 11B2u MRCI absorption spectra shown in
Fig. 6(c) and 7(c), respectively, have been calculated with the
MRCI parameters and the 7-mode vibronic model reported in
ref. 49. The 11B3u spectrum was not shown in ref. 49 and is
published for the first time in this work.

Both XMS-CASPT2 and MRCI successfully reproduce the
main vibronic features of the 11B3u band (Fig. 6). The XMS-
CASPT2 spectrum appears to better describe the spacing
between levels n1

10a and n1
6a and relative intensities of three

pronounced excitations between 312 nm and 317 nm. These
three resonances in the experimental spectrum have originally
been attributed to vibronic levels n10

2
a, n1

6an1
10a and n2

6a.31 An
analysis of the strong transition at 311.59 nm in the XMS-
CASPT2 spectrum reveals, however, that the intensity is derived
from two nearly degenerate levels of B3u vibronic symmetry
with an intensity ratio of 6.1 (n1

9a) to 1.0 (n2
6a). The present model

therefore confirms the assignments of ref. 46 and 48 that the
strong peak at around 312.5 nm in the experimental spectrum
corresponds primarily to the quantum n1

9a.

This suggests the following interpretation of Fig. 6(b) and
(c): the XMS-CASPT2 calculation wrongly attributes a slightly
higher energy to the overtone n2

6a as compared to the funda-
mental of n9a, and the small spacing between both transitions
leads to an overestimation of the peak appearing at ca.
311.5 nm in Fig. 6(b). On the other hand, the MRCI model
correctly predicts that the n2

6a transition is red-shifted with
respect to n1

9a but strongly overestimates the intensity of n2
6a.

We emphasize again that in the MRCI simulation of ref. 49 an
MP2 ground state potential and a slightly different vibronic
model than in the current work were used. For a more detailed
and consistent analysis one would need to compute all three
MRCI and XMS-CASPT2 potentials on equal footing and carry
out the simulations using the same vibronic model. This is
beyond the scope of the present paper and will be the subject of
future work.

The XMS-CASPT2 simulation of the 11B2u band is less
satisfactory than the MRCI simulation (Fig. 7), although both
electronic structure theories yield similar Q10a-related coeffi-
cients (l10a, g(1)

10a and g(2)
10a). The vibronic models yield the

following intersection points: Q1 = 6.8, Q6a = �3.7 (XMS-
CASPT2) and Q1 = 5.4, Q6a = �3.9 (MRCI). This result implicates
that the discrepancy between XMS-CASPT2- and MRCI-based
spectra is partly owing to a substantial difference between the
CASPT2- and MRCI-derived topologies of the 11B3u–11B2u

degeneracy subspaces with respect to the location of the
ground-state equilibrium geometry.

4 Conclusions

In this paper we have demonstrated that the recently developed
XMS-CASPT2 method is a useful tool for the ab initio descrip-
tion of strongly coupled electronically excited states, even in
cases where the standard MS-CASPT2 approach completely
fails. For the pyrazine excited states that are considered here,
the standard MS-CASPT2 gives a hump around the equilibrium
geometry of the ground state that is associated with a CASSCF
state crossing, while XMS-CASPT2 is free from such artifacts.
We have also shown the importance of including the level shift
in a way that is invariant with respect to unitary transforma-
tions of the reference functions.

The smooth PES computed by XMS-CASPT2 has allowed us
to examine the accuracy of the vibronic interaction strength of
the 11B3u and 11B2u states of pyrazine, which was not possible
with the standard MS-CASPT2 method. We have extended
previous versions46,48,49 of the model Hamiltonian for non-
adiabatic dynamics in the coupled 11B3u and 11B2u vibronic
manifolds by including the diagonal quadratic intrastate cou-
pling parameters g(n)

t for the Ag modes.
A comparison of the simulated 11B3u absorption bands by

XMS-CASPT2 and by MRCI49 shows that while some aspects of
the vibronic structure are improved in the XMS-CASPT2 spec-
trum, other features of the experimental envelope are better
approximated by the MRCI-based approach. A more detailed
analysis of the influence of the PESs and of the different
vibronic models on the simulated spectra would require

Fig. 7 CW photoabsorption spectra of the 11B2u state: (a) experimental,31

(b) XMS-CASPT2, and (c) MRCI (based on ref. 49). Unshifted (dotted) and shifted
(full) theoretical spectra are shown. See text for details.
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computation of an accurate MRCI PES for the electronic ground
state, as well as extension of the existing MRCI potentials by the
Q2 mode that was neglected in previous work.49 This will be the
subject of future work.

We have also observed that the XMS-CASPT2 11B2u spectrum
is slightly inferior to that computed with MRCI parameters,
which can probably be ascribed to a lower accuracy of the XMS-
CASPT2 potential energy surfaces. Nevertheless, we conclude
that the XMS-CASPT2 method is a useful method for such
simulations when the system of concern becomes so large that
more accurate MRCI computations are too expensive.
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