

Abstra
t

The Norwegian publi
 health
are system will not have the manpower to
are for the el-

derly at the same level as now, unless te
hnologi
al solutions are found to make the most

of the available manpower. This thesis investigates potential te
hnologies for allowing

the Gira�, a telepresen
e robot, to navigate and patrol an elder
are
enter autonomously,

thus letting
aregivers save time when
he
king on the
are re
ipients. It des
ribes the

design and implementation of a platform to interfa
e with the Gira�'s hardware, and

demonstrates that the developed system is a useful platform for developing su
h navi-

gation systems.

3

A
knowledgements

I'd like to thank my advisors, Robert Jenssen (Department of Physi
s and Te
hnology,

University of Tromsø), Per Hasvold, and Stein Olav Skrøvseth (both at Norwegian Cen-

tre for Integrated Care and Telemedi
ine), for the help they've given me despite the

di�
ulties of writing this thesis. Also thanks to Lars Ailo Bongo (Department of Com-

puter S
ien
e, University of Tromsø), for the extra assistan
e. None of us had mu
h

prior experien
e in this parti
ular �eld of resear
h, but everyone
ontributed what they

ould.

5

Contents

1. Introdu
tion 11

1.1. Motivation . 11

1.2. Obje
tives . 11

1.3. Contributions . 13

1.4. Chapter list . 13

2. Navigation te
hnologies 15

2.1. General . 15

2.2. Feature (landmark) extra
tion . 15

2.2.1. Using a single
amera . 17

2.2.2. Using stereo
ameras . 18

2.2.3. Using radio bea
ons . 18

2.2.4. Using
eiling landmarks . 18

2.2.5. Using laser range �nders . 18

2.2.6. Using ultrasound sonar . 19

2.3. Position estimation . 19

2.3.1. Dead re
koning . 19

2.3.2. The Kalman �lter . 19

2.3.3. Visual odometry . 20

2.3.4. SLAM . 21

2.3.5. Satellite navigation . 22

2.4. Obsta
le dete
tion . 22

2.5. Destination sele
tion . 23

2.6. Route planning . 23

2.6.1. Re
orded route . 23

2.6.2. Providing a �oor plan . 24

2.6.3. Tea
hing a �oor plan . 24

2.6.4. Obsta
le avoidan
e . 24

7

Contents

2.7. Getting there . 24

3. The developed system 27

3.1. General . 27

3.2. The Gira�Motor module . 27

3.2.1. The Motor Controller . 29

3.2.2. The Motor Simulator . 34

3.3. The Gira�Nav module . 35

3.3.1. Implementation details . 35

3.4. The Gira�Camera module . 36

3.4.1. Implementation details . 36

3.5. The DisplayWindow module . 37

3.5.1. Implementation details . 37

3.6. The FeatureExtra
t module . 38

3.7. The User Interfa
e . 38

3.8. Software used . 39

3.8.1. Development environment . 39

3.8.2. OpenCV . 40

4. The Gira� 41

4.1. Introdu
tion . 41

4.2. Design . 43

4.3. Computer Spe
i�
ations . 44

4.4. Camera . 44

4.5. Motor Controller . 45

5. Evaluation 47

5.1. Fun
tionality . 47

5.2. Extensibility . 47

5.3. Re
ording and playba
k . 47

5.4. Motor
ontrol . 49

5.5. Motor simulation . 49

5.6. Dis
ussion . 49

6. Con
lusion 51

Bibliography 51

8

Contents

A. The Motor Controller Interfa
e 59

A.1. Overview . 59

A.2. Movement styles . 60

A.2.1. Straight line motion . 60

A.2.2. Rotating in pla
e . 60

A.2.3. Curved motion . 60

A.3. Conne
tion details . 62

A.4. Commands . 63

A.4.1. set v . 63

A.4.2. set r . 63

A.4.3. set a . 63

A.4.4. set p . 64

A.4.5. get
ang . 64

A.4.6. get
dis . 64

A.4.7. get gvr . 64

A.4.8. set mode . 64

A.4.9. set undo
k . 65

A.4.10.home . 65

A.4.11.get tilt_homing_state . 65

A.4.12.set tilt_angle_from_home . 66

A.4.13.set vg . 66

A.4.14.set vgr . 66

A.4.15.set
dp . 66

A.4.16.get
vg . 66

A.4.17.get but0 . 66

A.4.18.get but1 . 66

A.4.19.get dial . 67

A.4.20.get button_data . 67

A.4.21.get bulk_data . 67

B. Sour
e
ode listings 69

B.1. Gira�Motor.hpp . 69

B.2. Gira�Motor.
pp . 72

B.3. Gira�Camera.hpp . 105

B.4. Gira�Camera.
pp . 106

9

Contents

B.5. DisplayWindow.hpp . 110

B.6. DisplayWindow.
pp . 111

B.7. Gira�Nav.
pp . 116

B.8. FeatureExtra
t.hpp . 121

B.9. FeatureExtra
t.
pp . 122

C. Contents of the CD-ROM 123

10

1. Introdu
tion

1.1. Motivation

As a
onsequen
e of the in
reasing life expe
tan
y in Norway, the number of seniors

needing
are from the Norwegian publi
 welfare system will
ontinue to grow in the

oming years. It is estimated that in 2025, 16% of the population (900 000 people) will

be above 67 years old, and 250 000 will be above 80 years, while the number of healthy,

young people available to provide that
are will de
rease
orrespondingly. To uphold the

urrent standards for elderly
are, the health
are se
tor would have to re
ruit at least

every 4th youth in the nation in order to satisfy the needs for 2025, and every 3rd in

order to satisfy the needs for 2035. This is neither realisti
 nor desirable [1℄.

Instead, the health
are system needs to use the manpower it has more e�
iently. One

way to do this is by developing new te
hnology to assist
aregivers. For example, it would

be useful to be able to deploy robots at
are
enters that
an be used to rounds and
he
k

in on the elderly, without needing a
aregiver to always be physi
ally present. Remote-

ontrolled telepresen
e robots for su
h purposes already exist, allowing the
aregiver to

make rounds in multiple lo
ations without leaving his/her own o�
e, though these
an

be tedious to use, as their every move needs to be
ontrolled manually. For seniors

living in their own homes, there are also proje
ts underway to provide roboti
 personal

assistants [2, 3℄, though they are still under heavy development, and not yet ready for

the publi
.

1.2. Obje
tives

For this thesis, I have explored the possibility of relieving
aregivers further by automat-

ing the navigation of telepresen
e robots used at
are
enters. In parti
ular, I have

been working with the Gira� telepresen
e robot,
urrently being tested at a lo
al
are

enter (Kroken sykehjem), and exploring ways to make it navigate su
h a
enter with-

out expli
it assistan
e from the
aregiver. This robot was
hosen be
ause it is already

11

1. Introdu
tion

ommer
ially available for a reasonable pri
e (while still having su�
ient
apabilities for

su
h use), and a unit was available for resear
h use at the time of writing.

While other, more powerful roboti
 platforms exist, su
h as the Willow Garage PR2

(http://www.willowgarage.
om/), they are expensive, still
onsidered experimental, and

usually not designed as telepresen
e robots. This may possibly make them useful assis-

tants, but they're less useful for health personnel that wishes to talk to patients remotely.

The Gira� may be better for this purpose.

The idea of automating the navigation of a telepresen
e robot is that the
aregiver

should be able to request a parti
ular room with a single
ommand, rather than manually

ommanding every step ne
essary to get there, thus allowing the
aregiver to fo
us on

more important tasks. Further down the line, the robot should also be able to do

fully autonomous daily or nightly patrols, looking for anomalies, and only alerting the

aregiver if it �nds any.

Creating su
h a system is a large undertaking, requiring the use of algorithms and

te
hniques that's still subje
t to mu
h resear
h. A
omplete navigation system for a

parti
ular robot would need at least these
omponents:

� A system for getting input from available sensors (in this
ase, the
amera).

� A system for
ontrolling the a
tuators (in this
ase, the wheel motors).

� A system for extra
ting features (landmarks) from the sensor input.

� A system for estimating the robot's lo
ation using the observed landmarks, in

ombination with the
urrent speed of the motors.

� A system for dete
ting obsta
les using the sensor input.

� A system for
hoosing the robot's destination.

� A system for planning a route to the robot's desired destination.

� A system for following that route, while avoiding obsta
les.

Other systems (su
h as remote
ontrol and tele
onferen
ing) may also be desirable. The

�rst two listed systems are the ones that are responsible for
ommuni
ating with the

parti
ular robot's hardware. The remaining systems are of a more general nature and

an implement any appli
able te
hnique found in the resear
h literature, though for this

parti
ular robot, some will be more suitable than others.

12

1.3. Contributions

Various implementations of these more general systems already exist. However, sys-

tems that allow them to
ommuni
ate with the Gira� are not yet available, and the

Gira�'s standard
ontroller software is proprietary and di�
ult to extend for this pur-

pose. Thus, a
ompletely new software sta
k is needed for supporting autonomous

navigation on the Gira�. The �rst step is to
ommuni
ate with the robot hardware.

1.3. Contributions

This thesis makes the following
ontributions:

� The design and implementation of a platform with
omponents to
ontrol (and

simulate) the Gira�'s motors, and
apture frames from its
amera (Chapter 3,

Appendix B, and on CD-ROM)

� An investigation of the te
hniques and te
hnologies that
an be used to implement

the remaining systems (Chapter 2)

� Do
umentation of low-level details of the Gira� motor
ontroller (Appendix A)

The developed platform fun
tions as a framework with
omponents to
ontrol (and sim-

ulate) the Gira�'s motors, and
apture frames from its
amera. For evaluation purposes,

I've also made a proof-of-
on
ept of a feature extra
tor
omponent.

A notable feature of the developed framework is that it
an also re
ord data for

playba
k later, so that any
omponents built on this platform
an be prototyped and

o�ine-tested without the a
tual Gira�. This is useful if su
h units are not permanently

available to developers, and may speed up development and testing.

Detailed knowledge of the motor
ontroller is needed for properly operating the
on-

troller, but these details were either not do
umented, or in
orre
tly do
umented, at the

time of writing. Many of these details were learned through reverse engineering, and are

now do
umented here.

1.4. Chapter list

This thesis is stru
tured as follows:

Chapter 1: The introdu
tion.

Chapter 2: Des
ription of some of the te
hniques and te
hnologies that may be used

in the Gira�.

13

1. Introdu
tion

Chapter 3: Des
ription of the a
tual platform developed for investigating the above

te
hnologies,

Chapter 4: Des
ription of the Gira� robot itself.

Chapter 5: Evaluation of the usefulness of the developed platform.

Chapter 6: Con
lusion.

Appendix A: Low-level do
umentation of the Gira� motor
ontroller.

Appendix B: Listings of the sour
e
ode of the developed platform.

Appendix C: Des
ription of the
ontents of the CD-ROM.

14

2. Navigation te
hnologies

This
hapter des
ribes some of the navigation te
hniques and te
hnologies that may be

used in the Gira� to make it more autonomous. To form a
omplete system, they may

be
ombined as shown in Figure 2.1. The a
tual platform I've built to allow exploring

su
h te
hniques is des
ribed in Chapter 3.

2.1. General

The Gira� is designed to operate in an indoor environment without signi�
ant obsta
les.

It does not need to fun
tion everywhere, and making the environment a

ommodate the

robot is a

eptable, if ne
essary. However, even if the environment is suitable for the

robot, the robot will still need to be
ome familiar with it, in order to su

essfully navigate

it. That is, the robot needs to a
quire an internal map of the environment that it
an

refer to when trying to �gure out where it is and where it needs to go, and that map

should re�e
t what the robot's sensors
an see.

Ideally, the robot should be able to build the map itself, based on what it sees as it

moves around. This problem, Simultaneous Lo
alization And Mapping (SLAM), is a

omplex problem and still the subje
t of mu
h resear
h, but is di�
ult to avoid in this

kind of setting. In prin
iple, it might be possible to enter the building's blueprints into

the robot instead, but this would be tedious, and su
h blueprints would probably not

in
lude obsta
les su
h as furniture or people. Hen
e, the robot still needs to be able to

analyze and map out its surroundings, in order to navigate safely.

2.2. Feature (landmark) extra
tion

The �rst step of any SLAM approa
h is to use sensors to identify and lo
ate landmarks

that
an later be used to estimate the
urrent position. The method used to identify

landmarks should be as noise-resistant, unambiguous, and a

urate as possible, yet not

too
omputationally demanding, due to the �nite power of the robot's onboard
omputer.

15

2. Navigation te
hnologies

Camera

interface

Motor

interface

Feature

Extractor

Route

Search

Odometry

CommandsImages

Extended

Kalman Filter

Feature

Matcher

Other

sensors

Landmark

Mapper

Location

Features

Floor Plan

Obstacle

Detector

Simultaneous Localization And Mapping (SLAM) Route Planner

Figure 2.1.: A possible navigation system

16

2.2. Feature (landmark) extra
tion

Fortunately, it doesn't have to be perfe
t, as the o

asional misidenti�ed landmark
an

be reje
ted later by a good SLAM algorithm.

Some SLAM implementations are designed to fun
tion with a parti
ular type of sensor,

su
h as range �nders, while others are more universal. Also, some SLAM implementation

already in
lude a feature extra
tor, and thus don't need a separate
omponent to do this,

but many don't.

2.2.1. Using a single
amera

This is the only sensing approa
h whi
h does not require augmenting the Gira�'s hard-

ware. However, for lo
alization, it may also be one of the more
omputationally de-

manding approa
hes, sin
e a single image from the
amera is not enough to �nd the

distan
e to an obje
t. Instead, as the robot is moving, di�erent images (from di�erent

positions) must be
ompared, and visual features mat
hed. With enough data, the 3D

position of the feature (and of the robot observing it)
an be estimated within a reason-

able margin of error. The feature then be
omes part of the robot's �map� and
an be

used as a landmark later. The estimation of the 3D position is, however, usually left to

the SLAM algorithm, not to the feature extra
tor. Thus, the
hosen SLAM algorithm

must be among those whi
h
an pro
ess mono
ular input.

Visible landmarks
an be extra
ted from
amera images using feature extra
tors of

the type
ommonly used in
omputer vision. Typi
ally, they attempt to �nd
or-

ners of obje
ts, sin
e their positions are relatively
learly de�ned and they
an be

tra
ked fairly reliably. Many
orner dete
tors are available in the OpenCV library's

�Image Pro
essing� and �2D Features Framework� modules. Various implementations

an also be found in other free and open sour
e libraries, su
h as the CVD library

(http://www.edwardrosten.
om/
vd/
vd/html/index.html).

A
ommon
hoi
e of feature extra
tor is the Harris
orner dete
tor [4℄, but using larger

image pat
hes may be more reliable in some
ases [5℄. There are more powerful extra
-

tors, su
h as the S
ale-Invariant Features Transform (SIFT) [6℄. However, be
ause of the

limited CPU power of the Gira�, I expe
t that it's better to sti
k with a
onventional

orner dete
tor. One that o�ers a very good balan
e of speed and reliability and has

gained some popularity re
ently is the FAST
orner dete
tor [7℄.

17

2. Navigation te
hnologies

2.2.2. Using stereo
ameras

If a robot is equipped with two
ameras, separated by a �xed distan
e and a known an-

gle, and with known
alibration parameters, then stereo vision
an be used to instantly

�nd the distan
e to obje
ts in view, mu
h like humans do it. Sin
e the relative orienta-

tions of the two
ameras are always known exa
tly, depth information
an be extra
ted

more reliably and with less
omputation than with a single
amera. This improves the

a

ura
y and robustness of SLAM, and redu
es the number of ambiguities [8℄.

2.2.3. Using radio bea
ons

A robot
ould estimate its position based on re
eiving radio signals from bea
ons in-

stalled at known positions in a building. A sensor that
ould re
eive su
h signals
ould

be
onne
ted to one of the Gira�'s USB ports. Unfortunately, GPS-style distan
e mea-

surements are not pra
ti
al with ordinary bea
ons, but as long as the dire
tions to the

bea
ons
an be estimated by the sensor, the robot's position
ould still be triangulated

using SLAM te
hniques [9℄.

2.2.4. Using
eiling landmarks

Another
amera
ould be added to the robot that would be pointed dire
tly upwards,

tra
king the
eiling. This
ould be quite usable for SLAM [10, 11℄, espe
ially for rooms

with
eiling lights. The extra
amera
ould be
onne
ted to one of the Gira�'s USB

ports. (The Gira�'s primary
amera should probably not be used for this purpose, as

it
ould then no longer see what's in front of it, whi
h would defeat the purpose of

patrolling.)

2.2.5. Using laser range �nders

Unlike a regular
amera, laser range �nders
an measure the distan
e to an obje
t

dire
tly, and thus �nd the 3D position of any visible obje
t with minimal
omputation.

When
ameras are used to lo
ate interesting features and range �nders are used to

pinpoint their position, features
an be tra
ked quite a

urately [12℄.

For robot navigation, LIDARs (Light Dete
tion and Ranging) are often used. A laser

pulse is emitted, and a mirror de�e
ts it in a parti
ular dire
tion. When the pulse hits

an obje
t, it is re�e
ted ba
k to the LIDAR, whi
h measures the time between emission

and re�e
tion, and thus the distan
e to the obje
t. By turning the mirror appropriately,

18

2.3. Position estimation

the LIDAR
an s
an everything in front of it pixel by pixel,
reating a depth image. Su
h

a ranging module
ould be
onne
ted to one of the USB ports, and used for SLAM.

A
heap alternative is the Mi
rosoft® Kine
t� sensor. An infrared laser illuminates

the s
ene with random patterns, and the re�e
tions are
aptured with an infrared
amera.

The sensor
an use the re�e
ted patterns to estimate distan
es [13℄.

2.2.6. Using ultrasound sonar

Like lasers, sonars
an measure the distan
e to obje
ts and �nd the 3D position of

obje
ts dire
tly. Sonar modules
ould be
onne
ted to one of the USB ports, and used

for SLAM [14, 15℄.

2.3. Position estimation

On
e sensor data from the environment is available, it
an be used to estimate the

robot's position in various ways, depending on the type and quality of sensor data.

2.3.1. Dead re
koning

Pure dead re
koning is probably the simplest approa
h - just use the robot's odometry

dire
tly. This would probably be
ombined with a re
orded route, whi
h the robot

would then follow every time, sin
e it won't be aware of obsta
les in the way. However,

while this may work for small apartments, estimates from dead re
koning are prone to

a

umulating errors over time and distan
e. For navigating larger buildings, the position

estimate would need to be regularly
orre
ted using other position estimates, making

dead re
koning unsuitable.

2.3.2. The Kalman �lter

Most position estimation approa
hes use some variant of the Kalman �lter [16℄ to
om-

bine odometry with position estimates
al
ulated from the robot's sensors. The Kalman

�lter
an be summarized as follows: Given a hidden multivariate time series (su
h as the

true
oordinates of a robot over time), with a known but noisy transition model, and

an observable time series that is a linear transformation of the unknown time series plus

noise (su
h as measurements from the robot's sensors), the Kalman �lter is a statisti-

ally optimal way of
ombining the estimate of the previous hidden state (the previous

19

2. Navigation te
hnologies

position) with a new observation (sensor measurements) to produ
e an estimate of the

urrent hidden state (the
urrent position). It is a re
ursive estimator (it does not need

to re
al
ulate previous observations for every new observation), and thus quite suitable

for real-time appli
ations.

Note that the basi
 Kalman �lter (KF) is only meaningful when state
hanges (position

hanges)
an be expressed as a linear transition matrix. For physi
al systems, this is

often not the
ase. However, the nonlinear transition model
an be linearized by taking

the Ja
obian matrix, evaluate it based on the
urrent state, and use this as the transition

matrix [17℄. While this only gives a �rst-order approximation, it often works quite well,

provided the state doesn't
hange too mu
h between updates. To
ompensate for the

approximation error, some �stabilizing noise� should also be added to the
ovarian
e

matrix after ea
h update. This method is
alled the Extended Kalman Filter (EKF).

Most of the SLAM papers referen
ed below use the EKF (but this doesn't pre
lude using

more re
ent KF variants instead, su
h as the Uns
ented Kalman Filter [18℄).

A
ompli
ation arises from the possibility that the robot might
rash into something

and not move in the expe
ted dire
tion at all. In this
ase, the motor odometry would be

ompletely wrong, but there is no dire
t way to model su
h failure
onditions in a basi

(or extended) Kalman �lter. One way of handling this might be to maintain several

Kalman �lters (one for standard operation, and the others for failure
onditions) and

assume that the �lter that gives the best predi
tions is more likely to be
orre
t. That

way, if the sensors report that the robot isn't moving, the robot
an dedu
e that sin
e

the KF that models a
rash mat
hes the data best, there's a high probability that it has

indeed
rashed into something, and should initiate re
overy pro
edures. However, sin
e

rashing into things is not meant to be part of standard operation pro
edure, simpler

solution might be a

eptable. For example, it might su�
e to say that if the robot

is supposed to be moving, but the sensors report less movement than some prede�ned

threshold for some prede�ned time, then initiate emergen
y pro
edures.

For
onvenien
e, OpenCV's Video Analysis
ontains an implementation of the Kalman

�lter. By default, its KalmanFilter
lass implements only the basi
 Kalman �lter, but

by modifying the matri
es it uses, it
an also implement the extended Kalman �lter. It

ould be used if a given SLAM implementation doesn't supply its own Kalman �lter.

2.3.3. Visual odometry

Visual odometry improves on the dead re
koning approa
h by adding a se
ond sour
e of

odometry, whi
h may redu
e the error of the position estimate. Features from su

essive

20

2.3. Position estimation

images from the
amera
an be
ompared, and the apparent motion patterns, the �opti
al

�ow�,
an be estimated.

If the robot is moving forward, everything it sees will seem to move away from the

enter of the image. The speed at whi
h things move may allow the robot to estimate

how fast it is moving forward. However, ambiguities exist sin
e this speed is dependent

on how far away the obje
ts are, whi
h is initially unknown. Fortunately, with enough

observations (and using the speed reported by the motor when ne
essary), these distan
es

an be estimated, and a useful 3D model of what's in front of the robot
an be
omputed,

whi
h
an then be used to
al
ulate the robot's velo
ity [19, 20℄.

On
e visual odometry is available, it
an be
ombined with the robot's regular odom-

etry through the Kalman �lter or similar. This
ould produ
e good results, but will not

be as powerful or robust as a full SLAM approa
h, be
ause on
e an obje
t leaves the

robot's �eld of view, the robot forgets about it. Without maintaining a map, the robot

annot use landmarks for more robust lo
alization.

2.3.4. SLAM

SLAM te
hniques are based on building and updating an internal map of the environ-

ment, using statisti
al methods to minimize un
ertainly. On
e landmarks have been

found, they must be
he
ked against the robot's internal map. If they are thought to

be new landmarks, they are added based on the
urrent estimated position. If they are

already known, their known position
an be used to update the
urrent position esti-

mate. In most
ases, both the landmark position and the
urrent position is un
ertain,

so that both must be
ontinually updated, and preferably as robustly as possible. The

�nal estimate should be based on both the visible landmarks and the motor odometry,

and if no known landmarks are in sight, the odometry might be the only available sour
e

of position information.

Be
ause the system should ideally run in real time, the number of tra
ked features

needs to be bounded. Sin
e no feature is statisti
ally independent of any other feature

(their position estimates are all related through the error of the robot's estimate of its

own position, at the very least), a big
ovarian
e matrix has to be maintained, and

used for updating every tra
ked feature after every new measurement. Some s
heme for

keeping the
ovarian
e matrix manageable is required, or at least minimize the e�ort

of updating it [21℄. The number of tra
ked features
an be redu
ed by throwing away

unimportant features (e.g., features
lose enough to ea
h other that it isn't useful to tra
k

all of them), but to be able to handle a large map, the map needs to be broken down

21

2. Navigation te
hnologies

into se
tions. Fortunately, it seems it is possible to maintain
onditionally independent

ovarian
e matri
es for ea
h lo
al map, if ea
h lo
al map is
onsidered a node in a

Bayesian network [22℄.

Many SLAM implementations
an be found on OpenSLAM, http://www.openslam.org/.

OpenSLAM is not a proje
t in itself, but a hosting and portal site that allows SLAM

resear
hers to publish their own open sour
e SLAM implementations. Several interest-

ing proje
ts are listed here, e.g. the RobotVision proje
t for single-
amera SLAM [23℄.

However, many of the proje
ts don't support Windows, and thus would not work on the

Gira�. RobotVision is designed to be
ross-platform, though, so it may work, though

its authors have only tested it on Linux. Another option is to take some promising Mat-

lab proje
t, su
h as EKFMonoSLAM [24, 25℄, and
onvert it to C++ (probably with

the help of some C++ matrix library, e.g. the TooN library also used by RobotVision,

http://www.edwardrosten.
om/
vd/toon.html).

Not all open sour
e SLAM implementations of interest are listed on OpenSLAM,

unfortunately. For example, the author of [5℄ (Prof. A. Davison) has
reated a S
eneLib

that implements many of the te
hniques des
ribed in his papers. (It appears to be

a powerful single-
amera SLAM implementation, but unfortunately, it is also only for

Linux.)

2.3.5. Satellite navigation

Traditionally, GPS doesn't work indoors. However, given the re
ent surge in interest

in indoor positioning by
ell phones,
hips are apparently now being developed that

an
ombine signals from USA's GPS, Russia's GLONASS, China's Compass, and EU's

Galileo, and thus possibly work indoors. (See http://www.
omputer.org/portal/web/
omputingnow/news/bringing-

lo
ation-and-navigation-te
hnology-indoors) If su
h a
hip is made available as a USB

adapter, it
ould be installed in the Gira�'s USB port to provide position estimates.

2.4. Obsta
le dete
tion

Obsta
le dete
tion needs to use the same sensor data that the position estimation does,

just for a di�erent purpose. The main
hallenge is is that dete
ting solid obje
ts need

more information than the sparse set of features typi
ally tra
ked by SLAM. However,

the extra information does not ne
essarily need to be expli
itly tra
ked in detail, they

just need to be dete
ted when they are right in front of the robot. Then the robot just

22

2.5. Destination sele
tion

needs to know that there's something there, maybe add it to its �oor plan, and �nd

some way around it, or some other route to its destination. If the robot has some sort of

range �nder, obsta
les are typi
ally not too hard to dete
t. Otherwise, it may need to

use pattern re
ognition or maybe opti
al �ow to dete
t whether it's dangerously
lose

to something.

2.5. Destination sele
tion

Typi
ally, the destination is sele
ted by the user, either intera
tively, or by preprogram-

ming some patrol route. Sele
tion a destination results in a set of target
oordinates

being given to the route planner.

2.6. Route planning

On
e the robot knows where it is and where to go, it must �gure out how to get there.

Sin
e there may be walls and other obsta
les in the way, this has
hallenges of its own.

Some of the planning approa
hes that might be possible to implement on the Gira�

are:

2.6.1. Re
orded route

This is probably the simplest approa
h. A human
an train the robot by manually

steering it where it needs to go. The robot remembers the route, and replays the re
orded

a
tions of the human whenever the robot needs to. If the robot
an have multiple

destinations, the robot
ould remember waypoints and the routes between
ertain pairs

of then. Then �nding a route to somewhere distant be
omes a standard graph sear
h

problem, with ea
h edge in the graph being a re
orded route. (Even a
ost heuristi
 is

available, sin
e the waypoint
oordinates are known and the Eu
lidean distan
e between

them
an easily be
al
ulated. Thus, an A* graph sear
h
ould be used if there was any

han
e that the number of known routes would be too large for a standard graph sear
h

to handle e�e
tively.)

An obvious problem with this approa
h is that if obsta
les (in
luding people) move

into the robot's path, the robot won't know how to avoid them.

23

2. Navigation te
hnologies

2.6.2. Providing a �oor plan

A �oor plan of the building
ould be given to the robot, naming ea
h room and the

available doorways between them. Internally, the robot would store this �oor plan in

graph form, with ea
h node in the graph being the name and
oordinates of a room, and

ea
h edge being doorways and their
oordinates. When the robot is asked to go to a

parti
ular room, it
an use an A* graph sear
h to �nd whi
h doors it has to go through

to get there. Between the doors, the robot may try to go the shortest route, but must

try to avoid obsta
les along the way using other algorithms (see below).

2.6.3. Tea
hing a �oor plan

The robot
ould be steered by a human (or even being instru
ted to try to follow a

human) between rooms. In ea
h room, the robot would be told the name of the room

the robot is in. The robot may then asso
iate that name with its
urrent position, and

try to get there again whenever it is instru
ted to go to that room again. It
an use some

obsta
le dete
tion method to �nd walls and other obsta
les, and use the resulting map to

plan routes. This map
an be represented using either ve
tors or bitmaps (where bitmaps

make for the simplest path planning algorithms, but usually needs more memory).

2.6.4. Obsta
le avoidan
e

In the event the robot was instru
ted to go to a parti
ular destination unassisted, and it

is trying to �nd the shortest path while mapping obsta
les along the way, then the robot

should probably use the D* graph sear
h instead of the A* graph sear
h to plan the

route, to minimize time wasted replanning the route whenever an obsta
le is dete
ted

[26℄. In order to apply D* sear
h, ea
h room
ould be internally represented as a bitmap

(grid), where ea
h pixel (grid square) is �
olored� a

ording to whether it is thought to

ontain an obsta
le, thought to be traversable, or not yet explored. This grid is updated

as the robot moves around, and D* used to replan the route after ea
h update.

2.7. Getting there

On
e a route has been de
ided upon, the robot's motors need to be told where to go.

This may, on its own, involve some algorithms and maths, sin
e the Gira�'s motors have

ramp-up and ramp-down times that may need to be taken into a

ount. Turning while

24

2.7. Getting there

moving has some interesting mathemati
al properties (the
urves the robot follow are

apparently
lothoid segments [27℄), the parameters of whi
h need to be
omputed before

sending the
ommand to the motors.

25

3. The developed system

3.1. General

The developed system has four main modules:

� Gira�Nav, the main program and user interfa
e. It starts and
ontrols the other

systems, and handles user input.

� DisplayWindow, whi
h displays the
urrent
amera image (and other information)

on the s
reen. It allows monitoring, measuring, and debugging of the other sys-

tems.

� Gira�Camera, whi
h
an
apture, re
ord, and play ba
k video. The video frames

aptured here
an be used for lo
alization and mapping.

� Gira�Motor, whi
h
an give motor
ommands, and
apture, re
ord, play ba
k,

and simulate their responses. The route planner
an send its
ommand here for

exe
ution.

The system is meant as a platform for the development of other navigation modules,

as shown in Figure 3.1. Thus, for testing and evaluation purposes, there's also a �fth

module, FeatureExtra
t, whi
h demonstrates a feature extra
tor.

3.2. The Gira�Motor module

The Gira�Motor module's primary fun
tion is to a

ept
ommands for the Gira�'s

various motors and
ontrols, and transmit them to the Gira�'s AVR mi
ro
ontroller for

exe
ution (or, if not running on a real Gira�, simulate them). It also regularly reads ba
k

odometry from the mi
ro
ontroller, whi
h the navigation modules
an use to determine

the robot's movement. For testing and evaluation, a dead-re
koning position estimate

is
omputed from this odometry.

27

3. The developed system

AVR

microcontroller

Universal

Serial Bus

RS-232

Serial Interface

Windows

DirectShow API

Windows

Serial Port API

Gira Camera

Module

OpenCV

HighGUI Module

Gira Motor

Module

DisplayWindow

Module

Windows

GUI API

Figure 3.1.: Big-pi
ture view of system (Gira�Nav module not shown)

28

3.2. The Gira�Motor module

The Gira�Motor module
ontains two separate motor-related subsystems, one
on-

troller (the Gira�Motor
lass) and one simulator (the Gira�MotorSim
lass). On startup,

the Gira�Motor
lass will try to
onne
t to the mi
ro
ontroller board, whi
h is wired to

the main
omputer's primary serial port (
alled �COM1� in Windows). If the mi
ro-

ontroller is not found, the system will fall ba
k to using the simulator, allowing various

features to be tested without the a
tual Gira�. This
an be useful for
he
king whether

navigation
ommands make sense before risking trying them on the real Gira�, but more

importantly, it allows mu
h of the system to be developed without always having a

ess

to the Gira� (as its limited availability was a major issue during this proje
t).

3.2.1. The Motor Controller

The Gira�Motor
lass handles all
ommuni
ation with the mi
ro
ontroller (real or sim-

ulated). If a real mi
ro
ontroller is present, Gira�Motor powers it up and opens a

ommuni
ation link, sends
ommands, and re
eives responses.

3.2.1.1. Re
ording

When re
ording, all
ommands sent to the mi
ro
ontroller (or simulator), and their

responses, are saved to a text �le, pre�xed by the time elapsed sin
e the start of re
ording.

When playing ba
k a re
ording, these
ommands and their responses are interpreted

as if they were sent. The re
orded
ommands are not sent to the mi
ro
ontroller or

simulator, but the re
orded responses are interpreted as normal motor odometry, and

used to estimate the
urrent position. The re
orded time is used to ensure that the

re
ording is played ba
k at the same speed as it was re
orded at. (This also a�e
ts video

playba
k, sin
e the
amera and motor systems run in the same thread. In order to stay

syn
hronized, �ags in the motor re
ord �les are used to mark when to allow a new frame

to be loaded from re
orded video.)

3.2.1.2. Handling user movement
ommands

The
ommands that Gira�Motor is allowed to send to the mi
ro
ontroller is listed in

Appendix A. These
ommands are designed for moving spe
i�
 distan
es and stopping

at spe
i�
 points. However, sin
e the system hasn't implemented autonomous navigation

yet,
urrently the Gira� is primarily moved by pressing the arrow keys on the keyboard,

and in this
ase it is not known beforehand how far the user wants the Gira� to move.

To handle this, the Gira�'s ability to preempt previous
ommands is used. When a key

29

3. The developed system

Figure 3.2.: Kinemati
s of turning

is pressed, the movement
ommand given spe
i�es some distan
e ahead of the
urrent

position (spe
i�
ally, the full-speed-to-zero de
eleration distan
e is multiplied by the

AHEAD_FACTOR de�ned at the top of Gira�Motor.
pp, and the result is used as the

movement distan
e). As long as a key is held down, new movement
ommands are issued

periodi
ally (spe
i�
ally, whenever the distan
e left of the previous movement
ommand

is less than twi
e the de
eleration distan
e). When a key is released, a �nal movement

ommand is issued, requesting the minimum distan
e needed to de
elerate from the

urrent speed, plus a 10ms �rea
tion time� margin (i.e., the distan
e that would be

traveled if the
urrent speed was maintained for 10ms), to a

ount for the time it takes

to transmit the
ommand to the mi
ro
ontroller, and other potential delays.

3.2.1.3. Cal
ulating turns

When setting up and tra
king turns, some of the
al
ulations require
onverting between

wheel speed and angular speed. To �nd the
onversion fa
tor, refer to Figure 3.2, whi
h

shows rotating in pla
e. A

ording to material provided by Gira� Te
hnologies, the

distan
e between the two drive wheels is 499mm. Thus, the radius of the
ir
le followed

by the wheels is R = 499mm/2 = 249.5mm. To
onvert from wheel speed to angular

speed in radians, note that ω = vl/R = vr/R. To
onvert to degrees, multiply with a

fa
tor 360/2π = 180/π. The �nal fa
tor, 180/(R · π), is in the sour
e
ode denoted the

TURN_FACTOR. The same fa
tor also applies when
onverting between wheel distan
e

30

3.2. The Gira�Motor module

and angular distan
e.

A
tually, this fa
tor also applies to
urved motion, not just rotating in pla
e. Given

a frame of referen
e that follows the
enter of the Gira� (the middle dot in Figure 3.2),

then at any given instant, the wheels
an be thought of as moving the same way around

this
enter as in the rotating-in-pla
e
ase. It only remains to �nd the wheel speed in

this frame of referen
e. From the formulas des
ribed in the Appendix (if
orre
t),

Left Wheel Velo
ity = Overall Velo
ity * (1+vg)

Right Wheel Velo
ity = Overall Velo
ity * (1-vg)

Denote the overall velo
ity v and the virtual gear ratio g. Then it is apparent that,

after
an
eling out the overall velo
ity, vl = vr = vg. Hen
e, if the
urrent speed v and

the
urrent gear ratio g are both known, simply multiply them to get the wheel speed.

Then use TURN_FACTOR to
onvert to angular speed in degrees. (Or, if a parti
ular

angular speed is desired, simply divide by the overall speed and TURN_FACTOR to

get the desired gear ratio.) This
an then be used as input for a lo
ation estimation

algorithm.

3.2.1.4. Curved motion issues

Curved motion is the most
hallenging kind of motion to get right. Not only be
ause of

the
omputations involved, but also be
ause of quirks and bugs in the motor
ontroller.

The
urrent speed of the wheels
an be read from the motor
ontroller as the �gvr�

parameter. However, a

ording to the manufa
turer, this parameter does not give the

overall velo
ity, but the velo
ity of the left wheel. Moreover, testing seems to show that

this velo
ity is not
omputed using the formulas above, but using the in
orre
t formulas

found in the do
umentation, i.e. Left Wheel Velo
ity = Overall Velo
ity * (1/(1-vg)).

Hen
e, to �nd the overall velo
ity, you must
ompensate for this by multiplying gvr with

(1-vg). From there, you
an then �nd the a
tual wheel velo
ities if needed.

Even this kind of
ompensation wouldn't be possible if vg=1, sin
e this would result

in a division by zero, whi
h probably results in the Gira� returning in�nity for �gvr�

(though I haven't tested this). The simplest way to avoid this singularity is to just

never let the virtual gear ratio be as high as 1. (In the
urrent system, it should only

get to 0.51, bugs in the motor
ontroller notwithstanding.) But if vg ever be
omes 1

anyway, the
ode will, just in
ase, attempt to fall ba
k to estimating the
urrent speed

by dividing distan
e travelled by time elapsed sin
e the last odometry update.

31

3. The developed system

Figure 3.3.: Bottom of
hassis. rear swivel
aster, and right drive wheel.

A

ording to the manufa
turer, it's likely that a future version of the Gira�'s software

will
hange �gvr�'s behaviour so that it reports overall speed dire
tly. On
e this happens,

the system may need to be re
ompiled to remove the
ompensation fa
tor. (This
an be

done by
ommenting out the GVR_IS_LEFT de�nition at the top of Gira�Motor.
pp.)

Another problem, whi
h I have not found a way to
ompensate for, is the way that the

�
dp� parameter works, whi
h is supposed to tell the
ontroller when to start de
reasing

the virtual gear ratio ba
k towards zero. In pra
ti
e, it's not very useful, as the ramp-

down pro�le used in pra
ti
e is based on the distan
e left, not on the value of �
dp�. In

the end, I
ould only �nd two ways to exit
urved motion: either
ome to a full stop, or

for
e �vgr� to zero, thus
onverting the ramp-down into a �at, horizontal line. This has

the e�e
t of making the virtual gear ratio instantly zero, whi
h
auses a noti
eable jerk.

However, sin
e this behaviour, unfortunate as it is, is at least predi
table and makes

it possible to move the Gira� around with the keyboard without too mu
h trouble, I

de
ided to use this method until Gira� Te
hnologies addresses the problem. Also, some

future autonomous navigation solution (that doesn't rely on input from the keyboard)

might be able to plan its moves in su
h a way that it
ould avoid this issue.

3.2.1.5. Position estimation issues

Even if the odometry from the motor
ontroller were perfe
t, the motor
ontroller only

knows about the two drive wheels on the sides of the Gira�. There are also two swivel

asters (undriven wheels), one in front and one in ba
k, as seen in Figures 3.3 and

4.2. When the Gira� turns or moves, these
asters must turn to follow, and sin
e the

Gira� needs to move some distan
e before they've fully aligned themselves, they have a

signi�
ant e�e
t on how the Gira� travels. Worst
ase, if you turn in pla
e for a bit, and

then try to start moving forward, these
asters may
ause the Gira� to turn up to about

32

3.2. The Gira�Motor module

45 degrees extra before they've �nally reoriented themselves. This e�e
t isn't known to

the motor
ontroller, so for dead re
koning to be a

urate, a model of the
asters and

their e�e
t on movement may need to be devised and implemented. Fortunately, the

problem
an be mitigated by making sure to never turn in pla
e, and only allow the

Gira� to turn while also moving forward (assuming
urved motion works satisfa
torily).

Assuming the dire
tion estimate is also
orre
ted using the
amera, this issue might then

even be something that
ould be negle
ted, though experimentation is the only way to

make sure.

Position estimation also gets
omputationally tri
ky when moving in an ar
, either

due to expli
it
urved motion, or due to the e�e
t of the
asters. The motion pro�le

need to be
al
ulated, and integration te
hniques be used to determine what the new

position would be. However, given that the resulting position would not be
orre
t even

if I implemented this (be
ause of the
asters and other issues), in my system I've only

approximated it. I �nd the mean speed and the mean turning rate sin
e the last update,

and use this to
al
ulate a �rst-order approximation of the new position. It is expe
ted

that a future lo
alization system would use the
amera image to
orre
t this estimate

anyway.

3.2.1.6. Implementation details

For
ommuni
ation through the serial port, the Gira�Motor
lass uses standardWindows

API routines. After the serial port devi
e is opened, SetCommState is used to set the

important parameters (115200bps, 8 data bits, no parity). Sin
e the mi
ro
ontroller uses

a line-based proto
ol,
ommands and responses do not have a �xed size. To handle this,

SetCommTimeouts is used to set the read timeouts to zero (so that ReadFile always

immediately returns whatever has been re
eived, if anything), and the aforementioned

SetCommState is also used to set the event
hara
ter to the end-of-line
hara
ter. That

way, WaitCommEvent
an be used to wait for the end-of-line
hara
ter, then ReadFile

an be used to read the
omplete line re
eived. Some extra bu�ering logi
 (base on the

C++ string
lass) is used for
ases where ReadFile happens to read more than one line.

Be
ause no timeout is applied to WaitCommEvent, there's a
han
e that this te
h-

nique may
ause the system to hang inde�nitely if the mi
ro
ontroller doesn't work,

but this has not been an issue. (It
ould be addressed by opening the serial port de-

vi
e in overlapped I/O mode, whi
h is less
onvenient to program, but would allow

WaitCommEvent to be
an
elled in response to some timeout or user a
tion.)

When the Gira�Motor
lass needs to measure time, it uses the high-pre
ision timers

33

3. The developed system

known in Windows as performan
e
ounters. These are typi
ally hardware
lo
ks built

into CPUs or motherboards. In Windows, QueryPerforman
eCounter
an be used to

read out the number of ti
ks sin
e some arbitrary starting time (typi
ally the time

the
omputer was booted up). QueryPerforman
eFrequen
y tells you how many ti
ks

are per se
ond. Thus, taking the di�eren
e between two QueryPerforman
eCounter

readings, and dividing it with the QueryPerforman
eFrequen
y result, gives you the

number of se
onds between the two readings, with a

ura
y on the order of mi
rose
onds

or nanose
onds. Timing information is
urrently only really needed for re
ording and

playing ba
k motor data, however.

3.2.2. The Motor Simulator

The Gira�MotorSim
lass attempts to simulate what the real mi
ro
ontroller is supposed

to do, i.e., it attempts to
onform
losely to the behaviour des
ribed in Appendix A,

though only for features a
tually needed by Gira�Motor. Only the motor odometry

that the mi
ro
ontroller would report is
omputed, not the Gira�'s resulting position in

spa
e. But sin
e the simulator does not
ontrol anything physi
al, its simulated motions

are far more pre
ise than the real Gira�'s motion would be.

Curved motion is implemented as do
umented in Appendix A, though the real
on-

troller may behave di�erently. For example, setting �vg� to zero
auses the simulator

to simulate a straight line motion (without turning) no matter what �vgr� is, but this

does not seem to be the
ase for the real
ontroller. However, I still implemented the

simulator the way things are do
umented to work, rather than how they a
tually seem

to work, in
ase su
h deviations are just bugs that will be �xed by the manufa
turer at

some point. (Also, for some of these deviations, it's just not
lear what's going on in

the real
ontroller, and it would take too mu
h time to �gure out.)

3.2.2.1. Implementation details

For timing, Gira�MotorSim uses the same QueryPerforman
eCounter te
hnique that

Gira�Motor uses, ex
ept when simulating the transmission delay that would o

ur when

sending and re
eiving data strings through the serial port. This is done by
alling Sleep,

whi
h only has a millise
ond resolution (and often waits longer than requested).

When the simulator is asked to start a motion, the motion pro�le (times, distan
es)

is
al
ulated, using the kinemati
 equations of motion where needed. Care is taken to

handle various
orner
ases, in
luding speed
hanges and dire
tion reversal (handled as

34

3.3. The Gira�Nav module

a ramp-up from negative velo
ity to the target velo
ity). The
al
ulated pro�le, along

with the times for transitions (
hanges in a

eleration) are stored in the
lass. Then,

every time a new
ommand/request is re
eived from Gira�Motor, the
urrent time is

ompared with the stored times, and new motor state and odometry is
al
ulated, ready

to be reported ba
k to Gira�Motor when needed. Straight-line motion pro�les and

rotate-in-pla
e motion pro�les are kept separate (in retrospe
t, this would not have

been ne
essary, though it did make the design slightly
leaner).

3.3. The Gira�Nav module

This is the main module, responsible for starting, running, and shutting down the system.

It measures the system's performan
e, and also interprets keyboard input from the

user. The velo
ities used when the arrow keys are used are de�ned in this module

(KBD_TURN_SPEED and KBD_MOVE_SPEED).

When the user starts a re
ording, this module
onstru
ts the �le names based on

the
urrent system time, then passes the request on the Gira�Camera and Gira�Motor

modules. When the user requests playba
k, this module also
hooses the �les to play

ba
k. Currently, the �le name is spe
i�ed in the sour
e
ode (the PLAY_PATH and

PLAY_FILE de�nitions) and
ompiled in, it
annot be
hanged at runtime, though

adding a �le sele
tor for this
ould be a useful feature to add at some point.

The default
amera resolution is also
hosen here (the DEF_WIDTH and DEF_HEIGHT

de�nitions). By default, an 800x600
amera resolution is set, be
ause the
amera ap-

pears to not always work if higher resolutions are used. With 800x600, the
amera

appears to be able to deliver about 10 frames per se
ond.

3.3.1. Implementation details

Currently, the system is mostly single-threaded (though if video re
ording is enabled,

video en
oding is done in a separate thread). The primary reason for running the
amera

and motor in the same thread is to get a reliable asso
iation between a
amera image and

the
orresponding motor odometry. As soon as a new image is retrieved from the
amera

(typi
ally every 100 ms or so), new motor odometry is almost immediately retrieved from

the Gira�'s
ontroller (this typi
ally only takes a
ouple of millise
onds). Be
ause the

time to transfer images from the
amera to the main
omputer through USB is probably

mu
h longer than the
amera's exposure time, I expe
t this odometry to most
losely

35

3. The developed system

mat
h the next frame rather than the previous one, but I have not investigated this

further.

3.4. The Gira�Camera module

The Gira�Camera module's primary fun
tion is to
ommuni
ate with the Gira�'s
am-

era, and
apture video frames in a way that is useful for navigation.

The
amera
an be a

essed like a regular USB web
am (for example, through Video

For Windows or Dire
tShow). In the implemented Gira�Camera
lass, OpenCV's High-

GUI module is used. Its
apture interfa
e works as a
onvenient wrapper for Dire
tShow.

In addition to
amera a

ess, HighGUI also provides video de
oding and en
oding (by

using the open sour
e FFmpeg library, whi
h is in
luded in the OpenCV distribution),

whi
h the Gira�Camera
lass
an use to re
ord and play ba
k video. For re
ording

video, I
hose to use the DivX (i.e., MPEG-4 Part 2) format, as testing showed it to

have de
ent en
oding performan
e, in addition to good
ompression.

3.4.1. Implementation details

When re
ording, video en
oding is done in a separate thread (syn
hronized using stan-

dard Windows primitives, like event and semaphore obje
ts), so that things like retriev-

ing motor odometry don't need to wait for en
oding. A bu�ering system is also added

to try to redu
e lag spikes when saving large amounts of data (I used a USB �ash drive,

and these don't always have
onstant write speeds), though this didn't
ompletely elim-

inate su
h problems. (It's possible the Gira�Motor module would need to do something

similar in order to redu
e these problem further.)

If no
amera is
onne
ted, Gira�Camera
an fall ba
k to playing ba
k a prede�ned

video (and endlessly repeating it), whi
h allows the system to be tested on a
omputer

without a
amera. This is the TEST_INPUT de�nition at the top of Gira�Camera.
pp,

and I've just used one of the OpenCV sample videos.

The image grabbed from the
amera (or played ba
k from video) is returned to the

main program as an OpenCV matrix.

36

3.5. The DisplayWindow module

3.5. The DisplayWindow module

The DisplayWindow module displays information from the other modules on the Gira�'s

LCD monitor, so that the system
an be monitored, measured, and debugged.

3.5.1. Implementation details

The user interfa
e display is implemented using a
ombination of the standard Windows

API and OpenCV.

When the main program
alls the DisplayWindow's Start() method, a fulls
reen win-

dow is
reated using the standard Windows API. Sin
e the Windows API is a C in-

terfa
e, and DisplayWindow is a C++
lass, usual te
hniques for bridging the C and

C++ interfa
es are used, in
luding storing the C++ instan
e pointer into the window

stru
ture (using APIs su
h as SetWindowLongPtr). The standard Windows message

loop is implemented in the Pro
essInput() method.

Using the SetInputHandler() method, the main program
an provide a
allba
k for

pro
essing user input. When Windows
alls the window pro
edure with a keyboard

message, the message is sent on to the input
allba
k, allowing the main program (the

Gira�Nav module) to pro
ess it.

Other modules
an also
all the DisplayWindow's SetCameraInfo, SetPositionInfo,

SetPerforman
eInfo, PrintLeft, and PrintRight methods when they have information to

show to the user. The DisplayWindow
lass then stores these strings internally. PrintLeft

and PrintRight implement a s
rolling bu�er by using a C++ �deque�
ontainer type,

and limiting its size by deleting the topmost strings when its size ex
eeds a prede�ned

threshold (the BUFFER_SIZE de�nition at the top of DisplayWindow.
pp).

Most of the real work happens when DisplayWindow's Show() method is
alled to show

a
amera image. The image is provided as an OpenCV matrix. This image is
opied and

resized to �t the display using OpenCV's resize fun
tion, and then any stored information

(from SetCameraInfo et
) is rendered on top of this using OpenCV's putText fun
tion.

Using OpenCV is faster than using equivalent Windows fun
tions. Windows fun
tions

are only needed for showing the �nished image. This is done by wrapping the image

data in a Windows Devi
e-Independent Bitmap (DIB) and blitting it onto the fulls
reen

window using SetDIBitsToDevi
e. (Alternatively, Dire
tDraw
ould perhaps be used for

a theoreti
ally more e�
ient display solution, but given that the display update only

happens a few times per se
ond, any improvements would probably be marginal.)

37

3. The developed system

Figure 3.4.: S
reenshot of a playba
k on a regular laptop, with UI elements marked

3.6. The FeatureExtra
t module

This module is a proof-of-
on
ept to show how features
ould be extra
ted from images

aptured by Gira�Camera. It
urrently uses the FAST
orner dete
tor [7℄. For visual-

ization of the dete
ted
orners, it renders pink
ir
les around them on the
amera image

shown by DisplayWindow. See Se
tion 5.2.

3.7. The User Interfa
e

The view provided by DisplayWindow has several parts, as shown in Figure 3.4. The

urrent
amera image is in the ba
kground, s
aled to �t the s
reen. On the top left, the

38

3.8. Software used

urrent
amera resolution is shown. The top right is for keeping tra
k of the system's

performan
e. Currently, it shows the rate at whi
h
amera images (frames) are pro
essed

(millise
onds per frame, and frames per se
ond). The top
enter is for displaying the

urrent estimated position. Currently, it shows a dead re
koning estimate (and typi
ally

not a very a

urate one sin
e, while the motors are modeled, the e�e
t of the
asters

(front and ba
k swiveled wheels) are not).

On the left is a s
rolling text area that
an be used to show system state. Currently

it mostly shows whether re
ording or playba
k is a
tive, and what �le is being re
orded

to or played from. On the right is a s
rolling text area that shows
ommuni
ation with

the motor
ontroller.

To intera
t with the system, the following keyboard
ommands are available.

Key A
tion

Es
ape Exits program

Left/Right Arrow Makes the Gira� turn as long as the keys are held down

Up/Down Arrow Makes the Gira� move as long as the keys are held down

Numbers (1 to 5) Tries to
hange
amera resolution

Enter Allows typing in your own
ommands for the motor
ontroller

A Toggles automati
 retrieval of motor odometry

B Sends a �get bulk_data�
ommand (shows motor state)

H Sends a �home�
ommand (starts head homing sequen
e)

P Toggles playba
k

R Toggles re
ording

T Tilts head to verti
al position

U Sends an �undo
k�
ommand (ba
ks and turns 180 degrees)

3.8. Software used

This se
tion des
ribes the software used in the developed system.

3.8.1. Development environment

The system is written using C++. As a fully
ompiled language, this gives better

performan
e and needs less memory than interpreted languages like Python or Matlab.

On an embedded system like the Gira�'s onboard
omputer, making the most of the

available resour
es is often important.

39

3. The developed system

As the base development environment, I
hose to use MinGW (www.mingw.org) with

the MSYS option. MinGW is based on the open-sour
e and
ross-platform GNU Com-

piler Colle
tion (GCC). Sin
e most open-sour
e navigation software is written using

GCC (and usually on Linux), it seemed that using GCC for this proje
t might make it

easier to get su
h navigation software working later on. For the IDE (Integrated Devel-

opment Environment), I
hose to use Code::Blo
ks (www.
odeblo
ks.org), but this isn't

important, as editors and IDEs are just a matter of taste.

3.8.2. OpenCV

OpenCV (Open Sour
e Computer Vision Library), at http://www.open
v.org/, is an

extensive library of
omputer vision and ma
hine learning algorithms. It implements

both
lassi
 and state-of-the-art algorithms, all highly optimized and easy to use. It is

released under the BSD li
ense, making it free for all. Some of the modules of interest

are:

� OpenCV's HighGUI library provides easy to use routines for
reating GUIs and

apturing images from
ameras. This library is used for a

essing the Gira�'s

amera.

� OpenCV's Image Pro
essing library provides a host of image pro
essing and anal-

ysis routines. Of parti
ular interest here are the feature extra
tors.

� OpenCV's Video Analysis library provides routines for motion analysis. Among

other things, it has routines to
al
ulate opti
al �ow, and even an implementation

of the Kalman �lter.

� OpenCV's 3D Re
onstru
tion library provides routies to
alibrate
ameras,
om-

pare stereo images, and
al
ulate proje
tions and ba
kproje
tions. It
ould be

used to
ompensate for the �sheye e�e
t of the wide angle lens.

� OpenCV's 2D Features Framework library provides more advan
ed feature extra
-

tors and pattern mat
hers.

� OpenCV's Obje
t Dete
tion and Ma
hine Learning libraries provides many ad-

van
ed ma
hine learning algorithms.

Several books have been written about OpenCV [28, 29, 30℄. This library is the ba
kbone

of many interesting proje
ts, and so I
hose it for this proje
t as well.

40

4. The Gira�

4.1. Introdu
tion

The Gira� is a mobile telepresen
e robot developed by Gira� Te
hnologies AB, Sweden

(http://www.gira�.org/). It is designed to be remote
ontrolled by
aregivers, allowing

them to
he
k up on
are re
ipients without physi
ally being there. Caregivers may use

their own
omputers to
onne
t to any re
ipient's Gira� robot, move it around using

their
omputer's mouse, and see its environment and talk to people through the robot.

The Gira� is already involved in several other resear
h proje
ts. The unit I've had a
-

ess to is operated by NST (Norwegian Centre for Integrated Care and Telemedi
ine) and

primarily involved in the EU's Vi
toryaHome proje
t, a proje
t for putting robots in the

homes of
are re
ipients to a
t as proxies for human
aregivers when they're not present,

automati
ally alerting them whenever needed. For information about the proje
t, see, for

example, http://www.itfunk.org/do
s/prosjekter/AAL-Vi
toryaHome.htm. Some more

information about how the Gira�, in parti
ular, is used in this proje
t is available at

http://www.robotdalen.se/en/News/Press-releases/2013/Gira�-key-player-in-new-EU-proje
t-

Vi
toryaHome-/

It is hoped that the Gira�
an be used to �ll roles su
h as

� Provide so
ial intera
tion opportunities for people who live isolated or that don't

get out of their houses mu
h for health reasons, su
h as old age, COPD, or dis-

ability. Caregivers, family, and friends
an simply log on to their
omputers to

talk, without having to drive there. For
aregivers, this saves valuable time and

allows them to e�
iently
are for more people, whi
h may live all over a wide

area. Although this
an't
ompletely repla
e the human tou
h, and personal visits

will still be important from time to time, this
an supplement them and greatly

in
rease the e�e
tiveness of resour
e-starved health
are departments, as the need

for health
are
ontinues to grow faster than the resour
es to provide them.

� Allow physi
ians to
he
k up on patients under their
are that aren't in their

41

4. The Gira�

Figure 4.1.: Photo of the Gira� (from material provided by Gira� Te
hnologies)

42

4.2. Design

Figure 4.2.: Drawing of the Gira� (from material provided by Gira� Te
hnologies)

hospitals, su
h as in elder
are
enters. To supplement the regular visits to the

are
enters, the physi
ian may use the robot to talk to people and solve simple

problems without needing to drive there every time.

Unfortunately, the Gira�'s standard software provides little automation and
an be

tedious to use, be
ause every movement it
an do needs to be expli
itly
ommanded.

It is hoped that adding more automation and autonomy to the Gira�
an make its use

simpler, allowing the users to fo
us more on the tasks they want to a

omplish, and

less on the �ne details of steering the Gira� around. It might even help save lives if it

ould autonomously respond to persons in distress and report the situation to emergen
y

personnel.

4.2. Design

As
an be seen in Figures 4.1 and 4.2, the Gira� has a base unit, a long ne
k, and a

head. The base unit houses a
omputer,
ontrol buttons, and motors for the 4 wheels.

The head is
onne
ted to a tiltable panel with a monitor and a
amera. The total height

of the Gira� is a little over 1.6m. When a
aregiver is
ommuni
ating with another

person through the robot, this allows
omfortable intera
tion. The tiltable panel allows

the
aregiver to look up or down as needed. The
ontrol buttons on the
hassis allow the

are re
ipient to
all the
aregiver, a

ept and dis
onne
t
alls, and adjust the volume

level. These fun
tions are also available through a remote
ontrol. When the robot is

not in use, it stays in its do
king station, fa
ing the wall.

43

4. The Gira�

4.3. Computer Spe
i�
ations

The exa
t spe
i�
ations of the Gira�'s main
omputer were not available, but by a
-

essing the operating system's Control Panel, it was possible to extra
t the following

relevant information.

CPU Intel Core 2 T7200, 2 GHz

GPU Intel i945 Express

RAM 1 GB

Storage Type Patriot Memory USB devi
e

Storage Capa
ity Primary partition 3.5GB (1.5GB free)

Operating System Mi
rosoft Windows Embedded Standard

The Gira� also has two USB ports. The rear port is meant to hold a wireless network

adapter, and the front port
an be used for
onne
ting input devi
es like keyboards and

mi
e, when ne
essary for administration [27℄.

These spe
i�
ations suggest that the Gira� might be powerful enough to allow reason-

ably advan
ed appli
ations to run on the devi
e itself. A su�
iently e�
ient navigation

appli
ation
ould run on it dire
tly; remote-
ontrol solutions may not be ne
essary. This

would be an advantage, as a remote-
ontrol solution for autonomous navigation would

require more hardware and be less robust.

4.4. Camera

A

ording to Gira� Te
hnologies, the sensor
hip is a Cynove USB devi
e with a listed

sensor size of 1/3.2" and a resolution of 1600x1200. It is �tted with a 1.8mm wide

angle lens. For digital image sensors, the listed sensor size is usually about 1.5 times the

a
tual sensor size, so the a
tual diagonal of the sensor would be about 5.68mm. Thus,

the diagonal �eld of view is approximately 2 arctan d
2f

= 2 arctan 5.68mm

2·1.8mm
≈ 115◦. The

horizontal �eld of view is approximately 2 arctan 4.54mm

2·1.8mm
≈ 103◦.

Be
ause of the
amera's wide angle, it would seem like a good idea to
apture video

at high resolution, in order to dete
t relatively distant landmarks with reasonable a
-

ura
y, though this may need to be balan
ed with the slower transfer speed and higher

omputational workload of a higher resolution. Testing suggests that the highest video

resolution the
amera is able to deliver at a pra
ti
al rate is 800x600, at about 10 frames

per se
ond.

When using the
amera for navigation, it is ne
essary to
orre
t for the distortion

44

4.5. Motor Controller

(�sheye e�e
t)
aused by the lens. An advantage of the wide angle is that the robot
an

more easily keep landmarks and obsta
les in view while turning and moving.

4.5. Motor Controller

The Gira�'s wheels are
ontrolled by an AVR mi
ro
ontroller running
ustom software.

It
ommuni
ates with the main
omputer through a RS232-type serial port interfa
e,

using a line-based ASCII proto
ol [31℄. The
ontroller a

epts operations like moving a

spe
i�
 distan
e, turning a spe
i�
 angle, or a
ombination of both (
urved motion). In

bu�ered mode, up to four su
h operations
an be pla
ed in queue. All operations have

ramp-up and ramp-down times, so that jerky motions
annot happen. The mi
ro
on-

troller also
ontrols the tilt of the Gira�'s head, and gives a

ess to the buttons on the

hassis.

With some
aveats, the mi
ro
ontroller
an help estimating the robot's position by

keeping tra
k of the distan
e travelled by its drive wheels. The
ontroller
an provide

this information to the main
omputer on request. For navigational purposes, this is

usually known as odometry, and
an be used for dead re
koning, whi
h is ne
essary when

no other position estimate is available (i.e., no known landmarks are in sight). However,

testing shows that this is, unfortunately, not reliable enough to be used on its own.

Another issue is that the Gira�'s default remote
ontrol software gain ex
lusive
ontrol

over
ommuni
ation with the motor
ontroller while it is running. Thus, the default

software would need to be shut down before other navigation software
an
ontrol the

motor, or some way of multiplexing the motor
ontroller port needs to be developed.

One way to do this may be to
reate a virtual motor
ontroller port that both pie
es of

software
an
onne
t to. Then the software behind the virtual
ontroller
ommuni
ates

with the real
ontroller, and routes
ommands and responses to whi
hever pie
e of

software needs it. Another option might be to make a new navigation system a fully

fun
tional substitute for the default software, so that running the default software will

just never be ne
essary.

45

5. Evaluation

5.1. Fun
tionality

The implemented system works as des
ribed, and
an be used to steer the Gira� through

the
are
enter, and re
ord the journey for later playba
k, if a keyboard is
onne
ted.

The images in Figures 3.4, 5.1 and 5.2 are from su
h a re
orded journey.

5.2. Extensibility

Requirement: As the developed system is meant to be a platform on as whi
h a larger

system
ould be built, it should be possible to implement other
omponents on top of

it.

Figure 5.1 shows the results of adding an image pro
essing algorithm (the Canny

edge dete
tor [32℄, available in OpenCV), as an example of how su
h algorithms
an be

added. (Also, the ability to dete
t moving edges might be useful for obsta
le avoidan
e.)

Figure 5.2 demonstrates a parti
ular type of feature extra
tor (the FAST
orner dete
tor

[7℄, also available in OpenCV) that may be used as part of a navigation system. The

features shown in the �gure (pink
ir
les)
ould be mat
hed with previously known

features, and their
oordinates given to a SLAM implementation, whi
h
ould then use

them to determine the robot's
urrent position.

5.3. Re
ording and playba
k

Requirement: When playing ba
k a re
ording, the resulting visuals and motor odometry

should be identi
al to what was seen when the re
ording was �rst
reated.

Some sample re
ords are available on the atta
hed CD-ROM. While testing shows

that they do appear to be the same, there are still some lag spikes while re
ording,

meaning that the Gira� does not work fast enough to do a smooth re
ording. Adding

multithreading to the motor re
ording
omponent might mitigate this. But sin
e the

47

5. Evaluation

Figure 5.1.: Playba
k with Canny edge dete
tor

Figure 5.2.: Playba
k with FAST
orner dete
tor (
orners highlighted with pink)

48

5.4. Motor
ontrol

aptured video frames have timestamps in the motor re
ord, this problem does not
ause

any drift in the timing of the playba
k.

5.4. Motor
ontrol

Requirement: Movement
ommands from the user should be properly interpreted and

ause the Gira� to move in the desired way.

Commands
an
urrently only be given using a
onne
ted keyboard, but this should

su�
e for evaluation. The sample re
ords, available on the CD-ROM, shows that moving

the Gira� around this way works. However, be
ause of the problems with
urved motion

des
ribed in Se
tion 3.2.1.4, turns are somewhat di�
ult to predi
t, and some movement

jerks often happen when ending them. Possibly a future navigation solution would be

able to plan moves in advan
e in su
h a way that these jerks
an be avoided.

5.5. Motor simulation

Requirement: The motor simulator should emulate the a
tual motor
ontroller as faith-

fully as possible.

Testing shows that the simulator is
lose to the real thing, with a few
aveats. Unlike

the real thing, the simulator does not make errors. For example, for me
hani
al reasons,

the real motor
ontroller is usually not able to hit the exa
t distan
e requested. If

you request a
ertain distan
e, it will usually report an odometry that's o� by a few

millimeters. The simulator, however, will always report the exa
t requested distan
e in

its odometry. Also, there are
ertain bugs in the real
ontroller that's not repli
ated

faithfully in the simulator, su
h as the quirky behaviour of the �Clothoid De
eleration

Point�
ommand used for
urved motion. And some minor features, su
h as
hanging

the head tilt angle, reporting presses of the
hassis buttons, and
he
king the battery

status, are not simulated at all. These are fairly minor issues, however, and the simulator

works �ne for its intended purpose of simulating the result of navigation
ommands.

5.6. Dis
ussion

Clearly, many more things
ould have been explored or implemented in this proje
t. In

parti
ular, it would have been very interesting to try an a
tual SLAM implementation

on the Gira�. Unfortunately, be
ause of the Gira�'s limited availability, and the motor

49

5. Evaluation

ontrol took mu
h more time than expe
ted, in part be
ause the original do
umentation

was missing some vital information. However, using the platform des
ribed in this thesis,

and the do
umentation provided in Appendix A, I believe implementing and evaluation

navigation algorithms on the Gira�
an now be done more e�
iently.

In retrospe
t, it might have been a good idea to prioritize di�erently. For example,

spending less time on tuning the motor
ontroller and simulator would mean more time

for trying out navigation algorithms, and for des
ribing what has been done. It would

also have been interesting to set up a few experiments, su
h as trying to do a simple pre-

programmed patrol using dead re
koning. Sin
e dead re
koning is unreliable, espe
ially

given the e�e
ts of the
asters, the Gira� would probably not go exa
tly where it should,

but it would be a good demonstration of the fun
tionality of the motor
ontroller.

50

6. Con
lusion

For this thesis, I've built a platform for developing navigation solutions for the Gira�,

a telepresen
e robot. I've designed and implemented a system to interfa
e with its

hardware, and also investigated many of the
hallenges involved in making it able to

navigate a large building without human assistan
e, in
luding lo
alization and route

planning. I examined some of the algorithms and te
hnologies that
ould be used to

solve those problems � some that require adding more sensors to the Gira�, and some

that don't.

The implemented platform shows
amera images and motor odometry on the s
reen,

and allows the user use the keyboard to
ontrol the Gira�'s motors and move it around.

It
an re
ord and play ba
k video and motor data, and when run on a regular
omputer,

it
an simulate the Gira�'s motors. This allows o�ine development and evaluation of

lo
alization and navigation solutions, fa
ilitating future work on the Gira�.

Based on a literature study of lo
alization approa
hes, it appears that adding extra

sensors may allow more robust algorithms to be used, but given the
ontrolled environ-

ment the Gira� is meant to operate in, adding sensors is by no means ne
essary. A single-

amera SLAM approa
h
ould work quite well. In parti
ular, it might be interesting to

try
onverting the EKFMonoSLAM sour
e
ode (found on http://www.openslam.org/)

from Matlab to C++ for use on the Gira�. Sin
e this approa
h also allows the Gira�

to be used unmodi�ed, whi
h is
heaper and more
onvenient for the users, this seems

like the preferred approa
h. If we were to add a sensor, however, an infrared laser range

�nder would probably be most useful, in order to minimize the risk of
rashing into

things.

51

Bibliography

[1℄ Kunnskapsdepartementet, �Meld. St. 13 (2011-2012): Utdanning for velferd,� 17

Feb. 2012.

[2℄ S. S. Srinivasa, D. Ferguson, C. J. Helfri
h, D. Berenson, A. Collet, R. Diankov,

G. Gallagher, G. Hollinger, J. Ku�ner, and M. V. Weghe, �HERB: a home exploring

roboti
 butler,� Autonomous Robots, vol. 28, pp. 5�20, Jan. 2010.

[3℄ K. Yamazaki, R. Ueda, S. Nozawa, M. Kojima, K. Okada, K. Matsumoto,

M. Ishikawa, I. Shimoyama, and M. Inaba, �Home-assistant robot for an aging

so
iety,� Pro
eedings of the IEEE, vol. 100, no. 8, pp. 2429�2441, 2012.

[4℄ M. L. Benmessaoud, A. Lamrani, K. Nemra, and A. Soui
i, �Single-
amera EKF-

vSLAM,� Pro
eedings of World A
ademy of S
ien
e: Engineering & Te
hnology,

vol. 42, pp. 924 � 929, June 2008.

[5℄ A. Davison, �Real-time simultaneous lo
alisation and mapping with a single
am-

era,� in Computer Vision, 2003. Pro
eedings. Ninth IEEE International Conferen
e

on, pp. 1403 �1410 vol.2, O
t. 2003.

[6℄ A. Ali and M. Nordin, �Sift based mono
ular slam with multi-
louds features for

indoor navigation,� in TENCON 2010 - 2010 IEEE Region 10 Conferen
e, pp. 2326

�2331, Nov. 2010.

[7℄ E. Rosten and T. Drummond, �Ma
hine learning for high-speed
orner dete
tion,�

in In European Conferen
e on Computer Vision, pp. 430�443, 2006.

[8℄ L.-F. Gao, Y.-X. Gai, and S. Fu, �Simultaneous lo
alization and mapping for au-

tonomous mobile robots using bino
ular stereo vision system,� in Me
hatroni
s and

Automation, 2007. ICMA 2007. International Conferen
e on, pp. 326 �330, Aug.

2007.

53

Bibliography

[9℄ X. Kuai, K. Yang, S. Fu, R. Zheng, and G. Yang, �Simultaneous lo
alization and

mapping (SLAM) for indoor autonomous mobile robot navigation in wireless sen-

sor networks,� in Networking, Sensing and Control (ICNSC), 2010 International

Conferen
e on, pp. 128 �132, Apr. 2010.

[10℄ W. Jeong and K. M. Lee, �CV-SLAM: a new
eiling vision-based SLAM te
hnique,�

in Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ Interna-

tional Conferen
e on, pp. 3195 � 3200, Aug. 2005.

[11℄ C.-J. Wu and W.-H. Tsai, �Lo
ation estimation for indoor autonomous vehi
le nav-

igation by omni-dire
tional vision using
ir
ular landmarks on
eilings,� Roboti
s

and Autonomous Systems, vol. 57, pp. 546 � 555, May 2009.

[12℄ S. Fu, H. ying Liu, L.-F. Gao, and Y.-X. Gai, �Slam for mobile robots using laser

range �nder and mono
ular vision,� in Me
hatroni
s and Ma
hine Vision in Pra
-

ti
e, 2007. M2VIP 2007. 14th International Conferen
e on, pp. 91 �96, De
. 2007.

[13℄ Z. Zalevsky, A. Shpunt, A. Maizels, and J. Gar
ia, �Method and system for obje
t

re
onstru
tion.� Patent WO2007043036, Apr. 2007.

[14℄ T. Yap and C. Shelton, �SLAM in large indoor environments with low-
ost, noisy,

and sparse sonars,� in Roboti
s and Automation, 2009. ICRA '09. IEEE Interna-

tional Conferen
e on, pp. 1395 �1401, May 2009.

[15℄ S.-Y. Hwang, J.-T. Park, and J.-B. Song, �Autonomous navigation of a mobile robot

using an upward-looking
amera and sonar sensors,� in Advan
ed Roboti
s and its

So
ial Impa
ts (ARSO), 2010 IEEE Workshop on, pp. 40 �45, O
t. 2010.

[16℄ R. E. Kalman, �A new approa
h to linear �ltering and predi
tion problems,� Journal

of Basi
 Engineering, vol. 82, pp. 35�45, Mar. 1960.

[17℄ A. H. Jazwinski, Sto
hasti
 Pro
esses and Filtering Theory. A
ademi
 Press, Apr.

1970.

[18℄ S. J. Julier and J. K. Uhlmann, �Uns
ented �ltering and nonlinear estimation,�

Pro
eedings of the IEEE, vol. 92, pp. 401 � 422, Mar. 2004.

[19℄ J. Campbell, R. Sukthankar, I. Nourbakhsh, and A. Pahwa, �A robust visual odom-

etry and pre
ipi
e dete
tion system using
onsumer-grade mono
ular vision,� in

Roboti
s and Automation, 2005. ICRA 2005. Pro
eedings of the 2005 IEEE Inter-

national Conferen
e on, pp. 3421 � 3427, Apr. 2005.

54

Bibliography

[20℄ D. Nister, O. Naroditsky, and J. Bergen, �Visual odometry,� in Computer Vision and

Pattern Re
ognition, 2004. CVPR 2004. Pro
eedings of the 2004 IEEE Computer

So
iety Conferen
e on, vol. 1, pp. I�652 � I�659 Vol.1, June 2004.

[21℄ A. J. Davison and N. Kita, �Sequential lo
alisation and map-building for real-time

omputer vision and roboti
s,� Roboti
s and Autonomous Systems, vol. 36, pp. 171

� 183, Sept. 2001.

[22℄ P. Pinies and J. Tardos, �S
alable SLAM building
onditionally independent lo
al

maps,� in Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ Interna-

tional Conferen
e on, pp. 3466 �3471, O
t. 2007.

[23℄ H. Strasdat, J. M. M. Montiel, and A. Davison, �S
ale drift-aware large s
ale mono
-

ular slam,� in Pro
eedings of Roboti
s: S
ien
e and Systems, (Zaragoza, Spain),

June 2010.

[24℄ J. Civera, O. G. Grasa, A. J. Davison, and J. M. M. Montiel, �1-point ransa

for extended kalman �ltering: Appli
ation to real-time stru
ture from motion and

visual odometry,� J. Field Robot., vol. 27, pp. 609�631, Sept. 2010.

[25℄ J. Civera, A. Davison, and J. Montiel, �Inverse depth parametrization for mono
ular

slam,� Roboti
s, IEEE Transa
tions on, vol. 24, no. 5, pp. 932�945, 2008.

[26℄ A. Stentz, �Optimal and e�
ient path planning for partially-known environments,�

in Roboti
s and Automation, 1994. Pro
eedings., 1994 IEEE International Confer-

en
e on, pp. 3310 �3317 vol.4, May 1994.

[27℄ Gira� Te
hnologies AB, Advan
ed Operational Guide For Gira� Version 3.1, June

2011.

[28℄ G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV

Library. O'Reilly Media, O
t. 2008.

[29℄ R. Laganière, OpenCV 2 Computer Vision Appli
ation Programming Cookbook.

Pa
kt Publishing, May 2011.

[30℄ D. L. Baggio, S. Emami, D. M. Es
rivá, K. Ievgen, N. Mahmood, J. Saragih, and

R. Shilkrot, Mastering OpenCV with Pra
ti
al Computer Vision Proje
ts. Pa
kt

Publishing, De
. 2012.

[31℄ Gira� Te
hnologies AB, Gira� Motor Controller Board Serial Interfa
e, May 2012.

55

Bibliography

[32℄ J. Canny, �A
omputational approa
h to edge dete
tion,� Pattern Analysis and

Ma
hine Intelligen
e, IEEE Transa
tions on, vol. 8, pp. 679�698, June 1986.

56

Appendix

57

A. The Motor Controller Interfa
e

This appendix is intended to expand on the manufa
turer's own do
umentation, �Gira�

Motor Controller Board Serial Interfa
e� [31℄. It notes and
orre
ts errors and omissions

in their do
umentation, and attempts to explain a few things that may be un
lear.

However, you won't need to have the manufa
turer's do
umentation in order for this

appendix to be useful to you.

A.1. Overview

The Gira�'s motor
ontroller is mounted near the bottom of the Gira�'s
hassis. Its

brain is an AVR mi
ro
ontroller. The
ontroller's primary fun
tions are to
ontrol the

two side wheels, to
ontrol the head's tilt angle, and to report the state of the two

buttons and the dial on the Gira�'s
hassis. It
an also report the
harge level of the

Gira�'s battery, but this is not
overed in this appendix.

The
ontroller responds to
ommands sent to it via a RS232-style serial interfa
e.

For making the Gira� move, these
ommands don't
ontrol the wheels dire
tly, but sets

parameters su
h as a

eleration, maximum speed, and distan
e, whi
h the board then

uses to
al
ulate a motion pro�le. This pro�le is followed until either the motion is

omplete, or another
ommand
hanges the motion pro�le. Sin
e instantaneous
hanges

in speed aren't physi
ally possible (and trying it may
ause damage to the Gira�), a

Figure A.1.: Motion pro�le

59

A. The Motor Controller Interfa
e

standard motion pro�le has a �ramp-up� with
onstant a

eleration until the requested

maximum speed is rea
hed, followed by a period of
onstant speed, then a �nal �ramp-

down� with
onstant de
eleration until the Gira� rea
hes a full stop at the requested

�nal position (or at least
lose to it). This results in a trapezoidal speed pro�le, as seen

in Figure A.1. (If the requested distan
e is very short, the maximum speed may not be

rea
hed, resulting in a triangular speed pro�le.)

A.2. Movement styles

Any of the following styles
an sele
ted with the �set r�
ommand.

A.2.1. Straight line motion

The Gira�
an move forwards or ba
kwards in straight lines. In this style, �set p� spe
-

i�es the distan
e in meters (whi
h
an be negative to move ba
kwards), �set v� spe
i�es

the maximum speed (in meters per se
ond), and �set a� spe
i�es the a

eleration. The

speed and a

eleration should be positive numbers, regardless of dire
tion. The distan
e

travelled and
urrent speed is reported as �
dis� and �gvr�, respe
tively. �
ang� is

always reported as zero.

A.2.2. Rotating in pla
e

The Gira�
an rotate in pla
e by driving its wheels in opposite dire
tions. In this style,

the distan
e given to �set p� is in degrees, not meters. Positive turns right, negative

turns left. The angle travelled and
urrent angular speed is reported as �
ang� and

�gvr�, respe
tively, though both of these have the opposite sign of what they should.

Note that, like for straight line motion, the speed taken by �set v� (and a

eleration given

to �set a�) is spe
i�ed in meters, not in degrees. A program must
onvert a

ordingly

if it wants a spe
i�
 turning speed. �
dis� is always reported as zero.

A.2.3. Curved motion

The Gira�
an turn while moving by driving its wheels with di�erent speeds. This style

is a superset of straight line motion, and is built around a
on
ept
alled a �virtual gear

ratio�. When starting or ending a turn, the gear ratio is
hanged gradually from the

60

A.2. Movement styles

initial to the �nal gear ratio, mu
h like a

eleration does for velo
ity (though in this

ase the rate of
hange is per meter, not per se
ond).

In addition to the straight-line parameters, �set vg� spe
i�es the maximum gear ratio

to use, and �set vgr� spe
i�es the gear ratio rate of
hange (per meter). The latter

should be positive or negative depending on whether to turn right or left, respe
tively.

Due to bugs, I don't know for sure whether the former should also be negative when

turning left, though it seems to work that way. Finally, �set
dp� spe
i�es the position

(in meters) at whi
h to start
hanging the gear ratio ba
k towards zero, ultimately

ending the turn. The gear ratio will also automati
ally be reset to zero if the Gira�

ompletes its motion and stops.

In the manufa
turer's do
umentation [31℄, the wheel speeds are given as

Left Wheel Velo
ity = Overall Velo
ity * (1/(1-vg))

Right Wheel Velo
ity = Overall Velo
ity * (1/(1+vg))

It also says a gear ratio of 1.0 is the ratio where the Gira� will pivot around its own

wheels. Sin
e the above formulas don't a
tually a
hieve this (it would
ause a division

by zero), or even maintain the overall velo
ity, I believe the
orre
t formulas to use are

a
tually

Left Wheel Velo
ity = Overall Velo
ity * (1+vg)

Right Wheel Velo
ity = Overall Velo
ity * (1-vg)

(This is a
knowledged by an engineer at Gira� Te
hnologies.)

When exe
uting
urved motion, �
dis� still reports the distan
e travelled along the

urve, but a

ording to the manufa
turer, �gvr� reports the velo
ity of the left wheel,

not the overall velo
ity. Moreover, testing shows that �gvr� is
al
ulated using the

(probably in
orre
t) formulas from the do
umentation, so a program needs to take these

things into a

ount when trying to determine the a
tual speed. The
urrent virtual gear

ratio is reported as �
vg�. The angle that has been
overed is not reported, as �
ang�

is still always zero. A program would need to
al
ulate su
h things on its own, based on

distan
e travelled and su
h.

Also note that attempting to preempt a
urved motion
ommand in the
urrent ver-

sion of the mi
ro
ontroller may
ause unexpe
ted behaviour. Depending on the
ir
um-

stan
es, the virtual gear ratio may jump instantly to an undesirably high ratio. The

only way I found to avoid this is to set �vgr� to zero when preempting, but this will

ause the virtual gear ratio to jump instantly to zero instead. This is, of
ourse, also

61

A. The Motor Controller Interfa
e

undesirable due to the physi
al stress it
auses to the Gira�'s hardware. The problem

has been reported to Gira� Te
hnologies and will hopefully be �xed in a future revision

of the mi
ro
ontroller's software.

A.3. Conne
tion details

The
ontroller's serial interfa
e is wired to the main
omputer's serial port. To
ommu-

ni
ate with the
ontroller, the parameters should be set to

� Baud Rate: 115200

� Data Bits: 8

� Stop Bit: 1

� Parity: None

When a
omputer opens the serial port, it is expe
ted to set the DTR (Data Terminal

Ready) signal high. When the
ontroller board dete
ts the DTR signal, it will power up

and identify itself by transmitting a line like the following:

Giraf version,date

(followed by
arriage return and line feed
hara
ters). From testing on an a
tual Gira�,

however, it appears that before this line, another line may appear, saying just Ca>. It

may be an artifa
t of the board's initialization pro
ess and should probably be ignored.

After the version line, an OK> prompt will appear (followed by
arriage return and

line feed) when the board is ready to re
eive
ommands. Commands should not be sent

before this. When a
ommand has been sent to the board (followed by a
arriage return

only), the board will generate an appropriate response, followed by a new OK> prompt.

Again, a new
ommand should not be sent before the new OK prompt has been seen.

All
ommands and responses are made up of regular ASCII strings. In the do
umen-

tation, parameters are regular human-readable de
imal numbers (in ASCII en
oding).

However, testing showed that while
ommands
an be sent using this format, responses

do not seem to work like this. This was not in the do
umentation, but some dete
tive

work suggested that, depending on the type of the parameter, the responses are en
oded

as follows:

Type Transfer format Binary interpretation

Integer I*aabb

dd 32-bit two's
omplement integer

Floating-point F*aabb

dd IEEE 754 single-pre
ision �oating point

62

A.4. Commands

The transfer formats en
ode the binary value as hexade
imal numbers, in little-endian

byte order. That is, ea
h pair of hexade
imal digits (i.e., ea
h 8-bit byte) has the most

signi�
ant digit to the left, but on the other hand, the most signi�
ant (aka highest

order) byte is to the right (i.e., aa is least signi�
ant, and dd is most signi�
ant). Thus,

some
are needs to be taken to keep things ordered
orre
tly when de
oding the value.

Some
ommands (�get button_data� and �get bulk_data�) return more than one

parameter. In this
ase, the parameters are returned as a
omma-separated name-value

list. For example, the response from �get button_data� looks like

but0:value,but1:value,dial:value

where ea
h individual value is en
oded as des
ribed above.

A.4. Commands

All listed �set�
ommands have a
orresponding �get�
ommand whi
h returns the last

set value. Commands that start neither with �set� nor �get� do not return any values

(only the OK> prompt).

Where not otherwise spe
i�ed,
ommand parameters are �oating-point values.

A.4.1. set v

Sets the maximum speed (velo
ity), in meters per se
ond.

A.4.2. set r

Sele
ts the movement style, a

ording to the following table.

r mode

r = 0 Rotating in pla
e

0 < r ≤ 50 Straight line motion

50 < r Curved motion

(The do
umentation do not mention the r > 50 requirement for
urved motion.)

A.4.3. set a

Sets the a

eleration, in meters per se
ond per se
ond.

63

A. The Motor Controller Interfa
e

A.4.4. set p

Starts a move. All other motion parameters must be set before issuing this
ommand.

When rotating in pla
e, spe
i�es number of degrees to rotate. When moving in a

straight or
urved line, spe
i�es number of meters to move. (See A.2 for details.)

If another move is already in progress, the previous move may be preempted, or the

new move queued until the previous move is
omplete, depending on what mode is set

with �set mode�. (See A.4.8.)

A.4.5. get
ang

Gets the
urrent angle.

When rotating in pla
e, returns degrees rotated so far. When moving in a straight or

urved line, always zero.

A.4.6. get
dis

Gets the
urrent distan
e.

When moving in a straight or
urved line, returns distan
e travelled so far. When

rotating in pla
e, always zero.

A.4.7. get gvr

Gets the
urrent (instantaneous) velo
ity.

When rotating in pla
e, returns degrees per se
ond. When moving in a straight or

urved line, returns meter per se
ond. If moving in a
urved line, spe
ial
are must be

taken when interpreting this value. (See A.2.3.)

A.4.8. set mode

An integer. Sets the movement mode. This is a bitmask. The following bits
an be set

(but
an not be read ba
k):

Bit Value Des
ription

0 1 Absolute movement mode

2 4 Bu�er next move

The following bits
an be read:

64

A.4. Commands

Bit Value Des
ription

3 8 ESTOP

7 128 Currently moving

In relative mode, all moves are relative to the
urrent position. When absolute mode

is enabled, the Gira� begins tra
king distan
es sin
e the moment absolute mode is

enabled. All moves, in
luding the �set p� parameters and the reported �
ang� and

�
dis�, be
omes relative to this position. Note that this only tra
ks distan
e travelled,

and is dependent on the
urrent movement style. Changing the style will reset the

absolute mode position to the
urrent position.

In unbu�ered mode, new moves issued with �set p� preempt the
urrent move, and

starts immediately. When bu�ering is enabled, a new move gets queued and only starts

when the previous move
ompletes (i.e., when the Gira�
omes to a full stop). Up to 4

moves
an be bu�ered.

If the ESTOP bit is set, it means something with the wheels is not working
orre
tly.

Details may be available from the manufa
turer.

A.4.9. set undo
k

Starts an undo
k sequen
e. Queues two moves: one to ba
k out the spe
i�ed distan
e,

and one to rotate 180 degrees.

A.4.10. home

No parameter. Starts the head homing sequen
e. The head slowly tilts, sear
hing for

its �home� position. This is the position the head is in when the Gira� is �sleeping�,

about 45 degrees o� verti
al.

Note that the homing sequen
e appears to start automati
ally when the mi
ro
on-

troller is a
tivated, so issuing this
ommand is usually not needed.

A.4.11. get tilt_homing_state

An integer. Returns the homing status.

65

A. The Motor Controller Interfa
e

Value Des
ription

0 Homing not started

1 Homing started

2 Homing failed

3 Homing su

eeded

A.4.12. set tilt_angle_from_home

Tilts the head to the given angle, in radians, relative to the home position. (The do
u-

mentation says relative to verti
al, but that's not the
ase.)

If the head homing sequen
e has not been
ompleted, this
ommand will preempt the

homing sequen
e and usually tilt the head to the wrong angle.

A.4.13. set vg

Sets the maximum virtual gear ratio. See A.2.3.

A.4.14. set vgr

Sets the virtual gear ratio rate of
hange (per meter). See A.2.3.

A.4.15. set
dp

Sets the Clothoid De
eleration Point, the point in the move where the virtual gear ratio

starts de
elerating to its �nal value. See A.2.3.

A.4.16. get
vg

Gets the
urrent virtual gear ratio. See A.2.3.

A.4.17. get but0

Gets number of button 0 presses sin
e mi
ro
ontroller startup.

A.4.18. get but1

Gets number of button 1 presses sin
e mi
ro
ontroller startup.

66

A.4. Commands

A.4.19. get dial

Gets rotation of dial sin
e mi
ro
ontroller startup.

A.4.20. get button_data

Gets �but0�, �but1�, and �dial� with a single
ommand. Returns the parameters as a

list.

A.4.21. get bulk_data

Gets �
ang�, �
dis�, �gvr�, �tilt_angle_from_home�, �imdl�, �imdr�, �
vg�, and

�mode� with a single
ommand. Returns the parameters as a list. Very useful for

regular retrieval of motor odometry.

67

B. Sour
e
ode listings

This appendix has been added for the
onvenien
e of those reading this thesis, so that

they don't have to get a
opy of the CD-ROM to see the sour
e
ode. Instead, they
an

peruse it here.

B.1. Gira�Motor.hpp

#ifndef GIRAFFMOTOR_HPP

#define GIRAFFMOTOR_HPP

#include "DisplayWindow.hpp"

#include <windef.h>

#include <fstream>

class GiraffMotorSim;

class GiraffMotor

{

public:

enum ReplyType {

NoReply,

SimpleReply,

BulkReply

};

GiraffMotor(DisplayWindow* win);

~GiraffMotor();

bool Start();

void Stop();

bool Process();

bool StartRecord(const std::string& name);

void StopRecord();

bool StartPlayback(const std::string& name);

void StopPlayback();

// manual/interactive commands triggered by user

void Undock();

void Home();

void SetTilt(double angle);

void GetBulkData();

void SetMotion(double speed);

void SetTurn(double speed);

// special functions

bool SendCommand(const std::string& cmd,

bool silent=false);

void AddReply(const std::string& reply);

std::string GetParameter(const std::string& param,

ReplyType type,

bool silent=false);

std::string SetParameter(const std::string& param,

69

B. Sour
e
ode listings

double value,

bool silent=false);

bool SendUserCommand(const std::string& cmd);

// Hack to check impact of get_bulk_data per-frame,

// should otherwise always be left on.

// This field should be removed, especially if motor

// control is moved into a separate thread

bool m_autoupdate;

private:

static const double turn_factor;

DisplayWindow* m_win;

HANDLE m_port;

LONGLONG m_freq;

std::ofstream m_mrec;

std::ifstream m_mplay;

GiraffMotorSim* m_sim;

bool m_rec, m_play;

LONGLONG m_rectime, m_playtime;

std::string m_readbuf;

bool m_bufchecked;

double m_accel, m_vgaccel;

// current position estimate

double m_curx, m_cury, m_curdir, m_curspd, m_currot;

// current user request

double m_usrmotionspd, m_usrturnspd;

double m_curmotionspd, m_curturnspd;

// current motor command

int m_turnmode;

unsigned m_absmode;

double m_speed, m_gear, m_gearrate, m_gearpos;

double m_nextdis, m_nextpos, m_brkdist;

// current motor status

double m_cang, m_cdis, m_gvr, m_cvg;

double m_lcang, m_lcdis, m_lgvr, m_lcvg;

unsigned m_cmode, m_lmode;

LONGLONG m_cstamp, m_lstamp;

double m_timedelta;

bool m_not_first;

void RecordParameter(const std::string& param,

const std::string& reply,

const std::string& orig,

ReplyType type,

char flag);

bool PlaybackData();

bool InitPort();

bool InitSimulator();

void WaitForLine();

bool ReadLine(std::string& line,

ReplyType type=NoReply,

bool silent=false);

bool ReadReply(std::string& reply,

ReplyType type,

bool silent=false);

std::string WriteCommand(const std::string& out,

ReplyType type,

char flag,

bool silent);

bool ReadVersion();

std::string FormatReply(const std::string& reply,

ReplyType type);

void FormatField(std::ostream& ost,

std::istream& ist);

unsigned ToInt(unsigned u);

float ToFloat(unsigned u);

unsigned ToInt(const std::string& data);

float ToFloat(const std::string& data);

void ParseBulkData(const std::string& data);

void RunMotor();

void CalcMove();

70

B.1. Gira�Motor.hpp

void CalcRotate();

void CalcMoveStep(double dis);

void CalcRotateStep(double ang);

double CalcMoveBrakeDist(double spd);

double CalcRotateBrakeDist(double rot);

void UpdatePosition();

void ShowPosition();

};

#define GIRAFF_BUFFERS 4

class GiraffMotorSim

{

public:

GiraffMotorSim(GiraffMotor* ctl);

~GiraffMotorSim();

void SimulateCommand(const std::string& cmd);

private:

GiraffMotor* m_ctl;

static const double turn_factor;

static const double default_tilt;

struct Move

{

unsigned mode;

// parameters used

double v, r, a, p;

double vg, vgr, cdp;

};

// wheel moves

unsigned m_bufcount;

Move m_buf[GIRAFF_BUFFERS+1];

// head tilts

unsigned m_homing;

double m_tilt;

// for timing

// (c = counter value, equivalent to time)

LONGLONG m_freq, m_lastc;

// Current Giraff state

double m_cang, m_cdis, m_cvg;

double m_vang, m_vdis, m_gvr;

// Current motion profile

LONGLONG m_startc, m_stopc;

// distance part (for moving around)

LONGLONG m_updc, m_downdc;

double m_startdv, m_peakdv, m_rampda;

double m_refdp, m_updp, m_downdp, m_stopdp;

// angular part (for turning)

LONGLONG m_upac, m_downac;

double m_startav, m_peakav, m_rampaa;

double m_refap, m_upap, m_downap, m_stopap;

// gear ratio part

LONGLONG m_upgc, m_downgc, m_stopgc;

double m_startgr, m_peakgr, m_rupgr, m_rdowngr;

double m_stopgr, m_downgd;

void StartStraight(double dist,

double start_pos,

double start_spd,

double cdp,

double start_vg);

void StartRotate(double degrees,

double start_angle,

double start_spd);

double TimeFromPosition(double pos,

double ramp_up_time,

double cruise_time,

double ramp_down_time,

71

B. Sour
e
ode listings

double ramp_up_dist,

double cruise_dist,

double ramp_down_dist,

double accel,

double start_speed,

double peak_speed);

void UpdateMotion();

void StartMotion();

void EndMotion();

bool QueueMotion();

bool QueueUndock(double dist);

void SimulateLag(unsigned bytes);

void SimulateReply(const std::string& reply);

void InputFloat();

void Output(std::ostream& out, double val);

void Output(std::ostream& out, unsigned val);

};

#endif // GIRAFFMOTOR_HPP

B.2. Gira�Motor.
pp

#include "GiraffMotor.hpp"

#include <windows.h>

#include <sstream>

#include <iomanip>

#define PORT_NAME "COM1"

using namespace std;

// The acceleration the GiraffMotor class uses by default.

// (Not necessarily the same as what the motor

// controller board itself uses by default.)

#define DEF_ACCEL 0.5

// The virtual gear ratio rate of change the GiraffMotor

// class uses by default.

#define DEF_VGACCEL 1.0

// The distance between the Giraff’s wheels are 499mm,

// so when rotating in place, their turn radius is 249.5mm.

#define TURN_RADIUS 0.2495

// Conversion factor between degrees and

// circle arc covered by wheels.

#define TURN_FACTOR (180 / (TURN_RADIUS * M_PI))

// This is used when the user is controlling the motor

// manually, so the distance to go isn’t known in

// advance. To calculate the distance we tell the

// motor to go, we multiply the "braking distance"

// with this factor. (Every time the distance left falls

// below a factor of 2, a new command is automatically

// sent to the controller in order to make it keep going.

// Hence, this factor must be more than 2.)

#define AHEAD_FACTOR 10

// Use absolute mode, which makes position tracking

// a little more accurate in some cases.

// Unfortunately, curved motion may be troublesome in

// this mode, because of bugs in the controller.

//#define USE_ABSOLUTE_MODE

// Whether the simulated controller will reverse back if

// its braking distance is too long to stop at the requested

72

B.2. Gira�Motor.
pp

// position (applicable when the destination position is

// suddenly changed while traveling at full speed).

// The real Giraff seems to do this in absolute mode.

#define SIM_OVERSHOOT_FIX

// Enable simulation of curved motion.

#define SIM_CURVED

// gvr is (incorrectly) speed of left wheel

// instead of overall speed.

#define GVR_IS_LEFT

// Show the "OK >" prompt on the display.

//#define SHOW_PROMPT

enum ModeBit {

MODE_ABSOLUTE = 1,

MODE_BUFFERED = 4,

MODE_ESTOP = 8,

MODE_MOVING = 128

};

static double fix_degrees(double angle)

{

while (angle < 0)

{

angle += 360;

}

while (angle >= 360)

{

angle -= 360;

}

// returned angle is between 0 and 360

return angle;

}

#if 0

static double ctr_degrees(double angle)

{

// returned angle is between -180 and 180

return fix_degrees(angle+180)-180;

}

#endif

GiraffMotor* motorControl;

const double GiraffMotor::turn_factor = TURN_FACTOR;

GiraffMotor::GiraffMotor(DisplayWindow* win) :

m_autoupdate(true),

m_win(win), m_port(INVALID_HANDLE_VALUE),

m_sim(NULL), m_rec(false), m_play(false),

m_rectime(0), m_playtime(0),

m_bufchecked(false),

m_accel(DEF_ACCEL), m_vgaccel(DEF_VGACCEL),

m_curx(0), m_cury(0), m_curdir(0), m_curspd(0),

m_usrmotionspd(0), m_usrturnspd(0),

m_curmotionspd(0), m_curturnspd(0),

m_turnmode(0), m_absmode(0),

m_cang(0), m_cdis(0), m_gvr(0), m_cvg(0),

m_lcang(0), m_lcdis(0), m_lgvr(0), m_lcvg(0),

m_cmode(0), m_lmode(0),

m_cstamp(0), m_lstamp(0), m_timedelta(0),

m_not_first(true)

{

// get timer frequency

LARGE_INTEGER freq;

QueryPerformanceFrequency(&freq);

m_freq = freq.QuadPart;

}

GiraffMotor::~GiraffMotor()

73

B. Sour
e
ode listings

{

StopRecord();

StopPlayback();

Stop();

}

bool GiraffMotor::Start()

{

if (!InitPort())

{

// Could not initialize serial port

Stop();

return false;

}

if (!ReadVersion())

{

// Did not detect Giraff board

//Stop();

return true;

}

return true;

}

void GiraffMotor::Stop()

{

// Stop any running simulation

if (m_sim)

{

delete m_sim;

m_sim = NULL;

}

// If the serial port is open, close it

if (m_port != INVALID_HANDLE_VALUE)

{

CloseHandle(m_port);

m_port = INVALID_HANDLE_VALUE;

}

}

bool GiraffMotor::Process()

{

std::string line;

// Check for unexpected responses,

// maybe resulting from user commands

while (ReadLine(line))

{

// unexpected

}

if (!m_autoupdate)

{

return true;

}

if (m_play)

{

if (!PlaybackData())

{

return false;

}

UpdatePosition();

}

else

{

// Transfer current motor state

// (this is a few ms of just waiting,

// maybe consider creating a separate

// thread for these things, though that

// may make it harder to synchronize

// readings from the camera and motor)

string data = GetParameter("bulk_data", BulkReply, true);

ParseBulkData(data);

// Send motor commands as needed

RunMotor();

74

B.2. Gira�Motor.
pp

}

ShowPosition();

return true;

}

bool GiraffMotor::StartRecord(const string& name)

{

if (m_rec)

{

StopRecord();

}

string fn = name + ".txt";

// start motor recording

m_mrec.open(fn.c_str(), ios_base::out | ios_base::trunc);

if (m_mrec.is_open())

{

// get reference time for recording

LARGE_INTEGER current;

QueryPerformanceCounter(¤t);

m_rectime = current.QuadPart;

// set recording state

m_rec = true;

m_win->PrintLeft("Starting motor record " + fn);

return true;

}

else

{

m_win->PrintLeft("Couldn’t start motor record");

return false;

}

}

void GiraffMotor::StopRecord()

{

if (m_rec)

{

m_mrec.close();

m_rec = false;

m_win->PrintLeft("Motor record stopped");

}

}

bool GiraffMotor::StartPlayback(const string& name)

{

string fn = name + ".txt";

// start motor recording

m_mplay.open(fn.c_str(), ios_base::in);

if (m_mplay.is_open())

{

// get reference time for playback

LARGE_INTEGER current;

QueryPerformanceCounter(¤t);

m_playtime = current.QuadPart;

// set recording state

m_play = true;

m_win->PrintLeft("Starting motor playback " + fn);

return true;

}

else

{

m_win->PrintLeft("Couldn’t start motor playback");

return false;

}

}

void GiraffMotor::StopPlayback()

{

if (m_play)

{

m_mplay.close();

m_play = false;

m_win->PrintLeft("Motor playback stopped");

75

B. Sour
e
ode listings

}

}

void GiraffMotor::RecordParameter(const std::string& param,

const std::string& reply,

const std::string& orig,

ReplyType type,

char flag)

{

if (!m_rec)

{

return;

}

LARGE_INTEGER current;

QueryPerformanceCounter(¤t);

LONGLONG diff = current.QuadPart - m_rectime;

double ofs = (double)diff / m_freq;

m_mrec << setprecision(3) << fixed

<< setw(8) << ofs

<< ":[" << flag << "] "

<< param << ": "

<< FormatReply(reply, type);

if (!orig.empty())

{

m_mrec << " <= " << orig;

}

m_mrec << endl;

}

bool GiraffMotor::PlaybackData()

{

if (m_mplay.eof())

{

// already complete

return false;

}

for (;;)

{

double ofs;

string line;

m_mplay >> ofs;

if (m_mplay.eof())

{

// playback complete

return false;

}

getline(m_mplay, line);

// delay as appropriate to force the

// playback to have about the same speed

// as the original recording did

LARGE_INTEGER current;

QueryPerformanceCounter(¤t);

LONGLONG target = m_playtime + ofs * m_freq;

LONGLONG diff = target - current.QuadPart;

if (diff > 0)

{

unsigned msec = (diff * 1000) / m_freq;

if (msec > 0)

{

Sleep(msec);

}

}

if (line.length() < 4)

{

return false;

}

char flag = line[2];

size_t colpos = line.find(": ", 5);

if (colpos == string::npos)

76

B.2. Gira�Motor.
pp

{

return false;

}

string param = line.substr(5, colpos-5);

size_t replypos = colpos+2;

size_t seppos = line.find(" <= ", replypos);

string reply, orig;

if (seppos == string::npos)

{

reply = line.substr(replypos);

}

else

{

reply = line.substr(replypos, seppos-replypos);

orig = line.substr(seppos+4);

}

if (flag == ’ ’ && param == "bulk_data")

{

ParseBulkData(reply);

if (m_brkdist != 0)

{

// update state as needed to estimate

// the original movements

if (!(m_cmode & MODE_MOVING))

{

m_brkdist = 0;

}

}

// this kind of record happens after we get a video frame,

// so exit loop here in order to display the recorded frame

break;

}

if (flag == ’S’)

{

// recorded a SetParameter

string cmd = "set " + param + " " + orig;

m_win->PrintRight(cmd);

m_win->PrintRight(reply);

// parse what we need to estimate

// the original movements

istringstream ist(reply);

if (param == "r")

{

double r;

ist >> r;

m_turnmode = (r > 0) ? 1 : -1;

}

else if (param == "mode")

{

// For mode, the reply is generally incorrect,

// so take the mode from the original request.

istringstream ist2(orig);

unsigned mode;

ist2 >> mode;

m_absmode = mode & MODE_ABSOLUTE;

}

else if (param == "v")

{

ist >> m_speed;

}

else if (param == "vg")

{

ist >> m_gear;

}

else if (param == "vgr")

{

ist >> m_gearrate;

}

else if (param == "p")

{

double pos;

77

B. Sour
e
ode listings

ist >> pos;

if (m_turnmode > 0)

{

double dist = m_absmode ? pos - m_cang : pos;

if (dist != 0)

{

int sign = (dist > 0) ? 1 : -1;

m_brkdist = CalcMoveBrakeDist(sign * m_speed);

}

}

else if (m_turnmode < 0)

{

double dist = m_absmode ? pos - m_cdis : pos;

if (dist != 0)

{

int sign = (dist > 0) ? 1 : -1;

m_brkdist = CalcRotateBrakeDist(sign * m_speed * turn_factor);

}

}

}

}

else if (flag == ’G’)

{

// recorded a GetParameter

string cmd = "get " + param;

m_win->PrintRight(cmd);

m_win->PrintRight(reply);

}

else if (flag == ’C’)

{

// recorded a SendCommand

m_win->PrintRight(param);

}

}

return true;

}

void GiraffMotor::Undock()

{

SetParameter("undock", -0.5);

}

void GiraffMotor::Home()

{

SendCommand("home");

}

void GiraffMotor::SetTilt(double angle)

{

SetParameter("tilt_angle_from_home", angle);

}

void GiraffMotor::GetBulkData()

{

GetParameter("bulk_data", BulkReply);

}

void GiraffMotor::SetMotion(double speed)

{

m_usrmotionspd = speed;

}

void GiraffMotor::SetTurn(double speed)

{

m_usrturnspd = speed;

}

bool GiraffMotor::InitPort()

{

#ifdef PORT_NAME

// Try to open the serial port that is

// connected to the motor control board.

78

B.2. Gira�Motor.
pp

m_port = CreateFile(PORT_NAME,

GENERIC_READ | GENERIC_WRITE,

0,

NULL,

OPEN_EXISTING,

0,

NULL);

if (m_port == INVALID_HANDLE_VALUE)

{

// Could not open real serial port,

// initialize simulator instead,

// so the rest of the program

// can still be used.

return InitSimulator();

}

// Get current serial port settings

DCB dcb;

memset(&dcb, 0, sizeof(dcb));

dcb.DCBlength = sizeof(dcb);

if (!GetCommState(m_port, &dcb))

{

// Could not get state from serial port

return false;

}

// Configure serial port

// Set 115200 bps, 8 data bits, no parity, 1 stop bit

dcb.BaudRate = CBR_115200;

dcb.ByteSize = 8;

dcb.Parity = NOPARITY;

dcb.StopBits = ONESTOPBIT;

// Set event char to the end of line character,

// so that we can use WaitCommEvent to wait

// for the arrival of a complete line

dcb.EvtChar = ’\n’;

if (!SetCommState(m_port, &dcb))

{

// Could not configure serial port

return false;

}

// Set the events that WaitCommEvent should wait for.

if (!SetCommMask(m_port, EV_ERR | EV_RXFLAG))

{

// Could not configure serial port

return false;

}

// Set appropriate timeouts to make sure ReadFile

// always returns immediately without waiting

// (possibly returning an error if no data is

// available). This is necessary since we

// don’t know in advance how long a reply is

// going to be. So if we need to wait for one,

// we’d rather use WaitCommEvent, then use

// ReadFile to read whatever we got, without

// waiting any longer than that.

COMMTIMEOUTS tos;

tos.ReadIntervalTimeout = MAXDWORD;

tos.ReadTotalTimeoutMultiplier = 0;

tos.ReadTotalTimeoutConstant = 0;

tos.WriteTotalTimeoutMultiplier = 0;

tos.WriteTotalTimeoutConstant = 0;

if (!SetCommTimeouts(m_port, &tos))

{

// Could not configure serial port

return false;

}

return true;

#else

// No serial port, initialize simulator

return InitSimulator();

#endif

}

79

B. Sour
e
ode listings

bool GiraffMotor::InitSimulator()

{

m_sim = new GiraffMotorSim(this);

return true;

}

void GiraffMotor::WaitForLine()

{

if (!m_port)

{

return;

}

DWORD mask = 0;

// There’s a risk that this could wait forever

// if the motor board is failing, perhaps we

// should use the overlapped I/O mode so that

// we can limit the waiting time.

WaitCommEvent(m_port, &mask, NULL);

}

bool GiraffMotor::ReadLine(string& line,

ReplyType type,

bool silent)

{

// see if there’s already a complete line in the buffer

if (!m_bufchecked &&

!m_readbuf.empty())

{

size_t n = m_readbuf.find(’\n’);

if (n != string::npos)

{

// found one, return it

n++; // end line after the \n

line = m_readbuf.substr(0, n);

m_readbuf.erase(0, n);

if (!silent)

{

m_win->PrintRight(FormatReply(line, type));

}

return true;

}

else

{

m_bufchecked = true;

}

}

// no such luck, try to read more from the serial port

char buf[256];

DWORD bytesRead;

if (!m_port ||

!ReadFile(m_port, buf, sizeof(buf), &bytesRead, NULL))

{

// read failure

return false;

}

// read successful, see if we now have a complete line

char* eol = (char*)memchr(buf, ’\n’, bytesRead);

if (eol)

{

// we have one, return it

eol++; // end line after the \n

line = m_readbuf;

line.append(buf, eol-buf);

// store remainder of buffer for later

m_readbuf.assign(eol, buf+bytesRead-eol);

m_bufchecked = false;

if (!silent)

{

m_win->PrintRight(FormatReply(line, type));

}

return true;

}

80

B.2. Gira�Motor.
pp

else

{

// incomplete line, store buffer for later

m_readbuf.append(buf, bytesRead);

m_bufchecked = true;

return false;

}

}

bool GiraffMotor::ReadReply(string& reply,

ReplyType type,

bool silent)

{

string line1, line2;

if (type != NoReply)

{

while (!ReadLine(line1, type, silent))

{

WaitForLine();

}

}

#ifndef SHOW_PROMPT

silent = true;

#endif // SHOW_PROMPT

while (!ReadLine(line2, NoReply, silent))

{

WaitForLine();

}

// Remove the \r\n from the reply.

reply = line1.substr(0, line1.length()-2);

// Ignore line2 for now, it is always supposed

// to be "OK >\r\n", and in the event that it isn’t,

// I’m not yet sure what to do about it.

return true;

}

void GiraffMotor::AddReply(const string& reply)

{

m_readbuf += reply;

m_bufchecked = false;

}

string GiraffMotor::WriteCommand(const string& out,

ReplyType type,

char flag,

bool silent)

{

string reply;

if (!silent)

{

m_win->PrintRight(out);

}

if (m_sim)

{

m_sim->SimulateCommand(out);

ReadReply(reply, type, silent);

return reply;

}

DWORD written = 0;

if (!m_port ||

!WriteFile(m_port, out.data(), out.length(),

&written, NULL) ||

written != out.length() ||

!ReadReply(reply, type, silent))

{

return string();

}

return reply;

}

bool GiraffMotor::SendCommand(const string& cmd,

bool silent)

81

B. Sour
e
ode listings

{

string reply;

reply = WriteCommand(cmd + "\r", NoReply, ’C’, silent);

RecordParameter(cmd, reply, "", NoReply, ’C’);

return true;

}

string GiraffMotor::GetParameter(const string& param,

ReplyType type,

bool silent)

{

string reply;

char flag = silent ? ’ ’ : ’G’;

ostringstream ost;

ost << "get " << param << "\r";

reply = WriteCommand(ost.str(), type,

flag, silent);

RecordParameter(param, reply, "", type, flag);

return reply;

}

string GiraffMotor::SetParameter(const string& param,

double value,

bool silent)

{

string valstr, reply;

ostringstream ost;

ost << value;

valstr = ost.str();

reply = WriteCommand("set " + param +

" " + valstr + "\r", SimpleReply,

’S’, silent);

RecordParameter(param, reply, valstr, SimpleReply, ’S’);

return reply;

}

bool GiraffMotor::SendUserCommand(const string& cmd)

{

string reply;

if (cmd.compare(0, 4, "get ") == 0)

{

if (cmd == "get bulk_data")

{

reply = WriteCommand(cmd + "\r", BulkReply, ’G’, false);

RecordParameter(cmd.substr(4), reply,

"", BulkReply, ’G’);

}

else

{

reply = WriteCommand(cmd + "\r", SimpleReply, ’G’, false);

RecordParameter(cmd.substr(4), reply,

"", SimpleReply, ’G’);

}

}

else if (cmd.compare(0, 4, "set ") == 0)

{

size_t n = cmd.find(’ ’, 4);

reply = WriteCommand(cmd + "\r", SimpleReply, ’S’, false);

if (n != string::npos)

{

RecordParameter(cmd.substr(4, n-4), reply,

cmd.substr(n+1), SimpleReply, ’S’);

}

else

{

RecordParameter(cmd.substr(4), reply,

"", SimpleReply, ’S’);

}

}

else

{

reply = WriteCommand(cmd + "\r", NoReply, ’C’, false);

82

B.2. Gira�Motor.
pp

RecordParameter(cmd, reply, "", NoReply, ’C’);

}

return true;

}

bool GiraffMotor::ReadVersion()

{

string line;

// read initial line

while (!ReadLine(line))

{

WaitForLine();

}

if (line.at(0) != ’#’)

{

// Seems the controller might send an extra line

// (saying "Ca>") before it sends the version

// line. If this happens, try reading again.

while (!ReadLine(line))

{

WaitForLine();

}

}

if (line.at(0) != ’#’)

{

// If we still haven’t got a version, give up.

return false;

}

// We have the version line, wait for OK line.

if (!ReadReply(line, NoReply))

{

return false;

}

// All done.

return true;

}

string GiraffMotor::FormatReply(const string& reply,

ReplyType type)

{

istringstream ist(reply);

ostringstream ost;

ost << setfill(’0’) << setprecision(5) << fixed;

if (type == BulkReply)

{

// Format bulk_data, which is a comma-separated

// list of variables, where the name is separated

// from the value by a colon.

int next = ist.get();

while (next != EOF)

{

// copy names and commas verbatim

ost.put(next);

if (next == ’:’)

{

// convert value

FormatField(ost, ist);

}

next = ist.get();

}

}

else if (type == SimpleReply)

{

// Format a normal single-value reply.

FormatField(ost, ist);

}

else

{

// copy reply verbatim

int next = ist.get();

while (next != EOF)

{

83

B. Sour
e
ode listings

ost.put(next);

next = ist.get();

}

}

return ost.str();

}

void GiraffMotor::FormatField(ostream& ost,

istream& ist)

{

int next = ist.peek();

char ch;

unsigned u;

switch (next)

{

case ’I’:

// hex-encoded 32-bit integer

ist.get(ch); // ’I’

ist.get(ch); // ’*’

ist >> hex >> u;

ost << ToInt(u);

break;

case ’F’:

// hex-encoded 32-bit floating point

ist.get(ch); // ’F’

ist.get(ch); // ’*’

ist >> hex >> u;

ost << ToFloat(u);

break;

default:

// assume ASCII-encoded floating point,

// copy unmodified

while (next != EOF &&

next != ’\r’ &&

next != ’,’)

{

ch = ist.get();

ost.put(ch);

next = ist.peek();

}

break;

}

}

unsigned GiraffMotor::ToInt(unsigned u)

{

union {

unsigned val;

unsigned char d[4];

} v;

// convert byte order

v.d[0] = u >> 24;

v.d[1] = u >> 16;

v.d[2] = u >> 8;

v.d[3] = u;

return v.val;

}

float GiraffMotor::ToFloat(unsigned u)

{

union {

float val;

unsigned char d[4];

} v;

// convert byte order

v.d[0] = u >> 24;

v.d[1] = u >> 16;

v.d[2] = u >> 8;

v.d[3] = u;

return v.val;

}

84

B.2. Gira�Motor.
pp

unsigned GiraffMotor::ToInt(const string& data)

{

istringstream ist(data);

char ch;

unsigned u, i;

switch (ist.peek())

{

case ’I’:

// hex-encoded 32-bit integer

ist.get(ch); // ’I’

ist.get(ch); // ’*’

ist >> hex >> i;

u = ToInt(i);

break;

case ’F’:

// hex-encoded 32-bit floating point

// (wrong type for this routine,

// shouldn’t happen)

u = 0;

break;

default:

// assume ASCII-encoded integer

ist >> u;

break;

}

return u;

}

float GiraffMotor::ToFloat(const string& data)

{

istringstream ist(data);

char ch;

unsigned u;

float f;

switch (ist.peek())

{

case ’I’:

// hex-encoded 32-bit integer

ist.get(ch); // ’I’

ist.get(ch); // ’*’

ist >> hex >> u;

f = ToInt(u);

break;

case ’F’:

// hex-encoded 32-bit floating point

ist.get(ch); // ’F’

ist.get(ch); // ’*’

ist >> hex >> u;

f = ToFloat(u);

break;

default:

// assume ASCII-encoded floating point

ist >> f;

break;

}

return f;

}

void GiraffMotor::ParseBulkData(const string& data)

{

// save previous state

m_lcang = m_cang;

m_lcdis = m_cdis;

m_lgvr = m_gvr;

m_lcvg = m_cvg;

m_lmode = m_cmode;

m_lstamp = m_cstamp;

// estimate time delta for new state

LARGE_INTEGER current;

85

B. Sour
e
ode listings

QueryPerformanceCounter(¤t);

m_cstamp = current.QuadPart;

if (m_not_first)

{

if (m_cstamp == m_lstamp)

{

// if no time has passed since last update

// for some reason, do not update state yet,

// as doing so could cause problems later

// (should never happen, but just in case)

m_timedelta = 0;

return;

}

m_timedelta = (double)(m_cstamp - m_lstamp) / m_freq;

}

else

{

m_timedelta = 0;

m_not_first = true;

}

// iterate through each name:value combination

size_t cur_pos = 0;

while (cur_pos < data.length())

{

// get the name

size_t colon = data.find(’:’, cur_pos);

if (colon == string::npos)

{

// not a valid entry, abort

break;

}

string name = data.substr(cur_pos, colon-cur_pos);

// get the value

size_t comma = data.find(’,’, colon+1);

if (comma != string::npos)

{

// comma found, more entries follow

cur_pos = comma+1;

}

else

{

// no more commas, this is the last entry

cur_pos = data.length();

comma = data.length();

}

string value = data.substr(colon+1, comma-colon-1);

// parse the entry

if (name == "cang")

{

m_cang = -ToFloat(value);

}

else if (name == "cdis")

{

m_cdis = ToFloat(value);

}

else if (name == "gvr")

{

m_gvr = ToFloat(value);

}

else if (name == "cvg")

{

m_cvg = ToFloat(value);

}

else if (name == "mode")

{

m_cmode = ToInt(value);

}

}

}

void GiraffMotor::RunMotor()

86

B.2. Gira�Motor.
pp

{

UpdatePosition();

if (m_turnmode > 0 && m_brkdist != 0)

{

// Motor is currently moving...

if (m_usrmotionspd == 0)

{

// ...and we’re waiting for it to stop...

if (m_cmode & MODE_MOVING)

{

// ...and it hasn’t stopped yet.

// Calculate braking distance from current speed,

// plus 0.01s "reaction time" for sending

// commands to the controller.

double brake_dist = CalcMoveBrakeDist(m_curspd) +

m_curspd * 0.01;

if ((m_nextdis > 0 &&

m_nextpos > (m_cdis + brake_dist)) ||

(m_nextdis < 0 &&

m_nextpos < (m_cdis + brake_dist)))

{

// The last command asked the controller

// to move too far. Preempt last command

// to make it stop ASAP.

CalcMoveStep(brake_dist);

SetParameter("p", m_nextpos);

}

return;

}

else

{

// ...and it has stopped.

m_brkdist = 0;

}

}

else

{

// ...and we want it to keep moving.

if (m_nextdis == 0 ||

m_usrmotionspd != m_curmotionspd ||

m_usrturnspd != m_curturnspd)

{

// Got new command from user.

CalcMove();

}

else if ((m_nextdis > 0 &&

m_nextpos < m_cdis + 2*m_brkdist) ||

(m_nextdis < 0 &&

m_nextpos > m_cdis + 2*m_brkdist))

{

// Renew move command to keep moving.

CalcMoveStep(AHEAD_FACTOR*m_brkdist);

}

else

{

return;

}

SetParameter("cdp", m_gearpos);

SetParameter("vgr", m_gearrate);

SetParameter("vg", m_gear);

SetParameter("p", m_nextpos);

return;

}

}

else if (m_turnmode < 0 && m_brkdist != 0)

{

// Motor is currently turning in place...

if (m_usrturnspd == 0 ||

m_usrmotionspd != 0)

{

// ...and we’re waiting for it to stop.

87

B. Sour
e
ode listings

if (m_cmode & MODE_MOVING)

{

// ...and it hasn’t stopped yet.

// Calculate braking distance from current speed,

// plus 0.01s "reaction time" for sending

// commands to the controller.

double brake_dist = CalcRotateBrakeDist(m_currot) +

m_currot * 0.01;

if ((m_nextdis > 0 &&

m_nextpos > (m_cang + brake_dist)) ||

(m_nextdis < 0 &&

m_nextpos < (m_cang + brake_dist)))

{

// The last command asked the controller

// to move too far. Preempt last command

// to make it stop ASAP.

CalcRotateStep(brake_dist);

SetParameter("p", m_nextpos);

}

return;

}

else

{

// The motor has stopped.

m_brkdist = 0;

}

}

else

{

// ...and we want it to keep turning.

if (m_nextdis == 0 ||

m_usrturnspd != m_curturnspd)

{

// Got new command from user.

CalcRotate();

}

else if ((m_nextdis > 0 &&

(m_nextpos - (m_cang + 2*m_brkdist)) < 0) ||

(m_nextdis < 0 &&

(m_nextpos - (m_cang + 2*m_brkdist)) > 0))

{

// Renew turn command to keep moving.

CalcRotateStep(AHEAD_FACTOR*m_brkdist);

}

else

{

return;

}

SetParameter("p", m_nextpos);

return;

}

}

// If we get here, then the motor is idle.

if (m_usrmotionspd != 0)

{

// Request to move.

CalcMove();

SetParameter("r", 1000);

SetParameter("mode", m_absmode);

SetParameter("a", m_accel);

SetParameter("v", m_speed);

SetParameter("cdp", m_gearpos);

SetParameter("vgr", m_gearrate);

SetParameter("vg", m_gear);

SetParameter("p", m_nextpos);

}

else if (m_usrturnspd != 0)

{

// Request to turn in place.

CalcRotate();

88

B.2. Gira�Motor.
pp

SetParameter("r", 0);

SetParameter("mode", m_absmode);

SetParameter("a", m_accel);

SetParameter("v", m_speed);

SetParameter("p", m_nextpos);

}

}

void GiraffMotor::CalcMove()

{

m_curmotionspd = m_usrmotionspd;

m_curturnspd = m_usrturnspd;

// Set wheel speed

m_speed = fabs(m_curmotionspd);

if (m_speed == 0 || m_curturnspd == 0)

{

// Moving straight ahead.

m_gear = 0;

// Due to bugs in the motor controller,

// just suddenly telling the controller to

// take the gear ratio to zero using "cdp"

// is problematic (the gear ratio jumps

// and causes the motor to turn faster for

// a while). Setting "vg" to zero makes no

// appreciable difference. Setting "vgr" to

// zero forces the ratio to zero instantenously,

// with a horrible jerk that’s probably not

// good for the motors.

m_gearrate = 0;

}

else

{

// Calculate the virtual gear ratio needed to

// turn with the requested angular speed,

// if we’ll also be traveling forward

// at the requrested overall speed.

m_gear = m_curturnspd / (m_speed * turn_factor);

if (m_gear < 0)

{

m_gearrate = -m_vgaccel;

}

else if (m_gear > 0)

{

m_gearrate = m_vgaccel;

}

else

{

m_gearrate = 0;

}

}

// Calculate braking distance.

m_brkdist = CalcMoveBrakeDist(m_curmotionspd);

// Initiate motion.

m_turnmode = 1;

#ifdef USE_ABSOLUTE_MODE

m_absmode = MODE_ABSOLUTE;

#else

m_absmode = 0;

#endif // USE_ABSOLUTE_MODE

CalcMoveStep(AHEAD_FACTOR*m_brkdist);

}

double GiraffMotor::CalcMoveBrakeDist(double spd)

{

double brake_time = fabs(spd) / m_accel;

return spd * brake_time / 2;

}

void GiraffMotor::CalcMoveStep(double dis)

89

B. Sour
e
ode listings

{

m_nextdis = dis;

if (m_absmode)

{

m_nextpos = m_cdis + m_nextdis;

}

else

{

m_nextpos = m_nextdis;

m_cdis = 0;

}

#if 0

if (m_gear != 0)

{

m_gearpos = m_nextpos;

}

else

{

//m_gearpos = m_cdis + m_curspd * 0.1;

}

#else

m_gearpos = m_nextpos;

#endif

}

void GiraffMotor::CalcRotate()

{

m_curmotionspd = m_usrmotionspd;

m_curturnspd = m_usrturnspd;

// Calculate wheel speed.

m_speed = fabs(m_curturnspd) / turn_factor;

// Calculate braking distance.

m_brkdist = CalcRotateBrakeDist(m_curturnspd);

// Initiate motion.

m_turnmode = -1;

#ifdef USE_ABSOLUTE_MODE

m_absmode = MODE_ABSOLUTE;

#else

m_absmode = 0;

#endif // USE_ABSOLUTE_MODE

CalcRotateStep(AHEAD_FACTOR*m_brkdist);

}

double GiraffMotor::CalcRotateBrakeDist(double rot)

{

double brake_time = fabs(rot) / (m_accel * turn_factor);

return rot * brake_time / 2;

}

void GiraffMotor::CalcRotateStep(double ang)

{

m_nextdis = ang;

if (m_absmode)

{

m_nextpos = m_cang + m_nextdis;

}

else

{

m_nextpos = m_nextdis;

m_cang = 0;

}

}

void GiraffMotor::UpdatePosition()

{

if (m_turnmode == 0 ||

m_brkdist == 0)

{

// standing still

return;

}

90

B.2. Gira�Motor.
pp

if (m_turnmode < 0)

{

// turning in place

double turndelta = m_cang - m_lcang;

m_currot = -m_gvr;

m_curdir += turndelta;

return;

}

if (m_timedelta == 0)

{

// no time has passed since last update

return;

}

// moving in a straight or curved line

double distdelta = m_cdis - m_lcdis;

#ifdef GVR_IS_LEFT

if (m_cvg == 0)

{

// straight ahead

m_curspd = m_gvr;

}

else if (m_cvg != 1)

{

// if gvr is the speed of the left wheel,

// calculate the overall speed given the

// current gear ratio

m_curspd = m_gvr * (1 - m_cvg);

}

else

{

// ideally we should never let the gear

// ratio become as large as 1 or -1,

// but if it happens, make an estimate

m_curspd = distdelta / m_timedelta;

}

#else

m_curspd = m_gvr;

#endif // GVR_IS_LEFT

m_currot = m_cvg * turn_factor;

// In principle, we should use integration techniques

// to calculate the current position, given the motor

// feedback and the known behaviour of our commands,

// including the expected motion envelope.

// However, even then the results would probably not

// match physical reality very well, so these

// approximations are probably good enough, as long

// as the motor state is updated often enough.

double avgvg = (m_cvg + m_lcvg) / 2;

double avgrot = avgvg * turn_factor;

double turndelta = avgrot * distdelta;

double avgdir = m_curdir + (turndelta / 2);

m_curdir += turndelta;

m_curx += distdelta * cos(avgdir * M_PI / 180);

m_cury += distdelta * sin(avgdir * M_PI / 180);

}

void GiraffMotor::ShowPosition()

{

ostringstream ost;

ost << fixed << setprecision(2)

<< internal << setfill(’0’);

ost << "X=" << setw(6) << m_curx

<< ",Y=" << setw(6) << m_cury

<< ",H=" << setw(6) << fix_degrees(m_curdir);

m_win->SetPositionInfo(ost.str());

}

91

B. Sour
e
ode listings

const double GiraffMotorSim::turn_factor = TURN_FACTOR;

// The standard tilt angle returned to when homing the head.

const double GiraffMotorSim::default_tilt = 0.0872664;

GiraffMotorSim::GiraffMotorSim(GiraffMotor* ctl) :

m_ctl(ctl), m_bufcount(0),

m_homing(0), m_tilt(default_tilt),

m_cang(0.0), m_cdis(0.0), m_cvg(0.0),

m_vang(0.0), m_vdis(0.0), m_gvr(0.0),

m_startc(0), m_stopc(0),

m_updc(0), m_downdc(0),

m_startdv(0.0), m_peakdv(0.0), m_rampda(0.0),

m_refdp(0.0), m_updp(0.0), m_downdp(0.0), m_stopdp(0.0),

m_refap(0.0), m_upap(0.0), m_downap(0.0), m_stopap(0.0),

m_upgc(0), m_downgc(0), m_stopgc(0),

m_startgr(0.0), m_peakgr(0.0), m_rupgr(0.0), m_rdowngr(0.0),

m_stopgr(0.0), m_downgd(0.0)

{

// clear states

memset(&m_buf, 0, sizeof(m_buf));

// set defaults

m_buf[0].v = 0.6; // 0.6 m/s

m_buf[0].a = 0.6; // 0.6 m/s^2

m_buf[0].vg = 1;

m_buf[0].vgr = 0.4; // FIXME, what’s the actual default?

// get timer frequency

LARGE_INTEGER freq;

QueryPerformanceFrequency(&freq);

m_freq = freq.QuadPart;

// signal readiness

SimulateReply("# Giraf Simulator");

}

GiraffMotorSim::~GiraffMotorSim()

{

}

void GiraffMotorSim::StartStraight(double dist,

double start_pos,

double start_spd,

double cdp,

double start_vg)

{

Move& cur = m_buf[0];

if (cur.mode & MODE_ABSOLUTE)

{

dist -= start_pos;

cdp -= start_pos;

}

else

{

start_pos = 0;

m_cdis = 0;

m_cang = 0;

}

if (start_spd == 0)

{

// when starting from a full stop, assume the initial

// virtual gear ratio to be zero

start_vg = 0;

}

// Get the sign of the desired motion here,

// so we can calculate the motion profile

// using positive numbers, then apply the

// proper sign afterwards.

// (Interpret dist == 0 as "stop ASAP",

// taking sign from current velocity instead.)

int sign = (dist != 0) ?

((dist >= 0) ? 1 : -1) :

((start_spd >= 0) ? 1 : -1);

// but let start_speed be negative if we’re

// initially moving in the wrong direction.

92

B.2. Gira�Motor.
pp

double start_speed = sign * start_spd;

double total_dist = fabs(dist);

double peak_speed = cur.v;

double accel = cur.a;

double ramp_up_time = (peak_speed - start_speed) / accel;

double ramp_up_dist = (peak_speed + start_speed) * ramp_up_time / 2;

double ramp_down_time = peak_speed / accel;

double ramp_down_dist = peak_speed * ramp_down_time / 2;

double cruise_dist = total_dist - ramp_up_dist - ramp_down_dist;

double cruise_time = cruise_dist / peak_speed;

bool overshoot = false;

if (cruise_dist < 0)

{

// Short move, won’t get to maximum speed.

// In case we’re already moving, calculate the

// ramp-up distance we would have needed to get

// up to the current velocity from standing still.

double prev_dist = start_speed * start_speed / accel / 2;

// Since the total ramp-up and ramp-down must

// be of equal lengths, find how long the ramps

// must be to cover the required distance

ramp_down_dist = (prev_dist + total_dist) / 2;

if (ramp_down_dist >= total_dist &&

start_speed >= 0)

{

// Current speed is too high to stop within

// the specified distance.

#ifdef SIM_OVERSHOOT_FIX

// We’ll try to stop as soon as possible

// and reverse back. Find how long the ramps

// need to be in this case. Also invert

// signs since we want to reverse.

ramp_down_dist = (total_dist - prev_dist) / 2;

accel = -accel;

// The ramp-up includes the reversal of direction.

peak_speed = -sqrt(2*accel*ramp_down_dist);

ramp_up_dist = total_dist - ramp_down_dist;

ramp_up_time = (peak_speed - start_speed) / accel;

ramp_down_time = peak_speed / accel;

#else

// Alternatively, just stop as soon as possible,

// don’t bother to reverse back.

peak_speed = start_speed;

ramp_up_dist = 0;

ramp_up_time = 0;

ramp_down_dist = prev_dist;

ramp_down_time = peak_speed / accel;

overshoot = true;

#endif // SIM_OVERSHOOT_FIX

}

else

{

// If start_speed is negative, the ramp-up

// will include the reversal of direction.

peak_speed = sqrt(2*accel*ramp_down_dist);

ramp_up_dist = total_dist - ramp_down_dist;

ramp_up_time = (peak_speed - start_speed) / accel;

ramp_down_time = peak_speed / accel;

}

cruise_dist = 0;

cruise_time = 0;

}

// set velocities and accelerations

m_startdv = sign * start_speed;

m_peakdv = sign * peak_speed;

m_rampda = sign * accel;

// calculate timestamps for velocity envelope

double time_step = ramp_up_time;

m_startc = m_lastc;

m_updc = m_startc + time_step * m_freq;

time_step += cruise_time;

m_downdc = m_startc + time_step * m_freq;

93

B. Sour
e
ode listings

time_step += ramp_down_time;

m_stopc = m_startc + time_step * m_freq;

// calculate positions for velocity envelope

m_refdp = start_pos;

m_updp = sign * ramp_up_dist;

m_downdp = m_updp + sign * cruise_dist;

m_stopdp = (!overshoot) ? dist : (m_downdp + sign * ramp_down_dist);

// zero out angle envelope

m_upac = m_startc;

m_downac = m_stopc;

m_startav = 0;

m_peakav = 0;

m_rampaa = 0;

m_refap = 0; // m_cang?

m_upap = 0;

m_downap = 0;

m_stopap = 0;

// Calculate virtual gear ratio envelope

// (This calculates the "ideal" envelope, the way it’s

// documented. However, the real controller doesn’t seem

// to be quite as ideal, due to bugs.)

#ifdef SIM_CURVED

if ((cur.r >= 50 && cdp != 0 && cur.vg != 0) ||

start_vg != 0)

{

double ramp_down_start = ramp_up_time + cruise_time;

double total_time = ramp_down_start + ramp_down_time;

int vg_sign = (cur.vgr != 0) ?

((cur.vgr >= 0) ? 1 : -1) :

((start_vg >= 0) ? 1 : -1);

double vg_start = vg_sign * sign * start_vg;

double vg_peak = vg_sign * cur.vg;

double vg_accel = vg_sign * cur.vgr;

int vg_up_sign = 1, vg_down_sign = -1;

double vg_ramp_down_pos = sign * cdp;

if (vg_ramp_down_pos > total_dist)

{

vg_ramp_down_pos = total_dist;

}

double vg_ramp_up_dist;

if (vg_ramp_down_pos <= 0 ||

vg_peak == 0 ||

accel < 0)

{

// No ramp-up, start ramping down immediately.

vg_ramp_up_dist = 0;

vg_peak = vg_start;

vg_ramp_down_pos = 0;

}

else if (vg_peak < vg_start)

{

// Ramp-up is actually a ramp-down

// to a lower gear ratio.

vg_ramp_up_dist = (vg_start - vg_peak) / vg_accel;

vg_up_sign = -1;

}

else

{

// Normal ramp-up.

vg_ramp_up_dist = (vg_peak - vg_start) / vg_accel;

}

if (vg_ramp_up_dist > vg_ramp_down_pos)

{

// Short move, won’t get to maximum gear ratio.

// Calculate how far we would get.

vg_ramp_up_dist = vg_ramp_down_pos;

vg_peak = vg_start + vg_up_sign * vg_ramp_down_pos * vg_accel;

}

// Calculate ramp-up time

double vg_ramp_up_time;

94

B.2. Gira�Motor.
pp

if (vg_ramp_up_dist > total_dist)

{

// won’t reach peak gear ratio in this move

vg_ramp_up_time = total_time;

vg_peak = vg_start + vg_up_sign * total_dist * vg_accel;

}

else

{

vg_ramp_up_time = TimeFromPosition(vg_ramp_up_dist,

ramp_up_time,

cruise_time,

ramp_down_time,

ramp_up_dist,

cruise_dist,

ramp_down_dist,

accel,

start_speed,

peak_speed);

}

// Calculate ramp-down start time

double vg_ramp_down_start;

vg_ramp_down_start = TimeFromPosition(vg_ramp_down_pos,

ramp_up_time,

cruise_time,

ramp_down_time,

ramp_up_dist,

cruise_dist,

ramp_down_dist,

accel,

start_speed,

peak_speed);

// Calculate ramp-down time

double vg_ramp_down_dist;

if (vg_peak < 0)

{

// Ramp-down is actually a ramp-up

// from a negative gear ratio.

vg_ramp_down_dist = -vg_peak / vg_accel;

vg_down_sign = 1;

}

else

{

// Normal ramp-down.

vg_ramp_down_dist = vg_peak / vg_accel;

}

double vg_stop = 0, vg_stop_pos;

vg_stop_pos = vg_ramp_down_pos + vg_ramp_down_dist;

double vg_ramp_down_time;

if (accel < 0)

{

// there’s a momentary stop during reversal

double prev_dist = total_dist - 2 * ramp_up_dist;

double stop_dist = vg_stop_pos - vg_ramp_down_pos;

if (prev_dist < stop_dist)

{

// force gear ratio to zero when we reverse

vg_ramp_down_dist = -prev_dist;

vg_ramp_down_time = -start_speed / accel;

vg_stop_pos = vg_ramp_down_pos + vg_ramp_down_dist;

}

else

{

// gear ratio reaches zero before the stop

double speed = sqrt(start_speed*start_speed +

2*accel*vg_ramp_down_dist);

vg_ramp_down_time = (speed - start_speed) / accel;

}

}

else if (vg_ramp_up_dist >= total_dist)

{

// won’t start ramp-down while moving

vg_ramp_down_dist = 0;

95

B. Sour
e
ode listings

vg_ramp_down_time = 0;

vg_stop_pos = total_dist;

}

else if (vg_stop_pos > total_dist)

{

// won’t reach zero gear ratio while moving

vg_ramp_down_dist = total_dist - vg_ramp_down_pos;

vg_ramp_down_time = total_time - vg_ramp_down_start;

vg_stop_pos = total_dist;

}

else

{

vg_ramp_down_time = TimeFromPosition(vg_stop_pos,

ramp_up_time,

cruise_time,

ramp_down_time,

ramp_up_dist,

cruise_dist,

ramp_down_dist,

accel,

start_speed,

peak_speed)

- vg_ramp_down_start;

}

// calculate timestamps for gear ratio envelope

double vg_ramp_stop = vg_ramp_down_start + vg_ramp_down_time;

m_upgc = m_startc + vg_ramp_up_time * m_freq;

m_downgc = m_startc + vg_ramp_down_start * m_freq;

m_stopgc = m_startc + vg_ramp_stop * m_freq;

// calculate gear ratios

m_startgr = start_vg;

m_peakgr = vg_sign * sign * vg_peak;

m_rupgr = vg_up_sign * vg_sign * sign * vg_accel;

m_rdowngr = vg_down_sign * vg_sign * sign * vg_accel;

m_stopgr = vg_sign * sign * vg_stop;

m_downgd = vg_ramp_down_pos;

}

else

#endif // SIM_CURVED

{

m_upgc = m_startc;

m_downgc = m_startc;

m_stopgc = m_startc;

m_startgr = 0;

m_peakgr = 0;

m_rupgr = 0;

m_rdowngr = 0;

m_stopgr = 0;

m_downgd = 0;

}

}

void GiraffMotorSim::StartRotate(double degrees,

double start_angle,

double start_spd)

{

Move& cur = m_buf[0];

if (cur.mode & MODE_ABSOLUTE)

{

degrees -= start_angle;

}

else

{

start_angle = 0;

m_cdis = 0;

m_cang = 0;

}

// Calculate the distance the wheels must travel.

double dist = degrees / turn_factor;

// The wheels accelerate using the same parameters

// as in a straight-line move. Calculate motion.

96

B.2. Gira�Motor.
pp

StartStraight(dist, 0, start_spd / turn_factor, 0, 0);

if (cur.r < 0)

{

// If r is negative, the motion don’t seem to

// get converted back to angles, but are reported

// to the app as distances traveled by the wheels.

return;

}

bool overshoot = (m_stopdp != dist);

// Convert calculated positions to angles.

m_upac = m_updc;

m_downac = m_downdc;

m_startav = m_startdv * turn_factor;

m_peakav = m_peakdv * turn_factor;

m_rampaa = m_rampda * turn_factor;

m_refap = start_angle;

m_upap = m_updp * turn_factor;

m_downap = m_downdp * turn_factor;

m_stopap = (!overshoot) ? degrees : (m_stopdp * turn_factor);

// Clear positions and velocities,

// since we’re staying in place.

m_updc = m_startc;

m_downdc = m_stopc;

m_startdv = 0;

m_peakdv = 0;

m_rampda = 0;

m_refdp = 0; // m_cdis?

m_updp = 0;

m_downdp = 0;

m_stopdp = 0;

}

double GiraffMotorSim::TimeFromPosition(double pos,

double ramp_up_time,

double cruise_time,

double ramp_down_time,

double ramp_up_dist,

double cruise_dist,

double ramp_down_dist,

double accel,

double start_speed,

double peak_speed)

{

double cruise_start = ramp_up_time;

double ramp_down_start = cruise_start + cruise_time;

double total_time = ramp_down_start + ramp_down_time;

double cruise_pos = ramp_up_dist;

double ramp_down_pos = cruise_pos + cruise_dist;

double stop_pos = ramp_down_pos + ramp_down_dist;

if (pos <= 0)

{

// immediately

return 0;

}

else if (pos < cruise_pos)

{

// during ramp-up

double dist = pos;

double speed = sqrt(start_speed*start_speed +

2*accel*dist);

return (speed - start_speed) / accel;

}

else if (pos < ramp_down_pos)

{

// during cruise

double dist = pos - cruise_pos;

return cruise_start + dist / peak_speed;

}

else if (pos < stop_pos)

{

// during ramp-down

double dist = pos - ramp_down_pos;

97

B. Sour
e
ode listings

double speed = sqrt(peak_speed*peak_speed -

2*accel*dist);

return ramp_down_start + (peak_speed - speed) / accel;

}

else

{

// never

return total_time;

}

}

void GiraffMotorSim::UpdateMotion()

{

LARGE_INTEGER current;

QueryPerformanceCounter(¤t);

LONGLONG now = current.QuadPart;

while (m_bufcount != 0)

{

if (now >= m_stopc)

{

// Move complete.

m_cdis = m_refdp + m_stopdp;

m_cang = m_refap + m_stopap;

m_cvg = m_stopgr;

m_vdis = 0;

m_vang = 0;

m_gvr = 0;

m_lastc = m_stopc;

EndMotion();

continue;

}

// Interpolate distance part of profile

if (now >= m_downdc)

{

// ramping down.

double time_delta = (double)(now - m_downdc) / m_freq;

double velocity = m_peakdv - m_rampda * time_delta;

double dist = (m_peakdv + velocity) * time_delta / 2;

m_cdis = m_refdp + m_downdp + dist;

m_vdis = velocity;

}

else if (now >= m_updc)

{

// cruising.

double time_delta = (double)(now - m_updc) / m_freq;

double velocity = m_peakdv;

double dist = m_peakdv * time_delta;

m_cdis = m_refdp + m_updp + dist;

m_vdis = velocity;

}

else

{

// ramping up.

double time_delta = (double)(now - m_startc) / m_freq;

double velocity = m_startdv + m_rampda * time_delta;

double dist = (m_startdv + velocity) * time_delta / 2;

m_cdis = m_refdp + dist;

m_vdis = velocity;

}

// Interpolate gear ratio part of profile

if (now >= m_stopgc)

{

m_cvg = m_stopgr;

}

else if (now >= m_downgc)

{

// ramping down.

double dist_delta = abs(m_cdis - m_refdp) - m_downgd;

m_cvg = m_peakgr + m_rdowngr * dist_delta;

}

else if (now >= m_upgc)

{

98

B.2. Gira�Motor.
pp

// cruising.

m_cvg = m_peakgr;

}

else

{

// ramping up.

double dist_delta = abs(m_cdis - m_refdp);

m_cvg = m_startgr + m_rupgr * dist_delta;

}

// Interpolate angular part of profile

if (now >= m_downac)

{

// ramping down.

double time_delta = (double)(now - m_downac) / m_freq;

double velocity = m_peakav - m_rampaa * time_delta;

double dist = (m_peakav + velocity) * time_delta / 2;

m_cang = m_refap + m_downap + dist;

m_vang = velocity;

}

else if (now >= m_upac)

{

// cruising.

double time_delta = (double)(now - m_upac) / m_freq;

double velocity = m_peakav;

double dist = m_peakav * time_delta;

m_cang = m_refap + m_upap + dist;

m_vang = velocity;

}

else

{

// ramping up.

double time_delta = (double)(now - m_startc) / m_freq;

double velocity = m_startav + m_rampaa * time_delta;

double dist = (m_startav + velocity) * time_delta / 2;

m_cang = m_refap + dist;

m_vang = velocity;

}

if (m_buf[0].r != 0)

{

#ifdef GVR_IS_LEFT

m_gvr = m_vdis / (1 - m_cvg);

#else

m_gvr = m_vdis;

#endif // GVR_IS_LEFT

}

else

{

m_gvr = -m_vang;

}

break;

}

m_lastc = now;

}

void GiraffMotorSim::StartMotion()

{

if (m_bufcount == 0)

{

// nothing to do

return;

}

Move& cur = m_buf[0];

if (cur.mode & MODE_MOVING)

{

// already started

return;

}

cur.mode |= MODE_MOVING;

if (cur.r > 0)

{

StartStraight(cur.p, m_cdis, m_vdis,

99

B. Sour
e
ode listings

cur.cdp, m_cvg);

}

else

{

StartRotate(cur.p, m_cang, m_vang);

}

}

void GiraffMotorSim::EndMotion()

{

unsigned n;

if (m_bufcount == 0)

{

// nothing to do

return;

}

// shift next requests into place,

// replacing completed request

for (n=0; n<m_bufcount; n++)

{

m_buf[n] = m_buf[n+1];

}

m_bufcount--;

// start next request, if any

StartMotion();

}

bool GiraffMotorSim::QueueMotion()

{

if (m_bufcount >= GIRAFF_BUFFERS)

{

// out of buffers

return false;

}

unsigned mask = MODE_ABSOLUTE;

unsigned mode = m_buf[m_bufcount].mode;

m_buf[m_bufcount].mode = mode & mask;

if ((m_bufcount == 0) ||

(mode & MODE_BUFFERED))

{

// initial state for next request

m_buf[m_bufcount+1] = m_buf[m_bufcount];

// start current request

m_bufcount++;

}

else

{

// remove buffered requests

if (m_bufcount > 1)

{

// initial state for next request

m_buf[1] = m_buf[m_bufcount];

m_bufcount = 1;

}

// preempt current move

m_buf[0] = m_buf[m_bufcount];

}

// start sequence

StartMotion();

return true;

}

bool GiraffMotorSim::QueueUndock(double dist)

{

if (m_bufcount >= GIRAFF_BUFFERS-1)

{

// out of buffers

return false;

}

// initial state for next request

m_buf[m_bufcount+1] = m_buf[m_bufcount];

m_buf[m_bufcount+2] = m_buf[m_bufcount];

100

B.2. Gira�Motor.
pp

// request reversing (in straight line)

m_buf[m_bufcount].mode = 0;

m_buf[m_bufcount].r = 1;

m_buf[m_bufcount].p = -dist;

m_buf[m_bufcount].vg = 0;

m_buf[m_bufcount].vgr = 0;

m_buf[m_bufcount].cdp = 0;

m_bufcount++;

// request rotating in-place

m_buf[m_bufcount].mode = 0;

m_buf[m_bufcount].r = 0;

m_buf[m_bufcount].p = 180;

m_buf[m_bufcount].vg = 0;

m_buf[m_bufcount].vgr = 0;

m_buf[m_bufcount].cdp = 0;

m_bufcount++;

// start sequence

StartMotion();

return true;

}

void GiraffMotorSim::SimulateLag(unsigned bytes)

{

// Since the serial port is configured for

// 115200 bps, and each character takes 10 bits

// (1 start bit, 8 data bits, and 1 stop bit),

// it can only transfer 11520 characters/second.

// Since each command transfers something like

// 30-40 characters, this lag could affect timing

// by several milliseconds, so we’ll simulate it

// here, just in case.

// Calculate microsecond wait.

DWORD us = (bytes * 1000000) / 11520;

// Convert to milliseconds.

DWORD ms = us / 1000;

// Round up.

if ((us % 1000) >= 500)

{

ms++;

}

// Do the wait.

if (ms)

{

Sleep(ms);

}

}

void GiraffMotorSim::SimulateReply(const string& reply)

{

string out;

if (!reply.empty())

{

out = reply + "\r\nOK >\r\n";

}

else

{

out = "OK >\r\n";

}

// wait the milliseconds it would take to

// receive the reply (including the "OK" line)

SimulateLag(out.length());

// simulate the reply

m_ctl->AddReply(out);

}

void GiraffMotorSim::SimulateCommand(const string& cmd)

{

ostringstream rst;

istringstream ist(cmd);

string op;

// wait the milliseconds it would take to

101

B. Sour
e
ode listings

// transmit the command

//SimulateLag(cmd.length());

// update simulation state

UpdateMotion();

// set default reply format

rst << setfill(’0’) << setprecision(5) << fixed;

// parse command

ist >> op;

if (op == "set")

{

// parse Set command

Move& next = m_buf[m_bufcount];

string par;

ist >> par;

if (par == "v")

{

ist >> next.v;

Output(rst, next.v);

}

else if (par == "r")

{

ist >> next.r;

Output(rst, next.r);

}

else if (par == "a")

{

ist >> next.a;

Output(rst, next.a);

}

else if (par == "p")

{

ist >> next.p;

if (QueueMotion())

{

Output(rst, next.p);

}

else

{

rst << "ERROR: Queue rollover";

}

}

else if (par == "vg")

{

ist >> next.vg;

Output(rst, next.vg);

}

else if (par == "vgr")

{

ist >> next.vgr;

Output(rst, next.vgr);

}

else if (par == "cdp")

{

ist >> next.cdp;

Output(rst, next.cdp);

}

else if (par == "mode")

{

// Only the lower 4 bits can be set.

unsigned mask = 0xf;

unsigned mode;

ist >> mode;

next.mode = (next.mode & ~mask) |

(mode & mask);

Output(rst, next.mode);

}

else if (par == "undock")

{

double dist;

ist >> dist;

if (QueueUndock(dist))

102

B.2. Gira�Motor.
pp

{

Output(rst, dist);

}

else

{

rst << "ERROR: Queue rollover";

}

}

else if (par == "tilt_angle_from_home")

{

ist >> m_tilt;

Output(rst, m_tilt);

}

else

{

rst << "Unknown name: " << par;

}

}

else if (op == "get")

{

// parse Get command

Move& cur = m_buf[0];

Move& next = m_buf[m_bufcount];

string par;

ist >> par;

if (par == "v")

{

Output(rst, next.v);

}

else if (par == "r")

{

Output(rst, next.r);

}

else if (par == "a")

{

Output(rst, next.a);

}

else if (par == "p")

{

Output(rst, next.p);

}

else if (par == "vg")

{

Output(rst, next.vg);

}

else if (par == "vgr")

{

Output(rst, next.vgr);

}

else if (par == "cdp")

{

Output(rst, next.cdp);

}

else if (par == "cvg")

{

Output(rst, m_cvg);

}

else if (par == "mode")

{

unsigned c_mask = MODE_ESTOP | MODE_MOVING;

unsigned n_mask = MODE_ABSOLUTE;

unsigned mode = (cur.mode & c_mask) |

(next.mode & n_mask);

Output(rst, mode);

}

else if (par == "tilt_homing_state")

{

Output(rst, m_homing);

}

else if (par == "tilt_angle_from_home")

{

Output(rst, m_tilt);

103

B. Sour
e
ode listings

}

else if (par == "but0")

{

rst << "0";

}

else if (par == "but1")

{

rst << "0";

}

else if (par == "dial")

{

rst << "0";

}

else if (par == "button_data")

{

rst << "but0:0,but1:0,dial:0";

}

else if (par == "bulk_data")

{

rst << "cang:";

Output(rst, -m_cang);

rst << ",cdis:";

Output(rst, m_cdis);

rst << ",gvr:";

Output(rst, m_gvr);

// << ",tilt_angle_from_home:" << m_tilt

// << ",imdl:0"

// << ",imdr:0"

rst << ",cvg:";

Output(rst, m_cvg);

rst << ",mode:";

Output(rst, cur.mode);

}

else

{

rst << "Unknown name: " << par;

}

}

else if (op == "home")

{

// no reply

}

else

{

rst << "Unknown name: " << op;

}

SimulateReply(rst.str());

}

void GiraffMotorSim::Output(ostream& out, double val)

{

#if 1

// The controller seems to send floats using a hex

// encoding of the binary representation of a 32-bit

// floating-point register. Reproduce it here.

union {

float val;

unsigned char d[4];

} v;

v.val = val;

out << "F*" << hex;

for (unsigned n=0; n<4; n++)

{

unsigned u = v.d[n];

out << setw(2) << u;

}

#else

out << val;

#endif

}

void GiraffMotorSim::Output(ostream& out, unsigned val)

104

B.3. Gira�Camera.hpp

{

#if 1

// The controller seems to send integers using a hex

// encoding that has the least-significant byte first.

// Reproduce it here.

union {

unsigned val;

unsigned char d[4];

} v;

v.val = val;

out << "I*" << hex;

for (unsigned n=0; n<4; n++)

{

unsigned u = v.d[n];

out << setw(2) << u;

}

#else

out << val;

#endif

}

B.3. Gira�Camera.hpp

#ifndef GIRAFFCAMERA_HPP

#define GIRAFFCAMERA_HPP

#include "DisplayWindow.hpp"

#include <opencv2/highgui/highgui.hpp>

#define CAM_REC_BUFFERS 8

class GiraffCamera

{

public:

GiraffCamera(DisplayWindow* win);

~GiraffCamera();

bool Start(int width=0, int height=0);

void Stop();

bool Grab(cv::Mat& frame);

bool StartRecord(const std::string& name);

void StopRecord();

bool StartPlayback(const std::string& name);

void StopPlayback();

private:

DisplayWindow* m_win;

cv::VideoWriter m_vrec;

cv::VideoCapture m_vplay;

bool m_sim, m_rec, m_play, m_eof;

cv::Mat m_frame;

// for recording thread

cv::VideoCapture m_vcap;

HANDLE m_recthread;

HANDLE m_recfstart, m_recfdone;

#ifdef CAM_REC_BUFFERS

cv::Mat m_recbuf[CAM_REC_BUFFERS];

unsigned m_recpos;

#endif

void SetCameraInfo();

static DWORD WINAPI RecThread(LPVOID param);

};

#endif // GIRAFFCAMERA_HPP

105

B. Sour
e
ode listings

B.4. Gira�Camera.
pp

#include "GiraffCamera.hpp"

#include <windows.h>

#include <sstream>

#include <iomanip>

#define CAM_DEVICE 0

#define TEST_INPUT "D:/Giraff/OpenCV/Source/samples/gpu/768x576.avi"

using namespace std;

using namespace cv;

GiraffCamera::GiraffCamera(DisplayWindow* win) :

m_win(win), m_sim(false), m_rec(false),

m_play(false), m_eof(false)

{

}

GiraffCamera::~GiraffCamera()

{

StopRecord();

StopPlayback();

Stop();

}

bool GiraffCamera::Start(int width, int height)

{

#ifdef CAM_DEVICE

m_vcap.open(CAM_DEVICE);

if (!m_vcap.isOpened())

#endif

{

// Could not open real camera,

// load prerecorded video instead,

// so the rest of the program

// can still be used.

m_vcap.open(TEST_INPUT);

if (!m_vcap.isOpened())

{

return false;

}

if (!m_sim)

{

m_win->PrintLeft("Loaded test video");

m_sim = true;

}

}

// request resolution

if (!m_sim && width && height)

{

m_vcap.set(CV_CAP_PROP_FRAME_WIDTH, width);

m_vcap.set(CV_CAP_PROP_FRAME_HEIGHT, height);

}

// show actual resolution on display

SetCameraInfo();

return true;

}

void GiraffCamera::Stop()

{

m_vcap.release();

}

bool GiraffCamera::Grab(Mat& frame)

106

B.4. Gira�Camera.
pp

{

if (m_rec)

{

// if we’re recording, wait for recording

// thread to finish encoding previous frame

WaitForSingleObject(m_recfdone, INFINITE);

}

if (m_play)

{

if (m_eof)

{

// playback already complete

return false;

}

// get next frame from playback

else if (!m_vplay.read(m_frame))

{

// playback complete

m_eof = true;

return false;

}

}

// get next frame from camera or video

else if (!m_vcap.read(m_frame))

{

if (!m_sim)

{

// camera failure

return false;

}

// end of video, rewind

Stop();

Start();

if (!m_vcap.read(m_frame))

{

// give up

return false;

}

}

if (m_rec)

{

// if we’re recording, tell the recording

// thread that we have a new frame

#ifdef CAM_REC_BUFFERS

m_recbuf[m_recpos] = m_frame.clone();

m_recpos = (m_recpos + 1) % CAM_REC_BUFFERS;

LONG sem_count = CAM_REC_BUFFERS;

// clear event before ReleaseSemaphore

// to avoid race conditions (we can

// set it again afterwards)

ResetEvent(m_recfdone);

if (ReleaseSemaphore(m_recfstart, 1, &sem_count))

{

sem_count += 1;

if (sem_count < CAM_REC_BUFFERS)

{

// still room for more frames,

// so set event again

SetEvent(m_recfdone);

}

}

else

{

// if the synchronization stuff works,

// we should never get here

m_win->PrintLeft("Semaphore release failed");

}

#else

SetEvent(m_recfstart);

#endif

}

// could display frame here,

107

B. Sour
e
ode listings

// but we’ll leave it to GiraffNav

//m_win->Show(m_frame);

// return captured frame

frame = m_frame;

return true;

}

bool GiraffCamera::StartRecord(const string& name)

{

if (m_rec)

{

StopRecord();

}

//int fourcc = CV_FOURCC_PROMPT;

// Lossy codecs listed at

// http://opencv.willowgarage.com/wiki/documentation/cpp/highgui/VideoWriter

//int fourcc = CV_FOURCC(’P’,’I’,’M’,’1’); // 22 fps

//int fourcc = CV_FOURCC(’M’,’J’,’P’,’G’); // 20 fps

//int fourcc = CV_FOURCC(’M’,’P’,’4’,’2’); // 25 fps

//int fourcc = CV_FOURCC(’D’,’I’,’V’,’3’); // 20 fps

int fourcc = CV_FOURCC(’D’,’I’,’V’,’X’); // 26 fps

//int fourcc = CV_FOURCC(’U’,’2’,’6’,’3’); // 26 fps

//int fourcc = CV_FOURCC(’F’,’L’,’V’,’1’); // 26 fps

// Uncompressed

//int fourcc = CV_FOURCC(’I’,’4’,’2’,’0’); // 32 fps

double fps = 10;

string fn = name + ".avi";

// initialize video recording

Size sz(m_vcap.get(CV_CAP_PROP_FRAME_WIDTH),

m_vcap.get(CV_CAP_PROP_FRAME_HEIGHT));

m_vrec.open(fn, fourcc, fps, sz, true);

if (m_vrec.isOpened())

{

// turn on recording

m_rec = true;

#ifdef CAM_REC_BUFFERS

m_recpos = 0;

#endif

m_win->PrintLeft("Recording to " + fn);

// start recording thread

#ifdef CAM_REC_BUFFERS

m_recfstart = CreateSemaphore(NULL, 0, CAM_REC_BUFFERS, NULL);

m_recfdone = CreateEvent(NULL, TRUE, TRUE, NULL);

#else

m_recfstart = CreateEvent(NULL, FALSE, FALSE, NULL);

m_recfdone = CreateEvent(NULL, FALSE, TRUE, NULL);

#endif

m_recthread = CreateThread(NULL, 0, RecThread,

this, 0, NULL);

return true;

}

else

{

m_win->PrintLeft("Couldn’t start recording");

return false;

}

}

void GiraffCamera::StopRecord()

{

if (m_rec)

{

// turn off recording

m_rec = false;

// wake recording thread, so it notices

// that m_rec is now false

#ifdef CAM_REC_BUFFERS

// no need to check if ReleaseSemaphore

// fails here, since if it does, the

// recording thread is already awake

ReleaseSemaphore(m_recfstart, 1, NULL);

108

B.4. Gira�Camera.
pp

#else

SetEvent(m_recfstart);

#endif

// wait for it to complete

WaitForSingleObject(m_recthread, INFINITE);

// shut down

CloseHandle(m_recthread);

CloseHandle(m_recfdone);

CloseHandle(m_recfstart);

m_vrec.release();

m_win->PrintLeft("Recording stopped");

}

}

bool GiraffCamera::StartPlayback(const string& name)

{

string fn = name + ".avi";

m_vplay.open(fn);

if (m_vplay.isOpened())

{

// turn on playback

m_play = true;

m_eof = false;

m_win->PrintLeft("Playback from " + fn);

// show playback resolution on display

// (don’t bother showing fps, as we don’t

// put the real fps into our recordings)

ostringstream ost;

ost << m_vplay.get(CV_CAP_PROP_FRAME_WIDTH) << "x"

<< m_vplay.get(CV_CAP_PROP_FRAME_HEIGHT);

m_win->SetCameraInfo(ost.str());

return true;

}

else

{

m_win->PrintLeft("Couldn’t start playback");

return false;

}

}

void GiraffCamera::StopPlayback()

{

if (m_play)

{

// turn off playback

m_play = false;

m_eof = false;

m_vplay.release();

m_win->PrintLeft("Playback stopped");

// restore original camera resolution

SetCameraInfo();

}

}

void GiraffCamera::SetCameraInfo()

{

// show camera resolution on display

ostringstream ost;

ost << m_vcap.get(CV_CAP_PROP_FRAME_WIDTH) << "x"

<< m_vcap.get(CV_CAP_PROP_FRAME_HEIGHT);

double fps = m_vcap.get(CV_CAP_PROP_FPS);

if (fps)

{

// if FPS is available, show it too

ost << ", "

<< m_vcap.get(CV_CAP_PROP_FPS) << "fps";

}

m_win->SetCameraInfo(ost.str());

}

DWORD WINAPI GiraffCamera::RecThread(LPVOID param)

{

109

B. Sour
e
ode listings

GiraffCamera *obj = (GiraffCamera*)param;

unsigned nextpos = 0;

while (true)

{

// wait for captured frame

WaitForSingleObject(obj->m_recfstart, INFINITE);

if (!obj->m_rec)

{

// recording has been turned off, exit

break;

}

// encode frame

#ifdef CAM_REC_BUFFERS

obj->m_vrec.write(obj->m_recbuf[nextpos]);

obj->m_recbuf[nextpos].release();

nextpos = (nextpos + 1) % CAM_REC_BUFFERS;

#else

obj->m_vrec.write(obj->m_frame);

#endif

// signal completion

SetEvent(obj->m_recfdone);

}

return 0;

}

B.5. DisplayWindow.hpp

#ifndef DISPLAYWINDOW_HPP

#define DISPLAYWINDOW_HPP

#include <opencv2/core/core.hpp>

#include <windef.h>

#include <string>

#include <deque>

typedef void (*InputProc)(int code, int type);

typedef std::deque<std::string> DisplayBuffer;

class DisplayWindow

{

public:

DisplayWindow(HINSTANCE hInst,

HINSTANCE hPrevInst);

~DisplayWindow();

void SetInputHandler(InputProc proc);

bool Start();

void Stop();

void ShowError(LPCSTR pMsg);

void ShowError(LPCSTR pMsg, DWORD code);

void Show(const cv::Mat& frame);

bool ProcessInput();

void SetCameraInfo(const std::string& info);

void SetPositionInfo(const std::string& info);

void SetPerformanceInfo(const std::string& info);

void PrintLeft(const std::string& info);

void PrintRight(const std::string& info);

void InputLeft(const std::string& info);

void InputRight(const std::string& info);

private:

HINSTANCE m_hinst;

HWND m_hwnd;

InputProc m_proc;

std::string m_caminfo, m_posinfo, m_perfinfo;

DisplayBuffer m_leftbuf, m_rightbuf;

std::string m_leftinput, m_rightinput;

110

B.6. DisplayWindow.
pp

bool InitApp();

bool InitWindow();

void CloseWindow();

LRESULT WndProc(HWND hwnd,

UINT uMsg,

WPARAM wParam,

LPARAM lParam);

static

LRESULT CALLBACK CWndProc(HWND hwnd,

UINT uMsg,

WPARAM wParam,

LPARAM lParam);

};

#endif // DISPLAYWINDOW_HPP

B.6. DisplayWindow.
pp

#include "DisplayWindow.hpp"

#include <opencv2/imgproc/imgproc.hpp>

#include <windows.h>

#include <sstream>

#define BUFFER_SIZE 32

using namespace std;

using namespace cv;

static const char *app_name = "GiraffNav";

DisplayWindow::DisplayWindow(HINSTANCE hInst,

HINSTANCE hPrevInst) :

m_hinst(hInst), m_hwnd(NULL)

{

if (!hPrevInst)

{

if (!InitApp())

{

// couldn’t register window class

ShowError("Couldn’t register window class: ",

GetLastError());

return;

}

}

}

DisplayWindow::~DisplayWindow()

{

Stop();

}

void DisplayWindow::SetInputHandler(InputProc proc)

{

m_proc = proc;

}

bool DisplayWindow::Start()

{

if (!InitWindow())

{

ShowError("Couldn’t create window: ",

GetLastError());

return false;

}

// show the resolution of the Giraff’s monitor

ostringstream ost;

111

B. Sour
e
ode listings

ost << "Display resolution: "

<< GetSystemMetrics(SM_CXSCREEN) << "x"

<< GetSystemMetrics(SM_CYSCREEN);

PrintLeft(ost.str());

return true;

}

void DisplayWindow::Stop()

{

CloseWindow();

}

void DisplayWindow::ShowError(LPCSTR pMsg)

{

MessageBox(m_hwnd, pMsg, app_name,

MB_OK | MB_ICONERROR);

}

void DisplayWindow::ShowError(LPCSTR pMsg, DWORD code)

{

ostringstream ost;

ost << pMsg << code;

ShowError(ost.str().c_str());

}

// This function is a bridge between the Win32 API

// (which is plain C) and the C++ class DisplayWindow.

LRESULT CALLBACK DisplayWindow::CWndProc(HWND hwnd,

UINT uMsg,

WPARAM wParam,

LPARAM lParam)

{

DisplayWindow *win;

if (uMsg == WM_NCCREATE)

{

CREATESTRUCT* cs = (CREATESTRUCT*)lParam;

// This is supposed to be the first message the

// window receives. (In reality, it isn’t,

// but it’s close enough for our purposes.)

// lpCreateParams is the DisplayWindow pointer provided

// to CreateWindowEx.

win = (DisplayWindow*)cs->lpCreateParams;

// Save it in the window structure.

SetWindowLongPtr(hwnd, 0, (LONG_PTR) win);

}

else

{

// Get the DisplayWindow pointer previously stored

// in the window structure.

win = (DisplayWindow*)GetWindowLongPtr(hwnd, 0);

}

if (win)

{

// Dispatch message to DisplayWindow, if possible.

return win->WndProc(hwnd, uMsg, wParam, lParam);

}

else

{

// Otherwise (i.e., it’s one of the messages that

// arrive before WM_NCCREATE), do default processing.

return DefWindowProc(hwnd, uMsg, wParam, lParam);

}

}

// Register window class for main window

bool DisplayWindow::InitApp()

{

WNDCLASSEX wcx;

wcx.cbSize = sizeof(wcx);

wcx.style = CS_HREDRAW | CS_VREDRAW;

wcx.lpfnWndProc = CWndProc;

112

B.6. DisplayWindow.
pp

wcx.cbClsExtra = 0;

wcx.cbWndExtra = sizeof(DisplayWindow*);

wcx.hInstance = m_hinst;

wcx.hIcon = NULL; // no icon yet

wcx.hCursor = LoadCursor(NULL, IDC_ARROW);

wcx.hbrBackground = (HBRUSH) GetStockObject(BLACK_BRUSH);

wcx.lpszMenuName = NULL;

wcx.lpszClassName = "GiraffNavClass";

wcx.hIconSm = NULL;

return RegisterClassEx(&wcx);

}

// Create main window

bool DisplayWindow::InitWindow()

{

m_hwnd = CreateWindowEx(

0,

"GiraffNavClass",

app_name,

//WS_OVERLAPPEDWINDOW, // regular window

WS_POPUP, // fullscreen (no caption or border)

CW_USEDEFAULT,

CW_USEDEFAULT,

CW_USEDEFAULT,

CW_USEDEFAULT,

(HWND) NULL,

(HMENU) NULL,

m_hinst,

this);

if (!m_hwnd)

{

return false;

}

ShowWindow(m_hwnd, SW_SHOWMAXIMIZED);

return true;

}

// Destroy main window

void DisplayWindow::CloseWindow()

{

if (m_hwnd)

{

DestroyWindow(m_hwnd);

}

}

bool DisplayWindow::ProcessInput()

{

MSG msg;

while (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))

{

if (msg.message == WM_QUIT)

{

// Terminate application

return false;

}

TranslateMessage(&msg);

DispatchMessage(&msg);

}

return true;

}

static int RenderInfo(Mat& out, int x, int y, const string& info,

int align=-1)

{

const Scalar color(128,255,255); // yellow

int fontFace = FONT_HERSHEY_PLAIN;

double fontScale = 1;

int thickness = 1;

int baseLine = 0;

Size sz = getTextSize(info, fontFace, fontScale,

113

B. Sour
e
ode listings

thickness, &baseLine);

Point org(x, y + sz.height);

if (align > 0)

{

org.x -= sz.width;

}

else if (align == 0)

{

org.x -= sz.width/2;

}

putText(out, info, org, fontFace, fontScale,

color, thickness);

return sz.height + baseLine;

}

static void RenderBuffer(Mat& out, int x, int y,

DisplayBuffer& buf,

string& input)

{

DisplayBuffer::iterator it = buf.begin();

while (it != buf.end())

{

y += RenderInfo(out, x, y, *it) + 5;

it++;

}

if (!input.empty())

{

RenderInfo(out, x, y, input);

}

}

// Show camera image in main window

void DisplayWindow::Show(const Mat& frame)

{

// Get size of window drawing area,

// so we can scale the image to fit it.

RECT rect;

GetClientRect(m_hwnd, &rect);

int width = rect.right;

int height = rect.bottom;

// To enforce the alignment required by

// SetDIBitsToDevice, round the width

// down to the nearest multiple of 4.

width = width&~3;

// Scale image (without interpolation,

// in order to save CPU).

Mat out;

resize(frame, out, Size(width, height),

0, 0, INTER_LINEAR);

// Overlay some information from the subsystems

RenderInfo(out, 0, 0, m_caminfo, -1);

RenderInfo(out, width/2, 0, m_posinfo, 0);

RenderInfo(out, width, 0, m_perfinfo, 1);

RenderBuffer(out, 0, 20, m_leftbuf, m_leftinput);

RenderBuffer(out, width*3/5, 20, m_rightbuf, m_rightinput);

// Create bitmap info needed by SetDIBitsToDevice

BITMAPINFOHEADER bmih;

bmih.biSize = sizeof(bmih);

bmih.biWidth = out.cols;

bmih.biHeight = -out.rows; // negative = top-down DIB

bmih.biPlanes = 1;

bmih.biBitCount = 24;

bmih.biCompression = BI_RGB;

bmih.biSizeImage = 0;

bmih.biXPelsPerMeter = 0;

bmih.biYPelsPerMeter = 0;

bmih.biClrUsed = 0;

bmih.biClrImportant = 0;

// Draw video frame in window

HDC hdc = GetDC(m_hwnd);

SetDIBitsToDevice(hdc, 0, 0,

width, height,

114

B.6. DisplayWindow.
pp

0, 0,

0, out.rows,

out.data,

(BITMAPINFO*)&bmih,

DIB_RGB_COLORS);

ReleaseDC(m_hwnd, hdc);

}

LRESULT DisplayWindow::WndProc(HWND hwnd,

UINT uMsg,

WPARAM wParam,

LPARAM lParam)

{

switch (uMsg)

{

case WM_NCCREATE:

// The window now exists.

m_hwnd = hwnd;

return TRUE;

case WM_NCDESTROY:

// The window no longer exists.

m_hwnd = NULL;

return 0;

case WM_KEYDOWN:

case WM_KEYUP:

case WM_CHAR:

if (m_proc)

{

m_proc(wParam, uMsg);

}

return 0;

case WM_CLOSE:

// The user pressed the Close button

// (or its keyboard shortcut, Alt-F4).

DestroyWindow(hwnd);

return 0;

case WM_DESTROY:

// The main window is being closed, so make

// sure the app itself also terminates.

PostQuitMessage(0);

return 0;

default:

return DefWindowProc(hwnd, uMsg, wParam, lParam);

}

}

void DisplayWindow::SetCameraInfo(const std::string& info)

{

m_caminfo = info;

}

void DisplayWindow::SetPositionInfo(const std::string& info)

{

m_posinfo = info;

}

void DisplayWindow::SetPerformanceInfo(const std::string& info)

{

m_perfinfo = info;

}

// to remove end-of-line characters from end of string

static size_t chomped(const string& info)

{

size_t n = info.find_last_not_of("\r\n");

if (n != string::npos)

{

return n+1;

}

else

{

return 0;

115

B. Sour
e
ode listings

}

}

static string chomp(const string& info)

{

size_t n = chomped(info);

return info.substr(0, n);

}

// add line to left pane

void DisplayWindow::PrintLeft(const string& info)

{

m_leftbuf.push_back(chomp(info));

while (m_leftbuf.size() > BUFFER_SIZE)

{

m_leftbuf.pop_front();

}

}

// add line to right pane

void DisplayWindow::PrintRight(const string& info)

{

unsigned span = 32;

size_t len = chomped(info);

// split string into lines of 32 characters each

for (size_t n=0; n<len; n+=span)

{

size_t end = n+span;

if (end > len)

{

end = len;

}

m_rightbuf.push_back(info.substr(n,end-n));

}

// if buffer is now full, scroll up by removing

// lines from the top

while (m_rightbuf.size() > BUFFER_SIZE)

{

m_rightbuf.pop_front();

}

}

// show user input for left pane

void DisplayWindow::InputLeft(const string& info)

{

m_leftinput = info;

}

// show user input for right pane

void DisplayWindow::InputRight(const string& info)

{

m_rightinput = info;

}

B.7. Gira�Nav.
pp

#include "DisplayWindow.hpp"

#include "GiraffCamera.hpp"

#include "GiraffMotor.hpp"

#include "FeatureExtract.hpp"

#include <opencv2/highgui/highgui.hpp>

#include <windows.h>

#include <sstream>

#include <iomanip>

#define DEF_WIDTH 800

116

B.7. Gira�Nav.
pp

#define DEF_HEIGHT 600

#define KBD_TURN_SPEED 45

#define KBD_MOVE_SPEED 0.4

// Disp. res. 800x1280

// ca 10fps at 800x600 capture

// Notes from testing:

// Default tilt angle #bab8b23d = 0.0872664005

#define PLAY_PATH "C:/GiraffRec/"

#define PLAY_FILE "20130515_135355"

using namespace std;

using namespace cv;

static DisplayWindow* mainWindow;

static GiraffCamera* mainCamera;

static GiraffMotor* mainMotor;

static FeatureExtractor* extractor;

enum InputMode

{

INPUT_NONE = 0,

INPUT_LEFT = 1,

INPUT_RIGHT = 2

};

static InputMode inputMode = INPUT_NONE;

static bool returnPressed = false;

static string inputLine;

static bool isRecording = false;

static bool isPlaying = false;

void SetResolution(int width, int height)

{

mainCamera->Stop();

mainCamera->Start(width, height);

}

void ToggleRecording()

{

if (!isRecording)

{

// decide on a file name

SYSTEMTIME tm;

GetLocalTime(&tm);

ostringstream ost;

ost << tm.wYear

<< setfill(’0’)

<< setw(2) << tm.wMonth

<< setw(2) << tm.wDay

<< "_"

<< setw(2) << tm.wHour

<< setw(2) << tm.wMinute

<< setw(2) << tm.wSecond;

string name = ost.str();

if (!mainCamera->StartRecord("/GiraffRec/cam_" + name))

{

return;

}

if (!mainMotor->StartRecord("/GiraffRec/ctl_" + name))

{

mainCamera->StopRecord();

return;

}

isRecording = true;

}

else

{

mainMotor->StopRecord();

117

B. Sour
e
ode listings

mainCamera->StopRecord();

isRecording = false;

}

}

void TogglePlayback()

{

if (!isPlaying)

{

string name = PLAY_FILE;

if (!mainCamera->StartPlayback(PLAY_PATH "cam_" + name))

{

return;

}

if (!mainMotor->StartPlayback(PLAY_PATH "ctl_" + name))

{

mainCamera->StopPlayback();

return;

}

isPlaying = true;

}

else

{

mainMotor->StopPlayback();

mainCamera->StopPlayback();

isPlaying = false;

}

}

void InputHandler(int code, int type)

{

if (type == WM_KEYUP &&

code == VK_RETURN)

{

returnPressed = false;

}

if (inputMode)

{

if (type != WM_CHAR)

{

return;

}

switch (code)

{

case ’\b’: // Backspace

if (!inputLine.empty())

{

inputLine.erase(inputLine.length()-1);

}

break;

case ’\e’: // Esc

inputMode = INPUT_NONE;

inputLine.clear();

mainWindow->InputRight(inputLine);

return;

case ’\r’: // Enter

if (returnPressed)

{

// keypress already handled separately

return;

}

if (!inputLine.empty())

{

mainMotor->SendUserCommand(inputLine);

}

inputMode = INPUT_NONE;

inputLine.clear();

mainWindow->InputRight(inputLine);

return;

default:

if (code >= 32 && code <= 126)

118

B.7. Gira�Nav.
pp

{

// Regular ASCII character

inputLine.push_back(code);

}

break;

}

mainWindow->InputRight(inputLine + "_");

return;

}

if (type == WM_KEYUP)

{

switch (code)

{

case VK_DOWN:

case VK_UP:

mainMotor->SetMotion(0);

break;

case VK_LEFT:

case VK_RIGHT:

mainMotor->SetTurn(0);

break;

}

}

if (type != WM_KEYDOWN)

{

return;

}

switch (code)

{

case VK_ESCAPE:

// Initiate system shutdown

mainWindow->Stop();

break;

// Manual movement

case VK_LEFT:

mainMotor->SetTurn(-KBD_TURN_SPEED);

break;

case VK_RIGHT:

mainMotor->SetTurn(KBD_TURN_SPEED);

break;

case VK_UP:

mainMotor->SetMotion(KBD_MOVE_SPEED);

break;

case VK_DOWN:

mainMotor->SetMotion(-KBD_MOVE_SPEED);

break;

// Keys to try out various resolutions.

case ’1’:

SetResolution(1600, 1200);

break;

case ’2’:

SetResolution(1280, 960);

break;

case ’3’:

SetResolution(1024, 768);

break;

case ’4’:

SetResolution(800, 600);

break;

case ’5’:

SetResolution(640, 480);

break;

// Misc keys

case VK_RETURN:

// input motor command

inputMode = INPUT_RIGHT;

returnPressed = true;

mainWindow->InputRight("_");

break;

case ’A’:

119

B. Sour
e
ode listings

// this is a hack to check

mainMotor->m_autoupdate = !mainMotor->m_autoupdate;

if (mainMotor->m_autoupdate)

{

mainWindow->PrintLeft("Motor autoupdate on");

}

else

{

mainWindow->PrintLeft("Motor autoupdate off");

}

break;

case ’B’:

mainMotor->GetBulkData();

break;

case ’H’:

mainMotor->Home();

break;

case ’P’:

TogglePlayback();

break;

case ’R’:

ToggleRecording();

break;

case ’T’:

mainMotor->SetTilt(1);

break;

case ’U’:

mainMotor->Undock();

break;

}

}

void MainLoop()

{

LARGE_INTEGER freq, period;

LARGE_INTEGER last_count;

DWORD frame_count = 0;

DWORD fms = 0;

DWORD fps = 0;

Mat frame;

QueryPerformanceFrequency(&freq);

// recalculate performance data every 250ms.

period.QuadPart = freq.QuadPart / 4;

QueryPerformanceCounter(&last_count);

while (mainWindow->ProcessInput())

{

bool ok = mainMotor->Process();

if (!ok && isPlaying)

{

TogglePlayback();

mainMotor->Process();

}

mainCamera->Grab(frame);

extractor->Process(frame);

mainWindow->Show(frame);

frame_count++;

// check performance measures

LARGE_INTEGER cur_count, diff_count;

QueryPerformanceCounter(&cur_count);

diff_count.QuadPart = cur_count.QuadPart - last_count.QuadPart;

if (diff_count.QuadPart >= period.QuadPart)

{

// recalculate performance data

LONGLONG factor = frame_count * freq.QuadPart;

fms = (diff_count.QuadPart*1000) / factor;

fps = factor / diff_count.QuadPart;

frame_count = 0;

last_count.QuadPart = cur_count.QuadPart;

}

120

B.8. FeatureExtra
t.hpp

ostringstream ost;

ost << fms << "ms, "

<< setw(2) << fps << "fps";

mainWindow->SetPerformanceInfo(ost.str());

}

}

int WINAPI WinMain(HINSTANCE hInst,

HINSTANCE hPrevInst,

LPSTR pCmdLine,

int nCmdShow)

{

mainWindow = new DisplayWindow(hInst, hPrevInst);

mainWindow->SetInputHandler(InputHandler);

if (!mainWindow->Start())

{

return 0;

}

mainCamera = new GiraffCamera(mainWindow);

if (!mainCamera->Start(DEF_WIDTH, DEF_HEIGHT))

{

mainWindow->ShowError("Could not connect to camera!");

return 0;

}

mainMotor = new GiraffMotor(mainWindow);

if (!mainMotor->Start())

{

mainWindow->ShowError("Could not connect to motor controller!");

return 0;

}

extractor = new FeatureExtractor(mainWindow);

MainLoop();

delete extractor;

delete mainMotor;

delete mainCamera;

delete mainWindow;

return 0;

}

B.8. FeatureExtra
t.hpp

#ifndef FEATUREEXTRACT_HPP

#define FEATUREEXTRACT_HPP

#include "DisplayWindow.hpp"

#include <opencv2/highgui/highgui.hpp>

#define CAM_REC_BUFFERS 8

class FeatureExtractor

{

public:

FeatureExtractor(DisplayWindow* win);

~FeatureExtractor();

void Process(cv::Mat& frame);

private:

DisplayWindow* m_win;

};

#endif // FEATUREEXTRACT_HPP

121

B. Sour
e
ode listings

B.9. FeatureExtra
t.
pp

#include "FeatureExtract.hpp"

// Sample feature extractor

#include <opencv2/imgproc/imgproc.hpp>

#include <opencv2/features2d/features2d.hpp>

using namespace std;

using namespace cv;

FeatureExtractor::FeatureExtractor(DisplayWindow* win) :

m_win(win)

{

}

FeatureExtractor::~FeatureExtractor()

{

}

void FeatureExtractor::Process(cv::Mat& frame)

{

Mat grayframe;

// Convert to grayscale

cvtColor(frame, grayframe, CV_BGR2GRAY);

#if 0 // Canny edge detector (just for demonstration)

Mat cannyframe(grayframe.size(), grayframe.type());

Canny(grayframe, cannyframe, 20, 50);

cvtColor(cannyframe, frame, CV_GRAY2BGR);

#endif // 1

#if 1 // "FAST" corner detector

vector<KeyPoint> keypoints;

FAST(grayframe, keypoints, 50);

// draw pink circles around detected corners

drawKeypoints(frame, keypoints, frame,

Scalar(128,0,255),

DrawMatchesFlags::DRAW_OVER_OUTIMG);

// These eypoints could be given to some

// SLAM implementation.

#endif

}

122

C. Contents of the CD-ROM

The CD-ROM
ontains these dire
tories:

� Bin: This dire
tory
ontains the binaries needed to run the system. They
an be

opied to a USB memory sti
k, whi
h
an then be inserted into one of the Gira�'s

USB ports, along with a
omputer mouse. When browsing the
ontents of the

memory sti
k, double
li
k GiraffNav.exe. (If you plan to do any re
ording,

make sure that a GiraffRec dire
tory exists on the memory sti
k, otherwise

re
ording may fail.)

� GiraffNav: This is the sour
e
ode of the developed system, along with the

Code::Blo
ks proje
t �le, and MinGW-
ompiled binaries.

� OpenCV: This is the sour
e
ode of OpenCV version 2.4.9, and MinGW-
ompiled

binaries of it. These binaries are needed for building Gira�Nav.

� GiraffRec: This dire
tory
ontains a
ouple of re
ordings of the Gira� moving

around the
are
enter using the developed system.

123

