UNIVERSITY OF TROMSQ UIT

FACULTY OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF PHYSICS AND TECHNOLOGY

VERg ).
s“a
(ST
o\ /o
& ]'RO‘(Q

Investigating robot navigation in health
care with the Giraff telepresence robot

Ove Kaven

FYS-3921 Master’s Thesis in Electrical Engineering \

June 2013







Abstract

The Norwegian public healthcare system will not have the manpower to care for the el-
derly at the same level as now, unless technological solutions are found to make the most
of the available manpower. This thesis investigates potential technologies for allowing
the Giraff, a telepresence robot, to navigate and patrol an eldercare center autonomously,
thus letting caregivers save time when checking on the care recipients. It describes the
design and implementation of a platform to interface with the Giraff’s hardware, and
demonstrates that the developed system is a useful platform for developing such navi-

gation systems.
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1. Introduction

1.1. Motivation

As a consequence of the increasing life expectancy in Norway, the number of seniors
needing care from the Norwegian public welfare system will continue to grow in the
coming years. It is estimated that in 2025, 16% of the population (900 000 people) will
be above 67 years old, and 250 000 will be above 80 years, while the number of healthy,
young people available to provide that care will decrease correspondingly. To uphold the
current standards for elderly care, the healthcare sector would have to recruit at least
every 4th youth in the nation in order to satisfy the needs for 2025, and every 3rd in
order to satisfy the needs for 2035. This is neither realistic nor desirable [1].

Instead, the healthcare system needs to use the manpower it has more efficiently. One
way to do this is by developing new technology to assist caregivers. For example, it would
be useful to be able to deploy robots at care centers that can be used to rounds and check
in on the elderly, without needing a caregiver to always be physically present. Remote-
controlled telepresence robots for such purposes already exist, allowing the caregiver to
make rounds in multiple locations without leaving his/her own office, though these can
be tedious to use, as their every move needs to be controlled manually. For seniors
living in their own homes, there are also projects underway to provide robotic personal
assistants [2, 3|, though they are still under heavy development, and not yet ready for
the public.

1.2. Objectives

For this thesis, I have explored the possibility of relieving caregivers further by automat-
ing the navigation of telepresence robots used at care centers. In particular, I have
been working with the Giraff telepresence robot, currently being tested at a local care
center (Kroken sykehjem), and exploring ways to make it navigate such a center with-

out explicit assistance from the caregiver. This robot was chosen because it is already
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1. Introduction

commercially available for a reasonable price (while still having sufficient capabilities for
such use), and a unit was available for research use at the time of writing.

While other, more powerful robotic platforms exist, such as the Willow Garage PR2
(http://www.willowgarage.com/), they are expensive, still considered experimental, and
usually not designed as telepresence robots. This may possibly make them useful assis-
tants, but they’re less useful for health personnel that wishes to talk to patients remotely.
The Giraff may be better for this purpose.

The idea of automating the navigation of a telepresence robot is that the caregiver
should be able to request a particular room with a single command, rather than manually
commanding every step necessary to get there, thus allowing the caregiver to focus on
more important tasks. Further down the line, the robot should also be able to do
fully autonomous daily or nightly patrols, looking for anomalies, and only alerting the
caregiver if it finds any.

Creating such a system is a large undertaking, requiring the use of algorithms and
techniques that’s still subject to much research. A complete navigation system for a

particular robot would need at least these components:

e A system for getting input from available sensors (in this case, the camera).

A system for controlling the actuators (in this case, the wheel motors).

A system for extracting features (landmarks) from the sensor input.

A system for estimating the robot’s location using the observed landmarks, in

combination with the current speed of the motors.

A system for detecting obstacles using the sensor input.

A system for choosing the robot’s destination.

A system for planning a route to the robot’s desired destination.
e A system for following that route, while avoiding obstacles.

Other systems (such as remote control and teleconferencing) may also be desirable. The
first two listed systems are the ones that are responsible for communicating with the
particular robot’s hardware. The remaining systems are of a more general nature and
can implement any applicable technique found in the research literature, though for this

particular robot, some will be more suitable than others.
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1.3. Contributions

Various implementations of these more general systems already exist. However, sys-
tems that allow them to communicate with the Giraff are not yet available, and the
Giraft’s standard controller software is proprietary and difficult to extend for this pur-
pose. Thus, a completely new software stack is needed for supporting autonomous

navigation on the Giraff. The first step is to communicate with the robot hardware.

1.3. Contributions

This thesis makes the following contributions:

e The design and implementation of a platform with components to control (and
simulate) the Giraff’s motors, and capture frames from its camera (Chapter 3,
Appendix B, and on CD-ROM)

e An investigation of the techniques and technologies that can be used to implement

the remaining systems (Chapter 2)
e Documentation of low-level details of the Giraff motor controller (Appendix A)

The developed platform functions as a framework with components to control (and sim-
ulate) the Giraff’s motors, and capture frames from its camera. For evaluation purposes,
I’ve also made a proof-of-concept of a feature extractor component.

A notable feature of the developed framework is that it can also record data for
playback later, so that any components built on this platform can be prototyped and
offline-tested without the actual Giraff. This is useful if such units are not permanently
available to developers, and may speed up development and testing.

Detailed knowledge of the motor controller is needed for properly operating the con-
troller, but these details were either not documented, or incorrectly documented, at the
time of writing. Many of these details were learned through reverse engineering, and are

now documented here.

1.4. Chapter list

This thesis is structured as follows:

Chapter 1: The introduction.

Chapter 2: Description of some of the techniques and technologies that may be used
in the Giraff.

13



1. Introduction

Chapter 3: Description of the actual platform developed for investigating the above
technologies,

Chapter 4: Description of the Giraff robot itself.

Chapter 5: Evaluation of the usefulness of the developed platform.

Chapter 6: Conclusion.

Appendix A: Low-level documentation of the Giraff motor controller.

Appendix B: Listings of the source code of the developed platform.

Appendix C: Description of the contents of the CD-ROM.

14



2. Navigation technologies

This chapter describes some of the navigation techniques and technologies that may be
used in the Giraff to make it more autonomous. To form a complete system, they may
be combined as shown in Figure 2.1. The actual platform I've built to allow exploring

such techniques is described in Chapter 3.

2.1. General

The Giraff is designed to operate in an indoor environment without significant obstacles.
It does not need to function everywhere, and making the environment accommodate the
robot is acceptable, if necessary. However, even if the environment is suitable for the
robot, the robot will still need to become familiar with it, in order to successfully navigate
it. That is, the robot needs to acquire an internal map of the environment that it can
refer to when trying to figure out where it is and where it needs to go, and that map
should reflect what the robot’s sensors can see.

Ideally, the robot should be able to build the map itself, based on what it sees as it
moves around. This problem, Simultaneous Localization And Mapping (SLAM), is a
complex problem and still the subject of much research, but is difficult to avoid in this
kind of setting. In principle, it might be possible to enter the building’s blueprints into
the robot instead, but this would be tedious, and such blueprints would probably not
include obstacles such as furniture or people. Hence, the robot still needs to be able to

analyze and map out its surroundings, in order to navigate safely.

2.2. Feature (landmark) extraction

The first step of any SLAM approach is to use sensors to identify and locate landmarks
that can later be used to estimate the current position. The method used to identify
landmarks should be as noise-resistant, unambiguous, and accurate as possible, yet not

too computationally demanding, due to the finite power of the robot’s onboard computer.
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2. Navigation technologies

Camera Odometry Motor
interface interface
Images . Commands|
Feature Other : Route
Extractor sensors ; Search
_____ Features —————
: Feature Extended : L Obstacle
' Matcher Kalman Filter o Detector
Location
Landmark Floor Plan
Mapper
o Simultaneous Localization And Mapping (SLAM) Route Planner

Figure 2.1.: A possible navigation system
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2.2. Feature (landmark) extraction

Fortunately, it doesn’t have to be perfect, as the occasional misidentified landmark can
be rejected later by a good SLAM algorithm.

Some SLAM implementations are designed to function with a particular type of sensor,
such as range finders, while others are more universal. Also, some SLAM implementation
already include a feature extractor, and thus don’t need a separate component to do this,

but many don’t.

2.2.1. Using a single camera

This is the only sensing approach which does not require augmenting the Giraff’s hard-
ware. However, for localization, it may also be one of the more computationally de-
manding approaches, since a single image from the camera is not enough to find the
distance to an object. Instead, as the robot is moving, different images (from different
positions) must be compared, and visual features matched. With enough data, the 3D
position of the feature (and of the robot observing it) can be estimated within a reason-
able margin of error. The feature then becomes part of the robot’s «map» and can be
used as a landmark later. The estimation of the 3D position is, however, usually left to
the SLAM algorithm, not to the feature extractor. Thus, the chosen SLAM algorithm

must be among those which can process monocular input.

Visible landmarks can be extracted from camera images using feature extractors of
the type commonly used in computer vision. Typically, they attempt to find cor-
ners of objects, since their positions are relatively clearly defined and they can be
tracked fairly reliably. Many corner detectors are available in the OpenCV library’s
«Image Processing» and «2D Features Framework» modules. Various implementations
can also be found in other free and open source libraries, such as the CVD library
(http://www.edwardrosten.com/cvd /cvd /html/index.html).

A common choice of feature extractor is the Harris corner detector [4], but using larger
image patches may be more reliable in some cases [5]. There are more powerful extrac-
tors, such as the Scale-Invariant Features Transform (SIFT) [6]. However, because of the
limited CPU power of the Giraff, I expect that it’s better to stick with a conventional
corner detector. One that offers a very good balance of speed and reliability and has

gained some popularity recently is the FAST corner detector [7].
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2. Navigation technologies

2.2.2. Using stereo cameras

If a robot is equipped with two cameras, separated by a fixed distance and a known an-
gle, and with known calibration parameters, then stereo vision can be used to instantly
find the distance to objects in view, much like humans do it. Since the relative orienta-
tions of the two cameras are always known exactly, depth information can be extracted
more reliably and with less computation than with a single camera. This improves the

accuracy and robustness of SLAM, and reduces the number of ambiguities [8].

2.2.3. Using radio beacons

A robot could estimate its position based on receiving radio signals from beacons in-
stalled at known positions in a building. A sensor that could receive such signals could
be connected to one of the Giraff’s USB ports. Unfortunately, GPS-style distance mea-
surements are not practical with ordinary beacons, but as long as the directions to the
beacons can be estimated by the sensor, the robot’s position could still be triangulated
using SLAM techniques [9].

2.2.4. Using ceiling landmarks

Another camera could be added to the robot that would be pointed directly upwards,
tracking the ceiling. This could be quite usable for SLAM [10, 11|, especially for rooms
with ceiling lights. The extra camera could be connected to one of the Giraff’s USB
ports. (The Giraff’s primary camera should probably not be used for this purpose, as
it could then no longer see what’s in front of it, which would defeat the purpose of

patrolling.)

2.2.5. Using laser range finders

Unlike a regular camera, laser range finders can measure the distance to an object
directly, and thus find the 3D position of any visible object with minimal computation.
When cameras are used to locate interesting features and range finders are used to
pinpoint their position, features can be tracked quite accurately [12].

For robot navigation, LIDARs (Light Detection and Ranging) are often used. A laser
pulse is emitted, and a mirror deflects it in a particular direction. When the pulse hits
an object, it is reflected back to the LIDAR, which measures the time between emission

and reflection, and thus the distance to the object. By turning the mirror appropriately,
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2.3. Position estimation

the LIDAR can scan everything in front of it pixel by pixel, creating a depth image. Such
a ranging module could be connected to one of the USB ports, and used for SLAM.

A cheap alternative is the Microsoft@®) Kinect™ sensor. An infrared laser illuminates
the scene with random patterns, and the reflections are captured with an infrared camera.

The sensor can use the reflected patterns to estimate distances [13].

2.2.6. Using ultrasound sonar

Like lasers, sonars can measure the distance to objects and find the 3D position of
objects directly. Sonar modules could be connected to one of the USB ports, and used
for SLAM |14, 15].

2.3. Position estimation

Once sensor data from the environment is available, it can be used to estimate the

robot’s position in various ways, depending on the type and quality of sensor data.

2.3.1. Dead reckoning

Pure dead reckoning is probably the simplest approach - just use the robot’s odometry
directly. This would probably be combined with a recorded route, which the robot
would then follow every time, since it won’t be aware of obstacles in the way. However,
while this may work for small apartments, estimates from dead reckoning are prone to
accumulating errors over time and distance. For navigating larger buildings, the position
estimate would need to be regularly corrected using other position estimates, making

dead reckoning unsuitable.

2.3.2. The Kalman filter

Most position estimation approaches use some variant of the Kalman filter [16] to com-
bine odometry with position estimates calculated from the robot’s sensors. The Kalman
filter can be summarized as follows: Given a hidden multivariate time series (such as the
true coordinates of a robot over time), with a known but noisy transition model, and
an observable time series that is a linear transformation of the unknown time series plus
noise (such as measurements from the robot’s sensors), the Kalman filter is a statisti-

cally optimal way of combining the estimate of the previous hidden state (the previous
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2. Navigation technologies

position) with a new observation (sensor measurements) to produce an estimate of the
current hidden state (the current position). It is a recursive estimator (it does not need
to recalculate previous observations for every new observation), and thus quite suitable
for real-time applications.

Note that the basic Kalman filter (KF) is only meaningful when state changes (position
changes) can be expressed as a linear transition matrix. For physical systems, this is
often not the case. However, the nonlinear transition model can be linearized by taking
the Jacobian matrix, evaluate it based on the current state, and use this as the transition
matrix [17]. While this only gives a first-order approximation, it often works quite well,
provided the state doesn’t change too much between updates. To compensate for the
approximation error, some «stabilizing noise» should also be added to the covariance
matrix after each update. This method is called the Extended Kalman Filter (EKF).
Most of the SLAM papers referenced below use the EKF (but this doesn’t preclude using
more recent KF variants instead, such as the Unscented Kalman Filter [18]).

A complication arises from the possibility that the robot might crash into something
and not move in the expected direction at all. In this case, the motor odometry would be
completely wrong, but there is no direct way to model such failure conditions in a basic
(or extended) Kalman filter. One way of handling this might be to maintain several
Kalman filters (one for standard operation, and the others for failure conditions) and
assume that the filter that gives the best predictions is more likely to be correct. That
way, if the sensors report that the robot isn’t moving, the robot can deduce that since
the KF that models a crash matches the data best, there’s a high probability that it has
indeed crashed into something, and should initiate recovery procedures. However, since
crashing into things is not meant to be part of standard operation procedure, simpler
solution might be acceptable. For example, it might suffice to say that if the robot
is supposed to be moving, but the sensors report less movement than some predefined
threshold for some predefined time, then initiate emergency procedures.

For convenience, OpenCV'’s Video Analysis contains an implementation of the Kalman
filter. By default, its KalmanFilter class implements only the basic Kalman filter, but
by modifying the matrices it uses, it can also implement the extended Kalman filter. It

could be used if a given SLAM implementation doesn’t supply its own Kalman filter.

2.3.3. Visual odometry

Visual odometry improves on the dead reckoning approach by adding a second source of

odometry, which may reduce the error of the position estimate. Features from successive
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2.3. Position estimation

images from the camera can be compared, and the apparent motion patterns, the «optical
flow», can be estimated.

If the robot is moving forward, everything it sees will seem to move away from the
center of the image. The speed at which things move may allow the robot to estimate
how fast it is moving forward. However, ambiguities exist since this speed is dependent
on how far away the objects are, which is initially unknown. Fortunately, with enough
observations (and using the speed reported by the motor when necessary), these distances
can be estimated, and a useful 3D model of what’s in front of the robot can be computed,
which can then be used to calculate the robot’s velocity [19, 20].

Once visual odometry is available, it can be combined with the robot’s regular odom-
etry through the Kalman filter or similar. This could produce good results, but will not
be as powerful or robust as a full SLAM approach, because once an object leaves the
robot’s field of view, the robot forgets about it. Without maintaining a map, the robot

cannot use landmarks for more robust localization.

2.3.4. SLAM

SLAM techniques are based on building and updating an internal map of the environ-
ment, using statistical methods to minimize uncertainly. Once landmarks have been
found, they must be checked against the robot’s internal map. If they are thought to
be new landmarks, they are added based on the current estimated position. If they are
already known, their known position can be used to update the current position esti-
mate. In most cases, both the landmark position and the current position is uncertain,
so that both must be continually updated, and preferably as robustly as possible. The
final estimate should be based on both the visible landmarks and the motor odometry,
and if no known landmarks are in sight, the odometry might be the only available source
of position information.

Because the system should ideally run in real time, the number of tracked features
needs to be bounded. Since no feature is statistically independent of any other feature
(their position estimates are all related through the error of the robot’s estimate of its
own position, at the very least), a big covariance matrix has to be maintained, and
used for updating every tracked feature after every new measurement. Some scheme for
keeping the covariance matrix manageable is required, or at least minimize the effort
of updating it [21]. The number of tracked features can be reduced by throwing away
unimportant features (e.g., features close enough to each other that it isn’t useful to track

all of them), but to be able to handle a large map, the map needs to be broken down
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2. Navigation technologies

into sections. Fortunately, it seems it is possible to maintain conditionally independent
covariance matrices for each local map, if each local map is considered a node in a
Bayesian network [22].

Many SLAM implementations can be found on OpenSLAM, http://www.openslam.org/.
OpenSLAM is not a project in itself, but a hosting and portal site that allows SLAM
researchers to publish their own open source SLAM implementations. Several interest-
ing projects are listed here, e.g. the RobotVision project for single-camera SLAM [23|.
However, many of the projects don’t support Windows, and thus would not work on the
Giraff. RobotVision is designed to be cross-platform, though, so it may work, though
its authors have only tested it on Linux. Another option is to take some promising Mat-
lab project, such as EKFMonoSLAM [24, 25|, and convert it to C++ (probably with
the help of some C+-+ matrix library, e.g. the TooN library also used by RobotVision,
http://www.edwardrosten.com/cvd /toon.html).

Not all open source SLAM implementations of interest are listed on OpenSLAM,
unfortunately. For example, the author of [5] (Prof. A. Davison) has created a SceneLib
that implements many of the techniques described in his papers. (It appears to be
a powerful single-camera SLAM implementation, but unfortunately, it is also only for

Linux.)

2.3.5. Satellite navigation

Traditionally, GPS doesn’t work indoors. However, given the recent surge in interest
in indoor positioning by cell phones, chips are apparently now being developed that
can combine signals from USA’s GPS, Russia’s GLONASS, China’s Compass, and EU’s
Galileo, and thus possibly work indoors. (See http://www.computer.org/portal /web/computingno
location-and-navigation-technology-indoors) If such a chip is made available as a USB

adapter, it could be installed in the Giraff’s USB port to provide position estimates.

2.4. Obstacle detection

Obstacle detection needs to use the same sensor data that the position estimation does,
just for a different purpose. The main challenge is is that detecting solid objects need
more information than the sparse set of features typically tracked by SLAM. However,
the extra information does not necessarily need to be explicitly tracked in detail, they

just need to be detected when they are right in front of the robot. Then the robot just
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2.5. Destination selection

needs to know that there’s something there, maybe add it to its floor plan, and find
some way around it, or some other route to its destination. If the robot has some sort of
range finder, obstacles are typically not too hard to detect. Otherwise, it may need to
use pattern recognition or maybe optical flow to detect whether it’s dangerously close

to something.

2.5. Destination selection

Typically, the destination is selected by the user, either interactively, or by preprogram-
ming some patrol route. Selection a destination results in a set of target coordinates

being given to the route planner.

2.6. Route planning

Once the robot knows where it is and where to go, it must figure out how to get there.

Since there may be walls and other obstacles in the way, this has challenges of its own.

Some of the planning approaches that might be possible to implement on the Giraff

are:

2.6.1. Recorded route

This is probably the simplest approach. A human can train the robot by manually
steering it where it needs to go. The robot remembers the route, and replays the recorded
actions of the human whenever the robot needs to. If the robot can have multiple
destinations, the robot could remember waypoints and the routes between certain pairs
of then. Then finding a route to somewhere distant becomes a standard graph search
problem, with each edge in the graph being a recorded route. (Even a cost heuristic is
available, since the waypoint coordinates are known and the Euclidean distance between
them can easily be calculated. Thus, an A* graph search could be used if there was any
chance that the number of known routes would be too large for a standard graph search
to handle effectively.)

An obvious problem with this approach is that if obstacles (including people) move

into the robot’s path, the robot won’t know how to avoid them.
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2. Navigation technologies

2.6.2. Providing a floor plan

A floor plan of the building could be given to the robot, naming each room and the
available doorways between them. Internally, the robot would store this floor plan in
graph form, with each node in the graph being the name and coordinates of a room, and
each edge being doorways and their coordinates. When the robot is asked to go to a
particular room, it can use an A* graph search to find which doors it has to go through
to get there. Between the doors, the robot may try to go the shortest route, but must

try to avoid obstacles along the way using other algorithms (see below).

2.6.3. Teaching a floor plan

The robot could be steered by a human (or even being instructed to try to follow a
human) between rooms. In each room, the robot would be told the name of the room
the robot is in. The robot may then associate that name with its current position, and
try to get there again whenever it is instructed to go to that room again. It can use some
obstacle detection method to find walls and other obstacles, and use the resulting map to
plan routes. This map can be represented using either vectors or bitmaps (where bitmaps

make for the simplest path planning algorithms, but usually needs more memory).

2.6.4. Obstacle avoidance

In the event the robot was instructed to go to a particular destination unassisted, and it
is trying to find the shortest path while mapping obstacles along the way, then the robot
should probably use the D* graph search instead of the A* graph search to plan the
route, to minimize time wasted replanning the route whenever an obstacle is detected
[26]. In order to apply D* search, each room could be internally represented as a bitmap
(grid), where each pixel (grid square) is «colored» according to whether it is thought to
contain an obstacle, thought to be traversable, or not yet explored. This grid is updated

as the robot moves around, and D* used to replan the route after each update.

2.7. Getting there

Once a route has been decided upon, the robot’s motors need to be told where to go.
This may, on its own, involve some algorithms and maths, since the Giraff’s motors have

ramp-up and ramp-down times that may need to be taken into account. Turning while
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moving has some interesting mathematical properties (the curves the robot follow are
apparently clothoid segments [27]), the parameters of which need to be computed before

sending the command to the motors.
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3. The developed system

3.1. General

The developed system has four main modules:

e GiraffNav, the main program and user interface. It starts and controls the other

systems, and handles user input.

e DisplayWindow, which displays the current camera image (and other information)
on the screen. It allows monitoring, measuring, and debugging of the other sys-

tems.

e GiraffCamera, which can capture, record, and play back video. The video frames

captured here can be used for localization and mapping.

e GiraffMotor, which can give motor commands, and capture, record, play back,
and simulate their responses. The route planner can send its command here for

execution.

The system is meant as a platform for the development of other navigation modules,
as shown in Figure 3.1. Thus, for testing and evaluation purposes, there’s also a fifth

module, FeatureExtract, which demonstrates a feature extractor.

3.2. The GiraffMotor module

The GiraffMotor module’s primary function is to accept commands for the Giraff’s
various motors and controls, and transmit them to the Giraff’s AVR microcontroller for
execution (or, if not running on a real Giraff, simulate them). It also regularly reads back
odometry from the microcontroller, which the navigation modules can use to determine
the robot’s movement. For testing and evaluation, a dead-reckoning position estimate

is computed from this odometry.
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Figure 3.1.: Big-picture view of system (GiraffNav module not shown)



3.2. The GiraffMotor module

The GiraffMotor module contains two separate motor-related subsystems, one con-
troller (the GiraffMotor class) and one simulator (the GiraffMotorSim class). On startup,
the GiraffMotor class will try to connect to the microcontroller board, which is wired to
the main computer’s primary serial port (called «COM1» in Windows). If the micro-
controller is not found, the system will fall back to using the simulator, allowing various
features to be tested without the actual Giraff. This can be useful for checking whether
navigation commands make sense before risking trying them on the real Giraff, but more
importantly, it allows much of the system to be developed without always having access

to the Giraff (as its limited availability was a major issue during this project).

3.2.1. The Motor Controller

The GiraffMotor class handles all communication with the microcontroller (real or sim-
ulated). If a real microcontroller is present, GiraffMotor powers it up and opens a

communication link, sends commands, and receives responses.

3.2.1.1. Recording

When recording, all commands sent to the microcontroller (or simulator), and their
responses, are saved to a text file, prefixed by the time elapsed since the start of recording.
When playing back a recording, these commands and their responses are interpreted
as if they were sent. The recorded commands are not sent to the microcontroller or
simulator, but the recorded responses are interpreted as normal motor odometry, and
used to estimate the current position. The recorded time is used to ensure that the
recording is played back at the same speed as it was recorded at. (This also affects video
playback, since the camera and motor systems run in the same thread. In order to stay
synchronized, flags in the motor record files are used to mark when to allow a new frame

to be loaded from recorded video.)

3.2.1.2. Handling user movement commands

The commands that GiraffMotor is allowed to send to the microcontroller is listed in
Appendix A. These commands are designed for moving specific distances and stopping
at specific points. However, since the system hasn’t implemented autonomous navigation
yet, currently the Giraff is primarily moved by pressing the arrow keys on the keyboard,
and in this case it is not known beforehand how far the user wants the Giraff to move.

To handle this, the Giraft’s ability to preempt previous commands is used. When a key

29



3. The developed system

Figure 3.2.: Kinematics of turning

is pressed, the movement command given specifies some distance ahead of the current
position (specifically, the full-speed-to-zero deceleration distance is multiplied by the
AHEAD FACTOR defined at the top of GiraffMotor.cpp, and the result is used as the
movement distance). As long as a key is held down, new movement commands are issued
periodically (specifically, whenever the distance left of the previous movement command
is less than twice the deceleration distance). When a key is released, a final movement
command is issued, requesting the minimum distance needed to decelerate from the
current speed, plus a 10ms «reaction time» margin (i.e., the distance that would be
traveled if the current speed was maintained for 10ms), to account for the time it takes

to transmit the command to the microcontroller, and other potential delays.

3.2.1.3. Calculating turns

When setting up and tracking turns, some of the calculations require converting between
wheel speed and angular speed. To find the conversion factor, refer to Figure 3.2, which
shows rotating in place. According to material provided by Giraff Technologies, the
distance between the two drive wheels is 499mm. Thus, the radius of the circle followed
by the wheels is R = 499mm/2 = 249.5mm. To convert from wheel speed to angular
speed in radians, note that w = v;/R = v,/R. To convert to degrees, multiply with a
factor 360/2m = 180/m. The final factor, 180/(R - ), is in the source code denoted the
TURN _FACTOR. The same factor also applies when converting between wheel distance
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and angular distance.

Actually, this factor also applies to curved motion, not just rotating in place. Given
a frame of reference that follows the center of the Giraff (the middle dot in Figure 3.2),
then at any given instant, the wheels can be thought of as moving the same way around
this center as in the rotating-in-place case. It only remains to find the wheel speed in

this frame of reference. From the formulas described in the Appendix (if correct),

Left Wheel Velocity = Overall Velocity * (1+vg)
Right Wheel Velocity = Overall Velocity * (1-vg)

Denote the overall velocity v and the virtual gear ratio g. Then it is apparent that,
after canceling out the overall velocity, v; = v, = vg. Hence, if the current speed v and
the current gear ratio g are both known, simply multiply them to get the wheel speed.
Then use TURN _FACTOR to convert to angular speed in degrees. (Or, if a particular
angular speed is desired, simply divide by the overall speed and TURN FACTOR to
get the desired gear ratio.) This can then be used as input for a location estimation

algorithm.

3.2.1.4. Curved motion issues

Curved motion is the most challenging kind of motion to get right. Not only because of
the computations involved, but also because of quirks and bugs in the motor controller.

The current speed of the wheels can be read from the motor controller as the «gvr»
parameter. However, according to the manufacturer, this parameter does not give the
overall velocity, but the velocity of the left wheel. Moreover, testing seems to show that
this velocity is not computed using the formulas above, but using the incorrect formulas
found in the documentation, i.e. Left Wheel Velocity = Overall Velocity * (1/(1-vg)).
Hence, to find the overall velocity, you must compensate for this by multiplying gvr with
(1-vg). From there, you can then find the actual wheel velocities if needed.

Even this kind of compensation wouldn’t be possible if vg—1, since this would result
in a division by zero, which probably results in the Giraff returning infinity for «gvr»
(though T haven’t tested this). The simplest way to avoid this singularity is to just
never let the virtual gear ratio be as high as 1. (In the current system, it should only
get to 0.51, bugs in the motor controller notwithstanding.) But if vg ever becomes 1
anyway, the code will, just in case, attempt to fall back to estimating the current speed

by dividing distance travelled by time elapsed since the last odometry update.
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Figure 3.3.: Bottom of chassis. rear swivel caster, and right drive wheel.

According to the manufacturer, it’s likely that a future version of the Giraff’s software
will change «gvr»’s behaviour so that it reports overall speed directly. Once this happens,
the system may need to be recompiled to remove the compensation factor. (This can be
done by commenting out the GVR_IS LEFT definition at the top of GiraffMotor.cpp.)

Another problem, which I have not found a way to compensate for, is the way that the
«cdp» parameter works, which is supposed to tell the controller when to start decreasing
the virtual gear ratio back towards zero. In practice, it’s not very useful, as the ramp-
down profile used in practice is based on the distance left, not on the value of «cdp». In
the end, I could only find two ways to exit curved motion: either come to a full stop, or
force «vgr» to zero, thus converting the ramp-down into a flat, horizontal line. This has
the effect of making the virtual gear ratio instantly zero, which causes a noticeable jerk.
However, since this behaviour, unfortunate as it is, is at least predictable and makes
it possible to move the Giraff around with the keyboard without too much trouble, I
decided to use this method until Giraff Technologies addresses the problem. Also, some
future autonomous navigation solution (that doesn’t rely on input from the keyboard)

might be able to plan its moves in such a way that it could avoid this issue.

3.2.1.5. Position estimation issues

Even if the odometry from the motor controller were perfect, the motor controller only
knows about the two drive wheels on the sides of the Giraff. There are also two swivel
casters (undriven wheels), one in front and one in back, as seen in Figures 3.3 and
4.2. When the Giraff turns or moves, these casters must turn to follow, and since the
Giraff needs to move some distance before they’ve fully aligned themselves, they have a
significant effect on how the Giraff travels. Worst case, if you turn in place for a bit, and

then try to start moving forward, these casters may cause the Giraff to turn up to about
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45 degrees extra before they’ve finally reoriented themselves. This effect isn’t known to
the motor controller, so for dead reckoning to be accurate, a model of the casters and
their effect on movement may need to be devised and implemented. Fortunately, the
problem can be mitigated by making sure to never turn in place, and only allow the
Giraff to turn while also moving forward (assuming curved motion works satisfactorily).
Assuming the direction estimate is also corrected using the camera, this issue might then
even be something that could be neglected, though experimentation is the only way to
make sure.

Position estimation also gets computationally tricky when moving in an arc, either
due to explicit curved motion, or due to the effect of the casters. The motion profile
need to be calculated, and integration techniques be used to determine what the new
position would be. However, given that the resulting position would not be correct even
if T implemented this (because of the casters and other issues), in my system I've only
approximated it. I find the mean speed and the mean turning rate since the last update,
and use this to calculate a first-order approximation of the new position. It is expected
that a future localization system would use the camera image to correct this estimate

anyway.

3.2.1.6. Implementation details

For communication through the serial port, the GiraffMotor class uses standard Windows
API routines. After the serial port device is opened, SetCommState is used to set the
important parameters (115200bps, 8 data bits, no parity). Since the microcontroller uses
a line-based protocol, commands and responses do not have a fixed size. To handle this,
SetCommTimeouts is used to set the read timeouts to zero (so that ReadFile always
immediately returns whatever has been received, if anything), and the aforementioned
SetCommState is also used to set the event character to the end-of-line character. That
way, WaitCommEvent can be used to wait for the end-of-line character, then ReadFile
can be used to read the complete line received. Some extra buffering logic (base on the
C-+-+ string class) is used for cases where ReadFile happens to read more than one line.
Because no timeout is applied to WaitCommEvent, there’s a chance that this tech-
nique may cause the system to hang indefinitely if the microcontroller doesn’t work,
but this has not been an issue. (It could be addressed by opening the serial port de-
vice in overlapped I/O mode, which is less convenient to program, but would allow
WaitCommEvent to be cancelled in response to some timeout or user action.)

When the GiraffMotor class needs to measure time, it uses the high-precision timers
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known in Windows as performance counters. These are typically hardware clocks built
into CPUs or motherboards. In Windows, QueryPerformanceCounter can be used to
read out the number of ticks since some arbitrary starting time (typically the time
the computer was booted up). QueryPerformanceFrequency tells you how many ticks
are per second. Thus, taking the difference between two QueryPerformanceCounter
readings, and dividing it with the QueryPerformanceFrequency result, gives you the
number of seconds between the two readings, with accuracy on the order of microseconds
or nanoseconds. Timing information is currently only really needed for recording and

playing back motor data, however.

3.2.2. The Motor Simulator

The GiraffMotorSim class attempts to simulate what the real microcontroller is supposed
to do, i.e., it attempts to conform closely to the behaviour described in Appendix A,
though only for features actually needed by GiraffMotor. Only the motor odometry
that the microcontroller would report is computed, not the Giraff’s resulting position in
space. But since the simulator does not control anything physical, its simulated motions
are far more precise than the real Giraff’s motion would be.

Curved motion is implemented as documented in Appendix A, though the real con-
troller may behave differently. For example, setting «vg» to zero causes the simulator
to simulate a straight line motion (without turning) no matter what «vgry» is, but this
does not seem to be the case for the real controller. However, I still implemented the
simulator the way things are documented to work, rather than how they actually seem
to work, in case such deviations are just bugs that will be fixed by the manufacturer at
some point. (Also, for some of these deviations, it’s just not clear what’s going on in

the real controller, and it would take too much time to figure out.)

3.2.2.1. Implementation details

For timing, GiraffMotorSim uses the same QueryPerformanceCounter technique that
GiraffMotor uses, except when simulating the transmission delay that would occur when
sending and receiving data strings through the serial port. This is done by calling Sleep,
which only has a millisecond resolution (and often waits longer than requested).

When the simulator is asked to start a motion, the motion profile (times, distances)
is calculated, using the kinematic equations of motion where needed. Care is taken to

handle various corner cases, including speed changes and direction reversal (handled as
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a ramp-up from negative velocity to the target velocity). The calculated profile, along
with the times for transitions (changes in acceleration) are stored in the class. Then,
every time a new command /request is received from GiraffMotor, the current time is
compared with the stored times, and new motor state and odometry is calculated, ready
to be reported back to GiraffMotor when needed. Straight-line motion profiles and
rotate-in-place motion profiles are kept separate (in retrospect, this would not have

been necessary, though it did make the design slightly cleaner).

3.3. The GiraffNav module

This is the main module, responsible for starting, running, and shutting down the system.
It measures the system’s performance, and also interprets keyboard input from the
user. The velocities used when the arrow keys are used are defined in this module
(KBD_TURN_SPEED and KBD MOVE SPEED).

When the user starts a recording, this module constructs the file names based on
the current system time, then passes the request on the GiraffCamera and GiraffMotor
modules. When the user requests playback, this module also chooses the files to play
back. Currently, the file name is specified in the source code (the PLAY PATH and
PLAY FILE definitions) and compiled in, it cannot be changed at runtime, though
adding a file selector for this could be a useful feature to add at some point.

The default camera resolution is also chosen here (the DEF . WIDTH and DEF _ HEIGHT
definitions). By default, an 800x600 camera resolution is set, because the camera ap-
pears to not always work if higher resolutions are used. With 800x600, the camera

appears to be able to deliver about 10 frames per second.

3.3.1. Implementation details

Currently, the system is mostly single-threaded (though if video recording is enabled,
video encoding is done in a separate thread). The primary reason for running the camera
and motor in the same thread is to get a reliable association between a camera image and
the corresponding motor odometry. As soon as a new image is retrieved from the camera
(typically every 100 ms or so), new motor odometry is almost immediately retrieved from
the Giraff’s controller (this typically only takes a couple of milliseconds). Because the
time to transfer images from the camera to the main computer through USB is probably

much longer than the camera’s exposure time, I expect this odometry to most closely
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match the next frame rather than the previous one, but I have not investigated this
further.

3.4. The GiraffCamera module

The GiraffCamera module’s primary function is to communicate with the Giraff’s cam-

era, and capture video frames in a way that is useful for navigation.

The camera can be accessed like a regular USB webcam (for example, through Video
For Windows or DirectShow). In the implemented GiraffCamera class, OpenCV’s High-
GUI module is used. Its capture interface works as a convenient wrapper for DirectShow.
In addition to camera access, HighGUI also provides video decoding and encoding (by
using the open source FFmpeg library, which is included in the OpenCV distribution),
which the GiraffCamera class can use to record and play back video. For recording
video, I chose to use the DivX (i.e., MPEG-4 Part 2) format, as testing showed it to

have decent encoding performance, in addition to good compression.

3.4.1. Implementation details

When recording, video encoding is done in a separate thread (synchronized using stan-
dard Windows primitives, like event and semaphore objects), so that things like retriev-
ing motor odometry don’t need to wait for encoding. A buffering system is also added
to try to reduce lag spikes when saving large amounts of data (I used a USB flash drive,
and these don’t always have constant write speeds), though this didn’t completely elim-
inate such problems. (It’s possible the GiraffMotor module would need to do something

similar in order to reduce these problem further.)

If no camera is connected, GiraffCamera can fall back to playing back a predefined
video (and endlessly repeating it), which allows the system to be tested on a computer
without a camera. This is the TEST INPUT definition at the top of GiraffCamera.cpp,

and I've just used one of the OpenCV sample videos.

The image grabbed from the camera (or played back from video) is returned to the

main program as an OpenCV matrix.
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3.5. The DisplayWindow module

The DisplayWindow module displays information from the other modules on the Giraff’s

LCD monitor, so that the system can be monitored, measured, and debugged.

3.5.1. Implementation details

The user interface display is implemented using a combination of the standard Windows
API and OpenCV.

When the main program calls the DisplayWindow’s Start() method, a fullscreen win-
dow is created using the standard Windows API. Since the Windows APT is a C in-
terface, and DisplayWindow is a C+-+ class, usual techniques for bridging the C and
C-++ interfaces are used, including storing the C++ instance pointer into the window
structure (using APIs such as SetWindowLongPtr). The standard Windows message
loop is implemented in the ProcessInput() method.

Using the SetInputHandler() method, the main program can provide a callback for
processing user input. When Windows calls the window procedure with a keyboard
message, the message is sent on to the input callback, allowing the main program (the
GiraffNav module) to process it.

Other modules can also call the DisplayWindow’s SetCameralnfo, SetPositionInfo,
SetPerformancelnfo, PrintLeft, and PrintRight methods when they have information to
show to the user. The DisplayWindow class then stores these strings internally. PrintLeft
and PrintRight implement a scrolling buffer by using a C++ «deque» container type,
and limiting its size by deleting the topmost strings when its size exceeds a predefined
threshold (the BUFFER _SIZE definition at the top of DisplayWindow.cpp).

Most of the real work happens when DisplayWindow’s Show() method is called to show
a camera image. The image is provided as an OpenCV matrix. This image is copied and
resized to fit the display using OpenCV’s resize function, and then any stored information
(from SetCameralnfo etc) is rendered on top of this using OpenCV’s putText function.
Using OpenCV is faster than using equivalent Windows functions. Windows functions
are only needed for showing the finished image. This is done by wrapping the image
data in a Windows Device-Independent Bitmap (DIB) and blitting it onto the fullscreen
window using SetDIBitsToDevice. (Alternatively, DirectDraw could perhaps be used for
a theoretically more efficient display solution, but given that the display update only

happens a few times per second, any improvements would probably be marginal.)
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System Motor Controller
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Figure 3.4.: Screenshot of a playback on a regular laptop, with UT elements marked

3.6. The FeatureExtract module

This module is a proof-of-concept to show how features could be extracted from images
captured by GiraffCamera. It currently uses the FAST corner detector [7]. For visual-
ization of the detected corners, it renders pink circles around them on the camera image

shown by DisplayWindow. See Section 5.2.

3.7. The User Interface

The view provided by DisplayWindow has several parts, as shown in Figure 3.4. The

current camera image is in the background, scaled to fit the screen. On the top left, the

38



3.8. Software used

current camera resolution is shown. The top right is for keeping track of the system’s
performance. Currently, it shows the rate at which camera images (frames) are processed
(milliseconds per frame, and frames per second). The top center is for displaying the
current estimated position. Currently, it shows a dead reckoning estimate (and typically
not a very accurate one since, while the motors are modeled, the effect of the casters
(front and back swiveled wheels) are not).

On the left is a scrolling text area that can be used to show system state. Currently
it mostly shows whether recording or playback is active, and what file is being recorded
to or played from. On the right is a scrolling text area that shows communication with
the motor controller.

To interact with the system, the following keyboard commands are available.

Key Action
Escape Exits program
Left/Right Arrow Makes the Giraff turn as long as the keys are held down
Up/Down Arrow Makes the Giraff move as long as the keys are held down
Numbers (1 to 5) Tries to change camera resolution
Enter Allows typing in your own commands for the motor controller
A Toggles automatic retrieval of motor odometry
B Sends a «get bulk datay command (shows motor state)
H Sends a «home» command (starts head homing sequence)
P Toggles playback
R Toggles recording
T Tilts head to vertical position
U Sends an «undock» command (backs and turns 180 degrees)

3.8. Software used

This section describes the software used in the developed system.

3.8.1. Development environment

The system is written using C++. As a fully compiled language, this gives better
performance and needs less memory than interpreted languages like Python or Matlab.
On an embedded system like the Giraff’s onboard computer, making the most of the

available resources is often important.
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As the base development environment, I chose to use MinGW (www.mingw.org) with
the MSYS option. MinGW is based on the open-source and cross-platform GNU Com-
piler Collection (GCC). Since most open-source navigation software is written using
GCC (and usually on Linux), it seemed that using GCC for this project might make it
easier to get such navigation software working later on. For the IDE (Integrated Devel-
opment Environment), I chose to use Code::Blocks (www.codeblocks.org), but this isn’t

important, as editors and IDEs are just a matter of taste.

3.8.2. OpenCV

OpenCV (Open Source Computer Vision Library), at http://www.opencv.org/, is an
extensive library of computer vision and machine learning algorithms. It implements
both classic and state-of-the-art algorithms, all highly optimized and easy to use. It is
released under the BSD license, making it free for all. Some of the modules of interest

are:

e OpenCV’s HighGUI library provides easy to use routines for creating GUIs and
capturing images from cameras. This library is used for accessing the Giraff’s

camera.

e OpenCV’s Image Processing library provides a host of image processing and anal-

ysis routines. Of particular interest here are the feature extractors.

e OpenCV’s Video Analysis library provides routines for motion analysis. Among
other things, it has routines to calculate optical flow, and even an implementation
of the Kalman filter.

e OpenCV’s 3D Reconstruction library provides routies to calibrate cameras, com-
pare stereo images, and calculate projections and backprojections. It could be

used to compensate for the fisheye effect of the wide angle lens.

e OpenCV’s 2D Features Framework library provides more advanced feature extrac-

tors and pattern matchers.

e OpenCV’s Object Detection and Machine Learning libraries provides many ad-

vanced machine learning algorithms.

Several books have been written about OpenCV [28, 29, 30|. This library is the backbone

of many interesting projects, and so I chose it for this project as well.
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4.1. Introduction

The Giraff is a mobile telepresence robot developed by Giraff Technologies AB, Sweden
(http://www.giraff.org/). Tt is designed to be remote controlled by caregivers, allowing
them to check up on care recipients without physically being there. Caregivers may use
their own computers to connect to any recipient’s Giraff robot, move it around using
their computer’s mouse, and see its environment and talk to people through the robot.

The Giraff is already involved in several other research projects. The unit I've had ac-
cess to is operated by NST (Norwegian Centre for Integrated Care and Telemedicine) and
primarily involved in the EU’s VictoryaHome project, a project for putting robots in the
homes of care recipients to act as proxies for human caregivers when they’re not present,
automatically alerting them whenever needed. For information about the project, see, for
example, http://www.itfunk.org/docs/prosjekter/AAL-VictoryaHome.htm. Some more
information about how the Giraff, in particular, is used in this project is available at
http://www.robotdalen.se/en/News/Press-releases /2013 /Giraff-key-player-in-new-EU-project-
VictoryaHome-/

It is hoped that the Giraff can be used to fill roles such as

e Provide social interaction opportunities for people who live isolated or that don’t
get out of their houses much for health reasons, such as old age, COPD, or dis-
ability. Caregivers, family, and friends can simply log on to their computers to
talk, without having to drive there. For caregivers, this saves valuable time and
allows them to efficiently care for more people, which may live all over a wide
area. Although this can’t completely replace the human touch, and personal visits
will still be important from time to time, this can supplement them and greatly
increase the effectiveness of resource-starved health care departments, as the need

for health care continues to grow faster than the resources to provide them.

e Allow physicians to check up on patients under their care that aren’t in their
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Figure 4.1.: Photo of the Giraff (from material provided by Giraff Technologies)
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Figure 4.2.: Drawing of the Giraff (from material provided by Giraff Technologies)

hospitals, such as in elder care centers. To supplement the regular visits to the
care centers, the physician may use the robot to talk to people and solve simple

problems without needing to drive there every time.

Unfortunately, the Giraff’s standard software provides little automation and can be
tedious to use, because every movement it can do needs to be explicitly commanded.
It is hoped that adding more automation and autonomy to the Giraff can make its use
simpler, allowing the users to focus more on the tasks they want to accomplish, and
less on the fine details of steering the Giraff around. Tt might even help save lives if it
could autonomously respond to persons in distress and report the situation to emergency

personnel.

4.2. Design

As can be seen in Figures 4.1 and 4.2, the Giraff has a base unit, a long neck, and a
head. The base unit houses a computer, control buttons, and motors for the 4 wheels.
The head is connected to a tiltable panel with a monitor and a camera. The total height
of the Giraff is a little over 1.6m. When a caregiver is communicating with another
person through the robot, this allows comfortable interaction. The tiltable panel allows
the caregiver to look up or down as needed. The control buttons on the chassis allow the
care recipient to call the caregiver, accept and disconnect calls, and adjust the volume
level. These functions are also available through a remote control. When the robot is

not in use, it stays in its docking station, facing the wall.
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4.3. Computer Specifications

The exact specifications of the Giraff’s main computer were not available, but by ac-
cessing the operating system’s Control Panel, it was possible to extract the following

relevant information.

CPU Intel Core 2 T7200, 2 GHz
GPU Intel 1945 Express
RAM 1 GB

Storage Type Patriot Memory USB device

Storage Capacity | Primary partition 3.5GB (1.5GB free)
Operating System | Microsoft Windows Embedded Standard

The Giraff also has two USB ports. The rear port is meant to hold a wireless network
adapter, and the front port can be used for connecting input devices like keyboards and
mice, when necessary for administration [27].

These specifications suggest that the Giraff might be powerful enough to allow reason-
ably advanced applications to run on the device itself. A sufficiently efficient navigation
application could run on it directly; remote-control solutions may not be necessary. This
would be an advantage, as a remote-control solution for autonomous navigation would

require more hardware and be less robust.

4.4, Camera

According to Giraff Technologies, the sensor chip is a Cynove USB device with a listed
sensor size of 1/3.2" and a resolution of 1600x1200. It is fitted with a 1.8mm wide
angle lens. For digital image sensors, the listed sensor size is usually about 1.5 times the

actual sensor size, so the actual diagonal of the sensor would be about 5.68mm. Thus,

the diagonal field of view is approximately 2 arctan % = 2arctan 2800 ~ 115° The
horizontal field of view is approximately 2 arctan 3228 ~ 103°.,

Because of the camera’s wide angle, it would seem like a good idea to capture video
at high resolution, in order to detect relatively distant landmarks with reasonable ac-
curacy, though this may need to be balanced with the slower transfer speed and higher
computational workload of a higher resolution. Testing suggests that the highest video
resolution the camera is able to deliver at a practical rate is 800x600, at about 10 frames
per second.

When using the camera for navigation, it is necessary to correct for the distortion
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(fisheye effect) caused by the lens. An advantage of the wide angle is that the robot can

more easily keep landmarks and obstacles in view while turning and moving.

4.5. Motor Controller

The Giraff’s wheels are controlled by an AVR microcontroller running custom software.
It communicates with the main computer through a RS232-type serial port interface,
using a line-based ASCII protocol [31]. The controller accepts operations like moving a
specific distance, turning a specific angle, or a combination of both (curved motion). In
buffered mode, up to four such operations can be placed in queue. All operations have
ramp-up and ramp-down times, so that jerky motions cannot happen. The microcon-
troller also controls the tilt of the Giraff’s head, and gives access to the buttons on the
chassis.

With some caveats, the microcontroller can help estimating the robot’s position by
keeping track of the distance travelled by its drive wheels. The controller can provide
this information to the main computer on request. For navigational purposes, this is
usually known as odometry, and can be used for dead reckoning, which is necessary when
no other position estimate is available (i.e., no known landmarks are in sight). However,
testing shows that this is, unfortunately, not reliable enough to be used on its own.

Another issue is that the Giraff’s default remote control software gain exclusive control
over communication with the motor controller while it is running. Thus, the default
software would need to be shut down before other navigation software can control the
motor, or some way of multiplexing the motor controller port needs to be developed.
One way to do this may be to create a virtual motor controller port that both pieces of
software can connect to. Then the software behind the virtual controller communicates
with the real controller, and routes commands and responses to whichever piece of
software needs it. Another option might be to make a new navigation system a fully
functional substitute for the default software, so that running the default software will

just never be necessary.
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5.1. Functionality

The implemented system works as described, and can be used to steer the Giraff through
the care center, and record the journey for later playback, if a keyboard is connected.

The images in Figures 3.4, 5.1 and 5.2 are from such a recorded journey.

5.2. Extensibility

Requirement: As the developed system is meant to be a platform on as which a larger
system could be built, it should be possible to implement other components on top of
it.

Figure 5.1 shows the results of adding an image processing algorithm (the Canny
edge detector [32], available in OpenCV), as an example of how such algorithms can be
added. (Also, the ability to detect moving edges might be useful for obstacle avoidance.)
Figure 5.2 demonstrates a particular type of feature extractor (the FAST corner detector
[7], also available in OpenCV) that may be used as part of a navigation system. The
features shown in the figure (pink circles) could be matched with previously known
features, and their coordinates given to a SLAM implementation, which could then use

them to determine the robot’s current position.

5.3. Recording and playback

Requirement: When playing back a recording, the resulting visuals and motor odometry
should be identical to what was seen when the recording was first created.

Some sample records are available on the attached CD-ROM. While testing shows
that they do appear to be the same, there are still some lag spikes while recording,
meaning that the Giraff does not work fast enough to do a smooth recording. Adding

multithreading to the motor recording component might mitigate this. But since the
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Figure 5.2.: Playback with FAST corner detector (corners highlighted with pink)
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captured video frames have timestamps in the motor record, this problem does not cause

any drift in the timing of the playback.

5.4. Motor control

Requirement: Movement commands from the user should be properly interpreted and
cause the Giraff to move in the desired way.

Commands can currently only be given using a connected keyboard, but this should
suffice for evaluation. The sample records, available on the CD-ROM, shows that moving
the Giraff around this way works. However, because of the problems with curved motion
described in Section 3.2.1.4, turns are somewhat difficult to predict, and some movement
jerks often happen when ending them. Possibly a future navigation solution would be

able to plan moves in advance in such a way that these jerks can be avoided.

5.5. Motor simulation

Requirement: The motor simulator should emulate the actual motor controller as faith-
fully as possible.

Testing shows that the simulator is close to the real thing, with a few caveats. Unlike
the real thing, the simulator does not make errors. For example, for mechanical reasons,
the real motor controller is usually not able to hit the exact distance requested. If
you request a certain distance, it will usually report an odometry that’s off by a few
millimeters. The simulator, however, will always report the exact requested distance in
its odometry. Also, there are certain bugs in the real controller that’s not replicated
faithfully in the simulator, such as the quirky behaviour of the «Clothoid Deceleration
Point» command used for curved motion. And some minor features, such as changing
the head tilt angle, reporting presses of the chassis buttons, and checking the battery
status, are not simulated at all. These are fairly minor issues, however, and the simulator

works fine for its intended purpose of simulating the result of navigation commands.

5.6. Discussion

Clearly, many more things could have been explored or implemented in this project. In
particular, it would have been very interesting to try an actual SLAM implementation

on the Giraff. Unfortunately, because of the Giraft’s limited availability, and the motor
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control took much more time than expected, in part because the original documentation
was missing some vital information. However, using the platform described in this thesis,
and the documentation provided in Appendix A, I believe implementing and evaluation
navigation algorithms on the Giraff can now be done more efficiently.

In retrospect, it might have been a good idea to prioritize differently. For example,
spending less time on tuning the motor controller and simulator would mean more time
for trying out navigation algorithms, and for describing what has been done. It would
also have been interesting to set up a few experiments, such as trying to do a simple pre-
programmed patrol using dead reckoning. Since dead reckoning is unreliable, especially
given the effects of the casters, the Giraff would probably not go exactly where it should,

but it would be a good demonstration of the functionality of the motor controller.
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6. Conclusion

For this thesis, I've built a platform for developing navigation solutions for the Giraff,
a telepresence robot. I've designed and implemented a system to interface with its
hardware, and also investigated many of the challenges involved in making it able to
navigate a large building without human assistance, including localization and route
planning. I examined some of the algorithms and technologies that could be used to
solve those problems — some that require adding more sensors to the Giraff, and some
that don’t.

The implemented platform shows camera images and motor odometry on the screen,
and allows the user use the keyboard to control the Giraff’s motors and move it around.
It can record and play back video and motor data, and when run on a regular computer,
it can simulate the Giraff’s motors. This allows offline development and evaluation of
localization and navigation solutions, facilitating future work on the Giraff.

Based on a literature study of localization approaches, it appears that adding extra
sensors may allow more robust algorithms to be used, but given the controlled environ-
ment the Giraff is meant to operate in, adding sensors is by no means necessary. A single-
camera SLAM approach could work quite well. In particular, it might be interesting to
try converting the EKFMonoSLAM source code (found on http://www.openslam.org/)
from Matlab to C++ for use on the Giraff. Since this approach also allows the Giraff
to be used unmodified, which is cheaper and more convenient for the users, this seems
like the preferred approach. If we were to add a sensor, however, an infrared laser range
finder would probably be most useful, in order to minimize the risk of crashing into

things.

51






Bibliography

1]

2]

3]

4]

[5]

(6]

7]

8]

Kunnskapsdepartementet, “Meld. St. 13 (2011-2012): Utdanning for velferd,” 17
Feb. 2012.

S. S. Srinivasa, D. Ferguson, C. J. Helfrich, D. Berenson, A. Collet, R. Diankov,
G. Gallagher, G. Hollinger, J. Kuffner, and M. V. Weghe, “HERB: a home exploring
robotic butler,” Autonomous Robots, vol. 28, pp. 5-20, Jan. 2010.

K. Yamazaki, R. Ueda, S. Nozawa, M. Kojima, K. Okada, K. Matsumoto,
M. Ishikawa, I. Shimoyama, and M. Inaba, “Home-assistant robot for an aging
society,” Proceedings of the IEEE, vol. 100, no. 8, pp. 2429-2441, 2012.

M. L. Benmessaoud, A. Lamrani, K. Nemra, and A. Souici, “Single-camera EKF-
vSLAM,” Proceedings of World Academy of Science: Engineering € Technology,
vol. 42, pp. 924 — 929, June 2008.

A. Davison, “Real-time simultaneous localisation and mapping with a single cam-
era,” in Computer Vision, 2003. Proceedings. Ninth IEEE International Conference
on, pp. 1403 —1410 vol.2, Oct. 2003.

A. Ali and M. Nordin, “Sift based monocular slam with multi-clouds features for
indoor navigation,” in TENCON 2010 - 2010 IEEE Region 10 Conference, pp. 2326
—2331, Nov. 2010.

E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,”

in In Furopean Conference on Computer Vision, pp. 430-443, 2006.

L.-F. Gao, Y.-X. Gai, and S. Fu, “Simultaneous localization and mapping for au-
tonomous mobile robots using binocular stereo vision system,” in Mechatronics and
Automation, 2007. ICMA 2007. International Conference on, pp. 326 =330, Aug.
2007.

53



Bibliography

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

04

X. Kuai, K. Yang, S. Fu, R. Zheng, and G. Yang, “Simultaneous localization and
mapping (SLAM) for indoor autonomous mobile robot navigation in wireless sen-
sor networks,” in Networking, Sensing and Control (ICNSC), 2010 International
Conference on, pp. 128 =132, Apr. 2010.

W. Jeong and K. M. Lee, “CV-SLAM: a new ceiling vision-based SLAM technique,”
in Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ Interna-
tional Conference on, pp. 3195 — 3200, Aug. 2005.

C.-J. Wu and W.-H. Tsai, “Location estimation for indoor autonomous vehicle nav-
igation by omni-directional vision using circular landmarks on ceilings,” Robotics
and Autonomous Systems, vol. 57, pp. 546 — 555, May 2009.

S. Fu, H. ying Liu, L.-F. Gao, and Y.-X. Gai, “Slam for mobile robots using laser
range finder and monocular vision,” in Mechatronics and Machine Vision in Prac-
tice, 2007. M2VIP 2007. 1jth International Conference on, pp. 91 —96, Dec. 2007.

7. Zalevsky, A. Shpunt, A. Maizels, and J. Garcia, “Method and system for object
reconstruction.” Patent W0O2007043036, Apr. 2007.

T. Yap and C. Shelton, “SLAM in large indoor environments with low-cost, noisy,
and sparse sonars,” in Robotics and Automation, 2009. ICRA ’09. IEEE Interna-
tional Conference on, pp. 1395 —1401, May 20009.

S.-Y. Hwang, J.-T. Park, and J.-B. Song, “Autonomous navigation of a mobile robot

b

in Advanced Robotics and its
Social Impacts (ARSQ), 2010 IEEE Workshop on, pp. 40 —45, Oct. 2010.

using an upward-looking camera and sonar sensors,’

R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal
of Basic Engineering, vol. 82, pp. 35—45, Mar. 1960.

A. H. Jazwinski, Stochastic Processes and Filtering Theory. Academic Press, Apr.
1970.

S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,”
Proceedings of the IEEE, vol. 92, pp. 401 — 422, Mar. 2004.

J. Campbell, R. Sukthankar, I. Nourbakhsh, and A. Pahwa, “A robust visual odom-
etry and precipice detection system using consumer-grade monocular vision,” in
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE Inter-
national Conference on, pp. 3421 — 3427, Apr. 2005.



Bibliography

[20] D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry,” in Computer Vision and
Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer
Society Conference on, vol. 1, pp. [-652 — [-659 Vol.1, June 2004.

[21] A. J. Davison and N. Kita, “Sequential localisation and map-building for real-time
computer vision and robotics,” Robotics and Autonomous Systems, vol. 36, pp. 171
— 183, Sept. 2001.

[22] P. Pinies and J. Tardos, “Scalable SLAM building conditionally independent local
maps,” in Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ Interna-
tional Conference on, pp. 3466 —3471, Oct. 2007.

[23] H. Strasdat, J. M. M. Montiel, and A. Davison, “Scale drift-aware large scale monoc-
ular slam,” in Proceedings of Robotics: Science and Systems, (Zaragoza, Spain),
June 2010.

[24] J. Civera, O. G. Grasa, A. J. Davison, and J. M. M. Montiel, “l-point ransac
for extended kalman filtering: Application to real-time structure from motion and
visual odometry,” J. Field Robot., vol. 27, pp. 609-631, Sept. 2010.

[25] J. Civera, A. Davison, and J. Montiel, “Inverse depth parametrization for monocular
slam,” Robotics, IEEE Transactions on, vol. 24, no. 5, pp. 932-945, 2008.

[26] A. Stentz, “Optimal and efficient path planning for partially-known environments,”
in Robotics and Automation, 199/. Proceedings., 1994 IEEFE International Confer-
ence on, pp. 3310 =3317 vol.4, May 1994.

[27] Giraff Technologies AB, Advanced Operational Guide For Giraff Version 3.1, June
2011.

[28] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV
Library. O’Reilly Media, Oct. 2008.

[29] R. Laganiére, OpenCV 2 Computer Vision Application Programming Cookbook.
Packt Publishing, May 2011.

[30] D. L. Baggio, S. Emami, D. M. Escriv4, K. Tevgen, N. Mahmood, J. Saragih, and
R. Shilkrot, Mastering OpenCV with Practical Computer Vision Projects. Packt
Publishing, Dec. 2012.

[31] Giraff Technologies AB, Giraff Motor Controller Board Serial Interface, May 2012.

%)



Bibliography

[32] J. Canny, “A computational approach to edge detection,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 8, pp. 679-698, June 1986.

26



Appendix

57






A. The Motor Controller Interface

This appendix is intended to expand on the manufacturer’s own documentation, «Giraff
Motor Controller Board Serial Interface» [31]. It notes and corrects errors and omissions
in their documentation, and attempts to explain a few things that may be unclear.
However, you won’t need to have the manufacturer’s documentation in order for this

appendix to be useful to you.

A.1. Overview

The Giraff’s motor controller is mounted near the bottom of the Giraff’s chassis. Its
brain is an AVR microcontroller. The controller’s primary functions are to control the
two side wheels, to control the head’s tilt angle, and to report the state of the two
buttons and the dial on the Giraff’s chassis. It can also report the charge level of the
Giraff’s battery, but this is not covered in this appendix.

The controller responds to commands sent to it via a RS232-style serial interface.
For making the Giraff move, these commands don’t control the wheels directly, but sets
parameters such as acceleration, maximum speed, and distance, which the board then
uses to calculate a motion profile. This profile is followed until either the motion is
complete, or another command changes the motion profile. Since instantaneous changes

in speed aren’t physically possible (and trying it may cause damage to the Giraff), a

Speed
Maximum
*********** speed
> Time

Figure A.1.: Motion profile
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standard motion profile has a «ramp-up» with constant acceleration until the requested
maximum speed is reached, followed by a period of constant speed, then a final «ramp-
downy» with constant deceleration until the Giraff reaches a full stop at the requested
final position (or at least close to it). This results in a trapezoidal speed profile, as seen
in Figure A.1. (If the requested distance is very short, the maximum speed may not be

reached, resulting in a triangular speed profile.)

A.2. Movement styles

Any of the following styles can selected with the «set r» command.

A.2.1. Straight line motion

The Giraff can move forwards or backwards in straight lines. In this style, «set p» spec-
ifies the distance in meters (which can be negative to move backwards), «set v» specifies
the maximum speed (in meters per second), and «set ay specifies the acceleration. The
speed and acceleration should be positive numbers, regardless of direction. The distance
travelled and current speed is reported as «cdis» and «gvr», respectively. «cang» is

always reported as zero.

A.2.2. Rotating in place

The Giraff can rotate in place by driving its wheels in opposite directions. In this style,
the distance given to «set p» is in degrees, not meters. Positive turns right, negative
turns left. The angle travelled and current angular speed is reported as «cang» and
«gvry, respectively, though both of these have the opposite sign of what they should.
Note that, like for straight line motion, the speed taken by «set v» (and acceleration given
to «set a») is specified in meters, not in degrees. A program must convert accordingly

if it wants a specific turning speed. «cdis» is always reported as zero.

A.2.3. Curved motion

The Giraff can turn while moving by driving its wheels with different speeds. This style
is a superset of straight line motion, and is built around a concept called a «virtual gear

ratio». When starting or ending a turn, the gear ratio is changed gradually from the
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initial to the final gear ratio, much like acceleration does for velocity (though in this
case the rate of change is per meter, not per second).

In addition to the straight-line parameters, «set vg» specifies the maximum gear ratio
to use, and «set vgr» specifies the gear ratio rate of change (per meter). The latter
should be positive or negative depending on whether to turn right or left, respectively.
Due to bugs, I don’t know for sure whether the former should also be negative when
turning left, though it seems to work that way. Finally, «set cdp» specifies the position
(in meters) at which to start changing the gear ratio back towards zero, ultimately
ending the turn. The gear ratio will also automatically be reset to zero if the Giraff
completes its motion and stops.

In the manufacturer’s documentation [31], the wheel speeds are given as

Left Wheel Velocity = Overall Velocity * (1/(1-vg))
Right Wheel Velocity = Overall Velocity * (1/(1+4vg))

It also says a gear ratio of 1.0 is the ratio where the Giraff will pivot around its own
wheels. Since the above formulas don’t actually achieve this (it would cause a division
by zero), or even maintain the overall velocity, I believe the correct formulas to use are

actually

Left Wheel Velocity = Overall Velocity * (1+vg)
Right Wheel Velocity = Overall Velocity * (1-vg)

(This is acknowledged by an engineer at Giraff Technologies.)

When executing curved motion, «cdis» still reports the distance travelled along the
curve, but according to the manufacturer, «gvr» reports the velocity of the left wheel,
not the overall velocity. Moreover, testing shows that «gvr» is calculated using the
(probably incorrect) formulas from the documentation, so a program needs to take these
things into account when trying to determine the actual speed. The current virtual gear
ratio is reported as «cvg». The angle that has been covered is not reported, as «cang»
is still always zero. A program would need to calculate such things on its own, based on
distance travelled and such.

Also note that attempting to preempt a curved motion command in the current ver-
sion of the microcontroller may cause unexpected behaviour. Depending on the circum-
stances, the virtual gear ratio may jump instantly to an undesirably high ratio. The
only way I found to avoid this is to set «vgr» to zero when preempting, but this will

cause the virtual gear ratio to jump instantly to zero instead. This is, of course, also
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undesirable due to the physical stress it causes to the Giraff’s hardware. The problem
has been reported to Giraff Technologies and will hopefully be fixed in a future revision

of the microcontroller’s software.

A.3. Connection details

The controller’s serial interface is wired to the main computer’s serial port. To commu-

nicate with the controller, the parameters should be set to

e Baud Rate: 115200
e Data Bits: 8

e Stop Bit: 1

e Parity: None

When a computer opens the serial port, it is expected to set the DTR, (Data Terminal
Ready) signal high. When the controller board detects the DTR signal, it will power up
and identify itself by transmitting a line like the following:

# Giraf wersion, date
(followed by carriage return and line feed characters). From testing on an actual Giraff,
however, it appears that before this line, another line may appear, saying just Ca>. It
may be an artifact of the board’s initialization process and should probably be ignored.

After the version line, an OK> prompt will appear (followed by carriage return and
line feed) when the board is ready to receive commands. Commands should not be sent
before this. When a command has been sent to the board (followed by a carriage return
only), the board will generate an appropriate response, followed by a new OK> prompt.
Again, a new command should not be sent before the new OK prompt has been seen.

All commands and responses are made up of regular ASCII strings. In the documen-
tation, parameters are regular human-readable decimal numbers (in ASCII encoding).
However, testing showed that while commands can be sent using this format, responses
do not seem to work like this. This was not in the documentation, but some detective

work suggested that, depending on the type of the parameter, the responses are encoded

as follows:
Type Transfer format Binary interpretation
Integer Ixaabbeedd 32-bit two’s complement integer
Floating-point F*aabbcedd IEEE 754 single-precision floating point

62



A.4. Commands

The transfer formats encode the binary value as hexadecimal numbers, in little-endian
byte order. That is, each pair of hexadecimal digits (i.e., each 8-bit byte) has the most
significant digit to the left, but on the other hand, the most significant (aka highest
order) byte is to the right (i.e., aa is least significant, and dd is most significant). Thus,
some care needs to be taken to keep things ordered correctly when decoding the value.

Some commands («get button datay and «get bulk data») return more than one
parameter. In this case, the parameters are returned as a comma-separated name-value
list. For example, the response from «get button data» looks like

but0:value, butl :value, dial : value

where each individual value is encoded as described above.

A.4. Commands

All listed «set» commands have a corresponding «get» command which returns the last
set value. Commands that start neither with «set» nor «get» do not return any values
(only the OK> prompt).

Where not otherwise specified, command parameters are floating-point values.

A4.1. setv

Sets the maximum speed (velocity), in meters per second.

A.4.2. setr

Selects the movement style, according to the following table.

r mode

r=0 Rotating in place

0 <r <50 | Straight line motion

50 <r Curved motion

(The documentation do not mention the r > 50 requirement for curved motion.)

A.4.3. set a

Sets the acceleration, in meters per second per second.
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A4.4. setp

Starts a move. All other motion parameters must be set before issuing this command.
When rotating in place, specifies number of degrees to rotate. When moving in a
straight or curved line, specifies number of meters to move. (See A.2 for details.)
If another move is already in progress, the previous move may be preempted, or the
new move queued until the previous move is complete, depending on what mode is set
with «set mode». (See A.4.8.)

A.4.5. get cang

Gets the current angle.
When rotating in place, returns degrees rotated so far. When moving in a straight or

curved line, always zero.

A.4.6. get cdis

Gets the current distance.
When moving in a straight or curved line, returns distance travelled so far. When

rotating in place, always zero.

A.4.7. get gvr

Gets the current (instantaneous) velocity.
When rotating in place, returns degrees per second. When moving in a straight or
curved line, returns meter per second. If moving in a curved line, special care must be

taken when interpreting this value. (See A.2.3.)

A.4.8. set mode

An integer. Sets the movement mode. This is a bitmask. The following bits can be set
(but can not be read back):

Bit | Value Description
0 1 Absolute movement mode
2 4 Buffer next move

The following bits can be read:
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Bit | Value Description

3 8 ESTOP
7 128 | Currently moving

In relative mode, all moves are relative to the current position. When absolute mode
is enabled, the Giraff begins tracking distances since the moment absolute mode is
enabled. All moves, including the «set p» parameters and the reported «cang» and
«cdisy, becomes relative to this position. Note that this only tracks distance travelled,
and is dependent on the current movement style. Changing the style will reset the

absolute mode position to the current position.

In unbuffered mode, new moves issued with «set p» preempt the current move, and
starts immediately. When buffering is enabled, a new move gets queued and only starts
when the previous move completes (i.e., when the Giraff comes to a full stop). Up to 4

moves can be buffered.

If the ESTOP bit is set, it means something with the wheels is not working correctly.

Details may be available from the manufacturer.

A.4.9. set undock

Starts an undock sequence. Queues two moves: one to back out the specified distance,

and one to rotate 180 degrees.

A.4.10. home

No parameter. Starts the head homing sequence. The head slowly tilts, searching for
its «home» position. This is the position the head is in when the Giraff is «sleeping»,

about 45 degrees off vertical.

Note that the homing sequence appears to start automatically when the microcon-

troller is activated, so issuing this command is usually not needed.

A.4.11. get tilt _homing state

An integer. Returns the homing status.
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Value Description

0 Homing not started

Homing started

1
2 Homing failed
3

Homing succeeded

A.4.12. set tilt angle from home

Tilts the head to the given angle, in radians, relative to the home position. (The docu-
mentation says relative to vertical, but that’s not the case.)
If the head homing sequence has not been completed, this command will preempt the

homing sequence and usually tilt the head to the wrong angle.

A.4.13. set vg

Sets the maximum virtual gear ratio. See A.2.3.

A.4.14. set vgr

Sets the virtual gear ratio rate of change (per meter). See A.2.3.

A.4.15. set cdp

Sets the Clothoid Deceleration Point, the point in the move where the virtual gear ratio

starts decelerating to its final value. See A.2.3.

A.4.16. get cvg

Gets the current virtual gear ratio. See A.2.3.

A.4.17. get but0

Gets number of button 0 presses since microcontroller startup.

A.4.18. get butl

Gets number of button 1 presses since microcontroller startup.
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A.4.19. get dial

Gets rotation of dial since microcontroller startup.

A.4.20. get button data

Gets «butO», «butl», and «dial» with a single command. Returns the parameters as a
list.

A.4.21. get bulk data

Gets «cang», «cdisy, «gvry, «tilt angle from home», «imdl», «imdr», «cvg», and
«modey» with a single command. Returns the parameters as a list. Very useful for

regular retrieval of motor odometry.
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B. Source code listings

This appendix has been added for the convenience of those reading this thesis, so that
they don’t have to get a copy of the CD-ROM to see the source code. Instead, they can

peruse it here.

B.1. GiraffMotor.hpp

#ifndef GIRAFFMOTOR_HPP
#define GIRAFFMOTOR_HPP

#include "DisplayWindow.hpp"

#include <windef.h>

#include <fstream>
class GiraffMotorSim;

class GiraffMotor

{

public:
enum ReplyType {
NoReply,
SimpleReply,
BulkReply

bi

GiraffMotor (DisplayWindowx win);
~GiraffMotor();

bool start();

void Stop();

bool Process();

bool StartRecord(const std::string& name);
void StopRecord();

bool StartPlayback (const std::string& name);
void StopPlayback () ;

// manual/interactive commands triggered by user
void Undock () ;

void Home () ;

void SetTilt (double angle);

void GetBulkData();

void SetMotion (double speed);

void SetTurn (double speed);

// special functions
bool SendCommand(const std::string& cmd,
bool silent=false);
void AddReply (const std::string& reply);
std::string GetParameter (const std::string& param,
ReplyType type,
bool silent=false);

std::string SetParameter(const std::string& param,
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double value,
bool silent=false);

bool SendUserCommand(const std::string& cmd);

// Hack to check impact of get_bulk data per-frame,
// should otherwise always be left on.

// This field should be removed, especially if motor
// control is moved into a separate thread

bool m_autoupdate;

private:
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static const double turn_factor;
DisplayWindow m_win;

HANDLE m_port;

LONGLONG m_freq;

std::ofstream m_mrec;

std::ifstream m_mplay;

GiraffMotorSimx m_sim;

bool m_rec, m_play;

LONGLONG m_rectime, m_playtime;
std::string m_readbuf;

bool m_bufchecked;

double m_accel, m_vgaccel;

// current position estimate

double m_curx, m_cury, m_curdir, m_curspd, m_currot;
// current user request

double m_usrmotionspd, m_usrturnspd;
double m_curmotionspd, m_curturnspd;

// current motor command

int m_turnmode;

unsigned m_absmode;

double m_speed, m_gear, m_gearrate, m_gearpos;
double m_nextdis, m_nextpos, m_brkdist;
// current motor status

double m_cang, m_cdis, m_gvr, m_cvg;
double m_lcang, m_lcdis, m_lgvr, m_lcvg;
unsigned m_cmode, m_lmode;

LONGLONG m_cstamp, m_lstamp;

double m_timedelta;

bool m_not_first;

void RecordParameter (const std::string& param,

const st string& reply,
const std::string& orig,
ReplyType type,
char flag);
bool PlaybackDataf();
bool InitPort();
bool InitSimulator();
void WaitForLine();
bool ReadLine(std::string& line,
ReplyType type=NoReply,
bool silent=false);
bool ReadReply (std::string& reply,
ReplyType type,
bool silent=false);
std::string WriteCommand(const std::string& out,
ReplyType type,
char flag,
bool silent);
bool ReadVersion();
std::string FormatReply (const std::string& reply,
ReplyType type);
void FormatField(std::ostream& ost,
std::istream& ist);
unsigned TolInt (unsigned u);
float ToFloat (unsigned u);
unsigned TolInt (const std::string& data);
float ToFloat (const std::string& data);
void ParseBulkData(const std::strings& data);
void RunMotor () ;

void CalcMove () ;



bi

void CalcRotate();

void CalcMoveStep (double dis);

void CalcRotateStep (double ang);

double CalcMoveBrakeDist (double spd);
double CalcRotateBrakeDist (double rot);
void UpdatePosition();

void ShowPosition();

#define GIRAFF_BUFFERS 4

class GiraffMotorSim

{

public:

GiraffMotorSim(GiraffMotor* ctl);
~GiraffMotorSim() ;

void SimulateCommand (const std::string& cmd);

private:

GiraffMotor* m_ctl;

static const double turn_factor;
static const double default_tilt;

struct Move
{
unsigned mode;
// parameters used
double v, r, a, p;
double vg, vgr, cdp;
bi

// wheel moves

unsigned m_bufcount;

Move m_buf [GIRAFF_BUFFERS+1];
// head tilts

unsigned m_homing;

double m_tilt;

// for timing

// (c = counter value, equivalent to time)

LONGLONG m_freq, m_lastc;
// Current Giraff state
double m_cang, m_cdis, m_cvg;

double m_vang, m_vdis, m_gvr;

// Current motion profile

LONGLONG m_startc, m_stopc;

// distance part (for moving around)
LONGLONG m_updc, m_downdc;

double m_startdv, m_peakdv, m_rampda;

double m_refdp, m_updp, m_downdp, m_stopdp;

// angular part (for turning)
LONGLONG m_upac, m_downac;

double m_startav, m_peakav, m_rampaa;

double m_refap, m_upap, m_downap, m_stopap;

// gear ratio part

LONGLONG m_upgc, m_downgc, m_stopgc;

double m_startgr, m_peakgr, m_rupgr, m_rdowngr;

double m_stopgr, m_downgd;

void StartStraight (double dist,
double start_pos,
double start_spd,
double cdp,
double start_vg)
void StartRotate (double degrees,
double start_angle,
double start_spd)

double TimeFromPosition(double pos,

double
double
double

ramp_up_time,
cruise_time,

ramp_down_time,

B.1. GiraffMotor.hpp
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double ramp_up_dist,
double cruise_dist,
double ramp_down_dist,
double accel,
double start_speed,
double peak_speed) ;

void UpdateMotion();

void StartMotion();

void EndMotion();

bool QueueMotion();

bool QueueUndock (double dist);

void Simulatelag(unsigned bytes);

void SimulateReply(const std::string& reply);

void InputFloat();

void Output (std::ostream& out, double val);

void Output (std::ostream& out, unsigned val);

i

#endif // GIRAFFMOTOR_HPP

B.2. GiraffMotor.cpp

#include "GiraffMotor.hpp"
#include <windows.h>

#include <sstream>

#include <iomanip>
#define PORT_NAME "COM1"
using namespace std;

// The acceleration the GiraffMotor class uses by default.
// (Not necessarily the same as what the motor

// controller board itself uses by default.)

#define DEF_ACCEL 0.5

// The virtual gear ratio rate of change the GiraffMotor
// class uses by default.
#define DEF_VGACCEL 1.0

// The distance between the Giraff’s wheels are 499mm,

// so when rotating in place, their turn radius is 249.5mm.
#define TURN_RADIUS 0.2495

// Conversion factor between degrees and

// circle arc covered by wheels.

#define TURN_FACTOR (180 / (TURN_RADIUS % M_PI))

// This is used when the user 1is controlling the motor
// manually, so the distance to go isn’t known in

// advance. To calculate the distance we tell the

// motor to go, we multiply the "braking distance"

// with this factor. (Every time the distance left falls
// below a factor of 2, a new command is automatically
// sent to the controller in order to make it keep going.
// Hence, this factor must be more than 2.)

#define AHEAD_FACTOR 10

// Use absolute mode, which makes position tracking
// a little more accurate in some cases.

// Unfortunately, curved motion may be troublesome in
// this mode, because of bugs in the controller.
//#define USE_ABSOLUTE_MODE

// Whether the simulated controller will reverse back if

// its braking distance is too long to stop at the requested
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// position (applicable when the destination position is
// suddenly changed while traveling at full speed).

// The real Giraff seems to do this in absolute mode.
#define SIM_OVERSHOOT_FIX

// Enable simulation of curved motion.
#define SIM_CURVED

// gvr is (incorrectly) speed of left wheel
// instead of overall speed.
#define GVR_IS_LEFT

// Show the "OK >" prompt on the display.
//#define SHOW_PROMPT

enum ModeBit {
MODE_ABSOLUTE = 1,
MODE_BUFFERED = 4,
MODE_ESTOP = 8,
MODE_MOVING = 128

bi

static double fix_degrees (double angle)
{
while (angle < 0)
{
angle += 360;
}
while (angle >= 360)
{
angle -= 360;
}
// returned angle is between 0 and 360
return angle;

#if 0

static double ctr_degrees (double angle)

{
// returned angle is between -180 and 180
return fix_degrees (angle+180)-180;

}

#endif

GiraffMotor* motorControl;

const double GiraffMotor::turn_factor = TURN_FACTOR;

GiraffMotor::GiraffMotor (DisplayWindowx win)
m_autoupdate (true),
m_win(win), m_port (INVALID_HANDLE_VALUE),
m_sim(NULL), m_rec(false), m_play(false),
m_rectime (0), m_playtime(0),
m_bufchecked (false),
m_accel (DEF_ACCEL), m_vgaccel (DEF_VGACCEL),
m_curx(0), m_cury(0), m_curdir(0), m_curspd(0),
m_usrmotionspd(0), m_usrturnspd(0),
m_curmotionspd(0), m_curturnspd(0),
m_turnmode (0), m_absmode (0),
m_cang (0), m_cdis(0), m_gvr(0), m_cvg(0),
m_lcang(0), m_lcdis(0), m_lgvr(0), m_lcvg(0),
m_cmode (0), m_lmode (0),
m_cstamp (0), m_lstamp(0), m_timedelta(0),
m_not_first (true)

// get timer frequency
LARGE_INTEGER freq;
QueryPerformanceFrequency(&freq);

m_freq = freqg.QuadPart;

GiraffMotor::~GiraffMotor ()

B.2. GiraffMotor.cpp
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StopRecord () ;
StopPlayback() ;
Stop();

bool GiraffMotor::Start ()

{

if (!InitPort())

{
// Could not initialize serial port
Stop () ;
return false;

}

if (!ReadVersion())

{
// Did not detect Giraff board
//Stop();
return true;

}

return true;

void GiraffMotor::Stop()

{

// Stop any running simulation
if (m_sim)
{
delete m_sim;
m_sim = NULL;
}
// If the serial port is open, close it
if (m_port != INVALID_HANDLE_VALUE
{
CloseHandle (m_port) ;
m_port = INVALID_HANDLE_VALUE;

bool GiraffMotor::Process|()

{
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std::string line;
// Check for unexpected responses,
// maybe resulting from user commands
while (ReadLine(line)
{
// unexpected
}
if (!m_autoupdate)
{
return true;
}
if (m_play)
{
if (!PlaybackData())
{
return false;
}
UpdatePosition();
}
else
{
// Transfer current motor state
// (this is a few ms of just waiting,
// maybe consider creating a separate
// thread for these things, though that
// may make it harder to synchronize
// readings from the camera and motor)
string data = GetParameter ("bulk_data", BulkReply,
ParseBulkData (data) ;
// Send motor commands as needed
RunMotor () ;

true);



}
ShowPosition();

return true;

bool GiraffMotor::StartRecord(const string& name)
{
if (m_rec)
{
StopRecord() ;
}
string fn = name + ".txt";

// start motor recording

m_mrec.open (fn.c_str(), ios_base::out | ios_base::trunc);

if (m_mrec.is_open())
{
// get reference time for recording
LARGE_INTEGER current;
QueryPerformanceCounter (&current) ;
m_rectime = current.QuadPart;
// set recording state
m_rec = true;
m_win->PrintLeft ("Starting motor record " + fn);
return true;
}
else
{
m_win->PrintLeft ("Couldn’t start motor record");

return false;

void GiraffMotor::StopRecord()
{
if (m_rec)
{
m_mrec.close();
m_rec = false;
m_win->PrintLeft ("Motor record stopped");

bool GiraffMotor::StartPlayback (const string& name)
{
string fn = name + ".txt";
// start motor recording
m_mplay.open(fn.c_str(), ios_base::in);
if (m_mplay.is_open())
{
// get reference time for playback
LARGE_INTEGER current;
QueryPerformanceCounter (&current) ;
m_playtime = current.QuadPart;
// set recording state

m_play = true;

m_win->PrintLeft ("Starting motor playback " + fn);

return true;

}

else

{

m_win->PrintLeft ("Couldn’t start motor playback");

return false;

void GiraffMotor::StopPlayback (
{
if (m_play)
{
m_mplay.close();
m_play = false;
m_win->PrintLeft ("Motor playback stopped");

B.2. GiraffMotor.cpp
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void GiraffMotor::RecordParameter (const std::string& param,
const std::string& reply,
const std::string& orig,
ReplyType type,
char flag)

if (!m_rec)
{
return;
}
LARGE_INTEGER current;
QueryPerformanceCounter (&current) ;
LONGLONG diff = current.QuadPart - m_rectime;
double ofs = (double)diff / m_freq;
m_mrec << setprecision(3) << fixed
<< setw(8) << ofs
<< ":i[" << flag << "] "
<< param << ": "
<< FormatReply (reply, type);
if (lorig.empty())
{
m_mrec << " <= " << orig;
}

m_mrec << endl;

bool GiraffMotor::PlaybackData()
{
if (m_mplay.eof())
{
// already complete
return false;

for (;;)

double ofs;

string line;

m_mplay >> ofs;

if (m_mplay.eof())

{
// playback complete
return false;

}

getline (m_mplay, line);

// delay as appropriate to force the
// playback to have about the same speed
// as the original recording did
LARGE_INTEGER current;
QueryPerformanceCounter (&current) ;
LONGLONG target = m_playtime + ofs x m_freq
LONGLONG diff = target - current.QuadPart;
if (diff > 0)
{

unsigned msec = (diff x 1000) / m_freqg

if (msec > 0)

{

Sleep (msec) ;

if (line.length() < 4)
{

return false;

char flag = line[2];
size_t colpos = line.find(": ", 5);

if (colpos == string::npos)
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return false;
}
string param = line.substr(5, colpos-5);
size_t replypos = colpos+2;
size_t seppos = line.find(" <= ", replypos);
string reply, orig;
if (seppos == string::npos)
{
reply = line.substr(replypos);
}
else
{
reply = line.substr(replypos, seppos-replypos);
orig = line.substr (seppos+4);

if (flag == ’ '’ && param == "bulk_data")
{
ParseBulkData (reply);
if (m_brkdist != 0)
{
// update state as needed to estimate
// the original movements
if (! (m_cmode & MODE_MOVING))
{
m_brkdist = 0;

}
// this kind of record happens after we get a video frame,
// so exit loop here in order to display the recorded frame
break;
}
if (flag == ’S’)
{
// recorded a SetParameter
string cmd = "set " + param + " " + orig;
m_win->PrintRight (cmd) ;
m_win->PrintRight (reply)
// parse what we need to estimate
// the original movements

istringstream ist (reply);

if (param == "r")
{
double r;
ist >> r;
m_turnmode = (r > 0) 2 1 : -1;
}
else if (param == "mode")

{
// For mode, the reply is generally incorrect,
// so take the mode from the original request.
istringstream ist2 (orig);
unsigned mode;
ist2 >> mode;
m_absmode = mode & MODE_ABSOLUTE;

}

else if (param == "v")

ist >> m_speed;

else if (param == "vg")
{

ist >> m_gear;
}
else if (param == "vgr")
{

ist >> m_gearrate;
}
else if (param == "p")
{

double pos;
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ist >> pos;
if (m_turnmode > 0)
{

double dist = m_absmode ? pos - m_cang : pos;

if (dist != 0)
{
int sign = (dist > 0) 2 1 : -1;
m_brkdist = CalcMoveBrakeDist (sign x m_speed)

}
else if (m_turnmode < 0)
{

double dist = m_absmode ? pos - m_cdis : pos;

if (dist !=0)
{
int sign = (dist > 0) ? 1 : -1;
m_brkdist = CalcRotateBrakeDist (sign » m_speed = turn_factor);
}
}
}
}
else if (flag == 'G’)

{
// recorded a GetParameter
string cmd = "get " + param;
m_win->PrintRight (cmd) ;
m_win->PrintRight (reply);

}

else if (flag == 'C’)

{
// recorded a SendCommand

m_win->PrintRight (param);

}

return true;

void GiraffMotor: :Undock ()
{

SetParameter ("undock", -0.5);

void GiraffMotor: :Home ()
{

SendCommand ("home") ;

void GiraffMotor::SetTilt (double angle)
{

SetParameter ("tilt_angle_from_home", angle);

void GiraffMotor::GetBulkData ()
{
GetParameter ("bulk_data", BulkReply);

void GiraffMotor::SetMotion (double speed)
{

m_usrmotionspd = speed;

void GiraffMotor::SetTurn (double speed)
{

m_usrturnspd = speed;

bool GiraffMotor::InitPort ()
{
#ifdef PORT_NAME
// Try to open the serial port that is

// connected to the motor control board.
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m_port = CreateFile (PORT_NAME,
GENERIC_READ | GENERIC_WRITE,
0,
NULL,
OPEN_EXISTING,
0,
NULL) ;
if (m_port == INVALID_HANDLE_VALUE)
{
// Could not open real serial port,
// initialize simulator instead,
// so the rest of the program
// can still be used.
return InitSimulator();
}
// Get current serial port settings
DCB dcb;
memset (&dcb, 0, sizeof(dcb));
dcb.DCBlength = sizeof (dcb);
if (!GetCommState (m_port, &dcb))
{
// Could not get state from serial port
return false;
}
// Configure serial port
// Set 115200 bps, 8 data bits, no parity, 1 stop bit
dcb.BaudRate = CBR_115200;
dcb.ByteSize = 8;
dcb.Parity = NOPARITY;
dcb.StopBits = ONESTOPBIT;
// Set event char to the end of line character,
// so that we can use WaitCommEvent to wait
// for the arrival of a complete line
dcb.EvtChar = '\n’;
if (!SetCommState (m_port, &dcb))
{
// Could not configure serial port

return false;

// Set the events that WaitCommEvent should wait for.
if (!SetCommMask (m_port, EV_ERR | EV_RXFLAG)

// Could not configure serial port
return false;
}
// Set appropriate timeouts to make sure ReadFile
// always returns immediately without waiting
// (possibly returning an error if no data is
// available). This is necessary since we
// don’t know in advance how long a reply is
// going to be. So if we need to wait for one,
// we’d rather use WaitCommEvent, then use
// ReadFile to read whatever we got, without
// waiting any longer than that.
COMMTIMEOUTS tos;
tos.ReadIntervalTimeout = MAXDWORD;
tos.ReadTotalTimeoutMultiplier = 0;
tos.ReadTotalTimeoutConstant = 0;
tos.WriteTotalTimeoutMultiplier = 0;
tos.WriteTotalTimeoutConstant = 0;
if (!SetCommTimeouts (m_port, &tos))
{
// Could not configure serial port
return false;
}
return true;
#else
// No serial port, initialize simulator
return InitSimulator();
#endif
}
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bool GiraffMotor::InitSimulator()
{
m_sim = new GiraffMotorSim(this);

return true;

void GiraffMotor::WaitForLine (

{
if (!m_port)
{

return;

}
DWORD mask = 0;
// There’s a risk that this could wait forever
// if the motor board is failing, perhaps we
// should use the overlapped I/O mode so that
// we can limit the waiting time.
WaitCommEvent (m_port, &mask, NULL);

bool GiraffMotor::ReadLine(string& line,
ReplyType type,
bool silent)

// see if there’s already a complete line in the buffer
if (!m_bufchecked &&
!'m_readbuf.empty())
size_t n = m_readbuf.find(’\n’);
if (n != string::npos)
{
// found one, return it
n++; // end line after the \n
line = m_readbuf.substr(0, n);
m_readbuf.erase (0, n);
if (!silent)
{
m_win->PrintRight (FormatReply (line, type));
}
return true;
}
else
{

m_bufchecked = true;

}
// no such luck, try to read more from the serial port
char buf[256];
DWORD bytesRead;
if (!m_port ||
'ReadFile (m_port, buf, sizeof (buf), &bytesRead, NULL)

// read failure
return false;
}
// read successful, see if we now have a complete line
charx eol = (charx)memchr (buf, ’\n’, bytesRead);
if (eol)
{
// we have one, return it
eol++; // end line after the \n
line = m_readbuf;
line.append (buf, eol-buf);
// store remainder of buffer for later
m_readbuf.assign(eol, buf+bytesRead-eol);
m_bufchecked = false;
if (!silent)
{
m_win->PrintRight (FormatReply (line, type));
}

return true;
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else

// incomplete line, store buffer for later
m_readbuf.append (buf, bytesRead);
m_bufchecked = true;

return false;

bool GiraffMotor::ReadReply(strings& reply,
ReplyType type,
bool silent)

string linel, line2;

if (type != NoReply)

{
while (!ReadLine(linel, type, silent))
{

WaitForLine () ;

}
#ifndef SHOW_PROMPT
silent = true;
#endif // SHOW_PROMPT
while (!ReadLine(line2, NoReply, silent))
{
WaitForLine();
}
// Remove the \r\n from the reply.
reply = linel.substr (0, linel.length()-2);
// Ignore line2 for now, it is always supposed
// to be "OK >\r\n", and in the event that it isn’t,
// I’m not yet sure what to do about it.

return true;

void GiraffMotor::AddReply (const string& reply)
{

m_readbuf += reply;

m_bufchecked = false;

string GiraffMotor::WriteCommand(const stringé& out,
ReplyType type,
char flag,
bool silent)

string reply;

if (!silent)

{
m_win->PrintRight (out);

}

if (m_sim)

{
m_sim->SimulateCommand (out) ;
ReadReply (reply, type, silent);
return reply;

}

DWORD written = 0;

if (!m_port |
'WriteFile (m_port, out.data(), out.length(),

&written, NULL) ||

written != out.length() ||
'ReadReply (reply, type, silent)

return string();

}

return reply;

bool GiraffMotor::SendCommand(const stringé& cmd,
bool silent)
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string reply;

reply = WriteCommand(cmd + "\r", NoReply, 'C’, silent);

RecordParameter (cmd, reply, "", NoReply, ’'C’);

return true;

string GiraffMotor::GetParameter (const string& param,
ReplyType type,
bool silent)

string reply;
char flag = silent 2 7 ' : ’'G’;
ostringstream ost;
ost << "get " << param << "\r";
reply = WriteCommand(ost.str(), type,
flag, silent);
RecordParameter (param, reply, "", type, flag);
return reply;

string GiraffMotor::SetParameter (const string& param,
double value,
bool silent)

string valstr, reply;
ostringstream ost;
ost << value;

valstr = ost.str();

reply = WriteCommand("set " + param +

" " 4+ valstr + "\r", SimpleReply,

’s’, silent);
RecordParameter (param, reply, valstr, SimpleReply,
return reply;

bool GiraffMotor::SendUserCommand(const string& cmd)
{
string reply;
if (cmd.compare (0, 4, "get ") == 0)
{
if (cmd == "get bulk_data")
{
reply = WriteCommand(cmd + "\r", BulkReply,
RecordParameter (cmd.substr(4), reply,
"", BulkReply, 'G’);
}
else

{

reply = WriteCommand(cmd + "\r", SimpleReply, ’'G’,

RecordParameter (cmd.substr(4), reply,

"", SimpleReply, 'G’);

}

else if (cmd.compare(0, 4, "set ") == 0)

{
size_t n = cmd.find (" ', 4);
reply = WriteCommand(cmd + "\r", SimpleReply, '
if (n
{

!= string: :npos)

RecordParameter (cmd.substr (4, n-4), reply,

rS7y;

rGr,

false) ;

false);

s’, false);

cmd.substr(n+l), SimpleReply, 'S’

}
else
{
RecordParameter (cmd.substr(4), reply,

"", SimpleReply, ’S’);

}

else
{
reply = WriteCommand(cmd + "\r", NoReply, 'C’,
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RecordParameter (cmd, reply, "", NoReply, ’C’);
}

return true;

bool GiraffMotor::ReadVersion (
{
string line;
// read initial line
while (!ReadLine(line)
{
WaitForLine () ;

if (line.at (0) != "#)

// Seems the controller might send an extra line

// (saying "Ca>") before it sends the version
// line. If this happens, try reading again.
while (!ReadLine(line)

{

WaitForLine();

if (line.at(0) != "#")

// If we still haven’t got a version, give up.
return false;

}

// We have the version line, wait for OK line.

if (!ReadReply(line, NoReply)

{
return false;

}

// All done.

return true;

string GiraffMotor::FormatReply (const string& reply,
ReplyType type)

istringstream ist (reply);

ostringstream ost;

ost << setfill(’0’) << setprecision(5) << fixed;
if (type == BulkReply)

{

// Format bulk_data, which is a comma-separated

// list of variables, where the name is separated

// from the value by a colon.
int next = ist.get();
while (next != EOF)
{
// copy names and commas verbatim
ost.put (next);
if (next == ’:")
{
// convert value
FormatField(ost, ist);
}
next = ist.get();

}

else if (type == SimpleReply)

{
// Format a normal single-value reply.
FormatField(ost, ist);

}

else

{
// copy reply verbatim
int next = ist.get();
while (next != EOF)
{
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ost.put (next);
next = ist.get();

}

return ost.str();

void GiraffMotor::FormatField(ostream& ost,

istream& ist)

int next = ist.peek();
char ch;

unsigned u;

switch (next)
{
case 'I’:
// hex—-encoded 32-bit integer
ist.get(ch); // "I’
ist.get(ch); // 7+’
ist >> hex >> u;
ost << TolInt (u);
break;
case 'F':
// hex-encoded 32-bit floating point
ist.get(ch); // "F’
ist.get (ch); // 7+’
ist >> hex >> u;
ost << ToFloat (u);
break;
default:
// assume ASCII-encoded floating point,
// copy unmodified

while (next != EOF &&
next != ’'\r’ &&
next !="',")

ch = ist.get();

ost.put (ch);

next = ist.peek();
}

break;

unsigned GiraffMotor::ToInt (unsigned u)
{
union {
unsigned val;
unsigned char d[4];

bovi

// convert byte order
v.d[0] = u >> 24;
v.d[1l] = u >> 16;
v.d[2] = u >> 8;
v.d[3] = u;

return v.val;

float GiraffMotor::ToFloat (unsigned u)
{

union {
float val;
unsigned char d[4];
}ovi
// convert byte order
v.d[0] = u >> 24;
v.d[1l] = u >> 16;
v.d[2] = u >> 8;
v.d[3] = u;

return v.val;
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unsigned GiraffMotor::TolInt (const strings& data)
{

istringstream ist (data);

char ch;

unsigned u, 1i;

switch (ist.peek())
{
case 'I’:
// hex-encoded 32-bit integer
ist.get(ch); // "I’
ist.get(ch); // " *’
ist >> hex >> i;
u = ToInt (i);
break;
case 'F’:
// hex—encoded 32-bit floating point
// (wrong type for this routine,
// shouldn’t happen)
u = 0;
break;
default:
// assume ASCII-encoded integer
ist >> u;
break;
}

return u;

float GiraffMotor::ToFloat (const string& data)
{

istringstream ist (data);

char ch;

unsigned u;

float f;

switch (ist.peek())

{

case 'I’:
// hex-encoded 32-bit integer
ist.get(ch); // "I
ist.get(ch); // 7 *’
ist >> hex >> u;
f = Tolnt (u);
break;

case 'F':
// hex—encoded 32-bit floating point
ist.get(ch); // "F’
ist.get(ch); // 7+’
ist >> hex >> u;
f = ToFloat (u);
break;

default:
// assume ASCII-encoded floating point
ist >> f;
break;

}

return f;

void GiraffMotor::ParseBulkData(const string& data)
{
// save previous state

m_lcang = m_cang;

m_lcdis = m_cdis;

m_lgvr = m_gvr;

m_lcvg = m_cvg;

m_lmode = m_cmode;

m_lstamp = m_cstamp;

// estimate time delta for new state

LARGE_INTEGER current;
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QueryPerformanceCounter (&current) ;
m_cstamp = current.QuadPart;
if (m_not_first)
{
if (m_cstamp == m_lstamp)

{

// 1f no time has passed since last update

// for some reason, do not update state yet,

// as doing so could cause problems later

// (should never happen, but just in case)

m_timedelta = 0;
return;
}
m_timedelta = (double) (m_cstamp - m_lstamp)

}

else

{

m_timedelta 0;
m_not_first = true;

}

// iterate through each name:value combination

size_t cur_pos = 0;

while (cur_pos < data.length())

{
// get the name
size_t colon = data.find(’:’,
if (colon == string::npos)

{

// not a valid entry, abort

break;

}

string name = data.substr(cur_pos,

// get the value
size_t comma = data.find(’,’,
if (comma != string::npos)

{

// comma found, more entries follow

cur_pos = comma+l;
}

else

{

/ m_freq;

colon-cur_pos) ;

// no more commas, this is the last entry

cur_pos = data.length();
comma = data.length();

}

string value = data.substr(colon+l,

// parse the entry
if (name == "cang")
{
m_cang = -ToFloat (value);
}
else if (name == "cdis")
{
m_cdis = ToFloat (value);
}
else if (name == "gvr")
{
m_gvr = ToFloat (value);
}
else if (name == "cvg")
{
m_cvg = ToFloat (value);
}
else if (name == "mode")
{

m_cmode = Tolnt (value);

void GiraffMotor::RunMotor ()
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UpdatePosition();

if (m_turnmode > 0 && m_brkdist != 0)
{
// Motor is currently moving...
if (m_usrmotionspd == 0)
{
// ...and we’re waiting for it to stop...
if (m_cmode & MODE_MOVING)
{
// ...and it hasn’t stopped yet.
// Calculate braking distance from current speed,
// plus 0.0ls "reaction time" for sending
// commands to the controller.
double brake_dist = CalcMoveBrakeDist (m_curspd) +
m_curspd * 0.01;
> 0 &&
> (m_cdis + brake_dist)) ||
(m_nextdis < 0 &&
< (m_cdis + brake_dist)))

if ((m_nextdis

m_nextpos

m_nextpos

// The last command asked the controller
// to move too far. Preempt last command
// to make it stop ASAP.
CalcMoveStep (brake_dist) ;
SetParameter ("p", m_nextpos);
}
return;
}
else
{
// ...and it has stopped.
m_brkdist = 0;

else
{
// ...and we want it to keep moving.
if (m_nextdis == 0 ||
m_usrmotionspd != m_curmotionspd ||
m_usrturnspd != m_curturnspd)

// Got new command from user.
CalcMove () ;

}

else if ((m_nextdis > 0 &&
m_nextpos < m_cdis + 2+m_brkdist) ||
(m_nextdis < 0 &&
m_nextpos > m_cdis + 2xm_brkdist))

// Renew move command to keep moving.
CalcMoveStep (AHEAD_FACTORxm_brkdist) ;
}
else
{
return;
}
SetParameter ("cdp", m_gearpos);
SetParameter ("vgr", m_gearrate);
SetParameter ("vg", m_gear);
SetParameter ("p", m_nextpos);
return;

}
else if (m_turnmode < 0 && m_brkdist != 0)
{

// Motor is currently turning in place...

if (m_usrturnspd 0 ||
m_usrmotionspd != 0)
{
// ...and we’re waiting for it to stop.
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if (m_cmode & MODE_MOVING)
{
// ...and it hasn’t stopped yet.

// Calculate braking distance from current speed,

// plus 0.0ls "reaction time" for sending

// commands to the controller.

double brake_dist = CalcRotateBrakeDist (m_currot)

m_currot * 0.01;
if ((m_nextdis 0 &&
m_nextpos (m_cang + brake_dist)) ||

(m_nextdis 0 &&

A AV OV

m_nextpos (m_cang + brake_dist)))

// The last command asked the controller

// to move too far. Preempt last command

// to make it stop ASAP.
CalcRotateStep (brake_dist);
SetParameter ("p", m_nextpos);
}
return;
}
else
{
// The motor has stopped.
m_brkdist = 0;

else

// ...and we want it to keep turning.
if (m_nextdis == Il

m_usrturnspd != m_curturnspd)

// Got new command from user.
CalcRotate();
}
else if ((m_nextdis > 0 &&
(m_nextpos - (m_cang + 2xm_brkdist))
(m_nextdis < 0 &&

(m_nextpos - (m_cang + 2xm_brkdist))

// Renew turn command to keep moving.
CalcRotateStep (AHEAD_FACTORxm_brkdist);
}
else
{
return;
}
SetParameter ("p", m_nextpos);
return;

// If we get here, then the motor is idle.

if (m_usrmotionspd != 0)

{
// Request to move.
CalcMove () ;
SetParameter ("r", 1000);
SetParameter ("mode", m_absmode) ;
SetParameter ("a", m_accel);
SetParameter ("v", m_speed);
SetParameter ("cdp", m_gearpos);
SetParameter ("vgr", m_gearrate);
SetParameter ("vg", m_gear);
SetParameter ("p", m_nextpos);

}

else if (m_usrturnspd != 0)

{

// Request to turn in place.
CalcRotate();

< 0)

> 0))



SetParameter("r", 0);
SetParameter ("mode", m_absmode) ;
SetParameter ("a", m_accel);
SetParameter ("v", m_speed);

SetParameter ("p", m_nextpos);

void GiraffMotor::CalcMove (
{
m_curmotionspd = m_usrmotionspd;

m_curturnspd = m_usrturnspd;

// Set wheel speed
m_speed = fabs (m_curmotionspd) ;
if (m_speed == 0 || m_curturnspd == 0)
{
// Moving straight ahead.

m_gear = 0;

// Due to bugs in the motor controller,

// just suddenly telling the controller to

// take the gear ratio to zero using "cdp"

// 1is problematic (the gear ratio jumps

// and causes the motor to turn faster for

// a while). Setting "vg" to zero makes no

// appreciable difference. Setting "vgr" to

// zero forces the ratio to zero instantenously,
// with a horrible jerk that’s probably not

// good for the motors.

m_gearrate = 0;

else

// Calculate the virtual gear ratio needed to
// turn with the requested angular speed,
// if we’ll also be traveling forward
// at the requrested overall speed.
m_gear = m_curturnspd / (m_speed x turn_factor)
if (m_gear < 0)
{
m_gearrate = -m_vgaccel;
}
else if (m_gear > 0)
{

m_gearrate = m_vgaccel;

m_gearrate = 0;

}
// Calculate braking distance.
m_brkdist = CalcMoveBrakeDist (m_curmotionspd) ;
// Initiate motion.
m_turnmode = 1;
#ifdef USE_ABSOLUTE_MODE
m_absmode = MODE_ABSOLUTE;
#else
m_absmode = 0;
#endif // USE_ABSOLUTE_MODE
CalcMoveStep (AHEAD_FACTORxm_brkdist) ;

double GiraffMotor::CalcMoveBrakeDist (double spd)
{
double brake_time = fabs(spd) / m_accel;

return spd * brake_time / 2;

void GiraffMotor::CalcMoveStep (double dis
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m_nextdis = dis;
if (m_absmode)
{
m_nextpos = m_cdis + m_nextdis
}
else
{

m_nextpos = m_nextdis;

m_cdis = 0;
}
#if O
if (m_gear != 0)
{
m_gearpos = m_nextpos;
}
else
{
//m_gearpos = m_cdis + m_curspd * 0.1;
}
#else
m_gearpos = m_nextpos;
#endif

}

void GiraffMotor::CalcRotate (
{
m_curmotionspd = m_usrmotionspd;

m_curturnspd = m_usrturnspd;

// Calculate wheel speed.
m_speed = fabs (m_curturnspd) / turn_factor;
// Calculate braking distance.
m_brkdist = CalcRotateBrakeDist (m_curturnspd)
// Initiate motion.
m_turnmode = -1;
#ifdef USE_ABSOLUTE_MODE
m_absmode = MODE_ABSOLUTE;
#else
m_absmode = 0;
#endif // USE_ABSOLUTE_MODE
CalcRotateStep (ARHEAD_FACTOR*m_brkdist) ;

double GiraffMotor::CalcRotateBrakeDist (double rot)

{
double brake_time = fabs(rot) / (m_accel x turn_factor);
return rot x brake_time / 2;

void GiraffMotor::CalcRotateStep(double ang)
{
m_nextdis = ang;
if (m_absmode)
{
m_nextpos = m_cang + m_nextdis
}
else
{
m_nextpos = m_nextdis;

m_cang = 0;

void GiraffMotor::UpdatePosition()
{
if (m_turnmode == 0 ||
m_brkdist == 0)

// standing still

return;
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{

if
{

(m_turnmode < 0)

// turning in place

double turndelta = m_cang - m_lcang;
m_currot = -m_gvr;

m_curdir += turndelta;

return;

(m_timedelta == 0)

// no time has passed since last update

return;

// moving in a straight or curved line

double distdelta = m_cdis - m_lcdis;
#ifdef GVR_IS_LEFT

if
{

}

(m_cvg == 0)

// straight ahead

m_curspd = m_gvr;

else if (m_cvg != 1)

{

}

// if gvr is the speed of the left wheel,
// calculate the overall speed given the
// current gear ratio

m_curspd = m_gvr * (1 - m_cvg);

else

{

}

#else
m_curspd = m_gvr;
#endif // GVR_IS_LEFT
m_currot = m_cvg * turn_factor;

/7
/7
/7
/7
/7
/7
/7
/7

// ideally we should never let the gear
// ratio become as large as 1 or -1,
// but if it happens, make an estimate

m_curspd = distdelta / m_timedelta;

In principle, we should use integration techniques

to calculate the current position, given the motor

feedback and the known behaviour of our commands,

including the expected motion envelope.

However,

even then the results would probably not

match physical reality very well, so these

approximations are probably good enough, as long

as the motor state is updated often enough.

double avgvg = (m_cvg + m_lcvg) / 2;

double avgrot = avgvg % turn_factor;
double turndelta = avgrot * distdelta;

double avgdir = m_curdir + (turndelta / 2);

m_curdir += turndelta;

m_curx += distdelta * cos(avgdir = M_PI / 180);

m_cury += distdelta * sin(avgdir = M_PI / 180);

void GiraffMotor::ShowPosition(

{

ostringstream ost;

ost

ost

<<
<<
<<
<<

<<

fixed << setprecision(2)

inter
nyg—n

"oy=n
"oH="

nal << setfill(’0’);
<< setw(6) << m_curx
<< setw(6) << m_cury

<< setw(6) << fix_degrees(m_curdir);

m_win->SetPositionInfo(ost.str());
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const double GiraffMotorSim::turn_factor = TURN_FACTOR;
// The standard tilt angle returned to when homing the head.
const double GiraffMotorSim::default_tilt = 0.0872664;

GiraffMotorSim: :GiraffMotorSim(GiraffMotor* ctl)
m_ctl(ctl), m_bufcount(0),
m_homing (0), m_tilt (default_tilt),

)
m_cang ( ), m_cdis(0.0), m_cvg(0.0)
)

0.0
m_vang (0.0), m_vdis(0.0), m_gvr(0.0),

m_startc(0), m_stopc(0),

m_updc (0), m_downdc (0),

m_startdv(0.0), m_peakdv(0.0), m_rampda(0.0),

m_refdp(0.0), m_updp(0.0), m_downdp(0.0), m_stopdp(0.0),
m_refap(0.0), m_upap(0.0), m_downap(0.0), m_stopap(0.0),
m_upgc (0), m_downgc(0), m_stopgc(0),

m_startgr (0.0), m_peakgr(0.0), m_rupgr(0.0), m_rdowngr(0.0),
m_stopgr (0.0), m_downgd(0.0)

// clear states

memset (&ém_buf, 0, sizeof (m_buf));
// set defaults

m_buf[0].v = 0.6; // 0.6 m/s
m_buf[0].a = 0.6; // 0.6 m/s5"2
m_buf[0].vg = 1;

m_buf[0].vgr = 0.4; // FIXME, what’s the actual default?
// get timer frequency
LARGE_INTEGER fregq;
QueryPerformanceFrequency (&freq) ;
m_freq = freq.QuadPart;

// signal readiness
SimulateReply ("# Giraf Simulator");

GiraffMotorSim::~GiraffMotorSim(
{
}

void GiraffMotorSim::StartStraight (double dist,
double start_pos,
double start_spd,
double cdp,
double start_vg)

Move& cur = m_buf[0];
if (cur.mode & MODE_ABSOLUTE
{
dist -= start_pos;
cdp —-= start_pos;
}
else
{
start_pos = 0;
m_cdis = 0;

m_cang = 0;
if (start_spd == 0)

// when starting from a full stop, assume the initial
// virtual gear ratio to be zero
start_vg = 0;
}
// Get the sign of the desired motion here,
// so we can calculate the motion profile
// using positive numbers, then apply the
// proper sign afterwards.
// (Interpret dist == 0 as "stop ASAP",
// taking sign from current velocity instead.)
int sign = (dist != 0) ?
((dist >=0) 2 1 : -1)
((start_spd >= 0) 2 1 : -1);
// but let start_speed be negative if we’re

// initially moving in the wrong direction.
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double start_speed = sign x start_spd;
double total_dist = fabs(dist);
double peak_speed = cur.v;
double accel = cur.a;
double ramp_up_time = (peak_speed - start_speed) / accel;
double ramp_up_dist = (peak_speed + start_speed) * ramp_up_time / 2;
double ramp_down_time = peak_speed / accel;
double ramp_down_dist = peak_speed * ramp_down_time / 2;
double cruise_dist = total_dist - ramp_up_dist - ramp_down_dist;
double cruise_time = cruise_dist / peak_speed;
bool overshoot = false;
if (cruise_dist < 0)
{

// Short move, won’t get to maximum speed.

// In case we’re already moving, calculate the

// ramp-up distance we would have needed to get

// up to the current velocity from standing still.

double prev_dist = start_speed x start_speed / accel / 2;

// Since the total ramp-up and ramp-down must

// be of equal lengths, find how long the ramps

// must be to cover the required distance

ramp_down_dist = (prev_dist + total_dist) / 2;

if (ramp_down_dist >= total_dist &&

start_speed >= 0)

// Current speed is too high to stop within
// the specified distance.
#ifdef SIM_OVERSHOOT_FIX
// We’ll try to stop as soon as possible
// and reverse back. Find how long the ramps
// need to be in this case. Also invert
// signs since we want to reverse.
ramp_down_dist = (total_dist - prev_dist) / 2;
accel = -accel;
// The ramp-up includes the reversal of direction.
peak_speed = -sqrt (2xaccelxramp_down_dist) ;
ramp_up_dist = total_dist - ramp_down_dist;
ramp_up_time = (peak_speed - start_speed) / accel;
ramp_down_time = peak_speed / accel;
#else
// Alternatively, just stop as soon as possible,
// don’t bother to reverse back.
peak_speed = start_speed;
ramp_up_dist = 0;
ramp_up_time = 0;
ramp_down_dist = prev_dist;
ramp_down_time = peak_speed / accel;
overshoot = true;
#endif // SIM OVERSHOOT FIX
}
else
{
// If start_speed is negative, the ramp-up
// will include the reversal of direction.
peak_speed = sqrt (2xaccelsramp_down_dist);
ramp_up_dist = total_dist - ramp_down_dist;
ramp_up_time = (peak_speed - start_speed) / accel;
ramp_down_time = peak_speed / accel;
}
cruise_dist = 0;
cruise_time = 0;
}
// set velocities and accelerations
m_startdv = sign x start_speed;
m_peakdv = sign x peak_speed;
m_rampda = sign x accel;
// calculate timestamps for velocity envelope
double time_step = ramp_up_time;
m_startc = m_lastc;
m_updc = m_startc + time_step x m_freq
time_step += cruise_time;

m_downdc = m_startc + time_step x m_freq;
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time_step += ramp_down_time;

m_stopc = m_startc + time_step * m_freq;

// calculate positions for velocity envelope
m_refdp = start_pos;

m_updp = sign * ramp_up_dist;

m_downdp = m_updp + sign % cruise_dist;
m_stopdp = (!overshoot) ? dist : (m_downdp + sign % ramp_down_dist);
// zero out angle envelope

m_upac = m_startc;

m_downac = m_stopc;

m_startav = 0;

m_peakav = 0;

m_rampaa = 0;

m_refap = 0; // m_cang?

m_upap = 0;

m_downap = 0;

m_stopap = 0;

// Calculate virtual gear ratio envelope
// (This calculates the "ideal" envelope, the way it’s
// documented. However, the real controller doesn’t seem
// to be quite as ideal, due to bugs.)

#ifdef SIM_CURVED

if ((cur.r >= 50 && cdp != 0 && cur.vg != 0) ||
start_vg != 0)
{
double ramp_down_start = ramp_up_time + cruise_time;

double total_time = ramp_down_start + ramp_down_time;
int vg_sign = (cur.vgr != 0) ?
((cur.vgr >= 0) 2 1 : -1)
((start_vg >= 0) 2 1 : -1);
double vg_start = vg_sign x sign * start_vg;
double vg_peak = vg_sign % cur.vg;
double vg_accel = vg_sign x cur.vgr;
int vg_up_sign = 1, vg_down_sign = -1;
double vg_ramp_down_pos = sign x cdp;
if (vg_ramp_down_pos > total_dist)
{
vg_ramp_down_pos = total_dist;
}
double vg_ramp_up_dist;
if (vg_ramp_down_pos <= 0 ||
vg_peak == Il
accel < 0)

// No ramp-up, start ramping down immediately.
vg_ramp_up_dist = 0;
vg_peak = vg_start;
vg_ramp_down_pos = 0;
}
else if (vg_peak < vg_start)
{
// Ramp-up is actually a ramp-down
// to a lower gear ratio.
vg_ramp_up_dist = (vg_start - vg_peak) / vg_accel;
vg_up_sign = -1;
}
else
{
// Normal ramp-up.
vg_ramp_up_dist = (vg_peak - vg_start) / vg_accel;
}
if (vg_ramp_up_dist > vg_ramp_down_pos)
{
// Short move, won’t get to maximum gear ratio.
// Calculate how far we would get.
vg_ramp_up_dist = vg_ramp_down_pos;
vg_peak = vg_start + vg_up_sign x vg_ramp_down_pos * vg_accel;
}
// Calculate ramp-up time
double vg_ramp_up_time;
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if (vg_ramp_up_dist > total_dist)

// won’t reach peak gear ratio in this move

vg_ramp_up_time = total_time;

vg_peak = vg_start + vg_up_sign x total_dist % vg_accel;

}
else
{
vg_ramp_up_time = TimeFromPosition(vg_ramp_up_dist,
ramp_up_time,
cruise_time,
ramp_down_time,
ramp_up_dist,
cruise_dist,
ramp_down_dist,
accel,
start_speed,
peak_speed) ;
}
// Calculate ramp-down start time
double vg_ramp_down_start;
vg_ramp_down_start = TimeFromPosition(vg_ramp_down_pos,
ramp_up_time,
cruise_time,
ramp_down_time,
ramp_up_dist,
cruise_dist,
ramp_down_dist,
accel,
start_speed,
peak_speed) ;
// Calculate ramp-down time
double vg_ramp_down_dist;
if (vg_peak < 0)
{
// Ramp-down is actually a ramp-up
// from a negative gear ratio.
vg_ramp_down_dist = -vg_peak / vg_accel;
vg_down_sign = 1;
}
else
{
// Normal ramp-down.
vg_ramp_down_dist = vg_peak / vg_accel;
}
double vg_stop = 0, vg_stop_pos;
vg_stop_pos = vg_ramp_down_pos + vg_ramp_down_dist;
double vg_ramp_down_time;
if (accel < 0)
{
// there’s a momentary stop during reversal
double prev_dist = total_dist - 2 » ramp_up_dist;
double stop_dist = vg_stop_pos - vg_ramp_down_pos;
if (prev_dist < stop_dist)
{
// force gear ratio to zero when we reverse
vg_ramp_down_dist = -prev_dist;

vg_ramp_down_time = -start_speed / accel;

vg_stop_pos = vg_ramp_down_pos + vg_ramp_down_dist;

else

// gear ratio reaches zero before the stop

double speed = sqgrt(start_speedsstart_speed +

2+accelxvg_ramp_down_dist) ;

vg_ramp_down_time = (speed - start_speed) / accel;

}
else if (vg_ramp_up_dist >= total_dist)
{
// won’t start ramp-down while moving

vg_ramp_down_dist = 0;
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vg_ramp_down_time = 0;
vg_stop_pos = total_dist;
}
else if (vg_stop_pos > total_dist)
{
// won’t reach zero gear ratio while moving
vg_ramp_down_dist = total_dist - vg_ramp_down_pos;
vg_ramp_down_time = total_time - vg_ramp_down_start;
vg_stop_pos = total_dist;
}
else
{
vg_ramp_down_time = TimeFromPosition(vg_stop_pos,
ramp_up_time,
cruise_time,
ramp_down_time,
ramp_up_dist,
cruise_dist,
ramp_down_dist,
accel,
start_speed,
peak_speed)

- vg_ramp_down_start;

// calculate timestamps for gear ratio envelope
double vg_ramp_stop = vg_ramp_down_start + vg_ramp_down_time;
m_upgc = m_startc + vg_ramp_up_time » m_freq;
m_downgc = m_startc + vg_ramp_down_start x m_freq;
m_stopgc = m_startc + vg_ramp_stop * m_fregqg;
// calculate gear ratios
m_startgr = start_vg;
m_peakgr = vg_sign * sign x vg_peak;
m_rupgr = vg_up_sign * vg_sign % sign % vg_accel;
m_rdowngr = vg_down_sign * vg_sign x sign x vg_accel;
m_stopgr = vg_sign x sign % vg_stop;
m_downgd = vg_ramp_down_pos;

}

else

#endif // SIM_CURVED

{
m_upgc = m_startc;
m_downgc = m_startc;
m_stopgc = m_startc;
m_startgr = 0;
m_peakgr = 0;
m_rupgr = 0;
m_rdowngr = 0;
m_stopgr = 0;
m_downgd = 0;

void GiraffMotorSim::StartRotate (double degrees,
double start_angle,
double start_spd)

Move& cur = m_buf[0];
if (cur.mode & MODE_ABSOLUTE
{
degrees —-= start_angle;
}
else
{
start_angle = 0;
m_cdis = 0;
m_cang = 0;
}
// Calculate the distance the wheels must travel.
double dist = degrees / turn_factor;
// The wheels accelerate using the same parameters

// as in a straight-line move. Calculate motion.
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StartStraight(dist, 0, start_spd / turn_factor, 0, 0);

if (cur.r < 0)

{

// If r is negative, the motion don’t seem to

// get converted back to angles,

but are reported

// to the app as distances traveled by the wheels.

return;
}
bool overshoot = (m_stopdp != dist);

// Convert calculated positions to angles.

m_upac = m_updc;

m_downac = m_downdc;

m_startav = m_startdv * turn_factor;
m_peakav = m_peakdv * turn_factor;
m_rampaa = m_rampda * turn_factor;
m_refap = start_angle;

m_upap = m_updp * turn_factor;
m_downap = m_downdp * turn_factor;
m_stopap = (!overshoot) ? degrees
// Clear positions and velocities,
// since we’re staying in place.
m_updc = m_startc;

m_downdc = m_stopc;

m_startdv = 0;

m_peakdv = 0;

m_rampda = 0;

m_refdp = 0; // m_cdis?
m_updp = 0;
m_downdp = 0;
m_stopdp = 0

i

(m_stopdp * turn_factor);

double GiraffMotorSim::TimeFromPosition (double

double
double
double

pos,
ramp_up_time,
cruise_time,

ramp_down_time,

double ramp_up_dist,
double cruise_dist,
double ramp_down_dist,
double accel,
double start_speed,
double peak_speed)
{

double cruise_start = ramp_up_time;

double ramp_down_start = cruise_start + cruise_time;

double total_time = ramp_down_start + ramp_down_time;

double cruise_pos = ramp_up_dist;

double ramp_down_pos = cruise_pos + cruise_dist;

double stop_pos = ramp_down_pos + ramp_down_dist;

if (pos <= 0)
{
// immediately
return 0;
}
else if (pos < cruise_pos)
{
// during ramp-up
double dist = pos;

double speed = sqrt (start_speedsstart_speed +

2+accelxdist);

return (speed - start_speed) / accel;

}
else if (pos < ramp_down_pos)
{

// during cruise

double dist = pos - cruise_pos;

return cruise_start + dist / peak_speed;

}
else if (pos < stop_pos)
{

// during ramp-down

double dist = pos - ramp_down_pos;
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double speed = sqgrt (peak_speed+peak_speed -
2xaccelxdist);

return ramp_down_start + (peak_speed - speed) / accel;
}
else
{

// never

return total_time;

void GiraffMotorSim: :UpdateMotion (
{
LARGE_INTEGER current;
QueryPerformanceCounter (&current) ;
LONGLONG now = current.QuadPart;
while (m_bufcount != 0)
{
if (now >= m_stopc)
{
// Move complete.
m_cdis = m_refdp + m_stopdp;
m_cang = m_refap + m_stopap;
m_cvg = m_stopgr;
m_vdis = 0;
m_vang = 0;
m_gvr = 0;
m_lastc = m_stopc;
EndMotion();

continue;

// Interpolate distance part of profile

if (now >= m_downdc)

// ramping down.

double time_delta = (double) (now - m_downdc) / m_freq;
double velocity = m_peakdv - m_rampda % time_delta;
double dist = (m_peakdv + velocity) * time_delta / 2;

m_cdis = m_refdp + m_downdp + dist;
m_vdis = velocity;

}

else if (now >= m_updc)

{
// cruising.
double time_delta = (double) (now - m_updc) / m_freqg;
double velocity = m_peakdv;
double dist = m_peakdv * time_delta;
m_cdis = m_refdp + m_updp + dist;
m_vdis = velocity;

}

else

{
// ramping up.

double time_delta = (double) (now - m_startc) / m_freq;
double velocity = m_startdv + m_rampda * time_delta;
double dist = (m_startdv + velocity) * time_delta / 2;

m_cdis = m_refdp + dist;
m_vdis = velocity;
}
// Interpolate gear ratio part of profile
if (now >= m_stopgc
{
m_cvg = m_stopgr;
}
else if (now >= m_downgc)
{
// ramping down.
double dist_delta = abs(m_cdis - m_refdp) - m_downgd;
m_cvg = m_peakgr + m_rdowngr x dist_delta;
}
else if (now >= m_upgc)

{
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// cruising.
m_cvg = m_peakgr;
}
else
{
// ramping up.
double dist_delta = abs(m_cdis - m_refdp);

m_cvg = m_startgr + m_rupgr x dist_delta;

// Interpolate angular part of profile

if (now >= m_downac)

// ramping down.

double time_delta = (double) (now - m_downac) / m_freq;

double velocity = m_peakav - m_rampaa * time_delta;

double dist = (m_peakav + velocity) * time_delta / 2;

m_cang = m_refap + m_downap + dist;
m_vang = velocity;

}

else if (now >= m_upac)

{

// cruising.

double time_delta = (double) (now - m_upac) / m_freq;

double velocity = m_peakav;
double dist = m_peakav % time_delta;
m_cang = m_refap + m_upap + dist;
m_vang = velocity;

}

else

{
// ramping up.

double time_delta = (double) (now - m_startc) / m_freq;
double velocity = m_startav + m_rampaa * time_delta;

double dist = (m_startav + velocity)  time_delta / 2;

m_cang = m_refap + dist;
m_vang = velocity;
}
if (m_buf[0].r != 0)
{
#ifdef GVR_IS_LEFT
m_gvr = m_vdis / (1 - m_cvg);
#else
m_gvr = m_vdis;
#endif // GVR_IS_LEFT
}
else
{
m_gvr = —m_vang;
}
break;
}

m_lastc = now;

void GiraffMotorSim::StartMotion (
{
if (m_bufcount == 0)
{
// nothing to do
return;
}
Move& cur = m_buf[0];
if (cur.mode & MODE_MOVING)
{
// already started
return;
}
cur.mode |= MODE_MOVING;
if (cur.r > 0)
{

StartStraight (cur.p, m_cdis, m_vdis,
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cur.cdp, m_cvg);
}
else

{

StartRotate (cur.p, m_cang, m_vang);

void GiraffMotorSim: :EndMotion (
{

unsigned n;

if (m_bufcount 0)
{
// nothing to do
return;
}
// shift next requests into place,
// replacing completed request
for (n=0; n<m_bufcount; n++)
{
m_buf[n] = m_buf[n+l];
}
m_bufcount--;
// start next request, if any
StartMotion();

bool GiraffMotorSim::QueueMotion ()
{
if (m_bufcount >= GIRAFF_BUFFERS)
{
// out of buffers
return false;
}
unsigned mask = MODE_ABSOLUTE;
unsigned mode = m_buf [m_bufcount].mode;
m_buf [m_bufcount] .mode = mode & mask;
if ((m_bufcount == 0) ||
(mode & MODE_BUFFERED) )

// initial state for next request
m_buf[m_bufcount+l] = m_buf[m_bufcount];
// start current request
m_bufcount++;

}

else

{
// remove buffered requests
if (m_bufcount > 1)

// initial state for next request
m_buf[l] = m_buf[m_bufcount];
m_bufcount = 1;
}
// preempt current move
m_buf[0] = m_buf[m_bufcount];
}
// start sequence
StartMotion();

return true;

bool GiraffMotorSim::QueueUndock (double dist)
{
if (m_bufcount >= GIRAFF_BUFFERS-1)
{
// out of buffers
return false;
}
// initial state for next request
m_buf [m_bufcount+l] = m_buf[m_bufcount];

m_buf [m_bufcount+2] = m_buf[m_bufcount];
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// request reversing (in straight line)

m_buf [m_bufcount] .mode = 0;
m_buf [m_bufcount].r = 1;
m_buf [m_bufcount].p = -dist;

[
[
m_buf [m_bufcount].vg = 0;
m_buf [m_bufcount].vgr = 0;
m_buf [m_bufcount].cdp = 0;
m_bufcount++;

// request rotating in-place

m_buf [m_bufcount] .mode = 0;
m_buf [m_bufcount].r = 0;
m_buf [m_bufcount].p = 180;
m_buf [m_bufcount].vg = 0;
m_buf [m_bufcount] .vgr = 0;
m_buf [m_bufcount].cdp = 0;
m_bufcount++;

// start sequence
StartMotion();

return true;

void GiraffMotorSim::SimulatelLag(unsigned bytes

{

void GiraffMotorSim::SimulateReply (const strings& reply)

{

void GiraffMotorSim::SimulateCommand(const string& cmd)

{

// Since the serial port is

configured for

// 115200 bps, and each character takes 10 bits
// (1 start bit, 8 data bits, and 1 stop bit),

// it can only transfer 11520 characters/second.

// Since each command transfers something like

// 30-40 characters, this lag could affect timing

// by several milliseconds,

so we’ll simulate it

/7
/7

here,

just in case.

Calculate microsecond wait.

DWORD us = (bytes % 1000000)
// Convert to milliseconds.
DWORD ms = us / 1000;
// Round up.
if ((us % 1000) >= 500)
{
ms++;
}
// Do the wait.
if (ms)
{
Sleep (ms) ;

string out;

if (!reply.empty())

/ 11520;

out = reply + "\r\nOK >\r\n";

out = "OK >\r\n";

// wait the milliseconds it

would take to

// receive the reply (including the "OK" line)

SimulateLag (out.length());
// simulate the reply
m_ctl->AddReply (out) ;

ostringstream rst;
istringstream ist (cmd);

string op;

// wait the milliseconds it

would take to
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// transmit the command
//Simulatelag (cmd.length());

// update simulation state

UpdateMotion () ;

// set default reply format

rst << setfill(’0'")

// parse command

ist >> op;

if
{
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(op == "set")

// parse Set com

Move& next = m_buf[m_bufcount];

string par;
ist >> par;
if (par == "v")
{
ist >> next.
Output (rst,
}
else if

{

(par ==

ist >> next
Output (rst,
}
else if

{

(par ==

ist >> next.
Output (rst,
}
else if

{

(par ==

ist >> next
if (QueueMot
{

<< setprecision(5)

mand

vi

next.v);

npmy

.r;

next.r);

nam)

aj

next.a);

)

<P

ion())

<< fixed;

Output (rst, next.p);
}
else
{
rst << "ERROR: Queue rollover";
}
}
else if (par == "vg")
{
ist >> next.vg;

Output (rst,
}

else if

{

(par ==

ist >> next.
Output (rst,
}
else if

{

(par ==

ist >> next.
Output (rst,
}
else if

{

(par ==

// Only the

next.vg);

"ygr")

vgr;

next.vgr) ;

"cdp™)

cdp;
next.cdp);

"mode")

lower 4 bits can be set.

unsigned mask = 0xf;

unsigned mode;

ist >> mode;

next.mode =

Output (rst,
}

else if
{

(par ==

double dist;
ist >> dist;

(next.mode &
(mode & mask) ;

next.mode) ;

"undock")

if (QueueUndock (dist))

~mask)
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Output (rst, dist);
}
else
{

rst << "ERROR: Queue rollover";

}
else if (par == "tilt_angle_from_home")
{
ist >> m_tilt;
Output (rst, m_tilt);
}
else
{

rst << "Unknown name: " << par;

}
else if (op == "get")
{
// parse Get command
Move& cur = m_buf[0];
Move& next = m_buf[m_bufcount];
string par;
ist >> par;
if (par == "v")
{
Output (rst, next.v);
}
else if (par == "r")
{
Output (rst, next.r);
}
else if (par == "a")
{
Output (rst, next.a);
}
else if (par == "p")
{
Output (rst, next.p);
}
else if (par == "vg")
{
Output (rst, next.vg);
}
else if (par == "vgr")
{
Output (rst, next.vgr);
}
else if (par == "cdp")
{
Output (rst, next.cdp);
}
else if (par == "cvg")
{
Output (rst, m_cvg);
}
else if (par =

{

"mode™)

unsigned c_mask = MODE_ESTOP | MODE_MOVING;
unsigned n_mask = MODE_ABSOLUTE;
unsigned mode = (cur.mode & c_mask) |
(next.mode & n_mask);

Output (rst, mode);

}

else if (par == "tilt_homing_state")

{
Output (rst, m_homing);

}

else if (par == "tilt_angle_from_home")

{
Output (rst, m_tilt);
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else if (par == "but0")
rst << "0";

else if (par == "butl")
{
rst << "0";
}
else if (par == "dial")
{
rst << "QO"
}
else if (par == "button_data")
{
rst << "but0:0,butl:0,dial:0";
}
else if (par == "bulk_data")
{
rst << "cang:";
Output (rst, -m_cang)
rst << ",cdis:";
Output (rst, m_cdis)
rst << ",gvr:";

Output (rst, m_gvr);

// << ", tilt_angle from home:" << m_tilt
// << ", imdl:0"
// << ",imdr:0"

rst << ",cvg:";
Output (rst, m_cvg);
rst << ",mode:";
Output (rst, cur.mode);
}
else
{

rst << "Unknown name: " << par;

}
else if (op == "home")
{
// no reply
}
else
{

rst << "Unknown name: "

<< op;

}
SimulateReply (rst.str());

void GiraffMotorSim::Output (ostream& out, double val)
{
#if 1
// The controller seems to send floats using a hex
// encoding of the binary representation of a 32-bit
// floating-point register. Reproduce it here.
union {
float val;
unsigned char d[4];
bovi
v.val = val;
out << "Fx" << hex;
for (unsigned n=0; n<4; n++)
{
unsigned u = v.d[n];
out << setw(2) << u;
}
#else
out << val;
#endif
}

void GiraffMotorSim::Output (ostream& out, unsigned val)
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{
#if 1
// The controller seems to send integers using a hex
// encoding that has the least-significant byte first.
// Reproduce it here.
union {
unsigned val;
unsigned char d[4];
bovi
v.val = val;
out << "I*" << hex;
for (unsigned n=0; n<4; n++)
{
unsigned u = v.d[n];
out << setw(2) << u;
}
#else
out << val;
#endif
}

B.3. GiraffCamera.hpp

#ifndef GIRAFFCAMERA_HPP
#define GIRAFFCAMERA_HPP

#include "DisplayWindow.hpp"
#include <opencv2/highgui/highgui.hpp>
#define CAM_REC_BUFFERS 8

class GiraffCamera

{

public:
GiraffCamera (DisplayWindow win);
~GiraffCameral();
bool Start (int width=0, int height=0);
void Stop();
bool Grab(cv::Mat& frame);
bool StartRecord(const std::string& name);
void StopRecord();
bool StartPlayback (const std::string& name);
void StopPlayback();

private:
DisplayWindows m_win;
cv::VideoWriter m_vrec;
cv::VideoCapture m_vplay;
bool m_sim, m_rec, m_play, m_eof;
cv::Mat m_frame;
// for recording thread
cv::VideoCapture m_vcap;
HANDLE m_recthread;
HANDLE m_recfstart, m_recfdone;
#ifdef CAM_REC_BUFFERS
cv::Mat m_recbuf [CAM_REC_BUFFERS];
unsigned m_recpos;
#endif
void SetCameralnfol();
static DWORD WINAPI RecThread(LPVOID param);
i

#endif // GIRAFFCAMERA_HPP
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B.4. GiraffCamera.cpp

#include "GiraffCamera.hpp"
#include <windows.h>

#include <sstream>

#include <iomanip>
#define CAM_DEVICE 0
#define TEST_INPUT "D:/Giraff/OpenCV/Source/samples/gpu/768x576.avi"

using namespace std;
using namespace cv;

GiraffCamera::GiraffCamera (DisplayWindow* win)
m_win(win), m_sim(false), m_rec (false),
m_play (false), m_eof (false)

GiraffCamera: :~GiraffCamera (
{
StopRecord() ;
StopPlayback() ;
Stop();

bool GiraffCamera::Start (int width, int height)
{
#$ifdef CAM_DEVICE
m_vcap.open (CAM_DEVICE) ;
if (!m_vcap.isOpened())
#endif
{
// Could not open real camera,
// load prerecorded video instead,
// so the rest of the program
// can still be used.
m_vcap.open (TEST_INPUT)
if (!m_vcap.isOpened())
{
return false;
}
if (!m_sim)
{
m_win->PrintLeft ("Loaded test video");

m_sim = true;

// request resolution

if (!m_sim && width && height)

{
m_vcap.set (CV_CAP_PROP_FRAME_WIDTH, width) ;
m_vcap.set (CV_CAP_PROP_FRAME_HEIGHT, height);

// show actual resolution on display
SetCameraInfol();

return true;

void GiraffCamera::Stop ()
{

m_vcap.release();

bool GiraffCamera::Grab (Mats& frame)
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if

if

}

(m_rec)

// if we’re recording, wait for recording
// thread to finish encoding previous frame
WaitForSingleObject (m_recfdone, INFINITE);

(m_play)

if (m_eof)
{
// playback already complete
return false;
}
// get next frame from playback
else if (!m_vplay.read(m_frame))
{
// playback complete
m_eof = true;

return false;

// get next frame from camera or video

else if (!m_vcap.read(m_frame))

{

}
if
{

if (!m_sim)
{
// camera failure
return false;
}
// end of video, rewind
Stop () ;
Start () ;
if (!m_vcap.read(m_frame))
{
// give up
return false;

(m_rec)

// if we’re recording, tell the recording

// thread that we have a new frame

#ifdef CAM_REC_BUFFERS

#else

#endif
}

m_recbuf [m_recpos] = m_frame.clone();
m_recpos = (m_recpos + 1) % CAM_REC_BUFFERS;

LONG sem_count = CAM_REC_BUFFERS;
// clear event before ReleaseSemaphore
// to avoid race conditions (we can
// set it again afterwards)
ResetEvent (m_recfdone) ;
if (ReleaseSemaphore (m_recfstart, 1, &sem_count))
{
sem_count += 1;
if (sem_count < CAM_REC_BUFFERS)
{
// still room for more frames,
// so set event again

SetEvent (m_recfdone) ;

}

else

{
// if the synchronization stuff works,
// we should never get here

m_win->PrintLeft ("Semaphore release failed");

SetEvent (m_recfstart);

// could display frame here,
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// but we’ll leave it to GiraffNav
//m_win->Show (m_frame) ;

// return captured frame

frame = m_frame;

return true;

bool GiraffCamera::StartRecord(const string& name)

{
if (m_rec)
{

StopRecord () ;

}
//int fourcc = CV_FOURCC_PROMPT;
// Lossy codecs listed at
// http://opencv.willowgarage.com/wiki/documentation/cpp/highgui/VideoWriter
//int fourcc = CV_FOURCC(’P’,’I’,’M’,”1"); // 22 fps
//int fourcc = CV_FOURCC(’M’,’J’,’P’,’G’); // 20 fps
//int fourcc = CV_FOURCC(’M’,’P’,’4’,72"); // 25 fps
//int fourcc = CV_FOURCC(’D’,’I’,’V’,”37); // 20 fps
int fourcc = CV_FOURCC('D’,’I’','V’','X"); // 26 fps
//int fourcc = CV_FOURCC(’U’,’2",76",73"); // 26 fps
//int fourcc = CV_FOURCC(’F’,’L’,’V’,’1"); // 26 fps
// Uncompressed
//int fourcc = CV_FOURCC(’I’,”4’,727,70"); // 32 fps

double fps = 10;
string fn = name + ".avi";
// initialize video recording
Size sz (m_vcap.get (CV_CAP_PROP_FRAME_WIDTH),
m_vcap.get (CV_CAP_PROP_FRAME_HEIGHT)) ;
m_vrec.open (fn, fourcc, fps, sz, true);
if (m_vrec.isOpened())
{
// turn on recording
m_rec = true;
#ifdef CAM_REC_BUFFERS
m_recpos = 0;
#endif
m_win->PrintLeft ("Recording to " + fn);
// start recording thread
#ifdef CAM_REC_BUFFERS
m_recfstart = CreateSemaphore (NULL, 0, CAM_REC_BUFFERS, NULL)
m_recfdone = CreateEvent (NULL, TRUE, TRUE, NULL);

#else
m_recfstart = CreateEvent (NULL, FALSE, FALSE, NULL);
m_recfdone = CreateEvent (NULL, FALSE, TRUE, NULL);
#endif
m_recthread = CreateThread (NULL, 0, RecThread,
this, 0, NULL)
return true;
}
else

{
m_win->PrintLeft ("Couldn’t start recording");

return false;

void GiraffCamera::StopRecord()
{
if (m_rec)
{
// turn off recording
m_rec = false;
// wake recording thread, so it notices
// that m_rec is now false
#ifdef CAM_REC_BUFFERS
// no need to check if ReleaseSemaphore
// fails here, since if it does, the
// recording thread is already awake

ReleaseSemaphore(m_recfstart, 1, NULL);
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#else
SetEvent (m_recfstart);
#endif
// wait for it to complete
WaitForSingleObject (m_recthread, INFINITE);
// shut down
CloseHandle (m_recthread) ;
CloseHandle (m_recfdone) ;
CloseHandle (m_recfstart);
m_vrec.release();

m_win->PrintLeft ("Recording stopped") ;

bool GiraffCamera::StartPlayback (const string& name)
{

string fn = name + ".avi";

m_vplay.open (fn) ;

if (m_vplay.isOpened())

{
// turn on playback
m_play = true;
m_eof = false;
m_win->PrintLeft ("Playback from " + fn);
// show playback resolution on display
// (don’t bother showing fps, as we don’t
// put the real fps into our recordings)
ostringstream ost;
ost << m_vplay.get (CV_CAP_PROP_FRAME_WIDTH) << "x"

<< m_vplay.get (CV_CAP_PROP_FRAME_HEIGHT) ;

m_win->SetCameralnfo(ost.str());
return true;

}

else

{
m_win->PrintLeft ("Couldn’t start playback");

return false;

void GiraffCamera::StopPlayback (
{
if (m_play)
{
// turn off playback
m_play = false;
m_eof = false;
m_vplay.release();
m_win->PrintLeft ("Playback stopped");
// restore original camera resolution

SetCameralnfo();

void GiraffCamera::SetCameralInfo (
{
// show camera resolution on display
ostringstream ost;
ost << m_vcap.get (CV_CAP_PROP_FRAME_WIDTH) << "x"
<< m_vcap.get (CV_CAP_PROP_FRAME_HEIGHT) ;
double fps = m_vcap.get (CV_CAP_PROP_FPS) ;
if (fps)
{
// if FPS is available, show it too
ost << ", "
<< m_vcap.get (CV_CAP_PROP_FPS) << "fps";
}

m_win->SetCameralnfo (ost.str());

DWORD WINAPI GiraffCamera::RecThread(LPVOID param)
{
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GiraffCamera xobj = (GiraffCamerax)param;
unsigned nextpos = 0;
while (true)
{
// wait for captured frame
WaitForSingleObject (obj->m_recfstart, INFINITE);
if (!obj->m_rec)
{
// recording has been turned off, exit
break;
}
// encode frame
#ifdef CAM_REC_BUFFERS
obj->m_vrec.write (obj->m_recbuf [nextpos]);
obj->m_recbuf [nextpos].release();
nextpos = (nextpos + 1) % CAM_REC_BUFFERS
#else
obj->m_vrec.write (obj->m_frame);
#endif
// signal completion
SetEvent (obj->m_recfdone) ;
}

return 0;

B.5. DisplayWindow.hpp

#ifndef DISPLAYWINDOW_HPP
#define DISPLAYWINDOW_HPP

#include <opencv2/core/core.hpp>
#include <windef.h>
#include <string>

#include <deque>

typedef void (xInputProc) (int code, int type);
typedef std::deque<std::string> DisplayBuffer;

class DisplayWindow
{
public:
DisplayWindow (HINSTANCE hInst,
HINSTANCE hPrevInst);
~DisplayWindow () ;
void SetInputHandler (InputProc proc);
bool start();
void Stop();
void ShowError (LPCSTR pMsg)
void ShowError (LPCSTR pMsg, DWORD code) ;
void Show(const cv::Mat& frame);
bool ProcessInput();
void SetCameraInfo(const std::strings& info);
void SetPositionInfo(const std::string& info);
void SetPerformanceInfo(const std::string& info);
void PrintLeft (const std::string& info);
void PrintRight (const std::string& info);
void InputLeft (const std::string& info);
void InputRight (const std::string& info);

private:
HINSTANCE m_hinst;
HWND m_hwnd;
InputProc m_proc;
std::string m_caminfo, m_posinfo, m_perfinfo;
DisplayBuffer m_leftbuf, m_rightbuf;
std::string m_leftinput, m_rightinput;
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bool InitApp();
bool InitWindow();
void CloseWindow () ;
LRESULT WndProc (HWND hwnd,
UINT uMsg,
WPARAM wParam,
LPARAM lParam) ;
static
LRESULT CALLBACK CWndProc (HWND hwnd,
UINT uMsg,
WPARAM wParam,
LPARAM lParam);
i

#endif // DISPLAYWINDOW_HPP

B.6. DisplayWindow.cpp

#include "DisplayWindow.hpp"

#include <opencv2/imgproc/imgproc.hpp>
#include <windows.h>

#include <sstream>

#define BUFFER_SIZE 32

using namespace std;

using namespace cv;

static const char xapp_name = "GiraffNav";

DisplayWindow: :DisplayWindow (HINSTANCE hInst,
HINSTANCE hPrevInst)
m_hinst (hInst), m_hwnd(NULL)

if (!hPrevInst)

{
if (!InitApp())
{

// couldn’t register window class

ShowError ("Couldn’t register window class:

GetLastError());

return;

DisplayWindow: :~DisplayWindow ()
{
Stop();

void DisplayWindow: :SetInputHandler (InputProc proc)
{

m_proc = proc;

bool DisplayWindow::Start ()
{
if (!InitWindow())
{
ShowError ("Couldn’t create window: ",
GetLastError());
return false;
}
// show the resolution of the Giraff’s monitor

ostringstream ost;

B.6. DisplayWindow.cpp
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ost << "Display resolution: "

<< GetSystemMetrics (SM_CXSCREEN) << "x"
<< GetSystemMetrics (SM_CYSCREEN) ;
PrintLeft (ost.str());

return true;

void DisplayWindow: :Stop ()
{

CloseWindow () ;

void DisplayWindow: :ShowError (LPCSTR pMsg)
{
MessageBox (m_hwnd, pMsg, app_name,
MB_OK | MB_ICONERROR) ;

void DisplayWindow: :ShowError (LPCSTR pMsg, DWORD code)
{

ostringstream ost;

ost << pMsg << code;

ShowError (ost.str().c_str());

// This function is a bridge between the Win32 API

// (which is plain C) and the C++ class DisplayWindow.

LRESULT CALLBACK DisplayWindow::CWndProc (HWND hwnd,
UINT uMsg,
WPARAM wParam,
LPARAM l1Param)

DisplayWindow xwin;

if (uMsg == WM_NCCREATE)

{
CREATESTRUCT* cs = (CREATESTRUCTx)lParam;
// This 1is supposed to be the first message the
// window receives. (In reality, it isn’t,

// but it’s close enough for our purposes.)

// lpCreateParams is the DisplayWindow pointer provided

// to CreateWindowEx.
win = (DisplayWindowx)cs->1pCreateParams;
// Save it in the window structure.
SetWindowLongPtr (hwnd, 0, (LONG_PTR) win);

}

else

{
// Get the DisplayWindow pointer previously stored
// in the window structure.
win = (DisplayWindowx)GetWindowLongPtr (hwnd, 0);

}

if (win)

{
// Dispatch message to DisplayWindow, if possible.
return win->WndProc (hwnd, uMsg, wParam, lParam);

}

else

{

// Otherwise (i.e., it’s one of the messages that

// arrive before WM_NCCREATE), do default processing.

return DefWindowProc (hwnd, uMsg, wParam, lParam);

// Register window class for main window
bool DisplayWindow::InitApp ()
{

WNDCLASSEX wcx;

wcx.cbSize = sizeof (wcx);

wcx.style = CS_HREDRAW | CS_VREDRAW;
wcx.lpfnWndProc = CWndProc;
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wcx.cbClsExtra = 0;

wcx.cbWndExtra = sizeof (DisplayWindowx) ;

wcx.hInstance = m_hinst;

wex.hIcon = NULL; // no icon yet

wcx.hCursor = LoadCursor (NULL, IDC_ARROW) ;
wcx.hbrBackground = (HBRUSH) GetStockObject (BLACK_BRUSH)
wcx.lpszMenuName = NULL;

wcx.lpszClassName = "GiraffNavClass";

wcx.hIconSm = NULL;

return RegisterClassEx(&wcx);

// Create main window
bool DisplayWindow::InitWindow ()
{
m_hwnd = CreateWindowEx (
0
"GiraffNavClass",
app_name,
//WS_OVERLAPPEDWINDOW, // regular window
WS_POPUP, // fullscreen (no caption or border)
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
(HWND) NULL,
(HMENU) NULL,
m_hinst,
this) ;
if (!m_hwnd)
{
return false;
}
ShowWindow (m_hwnd, SW_SHOWMAXIMIZED)

return true;

// Destroy main window
void DisplayWindow: :CloseWindow (
{

if (m_hwnd)

{

DestroyWindow (m_hwnd) ;

bool DisplayWindow::ProcessInput ()
{
MSG msg;
while (PeekMessage (&msg, NULL, 0, 0, PM_REMOVE)
{
if (msg.message == WM_QUIT)
{
// Terminate application
return false;
}
TranslateMessage (&msg) ;
DispatchMessage (&msg) ;
}
return true;

static int RenderInfo(Mat& out, int x, int y, const string&
int align=-1)

const Scalar color(128,255,255); // yellow
int fontFace = FONT_HERSHEY_PLAIN;
double fontScale = 1;

int thickness = 1;
int baseline = 0;
Size sz = getTextSize(info, fontFace, fontScale,

i

info,

B.6. DisplayWindow.cpp
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thickness, &baseline);

Point org(x, y + sz.height);
if (align > 0)
{

org.x —-= sz.width;
}
else if (align == 0)
{

org.x -= sz.width/2;
}
putText (out, info, org, fontFace, fontScale,

color, thickness);

return sz.height + baseline;

static void RenderBuffer (Mat& out, int x, int y,
DisplayBuffer& buf,
string& input)

DisplayBuffer::iterator it = buf.begin();

while (it != buf.end())

{
y += RenderInfo(out, x, y, =it) + 5;
it++;

}

if (!input.empty())

{

RenderInfo(out, x, y, input);

// Show camera image in main window
void DisplayWindow::Show(const Maté& frame)
{
// Get size of window drawing area,
// so we can scale the image to fit it.
RECT rect;
GetClientRect (m_hwnd, &rect);
int width = rect.right;
int height = rect.bottom;
// To enforce the alignment required by
// SetDIBitsToDevice, round the width
// down to the nearest multiple of 4.
width = width&~3;
// Scale image (without interpolation,
// in order to save CPU).
Mat out;
resize (frame, out, Size(width, height),
0, 0, INTER_LINEAR);
// Overlay some information from the subsystems
RenderInfo(out, 0, 0, m_caminfo, -1);
RenderInfo(out, width/2, 0, m_posinfo, 0);
RenderInfo(out, width, 0, m_perfinfo, 1);
RenderBuffer (out, 0, 20, m_leftbuf, m_leftinput);
RenderBuffer (out, width*3/5, 20, m_rightbuf, m_rightinput);
// Create bitmap info needed by SetDIBitsToDevice
BITMAPINFOHEADER bmih;
bmih.biSize = sizeof (bmih);
bmih.biWwidth = out.cols;
bmih.biHeight = -out.rows; // negative = top-down DIB
bmih.biPlanes = 1;
bmih.biBitCount = 24;
bmih.biCompression = BI_RGB;
bmih.biSizeImage = 0;
bmih.biXPelsPerMeter = 0;
bmih.biYPelsPerMeter = 0;
bmih.biClrUsed = 0;
bmih.biClrImportant = 0;
// Draw video frame in window
HDC hdc = GetDC (m_hwnd) ;
SetDIBitsToDevice (hdec, 0, 0,
width, height,
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0, 0,

0, out.rows,

out.data,

(BITMAPINFO«) &bmih,

DIB_RGB_COLORS) ;
ReleaseDC (m_hwnd, hdc);

LRESULT DisplayWindow::WndProc (HWND hwnd,
UINT uMsg,
WPARAM wParam,
LPARAM lParam)

switch (uMsg)
{
case WM_NCCREATE:
// The window now exists.
m_hwnd = hwnd;
return TRUE;
case WM_NCDESTROY:
// The window no longer exists.
m_hwnd = NULL;
return 0;
case WM_KEYDOWN:
case WM_KEYUP:
case WM_CHAR:
if (m_proc)
{
m_proc (wParam, uMsg);
}
return 0;
case WM_CLOSE:
// The user pressed the Close button
// (or its keyboard shortcut, Alt-F4).
DestroyWindow (hwnd) ;
return 0;
case WM_DESTROY:
// The main window 1s being closed, so make
// sure the app itself also terminates.
PostQuitMessage (0) ;
return 0;
default:
return DefWindowProc (hwnd, uMsg, wParam, lParam);

void DisplayWindow::SetCameralInfo(const std::string& info)

{

m_caminfo = info;

void DisplayWindow::SetPositionInfo(const std::string& info)
{

m_posinfo = info;

void DisplayWindow: :SetPerformanceInfo(const std::strings& info)

{

m_perfinfo = info;

// to remove end-of-line characters from end of string
static size_t chomped(const string& info)
{

size_t n = info.find_last_not_of ("\r\n");

if (n != string::npos)

{

return n+l;
}
else

{

return 0;

B.6. DisplayWindow.cpp
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static string chomp (const string& info)
{
size_t n = chomped(info);

return info.substr(0, n);

// add line to left pane
void DisplayWindow: :PrintLeft (const string& info)
{
m_leftbuf.push_back (chomp (info));
while (m_leftbuf.size() > BUFFER_SIZE)
{
m_leftbuf.pop_front();

// add line to right pane
void DisplayWindow::PrintRight (const string& info)
{
unsigned span = 32;
size_t len = chomped(info);
// split string into lines of 32 characters each
for (size_t n=0; n<len; n+=span)
{
size_t end = n+span;
if (end > len)
{
end = len;
}
m_rightbuf.push_back (info.substr(n,end-n));
}
// if buffer is now full, scroll up by removing
// lines from the top
while (m_rightbuf.size() > BUFFER_SIZE)
{
m_rightbuf.pop_front();

// show user input for left pane
void DisplayWindow::InputLeft (const string& info)
{

m_leftinput = info;

// show user input for right pane
void DisplayWindow::InputRight (const string& info)
{

m_rightinput = info;

B.7. GiraffNav.cpp

#include "DisplayWindow.hpp"
#include "GiraffCamera.hpp"
#include "GiraffMotor.hpp"
#include "FeatureExtract.hpp"

#include <opencv2/highgui/highgui.hpp>
#include <windows.h>
#include <sstream>

#include <iomanip>

#define DEF_WIDTH 800
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#define DEF_HEIGHT 600

#define KBD_TURN_SPEED 45

#define KBD_MOVE_SPEED

// Disp. res. 8
// ca 10fps at
// Notes from t

// Default tilt angle #bab8b23d = 0.0872664005

00x1280

0.4

800x600 capture

esting:

#define PLAY_PATH "C:/GiraffRec/"
#define PLAY_FILE "20130515_135355"

using namespace
using namespace

std;

cv;

static DisplayWindows mainWindow;

static GiraffCamerax mainCamera;

static GiraffMotorx mainMotor;

static FeatureExtractor* extractor;

enum InputMode
{
INPUT_NONE
INPUT_LEFT
INPUT_RIGHT
}

.
=2

static InputMode inputMode = INPUT_NONE;

static bool returnPressed = false;

static string 1
static bool isR
static bool isP

void SetResolution(int width,

{

mainCamera-

nputLine;

ecording =

false;

laying = false;

>stop () ;

mainCamera->Start (width, height);

void ToggleReco
{
if (!isReco

{

rding()

rding)

// decide on a file name

SYSTEMT

IME tm;

GetLocalTime (&tm) ;

ostringstream ost;

ost <<
<<
<<
<<
<<
<<
<<
<<

string

if (!mainCamera->StartRecord("/GiraffRec/cam_"

{
ret

}

if (!mainMotor->StartRecord("/GiraffRec/ctl_" + name)

{

tm.wYear

setfill(’0")

setw(2) <<
setw(2) <<
setw(2) <<
setw(2) <<
setw(2) <<

name = ost

urn;

tm.wMonth
tm.wDay

tm.wHour

tm.wMinute

tm.wSecond;
.str();

mainCamera->StopRecord();

ret

}

urn;

isRecording = true;

}

else

{

mainMotor->StopRecord() ;

int height)

B.7. GiraffNav.cpp
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mainCamera->StopRecord() ;

isRecording = false;

void TogglePlayback ()
{
if (!isPlaying)
{
string name = PLAY_FILE;
if (!mainCamera->StartPlayback (PLAY_PATH "cam_" + name))
{
return;
}
if (!mainMotor->StartPlayback (PLAY_PATH "ctl_" + name))
{
mainCamera->StopPlayback () ;
return;
}
isPlaying = true;
}
else
{
mainMotor->StopPlayback();
mainCamera->StopPlayback() ;

isPlaying = false;

void InputHandler (int code, int type)
{
if (type == WM_KEYUP &&
code == VK_RETURN)

returnPressed = false;

if (inputMode)
{
if (type != WM_CHAR)
{
return;
}
switch (code)
{
case '\b’: // Backspace
if (!inputLine.empty())
{
inputLine.erase (inputLine.length()-1);
}
break;
case '\e’: // Esc
inputMode = INPUT_NONE;
inputLine.clear();
mainWindow->InputRight (inputLine) ;
return;
case '\r’: // Enter
if (returnPressed)
{
// keypress already handled separately
return;
}
if (!inputLine.empty())
{
mainMotor->SendUserCommand (inputLine) ;
}
inputMode = INPUT_NONE;
inputLine.clear();
mainWindow->InputRight (inputLine) ;
return;
default:
if (code >= 32 && code <= 126)
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}

mainWindow->InputRight (inputLine + "_

retu

if (type
{
swit
{
case
case

// Regular ASCII character

inputLine.push_back (code) ;

}

break;

rn;

== WM_KEYUP)

ch (code)

VK_DOWN :
VK_UP:
mainMotor->SetMotion (0) ;

break;

case VK_LEFT:
case VK_RIGHT:

mainMotor->SetTurn (0) ;

break;

}
}
if (type != WM_KEYDOWN)
{

return;
}
switch (code)

{

case VK_ESCAPE:
// Initiate system shutdown

mainWindow->Stop () ;

break;

// Manual movement
case VK_LEFT:

mainMotor->SetTurn (-KBD_TURN_SPEED) ;

break;
case VK_RIGHT:

mainMotor->SetTurn (KBD_TURN_SPEED) ;

break;
case VK_UP:

mainMotor->SetMotion (KBD_MOVE_SPEED) ;

break;
case VK_DOWN:
mainMotor->SetMotion (-KBD_MOVE_SPEED) ;

break;

// Keys to try out various resolutions.
case '1’:

SetResolution (1600, 1200);
break;

case '2':

SetResolution (1280, 960);

break;

case '3':

SetResolution (1024, 768);

break;

case '4’:

SetResolution (800, 600);

break;

case ’'5’

SetResolution (640, 480);
break;

// Misc

keys

case VK_RETURN:

// input motor command
inputMode = INPUT_RIGHT;

returnPressed = true;

mainWindow->InputRight ("_");

break;

case 'A’:

")

B.7. GiraffNav.cpp
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// this is a hack to check
mainMotor->m_autoupdate = !mainMotor->m_autoupdate;
if (mainMotor->m_autoupdate)
{
mainWindow->PrintLeft ("Motor autoupdate on");
}
else
{
mainWindow->PrintLeft ("Motor autoupdate off");
}
break;
case 'B’:
mainMotor->GetBulkData() ;
break;
case 'H’:
mainMotor->Home () ;
break;
case 'P’:
TogglePlayback () ;
break;
case 'R’:
ToggleRecording() ;
break;
case 'T':
mainMotor->SetTilt (1);
break;
case 'U’:
mainMotor->Undock () ;
break;

void MainLoop ()

{
LARGE_INTEGER freq, period;
LARGE_INTEGER last_count;
DWORD frame_count = 0;
DWORD fms = 0;
DWORD fps = 0;

Mat frame;

QueryPerformanceFrequency (&freq) ;
// recalculate performance data every 250ms.

period.QuadPart = freqg.QuadPart / 4;

QueryPerformanceCounter (&last_count) ;
while (mainWindow->ProcessInput())
{
bool ok = mainMotor->Process();
if (!ok && isPlaying)
{
TogglePlayback () ;
mainMotor->Process () ;
}
mainCamera->Grab (frame) ;
extractor->Process (frame) ;
mainWindow->Show (frame) ;

frame_count++;

// check performance measures
LARGE_INTEGER cur_count, diff_count;
QueryPerformanceCounter (&cur_count) ;
diff_count.QuadPart = cur_count.QuadPart - last_count.QuadPart;
if (diff_count.QuadPart >= period.QuadPart)
{
// recalculate performance data
LONGLONG factor = frame_count * freqg.QuadPart;
fms = (diff_count.QuadPart+1000) / factor;
fps = factor / diff_count.QuadPart;
frame_count = 0;
last_count.QuadPart = cur_count.QuadPart;
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ostringstream ost;
ost << fms << "ms, "
<< setw(2) << fps << "fps";

mainWindow->SetPerformanceInfo (ost.str());

int WINAPI WinMain (HINSTANCE hInst,
HINSTANCE hPrevInst,
LPSTR pCmdLine,
int nCmdShow)

mainWindow = new DisplayWindow(hInst, hPrevInst);
mainWindow->SetInputHandler (InputHandler) ;
if (!mainWindow->Start())
{
return 0;
}
mainCamera = new GiraffCamera (mainWindow) ;
if (!mainCamera->Start (DEF_WIDTH, DEF_HEIGHT)
{
mainWindow->ShowError ("Could not connect to camera!");
return 0;
}
mainMotor = new GiraffMotor (mainWindow) ;
if (!mainMotor->Start())

{

mainWindow->ShowError ("Could not connect to motor controller!");

return 0;
}
extractor = new FeatureExtractor (mainWindow) ;
MainLoop () ;
delete extractor;
delete mainMotor;
delete mainCamera;
delete mainWindow;

return 0;

B.8. FeatureExtract.hpp

#ifndef FEATUREEXTRACT_HPP
#define FEATUREEXTRACT_HPP

#include "DisplayWindow.hpp"
#include <opencv2/highgui/highgui.hpp>
#define CAM_REC_BUFFERS 8

class FeatureExtractor

{

public:
FeatureExtractor(DisplayWindow* win);
~FeatureExtractor();

void Process (cv::Mats& frame);
private:
DisplayWindows m_win;

i

#endif // FEATUREEXTRACT_HPP

B.8. FeatureExtract.hpp
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B.9. FeatureExtract.cpp

#include "FeatureExtract.hpp"
// Sample feature extractor

#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/features2d/features2d.hpp>

using namespace std;
using namespace cv;

FeatureExtractor: :FeatureExtractor (DisplayWindowx win)

m_win (win)

FeatureExtractor::~FeatureExtractor()
{
}

void FeatureExtractor::Process(cv::Mat& frame)

{

Mat grayframe;

// Convert to grayscale
cvtColor (frame, grayframe, CV_BGR2GRAY) ;

#if 0 // Canny edge detector (just for demonstration)
Mat cannyframe (grayframe.size(), grayframe.type());
Canny (grayframe, cannyframe, 20, 50);
cvtColor (cannyframe, frame, CV_GRAY2BGR);

#endif // 1

#if 1 // "FAST" corner detector
vector<KeyPoint> keypoints;

FAST (grayframe, keypoints, 50);

// draw pink circles around detected corners
drawKeypoints (frame, keypoints, frame,
Scalar(128,0,255),
DrawMatchesFlags: :DRAW_OVER_OUTIMG) ;

// These eypoints could be given to some
// SLAM implementation.

#endif

}
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C. Contents of the CD-ROM

The CD-ROM contains these directories:

e Bin: This directory contains the binaries needed to run the system. They can be
copied to a USB memory stick, which can then be inserted into one of the Giraff’s
USB ports, along with a computer mouse. When browsing the contents of the
memory stick, doubleclick GiraffNav.exe. (If you plan to do any recording,
make sure that a GiraffRec directory exists on the memory stick, otherwise

recording may fail.)

e GiraffNav: This is the source code of the developed system, along with the

Code::Blocks project file, and MinGW-compiled binaries.

e OpenCV: This is the source code of OpenCV version 2.4.9, and MinGW-compiled

binaries of it. These binaries are needed for building GiraffNav.

e GiraffRec: This directory contains a couple of recordings of the Giraff moving

around the care center using the developed system.
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