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Abstract

Clouds commonly employ virtual machine technology to leverage and efficiently utilize com-
putational resources in data centers. The workloads encapsulated by virtual machines contend
for the resources of their hosting machines and interference from resource sharing can cause
unpredictable performance. Despite the use of virtual machine technology, the role of the oper-
ating system as an arbiter of resource allocation persists—virtual machine monitor functionality
is implemented as an extension to an operating system and the resources provided to a virtual
machine are managed by an operating system.

Visibility and opportunity for control over resource allocation is needed to prevent execution
by one workload from usurping resources that are intended for another. If control is incomplete,
no amount of over-provisioning can compensate for it and there will inevitably be ways to
circumvent policy enforcement. The accurate and high fidelity control over resource allocation
that is required from an operating system in a virtualized environment is a new operating system
challenge.

This dissertation presents the omni-kernel architecture, a novel operating system architecture
designed around the basic premise of pervasive monitoring and scheduling. The architecture
ensures that all resource consumption is measured, that the resource consumption resulting
from a scheduling decision is attributable to an activity, and that scheduling decisions are fine-
grained.

The viability of the omni-kernel architecture is substantiated through a faithful implemen-
tation, Vortex, for multi-core x86-64 platforms. Vortex instantiates all architectural elements
of the omni-kernel and provides a large range of commodity operating system functionality
and abstractions. Using Vortex, we experimentally corroborate the efficacy of the omni-kernel
architecture by showing accurate scheduler control over resource allocation in scenarios with
competing workloads. Experiments involving Apache, MySQL, and Hadoop quantify the cost
of the omni-kernel pervasive monitoring and scheduling to be around 5% of CPU utilization or
substantially less.
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Chapter 1

Introduction

Clouds offer services ranging from internet-facing applications such as email, photo sharing,
and office tools, to the resources needed for computation intensive workloads such as biomolec-
ular simulations and multi-dimensional analysis to discover patterns in large data sets. Whether
offering versatile computing platforms for business workloads or providing dedicated services,
clouds are typically hosted in large data centers. A modern data center consists of tens of thou-
sands of network-interconnected machines carefully set up to ensure operational continuity.
Power, cooling, network redundancy, modularity, and management automation are examples
of issues that must be addressed for successful and effective data center operation.

Common platform services are a delineating feature of clouds. Examples of these include
key/value stores, SQL databases, business analytics, message queues, and notification services.
Most cloud platforms offer a range of such services readily accessible to workload logic, typ-
ically on a metered basis, and their operation leverage the expertise of the cloud provider in
building a secure, reliable, and scalable service. An emerging trend is cloud-hosted market-
places for applications and datasets, as exemplified by the Windows Azure Marketplace [1] and
Amazon’s AWS [2]. Such marketplaces offer ready-to-use services and often programmable
interfaces that enable a service to function as a component in the logic of another cloud work-
load.

To leverage and efficiently utilize data center computational resources, clouds commonly
employ virtual machine technology. A virtual machine (VM) is a self-contained execution
environment consisting of an operating system (OS) kernel and the run-time libraries and tools
needed for one or more processes to execute under the OS. By statistically multiplexing the
physical resources of a single machine among multiple VMS, a larger fraction of the capacity
of the machine can be utilized. A premise here is that the capacity of a machine exceeds that
which is needed by a VM. Indeed, today, the typical data center machine has around 8-12 cores
and at least 32GB of memory, and the trend is towards even higher core counts [3, 4]. Given
the resource demands of many workloads, it is common for a single machine to be able to
accommodate the resource needs of dozens and even hundreds of VMS [5].

The amount of resources available to a VM is limited by the capacity of the machine hosting
the VM. For workloads that require the capacity of multiple machines, the typical approach
is to scale out by using multiple VMS. Scaling out implies that the workload logic must deal
with classical distributed systems problems such as fault-tolerance, consistency, and availabil-
ity [6, 7, 8]. The difficulties involved in building such distributed applications are well-known.
Instead of dealing with these difficulties directly, many cloud workloads are expressed within
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distributed programming frameworks [9, 10, 11, 12]. These frameworks provide simple and
flexible programming interfaces, while incorporating mechanisms to handle distributed sys-
tems issues.

The resources of a machine are multiplexed among VMS by the virtual machine moni-
tor (VMM) software layer. The basic objective of a VMM is to provide each VM with the illusion
of unshared access to physical resources such as central processing units (CPUS), memory, and
network and disk input/output (I/O) devices. The classical approach to implementing this illu-
sion is to de-privilege VM execution and make all VM instructions that read or write privileged
state trap into the VMM for emulation [13]. To a large extent this trap-and-emulate approach
is still used by modern VMMS [14]. CPU state is maintained on a per-VM basis, with updates
either vectored into the VMM for emulation or handled by CPU virtualization support in hard-
ware [15]. For privileged off-CPU state such as page tables, VM updates are reflected into an
actual page table maintained by the VMM using trap mechanisms [16] or are partially handled
by CPU features such as Intel’s extended page tables [15]. Providing I/O devices to VMS is a
challenge. Modern I/O devices have a complex programming interface comprising interrupts,
direct memory access (DMA), in-memory data structures, and protocols for interacting with
on-device firmware. The complexity of virtualizing such I/O devices can be sidestepped by
presenting simpler devices (of the same class) to VMS, as is commonly done [17].

In a mature VMM, operations on a virtualized I/O device are rarely multiplexed by the VMM

directly onto an underlying physical I/O device. For example, a common approach is to back
a virtual disk device by a file in a file system or by a partition on a physical disk. Similarly,
the state of an emulated network device could be maintained by a Qemu [18] instance that
uses socket-based abstractions to convey packets to the actual network interface. Modifica-
tions to the VM OS kernel to prevent actions that are difficult to virtualize have also become
commonplace [16]. For example, VM kernel device drivers are often replaced with drivers that
use more efficient buffer-based interfaces [19]. This proliferation in functionality needed to
support the operation of VMS has led to VMMS relying on the full functionality of a privileged
OS [16, 20, 21].

1.1 Interference

Because clouds run on shared data center infrastructure, a similar problem is faced at all
levels of the cloud software stack:

Interference from resource sharing causing unpredictable performance.

An internet-facing service will typically serve requests from different customers. These re-
quests share the resources available to the service and contend for fractions of it. Differences
in request types or patterns can cause variable and unpredictable performance between cus-
tomers. Similarly, common platform services handle requests from different cloud workloads.
The throughput and capacity available to one workload is subject to interference by the service-
load imposed by other workloads. When VMS are co-located on the same machine they compete
for resources. If the VMM fails to account for and control the resource usage of individual VMS,
both when they execute and when the VMM performs work on behalf of a VM, the result may
be unpredictable VM performance. Limiting interference is essential for the cloud provider to
generate fine-grained billing information, offer differentiated pricing models, and meet service
level objectives (SLOS).
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Network bandwidth is a scarce resource in a data center and contention can severely im-
pact workload performance [9, 22, 23, 24, 25]. Both Oktopus [26] and SecondNet [24] use
knowledge of data center network topology (e.g. fat tree [27], VL2 [28], and BCube [29]) to
map sets of VMS to physical machines such that bandwidth guarantees can be enforced. Gate-
keeper [30] provides bandwidth guarantees for pairs of communicating VMS by controlling the
usage of individual machine network access links. Seawall [31] has a similar architecture, but
divides link bandwidth among the total number of VMS using the link. Netshare [32] relies
on a centralized bandwidth allocator, weighted fair queueing (WFQ) support in switches, and
seeks bandwidth guarantees between endpoints in the network. FairCloud [33] shares band-
width among congested links in proportion to number of workload VMS, but does not consider
work-conservation properties. These works can all be categorized as tradeoffs among providing
minimum network bandwidth guarantees for VMS, network utilization, and dividing network
resources in proportion to pricing.

Workloads that depend on common platform services can experience variable performance
depending on the service-load imposed by other workloads [22, 23, 34, 35]. SQL Azure builds
on Cloud SQL [36] that uses a partitioned database on a shared-nothing architecture [37] to
scale out. Interference can occur when partitions belonging to different customers are co-
located on the same machine. Pieces [38] integrates max-min fairness into the Membase key/-
value store by introducing scheduling at different timescales (partitions to nodes, updates to
shares at nodes, replica load-balancing, and local node request scheduling). Parda [39] treats
a shared storage array as a black box and requires accessing hosts to throttle request-issuing
to control service rates at the array, similar to Triage [40]. Stout [41] also employs a simi-
lar approach by introducing distributed congestion control for requests to a cloud key/value
storage. The adaptation strategy is implemented on the client-side and is based on measured
service latency. Mesos [42] focuses on controlled sharing of resources between frameworks
such as Hadoop and MPI. Mesos monitors resource availability on machines and presents re-
source offers to hosted frameworks based on organizational policies (e.g. fair sharing or pri-
ority). Framework schedulers accept offers and pass task descriptions to Mesos, which is in
charge of task dispatching and execution. Aria [43] has a similar structure, but focuses exclu-
sively on multiple Hadoop jobs meeting their SLO. Some platform services, such as Amazon’s
Dynamo [44], provide no fairness and assume uniform load distribution.

Cloud workloads can be architected in many different ways, but ultimately they are expressed
in the form of a set of VMS that must be mapped to data center machines. This mapping is
handled by cloud management software [45, 46, 47, 48, 49]. Issues that must be considered
in a placement decision are the VM SLO, the placement of other VMS belonging to the same
workload, overload predictions, and optimizations such as the potential for memory sharing.
Although mechanisms exist for rapid VM migration [50, 51], once a VM has been placed on
a machine it is likely to reside there for some time due to the many tradeoffs involved in the
decision-process. In many cases, a decision to migrate even has to be signed off by a human
operator [51, 52].

On a machine, the VMM must multiplex hardware resources among VMS according to their
SLOS. Typically these SLOS specify guarantees for CPU and memory using controls such as
reservations, limits, and shares [49, 53, 54]. For CPU and memory, VM resource consumption
is largely compartmentalized; preemption of CPU control is sufficient to abrogate VM CPU us-
age and memory pages can revoked transparently to a VM. For example, Xen offers a borrowed
virtual time [55] and a credit-based [56] algorithm for scheduling virtual CPUS. Ensuring ef-
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ficient use of memory requires more elaborate techniques though. A common approach is to
use memory ballooning [53] to increase the likelihood that unused memory is revoked from a
VM. Also, content-based page sharing [53, 57, 58, 59, 60] has become standard in most mature
VMMS.

A recent concern is the impact of interference caused by sharing of caches and buses when
data center workloads are consolidated on the same machine [3, 61, 62]. While there is a
wealth of previous work on strategies and algorithms for mitigating interference problems on
non-virtualized platforms (e.g. [63, 64, 65]), approaches to handle the problem in a virtualized
environment is a burgeoning research field. One challenge is the separation of control; the
VMM can control what physical resources are made available to a VM, but cannot control how
the VM OS makes use of those resources. For example, the VMM might deduce that it would
be advantageous for the VM to perform work that makes use of certain (cached) memory when
next scheduled, and one can envision paravirtualization-based [16] mechanisms to make this
information available to the VM, but the VMM can only incentivize compliance by better per-
formance. (Penalization by resource throttling is one possible response to non-compliance.)
Even assuming willingness to comply, a challenge is for the VM OS to have sufficiently fine-
grained control over resources. For example, the OS must have the necessary instrumentation
to locate and schedule units of work that make use of the memory, be it user-level threads or
other kernel-side units. In a similar vein, if informed there is spot network capacity available,
the VM OS must be capable of identifying and scheduling units of work that are in furtherance
of producing network packets. More generally, accommodating changes in resource capacity
due to external interference and activity is a challenge that requires visibility and opportunity
for control over resource allocation in the VM OS.

A similar level of diligence is required from the VMM when multiplexing requests from
virtual I/O devices onto limited physical I/O hardware. Modern VMMS interpose and transform
virtual I/O requests to support features such as transparent replication of writes, encryption,
firewalls, and intrusion-detection systems [17]. Reflecting the relative or absolute performance
requirements of individual VMS in the handling of their I/O requests is critical when mutually
distrusting workloads might be co-located on the same machine. AutoControl [66] represents
one approach to such control. The system instruments VMS to determine their performance and
feeds data into a controller that computes resource allocations for actuation by Xen’s credit-
based virtual CPU and proportional-share I/O scheduler. While differentiating among requests
submitted to the physical I/O device is crucial, and algorithmic innovations such as mClock [5]
and DVT [67] can further strengthen such differentiation, scheduling vigilance is required on
the entire VM to I/O device path. For example, a VM may be unable to exploit its I/O budget
due to infrequent CPU control [68, 69], benefit from particular scheduling because of its I/O

pattern [70, 71], or unduly receive resources because of poor accounting [72]. Functionality-
enriching virtual I/O devices may lead to a significant amount of work being performed in the
VMM on behalf of VMS. In [73], an I/O intensive VM was reported to spend as much as 34%
of its overall execution time in the VMM. Today, it is common to reserve several machine
cores to support the operation of the VMM [17]. In an environment where workloads can even
deliberately disrupt or interfere [74, 75], accurate accounting and attribution of all resource
consumption is vital to making sharing policies effective.
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1.2 Thesis statement

In a virtualized environment, enforcement of policies on how machine resources are multi-
plexed is a concern shared between the VMM and hosted VMS. The VMM must carefully control
what physical resources are made available to and consumed on behalf of a VM. Likewise,
the VM OS must control available resources with high fidelity to accommodate fluctuations in
capacity and external interference.

Pervasive monitoring and scheduling is required to meet a virtualized environment’s strin-
gent control requirements. For example, to prioritize I/O requests from a particular VM, the
VMM must be able to schedule any and all resource allocation. Failure to identify and prior-
itize VM-associated work at any one level in the VMM I/O stack may be sufficient to subvert
prioritization at other levels.

Modern VMMS are often implemented as extensions to an existing OS or rely on a privileged
OS to provide the bulk of their functionality. For example, kernel-based virtual machine (KVM)
is an extension to Linux, where a VM is modeled as a process and virtual CPUS as threads within
that process. Similarly, VMWare ESXi is based on Linux, albeit with more modifications to
the kernel than KVM. Xen and Hyper-V rely on a privileged OS to provide drivers for physical
devices, device emulation, administrative tools, and transformational capabilities on the I/O

path (device aggregation, encryption, etc.).
By depending on an existing OS, these VMMS also subject themselves to the limited monitor-

ing and scheduling capabilities of an OS not designed for a virtualized environment. Similarly,
VMS run commodity OSS with few accommodations for interference problems. The fine-grained
control required in a virtualized environment is a new OS challenge and no OS has yet been de-
signed around the basic premise of pervasive monitoring and scheduling. We conjecture that
such an OS can be architected and that the overhead implied by its design-premise would be
reasonable. Specifically, the thesis of this dissertation is:

It is possible to construct an operating system kernel where pervasive
monitoring and scheduling capabilities are achieved at reasonable cost.

To evaluate this thesis, we must either extensively change an existing OS to retrofit pervasive
monitoring and scheduling, or design and implement a new OS. Changing an existing OS might
facilitate evaluation of the thesis. But our design space would then be limited by existing design
choices in that OS, some of which might present insurmountable obstacles. An OS is a complex
piece of software and often encompasses hundreds of thousands of lines of code. Whether
those lines of code, and the assumptions underpinning them, are malleable to the extent that a
reaching thesis such as ours can be evaluated with reasonable effort is difficult to foresee from
the outset of an undertaking. Truly pervasive monitoring and scheduling requires recognition
of the design-premise at the architectual level. We therefore choose to implement a new OS

from the ground up, where our design-premise is allowed to shape its architecture.
While a new OS allows one to freely experiment with broad and invasive features, it is ob-

viously desirable that new insights are transferable to commodity OSS. One way to ensure
transferability is to require the new OS to offer the binary interface of a commodity OS. A dan-
ger with such an approach is to impose development-effort not needed for the evaluation of our
thesis. To avert this, but still address transferability concerns, we will instead require the new
OS to provide commodity OS abstractions. Providing an abstraction rather than a specific inter-
face allows for non-essential features of the interface to be omitted, thus reducing development
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time, but preserves the generality and transferability of insights. For this to be valid, however,
the abstraction must be sufficiently developed to be comparable to its commodity counterpart.
We will not delve further into defining sufficiently developed aside from noting that the OS

developed to evaluate the thesis of this dissertation has been used as a VMM to run unmodified
Linux binaries of Apache, MySQL, and Hadoop [76, 77]1.

If resource consumption is not measured, then resource sharing policies can be circumvented.
This implies that one property of an OS with pervasive monitoring and scheduling is that all
resource consumption is measured. Measurement and attribution of resource consumption are
separate tasks, however. Measurement is always retrospective whereas attribution may or may
not be known in advance. For example, some resource expenditures cannot be attributed until
after the fact, such as CPU time devoted to processing interrupts and demultiplexing incoming
network packets. Some expenditures may benefit multiple independent activities in the system
(e.g. a shared in-memory buffer) and this should be visible to schedulers. Solutions to these
attribution questions, and other questions, must be properties of an OS that aspires to provide
stringent control through pervasive monitoring and scheduling.

1.3 Methodology

Science can be said to progress when scientists reach consensus on a question [78]. There
is often controversy before consensus, and reaching consensus on a structured way to handle
disagreement has been a controversial process in itself. The logical positivism movement from
the 1920s embraced verificationism—assertions become knowledge when they are verified by
observations of the world [79]. Science is then the sum of verified propositions. Verification-
ism assumes that there is a correspondence between what is being stated and what is being
observed. In practice, this is often not the case. Popper approached this problem by suggesting
that scientists should only propose theories that are falsifiable, i.e. that statements must be con-
tradictable by experiment [80]. According to Popper, a theory can never be proved right, but
one can have faith in a theory if it survives many attempts to prove it wrong.

The failure of verificationism led to a focus on the scientific method—scientific progress
would be ensured by scientists following a method that would lead to the truth [81]. Although
the notion of a scientific method has received criticism [82, 83], modern scientific inquiry is
conducted using a collection of crafts and practices, a method, that over time has been shown
to be effective in unmasking error. Within the natural sciences, where computer science is
situated [84], the hypothetico-deductive model provides an approximative description of the
method of scientific inquiry. The model describes the formulation of a hypothesis, followed by
deduction of predictions and the design of experiments that either may validate or contradict
the hypothesis. A validation corroborates the hypothesis, while contradictions typically lead
to discarding or reformulating the hypothesis. This is an iterative process, where the different
steps may be revisited multiple times.

Within a field of study, problems can be approached with different sets of tools and practices.
A common view is that problems within the field of computer science are approached in three

1The referred work investigates potential benefits of the VMM offering OS abstractions to the VM OS in addition
to virtualized hardware. One way to view this work is as if the VM OS is a compatibility layer that molds VMM-
provided abstractions to present a specific binary system call interface to processes. With around 25k lines of
code, the abstractions provided by our OS were sufficiently extended to run unmodified Linux binaries of Apache,
MySQL, and Hadoop
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distinct ways [85]:

Theory Using the tools of mathematics, objects are characterized, the relationships among
them hypothesized, proofs of relationships are constructed, and results are interpreted.
The unmasking of errors or inconsistencies typically lead to iterations of the steps. The
study of algorithms and their properties exemplifies one area of computer science that
can be said to be approached by way of a theory paradigm.

Abstraction Using an experimental approach, hypotheses are formulated, models and predic-
tions constructed, experiments designed, and experimental data collected and analyzed.
Like with theory, the different steps are repeated as appropriate.

Design Using an engineering approach, requirements are stated, a system designed, imple-
mented, and tested to ensure conformance with requirements. Again, multiple iterations
may be necessary.

This categorization is more a delineation of competence and skills rather than an accurate
description of how problems are approached—instances of theory appear in abstraction and
design, abstraction in theory and design, and design in theory and abstraction [85]. The work
presented in this dissertation also draws on all three paradigms. We use abstraction to derive a
system architecture that by hypothesis should have certain predicted properties. Adherence to
the architecture in turn serves as a requirement specification for the translation of the architec-
ture into a working implementation. Here, the methodology of the design paradigm is followed.
We draw on established theory in the design of the abstracted architecture, for example when
introducing architectural elements to satisfy the needs of algorithmic constructs.

This dissertation is firmly rooted in systems research, an area of computer science focusing
on eliciting the principles underlying the design of complex computer software and hardware
systems in order to improve their design, use, behavior, and stability. Practices are experimen-
tal, emphasizing the construction and exploration of actual instances of the objects under study.
Empirical measurements are not only used to substantiate and solidify analysis and conclu-
sions, but are also integral to a process of continuous refinement where practical experiences
challenge initial assumptions, perhaps leading to their invalidation or modification. Contri-
butions therefore often consist of generalizations conveying accumulated experience with the
objects under study, along with meticulously crafted concrete objects and experimental results
that corroborate conclusiveness. The OS architecture presented in this dissertation is the result
of refinements and accumulation of experience, a concrete implementation demonstrates its
viability, and experimental results corroborate its claimed properties.

1.4 Research context

This work has been performed in context of the Information Access Disruptions (iAD)
project, a Centre for Research-based Innovation (SFI) funded in part by the Research Coun-
cil of Norway. iAD is hosted by Microsoft Development Center Norway and its main partners
are the universities in Tromsø, Oslo, and Trondheim, Cornell University, Dublin City Univer-
sity, BI Norwegian School of Management, Accenture, and Tromsø Idrettslag. Several other
companies are also to a varying extent affiliated with iAD.
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The main research focus of iAD is technologies in support of large-scale information ac-
cess applications. The focus is vertical, ranging from low-level infrastructure software such
as operating systems and virtual machine monitors to the business implications of potentially
disruptive approaches to information access and management.

iAD Tromsø primarily focuses on concepts, frameworks, and execution environments for in-
formation access applications. For example, with Cogset [86, 87] we explore how architectural
elements from parallel databases can be exploited to improve the performance in a Hadoop-
compatible MapReduce engine. Our Balava [88] system investigates data-management aspects
of transparent integration of private and public clouds. Rusta [89] explores decentralized de-
ployment of cloud services, where clients can offload to the cloud and to other clients. Other
work, for which the work presented in this dissertation serves as a foundation, include efforts
to determine tradeoffs with the VM OS exploiting VMM-provided software abstractions in its
operation [76, 77].

Controlling sharing in complex multi-process application deployments is difficult. The work
we presented in [90] explores a novel control-approach whereby process interaction with the
OS is throttled, both in terms of system call rate and the amount of ingress and egress data.
Although effective in a number of scenarios, the approach relies on process instrumentation
that can be subverted. Even assuming the instrumentation is moved from process- to OS-side,
variance in the actual run-time costs of an interaction could be controlled and exploited by
the invoking process. For example, a process could interfere with OS-side buffer management
policies by performing innocuous low-frequency single-byte reads from files. Furthermore,
some interaction is hard to control without OS instrumentation, such as allotment of CPU-time
to a process.

This dissertation presents an OS architecture that offers unprecedented visibility and oppor-
tunity for control over resource sharing in a computing system. The major contributions of the
dissertation are reported in [91], but the presented work certainly draws inspiration from, and
is influenced by, the author’s involvement in the work cited above and the author’s experiences
from industrial application development and deployment.

1.5 Summary of contributions

This dissertation makes the following contributions:

• We have designed the omni-kernel architecture; an architecture that offers a common ap-
proach to resource-usage accounting and attribution, with a system structure that allows
any and all resources to be scheduled individually or in a coordinated fashion.

• We demonstrate the viability of the omni-kernel architecture through an implementation,
Vortex, for multi-core x86-64 platforms. Vortex provides commodity abstractions such as
processes, threads, virtual memory, files, and network communication. When combined
with the work from [76, 77], Vortex is capable of running complex applications such as
Apache, MySQL, and Hadoop.

• We show how the omni-kernel architecture can be exploited to build abstractions that
enable flexible and accurate resource management. Vortex offers facilities that enable
intra-process, inter-process, and system-wide resource management.
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• Using Vortex, we experimentally corroborate the efficacy of the omni-kernel architec-
ture by showing accurate scheduler control over resource consumption in scenarios with
competing workloads. We demonstrate low overhead when running several complex ap-
plications on Vortex.

1.6 Outline

The rest of this dissertation is organized as follows:

Chapter 2 presents the omni-kernel architecture and a set of design principles that capture the
fundamentals of the architecture. The chapter also describes related work, focusing on
clarifying the novelty of our work. The focus is primarily on previous work in the area
of operating systems. A select set of systems that share architectural similarities are also
covered. Related work in the area of virtual machine technology has been presented in
Section 1.1.

Chapter 3 gives a detailed exposition of important elements in our Vortex implementation of
the omni-kernel architecture.

Chapter 4 discusses the resource management facilities of Vortex and exemplifies the mal-
leability of the omni-kernel architecture.

Chapter 5 describes performance experiments that show the extent to which Vortex does con-
trol all resource utilization and the overhead that is entailed in doing so.

Chapter 6 concludes and offers avenues for future work.
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Chapter 2

Omni-Kernel Architecture

This dissertation explores the construction of an OS with pervasive monitoring and scheduling
as a design-premise. In this chapter we present a contribution of our efforts, the novel omni-
kernel OS architecture. Summarized, the OS is structured as a set of fine-grained components
that communicate using messages, with message schedulers interpositioned on communica-
tion paths. The chapter also describes related work, to clarify the novelty of the omni-kernel
architecture.

The omni-kernel architecture is guided by three design principles that we have found to
capture the fundamentals of visibility and opportunity for control:

1. Measure all resource consumption.

2. Identify the unit to be scheduled with the unit of attribution.

3. Employ fine-grained scheduling.

These principles allow the OS increased opportunities for sharing, reduce error in attribution,
and ensure visibility and control over resource allocation. In the following we discuss implica-
tions and nuances of the principles in more detail before presenting the concrete omni-kernel
architecture that follows from the principles.

2.1 Measure all resource consumption

Measurement and attribution of resource consumption are separate tasks. Measurement is
always retrospective whereas attribution may or may not be known in advance. For example,
when a read request is submitted to a disk driver, the activity to attribute is typically known in
advance, but resource consumption might not be available until after request execution com-
pletes. Another example is interrupt processing or early network packet processing, where the
activity to attribute is difficult to deduce until processing completes. If resource consumption
must be predicted, then a scheduler can use heuristics based on history to make estimates.

The CPU consumption incurred by a disk device driver to handle a request for reading 10
sectors on a disk is typically the same as would be needed for a request to read 20 sectors. But
memory usage differs for these two requests. Moreover, the actual elapsed time for executing
the two requests will vary, depending on the contents of disk controller cache, the position of
disk heads, rotational position, etc. Thus, a disk is an example of a resource that, for effective
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control, requires a scheduler with access to information that is not easily captured in software,
but could be predicted by software. For example, the contents of the disk controller cache might
not be accessible but can be estimated by knowledge of its size and observations of how long it
takes to complete requests.

If attribution cannot be determined, for example if an activity cannot be associated with some
network packet processing, SLOS might be violated. No amount of instrumentation, scheduling,
or over-provisioning can ensure that an SLO will be satisfied in the face of unanticipated load.
The implication is that a deployment must make assumptions about the environment in the SLO.

2.2 Identify the unit to be scheduled with the unit of attribution

Our architecture requires schedulers to control execution of individual messages, where each
message specifies at most one activity for attribution of resource consumption1. Notice, how-
ever, that even if each message is identified with some activity, then attribution ambiguity
remains possible.

Consider a file block cache that optimizes memory utilization by sharing identical file blocks
across activities. If two activities access the same file block, then the resource consumption
incurred by fetching and caching the block could conceivably be attributed to either activity.
The scheduler should therefore be aware of the sharing. In practice, this would be accomplished
by recording resource consumption when a file block is fetched and cached, and having these
records available to schedulers. This allows flexible policies for retrospective attribution. For
example, the activities could share the cost of fetching the shared block, or they could both be
attributed with the full cost of fetching the block.

Timely execution of a request must be ensured, and sharing can cause complications here.
Consider a file block request made when an identical file block is already scheduled for fetch
to satisfy some other activity. I/O utilization is improved by delaying this second fetch request
until the fetch for the first completes. But, depending on the scheduler, the pending fetch could
be scheduled sooner if performed in context of the requesting activity. So, timely execution
requires knowledge of a second request and using priority inheritance techniques [92]. Policies
for attribution and scheduling must accommodate such nuances.

2.3 Employ fine-grained scheduling

A scheduler might not be able to predict what resource consumption will result from a
scheduling decision. For example, a file is typically implemented using a file block cache,
file system code, a volume manager, and a device driver layer. Each employs caching, and a
file system request could traverse all or only a subset of the layers. A scheduler is unlikely to
know in advance what layers a file request will traverse nor what is cached at the time a request
is made. Thus, considering file requests as the unit of scheduling might entangle resources
that a scheduler would want to control separately. For example, a scheduler might want to
control requests to the file block cache based on memory consumption, whereas the amount of
data transferred might be a desirable metric at the disk driver level. To disentangle resource
consumption, the OS kernel should be divided into many fine-grained components that can be
controlled separately.

1Hardware restrictions might limit a scheduler to controlling execution of an aggregate of messages. For
example, the hardware might not support identifying activities with separate interrupt vectors.
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Figure 2.1. A scheduler controls when to dispatch requests.

Visibility and the opportunity for control also emphasizes fine-grained scheduling. For ex-
ample, a process may bypass the OS file cache or file system in its access to disk. A scheduler
might want to differentiate among such access.

An increased number of components implies a corresponding increase in the number of
messages that have to be scheduled. This increases scheduling overhead. An effective way
to reduce overhead is to execute all requests to completion. Once a scheduler dispatches a
message to a resource, the processing of that message should never be preempted. The absence
of preemption implies that messages can be dispatched with little overhead.

Exploiting modern multi-core machines require components to handle concurrent execution
of messages. Consequently, components must use synchronization mechanisms to protect their
shared state. Absence of preemption simplifies things considerably. A system that did have
support for preemption of message execution would have to release locks before returning
control to the scheduler or risk deadlocks due to priority inversion [92]. So, a scheduler in such
a system would have to make allowances for increased message execution time in the case of
contested locks.

2.4 Architecture overview

The omni-kernel is divided into a number of resources that each corresponds to a fine-grained
software component, exporting an interface for access to and use of hardware or software, such
as an I/O device, a network protocol layer, or a layer in a file system. One resource can use
the functionality provided by another by sending it a resource request message. A resource
request message specifies parameters and a function to invoke at the interface of the destination
resource. The servicing of a request is asynchronous to the sending resource.

All resource requests specify an activity to which resource consumption is attributed. If a
resource sends request r2 as part of handling request r1, then the activity of r2 is inherited
from r1. Computations involving multiple resources can thus be identified as belonging to one
activity. An activity can be a process, a collection of processes, or some processing within a
single process.

Schedulers may be interpositioned between resources, as illustrated in Figure 2.1. Requests
received by a scheduler may be buffered and/or dispatched to a resource in any order consis-
tent with inter-request dependencies that arise due to e.g. sequential consistency requirements
on consecutive writes to same location in a file. Dependencies among requests are specified
by assigning dependency labels to requests. Schedulers ensure that requests with the same
dependency label are executed in the order made. Requests belonging to different activities
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Figure 2.2. Resource consumption reported back to scheduler.

Figure 2.3. Requests are placed in request queues.

are always considered independent, as are requests sent from different resources. Resources
generate dependency labels by maintaining a simple counter, which is concatenated with the
sending-resource identifier and the identifier of the activity to attribute.

To account for resource consumption, execution in response to a request is monitored. The
monitoring is external to a resource, using instrumentation code that measures CPU and mem-
ory consumption to execute the request. After each request is executed, as shown in Figure 2.2,
incurred resource consumption is reported to the dispatching scheduler. To give schedulers
access to hidden information, the architecture uses resource consumption records. These de-
scribe the resource consumption incurred by executing a resource request. Fields concerning
basic resource consumption are set by instrumentation code, and additional fields are attached
by instrumentation code inside the resource itself. For example, records describing resource
consumption when executing a disk read request could include CPU and memory usage along
with additional information: how long it took to complete the request, and the size of the queue
of pending requests at the disk controller. This additional information would be supplied by
instrumentation code running in the disk driver.

Request queues are used as containers for requests that require a specific resource, as illus-
trated in Figure 2.3. A scheduler can read, reorder, and modify the queue subject to dependency
label constraints. A typical scenario arises with disk requests, where the order in which requests
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Figure 2.4. Resources organized in a grid with schedulers on the communication path.

are forwarded to the disk is re-ordered to reduce disk head movement.
To convey information about data locality, resources attach affinity labels to requests. Affin-

ity labels give hints about core preferences; if a core recently has executed a request with a
particular affinity label, new requests with the same affinity label should preferably be exe-
cuted by the same core. The decision as to what core to select lies with the scheduler governing
the request’s destination resource.

Resources are configured into a resource grid, as shown in Figure 2.4, and exchange resource
request messages to collectively implement higher-level kernel abstractions and functionality.
Within a grid, some resources will produce messages, some consume messages, and others
will do both. For example, a process could perform a system call to use an abstraction provided
by a specific resource, and that resource would communicate with other grid resources in its
operation. Similarly, a resource encapsulating a network interface card (NIC) would produce
messages containing ingress network packets and consume egress network packet messages.

2.5 Related Work

Most operating systems have well-defined interfaces for allocating CPU time to threads or
processes, and the scheduling algorithms may be modified in a relatively straightforward man-
ner. In contrast, there is a multitude of frameworks and mechanisms for controlling consump-
tion of other resources. For example, the Linux kernel uses timers, callouts [93], threads, and
subsystem-specific frameworks to dispatch work on behalf of applications. As a result, work
that aims to make all resource consumption schedulable in an existing system must overcome
the disparities of a diverse set of mechanisms. If only certain resources are made schedula-
ble, then inevitably there will be be ways to circumvent policy enforcement. For example, if
only network bandwidth is scheduled, then a web server could be precluded from reaching its
potential throughput by another disk-bound application.

In the remainder of this chapter we first give a short background on operating system ar-
chitectures, the problems that motivate their design, and contrast existing designs with the
omni-kernel architecture. We then highlight work that proposes entirely new frameworks for
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resource scheduling, has attempted to retrofit such scheduling into an existing system, or started
with a clean slate but did not have resource scheduling as their primary goal.

Vortex is an implementation of the omni-kernel architecture. Related work specific to the
implementation is discussed throughout Chapter 3 and Chapter 4.

2.5.1 Operating system architectures

Here, we give a brief overview of well-known operating system kernel architectures and the
goals of their design. With few exceptions, contemporary OSS are structured according to a
monolithic architecture where all OS procedures and data, for performance reasons, are located
in the same shared address space. The complexity arising from co-location of procedures and
data is handled by different structuring frameworks [94, 95]. For example, file systems are typ-
ically implemented within the virtual file system (VFS) framework [96] and network protocols
within the Socket framework [97]. Several works have attempted to increase the reliability or
performance of monolithic designs by incorporating light-weight protection domains within the
kernel [98, 99, 100, 101, 102], but none of these approaches have been adopted by commodity
OSS.

The micro-kernel architecture advocates an OS kernel that provides a small set of services
and a framework for implementing the bulk of OS functionality as user-level processes that
communicate via inter-process communication (IPC) mechanisms [103, 104, 105, 106, 107,
108, 109, 110, 111]. Beyond a disentanglement of OS functionality that will ease incorporation
of changes and new OS features, failure containment is an argued benefit of the architecture;
OS processes run in separate isolated address spaces and failure will only affect dependent
application processes. The small size of a micro-kernel has been exploited to formally verify
its implementation [112] and several works have investigated checkpointing of OS process state
to further reduce the impact of failures [113, 114].

The library OS architecture is characterized by the bulk of OS functionality and personality
being placed in the address space of the application process. Similar to micro-kernels, the goals
of the design are to better protect system integrity and allow for rapid system evolution. The
architecture is exemplified by Cache-Kernel [115], Exokernel [116], Nemesis [117], and the
more recent Drawbridge [118] system.

A number of recent operating systems have explored the use of partitioning as a means to
enhance multi-core scalability. Barrelfish [119] tries to maximize scalability by avoidance of
sharing, and argues for a very loosely coupled system with separate operating system instances
running on each core or subset of cores—a model coined a multikernel system. Corey [120]
has similar goals, but is structured as an Exokernel system and focuses on enabling application-
controlled sharing of OS data. The Tessellation system [121] proposes to bundle operating
system services into partitions that are virtualized and multiplexed onto the hardware at a coarse
granularity. Factored operating systems [122] proposes to space-partition operating system
services. Unlike Tessellation, which proposes that applications have complete control over the
underlying hardware, the work argues for complete separation of applications and operating
system services due to translation lookaside buffer (TLB) and caching issues. These recent
works draw much inspiration from the earlier Tornado and K42 systems [123, 124].

With our omni-kernel architecture we argue for a design where the operating system kernel
is factored into multiple components that, through asynchronous message passing, in concert
provide higher-level abstractions. By ensuring that an activity is associated with all messages,
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accurate control over resource consumption can be achieved by allowing schedulers to control
when messages are delivered. It is useful to view the omni-kernel architecture as combining a
monolithic with a micro-kernel design; OS functionality resides in a single address space and
is separated into components that exchange messages in their operation. In contrast to a micro-
kernel, the omni-kernel schedules message delivery not process execution. Also, omni-kernel
components share the same address space. (Techniques [100, 101, 102] could conceivably be
used to create component protection domains within the kernel, but we do not explore this
here.)

Recent systems focus on increased use of message passing as a means to coordinate state
updates within a system. The omni-kernel has a similar, but more fine-grained, structure—
resources exchange messages to coordinate and implement higher-level abstractions. Tessella-
tion recognizes the relationship between message processing and consequent resource usage,
and it proposes that quality of service can be provided by quenching message senders to ensure
that different activities receive a fair share of the resource represented by a partition. Something
similar is proposed in the Barrelfish work. Although scalability has been an important concern
in our work, our primary motivation has been fine-grained and accurate control over the sharing
of individual resources, such as cores and I/O devices. A reduction in the use of shared state is
a consequence of the omni-kernel architecture, however, since such sharing can interfere with
scheduler control. Experiences from the Vortex implementation indicate that sharing beyond
reading the contents of a message is infrequent, and if other state is accessed when a message
is processed, then it is typically state that is private to the activity from which the message orig-
inates. In cases where state is shared across one or more cores, it is typically to coordinate use
of some resource that is unavoidably shared, such as the address resolution protocol cache for a
network interface, the list of active transport control protocol (TCP) connections, or file system
blocks containing multiple inodes. Unless access to these resources is restricted to a particular
core, sharing is inevitable. The omni-kernel allows asymmetric, i.e. space partitioned, configu-
rations by design, as exemplified and demonstrated in Chapter 5. Resource utilization concerns
dictate that such configurations should be used sparingly, however. For example, to minimize
power consumption, additional cores should not be activated unless already running cores are
unable to cope with the current load. Implementing such a concern is straightforward; a sched-
uler can decide to load share to a select set of cores depending on observed utilization (see
Section 3.1.1).

2.5.2 Scheduling CPU and other resources

Many previous efforts have attempted to increase the level of monitoring and control in the
OS, typically to better meet the needs of certain classes of applications. None of these efforts
reached the pervasiveness found in the omni-kernel architecture and our Vortex implementa-
tion. Eclipse [125, 126] attempted to graft quality of service support for multimedia appli-
cations into an existing OS by fitting schedulers immediately above device drivers. A similar
approach was used in an extension to VINO [127]. Limiting scheduling to the device driver
level fails to take into account other resources that might be needed for an application to exploit
its resource reservations, leaving the system open to various forms of gaming. For example,
an application could use grey-box [128] techniques to impose control of limited resources (e.g.
inode caches, disk block table caches) on I/O paths, thereby increasing resource costs for other
applications.
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Eclipse used a domain-specific approach to make network communication schedulable; the
signaled receiver processing mechanism [129]. The mechanism shifted network processing
to the context of receiving processes by requiring them to perform both ingress and egress
packet processing in the context of a system call. The lazy receiver network processing archi-
tecture [130] was similar, but suggested that processes have a kernel-side network processing
thread to handle protocols with timeliness requirements (such as TCP). Resource Containers
[131] used lazy receiver processing with a single process handling packets from all TCP con-
nections, thereby imparting scheduling control to the process; the appropriate containers would
be attributed for resource usage, but the scheduler could not prevent a particular container from
receiving resources (e.g. to enforce a non-work conserving policy).

Virtual services [132] intercepted system calls to monitor work that propagated from one
service to another. While providing a sound framework for attributing resource usage to the
correct hosted service, from published work it is unclear how resource consumption could be
controlled within the framework. For example, counting and limiting the number of sockets
that can be associated with a service provides little control over resource usage, as one socket
alone can consume a large proportion of the available network bandwidth.

Admission control and periodic reservations of CPU time to support processes that handle
audio and video were central in both Processor Capacity Reserves [133] and Rialto [134, 135].
A framework for scheduling other resources in Rialto was outlined in [136, 137], but no im-
plementation details have been published. Resource Kernels [138, 139, 140] extended the
Capacity Reserve work to include disk bandwidth. This work was primarily concerned with
enforcing reservations within RT Mach, so all enforcement of reservations took place at user-
level. Reservation of CPU resources for the user-level threads involved in packet processing in
RT-Mach was described in [141] and explicit reservation and scheduling of network bandwidth
was mentioned as a feature in [139], but no implementation details were given.

Scout [142, 143] connected individual modules into a graph structure where, together, the
modules implemented a specialized service such as an HTTP server, a packet router, etc. Paths
were then defined in the graph, each with an associated source and sink queue. The Scout
design recognized the need for performance isolation among paths to ensure that certain per-
formance criteria could be achieved (e.g. that a path was able to decode and display a particular
number of frames per second in a NetTV configuration). However, such support was limited
to assigning CPU time to path-threads according to an earliest deadline first [144] algorithm.
Escort extended Scout with better support for performance isolation among paths [145]. In
particular, Escort added support for reserving resources for modules that were part of a path
topology. The Scout architecture was later ported to Linux [146]. By essentially replacing
thread scheduling in the Linux kernel, the work showed how quality of service guarantees
could be provided to network paths. [147] instrumented the scheduling of deferred work in the
RTLinux kernel to prefer processing that would benefit high priority tasks.

Nemesis focused on reducing the contention that results when different streams are mul-
tiplexed onto a single lower-level channel [117]. To achieve this, as much operating system
code as possible was moved into user-level libraries. This relocation of functionality makes
it easier to account for process use of operating system services. Cache Kernel [115] and the
Exokernel [116, 148] systems employ something similar. However, Nemesis lacks a clear con-
cept, aside from the Stretch driver, of how to schedule access to I/O devices and to higher-level
abstractions shared among different domains.

Software Performance Units (SPU) [149] demonstrated proportional sharing of CPU, mem-
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ory, and disk bandwidth in a multiprocessor system. The approach partitioned system CPUs
and memory among SPUs and scheduled processes in the context of a particular SPU. To reduce
interference among SPUs when accessing shared kernel structures, synchronization protocols
were changed (e.g. from mutual exclusion to reader/writer). This ensured that processes often
could make progress on system call paths without being hampered by processes in other SPUs
holding locks. Activities occurring outside the context of process system call paths, such as
daemon processes performing swapping and flushing of the block cache, were scheduled in
context of a special SPU, with resource consumption retrospectively attributed to the appropri-
ate SPUs. Also, work concerning memory pages shared among SPUs was performed in context
of a special SPU. Scheduling of network traffic was not addressed. In addition to the coarse
grained scheduling resulting from partitioning (albeit mitigated by work stealing and resource
reclamation algorithms), processes were not prevented from instigating work into the special
SPUs.

The Lottery resource management framework, originally developed for Lottery Schedul-
ing [150], introduces ticket transfers as the basis for implementing diverse resource manage-
ment policies. In [151] and [127], the Lottery resource management framework was extended
for absolute resource reservation. Only CPU scheduling was demonstrated before the work
in [127], where disk requests and memory allocation scheduling within a Lottery framework
was demonstrated.

Several commercial operating systems include frameworks for management of resources [152,
153, 154]. Mostly, these systems focus on long-term goals for groups of processes or users and
rely on fair-share scheduling approaches for enforcement of resource shares. Resources that
cannot be replenished (such as disk space) are typically controlled by hard limits.

2.5.3 Application-level scheduling

Even with stringent control over resource allocation, SLOS may be violated because of over-
commitment of resources. For example, if high load causes a service to exceed its physical
memory budget, swap-related I/O delays may prevent SLO fulfillment despite ample CPU and
I/O resources. No amount of instrumentation, scheduling, or over-provisioning, can ensure that
an SLO will be satisfied in the face of unanticipated load. Still, remedial actions are possible.
For example, the service owner may find it beneficial to prioritize handling of requests in a
manner that minimizes monetary penalties. Similarly, an e-commerce service may prioritize
clients involved in purchasing products over clients that are browsing products.

There exists many different approaches to reducing the risk, or mitigating the impact, of SLO

violations. We consider these complementary to the work presented in this dissertation as they
commonly involve modifications to or require the cooperation of the application. In general,
the approaches can be can be categorized as either admission control based [155, 156, 157, 158,
159, 160, 161] or feedback/adaptation driven [128, 162, 163, 164, 165, 166, 167, 168]. Similar
approaches have been used in cloud environments, as discussed in Section 1.1

2.6 Summary

This chapter presented the omni-kernel architecture and discussed the principles that have
guided its design. The omni-kernel architecture ensures that all resource consumption is mea-
sured, that the resource consumption resulting from a scheduling decision is attributable to
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one and only one activity, and that scheduling decisions are fine-grained. The architecture
divides the OS into many fine-grained resources that communicate using messages. An activ-
ity is associated with each message, and schedulers interpositioned on communication paths
control when messages are delivered to destination resources. The chapter also contrasted the
omni-kernel architecture with existing OS architectures, positioning the omni-kernel as a dis-
tinct design that has some structural similarities with monolithic kernels, micro-kernels, and
more recent message-based systems. Many efforts aim to retrofit better monitoring and con-
trol into an existing systems. Such efforts are often stymied by entrenched OS design choices.
The omni-kernel architecture and its Vortex implementation is the first OS to have pervasive
monitoring and scheduling as an initial design-premise.
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Chapter 3

The Vortex Omni-Kernel Implementation

This chapter presents Vortex, an implementation of the omni-kernel architecture. With the
exception of graphical support, Vortex provides a large range of commodity OS functionality
and abstractions. The implementation provides threading, processes, memory management,
synchronization interfaces, I/O interfaces, a configurable storage and networking system, basic
network routing facilities, and many more features. In addition, the Vortex kernel internally
offers frameworks for writing device drivers, network protocols, file systems, executable file
parsers, etc. The implementation is mature to the extent that with only writing about 25k
lines of additional code, [76, 77] demonstrated running complex applications such as Apache,
MySQL, and Hadoop on Vortex.

The scope of the Vortex implementation and the focus of this dissertation precludes a presen-
tation of all Vortex details. In our presentation we will focus on elements that directly pertain
to, support, or explain Vortex as an omni-kernel. For example, while certainly interesting in
itself, the way Vortex enumerates I/O devices and provides configuration interfaces to user level
system management software does not specifically expose omni-kernel aspects of Vortex. Sim-
ilarly, the unified buffering abstractions used by all device drivers, the way these are efficiently
laced around subsystem specific buffering abstractions, and the framework that offloads I/O-
bus interfacing, interrupt allocation and configuration, and device memory management from
device drivers, are all intriguing facilities but will be omitted in the presentation. In contrast,
the kernel-side type-aware object system supporting references, reference counting, locking,
and more, will be described as it exemplifies a functionality that has been designed to support
programming in the asynchronous environment that is inherent to an omni-kernel.

The omni-kernel architectural elements can clearly be identified in the Vortex implemen-
tation: the bulk of kernel functionality is contained within resources that communicate using
message-passing in their operation. Also, that communication is under the auspices of sched-
ulers that control when messages are delivered. Encapsulation and automation of tasks com-
mon across resources are handled by a supporting and underlying framework: the omni-kernel
runtime (OKRT). OKRT provides implementations for e.g. aggregation of request messages,
inter-scheduler communication, management of resource consumption records, resource nam-
ing, fine-grained memory allocation, and inter-core/CPU communication and management.

All resources depend on OKRT services and functionality in their operation. Our presentation
of Vortex therefore starts with the OKRT. We then continue with key OS functionality, such
as virtual memory and I/O, focusing on how these are structured and implemented within the
omni-kernel architecture. Details on data structures and algorithms used internally in a resource
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Figure 3.1. Separate request queues assigned to each activity.

are only discussed if furthering an understanding of the ramifications of an omni-kernel design,
or serving to emphasize that Vortex implements commodity OS abstractions.

3.1 Omni-kernel runtime

The main objective of the OKRT is to facilitate the operation of the two key architectural ele-
ments of an omni-kernel: resources and schedulers. To do so, OKRT provides implementations
ranging from frameworks for instantiating resources and schedulers to functionality that is of
convenience to the resource and scheduler programmer.

One OKRT offering is a common representation of the messages that resources exchange
in their operation. Each message has a source and destination resource. To identify these,
OKRT associates an identifier with each resource. While conceivably possible, Vortex does not
support runtime loading of resources into the kernel. Resource identifiers are therefore assigned
at compile time. As mandated by the omni-kernel architecture, messages must also specify
an activity to be attributed for the resource consumption incurred by processing the message.
OKRT associates an identifier with each activity at runtime, upon its creation. (The creation of
activities and what exactly constitutes an activity is described further in Chapter 4.) In addition,
the message representation includes an affinity- and dependency label, and a description of
which function to invoke in the destination resource along with parameters to that function.

A resource uses an OKRT-provided interface to send and reply to a message. When invoked,
OKRT places the message in an existing request queue, or creates a new one, associated with the
destination resource. For efficiency, OKRT assigns separate request queues to each activity at
the destination resource, as illustrated in Figure 3.1. This not only aids the scheduler associated
with the resource in quickly identifying what activities are requesting use of the resource, but
also prevents the contention that might arise if only a single queue was used.

To locate request queues, OKRT employs several data structures. First, the identifier for
source, affinity, and activity are concatenated into a request routing tag (RRT). A lookup is
then performed in an associative map (a hash-based key/value dictionary) associated with the
destination resource, using the RRT as a key. If the lookup fails, a new queue is created and
inserted into the dictionary. Thus when a mapping from RRT to queue exists in the dictionary,
which is common case, the cost of routing a message to its destination queue is low.

To efficiently exploit multi-core architectures, certain sets of messages are best executed on
the same core or on cores that can efficiently communicate. For example, we improve cache
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Figure 3.2. Separate request queues per core per activity.

hit rates if messages that result in access to the same data structures are executed on the same
core. The omni-kernel reflects this aspect in message affinity labels; messages with the same
affinity label should preferably be executed by the same core. Locality is a concern that also
needs to be addressed in the environment that supports message execution; excessive inter-core
exchanges of state and synchronization bottlenecks leading up to message execution could
prevent potential performance gains during execution.

To improve locality, OKRT always instantiates activities with one request queue per core at
each destination resource, as shown in Figure 3.2. (Further, as described in more detail below,
messages placed in a queue are also processed on the corresponding core.) An implication of
this design is that schedulers need to be involved in the selection of destination request queues
for messages, since the omni-kernel architecture requires that the mapping from an affinity label
to a core should be under scheduler control. OKRT resolves this issue by limited persistence
on RRT/queue dictionary mappings; when a lookup fails, the governing scheduler is consulted
for a RRT mapping to a particular queue and a duration in microseconds for the mapping to
persist. By selecting a long duration, the cost of message routing is reduced and potential
locality might better be exploited. A short duration, on the other hand, gives the scheduler
frequent opportunities to load share across cores. Importantly, OKRT supports the operation of
the scheduler, regardless of the particular policy selected.

With separate request queues per core, execution-order constraints imposed by dependency
labels are tricky to satisfy. If messages with the same dependency label are queued to different
queues, then load imbalance among cores could result in violating execution order dependen-
cies. This is prevented by requiring resources to assign the same affinity label to dependent
messages, causing dependent messages to have the same RRT/queue mapping, and hence be
placed in the same request queue. Another complication, which is handled by OKRT, is ex-
piration of a RRT/queue mapping. If a mapping expires while there are queued messages,
then OKRT will, in one atomic action, obtain a new mapping from the governing scheduler,
move affected messages to a potentially new queue, and update the RRT/queue dictionary. A
barrier-scheme is employed if the scheduler selects a new queue and an affected message is
under execution; execution from the new queue is delayed until the affected message finishes
execution.

23



3.1.1 Scheduler framework

Within the omni-kernel architecture the request queues of activities effectively become the
clients of a scheduler. The primary objective of a scheduler is then to decide the order in
which messages are dequeued from client request queues. To support the decision-making, the
scheduler needs to be able to inspect the state of request queues and have access to detailed
data on the resource consumption resulting from previous decisions.

OKRT simplifies and supports the operation and implementation of schedulers by providing
a framework that models each scheduler as a set of functions that are invoked when relevant
state changes occur. For example, when a new activity is created, the scheduler is informed
by OKRT invoking a specific scheduler function. Similarly, the resource consumption incurred
after a scheduling decision is reported back by OKRT presenting the scheduler with resource
consumption records.

To improve locality, OKRT promotes a scheduler structure that separates shared and core-
specific operation and state. A scheduler is expected to load share by controlling how affinity
labels are mapped to request queues (the RRT/queue mapping), and then to make scheduling de-
cisions for each core based on the state of request queues assigned to that core. (The scheduler is
invoked in the context of the core that it makes a decision for. Also note that this structure does
not preclude gang scheduling [169]. Both of these issues are discussed in Section 3.1.5.) The
OKRT scheduler framework also incentivizes schedulers to separate shared and core-specific
state by clearly identifying such state in arguments presented to scheduler functions. For exam-
ple, a round-robin scheduler would maintain per-core state about registered clients (i.e. request
queues) along with a shared counter for creating RRT/queue mappings. Similarly, a WFQ [170]
scheduler would maintain per-core state about clients but rely on a more complex strategy for
deciding how affinity labels are bound to queues1. Under this structure, sharing typically only
occurs when requests are sent from one core and queued for execution on another, and when a
scheduler inspects shared state to select a queue for an affinity label.

In the following we detail the functions in the OKRT scheduler framework.

3.1.1.1 Scheduler interface

Table 3.1 shows the functions that OKRT expects a scheduler to implement. OKRT initiates
creation of a new scheduler instance by invoking init, with the (key/value) dictionary argu-
ment schedparams supplying configuration values. The return value from init is a pointer to
scheduler-specific private state.

For each core assigned a request queue, init core is invoked. In connection with this function,
the scheduler initializes state private to each core. The return value is supplied as the corestate
argument to other functions.

Scheduler clients are request queues. New request queues are registered as clients through
add client and removed through remove client. A pointer to client-specific state is returned
from add client and supplied to other functions as the clientstate argument. Policy might
require adjustment of priorities during operation (see Section 4.2.2). In this context, OKRT

invokes update client to inform schedulers.
1Our WFQ implementation inspects per-core state to decide which core should handle an affinity label; one

load sharing algorithm that we have implemented assigns the label to the core at which the corresponding activity
has proportionally received the least resources.
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Table 3.1. Scheduler interface.
Name Input Output Description
init dict t *schedparams void * Initialize scheduler

global state.
init core void *schedstate void * Initialize scheduler

core state.
add client void *corestate

rqueue t *requestqueue
dict t *clientparams

void * Register new client.

update client void *corestate
void *clientstate
dict t *clientparams

void * Update client.

remove client void *corestate
void *clientstate

int Unregister client.

schedule void *corestate rqueue t * Emit scheduling deci-
sion.

client ready void *corestate
void *clientstate

void Register that client has
pending requests.

client suspended void *corestate
void *clientstate

void Register that client is
suspended.

poll ready void *corestate int Return µ-seconds un-
til scheduling decision
can be made.

resource record void *corestate
void *clientstate
resrec t *record

void Record client resource
consumption.

load share time t *ttl
affinity t affinity
int ncore
void *clientstate
void *schedstate

int Decide what
core/queue should
handle the specific
affinity label.

client statistics clientstat t *statistics
void *corestate
void *clientstate

void Return client resource
usage statistics.

OKRT, in the context of a core, obtains a scheduling decision by invoking schedule, which
selects and returns a pointer to a non-empty request queue, from which messages will be de-
queued and dispatched to the resource governed by the scheduler.

Schedulers maintain a view of all non-empty request queues (i.e. ready clients) because
client ready is invoked whenever a message arrives to an empty request queue and, if the corre-
sponding queue is non-empty, after message execution. A scheduler can choose to be explicitly
informed when an activity is suspended (e.g., when a process is suspended) by providing a
client suspended function. This function allows a scheduler to differentiate between an idle
and a suspended client.

OKRT invokes poll ready on behalf of the scheduler to determine when to request CPU time.
The return value indicates whether the scheduler has ready clients and the number of microsec-
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onds until decisions are available (with 0 indicating immediately). Indicating future availability
allows a scheduler to delay a scheduling decision, even if there are ready clients (e.g. to imple-
ment a non-work conserving policy).

After execution of messages, the scheduler is informed of resource consumption through
resource record. This function can be invoked repeatedly, depending on how the resource is
instrumented. A scheduler distinguishes records by their type field.

Note that all functions accepting the corestate argument are invoked in the context of a
specific core; schedulers are expected to eschew use of shared state when executing these func-
tions.

The load share function is invoked to let a scheduler create a request queue mapping for
an affinity label. The return values are the index of the selected core/queue and a duration in
microseconds for the mapping to persist.

Schedulers expose performance data on clients by implementing the client statistics func-
tion.

3.1.1.2 Scheduler implementation

The OKRT scheduler framework, like other Vortex frameworks, is the result of continuous re-
finements, where we have allowed design to be shaped by experiences from implementing
different types of schedulers. Vortex currently has implementations for a number of sched-
ulers, including round-robin, weighted fair queueing, strict priority, and rate-based. We are
comfortable that the needs of a wide range of schedulers can be accommodated within the
framework.

Programming a scheduler amounts to providing implementations for the functions in the
OKRT scheduler interface. Figure 3.3 concretizes scheduler programming by an excerpt from a
WFQ implementation. WFQ schedulers ensure that clients receive service in proportion to their
assigned weights. To do so, the typical implementation associates with each client a variable—
the virtual finishing time (VFT)—whose value is incremented whenever the client receives ser-
vice. Increments are inversely proportional to client weight; for an amount of service and a
client, the increment will be double that of a client with twice the weight. A scheduling deci-
sion then involves selecting the client with the lowest value VFT, because it has proportionally
received the least service. (A WFQ scheduler also needs a policy to limit bursty behavior [171].
The particulars of how this is handled has been elided from Figure 3.3.)

The implementation in Figure 3.3 uses a heap data structure to maintain a view of the
service clients have received. OKRT invokes wfq client ready when a message arrives to an
empty request queue, or after a scheduling decision, if the corresponding queue is non-empty.
The scheduler responds by inserting the client into its heap. The semantics under which
wfq client ready is invoked are a performance tradeoff; for the schedulers we have implemented
so far, continuous tracking of the arrival of each message to a queue has not been needed.

After wfq client ready, OKRT invokes wfq poll ready to ascertain that the scheduler can pro-
duce a scheduling decision. For this WFQ scheduler, a non-empty heap indicates a decision is
possible. Based on the need to invoke wfq client ready, OKRT could assume a scheduler was ca-
pable of producing a decision. But even with knowledge of which clients are requesting service,
a non-work conserving scheduler might delay decisions because of exhausted service-budgets.
Signaling a decision is possible, OKRT will request CPU-time on behalf of the scheduler. (The
particulars of how cores are multiplexed is detailed in Section 3.1.5 below.) wfq schedule will
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void wfq client ready(wfqsched t *wfq, wfqclient t *client)
{

wfq−>wq heapsize++;
wfq−>wq heap[wfq−>wq heapsize] = client;
client−>wc heapidx = wfq−>wq heapsize;
wfq percup(wfq−>wq heap, client−>wc heapidx);

}
void wfq resource record(wfqsched t *wfq, wfqclient t *client, resrec t *resrec)
{

client−>wc ticksused += resrec−>rr consumed;
wfq advance(wfq, client);

}
int64 wfq poll ready(wfqsched t *wfq)
{

if (wfq−>wq heapsize > 0)
return 0;

else
return −1;

}
rqueue t *wfq schedule(wfqsched t *wfq)
{

wfqclient t *client;
client = wfq−>wq heap[1];
wfq−>wq heap[1] = wfq−>wq heap[wfq−>wq heapsize];
if (−−wfq−>wq heapsize > 0)

wfq percdown(wfq−>wq heap, wfq−>wq heapsize, 1);
return client−>wc rqueue;

}
int wfq load share(time t *ttl, affinity t affinity, int ncore, wfqclient t **client, wfqsched t **wfq)
{

int i, mincore;
uint64 minvft;
*ttl = 1000000;
mincore = 0;
minvft = wfq[0]−>wq vft;
for (i = 1; i < ncore; i++) {

if (wfq[i]−>wq vft < minvft) {
minvft = wfq[i]−>wq vft;
mincore = i;

}
}
return mincore;

}

Figure 3.3. Excerpt from a WFQ scheduler implementation.
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typedef enum {
RESOURCE METRIC NONE = 0,
RESOURCE METRIC CPUTIME = (1u`` << 63),
RESOURCE METRIC MEMORY = (1u`` << 62),
RESOURCE METRIC INTERNAL NBYTES = (1u`` << 61),
RESOURCE METRIC INTERNAL OTHER = (1u`` << 32)

} rmetric t;

struct resource record t {
rmetric t rr metric;
int64 rr consumption;

};

Figure 3.4. Data structure describing resource consumption.

void resource record(rmetric t rmetric, int64 usage);

Figure 3.5. Interface for resources to report resource consumption.

then be invoked in context of the allotted CPU-time, at which point the WFQ scheduler decides
on the request queue of the client at the top of its heap.

Had the scheduler indicated a delayed decision in wfq poll ready, OKRT would have set up a
timer on behalf of the scheduler. Upon timer expiration, CPU-time would have been requested
for the scheduler. To support delayed operations, OKRT maintains a per-core timer facility. This
facility supports microsecond granularity timers, relying on integrated x86 CPU mechanisms
(the APIC timer) for efficient implementation (see Section 3.1.8). Beyond the OKRT automation
of delayed decisions, a scheduler might use the facility to e.g. set up periodic tasks.

OKRT monitors message invocation and reports resource consumption back to the scheduler
through resource consumption records. The data structure describing a record is shown in Fig-
ure 3.4. OKRT uses the cycle-accurate x86 timestamp counter register to measure the CPU cost
of message invocation. Memory usage is measured by instrumentation code in memory alloca-
tion facilities (see Section 3.2). Other performance metrics, such as the number of bytes written
to a disk controller, would be supplied by resource instrumentation using the interface shown
in Figure 3.5. wfq resource record does not differentiate on the type of record; reported con-
sumption is indiscriminately used to calculate the client VFT increment (the wfq advance call).
Scheduler configuration would normally be used to instruct what type of resource consumption
records to use as a performance metric (configuration passed via the scheduler init function,
which is shown in Table 3.1). Note that the interface in Figure 3.5 assumes invocation in con-
text of message processing, allowing OKRT to automate lookup of scheduler and client core
state before invoking wfq resource record. A more elaborate interface is used when a report is
decoupled from message processing, for example when an instrumented disk driver reports the
time taken to complete a specific request.

OKRT invokes wfq load share to obtain a mapping from affinity label to request queue. Es-
sentially, wfq load share determines how cores are utilized. For example, if affinity labels are
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resource interface t storage interface[ ] = {
{

.ri function = storage handle read,

.ri fmt = "p",

.ri reqtype = REQ STORAGE READ,
},
{

.ri function = storage handle write,

.ri fmt = "p",

.ri reqtype = REQ STORAGE WRITE,
},
{

.ri function = storage handle read done,

.ri fmt = "p",

.ri reqtype = REQ STORAGE READ DONE,
},
{

.ri function = storage handle write done,

.ri fmt = "p",

.ri reqtype = REQ STORAGE WRITE DONE,
},
{.ri function = NULL, }

};

Figure 3.6. Data structure describing the storage resource interface.

mapped to a specific request queue, messages would only be processed on the core assigned
to that queue. A WFQ scheduler typically assigns a VFT to the scheduler itself, with scheduler
weight equal to the sum of all client weights. Furthermore, the scheduler VFT is incremented
whenever a client receives service. With a scheduler VFT per core, as is the case for the WFQ

implementation in Figure 3.3, VFT can be used as a measure of the utilization of cores; clients
have been least serviced at the core with the lowest scheduler VFT. The policy implemented
in wfq load share is to select the least utilized core for the affinity label. While an instructive
example, the policy is not likely to be conducive to performance since it ignores the locality
conveyed by affinity labels.

3.1.2 Resource framework

Within an omni-kernel, most OS functionality and abstractions are implemented by resources.
A network protocol layer, a file system, a logical volume manager, are all examples of function-
ality that would be encapsulated within separate resources in an omni-kernel. Several concerns
guide when to abstract some functionality as a resource, as discussed in Chapter 2. For ex-
ample, resources should be fine-grained to reduce entanglement of unrelated functionality and
to reduce attribution error. Also, opportunities for control and load sharing are increased if
resources are fine-grained.

OKRT automates many aspects of resource management and operation. The functionality
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vxerr t request(reqhdr t *req, reqtype t reqtype, . . .);

vxerr t reply(reqhdr t *req, reqtype t reqtype, . . .);

Figure 3.7. OKRT interface for sending and replying to a message.

provided by a resource is accessed by sending the resource a message. The different types
of messages a resource responds to then constitutes the resource interface. Demultiplexing of
message receipt and invocation of the appropriate interface function is automated by OKRT us-
ing a combination of mechanisms. Resources describe and register their interface with OKRT.
Figure 3.6 exemplifies an interface description by an excerpt from the storage resource in-
terface. The storage resource is responsible for providing a naming scheme and a general
block-based interface to a disk or disk volume.

The interface description contains the memory address of resource functions (ri function),
as well as a symbolic name for the function (ri reqtype). Typically, these symbolic names carry
additional meaning in that they expose protocols implemented by the resource. For example,
the names in Figure 3.6 show that the storage resource responds to the set of messages a file
system resource would use to interface with disk2.

A resource uses the OKRT interface shown in Figure 3.7 to send and reply to a message.
When invoked, OKRT locates the interface of the destination resource and finds the description
of the function specified by reqtype. A lookup may fail, perhaps due to programming errors.
Such errors will be discovered when the system is running.

The functions in a resource interface expect specific arguments. The caller supplies these
to request and reply, after the reqtype argument. OKRT uses ri fmt from the resource interface
description as a format specification, in a manner similar to the C library printf and scanf
functions, to determine arguments to the interface function. For example, the functions in
Figure 3.6 all expect an argument of type pointer (“p”). Having determined the function address
and arguments, OKRT is able to automate function invocation upon message delivery to the
destination resource.

In the asynchronous omni-kernel environment, function invocation frequently needs to be
deferred. Invoking a function in a resource interface pending message arrival is one example.
Another example is when a resource needs to defer continued message execution pending com-
munication with another resource. OKRT provides a basic closure mechanism for encapsulating
function calls and their arguments. This mechanism is detailed in the following.

3.1.3 Closures

From a programming language perspective, the term closure usually refers to language fea-
tures for encapsulating a function pointer together with a referencing environment (i.e. free
variables). The OKRT closure mechanism provides a similar functionality, only with a limited
referencing environment mainly consisting of function arguments. Since Vortex is implemented

2Vortex implements a storage routing table, much like a network routing table, to offer file system mounting.
User level system software can insert a routing table entry describing a file system path, a particular file system,
and a storage volume. The file system resource uses information from the table to discover the identifier of the
storage resource to send disk reads and writes to.
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closure t *closure new(void *function, utf8 t *fmt, . . .);

vxerr t closure args unpack(closure t *cl, utf8 t *fmt, . . .);

int64 closure invoke(closure t *cl);

uint64 closure args peek(closure t *cl, int argnum);

vxerr t closure args push(closure t *cl, utf8 t *fmt, . . .);

Figure 3.8. Excerpt from closure interface.

in C, the manipulation of closures and their state is explicit through closure interface functions
rather than built-in language features.

The closure mechanism is used extensively by OKRT and resources. For example, the action
to take upon expiration of a timer is expressed as a closure. Also, state updates that must
be performed on a specific core are expressed as closures invoked either in the context of an
inter-processor interrupt or through other mechanisms.

Figure 3.8 shows some of the functions in the OKRT closure interface. Closures are created
by closure new using a printf-like syntax. OKRT represents closures by a data structure con-
taining all state needed for invocation. Invoking a closure involves unpacking arguments and
performing the function call. The ability to examine closure functions and arguments, as exem-
plified by closure args peek, enables introspection. Manipulation of closures, as exemplified
by closure args push, enables reflection. While simplistic compared to the more complex in-
trospection and reflection capabilities found in many programming languages, our experience
is that even limited capabilities are useful when handling the problems of stack ripping and
obfuscation of control flow that often arise in message-driven environments [172, 173]. For
example, resources can represent continuations by closures and maintain operation progress by
use of reflection.

Figure 3.9 illustrates use of the closure interface by an excerpt from a resource that imple-
ments the ext2 file system. The excerpt shows the resource creating a closure for replying to a
file block read operation. Invocation of the closure has to be deferred until completion of one
or more disk reads.

Potential uses of closures are furthered by the OKRT object system. Unlike other OSS, OKRT

provides no kmalloc or similar interfaces for resources to allocate variable sized chunks of
memory. For such memory, resources specify object types and rely on OKRT to provide new
object instances upon request. Closure arguments are therefore rarely opaque memory point-
ers but rather pointers to typed objects. This enables resources to e.g. use type inspection to
collapse code paths that otherwise would have been implemented as separate functions.

OKRT represents closures as objects. By building on some of the features of the OKRT object
system, closures can offer convenient approaches to handling the difficult problem of cross-
resource garbage collection and error handling. This, and other issues, are discussed in the next
section, which details the OKRT object system.

31



static void ext2 op done(storageop t *sop)
{

vxerr t vxerr;
. . .
vxerr = reply(&sop−>so reqhdr, REQ STORAGE OP DONE, sop);
. . .

}

static vxerr t ext2 op read(ext2 t *ext2, storageop t *sop)
{

closure t *cl;
. . .
cl = closure new( ext2 op done, "p", sop);
. . .

}

Figure 3.9. Excerpt from ext2 resource use of closures.

3.1.4 Objects

An omni-kernel is a loosely coupled system where resources typically communicate among
themselves to, in concert, provide higher-level abstractions. The number of resources involved
in providing an abstraction varies. For example, the Vortex iostream abstraction (see Sec-
tion 3.3) is implemented by one resource, whereas a minimum of seven different resources are
involved in providing the Vortex file abstraction. A specific resource can typically be designated
as the provider of an abstraction, because operations on the abstraction are initially directed to
it, and it maintains most of the state describing a concrete instance of the abstraction.

Resources must handle concurrent execution of messages to exploit the performance poten-
tial of modern multi-core machines, as discussed in Chapter 2. Concurrency implies a need for
strategies to preserve invariants on state. For a resource that in isolation operates to provide an
abstraction, these strategies need not be very complex; synchronization through a simple lock
mechanism typically suffices. When multiple resources are involved, however, more sophis-
ticated strategies are necessary. For example, if a providing resource exposes state to another
resource through a memory pointer, perhaps to avoid copying of data, both resources must con-
form to any invariants on that state. Again, a lock mechanism might suffice, but that lock must
now be accessible to both resources.

When receiving a reply message, the provider must be able to locate the pertaining state in
order to respond. In a system based on procedure calls, this is straightforward as the stack
usually contains the context needed to identify the state. In a message-driven system that
context must be reconstructed when a reply message is received. Schemes based on passing
memory pointers to the state across message exchanges usually do not suffice, because the state
might have been freed before the reply message arrives. For example, the providing resource
for an address space abstraction could issue a fetch for some file data in response to a page fault,
but before the fetch completes the address space is freed; message exchange latency obviously
prevents the provider from holding the address space locked for the duration of the fetch.

A providing resource might also wish to track any references other resources have to its state.
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type t device type = {
.t name = "device",
.t size = sizeof(device t),
.t alloc = KOBJ ZEROFILL,
.t free = (t free t) device free,

};

Figure 3.10. Declaring an object type.

Consider a file abstraction. File data is likely to be passed by reference among the resources
involved in providing the abstraction, to avoid the performance overhead of data copying. The
provider might receive a write operation to a overwrite some file data. Depending on whether
other resources have references to the data, the integration of new data into the file would be
handled differently. If there are no references, the new data could be copied over the existing
data. If there are references to the data, sequential consistency requires the existing data to
be replaced. A consequence of replacing is also that the old data should be freed once all
references to it are relinquished, to avoid memory leaks.

The distribution of state among resources and the consequent problems that arise in manag-
ing that state motivate the OKRT object system. This system encourages resources to manage
state in terms of objects, and offers generalized approaches to object locking, references, and
reference counting. Several other OKRT offerings also build on the system to increase their util-
ity. For example, OKRT provides a flexible key/object dictionary implementation to resources,
with integrated object features to e.g. aid in performing weak-to-strong object reference up-
grades.

A resource creates a new object type by declaring a data structure describing the type. Fig-
ure 3.10 shows how the Vortex device resource declares an object type to hold the state de-
scribing an I/O device3. The description specifies the size in bytes of the object (t size) and
functions that OKRT will invoke on object construction (t alloc) and destruction (t free). The
string name for the object (t name) is used mostly for debugging purposes.

The OKRT object system is mainly intended to facilitate management and coordination of
the lifecycle of state that is distributed across resources. OKRT defines a set of functions that
can be applied to objects regardless of type, and resources can only attach new behavior to
an object through constructors, destructors, and a tostring function. The object system could
conceivably be extended with general support for type-specific behavior. Different functions
that operate on the same object would then be candidates for type-specific behavior. Often,
however, such functions reside in different resources in an omni-kernel. For example, the TCP
resource attaches TCP headers to netbuf objects, while the netdev resource attaches ethernet
headers. Turning the functions into type-specific behavior would conflate functionality that
should be clearly separated within the omni-kernel.

Objects are used extensively within Vortex. The implementation currently contains 98 type
declarations, spread over OKRT and around 30 different resources. Efficient creation and dis-
posal of objects is therefore a consideration. Because object size is specified as part of type dec-
laration, performance-efficient slab allocation techniques [174] are applicable. Indeed, OKRT

3The device resource abstracts I/O device drivers, providing a generalized interface for other resources to
interact with them.
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struct object t {
object t *next, *prev;
uint16 ob core;
uid t ob uid;
int32 ob refcnt;
mutex t ob mutex;
uint8 ob data[0];

} PACKED;

Figure 3.11. Object header.

implements creation and disposal of objects using a slab-like approach. Resources need not
explicitly register object types with OKRT—OKRT discovers type declarations by inspecting
kernel symbol tables. For each type, OKRT creates a bucket. The bucket describes the par-
ticulars of the type (object size, constructor/destructor functions, etc.), and contains per-core
queues of free objects. These queues are filled on demand; if a queue is empty, OKRT populates
the queue by allocating a chunk of physical memory. When disposed of, an object is returned to
the queue it was allocated from. Here, the underlying assumption is that if an object is created
on a specific core, operations on object state will occur on that core. Resource implementations
should exploit this behavior when possible, perhaps through assignment of affinity labels. For
example, the affinity label of the message causing object creation should be the same as the one
causing object state changes and disposal. If so, the caching benefits of an affinity-conscious
scheduler load sharing policy may be pronounced.

The implementation of the different features of the object system—references, reference
counting, and locking—is supported by a common data structure, shown in Figure 3.11, im-
mediately preceding object state. The core on which the object was created is indicated by
ob core. A unique identifier (ob uid) is associated with all objects upon creation. This iden-
tifier, together with the memory address of object state (ob data), constitutes a reference to
the object. OKRT offers many interfaces for manipulating object references. For example, a
resource can initialize, copy, compare, and validate references. Resources typically expose
objects to other resources through object references. The lifespan of an object is governed by
a reference counter (ob refcnt). Resources can increment and decrement the object reference
counter; when the counter reaches zero, the object is automatically disposed of. A resource
typically uses the reference counter to track the number of exposed references to the object. A
lock (ob mutex) is associated with all objects. Resources use the object lock to protect access
to object state, thereby preserving invariants. Lock operations are directed to a virtual dispatch
table by OKRT, enabling association of different types of locks with different object types. Vor-
tex currently has implementations for timed and untimed recursive spin-locks, but other lock
types, such as reader/writer locks, could conceivably be implemented.

As discussed in Chapter 2, the fine-grained scheduling in an omni-kernel elevates avoidance
of preemption to an architectural requirement. The OKRT lock framework provides no hooks
or allowances for lock types involving priority inheritance, as these would require preemption.
Thus, contested locks will increase message processing time. Our evaluation of Vortex, how-
ever, indicate that lock contention is usually low (see Chapter 5). This is due to resources mostly
accessing state that is private to an activity during message processing, and careful structuring
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vxerr t tcp handle network rx(objref t *tcpcbref, netbuf t *nbuf)
{

tcpcb t *tcpcb;
lock t lock;

. . .
VxO LOCKNULL(&lock);
. . .

if (!VxO REFLOCK(&lock, tcpcbref)) {
// Handle TCP connection closed by dropping packet
. . .

}
tcpcb = (tcpcb t*) VxO REFGETOBJ(tcpcbref);
. . .
VxO UNLOCK(&lock);

}

Figure 3.12. Excerpt from TCP resource handling of an incoming network packet.

using techniques such as partitioning, distribution, and replication to avoid use of shared state
on critical paths. It is notable that unlike recent systems [119, 121, 122], which argue for OS

kernels to emphasize partitioning and replication-centered approaches [123, 124] to state man-
agement, our experience is that the omni-kernel causes a structure where the amount of shared
state is limited, clearly identifiable, and often not an impediment to performance. Also, the
need for priority inheritance usually arises because locks might be held for long durations. A
consequence of the fine-grained scheduling in an omni-kernel is that message processing time
is low; in the order of 2-15µs in our Vortex implementation of the omni-kernel (see Chapter 5).

Figure 3.12 illustrates object use by an excerpt from a function in the TCP resource that han-
dles incoming network packets. This function is part of the interface of the TCP resource and
is invoked upon message receipt. The tcpcbref argument is a reference to the object describing
the TCP connection state. Another resource obtained this reference during packet demultplex-
ing, by a lookup in a dictionary associated with the target internet protocol (IP) address of the
packet. The reference is passed as a weak reference, i.e. the reference counter of the correspond-
ing object was not incremented upon creation of the reference. Resources often expose state
through weak references to retain control over the disposal of objects. For example, with only
weak references exposed, the TCP resource can close the TCP connection and dispose of the
connection object while there are packets that have been demultiplexed but not yet processed.

Had each demultiplexed packet carried a strong reference, i.e. the object reference counter
was incremented when the reference was created, unprocessed packets would have delayed
disposal of the connection object, thereby delaying reuse of the memory occupied by the object.
Strong references are e.g. used to handle a write to file data that other resources have references
to: the data is represented by an object, and the providing resource relinquishes its reference to
the old data as part of integrating the new data into the file.

OKRT objects typically encapsulate state that a resource needs to protect invariants on. Re-
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sources therefore rarely upgrade from a weak to a strong object reference, but rather from a
weak reference to a locked object, as illustrated by the VxO REFLOCK call in Figure 3.12.
The call will in one atomic action check that the referenced object has not been disposed of
and, if not, lock the object.

Our resource implementations consistently represent their state by objects, and the rich inter-
face offered by OKRT to manipulate references, locks, and reference counters is used throughout
to solve most problems that arise with concurrency and distribution of state. The ubiquitous
reliance on OKRT object facilities by resources has encouraged the recognition and integration
of objects into many OKRT offerings. As an example, in the following we detail how OKRT

closures and dictionaries have been enhanced to recognize objects.

3.1.4.1 Object-enhanced closures

Because of the extensive reliance on objects by both OKRT and resources, many functions
expect object references as arguments. References are therefore recognized in the closure for-
matting string and each reference will be passed by value in the closure object. Generally, the
closure implementation assumes that all closure arguments are object pointers or references.
(One exception is the integer argument, identified by an “i” in the closure formatting string.)
This is reflected in e.g. the ability to specify that, upon creation, the closure itself should obtain
a strong reference to an argument. Strong references are requested by using capitalized letters
in the closure formatting string. For example, indicating that an argument is of type “P” causes
a strong reference to be obtained for the corresponding argument. These references persist until
the closure is destructed.

Resources exploit the object-features of closures to solve many state management issues.
For example, if a resource interface function expects an object as an argument, passing a strong
reference allows the invoking resource to retain access to the object for a duration of its own
choosing. The ability for closures to carry strong references to arguments also simplifies the
difficult problem of avoiding unintended remnant state when an activity is terminated. Consider
that an activity is instantiated with request queues at resources. These queues may contain un-
processed messages when the activity is terminated. The destruction of messages and, crucially,
their accompanying closures will relinquish references to arguments, causing object destruction
if appropriate.

In a similar vein, termination of an activity might introduce state inconsistencies if a resource
expects a reply to a previously sent message; the request queues that would convey the reply
message have been destructed. For example, the resource providing the file abstraction in Vor-
tex employs a protocol to prevent certain file operations4 to be performed concurrently with
regular read and write operations. The resource maintains per-file state to track the type of out-
standing operations. Thus, activity termination might prevent the file provider from receiving a
required reply message. Closures and objects help resolve this problem. By attaching a closure
to the object describing the requested file operation, and relying on a feature to request closure
invocation upon closure destruction, the file provider can reliably be informed of operation fail-
ure due to activity termination; destruction of unprocessed request queue messages will cause
invocation of the closure.

4Vortex allows control over the persistence and eviction of file data at the level of individual files. Not exposing
the file system to e.g. concurrent eviction and reads simplifies the file system implementation.
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3.1.4.2 Object-enhanced dictionaries

The implementations of OKRT and resources build on a dynamic hash-based key/value dic-
tionary, supporting concurrent access, for more complex data structure needs. The dictionary
is used extensively—by the time Vortex starts the first user-level process, over four hundred
distinct dictionaries are in use. Objects are tightly integrated into the dictionary interface and
implementation; the dictionary is assumed to hold objects, not opaque values. Like closures,
dictionaries are represented as OKRT objects.

The default operation of the dictionary is weakly-valued, where keys are associated with
weak references to objects. Transitions between weak and strong references can be requested
upon insertion, lookup, and removal of objects. For example, a common pattern is when a
resource employs a cache to speed up operations. A dictionary typically implements these
caches, and a weak-to-strong reference upgrade is requested upon lookups to ensure object
access in the face of concurrent evictions.

Upon insertion, lookup, or removal, the dictionary implementation discards entries that refer
to destructed objects. This is a form of garbage collection that resources exploit to e.g. perform
lazy-cleanup of state, reduce dictionary access frequency, or even avoid potential synchroniza-
tion deadlocks. For example, in Vortex, processes access most kernel-provided abstractions
through a hierarchical namespace. This includes abstractions for access to files, network, I/O,
etc. The namespace is structured through nodes, where each node has a dictionary with en-
tries referring to child nodes. The locking scheme is to obtain locks in descendant order (i.e.
parent-child). Manipulation of namespace nodes sometimes require ascendant traversal. One
case is for node removal, where the starting point for the traversal is the node itself and the
node needs to stay locked throughout the removal. Ascending the tree while the node is locked
would violate the lock order and risk a deadlock. Instead, the node can simply be destructed
and the corresponding entry in the parent node dictionary will be lazily discarded.

3.1.5 The CPU resource

The omni-kernel architecture likens a CPU to any other resource—it is a hardware resource
of limited capacity that should be encapsulated as a resource and whose exploitation should
be controlled by a scheduler. The interface exported by a CPU resource should reflect what
is provided by the resource: the ability to execute some instructions represented by a piece
of data. One possible interface would be a single function accepting a closure as an argument.
Message processing at the CPU resource would then involve invoking the supplied closure. That
CPU resources, i.e. CPU-time, would be needed leading up to the invocation of the first closure
is just a bootstrapping problem.

Because CPU-time is needed for the operation of all resources, including the CPU resources
themselves, allocation of CPU-time will always be on the critical path in an omni-kernel. Rec-
ognizing this, OKRT implements a number of optimizations in the way CPU-time is requested
and allocated. Still, the scheduler for a CPU resource is implemented within the same frame-
work as schedulers for other resources in Vortex.

To process a message, a resource needs CPU-time. Messages in the request queues assigned
to a resource therefore indicate a need for CPU-time. When to process messages, however, is
decided by the scheduler governing the resource. Depending on the type of scheduler, CPU-time
might be needed immediately, or in the future. For example, a non-work conserving scheduler
could decide to postpone message processing for some determinate period of time because of
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Figure 3.13. Steps when sending a message.

utilization limitations. The need to determine when CPU-time is requested is the motivation for
the poll ready function in the scheduler framework, as presented in Section 3.1.1.1. Postpone-
ment of a decision involves OKRT setting up a timer on behalf of the scheduler, but ultimately
OKRT learns when CPU-time is requested by invoking the scheduler’s poll ready function.

A central optimization is to forego request queues and messages to convey CPU-time al-
location requests. Had the allocation of CPU-time been instantiated with request queues and
messages, OKRT would have had to send a message to the CPU resource if poll ready indicated
a need for CPU-time. This would in turn have led to invocation of the client ready function of
the CPU resource scheduler, and message processing at some later point.

A resource scheduler is not likely to retract its request for CPU-time, nor does it need to
request CPU-time again if a request is already pending. OKRT exploits this to directly invoke
the client ready function of the CPU resource scheduler after the resource scheduler, through
poll ready, requests CPU-time. An implication of this optimization is that the clients of the
CPU resource scheduler effectively become resource schedulers. A restriction is then that a
CPU resource scheduler cannot rely on request queue inspection.

Without request queues and messages, the CPU resource cannot expose an interface. In prac-
tice, this is not a problem. Consider that the CPU resource scheduler must multiplex CPU-time
among its clients. For a particular client, contention may cause there to be some delay for its
request to be satisfied. While waiting to receive CPU-time, the state of scheduler clients might
change. A scheduling decision is therefore best taken when access to CPU-time is immedi-
ate. The action after a decision by the CPU resource scheduler is therefore clear: to invoke the
schedule function of the selected resource scheduler. The resource scheduler will in turn decide
on a request queue, from which a message can be dispatched to the resource governed by the
scheduler.

To summarize, Figure 3.13 illustrates the different steps involved when a message is sent.
Sending a message follows three steps where (1) the scheduler associated with the queue is
notified, (2) the message is queued, and (3) the scheduler is given an opportunity to request CPU
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Figure 3.14. Steps when processing a message.

time from a CPU resource scheduler before control is returned back to the sending resource.
Then, as depicted in Figure 3.14, processing of a message follows four steps where (1) the

CPU resource scheduler decides to allot CPU time to a particular scheduler, (2) the scheduler
is consulted for a decision as to what message(s) to dispatch to the resource it governs, (3)
the selected message(s) are processed to completion, and (4) resource consumption records are
made available to the governing scheduler at some, possibly later, point. A subset of records,
those involving CPU consumption, are also made available to the CPU resource scheduler for
attribution to the selected scheduler.

The omni-kernel represents work by messages and resource schedulers use message affinity
labels to load share message processing across cores. Recall from Section 3.1.1 that resource
schedulers have a clear separation of shared and core-specific state and that OKRT aids a sched-
uler in maintaining this separation by the corestate argument to scheduler functions. Because
the CPU resource scheduler is implemented within the same framework, it also maintains the
same separation. OKRT ensures that scheduler notions of cores are preserved and aligned in the
handling of CPU-time allocation: for each core, the corestate argument to a particular sched-
uler will be the same across interactions. Thus, if a resource scheduler load shares to a specific
queue, CPU-time will always be requested from the core assigned to that queue. This also
implies there is no need for a CPU resource scheduler to implement load sharing—the CPU

resource scheduler inherits the load sharing decisions of the resource scheduler.
OKRT drives message processing on a core by first invoking poll ready function (with the

appropriate corestate argument) of the CPU resource scheduler. If the scheduler is unable to
produce a decision, the idle function is entered. The core stays in idle until a message arrives
to one of the request queues assigned to the core, or possibly until expiration of a timer set up
as a result of the poll ready call. When the CPU resource scheduler can decide, operation on
the core continues as described earlier. If a CPU resource scheduler decides on a client based
solely on core-specific state, or also takes shared state into consideration, is a concern for the
particular scheduler implementation. For example, synchronizing decisions across cores to e.g.
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implement a gang scheduling policy could be achieved with a barrier in the poll ready function.
The capacity of a resource may occasionally be exceeded by the flow of messages. For

example, a disk I/O device may receive more requests than it can handle concurrently. Here,
the resource is allowed to reject messages, which OKRT places back in their original request
queues. A resource scheduler typically responds to rejection of messages by requesting OKRT

to suspend the scheduler at the CPU resource scheduler (see Section 3.1.1, the client suspend
function). Lack of capacity is common at resources that govern an I/O device. Vortex therefore
models each device driver as two separate resources—a device interrupt resource5 and a device
read/write resource. Rejection of messages causes the device read/write resource scheduler to
suspend itself, but processing of interrupt messages is still possible because of the separate
device interrupt resource. This structure not only allows the interrupt resource to resume the
device read/write resource scheduler after processing of an interrupt message, but it also enables
the priority of the interrupt resource scheduler at the CPU resource scheduler to be set separately,
perhaps at a high priority to ensure low-latency I/O device interrupt handling.

The optimized interaction between a resource scheduler and the CPU resource scheduler
has been generalized to allow scheduler hierarchies of arbitrary depth. One use of a deeper
hierarchy is for manifesting a resource without introducing an actual resource implementation,
much like what is done for the CPU resource. For example, I/O devices are typically attached to
a host computer through an I/O bus that can be shared with other I/O devices. This bus may, in
turn, be part of a hierarchy of shared buses, terminating at an interface to main memory. If the
aggregate capacity of connected I/O devices exceeds the capacity of the bus hierarchy, then the
capacity of any single I/O device will vary depending on current bus load. One way to control
I/O bus sharing is to junction the schedulers of I/O device driver resources through an I/O bus
scheduler. The I/O bus scheduler would then effectively control I/O device use of the I/O bus.
This approach will not be explored in this dissertation, but another use of a deeper scheduler
hierarchy is described in Chapter 4.

3.1.6 Prior work in hierarchical scheduling

The relationship between a resource scheduler and the CPU resource scheduler is in effect
hierarchical. Prior work has also explored support for multiple, coexisting process or thread
scheduling policies. Of particular relevance is work that investigates interaction between sched-
ulers organized in a hierarchy. But no previous hierarchical scheduling system has been as fine-
grained as that of Vortex, nor have any such system extended beyond CPU-time to processes or
threads.

Goyal et al. [175] present one of the first hierarchical scheduling systems that allows different
algorithms for different applications. The system uses a fair queuing algorithm at all levels
of the scheduling hierarchy, except for the leaf nodes. Leaf nodes may implement arbitrary
scheduling policies, much like the thread resource schedulers in Vortex (see Section 3.4). The
open environment for real-time applications [176, 177] and BSSI [178] restrict the number of
levels in the hierarchy to two, and these systems rely on an earliest deadline first (EDF) [144]
scheduler at the root to resolve timing constraints of application schedulers. RED-Linux [179]
defines scheduling needs of tasks in terms of attributes, which may be adjusted to express
different real-time policies EDF, rate monotonic, etc.). Conceptually this defines a two-level

5In Vortex, interrupts are initially captured by a low-level handler, which creates and sends a message describ-
ing the interrupt to the appropriate resource. See Section 3.3.2 for more details on interrupt handling in Vortex.

40



scheduling hierarchy.
CPU inheritance scheduling [180] allows construction of arbitrary scheduling hierarchies by

designating certain threads as scheduler threads and other threads as client threads. Scheduler
threads implement scheduling policies by donating CPU time to client threads. A client thread
can, in turn, act as a scheduler thread by donating its CPU time to other threads—a concept
originally introduced in [181]. CPU inheritance scheduling can be viewed as a generalization
of scheduler activations [182], only extended with parts of the scheduling hierarchy residing
at kernel-level (although, the original CPU inheritance work only describes a user-level im-
plementation). Nemesis [117], Aegis [116], and SPIN [98] all implement two-level scheduler
hierarchies with interfaces similar to that of scheduler activations. Nemesis and Aegis require
all second-level schedulers to run at user-level and use a fixed scheduler at the root of the hier-
archy; SPIN allows applications to download their own schedulers into the kernel at run-time.

Hierarchical loadable schedulers (HLS) [183] and Vassal [184] both allow a scheduler, down-
loaded into the kernel at run-time, to control scheduling of available threads. Vassal only al-
lows a single scheduler to co-exist with the native Windows NT scheduler; HLS allows arbitrary
scheduler hierarchies in Windows 2000. The HLS authors observe that I/O activities severely
affect the effectiveness and accuracy of their CPU scheduling. This problem is explicitly ad-
dressed by the omni-kernel, because it was designed to enforce policies for both CPU and I/O

consumption.
The omni-kernel architecture enables a multitude of deployment configurations. Different

scheduler implementations can be selected for different resources, and each scheduler imple-
mentation can be tailored as desired to exploit OKRT-provided performance metrics or use
knowledge and metrics supplied by resource instrumentation. The Vortex implementation sup-
ports all this flexibility, including features such as control over what cores are accessible to a
resource scheduler. How schedulers and the resource grid are configured is the topic of the next
section.

3.1.7 Configuring the resource grid

The goal of the omni-kernel architecture is to enable scheduler control over all resource
consumption. A particular system behavior, however, arises as a result of scheduler policy. It
is not a goal to promote a specific policy, but rather provide the monitoring and control needed
to instantiate a desired policy. For example, an omni-kernel would be a compelling prooving
ground for instantiating an isolation kernel [185], but an omni-kernel is not an isolation kernel
in itself—an omni-kernel with the appropriate resource and scheduler implementations might
qualify as an isolation kernel.

The Vortex implementation attempts to both capture and expose the versatility of the omni-
kernel architecture. For example, the OKRT scheduler framework allows one scheduler im-
plementation to be substituted for another without requiring changes to the way messages are
sent, scheduled, dispatched, or processed. So, the selection of sharing policies for a resource
is only limited by available scheduler implementations. This versatility is exposed through an
OKRT-provided configuration facility.

3.1.7.1 Configuring resource schedulers

Figure 3.15 contains excerpts from the configuration file that provides OKRT with the informa-
tion it needs to associate schedulers with resources. The configuration file describes the type of
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<?xml version="1.0"?>
<schedulerconfig maxcores="8">

<!−− CPU resource scheduler −−>
<cpuscheduler scheduler="propshare.wfq" core="0-?"/>

<!−− Resource schedulers −−>
<resourcescheduler resource="resource.tcp"

metric="cpu"
scheduler="propshare.wfq"
core="0-?"
cpushare="10000" />

<resourcescheduler resource="resource.scsi"
metric="cpu"
scheduler="propshare.wfq"
core="0-?"
cpushare="10000" />

<resourcescheduler resource="resource.device_readwrite"
metric="nbytes"
scheduler="propshare.wfq"
core="0"
cpushare="10000" />

<resourcescheduler resource="resource.device_interrupt"
metric="cpu"
scheduler="propshare.wfq"
core="0"
cpushare="10000"/>

<resourcescheduler resource="resource.thread"
metric="cpu"
scheduler="propshare.wfq"
core="6,7"
cpushare="10000" />

</schedulerconfig>

Figure 3.15. Excerpt from a scheduler configuration file.

scheduler to use at each resource, as well as specifying configuration parameters. The process
of instantiating these schedulers is fully automated: at boot time, OKRT reads the configuration
file and instantiates schedulers.

OKRT maintains a repository of all available schedulers. Schedulers in this repository are
compiled as part of the Vortex kernel. Each scheduler is named according to the type of algo-
rithm it implements. For example, our WFQ scheduler implementation falls into the category
proportional share schedulers and is, as such, named “propshare.wfq”. The name of a scheduler
is used in the configuration file to specify the particular scheduler to associate with a resource.

Limiting which cores a resource scheduler can request CPU-time from is possible. The con-
figuration in Figure 3.15 specifies that only core 0 should be accessible to the schedulers for the
device readwrite and device interrupt resources. The configuration is an example of an asym-
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Figure 3.16. Resource scheduler configured to request CPU-time from core 0 and 3.

metric configuration, i.e. a configuration where schedulers request CPU-time from only subsets
of the available cores. This allows deployments with some cores dedicated to resources, where
scaling through fine-grained locking or avoidance of shared data structures is difficult. Typical
examples are resources that govern I/O devices using memory-based data structures to specify
direct memory access operations. The support for asymmetric configurations is comprehensive.
The scheduler for the thread resource controls the allotment of CPU-time to the threads of user
level processes. The configuration describes that only core 6 and 7 should be accessible to the
scheduler, effectively limiting process threads to run on those cores. Partitioning cores such
that the OS and processes use disjoint subsets, as was suggested in [120], is possible. OKRT

supports these features by exposing the configured number of cores to the resource scheduler
and then directing requests for CPU-time to the prescribed cores, as exemplified in Figure 3.16.

Many scheduler implementations operate with a single performance metric as a measure of
resource consumption. What that metric signifies is often not of importance to the scheduler
logic, as long as the relative measure of consumption among resource consumption records is
valid. This is exploited in the configuration file to allow specification of the type of resource
consumption records OKRT should make available to the scheduler. For example, the config-
uration in Figure 3.15 describes that the SCSI resource and device read/write resource should
both use the same type of scheduler, but operate with different metrics for resource consump-
tion. What metric to use for sharing of a resource is typically guided by what limits or defines
the capacity of the resource. Often, the capacity of a resource is a function of the amount of
CPU-time available to the resource. Here, CPU-time may be an appropriate metric for sharing
of the resource. Other resources might govern an I/O device, where capacity is defined by the
capabilities of the I/O device. Here, number of bytes transferred is often an appropriate metric.
Depending on the sophistication of the scheduler implementation, multiple metrics might be
used. This can be specified in the configuration file.

The configuration file in Figure 3.15 also describes a CPU resource scheduler. As discussed
in Section 3.1.5, the CPU resource scheduler controls how CPU-time is multiplexed among re-
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source schedulers. (And as implied by scheduler governance, among resources). A WFQ sched-
uler is specified in the configuration. Most types of schedulers use a scheme for differentiated
treatment of clients based on a notion of client priority. For example, a WFQ scheduler assigns a
weight to each client and attempts to ensure that clients receive resources in proportion to their
weight (see Section 3.1.1.2). The cpushare field in the description of each resource scheduler
conveys client priority to the CPU resource scheduler. The interpretation of the cpushare field
depends on the particular scheduling algorithm selected. In this configuration it specifies client
weight. Note that OKRT does not analyze scheduler composition, so a configuration may con-
tain flaws. For example, if a resource is scheduled using an earliest deadline first algorithm and
CPU time is requested from a CPU resource scheduler using a WFQ algorithm, then the resource
scheduler can make no real-time assumptions about deadlines. Reasoning about correctness re-
quires a formalization of the behavior of each scheduler, and then an analysis of the interaction
between behaviors. See [135, 178, 183, 186, 187, 188] for work in this direction.

What cores to request CPU time from, and the amount, depends largely on the deployment
hardware. Modern system architectures are complex and differ e.g. in the number of cores,
sockets, the depth and topology of the memory hierarchy, the number and topology of I/O

buses, and the type and capabilities of I/O devices. A configuration must therefore typically be
determined from test runs on the particular deployment hardware.

In general, it is desirable for I/O devices to be able to operate at their capacity. For this to
be possible, all resources involved leading up to I/O device interaction must be configured with
sufficient amounts of resources. This implies that a test run must e.g. determine the amount of
CPU-time needed to produce and consume network packets such that the NICS in the system
are saturated. Vortex offers an interface for processes to obtain very detailed data on system
performance, as described in Section 5.3. The test run would use this interface to determine the
performance of a configuration. Vortex also offers interfaces for updating certain aspects of an
active configuration. These interfaces allow runtime changes to what cores are available to a
resource scheduler, as well as its priority at the CPU resource scheduler. The test run would use
this interface to improve an under-performing configuration. A work conserving CPU resource
scheduler with minimum guarantees offers an alternative to some test runs. One can over-
provision and rely on the scheduler to distribute excess resources. We use this alternative for
most of the experiments in our evaluation (see Chapter 5).

3.1.7.2 Configuring resource grid communication paths

The omni-kernel resource grid is defined by resources and the schedulers that govern the com-
munication paths among resources. Configuration of communication paths is performed in
several ways. OKRT associates an identifier with each resource and uses a dynamic lookup
mechanism to route a message to its destination resource. A resource can therefore, if so de-
sired, send a message to any other resource. A fully connected resource grid is, however,
unlikely to come about in practice. Resources typically contribute functionality to implement
some higher-level abstraction and communicate mostly with other resources providing a related
functionality, either at a higher or lower abstraction level, like in a layered system [94]. For
example, direct communication between the SCSI resource and the TCP resource is unlikely to
occur.

Some resources may refer to other resources by their OKRT-defined identifier, causing com-
munication paths in the resource grid to be established. For example, the SCSI resource is
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informed of the discovery of any small computer system interface (SCSI)-capable I/O devices.
After performing a topology discovery on a device, the SCSI resource communicates with the
storage resource to make discovered disks or volumes accessible to e.g. file system resources
or system tools (formatting, file system checking, etc.). The SCSI resource refers to the stor-
age resource by name. This is an example of a resource communicating with another resource
because of implementation-specific frameworks or structures. The storage resource can be
characterized as a well-known resource. An implementation of the omni-kernel architecture
different from Vortex is likely to also have such well-known resources.

Other communication paths are established because of run-time system configuration. As
briefly described in Section 3.1.2, Vortex implements a storage routing facility to connect a file
system path, a file system and, a storage volume. All three elements refer to a specific resource.
A routing table entry then effectively configures a communication path. Another example is
the network routing table. Vortex assigns an identifier to each network interface card (NIC),
and decouples IP addresses from NICS. IP addresses (v4/v6) are introduced as instantiable
objects that may be associated with an activity (see Section 4.2.4). Each IP object has its own
namespace for e.g. TCP and user datagram protocol (UDP) ports. A network routing table entry
describes a binding between an IP object and the resource for a specific NIC. As such, entries
in the network routing table configure communication paths.

Communication paths can also be configured because of process interactions. For example,
a process may memory map a file, causing the address space resource to communicate with the
file cache resource to fetch file data upon page faults, or to flush data modifications back to the
file if so requested. (See Section 3.2 below for more details on virtual memory management
in Vortex.) Vortex offers an interface for processes to perform asynchronous I/O, where a
process can request transfer of data from one I/O-capable Vortex abstraction to another. For
example, a process can request Vortex to transfer data from a file to another file, from a file to
a TCP connection, from a TCP connection to a TCP connection, etc. Communication paths are
established as needed during data transfer. (Section 3.3 describes the Vortex I/O system.)

3.1.8 Hardware abstraction layer

Some resources need access to hardware mechanisms or structures in their operation. For
example, a resource might need to send an inter-processor interrupt to a subset of cores, to
perform atomic operations, maintain page tables, or manipulate CPU register contexts. OKRT

implements a hardware abstraction layer (HAL), as is common in an OS.
The OKRT HAL provides a low-level interface to the hardware platform on which Vortex is

running. It hides hardware-specific details such as interfacing with on- and off-core interrupt
controllers, booting of cores, CPU interfacing to store/restore register contexts, initializing sys-
tem call mechanisms, etc. Resources use the OKRT HAL when they need low-level access to
hardware state or features.

Vortex currently runs on Intel x86-64 architectures. The x86-64 HAL constitutes approxi-
mately 7% of the Vortex code base.

3.2 Virtual memory

This section presents how commodity virtual memory interfaces, functionality, and abstrac-
tions are implemented by Vortex. Like other modern OSS, Vortex associates a virtual address
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vx vaddr t vx mmap(vx vaddr t vstart,
vx size t vsize,
vx rid t rid,
vx off t roffset,
vx mmflags t flags);

vxerr t vx munmap(vx vaddr t vstart,
vx size t vsize,
vx mmflags t flags);

typedef enum {
// Privileges
VX MMFLAG READ = (1u`` << 62),
VX MMFLAG WRITE = (1u`` << 61),
VX MMFLAG EXEC = (1u`` << 60),
VX MMFLAG SUPERVISOR = (1u`` << 59),
VX MMFLAG DISABLED = (1u`` << 58),

// Operation
VX MMFLAG ACCESS = (1u`` << 47),
VX MMFLAG EXECUTABLE = (1u`` << 46),
VX MMFLAG RESET = (1u`` << 45),
VX MMFLAG NEWALLOCATOR = (1u`` << 44),
VX MMFLAG MAPALLOCATOR = (1u`` << 45),
VX MMFLAG UNMAP EXACT = (1u`` << 44),
VX MMFLAG UNMAP FLUSH = (1u`` << 43),

} vx mmflags t;

Figure 3.17. Virtual memory interface.

space with all processes. Most of the capabilities of the Vortex virtual memory implementation
are revealed by the system calls offered to a process for manipulating its address space. We
therefore structure the presentation around this interface and the resources involved in support-
ing its capabilities.

Vortex provides two system calls, shown in Figure 3.17, that a process can use to perform
operations on its address space. A common operation is for a process to request allocation of a
new memory region. Such system calls are directed to the address space resource (ASR)6, which
implements logic for constructing and maintaining page tables and also provides an interface
for allocating and controlling translations for regions of an address space.

The ASR associates a set of memory allocators with each process address space. These are
responsible for maintaining an overview of memory use within a specified range of the process

6A resource may export routines in its interface that should be accessible not only to other resources but also
to processes. Such functions are exposed as Vortex system calls. The resource programmer achieves exposure
by using a stub generation facility that, for each function, creates a stub for initial receipt of a system call. The
resource programmer provides the logic of the stub, and may choose to call functions in the resource directly, or
send a message to the resource.
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virtual address space, and each provides an interface for allocating, freeing, and searching for
previous allocations within the memory range it administers. The allocator interface is illus-
trated in Figure 3.18. The ASR associates a separate allocator with each core in the system7,
and directs memory allocation requests to the allocator associated with the core from which
the request is made. Since allocators administer separate memory ranges, incurred page table
updates are also disjoint. Similar to Corey [120], a process can exploit this structuring to im-
prove locality and reduce contention on page table updates. A process directs its allocation
request to a specific allocator by setting the VX MMFLAG MAPALLOCATOR flag and supply-
ing an address within the range managed by the allocator as the vstart argument to vx mmap.
A process can also request creation of a new allocator for a fixed region of addresses, using the
VX MMFLAG NEWALLOCATOR flag.

3.2.1 Memory mappings

ASR uses a mapping data structure to describe each memory allocation. A mapping contains
state such as the access rights to the region spanned by the mapping (read, write, disabled,
etc.), an allocator reference, and an overview of which pages in the region currently have active
translations in the page table that backs the address space. ASR contains implementations for
growing, shrinking, and splitting mappings, as typically are needed to support the address space
manipulations of commodity applications. For example, the work in [76, 77] used these capa-
bilities to support the address space manipulations of Apache, MySQL, and Hadoop. Changes
to the region spanned by a mapping are typically incurred by a process requesting to free parts
of an existing mapping, or requesting a new mapping that partially overlaps, spans, or extends
an existing mapping. Experiences from [76, 77] are that modern applications exhibit behavior
that requires a very flexible virtual memory interface, in particular if the application involves
a virtual machine environment such as the Java Virtual Machine, which performs its own ad-
vanced memory management.

All virtual memory region allocations are on-demand and page faults drive fetch and creation
of page table translations for the data associated with a virtual address. Page faults are directed
to the ASR. To handle one of these, ASR associates a provider with each mapping. When a
process requests allocation of memory, ASR registers the memory resource (MR), which im-
plements a physical memory allocator, as the provider for the mapping. A page fault within
a mapping where MR is a provider causes the ASR to send a request for physical memory to
MR. A response can be immediate, or delayed because of the memory budgets of the requesting
activity8. (Chapter 4 describes how activities are defined in Vortex.) For example, satisfying a
request might require reclaim of other physical memory in use by the activity, which will delay
the allocation request.

A process can select a provider different than MR for a mapping by supplying a resource
identifier (RID) as the rid argument to vx mmap. RIDS serve a function similar to UNIX de-
scriptors or Windows handles—a RID refers to a Vortex kernel object, such as an open file
or a network connection, and many system calls expect a RID argument to identify the object

7A typical configuration is for the allocator at each core to manage a range corresponding to 1TB of virtual
memory.

8Note that OKRT requests memory through direct calls to functions in the memory resource interface. More-
over, OKRT expects requests to be satisfied immediately. This is to support the operation of OKRT, where denial
of physical memory might disrupt HAL operations or other OKRT-provided functionalities where resources are not
prepared to handle error responses.
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vpalloc t *vp new(vaddr t start, vaddr t size, vaddr t min block);

vaddr t vp alloc(vpalloc t *vp, vaddr t vstart, size t size);

vxerr t vp free(vpalloc t *vp, vaddr t vaddr, size t vsize);

vaddr t vp allocsearch(vpalloc t *vp, vaddr t addr);

Figure 3.18. Virtual memory allocator interface.

on which to perform the service offered by the particular system call. The scope of a RID is
the calling process. As discussed in 3.1.4, a specific resource is typically designated as the
provider of an abstraction; a RID represents a reference to a concrete instance of an abstraction,
and Vortex associates the providing resource with the RID. Thus when presented with a RID,
ASR registers the RID providing resource to also be the provider for the mapping. A page fault
within the mapping will then cause ASR to send a request for data to the specified resource.
When receiving such a request, resources are required to respond with data already cached in
the resource, by allocating new memory, or by retrieving the data from other resources. The
roffset argument to vx mmap specifies a start offset in the object referred to by the rid argument.
So, in combination with the vsize argument, a particular slice of e.g. a file can be specified as
the data corresponding to the mapping.

ASR communicates with the providing resource for a mapping using the same protocol as
for I/O operations in Vortex. This protocol, and the I/O interfaces in Vortex, are detailed in
Section 3.3 below, but in essence the protocol defines a set of functions that if included in
a resource interface, signals that the resource is prepared to accept read and, possibly, write
operations on an object provided by the resource. The convenience with which a resource can
expose objects to I/O is largely due to the modular design of the omni-kernel. In this aspect the
omni-kernel architecture represents a continuation of OS works demonstrating the benefits of
modularity [94, 189, 190, 191, 192, 193, 194, 195].

ASR is used by other resources to export and make data objects accessible in a process ad-
dress space. For example, the executable resource (ER) uses the ASR interface to export the
segments of an executable file (text, data, BSS, etc.) into the pertinent regions of the address
space. To handle a request for data from ASR, ER typically further communicates with the file
cache resource, which is the provider for the file abstraction.

3.2.2 Reclaiming memory

Whether additional memory is needed when processing a message is difficult for the sending
resource to determine without access to state that is internal to the receiving resource. For
example, the receiving resource might use caching to speedup request processing. Therefore,
resources allocate memory from the memory resource (MR) when needed, typically as part of
processing a message. Note that memory is freed through direct calls to a function in the MR

interface; only memory allocation requests are scheduled. This is to ensure rapid release of
memory resources.

The MR scheduler must track the memory allocation of each activity and initiate memory
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reclamation when available memory is low or an activity exceeds its memory budget. Making
reclamation decisions conducive to improved performance typically requires additional infor-
mation. For example, if frequently used memory in the process heap is reclaimed then perfor-
mance will erode. Likewise, reclaiming process text memory may result in poor performance.
An earlier implementation provided the MR scheduler with this additional information through
resource instrumentation that regularly collected memory usage statistics and other pertinent
information. For example, ASR regularly collected the modified and access bits stored by page
tables and informed the MR scheduler about state changes. Experiences from that implementa-
tion indicated that the MR scheduler had to duplicate much state already maintained in resources
themselves and that a performance-conducive selection of which memory to reclaim was, ulti-
mately, dictated by concerns specific to what a resource uses memory for and how that memory
is accessed. Recognizing this, the current implementation uses a simpler scheme for memory
reclamation.

The MR scheduler initiates memory reclamation by sending a memory reclamation request
to a resource. The request specifies the activity to reclaim memory from, and a resource must
have the necessary instrumentation to differentiate its memory use among activities, as well as
sufficient state to perform a performance-conducive selection of what memory to void refer-
ences to. For example, the file cache resource (FCR) assigns to each activity a priority queue
containing file references, where the priority of an entry is updated whenever a file is accessed
in context of the specific activity. Further, cached file blocks are labeled with the activity that
originally allocated them. FCR responds to a reclamation request by inspecting the priority
queue assigned to the specified activity, initiating cache evicts and priority queue updates as
appropriate. ASR uses a similar approach, only regularly collecting modified and access bits
stored by page tables for memory usage statistics.

The act of reclaiming memory might require updates in resources other than the one that
initially allocated the memory. For example, the executable resource (ER) relies on FCR to
cache segments of the executable file. Moreover, ER uses ASR in order to insert page table
translations for those segments. Hence, memory for caching segments is initially allocated for
FCR, but references to that memory ultimately exist in both the FCR and the ASR. In order to
reclaim this memory, updates in FCR and ASR are needed. In the earlier implementation, this
scenario was handled by memory reclaim requests first being sent to ASR and then forwarded to
FCR by ASR. The current implementation only requires resources to inform the MR scheduler
about the amount of memory they use by-reference. The MR scheduler can then choose to send
reclaim requests to e.g. ASR, if previous requests to FCR did not free up sufficient amounts of
memory. This approach might cause references to some memory to e.g. be relinquished in FCR

but not ASR, preventing the memory to be freed for reuse. But if this occurs, it is because ASR

considers reclamation of other memory to have less impact on performance. The particular
memory will be freed eventually upon repeated memory reclaim requests. Note that memory
is presented as memory buffer (OKRT) objects to resources. Object reference counting controls
when a memory buffer is freed, and resources can inspect memory buffer reference counts and
take external references into account when considering what buffer to reclaim.

Decentralizing memory reclaim removes some control from the MR scheduler—the MR

scheduler cannot reclaim specific memory buffers. The tradeoff is a reduction in duplicated
state and less complicated scheduler logic. A performance-conducive selection of which mem-
ory buffers to reclaim requires detailed knowledge of the state and operation of a resource.
Embedding this knowledge in the MR scheduler complicates its implementation, as we experi-
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enced from the previous implementation. Also, centralizing the knowledge requires scheduler
updates whenever new resources are introduced. For example, our ext2 file system resource
maintains a cache of file blocks containing metadata (group descriptors, bitmaps, etc.). Re-
claiming from this cache would require updates to the MR scheduler logic, had we used a cen-
tralized model. Currently, the MR scheduler has an overview of the memory usage of activities
at each resource, and is empowered to reclaim from any resource.

3.3 I/O

We purposefully aim to implement commodity OS abstractions in Vortex to demonstrate that
the omni-kernel architecture does not hinder or prevent implementation of such abstractions,
and to strengthen the conclusiveness of results from experimental evaluation of the efficacy
of the architecture. The previous section described our implementation of commodity virtual
memory abstractions. This section presents the I/O interfaces offered by Vortex, and the re-
sources implementing those interfaces.

Most contemporary operating systems provide I/O interfaces based on designs from Mul-
tics [196] and the UNIX system [197]. This design involves synchronous transfer of data be-
tween buffers in a process address space and a kernel I/O resource, where buffer locations for
both input and output operations are decided by the process. To support these semantics, data
typically has to be copied between process and OS buffers as part of the I/O operation. Re-
ducing data copying on the UNIX I/O path, while maintaining the semantics of the application
programming interface, has received considerable attention over the years. One approach is
to use virtual memory remapping on each I/O call [198, 199, 200]. On input operations the
virtual memory region specified as buffer must be remapped to point to the physical pages con-
taining the target data [105, 201]. On output operations, the process must be prevented from
modifying the buffer while the I/O operation is in progress [201, 202], or the buffer must be
copied if a modification is attempted using copy-on-write techniques [105, 203]. Genie [199]
and IO-lite [204] are examples of systems using copy-on-write to optimize performance for
processes that make read-only accesses. Virtual memory mappings require page table updates
and, in multi-core environments, use of protocols to maintain TLB consistency [205, 206, 207].
Different I/O semantics have also been explored in attempts to reduce copy operations on I/O

data paths. With move semantics [106, 198, 208, 209, 210, 211, 212, 213], data copying is
avoided by use of virtual memory remapping. Using share semantics [209, 213, 214], data
copying is avoided by performing I/O in-place, i.e. a process buffer doubles as an OS buffer
for the duration of the I/O operation. The use of virtual memory as a mechanism to share data
between processes was pioneered by the Multics [196] and Tenex [215] systems. The use of
virtual memory remapping to avoid copy operations when passing long messages between pro-
cesses was introduced in the Accent system [216, 217], and the integration of virtual memory
management and IPC was later adopted as one of the central design tenets of the Mach sys-
tem [105]. Statically shared buffers between protection domains was also central in Firefly
RPC [218].

I/O interfaces based on asynchronous I/O have also become commodity. For example, Linux,
with its kernel-support for the POSIX asynchronous I/O interface, and Windows, with its over-
lapped I/O, have provided asynchronous I/O interfaces for a decade or more. An asynchronous
I/O operation is distinguished from a synchronous one by the requesting process not being
forced to wait or be involved in the continuous handling of the operation; a separate mech-
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anism informs the process of I/O operation completion. The copy reduction optimizations
outlined above are also applicable to an asynchronous I/O interface.

Vortex only offers an asynchronous I/O interface. A process is presented with commodity
synchronous I/O interfaces through a library implementation that builds on the Vortex asyn-
chronous I/O interface. The Vortex I/O interface is sufficiently flexible to allow library imple-
mentation of all permutations of blocking and non-blocking synchronous and asynchronous
I/O. Indeed, [76, 77] demonstrated that the entire I/O interface of Linux could be imple-
mented by use this library and the Vortex asynchronous I/O interface. This includes differ-
ent flavors of blocking and non-blocking reads and writes (read/write/readv/writev/pread/p-
write/send/recv/sendfile, etc.), as well as multiplexing mechanisms such as select and poll.

In the following we detail the asynchronous I/O interface of Vortex. Like with the exposition
of the Vortex virtual memory interface, we structure the presentation around the I/O system call
interface and the resources involved in its implementation.

3.3.1 The Vortex I/O interface

In Vortex, a process uses a RID to refer to a concrete instance of an abstraction, as described
in Section 3.2.1. A RID is typically obtained by the process using the vx aopen system call
to create a new or open an existing object, such as a file, a network connection, or a raw disk
volume, where the RID is the return value from the call. As described in Section 3.1.4 and
Section 3.2.1, a specific resource is designated as the provider for the RID. It may occur that
a provider needs to communicate with other resources to complete a request for an instance of
an abstraction. For example, if a process attempts to open an existing file that resides on disk,
the file cache resource, which is the designated provider for the file abstraction, will need to
communicate with a number of resources in the Vortex storage system in order to complete the
vx aopen call. The vx aopen system call is therefore by default asynchronous.

Figure 3.19 shows the Vortex system calls for obtaining a RID for an instance of an abstrac-
tion and for closing that RID. Processes access most kernel-provided abstractions through a
hierarchical namespace. The path argument to vx aopen specifies the path of the particular
abstraction. A providing resource is registered with each path, and the vx aopen call is initially
directed to that resource. The ioarid argument refers to the activity that should be associated
with any I/O required to complete the vx aopen call. (The particulars of how activities are
expressed and instantiated within Vortex are described in Chapter 4.) The calling process is
allowed to suggest an affinity label to associate with messages-exchanges related to the ab-
straction instance through the affinity argument. The intention of this argument is to allow a
process to influence the load sharing of schedulers, perhaps to cluster operations on a set of
abstraction instances to particular core. In our implementation, a providing resource typically
accepts the process-suggested affinity label. Vortex allows a process to associate some actions
with close of an abstraction instance. In particular, a process can request that a file be persisted
on disk, evicted from the file cache, or unlinked upon a call to vx aclose. These actions all in-
volve I/O. The vx aclose system call therefore also specifies an activity to associate with I/O, as
indicated by the ioarid argument. The VX AOPENFLAG CLOSE NOINSTANCECLOSE flag
is used in conjunction with the Vortex RID duplicate interface, when the calling process does
not desire that an abstraction instance should be destructed upon close of a duplicated RID.

A call to vx aopen or vx aclose that can be satisfied without the provider communicating with
other resources typically completes in context of the call. If communication is needed, control
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vx rid t vx aopen(vx utf8 t *path,
vx rid t ioarid,
vx uint64 t cookie,
vx aopenflag t aopenflags,
vx affinity t affinity);

vxerr t vx aclose(vx rid t rid,
vx rid t ioarid,
vx uint64 t cookie);

typedef enum {
VX AOPENFLAG NOFINISHED = (1u`` << 62),
VX AOPENFLAG CLOSE NOFINISHED = (1u`` << 61),
VX AOPENFLAG CLOSE NOINSTANCECLOSE = (1u`` << 60),
VX AOPENFLAG FILE NOCACHE = (1u`` << 47),
VX AOPENFLAG FILE CREATE = (1u`` << 46),
VX AOPENFLAG FILE CREATE DIRECTORY = (1u`` << 45),
VX AOPENFLAG FILE TRUNCATE = (1u`` << 44),
VX AOPENFLAG FILE NEXIST = (1u`` << 43),
VX AOPENFLAG FILE CLOSE SYNC = (1u`` << 42),
VX AOPENFLAG FILE CLOSE EVICT = (1u`` << 41),
VX AOPENFLAG FILE CLOSE UNLINK = (1u`` << 40),

} vx aopenflag t;

Figure 3.19. Asynchronous open and close interface.

is returned to the calling process and completion occurs concurrently with process execution.
Completion is then conveyed by a message placed on a message queue; Vortex exposes message
queues as an abstraction, and a process uses the interface shown in Figure 3.20 to access a queue
instance. The vx dequeue interface allows a process to poll a queue for messages, or block
on the queue for a duration indicated by the timeout argument. Multiple messages may be
dequeued in one call to vx dequeue, as indicated by the lsize and msglist arguments. A process
can create multiple message queues, and the mqrid argument specifies a particular instance.
Messages can be placed on a queue using the vx enqueue call. The delay argument allows
queueing of a message to be postponed for a specified number of microseconds. Processes
typically use this feature to drive periodic tasks.

A message queue for vx aopen and vx aclose completion messages is specified through the
activity associated with the calls (the ioarid argument to vx aopen and vx aclose); a process
can bind a message queue to an activity and thereby receive messages concerning that activity
to the queue. This is further described in Chapter 4. The cookie argument to vx aopen and
vx aclose is delivered with completion messages. A typical use of the argument is to aid in
demultiplexing of messages.
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vx int64 t vx dequeue(vx rid t mqrid,
vx int64 t lsize,
vx message t *msglist,
vx time t timeout);

vxerr t vx enqueue(vx rid t mqrid,
vx message t *message,
vx time t delay);

Figure 3.20. Message queue interface.

3.3.1.1 The flow abstraction

Vortex provides a flow abstraction for processes to perform I/O operations. A flow specifies
an asynchronous write operation, where a process can request transfer of data from one RID to
another. Since a RID refers to a concrete instance of an abstraction, and each abstraction has a
providing resource, a flow essentially specifies transfer of data from one providing resource to
another.

The flow abstraction is exposed to processes through the three system calls shown in Fig-
ure 3.21. A process creates a new flow by invoking vx flow, specifying the RID that will act
as the sink of the flow by the sinkrid argument. A new source to an existing flow is created
by invoking vx flowsource. The arguments to vx flowsource specify the RID of the source
(sourcerid), the location of the data in the source (sourceoffset and sourcenbytes), as well as
where in the sink to write the data read from the source (sinkoffset). Offsets are ignored when
the I/O resources involved are stream-based, such as with a TCP connection. Similar to the
vx aopen and vx aclose interfaces, the activity to associate with the I/O is specified by the
ioarid argument.

A source to a flow is considered drained when the requested number of bytes has been
transferred from the source to the sink, or if the source is unable to produce the requested data.
For example, a process could specify a file as a source and request to read data beyond the
end of the file. Similarly, with a TCP connection as source, the connection could be closed
by the remote host. A process is notified when a source is drained through Vortex placing an
I/O completion message on a message queue associated with the activity in which the I/O is
performed (see Chapter 4).

A process can create multiple sources to a flow. One use of this feature is when a process
issues concurrent write operations to disjoint parts of a file, as often occurs when files are
used as containers for databases or similar structures. For example, one of the experiments
in our evaluation involves MySQL, where concurrent write operations to a single file are is-
sued by different threads. These write operations are tunneled through the aforementioned
library that provides a synchronous I/O interface, and the library issues the write operations
by adding new flow sources, only delaying operations when they conflict with already issued
operations. Control over the order in which sources are drained is possible. By setting the
VX FLOWFLAG FIFO flag when a flow is created, sources will be drained in the same order
as added. The VX FLOWFLAG IMMEDIATE flag, on the other hand, signals that data from a
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vx fid t vx flow(vx rid t ioarid,
vx rid t sinkrid,
vx flowflag t flowflag,
vx uint64 t cookie);

vxerr t vx flowsource(vx rid t ioarid,
vx fid t flowid,
vx rid t sourcerid,
vx off t sourceoffset,
vx off t sourcenbytes,
vx off t sinkoffset);

vxerr t vx flowclose(vx rid t ioarid, vx fid t flowid);

typedef enum {
VX FLOWFLAG FIFO = (1u`` << 62),
VX FLOWFLAG IMMEDIATE = (1u`` << 61),
VX FLOWFLAG ACK 4KB = (1u`` << 60),
VX FLOWFLAG ACK 16KB = (1u`` << 59),
VX FLOWFLAG ACK 64KB = (1u`` << 58),
VX FLOWFLAG ACK 256KB = (1u`` << 57),
VX FLOWFLAG ACK 1024KB = (1u`` << 56),
VX FLOWFLAG ACK SINK = (1u`` << 55),
VX FLOWFLAG ACK SOURCE = (1u`` << 54),

} vx flowflag t;

Figure 3.21. Flow interface.

source should be sent to the sink as soon as it is available. A process uses the acknowledgment
flags (VX FLOWFLAG ACK 4KB, etc.) to request data transfer update messages, perhaps to
aid in management of more complex flow arrangements or to maintain a progress meter. These
messages are queued to the same message queue as I/O completion messages.

3.3.1.2 Flow implementation

The flow abstraction is largely implemented by the asynchronous I/O resource (AIOR). AIOR

abstracts each flow in terms of a source resource that produces data and a sink resource that
consumes data. The AIOR orchestrates data flow from source to sink. AIOR requests data
from a source resource by sending it a READ message. The source in turn responds with a
READ DONE message containing the target data. A similar protocol is used when interacting
with sink resources. AIOR writes data to a sink by sending a WRITE message to it, and the sink
signals that the data has been consumed by sending a WRITE DONE message back. Sources
and sinks may use other resources to satisfy a READ or WRITE request or to interact with a
hardware device.

AIOR uses techniques such as prefetching and overlapping to speed up data flow from source
to sink. For example, when a READ DONE message arrives from a source, a READ message is
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vx int64 t vx ioswrite(vx rid t iosrid,
vx vaddr t vstart,
vx size t nbytes,
vx iosflag t flags);

vxerr t vx iosread(vx rid t iosrid,
vx vaddr t *vstart,
vx size t *nbytes,
vx iosflag t flags);

typedef enum {
VX IOSFLAG STATE POLL = (1u`` << 62),
VX IOSFLAG ACCESS KERNEL = (1u`` << 61),
VX IOSFLAG SIGNAL EOF = (1u`` << 60),

} vx iosflag t;

Figure 3.22. I/O stream interface.

sent to the source concurrently with the data being forwarded to the sink in a WRITE message.
A limit is placed on the amount of data that can be sent in WRITE messages to a sink, but where
the sink has not responded with a WRITE DONE message. This is to avoid unbounded memory
usage when a source can produce data faster than the sink can consume the data.

A providing resource for an abstraction exposes functions to respond to READ and WRITE

messages in its interface for an instance of the abstraction to be used as a flow sink or source.
If the resource needs to communicate with other resources to respond to a message, functions
for READ DONE or WRITE DONE may possibly need to be exposed as well. For example, the
executable resource sends READ messages to the file cache resource to retrieve and export data
into the address space of a process, and a READ DONE function handles replies from the file
cache resource.

To reduce data copying, data is passed by reference in READ and WRITE messages. A design
decision that simplifies concurrent sharing is to require that when a resource exposes a piece
of data, the data must be immutable for the duration of external references to it. Since all data
are exposed as OKRT objects, a resource can use reference counting mechanisms to determine
how to handle updates to data. For example, for file data with no external references, the file
cache resource copies new data over existing data. With external references, new data replaces
old data.

Prefetching and overlapping introduce ordering constraints among messages belonging to
the same flow, because data must arrive at a sink in the order sent by a source. AIOR solves this
problem by assigning the same dependency label to all messages derived from the same flow.
Thus, scheduler load sharing occurs at the granularity of flows.

3.3.1.3 The I/O stream abstraction

It is useful to view a flow as a mechanism for a process to request asynchronous data transfer
between resources. For a process to provide data to or receive data from a flow, buffers in
the process address space need then only be exposed by a resource that implements READ and

55



WRITE functions. This is accomplished by the I/O stream resource (IOR) and its I/O stream
abstraction. I/O streams are bytes streams that may be set as flow sinks or sources.

A stream is accessed through the system call interface shown in Figure 3.22. A process
writes data to a stream by invoking vx ioswrite, specifying the location and size of a buffer
in its address space via the vstart and nbytes arguments. Conventional copy semantics are
employed for a write operation. The data in the process buffer is copied into a kernel-side
buffer and then the kernel buffer is placed in a queue associated with the I/O stream instance;
data from this queue is returned in response to READ messages sent from AIOR (i.e. when the
I/O stream serves as a flow source). The IOR optimizes buffer use when possible. For example,
before new buffers are allocated, data will be copied to previously queued buffers until they are
exhausted. The data in a string of small writes are thus likely to be copied into the same kernel
buffer.

An earlier implementation supported share semantics for I/O stream writes. This was aban-
doned because of the need to entangle I/O completion messages with buffer use; a shared buffer
could not be reused by a process before all kernel-side resources had voided references to it.
For some flow configurations, this could cause complications or delays. For example, to han-
dle retransmissions, TCP maintains references to sent data until the peer acknowledges receipt.
With share semantics, a TCP connection as a flow sink would then force the process to wait
for these acknowledgments before commencing actions such as closing the connection. This is
because the process cannot determine whether the data has reached the TCP resource, or is still
in some queue awaiting forwarding. Prematurely closing the TCP connection would risk some
data not reaching the peer. Share semantics reduced opportunities for overlapping.

A process reads from an I/O stream by invoking vx iosread. Buffers for read data are system-
allocated—IOR communicates with the address space resource (ASR) to allocate a region of
virtual address space for the data. One motivation for these semantics is that ASR employs a
protocol by which newly allocated virtual memory regions are ensured to have no TLB transla-
tions on any machine cores. Page table translations can thus be inserted without a need for TLB

shootdowns. Further, data is exposed as read-only to a process. This ensures data immutabil-
ity, as expected from resources that act as flow sources or sinks. Some data copying may be
avoided with system-allocated buffers, when a process only needs to inspect the read data. If
the process needs to update the data in-place, the data must first be copied to another buffer.

Flow sources can be created where the condition for the source to be considered drained is
an end of file error code in the response to a READ message. A process may invoke vx ioswrite
with the VX IOSFLAG EOF flag set. This causes IOR to convey the end of file error code to
AIOR through a READ DONE message.

Bounded buffering is employed for each I/O stream. A process learns about the state of
stream buffers by binding the stream to a message queue—a message is deposited on the queue
when data arrives to an empty buffer (I/O stream as flow sink), or when buffer space for addi-
tional data becomes available (I/O stream as flow source). A process may use the VX IOSFLAG
STATE POLL flag, in conjunction with a vx ioswrite or vx iosread call, to explicitly check the

state of stream buffers; messages will be deposited on the message queue bound to the stream
as appropriate.
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3.3.1.4 Prior work in kernel streaming

The flow abstraction in Vortex exemplifies a kernel streaming mechanism [219, 220]. Com-
modity OSS such as Windows and Linux offer similar mechanisms, only less general. For
example, Windows offers an interface for a process to request transfer of a file to a network
connection; data flow is handled by cache manager threads, or by an asynchronous procedure
call mechanism that lets the kernel perform work in context of a process thread. Many UNIX

flavors implement an equivalent functionality, the sendfile interface. Here, data flow is typically
handled in context of the calling process thread.

The Splice mechanism [221], implemented in Ultrix 4.2, enabled a process to establish a
stream between two files, where the kernel handled control and data flow, and any interme-
diate buffering. I/O data transfer was scheduled by use of Ultrix callout mechanisms. Road-
runner [222] provided a similar mechanism, only with support for specifying different types
of data transfer. For example, a stream could be defined as a continuous bit stream with a
period and block size. Roadrunner spawned a separate kernel thread to handle each stream.
Multiple-invocations, a concept introduced in [211], was supported by Genie [223] and could
be exploited to create streams. Genie allowed a process to specify buffering semantics (move,
copy, etc.) when interacting with a kernel I/O resource. Multiple system calls could be batched
to create a stream; one call could specify that data should be read from a resource, while the
second specified that the read data should be input to another resource. All calls in a batch were
executed before control returned to the calling process. Data flow was scheduled by a combina-
tion of callouts and use of the context of the calling process. Genie reportedly had support for
asynchronous I/O, but it is unclear from published work how this was accomplished. The POSIX

asynchronous I/O framework [224] supports asynchronous transfer of data between buffers in a
process address space and a kernel supported I/O resource. Each I/O operation is described by a
data structure that specifies a descriptor on which the operation is to be performed, a pointer to
a data buffer, and some indication of how the calling process/thread should be notified once the
operation terminates. Originally introduced through library implementations, the framework
now has kernel-side support in e.g. Linux.

3.3.2 Interrupts

Interrupts are integral to the operation of many I/O devices. A resource that operates such an
I/O device must register with the interrupt resource (IR) to receive interrupts originating from
the device. (Vortex offloads interrupt allocation and configuration from I/O device driver code;
a framework communicates with IR on behalf of the driver.) Interrupts are initially captured
by a low-level IR handler, which creates and sends a message describing the interrupt to the
appropriate resource.

Unlike many other OSS, very little work is performed in the context of the low-level inter-
rupt handler. Still, there is an associated cost with running the handler (CPU register context
store/restore and sending of a message). OKRT instrumentation measures and estimates this
cost. Unless a core is idle, running the low-level handler always interrupts the message pro-
cessing of an activity. OKRT uses resource consumption records to return CPU time to any
interrupted activity.

Resource consumption for interrupt message processing is attributed retrospectively. Instru-
mentation code in the resource receiving the interrupt message produces resource records for
retrospective attribution, if the causing activity can be deduced.
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vx rid t vx process start(vx procres t *pres);

vxerr t vx process kill(vx rid t procrid, vx int64 t error);

typedef struct vx procres t {
vx procflag t pr flags;
vx rid t pr executable;
vx rid t pr environment;
vx rid t pr input;
vx rid t pr output;
vx rid t pr error;
vx rid t pr messagequeue;
vx vaddr t pr entrypoint;

} vx procres t;

typedef enum {
VX PROCFLAG NATIVE = (1u`` << 62),
VX PROCFLAG VM = (1u`` << 61),

} vx procflag t;

Figure 3.23. Process interface.

3.4 The process and threads

Vortex uses the conventional process abstraction [225] to represent a running program. The
abstraction is implemented by the process resource (PR), which communicates with other re-
sources to provide features expected from a commodity process abstraction. For example, the
address space resource (ASR) provides a virtual address space and the ability to create and
manipulate mappings within that address space, as detailed in Section 3.2.

Figure 3.23 shows the Vortex interface to start and kill a process. The interface to start a
process resembles that of Windows. By invoking vx process start, PR is instructed to create a
new process. A data structure specifies parameters for the new process. The pr executable RID

refers to the executable file for the process. PR communicates with the executable resource,
which in turn communicates with ASR, to export the segments of the executable file (text,
data, etc.) into the process address space. Vortex provides a mechanism equivalent to the
input, output, and error channels of UNIX processes (pr input, pr output, and pr error). These
channels are typically I/O streams, set up to establish communication channels between a parent
and child process. The calling process can also specify a message queue (pr messagequeue), on
which to receive a message when the new process terminates. The work in [76, 77] abstracts the
VM OS of a virtual machine as a process. By setting VX PROCFLAG VM flag, PR will associate
a virtual machine environment with the new process. Setting the VX PROCFLAG NATIVE flag
requests that the process should be considered a regular Vortex process.

To implement process execution contexts, PR uses the thread resource (TR). TR provides a
system call interface for conventional thread operations, as shown in Figure 3.24. Most of the
functions in this interface have well-known semantics. Threads can be created or terminated
(vx thread create and vx thread exit), a thread can yield control of the CPU (vx thread yield),
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vx rid t vx thread self(void);

vxerr t vx thread yield(void);

vx rid t vx thread create(vx rid t cpuarid,
vx uint64 t priority,
vx vaddr t entry,
vx vaddr t stack,
vx uint64 t arg);

vxerr t vx thread exit(vx rid t threadrid,
vx int64 t error,
vx threadexitflag t flags);

vx int64 t vx thread join(vx rid t threadrid);

vxerr t vx thread resume(vx rid t threadrid);

vxerr t vx thread suspend(vx rid t threadrid, vx time t timeout);

vxerr t vx thread getcontext(vx rid t threadrid, vx threadcontext t *tc);

vxerr t vx thread setcontext(vx rid t threadrid, vx threadcontext t *tc);

typedef enum {
VX THREAD UNMAP STACK = (1u`` << 63),

} vx threadexitflag t;

Figure 3.24. Thread interface.

and threads can be suspended and later either explicitly resumed or implicitly through ex-
piration of a timer (vx thread suspend and vx thread resume). The vx thread getcontext and
vx thread setcontext functions are used in conjunction with a process performing its own han-
dling of certain hardware exceptions, e.g. division by zero or floating point errors, as is common
in the run-times of higher level languages such as Java. The functions allow restricted manipu-
lation of the CPU-context of a thread. The cpuarid and priority arguments refer to the activity
to associate with the new thread. This is further detailed in Chapter 4.

TR models each thread as a client to the TR scheduler, and relies on use of the same op-
timizations as OKRT employs for communication between a resource scheduler and the CPU

scheduler (see Section 3.1.5). When a thread enters the ready state, the thread is registered as
ready with the TR scheduler by TR asking OKRT to invoke the client ready function of the TR

scheduler (see Section 3.1.1). Thus, we forego associating a request queue with each thread,
like with the clients of the CPU resource scheduler. The motivation for this optimization is
also similar: a thread is not likely to retract a request for CPU-time, nor does it need to request
CPU-time again if a request is already pending. Unlike the CPU resource scheduler, the TR

scheduler is consulted for load sharing decisions (see Section 3.1.1 and Section 3.1.5)—the TR
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scheduler can freely load share threads across the cores described as available in the resource
grid configuration file (see Section 3.1.7).

When the TR scheduler decides, a TR function locates the control block of the corresponding
thread, sets up a timeslice timer, and activates the thread. After activation, the thread runs until
the timeslice expires or a blocking action is performed. While the thread is running, OKRT

regards TR as processing a message. The delivery of preemption-interrupts is also regarded as
part of TR message processing; there is a fast-path from the low-level interrupt resource handler
to a function in TR.

The TR scheduler controls how CPU-time allotted from the CPU resource scheduler is mul-
tiplexed among the threads associated with the scheduler. In Chapter 4 we describe how the
ability to create multiple instances of TR can be exploited to create TR schedulers that only
control the threads of specific processes, and how deeper scheduling hierarchies can be used to
control the CPU-time allotment to groups of processes.

3.5 Summary

This chapter presented the Vortex implementation of the omni-kernel architecture. Central
to the implementation is the omni-kernel runtime (OKRT). OKRT provides implementations for
the architectural elements of the omni-kernel, as well a range of facilities to aid the implemen-
tation and operation of resources and schedulers. Implementations for message representation,
request queues, and the routing of messages to request queues are all provided by OKRT. OKRT

offers a framework for scheduler implementation. The framework models each scheduler as a
set of functions that are invoked upon relevant state changes. For example, a scheduler function
is invoked when a new activity is created, when messages arrive to a request queue associated
with the scheduler, or to report the resource consumption incurred by processing a message.
The scheduler framework promotes a scheduler structure with shared and per-core state, im-
proving performance by reducing inter-core exchanges of state.

Resources manage state in terms of OKRT objects, and OKRT offers generalized approaches
to object locking, references, and reference counting. Encapsulating state in objects enables
structured approaches to the problems that arise when state is distributed among resources. In
the asynchronous omni-kernel environment, resources often need to defer function invocation,
perhaps to wait for the reply to a previously sent message. OKRT provides a closure mechanism
to aid in structured approaches to deferred function invocation.

The selection of schedulers for resources is automated through an OKRT-provided configu-
ration system. This system allows specification of scheduler performance metrics, which cores
should be available to the scheduler, as well as the priority at which the scheduler requests
CPU-time. Asymmetric configurations are fully supported.

Vortex implements a commodity virtual memory interface, with kernel-provided allocators
for region-based allocation and a mapping structure to describe each allocation. Allocations
are on-demand, and page faults drive fetch of the data corresponding to a mapping. Mappings
can grow, shrink, and be split, as is needed to support commodity address space manipulations.
A scheduler maintains an overview of the memory usage of activities, and memory reclaim
is actuated by the scheduler sending reclaim messages to resources. Exactly what memory to
reclaim is decided by a resource based on resource-specific knowledge, as is required for the
selection to be performance-conducive.

Vortex offers an asynchronous I/O interface based on a flow abstraction. Flows specify asyn-
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chronous write operations between resources, and a process uses an I/O stream abstraction to
expose buffers in its address space as sources or sinks to a flow. The interface is a generalization
of similar interfaces found in commodity OSS. Commodity copy-based interfaces are provided
through a library that builds on the Vortex I/O interface.

The conventional process abstraction is implemented by Vortex, where a virtual address
space and execution contexts in the form of threads are associated with each process. Com-
modity thread operations are supported, with a scheduler controlling how CPU-time and cores
are multiplexed among threads.
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Chapter 4

Resource Management

This dissertation investigates the thesis that it is feasible to construct an OS with pervasive moni-
toring and scheduling capabilities. Exploration of the thesis led to the design of the omni-kernel
architecture. The Vortex implementation demonstrates that there are few, if any, architectural
hindrances to implementing commodity OS abstractions within the omni-kernel architecture.
The viability of the architecture is further substantiated by the work in [76, 77], that molds
Vortex abstractions to provide execution environments for unmodified, complex, Linux appli-
cations.

In this chapter we explore the viability of the omni-kernel architecture from a resource man-
agement perspective. We do so by describing the resource management facilities of Vortex.
These facilities were built to investigate how activities and more advanced resource manage-
ment could be instantiated in an omni-kernel.

The scenario motivating the design of the facilities is consolidation of competing services
on shared infrastructure. Here, the service provider is typically interested in controlling how
fractions of machine resources are multiplexed among consolidated services. Often, such con-
trol is expressed using shares, reservations, and limits [49, 53, 54]. Shares specify the fraction
of resources that should be allocated to a service, whereas reservations and limits specify a
minimum and maximum allocation of resources. For resources with a fixed capacity, such as
CPU and memory, shares and reservations can be combined. For I/O resources, capacity typ-
ically fluctuates and all three resource controls should be recognized by a scheduler [5]. The
implementation of our resource management facilities makes the simplifying assumption that
resource allocations can be expressed as a fraction of the available resources. Extending the fa-
cilities to accommodate limits and reservations would involve conveying additional parameters
to resource schedulers.

Two concepts are central in the facilities: abstraction hierarchies [181] and compartmen-
talization. The different levels in the abstraction hierarchy capture typical system structuring
entities, and compartmentalization of resource use is offered at each level.

Activities are concretized at the lowest level in the hierarchy. Here, the notion of an activity
for CPU-, I/O-, and memory use is introduced. A process can create any number of these activi-
ties and is empowered to associate a specific activity with use of Vortex abstractions. For exam-
ple, different activities can be associated with different flows or threads. Importantly, resource
use is compartmentalized. Creating additional activities does not increase the resources avail-
able to the process—additional activities only result in more fine-grained sharing of available
resources. A process can assign different priorities to its activities, perhaps to give preferential
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treatment to parts of its workload.
Next, the hierarchy considers groups of processes. For example, a group of processes could

belong to a specific application and be compartmentalized as such. The activities of each pro-
cess would then share the resources available to the group. Fine-grained compartmentalization
within a group is possible. For example, an application could spawn new processes in response
to load. The new processes can be compartmentalized separately to limit their resource use
relative to other application processes. Similar to activities within a process, different priorities
can be assigned to different groups of processes.

Last, the resource use of the OS kernel and processes is differentiated, prioritized, and com-
partmentalized.

In the following we detail the implementation of the outlined resource management facilities.

4.1 Activities

In the omni-kernel architecture resource consumption is attributed to an activity. The ar-
chitecture defines an activity loosely—messages must specify an activity to which resource
consumption should be attributed. An activity could be associated with a process. This would
support the conventional approach where processes are the entities among which system re-
sources are shared. Implementing the approach would entail labeling messages in accordance
with the process that instigated them. For example, when a process creates a flow, all messages
pertaining to that flow must be labeled as originating from the process. Similarly, thread ready
and memory request messages must carry the appropriate process label.

Equating a process with an activity would limit the resource management policies that can
be expressed, as have been argued in previous work [131, 132]. For example, a process that ser-
vices client requests might wish to give preference to some requests over others under high load
or if resource budgets are low. In recognition of this previous work, we decided to investigate
a notion of an activity more fine-grained than that of a process.

It is useful to view activities as a labeling of the resources used by a process, where resource
use with the same label defines a specific activity. Assigning the same label to all resource use
would then support the conventional approach with the process as an activity, and assignment
of multiple labels would support the more fine-grained approach argued for in previous work.
Our instantiation of activities in Vortex is influenced by this view. We differentiate process use
of CPU, I/O, and memory, and provide mechanisms for a process to group, or label, use of these
resources. This is detailed in the following.

4.1.1 CPU

Threads encapsulate process use of CPU resources. The CPU Aggregate (CPUA) abstraction
groups a set of threads, presenting them as an activity to the Vortex kernel.

A feature of the omni-kernel runtime (OKRT) resource framework (see Section 3.1.2) is the
support for multiple instances of a resource. This is e.g. exploited to assign separate resource
instances to the operation of an I/O device (see Section 3.1.5). Recall from Section 3.4 that
the thread resource (TR) implements the thread abstraction. The implementation of the CPUA

abstraction creates a new TR instance, with an associated scheduler, for each CPUA instance.
A process is required to associate each of its threads with a CPUA instance. This is specified

with the cpuarid argument to vx thread create (see Figure 3.24). By doing so, the thread is
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vx rid t cpuarid, threadrid;

// Create new CPUA
cpuarid = vx aopen("/cpuaggregate?policy=propshare.wfq?share=10000");

// Create and associate thread with the CPUA
threadrid = vx thread create(cpuarid, 2000, foo, VX VADDR NVADDR, 42);

void foo(vx uint64 t arg)
{
. . .
}

Figure 4.1. Creating a CPU aggregate and associating a thread with it.

registered as a client to the scheduler of the corresponding TR instance. The TR scheduler thus
controls the allotment of CPU-time to threads bound to the CPUA. The priority at which the TR

scheduler requests CPU-time can be controlled by the process—compartmentalization of the
CPU use of all CPUAS created by a process is handled by a separate mechanism (see Section 4.2
below).

A process can create multiple CPUAS, perhaps to partition its workload. Each CPUA is viewed
by the Vortex kernel as a separate activity with a specific priority. Since the threads of a CPUA

all belong to the same process, the selection of a scheduler for a CPUA is exposed: a pro-
cess can specify a scheduler from the OKRT scheduler repository when creating a CPUA (see
Section 3.1.7). This enables a process to e.g. maintain few CPUAS and rather prioritize by as-
signment of jobs to threads. As such, the CPUA abstraction provides a flexible mechanism for
a process to express and support a wide range of resource management scenarios.

The CPUA abstraction also exposes an interface for suspending and resuming all threads
bound to a CPUA instance. This enables a process to e.g. halt some activities under overload
conditions (see Section 2.5.3). The implementation of the interface uses the scheduler frame-
work. To suspend a CPUA, the scheduler client suspended function is invoked, and to resume a
previously suspended CPUA, the client ready function is invoked (see Section 3.1.1).

The CPUA abstraction can also be unobtrusive to a process. Vortex creates a default CPUA

upon process creation; the main thread of the process runs in context of this CPUA. By passing
VX RID NRID as the cpuarid argument to vx thread create, the new thread will use the default
CPUA of the process.

Figure 4.1 illustrates creation of a CPUA and how a thread is created and associated with the
CPUA. A weighted fair queueing scheduler is specified for the CPUA and the second argument
to vx thread create specifies the weight of the thread at the scheduler.

4.1.2 I/O

I/O operations are grouped and presented as activities by instances of the I/O Aggregate (IOA)
abstraction. An IOA is associated with each process upon creation. Unless otherwise specified,
all I/O initiated by the process is performed in the context of this IOA. A unique identifier is
associated with each IOA, and messages originating from process-initiated I/O are labeled with
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vx rid t ioarid, mqrid, infilerid, outfilerid;
vx fid t fid;
vx message t message;

// Create new message queue
mqrid = vx aopen"/messagequeue");

// Create and bind IOA to message queue
ioarid = vx aopen("/ioaggregate?share=10000");
vx bind(ioarid, mqrid, 0);

// Open input and output file
infilerid = vx aopen("/fs/inputfile", ioarid, 0, VX AOPENFLAG FILE CLOSE EVICT);
outfilerid = vx aopen("/fs/outputfile", ioarid, 0, VX AOPENFLAG FILE CLOSE SYNC);

// Await completion of open calls
. . .

// Asynchronously copy file
fid = vx flow(ioarid, outfilerid, VX FLOWFLAG FIFO, 0);
vx flowsource(ioarid, fid, infilerid, 0, VX FLOW NBYTES EOF, 0);

// Await I/O completion
vx dequeue(rqrid, 1, &message, VX TIME NTIME);

// Close input and output file. Closing output file implicitly closes flow.
vx aclose(infilerid, ioarid, 0);
vx aclose(outfilerid, ioarid, 0);

// Await completion of close calls
. . .

Figure 4.2. Copying a file using the I/O aggregate, message queue, and flow abstractions.

the corresponding IOA identifier. This causes OKRT to recognize each IOA as a distinct activity
at each resource.

Like with the CPUA abstraction, a process can create new IOA instances for more fine-grained
prioritization of its I/O. These IOAS can be explicitly associated with I/O initiated by the pro-
cess. For example, opening a file might require fetch of inodes and other metadata from disk.
Similarly, a process might have requested file data to be persisted to disk upon closing a file.
Both vx aopen and vx aclose therefore accept a specification of an IOA as an argument (see
Section 3.3.1). The IOA passed to vx aopen is implicitly associated with the RID returned from
the call. This IOA is used if a process chooses to not specify an IOA for some I/O, or if use of an
interface involves I/O but the interface does not allow specification of an IOA. For example, if
a process memory maps an object such as a file (see Section 3.2.1), the IOA specified when the
file was opened will be used for fetch of data upon page faults. An IOA can be explicitly speci-
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vx rid t memarid;

// Create new memory aggregate
memarid = vx aopen("/memoryaggregate?share=5000");

// Create 1GB allocator starting at address 126TB.
// Associate the new mememory aggregate with the allocator.
vx mmap(0x7e0000000000u``,

0x40000000u``,
memarid,
0,
VX MMFLAG NEWALLOCATOR);

Figure 4.3. Creating an allocator and associating a memory aggregate instance with it.

fied when a process sets up an asynchronous write operation using the Vortex flow abstraction
(see Section 3.3.1.1).

Except for I/O needed to resolve page faults, completion of I/O is signaled by a message. By
binding an IOA to a message queue—using the vx bind system call—I/O completion messages
will be deposited to the specified queue. A process can then use the message queue system
call interface, described in Section 3.3.1, to retrieve and process the messages. Figure 4.2
exemplifies use of IOAS, message queues, and flows to copy a file. The example is contrived,
but indicates how the different abstractions are used. Realistic use of the abstractions would
entail error checking and perhaps a state machine approach for managing transitions between
steps that involve waiting for I/O completion messages. For example, Section 3.3 mentions
a library that builds on the Vortex I/O interface to provide all permutations of blocking and
non-blocking synchronous and asynchronous I/O. This library maintains a state machine per
I/O resource and employs a common message handling loop, run by a separate thread, for
managing state transitions.

Like with the CPUA abstraction, the priority of an IOA can be controlled by the process
(subject to a compartmentalization procedure). The priority of an IOA is not diversified—
the same priority is used at all resources. Still, the ability to create multiple IOAS can be
exploited by a process for diversification purposes since each IOA is recognized as a separate
activity at resources. For example, if a process has an internal notion of an activity where an
activity should receive more file than network I/O resources, it can use two IOAS: file I/O would
be performed in context of a high-priority IOA, whereas network I/O would be performed in
context of a low-priority IOA. This type of diversification can be controlled by a process, within
the constraints of the I/O resources available to the process.

4.1.3 Memory

The Memory Aggregate (MEMA) abstraction presents process use of memory as an activity
to the memory resource scheduler.

As described in Section 3.2, the Vortex virtual memory implementation associates a set of
memory allocators with each process address space. These maintain an overview of memory
use within a range of addresses in the address space. The implementation allows a MEMA
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instance to be associated with an allocator. Like with the CPUA and IOA abstractions, a default
MEMA is created for a process. This MEMA is associated with the per-core allocators that Vortex
associates with a process upon its creation.

A process can further differentiate and prioritize its memory use by creating new allocators,
each associated with a MEMA instance. A process requests the creation of a new allocator by
setting the VX MMFLAG NEWALLOCATOR flag in a vx mmap system call. The RID argument
to vx mmap identifies the MEMA to associate with the new allocator (see Figure 3.18).

Figure 4.3 illustrates how a new MEMA is created and associated with an allocator.

4.2 Hierarchical compartmentalization

The CPU-, I/O-, and memory Aggregate abstractions provide a process with flexible mecha-
nisms to delineate its activities. The implementations of the abstractions exploit architectural
elements of the omni-kernel. CPUAS instantiate the thread resource and the thread resource
scheduler multiplexes allotted CPU-time among the threads bound to a CPUA. IOAS and MEMAS

are instantiated as activities at schedulers. A process is allowed to create multiple instances of
the three activity abstractions, to support fine-grained prioritization of its workload.

As noted earlier, the scenario motivating our resource management facilities is consolida-
tion of competing services, with control over service resource allocations. Since activities are
instantiated with a priority at schedulers, control over resource allocations requires instrumenta-
tion of the priorities requested by a process. Otherwise, a process can receive arbitrary amounts
of resources by e.g. assigning a high priority to an activity or by creating many activities.

Instrumentation of process-requested CPUA-, IOA-, and MEMA priorities is accomplished by
introducing a compartment abstraction. A compartment can be assigned a fraction of machine
resources and all processes are required to run in the context of a specific compartment. The
amount of resources available to a process is limited by what has been made available to its
compartment.

4.2.1 Resource allocation specification

The specification of machine resources available to a compartment is aligned with our ac-
tivity implementations: each compartment can be assigned a number of units of CPU-, I/O-,
and memory resources. The total number of units of each resource type is fixed. Thus by ad-
justing the number of units available to a compartment, a larger or smaller fraction of machine
resources can be made available to the compartment. For CPU and memory, which are fixed-
capacity resources, expressing allocations in terms of units usually suffices—one unit translates
directly into a fraction of the corresponding resource. The capacity of I/O resources, however,
may fluctuate dynamically depending on request patterns. This is particularly evident for disks,
where on-device caches and disk head movement distances influence achievable bandwidth.
Allocation of I/O resources is therefore best specified using shares, reservations, and limits [5].
Our proof-of-concept implementation makes the simplification of also expressing I/O alloca-
tions using units. Extending the implementation to recognize additional allocation controls
would only require more sophisticated calculations when translating process-requested activity
priorities into priorities at resource schedulers.

Another simplification is not diversifying allocation specifications to recognize particular
types of resources. For example, it could conceivably be useful to differentiate storage I/O
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vx rid t cptrid, execrid, procrid;
vx procres t procres;

// Create new compartment
cptrid = vx aopen("/compartment/serviceA?cpu=2000?io=3000?memory=1000");

// Open process executable in context of the new compartment
execrid = vx aopen("serviceA:/fs/processexecutable");

// Start process (initialization of other process resources elided)
procres.pr executable = execrid;
. . .
procrid = vx process start(&procres);

Figure 4.4. Creation of a new compartment and a process.

resources from network ones. This would enable configurations where a compartment e.g.
receives more storage than network resources. Similarly, differentiating among cores could
enable configurations where different compartments had access to disjoint sets of cores. This
would be particularly appealing for machine configurations with a non-uniform memory archi-
tecture, as compartments could be configured to only have access to cores and memory with a
tight coupling. Again, our implementation could be extended with such sophistication by more
detailed allocation specifications and relatively minor implementation changes. For example,
the cores available to a CPUA’s TR instance is determined from the resource grid configura-
tion (see Section 3.1.7). Overriding this configuration to restrict access to a subset of cores is
possible. Similarly, a MEMA could be restricted to only request memory from certain memory
banks.

A compartment can host multiple processes, where the processes share the resources avail-
able to the compartment. How compartment resources are divided among the activities of
hosted processes is controlled by the processes themselves. A process specifies the priority
of an activity using a share resource control. Shares are a relative measure that specify the
proportion of compartment resources that should be assigned to an activity. For example, a
CPUA will receive twice the resource allocation of another if it has twice the shares. The share
argument to the vx aopen calls in Figure 4.1, Figure 4.2, and Figure 4.3 exemplifies use of
the share resource control. Had compartment resource allocations been specified with shares,
reservations, and limits, specification and translation of activity priorities would have had to be
changed accordingly, perhaps also introducing the need for an admission control component
that would ensure that capacity was adequate to accommodate minimum reservations.

Figure 4.4 illustrates the creation of a new compartment called “serviceA”. As described in
Section 3.1.4.2 and Section 3.3.1, processes access Vortex abstractions through a namespace.
The path of a particular abstraction can be prefixed with the name of a compartment. This
causes the instance of the abstraction to be tied to the specified compartment. Thus Figure 4.4
also reveals how a process is started in context of a specific compartment: a process runs in
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context of the compartment tied to its executable file.

4.2.2 Compartments and the resource grid

With no reservation and limit parameters, the resource grid would typically be configured
with schedulers that recognize the unit parameter as a weight and provide proportional allo-
cations of resources. Examples of such schedulers include virtual clock [226], WFQ [170],
SCFQ [227], SFQ [228], and BVT [55].

The fraction of compartment units corresponding to a share is reduced when new activities
are added to a compartment. Conversely, the fraction is increased when activities are termi-
nated. A concern is ensuring that compartment resources are accessible when there are changes
to the set of activities in a compartment or fluctuations in resource demand. For example, con-
sider a compartment with two CPUAS. The TR schedulers of the CPUAS could be instantiated
as clients to the CPU resource scheduler, each with a number of compartment CPU units cor-
responding to their process-assigned CPU shares. Aggregated, the CPU-time accessible to the
CPUAS would then be equal to the fraction of CPU available to the compartment. But if one
CPUA demands less than its allotted CPU-time, the excess would typically not be available to
the other CPUA. Rather, most proportional schedulers would grant excess resources if there is
a requesting client1.

To ensure that unused resources are made available to other activities within the same com-
partment, the compartment implementation uses a deeper scheduler hierarchy. A compartment
CPU scheduler is introduced as a client to the CPU resource scheduler—the TR schedulers of
compartment CPUAS request CPU-time from the compartment CPU scheduler instead of directly
from the CPU resource scheduler. Unused CPU resources are therefore first made available
to other CPUAS within the same compartment. Only when a compartment has no requesting
CPUAS will unused compartment CPU resources be considered as excess resources by the CPU

resource scheduler.
The compartment CPU scheduler is instantiated as a client to the CPU resource scheduler

using the compartment unit parameter as a priority. A CPUA’s TR scheduler is instantiated as a
client to the compartment CPU scheduler using the process-specified share parameter as a pri-
ority. The CPU resources available to a compartment are as such divided among compartment
CPUAS subject to process-specified priorities—the addition of other CPUAS to a compartment
dilutes the fraction of compartment CPU resources available to each CPUA, whereas termina-
tion of a CPUA increases the fraction. Across changes to the set of CPUAS in a compartment,
accessible CPU-time is limited by the priority of the compartment CPU scheduler at the CPU

resource scheduler. The implementation supports run-time adjustments to the number of CPU

units available to a compartment. These are conveyed by invoking the update client function
of the CPU resource scheduler (see Section 3.1.1).

I/O and memory activities may also be obstructed from accessing the resource allotments
of their hosting compartment if instantiated as immediate clients of resource schedulers. To
prevent this, the compartment implementation employs a similar approach as for CPU activities:
a compartment scheduler is introduced as a client to resource schedulers, and activity request
queues are made clients to the compartment scheduler. A tradeoff here is that activity request
queues are visible only to compartment schedulers. Thus, scheduler optimizations that draw on

1Proportional schedulers are typically work-conserving, i.e. excess resources are allocated if there is a request-
ing client. With multiple requesting clients, allocations are typically proportional to client weights.

70



request queue inspection and manipulation can only effect compartment activities.

4.2.3 Compartment hierarchies

In a service consolidation scenario, the compartment abstraction presents a service provider
with opportunity for control over resource allocations: processes belonging to different services
can be placed in separate compartments, where assignment of resource units to compartments
decides the fraction of machine resources available to each service.

To further increase the scope of our exploration into resource management and the omni-
kernel architecture, the implementation allows compartments to be created and terminated at
run-time. Dynamic management of compartments introduces the need for a structured approach
to tracking and maintaining the assignment of resource units. For example, the number of units
of each resource type should remain fixed across creation and termination of a compartment, to
avoid changes to the fraction of machine resources corresponding to a unit.

To manage resource units, a parent-child relationship between compartments is maintained—
a compartment is designated as the child of a (parent) compartment if it was created by a process
running in the context of the parent compartment. Also, the creation of a new compartment
involves a transfer of resource units from the parent compartment to the new child compartment.
Similarly, the resource units of a child compartment are transferred back to the parent upon
termination of the child. The sum of all units therefore stays fixed and new compartments
receive progressively fewer units.

The implementation creates three compartments at boot time: the “root”, “kernel”, and “ser-
vices” compartments. First, the “root” compartment is created. All resource units are initially
assigned to this compartment. Next, the “kernel” compartment is created as a child of the
“root” compartment. As discussed in Section 3.1.7, Vortex kernel resources must be config-
ured with sufficient amounts of resources for their operation. Vortex kernel resources draw
their resources from the “kernel” compartment. For example, the priority at which a resource
requests CPU-time from the CPU resource scheduler is determined by the number of CPU units
available to the “kernel” compartment.

An “infrastructure” CPUA-, IOA-, and MEMA activity is also created in context of the “kernel”
compartment. These activities are used when the Vortex kernel performs work on behalf of
all hosted activities, or when discovery of the activity to attribute for message processing is
unknown at message dispatch time. For example, the infrastructure IOA is used when ext2 file
system resource performs I/O on certain metadata blocks. Similarly, initial demultiplexing of
incoming network packets is performed in context of the infrastructure IOA.

The “services” compartment is created as a child of the “root” compartment. Compartments
hosting service processes are all instantiated as children of the “services” compartment. Thus,
the parent-child relationship between compartments ensures that resource units are maintained
as appropriate—creation of a compartment for service processes transfers resource units from
the “services” compartment, whereas termination of the compartment transfers them back.

The organization of compartments is in effect a tree structure with the “root” compartment
as the root of the tree. Service processes are allowed to create new compartments. These
will appear as children of the compartment of the calling service process, thus preserving the
compartment tree structure. A service could create a child compartment to meet the minimum
resource requirements of some of its processes. But as described above, the lack of a minimum
and maximum resource control for activities is a simplification in our proof-of-concept imple-
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mentation. The reason for allowing services to increase the depth of the compartment tree will
become apparent in the next section, where we outline additional compartment features.

4.2.4 Compartment features in support of consolidation

Accurate accounting and attribution of resource consumption is vital to making sharing poli-
cies effective when competing services are consolidated on the same machine. When services
are mutually distrusting and can even deliberately disrupt or interfere, isolating services in
terms of what entities they can refer to or manipulate also becomes an important concern. For
example, a service should be prevented from modifying its fraction of available machine re-
sources. Similarly, a service should not be able to access any data that belongs to another
service. With the compartment abstraction as a starting point, we have implemented many ser-
vice isolation features to support a consolidation scenario. A full description of these features is
outside of the scope of this dissertation, but we outline some of these features here because they
reinforce the soundness of the compartment abstraction beyond being a convenient mechanism
for resource management.

With compartments organized in a tree structure, a compartment can be identified by the
path leading from the root compartment to the specific compartment. The implementation
recognizes compartment paths as prefixes when a process uses vx aopen system call to create
a new instance of a Vortex abstraction. For example, a process could issue a vx aopen call
with the path “root.services.serviceA:/fs/processexecutable” as an argument. This would open
a file whose RID would be tied to the “serviceA” compartment. The support for compartment
paths could potentially be used by a service process to access and manipulate other services. To
isolate services, the implementation makes all process-supplied compartment paths relative to
the compartment hosting the calling process. This effectively prevents a service process from
referring to ascendants in the compartment tree. A service process can still refer to descendants
in the tree, perhaps to control processes in a child compartment.

Vortex makes the file abstraction available to processes through the “/fs” namespace path,
with the file cache resource as the provider. The file cache resource offers a commodity file ab-
straction, with files organized in a hierarchy through directory files. The compartment names-
pace is separate from the file namespace—restricting access to ascendant compartments does
not prevent a service process from accessing the file namespace. Similar to compartment paths,
we have implemented support for associating a prefix file system path with all compartments.
This feature resembles the UNIX chroot functionality. The file system prefix of a compartment
applies recursively; the prefix for a compartment is always relative to the prefix of its parent
compartment. This feature ensures that the files accessible to different services are disjoint,
contingent to the service provider specifying separate file system prefixes for all service com-
partments.

As described in Section 3.1.7.2, Vortex maintains internet protocol (IP) objects. An IP object
has an associated IP address and a separate namespace for protocols such as TCP and UDP.
Depending on the type of address, a network route may be associated with a particular IP

object. (The IP standard defines several ranges of unroutable IP addresses.) An IP object must
be associated with a compartment before a hosted process can access network functionality.
This enables configurations where services are assigned different routable IP addresses, and/or
a number of IP addresses for host-local communication only.

In a consolidated services scenario, a service owner would typically access its compartment
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through a network-based interface. For example, Amazon allows its customers to manage their
virtual machines through a web-based interface, and offers remote access to a virtual machine
environment through the public-key based SSH protocol. The compartment implementation
embraces a public-key based approach to providing authenticated and encrypted access to com-
partments. A key-store is associated with each compartment. Here, the public keys of a service
owner are stored. In our daily use of Vortex, we typically run an SSH daemon in the “services”
compartment. Upon a connection request from an SSH client, the daemon spawns a shell pro-
cess in the requested compartment.

4.3 Summary

This chapter explored resource management aspects of the omni-kernel architecture. Ex-
ploiting architectural elements of the omni-kernel, the notion of an activity for process-use of
CPU, I/O, and memory is introduced. Process threads must be associated with a CPU Aggregate,
and a separate instance of the thread resource is associated with each CPUA. This causes a CPU

Aggregate to be recognized as an activity by the Vortex kernel. Similarly, process I/O opera-
tions can be grouped by associating them with an I/O Aggregate. Messages originating from
process-initiated I/O are labeled with the unique identifier associated with each I/O Aggregate.
This causes the Vortex kernel to recognize an I/O Aggregate as a distinct activity. The memory
requests of a process can be labeled with the unique identifier of an instance of the Memory
Aggregate abstraction. Process memory use is therefore recognized as an activity at the mem-
ory resource scheduler. A process can create multiple instances of the activity abstractions, to
perform fine-grained prioritization of its workload. The compartment abstraction prevents a
process from receiving arbitrary amounts of resources through manipulation of activity priori-
ties. Machine resources are represented by a unit measure and a compartment can be assigned
a number of such units, thereby receiving access to a fraction of machine resources. All pro-
cesses must run in context of a compartment, and process-specified activity priorities translate
into a fraction of the machine resources available to their hosting compartments. Compartments
are organized in a tree structure, to facilitate management of resource units; creation of a child
compartment involves a transfer of units from the parent to the child, whereas termination of
a compartment transfers units from the child to the parent. The compartment abstraction has
been extended with a number of other features, to support a service consolidation scenario.
These features include restricting a process to only have access to descendant compartments in
the compartment tree, restricted access to file system paths, and the ability to assign IP objects
to compartments.
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Chapter 5

Evaluation

This chapter experimentally evaluates the efficacy of the omni-kernel architecture through its
Vortex implementation. Vortex is implemented in C and, excluding device drivers, comprises
approximately 120000 lines of code. The system runs on x86-64 multi-core architectures.

The evaluation focuses on a key question concerning the ultimate goal with the pervasive
monitoring and scheduling capabilities of the omni-kernel architecture:

Does the omni-kernel architecture permit scheduler control over all resource consumption?

To obtain an answer to this question, it suffices to provide positive answers to the following
questions:

1. Is all resource consumption accurately measured?

2. Is resource consumption attributed to the correct activity?

3. Does the omni-kernel architecture permit sufficient control for schedulers to isolate com-
peting activities?

Affirmative answers to the above questions would experimentally corroborate the efficacy
of the omni-kernel architecture in permitting scheduler control over all resource consumption.
Assuming affirmative answers, an interesting question is then the cost at which the omni-kernel
architecture achieves its unprecedented scheduler control. A fourth question that we aim to
answer in our evaluation is therefore introduced:

4. What is the scheduling overhead imposed by the omni-kernel architecture?

In the remainder of this chapter we describe experiments designed to answer the above ques-
tions and results from running the experiments on Vortex.

5.1 Experimental setup

In all experiments, Vortex was run on a Dell PowerEdge M600 blade server with two Intel
Xeon E5430 Quad-Core processors. Cores run at 2.66GHz, have separate 64x8 way 32KB
data and instruction caches, and, in pairs, share a 6MB 64x24 way cache (for a total of 4
such caches). Each processor has a 1333MHz front-side bus and is connected to 16GB of
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DDR-2 main memory running at 667MHz. Through its PCIe x8 interface, the server was
equipped with two 1Gbit Broadcom 5708S network cards. And, to the integrated LSI SAS
MegaRAID controller, two 146GB Seagate 10K.2 disks were attached and set up in a raid 0
(striped) configuration.

To generate load, we used a cluster of blade servers running Linux 2.6.18. These were of the
same type and hardware configuration as the server running Vortex, and they were connected
to the Vortex server through a dedicated HP ProCurve 4208 Gigabit switch.

5.2 Scheduler and workload characteristics

The overall goal of our evaluation is to demonstrate scheduler control over resource con-
sumption. To achieve this, we need to demonstrate that all resource consumption has occurred
as the result of a scheduling decision. For resources with a fixed capacity, such as a CPU and
a NIC, correlating capacity with accounted usage will reveal discrepancies. Furthermore, we
need to verify that scheduling decisions benefit the correct activity, i.e. that attribution is ac-
curate. This could be performed by carefully tracking that messages do indeed originate from
the activity that is attributed for consumption. But such instrumentation would only replicate
instrumentation that is already integral to our architecture. Our approach here is instead to
compare observed performance with expected performance, by selecting a scheduler with a
well-known behavior and investigating if activities receive resources in accordance with the
requested policy. Therefore, all our experiments involve use of WFQ [170] schedulers.

With uniform demand, the expected behavior of a WFQ scheduler is that clients receive re-
sources in proportion to their assigned weights. With variable demand, however, what service
a client receives will be influenced by how the particular WFQ scheduler limits bursty behavior
(see [171]). For example, in our WFQ implementation we reset client virtual finishing times
every so often to prevent a demanding client from lengthy spikes of no service when there are
sudden increases in demand from other clients. To make service less complicated to antici-
pate, we designed our workloads to exhibit uniform resource demand across cores. This makes
verifying attribution straightforward; deviance in performance from assigned workload weight
indicates errors in attribution.

5.3 Measurement technique

Using a system call interface, a process can obtain data on its own performance and, sub-
ject to configurable access rights, the performance of other processes in the system. These
performance data are obtained from schedulers through an interface that they are required to
support (shown in Table 3.1). For each client of a scheduler, the data includes attributed CPU

and memory consumption and, if used, consumption as attributed by the scheduler using other
performance metrics.

For most experiments, we obtained performance data by running a dedicated process on
Vortex. This process was granted full access to all performance data in the system and exported
this data upon request using TCP. External to Vortex, a script communicated with the process,
collecting samples once per second. The size of each sample was around 100KB; whenever
possible, the script accessed a network interface card not actively used in an experiment.

When a process performs a system call to obtain performance measurements, Vortex re-
turns measurements timestamped with the current value of the CPU timestamp counter regis-
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ter. These timestamps correlate CPU measurements with elapsed time; discrepancies reveal
unattributed CPU consumption. Retrospective attribution complicates things. Some samples
indicate under-attribution while others indicate over-attribution, if there is ongoing resource-
consumption when the samples are obtained. Accuracy, however, is bounded by the consump-
tion incurred by processing one request message.

Most messages can be processed by the CPU in a few microseconds, causing accuracy to
be in the same order. Thread-ready messages, however, may lead to several milliseconds of
uninterrupted CPU consumption. The accuracy of performance data pertaining threads and
the overall CPU-time consumption on cores that run threads depends upon choice of thread
timeslices. For example, with thread timeslices set to 5 milliseconds, the expected accuracy
is ±0.5% for individual samples. We verified that our measurements are in agreement with
expected accuracy by performing a series of experiments with a process running one CPU-
bound thread per core and varying the duration of timeslices. In these, we found no samples to
be outside expected accuracy.

Individual samples may be inaccurate, but under-attribution in one sample is compensated
for in the next sample. Thus, for a series of consecutive samples, a deviation between re-
source availability and attribution larger than the expected accuracy of an individual sample
indicates that some consumption is not being properly accounted for. In the aforementioned
experiments, comparing the sum of elapsed to the sum of attributed cycles shows the number
of unaccounted cycles to be within the expected accuracy of individual samples. For exam-
ple, in one experiment, over 100 seconds, a total of 86, 028, 592 cycles were not accounted for
(0.004% of elapsed cycles). This was within the expected accuracy of an individual sample
(±106, 400, 000 cycles).

During experiments, we ensured that no unrelated processes were running. We ran each
experiment 10–20 times to verify the precision of performance data; deviations were found to
be within the accuracy of individual samples. For clarity, we therefore do not include error bars
in figures. Also, for ease of visual interpretation, some figures were produced using Gnuplot
with the dgrid3d command1.

5.4 Attributing CPU consumption

To evaluate whether CPU consumption is being attributed to the correct activity, we con-
ducted an experiment involving three CPU-bound processes. Each process ran one CPU-bound
thread per core. Recall from Section 3.4 that threads are implemented by the thread re-
source (TR). TR drives the execution of threads by processing the request messages sent to
it when a thread enters the ready state. Processing a message involves setting up a timeslice
timer and dispatching the corresponding thread. Each TR instance operates with a separate
scheduler that manages threads belonging to a corresponding process2.

In the experiment, the CPU resource uses a weighted fair queueing (WFQ) scheduler and as-
signs weights to TR instances of the processes according to a 50%, 33%, and 17% entitlement.
For the TR schedulers, we used a simple round-robin scheduler with a load sharing algorithm
that assigns process threads to separate cores, i.e. using RRT/queue mappings with infinite dura-

1In dgrid3d mode, grid data points represent weighted averages of surrounding data points, with closer points
weighted higher than distant points.

2This avoids scenarios where, for example, a process creates lots of threads in order to increase scheduling
overhead for other processes.
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Figure 5.1. CPU utilization running three CPU-bound processes with 50%, 33%, and 17%
CPU entitlement.

tion and the initial mapping always assigned to the core with the least number of threads bound
to it (see Section 3.1.1). Figure 5.1 illustrates the resulting CPU utilization: the CPU resource
WFQ scheduler allots CPU time to TR schedulers, which in turn execute process threads, in strict
accordance with the desired 50%, 33%, and 17% entitlement.

5.5 Attribution with multiple schedulers

The previous experiment only involved scheduling of a single resource. To evaluate attribu-
tion-accuracy when multiple resources and schedulers are involved, we conducted an experi-
ment with three processes performing file reads.

The processes each ran one thread per core, with threads programmed to consecutively open
a designated file, read 32KB of data, and then close the file. To perform a read, three resources
are involved3 (in addition to the TR instances): the address space resource (ASR), asynchronous
I/O resource (AIOR), and the file cache resource (FCR).

Due to the few files involved, the experiment is CPU-bound. And since threads await the
completion of one read operation before performing another, throughput is dependent on the
amount of CPU available to the threads and the three resources involved.

In the experiment, we configured a resource grid, as illustrated in Figure 5.2, with separate
WFQ schedulers for the ASR, AIOR, and FCR resources. CPU consumption was used as a metric.
The CPU resource had a WFQ scheduler, configured to give the three resources a minimum of
50% of CPU resources (shared equally among themselves). The remaining CPU resources were

3After the first read operation the target file is cached in memory by the file cache resource. Thus, in the
following we ignore any other file system related resources.
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Figure 5.2. Resource grid configuration for the file read experiment.

assigned to processes according to a 50%, 33%, and 17% entitlement. The same entitlement
was used for the processes at the ASR, AIOR, and FCR schedulers.

Figure 5.3 shows CPU utilization at the different resources involved in the experiment. We
see that the bulk of CPU consumption is by the threads (approximately 45 + 30 + 15 ∼= 90%).
This is due to how I/O is performed in the experiment. Vortex avoids copy operations on the
I/O path, making read data available to a process through a read-only memory mapping (see
Section 3.3.1.3). But the processes copy read data into a buffer to exhibit behavior similar to a
conventional system.

Figure 5.4 shows a breakdown of the relative CPU utilization attributed to the processes at
all resources and the threads. From Figure 5.4(a) we conclude that the CPU resource WFQ

scheduler operate as expected; threads accurately receive excess CPU resources, i.e. entitled
resources not used by the ASR, AIOR, or FCR, proportionally to their 50%, 33%, and 17%
entitlement. The CPU resources available to the threads translate into a corresponding CPU

consumption at the ASR, AIOR, and FCR resources, as shown in figures 5.4(b)–(d).
So, the experiment corroborates that resource consumption is accurately measured and at-

tributed (questions 1 and 2 of the evaluation), and indicates that schedulers have sufficient
control to isolate among competing activities (question 3 of the evaluation).
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Figure 5.3. Breakdown of CPU utilization for the file read experiment.
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(a) Thread resource.
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(b) File cache resource.
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(c) Asynchronous I/O resource.
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(d) Address space resource.

Figure 5.4. Breakdown of relative CPU utilization for the file read experiment.
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Table 5.1. Resources used in web server experiment.
Resource Description

Device interrupt resource (DIR) NIC interrupt processing
Device write resource (DWR) Insert packets into NIC tx ring

Network device write Resource (NDWR) Insert ethernet header into packet
Network device read resource (NDRR) Demultiplex incoming packets

TCP resource (TCPR) Process TCP packets
TCP timer resource (TCPTMR) Process TCP timers

Asynchronous I/O resource (AIOR) Orchestrate asynchronous I/O

File cache resource (FCR) File caching
Address space resource (ASR) Address space mappings

5.6 Web server workloads

We further investigate attribution and isolation under competition by considering an exper-
iment with (1) schedulers using metrics other than CPU time (bytes written and read), (2) re-
source consumption that is inherently unattributable at the time of consumption (packet demul-
tiplexing and interrupt processing), and (3) an I/O device rather than the CPU as a bottleneck
to increased performance. The experiment also exercises a larger number of resources and
represents a more realistic situation than the micro-benchmarks discussed above.

The THTTPD4 web server was run, with modifications to exploit Vortex’ asynchronous I/O

application programming interface and event multiplexing mechanisms. THTTPD is single-
threaded and event-driven. To generate load to the web servers, we ran ApacheBench5 on three
separate Linux machines. On each machine, ApacheBench was configured to generate requests
for the same 1MB static web page repeatedly and with a concurrency level of 16. Prior to the
experiment, testing revealed ApacheBench could saturate a 1Gbit network interface even from
a single machine. The three Linux machines could together generate load well in excess of
network interface capacity.

Table 5.1 lists the resources used by the web servers. By default, Vortex manifests a net-
work device driver as two resources: the device write resource (DWR) and the device interrupt
resource (DIR). In the case of a network interface card (NIC) driver, insertion of packets into
the transmit ring is performed under the auspices of DWR. Transmit-finished processing and
removal of received packets from the receive ring is handled by DIR.

Packets received by DIR are sent, in the form of messages, to the network device read re-
source (NDRR) for demultiplexing. By inspecting packet headers, NDRR determines whether
a packet is destined for an open TCP connection, is a SYN packet targeting a connection in
the listen state, or is a packet that should be dropped. If a TCP connection is found, then the
packet is sent to the TCP resource (TCPR) for further processing. Note that processing by both
DIR and NDRR is considered infrastructure; the activity to attribute is determined by NDRR as
part of demultiplexing. Also note that there is no separate IP resource. Since IP code is used
only in conjunction with creating TCP or UDP packet headers, it is accessed directly instead of
manifested as a resource.

4http://www.acme.com/software/thttpd/thttpd.html
5http://www.apache.org/
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Figure 5.5. Resource grid configuration for the web server experiment.

As described in Section 3.1, resources assign affinity labels to give schedulers hints about
core preferences, and they assign dependency labels to control request-processing order. When
a packet is removed from the NIC receive ring, an affinity and dependency label are assigned
to the corresponding message. NDRR and TCPR both access fields in the packet header and the
TCP control block. So for performance reasons, packets belonging to the same TCP connection
ideally would be processed on the same core. TCPR processing of packets in NIC-dequeue
order is not a requirement for correctness but can prevent unnecessary TCP communication.
For example, the default policy for TCP when receiving out-of-order packets is to reply with an
ack packet (which, in turn, might trigger fast retransmit). Also, the Vortex TCP stack contains
the usual fast-path optimizations for in-order packet processing.

To preserve packet ordering and improve core locality, packets from the same TCP connection
are assigned the same dependency and affinity label at intermediate resources. For incoming
packets, DIR determines dependency labels by inspecting packet headers and computing a hash
of the sending and receiving IP addresses and TCP ports. The computed label, which is identical
for all packets belonging to the same TCP connection, is inherited by all intermediate resources.
If packet processing creates a new TCP connection, then that label is stored in the TCP control
block and attached to any packet sent. The labels are computed accordingly for connections
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Figure 5.6. Bytes written at the DWR resource in the web server experiment.

created by processes running on Vortex.
In the experiment, we configured the CPU resource with a WFQ scheduler. Resources were

configured with a 50% CPU entitlement (shared equally among themselves), with the remaining
capacity split among web servers according to a 50%, 33%, and 17% formula. Since the web
servers are single-threaded, they only draw CPU resources from one core. To promote compe-
tition, we configured TR schedulers with a load sharing algorithm that selected the same core
for all threads (core 7). The resource grid, shown in Figure 5.5, was configured with separate
WFQ schedulers for each resource. At each resource scheduler we configured the infrastruc-
ture activity with a 50% entitlement, with the remaining split among the web servers according
to a 50%, 33%, and 17% formula. Furthermore, schedulers were configured to use CPU con-
sumption as a metric, except for the NDRR, network device write resource (NDWR), and DWR

schedulers which were configured to use bytes transferred. DWR is instrumented to emit a re-
source record whenever a write operation is accepted by the underlying driver (i.e., a packet
successfully inserted into the NIC transmit ring). Likewise, DIR emits a resource record when
a read operation completes.

In Vortex, a resource with insufficient capacity rejects a request. Upon rejection, OKRT

places the corresponding resource in a suspended state and requeues the rejected request in the
originating queue. Until resumed, no new requests are sent to the resource. For the NICS in our
system, DWR rejects a request if the NIC’s single transmit ring is full, after which DWR remains
suspended until DIR has performed write-completion processing. DWR capacity is limited by
the speed at which the NIC can copy packets from the transmit ring to the network. Moreover,
since access to the NIC transmit ring is serialized by a lock, only a single core can insert packets
at any given time. Thus, configuring the DWR to request CPU from multiple cores would only
result in excessive contention on the NIC lock and not in increased capacity. For this reason, we
configured the DWR scheduler to request CPU only from a single core (core 6). Even when the
NIC is running at full capacity and the DWR is frequently suspended awaiting DIR processing,
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Figure 5.7. Breakdown of CPU consumption for the web server experiment.

DIR processing is likely to overlap with attempts to insert packets into the transmit ring. Thus,
DIR processing is best performed on the same core as DWR to avoid NIC lock contention6.

Figure 5.6 shows how network bandwidth is shared at the DWR resource during our experi-
ment. The demand for bandwidth generated by ApacheBench is the same for all web servers.
However, the actual bandwidth consumed by each web server depends on its entitlement, as we
desired. Moreover, note that the total bandwidth consumed is close to the maximum capacity
of the NIC, confirming that the workload is I/O bound.

Figure 5.7 breaks down CPU utilization across the involved resources. For this workload,
28.3% of available CPU cycles (the equivalent of 2.26 cores) are consumed. Not surprisingly,
the bulk of CPU consumption is by TCP and resources downstream. Consumption of 14.24% of
available CPU cycles (the equivalent of 1.13 cores) can be attributed to infrastructure. Of this,
7.2% (0.58 cores) is interrupt (i.e. DIR) processing and the remainder is packet demultiplexing
(i.e. NDRR processing). DIR processing takes place on core 6; NDRR processing is load-shared
among cores due to affinity label assignment.

DWR processing has a relatively fixed cost; when NIC operates at maximum capacity, a rel-
atively constant number of packets must be transmitted (where the exact number depends on
TCP dynamics). In contrast, the cost of interrupt processing in DIR is heavily influenced by the
frequency of interrupts, which is bounded by the rate at which packets are removed from the

6When DIR processing runs on a different core from the DWR, we measured an overall 5.5% increase in CPU
consumption. Lock profiling further showed that the increase was all attributable to NIC lock contention.
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NIC transmit ring (i.e. at most one interrupt per packet sent). (The number of interrupts due
to packets received has the same bound, but a NIC operating at maximum transmit and receive
capacity is not likely to increase interrupt frequency since the driver would coalesce receive
with transmit processing. Also, the NIC in our system does not have separate interrupt vectors
for transmit and receive.)

In the experiment, cores were measured to operate at approximately 15 ± 3% utilization,
whereas core 6 operated at 100%. Core 6 might appear to be a bottleneck, but Figure 5.6 shows
that the NIC is operating at maximum capacity, as desired. On core 6, 28% of utilization is due
to DWR processing, 58% DIR processing, and the remaining is due to other resources. Since
the NIC uses message-signaled interrupts, interrupts can be delivered with low latency and at
a rate matching packet transmission. For this experiment, DIR processes approximately 7300
interrupt messages per second. In contrast, TCP transmits approximately 82000 packets and
receives 24000 incoming packets per second. Thus, overhead related to removal of sent packets
from the NIC transmit ring is amortized over approximately 11 packets on average. Reducing
the load on core 6 would only result in more frequent servicing of interrupts, leading to more
frequent interrupts, which in turn increases CPU consumption. We experimentally verified this
feedback effect by reserving core 6 exclusively for DIR and DWR. Its load stayed at 100%. The
slightly reduced per-interrupt overhead was subsumed by the increased number of interrupts.

Vortex requires resources to handle concurrent execution of requests. In our implementation,
we use spin-locks to preserve invariants on shared state (via lock primitives offered by the OKRT

object system). For this experiment, an average of 1, 770, 000 lock operations are performed
per second. The majority protect request queue operations. Lock profiling did show some lock
hotspots, indicating a need to re-visit synchronization approaches, but overall lock contention
in this experiment was found to be low (i.e. few CPU cycles are spent busy-waiting on locks).

Despite low lock contention, the aggregated overhead of lock operations is significant. For
the hardware we are using, obtaining and releasing a lock when the operation can be executed
internally in a core’s cache involves approximately 210 CPU cycles. In practice, due to the need
for inter-core communication when performing lock operations, profiling shows the average
locking overhead to be 738 CPU cycles. In total, 22.2% of consumed CPU cycles are attributable
to locking overhead and contention. In contrast, had all locking operations been executed
internally in a core’s cache, only 6.3% of consumed CPU cycles would have been attributable
as such. The latter is to some extent optimistic, but underscores that synchronization is costly
in a multi-core environment.

This experiment gives affirmative answers to questions 1–3 of the evaluation.

5.7 File system workloads

We continue by considering an experiment involving file I/O. Similar to the web server
experiment above, this experiment involves schedulers using bytes transferred as a metric, in-
terrupt processing, and an I/O device as a bottleneck to increased performance. The experiment
differs by (1) introducing a foreign scheduler outside direct control of Vortex (the disk con-
troller firmware scheduler), (2) I/O device capacity that fluctuates depending on how the device
is accessed (i.e. which disk sectors are accessed and in what order), and (3) I/O requests of
markedly different sizes7.

7Before optimizations performed by the disk controller firmware, Vortex employs an optimization whereby
I/O to adjacent blocks is coalesced. This is an optimization employed by most operating systems. Vortex restricts
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Table 5.2. Resources used in file system experiment.
Resource Description

Device interrupt resource (DIR) Interrupt processing
Device read/write resource (DRWR) Insert read or write requests

Storage device read/write Resource (SDRWR) Buffer translations
SCSI resource (SCSIR) SCSI messsages

Storage resource (STOR) Export disk volumes
EXT2 resource (EXT2R) Ext2 file system

File cache resource (FCR) File caching
Asynchronous I/O resource (AIOR) Orchestrate asynchronous I/O

Address space resource (ASR) Address space mappings

The experimental design involved three processes performing file reads. The processes each
ran one thread per core, with threads programmed to read concurrently from 32 different, 2MB,
files. Each file was consecutively opened, read using 4 parallel streams from non-overlapping
regions, and then closed. To ensure that the experiment was disk-bound, each file was evicted
from memory caches after it had been read8. Each process thus maintained concurrent read
operations from 256 different files, for a total 768 files altogether. Before the experiment was
started, an empty file system was created on disk and files were then created and persisted on
disk. Files were created concurrently to avoid sequential file block placement on disk9.

Table 5.2 lists the resources used by the processes. Vortex manifests a storage device driver as
two resources: the device read/write resource (DRWR) and the device interrupt resource (DIR).
Insertion of disk read/write requests is performed by DRWR and request finished processing is
handled by DIR. The storage device read/write resource (SDRWR) interfaces the storage system
with DRWR. In particular, SDRWR translates between storage-specific request- and data-buffer
representations and the representations that are used by all Vortex device drivers10. Since the
disks in our system were SCSI-based, all requests passed through the SCSI resource (SCSIR)
for the appropriate SCSI message creation and response handling. SCSIR is situated upstream
of SDRWR and downstream of the storage resource (SR). SR abstracts differences in disk tech-
nology by providing a naming scheme and a general block-based interface to a disk or disk
volume. For example, after SCSIR has probed the underlying SCSI topology, discovered disks
and RAID volumes are registered with SR as storage volumes, whereby a file system can be
associated with them or raw access can be made by e.g. file system creation and recovery tools.
The ext2 file system resource (EXT2R) is upstream of SR and implements the Ext2 file sys-
tem on a storage volume provided by SR. The file cache resource (FCR) initially receives file
operations and communicates with EXT2R to retrieve and update file metadata and data.

To ensure a consistent state on disk, file systems typically restrict how disk requests can

the optimization to requests belonging to the same activity and limits the resulting requests to encompass transfer
of at most 32KB of data.

8Vortex supports fine-grained management of cached files; mechanisms can create checkpoints of the file
system and evict file state at the granularity of individual files or aggregates of files used by specific activities. See
Section 3.3.1

9A sequential file block placement would result in the majority of disk requests to be of the same size due to
coalescing of reads to adjacent blocks.

10Vortex defines a general request- and data-buffer interface that all device drivers must adhere to.
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Figure 5.8. Bytes read at the DRWR resource in the file system experiment.

be reordered. EXT2R uses dependency labels to satisfy its ordering constraints. Messages
involving blocks that are private to a file (i.e. disk block table and data blocks) are assigned
the same dependency label by EXT2R and intermediate resources, causing messages to arrive
at the disk in the order sent11. Note that EXT2R associates the originating activity with these
messages; external synchronization protocols are assumed when different activities overlap I/O

to a file. For blocks containing information pertaining to multiple files (i.e. inode blocks and
free inode- and free-bitmap blocks), EXT2R associates the infrastructure activity with messages
and assigns dependency labels similarly to private blocks. Use of the infrastructure activity is
needed for consistent state on disk12, because OKRT only guarantees ordering for messages
belonging to the same activity.

In the experiment, the CPU resource was configured with a WFQ scheduler. The resource
grid was configured with separate WFQ schedulers for each resource. Resources were given
a 50% entitlement at the CPU resource scheduler, with the remaining capacity split among
the processes according to a 50%, 33%, and 17% formula. The infrastructure was given a
50% entitlement at each resource, with the remaining split among processes according to a
50%, 33%, and 17% formula. Schedulers for resources downstream of FCR were configured
to use bytes transferred as a metric, since, for these types of resources, CPU consumption is
not representative of actual resource consumption. For the same reasons as in the web server
experiment above, DRWR and DIR were configured to request CPU from a single core (core 6).
The disk firmware was configured to handle up to 256 concurrent requests to allow ample
opportunities for firmware to perform optimizations.

11Software-based request ordering to reduce disk head movement might result in a different disk-arrival order,
but, similar to optimizations performed by disk firmware, the ordering must satisfy consistency models.

12The FCR guarantees that no reads or writes are in progress when sending a request to EXT2R that involves file
metadata updates. This relieves EXT2R from implementing logic for synchronizing pending reads or writes with
metadata updates.
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Figure 5.9. Breakdown of CPU consumption for the file system experiment.

Figure 5.8 shows how disk bandwidth is shared at the DRWR resource during the experi-
ment. Because disk capacity varied across runs due to changes in file block placement, the
figure shows relative bandwidth consumption for the three processes. The demand for band-
width is the same for all three processes, but as desired and seen, actual allotment depends on
entitlement.

Figure 5.9 breaks down CPU utilization across the involved resources. For this workload,
only 0.99% of available CPU cycles (the equivalent of 0.08 cores) is consumed, which clearly
shows that the disk is the bottleneck to improved performance.

Like the web server experiment, this experiment gives affirmative answers to questions 1–3
of the evaluation.

5.8 Monitoring and Scheduling Overhead

The overhead of the pervasive monitoring and scheduling in Vortex could be determined
by comparing the performance of the same applications running on Vortex and on another
conventionally-structured OS kernel. Running on the same hardware, performance differences
could then be attributed as Vortex overhead. But Vortex does not have significant overlap in
code-base with another OS13. Implementation differences would be a factor in observed per-

13Device drivers for disk and network controllers have been ported from FreeBSD to Vortex. Beyond this,
Vortex has been implemented from scratch.
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formance differences. For example, despite offering commodity abstractions, Vortex interfaces
are not as feature-rich as their commodity counterparts. This would benefit Vortex in a compar-
ison. However, Vortex performance could benefit from further code scrutiny and optimizations
(as noted in Section 5.6). This would favor the more mature code-base of a commodity OS.

To obtain a more nuanced quantification of overhead, we chose to focus on scheduling costs
associated with applications running on Vortex. Specifically, our approach was to quantify
the fraction of process CPU consumption that could be attributed to anything but message pro-
cessing. The rationale behind this metric is that message processing represents work that that
is needed to realize an OS abstraction or functionality, regardless of the scheduling diligence
involved. The viability of the metric is further strengthened by experiments showing that appli-
cations perform similarly on Vortex and Linux. We report on Linux 3.2.0 and Vortex application
performance where appropriate.

To obtain the needed data we instrumented Vortex to measure and expose message processing
cost through the interface described in Section 5.3. Overhead could then be determined by
subtracting message processing cost from process CPU consumption. Some cost is not intrinsic
to Vortex, such as activating an address space or restoring the CPU register context of a thread.
This cost was not classified as overhead.

Recall that the Vortex kernel drives all system activity by message processing, including
the execution of threads. The number and type of messages processed on behalf on a process
will vary; some processes may generate few messages because they perform CPU-bound tasks,
while others a variety of messages because of e.g. file and network interaction. Overhead is
therefore a relative measure; the fraction of CPU consumption attributable to monitoring and
scheduling will depend upon process behavior.

In previous experiments we mostly used artificial applications to investigate specific prop-
erties of the Vortex kernel. Here, we exploit efforts from [76, 77] to run unmodified Linux
binaries on Vortex. The referred work investigates potential benefits of the VMM offering OS

abstractions to the VM OS in addition to virtualized hardware. By modifying Vortex to export
its system call interface to a VM environment14, and writing around 25k lines of VM OS code,
several realistic and complex applications can be run on Vortex.

5.8.1 Apache overhead

We first consider overhead when running Apache. The Vortex resource grid was configured
similarly to the previous experiments. Apache was configured to run in single-process mode
with 17 worker threads. Beyond modifications to its configuration file, Apache 2.4.3 and ac-
companying libraries were taken in unmodified binary form from a Linux deployment. Like in
the web server experiment (see Section 5.6) we used ApacheBench to generate requests for a
static file repeatedly. Recall that overhead is the fraction of process CPU consumption that can
be attributed to anything but message processing. Apache uses the Linux sendfile system call to
respond to requests for static files. The VM OS handles this call by use of Vortex asynchronous
I/O interfaces (see Section 3.3). Therefore, the user level CPU-time consumed by Apache to
process a request is independent of the size of the requested file. However, if small files are
requested, it takes more requests to saturate available network bandwidth. Thus, overhead is
sensitive to the size of requested files: it will be higher for larger files because of relatively

14Some VM-specific modifications to the Vortex interface were needed. For example, the VM OS must be able
to redirect control to itself when a process started to prepare the user-level runtime environment.
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(a) 4MB file.
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(b) 32KB file.

Figure 5.10. Apache overhead when requesting 4MB and 32KB files.

more interaction with Vortex during request handling.
Figure 5.10(a) and Figure 5.10(b) shows overhead for requesting 4MB and 32KB files, re-

spectively, as a percentage of the CPU consumption of Apache. Measured overhead ranges
from 10-16% for 4MB files and 3-6% for 32KB files. As expected, the fraction of execution
time used by Apache for anything but the sendfile system call is higher when serving 32KB
files than 4MB files, resulting in lower overhead in the 32KB experiment.
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Figure 5.11. Apache CPU utilization when requesting 4MB files.

As an optional optimization, Vortex allows scheduling decisions to encompass a batch of
messages rather than a single message. This optimization is likely to reduce overhead, at the
cost of more coarse grained sharing of resources. We measured message processing CPU cost
to be 2-15µs depending on resource type. Configuring a batching factor of 8 would therefore
increase resource sharing granularity to at most 120µs. (Recall that resources are expected to
handle concurrent execution of requests. Even if a resource is tied up for 120µs on one core,
messages may still be dispatched to the resource from other cores.)

The Apache experiments in Figure 5.10 were run with a batching factor of 1. By increasing
the batching factor to 4, overhead was reduced from 10-16% to 8-12% for the 4MB file exper-
iment. Beyond a factor of 4, there were no discernible overhead reductions. This is explained
by Apache’s low CPU utilization, as shown in Figure 5.11, causing messages to be removed
from request queues rapidly and batches to frequently contain less than 4 messages.

Figure 5.12 shows Apache overhead for 4MB file requests with a batching factor of 8 and a
CPU-bound process from the experiment in Section 5.4 running in the background. Here, high
CPU contention results in Apache message batch sizes approaching the configured maximum of
8 and overhead to be in the order of 3-4%. (Core 6 has comparatively higher overhead because
of NIC interrupt handling and servicing of ingress and egress network packets, as explained
in Section 3.3.2 and Section 5.6.) Although batching is very effective in reducing overhead,
it must be used carefully for resources that use a different performance metric than CPU for
sharing. For example, configuring a batching factor of 8 for a resource that governs access to a
storage device may result in disk requests spanning as much as 256KB of data (see Section 5.7).

For the 4MB experiment Apache is able to exploit the 1Gb network link both on Vortex and
when running on Linux 3.2.0. The average CPU utilization on Vortex across cores is 21.18%
with a standard deviation of 19.5. (Excluding core 6, which is an outlier that handles NIC

interrupts, average CPU utilization is 13.83% with a standard deviation of 1.23.)
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Figure 5.12. Apache overhead for 4MB files with a batching factor of 8 and background CPU
load.

5.8.2 MySQL overhead

We next consider overhead for MySQL. As with Apache, MySQL 5.6.10 and needed libraries
were taken in binary form from a Linux deployment. For load, we used the open DBT2 [229]
implementation of the TPC-C benchmark [230]. TPC-C simulates an online transaction process-
ing environment where terminal operators execute transactions against a database. We sized the
load to 10 warehouses and 10 operators per warehouse.

Whereas Apache has a straightforward internal architecture with each client request served
by a thread from a thread pool, MySQL employs multiple threads to perform diverse but con-
certed tasks when servicing a query from a client. This is evident from Figure 5.13, which
shows a breakdown of CPU utilization during execution of the benchmark. For each core, the
figure shows total CPU consumption (top) and the percentage of CPU consumption that can be
attributed as overhead (bottom).

Vortex was configured with a batching factor of 8 in this experiment, except for resources
controlling disk and network device drivers which used a factor of 1. Although all cores ex-
perience load spikes approaching 100% CPU utilization, the average CPU load is 19.95% with
a standard deviation of 23.9. We measured the average batch size to be around 3. Despite
not fully exploiting the batching potential, CPU consumption attributable as overhead never
exceeds 1.75% and is on average 0.12% with a standard deviation of 0.13. In other words,
approximately 0.6% of total CPU consumption constitutes overhead.

In this experiment DBT2 reports Vortex performance to be 106 new-order transactions per
minute. For comparison, running the same experiment on Linux yields a performance of 114
transactions per minute. Performance is very comparable, especially considering that thread
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Figure 5.13. MySQL DBT2/TPC-C CPU utilization and overhead.

93



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  10  20  30  40  50  60  70  80  90  100

%
 C

P
U

 u
ti
liz

a
ti
o

n

Time (seconds)

 5

 10

 15

 20

 25

%
 C

P
U

 u
ti
liz

a
ti
o

n

(a) Core 0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  10  20  30  40  50  60  70  80  90  100

%
 C

P
U

 u
ti
liz

a
ti
o
n

Time (seconds)

 5

 10

 15

 20

 25

%
 C

P
U

 u
ti
liz

a
ti
o
n

(b) Core 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  10  20  30  40  50  60  70  80  90  100

%
 C

P
U

 u
ti
liz

a
ti
o

n

Time (seconds)

 5

 10

 15

 20

 25

%
 C

P
U

 u
ti
liz

a
ti
o

n

(c) Core 2

Figure 5.14. MySQL Wisconsin CPU utilization and overhead.

scheduling and MySQL system calls on Vortex entail crossing virtual machine boundaries15.

15A system call has a round-trip cost of around 696 cycles on the machine used in the evaluation. The round-trip
cost of a virtual machine crossing (from guest to host mode and back) is in the order of 6840 cycles.
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The TPC-C benchmark has a more complex database and mix of transaction types than older
benchmarks, resulting in high variance in CPU utilization during execution. For comparison, we
ran the version of the Wisconsin benchmark [231] that is bundled with MySQL distributions.
Figure 5.14 shows total CPU utilization and utilization attributable as overhead for the Wiscon-
sin benchmark. We have elided results for cores 3-7 since these cores had no substantial CPU

utilization during execution of the benchmark. The average CPU load is 2.43% with a standard
deviation of 4.8. The average CPU utilization attributable as overhead is 0.09% with a standard
deviation of 0.13. Approximately 3.7% of total CPU consumption constitutes overhead.

5.8.3 Hadoop overhead

We last consider overhead for Hadoop, an open source MapReduce engine for distributed
data processing. In this experiment we used JRE 1.7.0 with HotSpot JVM 23.21 from Oracle
and Hadoop 1.04. For load we used the MRBench benchmark that is distributed with Hadoop.
We configured MRBench with 1048576 input lines to ensure ample load. Because the exper-
iment only involved a single machine, we configured Hadoop to run in non-distributed mode
(standalone operation). In this mode Hadoop jobs are executed by a set of threads internally in
a single Java process.

Figure 5.15 shows CPU utilization (top) and overhead (bottom) for each core during execu-
tion of the benchmark. The different phases of job execution are visible from overhead:

0-35s Initialization of the Java environment and Hadoop.

35-70s Construction of the input data file.

70-200s Map phase.

200-265s Reduce phase.

The spikes in overhead are caused by file operations to read input data and to spill output
data. These events involve I/O and produce corresponding spikes in scheduling activity. From
CPU utilization it is evident that Hadoop uses a small number of threads to execute the job and
that these threads run at 100% CPU utilization when active. Overall CPU load is therefore low
(11.6% with a standard deviation of 31.4). CPU consumption attributable as overhead is 0.013%
with a standard deviation of 0.035. Approximately 0.1% of total CPU consumption constitutes
overhead.

Running the same experiment on Linux yields a similar total execution time as reported by
MRBench (within 5%, in favor of Vortex).
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Figure 5.15. Hadoop MRBench CPU utilization and overhead.
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5.9 Summary

In this chapter we experimentally evaluated the Vortex implementation of the omni-kernel
architecture. Through a series of experiments, we corroborated that all resource consumption is
accurately measured, attributed to the correct activity, and that schedulers are sufficiently em-
powered to isolate competing activities. The evaluation involved running Vortex on a modern
x86-64 multi-core machine, with workloads that were CPU-bound, performed a large number
of concurrent file reads, served web pages at NIC capacity, and performed file I/O at disk ca-
pacity. Scheduling overhead was also evaluated, using Apache, MySQL, and Hadoop. For
these commodity applications, overhead was found to be low. Typically, less than 5% of CPU

consumption constitutes overhead.
The experimental results support our thesis that it is possible to construct an operating system

with pervasive monitoring and control at reasonable cost.
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Chapter 6

Concluding Remarks

We conclude this dissertation by first summarizing our findings, focusing on how they substan-
tiate and affirm our thesis. Based on this we draw some conclusions, before suggesting avenues
for future work.

When consolidating competing workloads on shared infrastructure, interference from re-
source sharing can cause unpredictable performance. Still, competing workloads are often
consolidated on the same machine, typically to reduce operational costs. This is particularly
evident in clouds, where requests from different customers contend for the resources available
to an internet-facing service, requests from services contend for the resources available to com-
mon platform services, and where the VMS encapsulating the workloads of different services
must contend for the resources of their hosting machines.

Despite virtualized environments, the role of the OS as an arbiter of resource allocation
persists—VMM functionality is implemented as an extension to an OS and VMM-provided re-
sources are managed by the VM OS. Opportunity for control over resource allocation is needed
to prevent execution by one workload from usurping resources that are intended for another. If
control is incomplete, there will inevitably be ways to circumvent policy enforcement.

6.1 Results

The accurate and high fidelity control over resource allocation that is required from an OS in
a virtualized environment is a new OS challenge and the focus of this dissertation. Specifically,
the thesis of this dissertation is:

It is possible to construct an operating system kernel where pervasive
monitoring and scheduling capabilities are achieved at reasonable cost.

To evaluate this thesis we created the novel omni-kernel architecture, with pervasive mon-
itoring and scheduling as a design-premise. The goal of the architecture is to ensure that all
resource consumption is measured, that the resource consumption resulting from a scheduling
decision is attributable to an activity, and that scheduling decisions are fine-grained. As de-
scribed in Chapter 2, the architecture factors the OS into multiple cooperating resources that,
through asynchronous message passing, in concert provide higher-level abstractions. By ensur-
ing that an activity is associated with all messages, accurate control over resource consumption
can be achieved by allowing schedulers to control when messages are delivered.
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Monitoring and scheduling is pervasive in the omni-kernel architecture. Schedulers are in-
terpositioned on all communication paths to control when messages are delivered to destination
resources. The granularity of control is at the level of individual messages, whose processing
typically involves a few microseconds of execution time (see Section 5.8.1). The omni-kernel
architecture does not dictate the granularity at which the OS is divided into resources, but as dis-
cussed in Section 3.1.2 there are concerns that guide when to abstract some OS functionality as
a resource. Our experience with instantiating the architecture, and as corroborated by the short
execution time of messages, is that the divisioning of the OS into resources is fine-grained; the
instantiation consists of more than 30 different resources (see Section 3.1.4). This bolsters the
claim of scheduling being pervasive in the omni-kernel architecture. Monitoring is pervasive
by implication—when a scheduler decides to dispatch a message to a resource, processing of
the message is monitored and resource consumption is reported back to the scheduler.

Vortex is a faithful implementation of the omni-kernel architecture, thereby substantiating
its viability. Vortex instantiates all architectural elements of the omni-kernel and provides a
large range of commodity OS functionality and abstractions, as described in Chapter 3. Be-
cause Vortex implements the pervasive monitoring and scheduling inherent to the omni-kernel
architecture, Vortex also affirms most of our thesis: it is indeed possible to construct an OS

kernel with pervasive monitoring and scheduling. Beyond this, Vortex also contributes with an
in-depth exploration of the many challenging aspects of implementing an omni-kernel. For ex-
ample, Section 3.1.1 describes a framework to coordinate and orchestrate the operation of the
many schedulers in an omni-kernel, while Section 3.1.5 presents optimizations to the allocation
of CPU-time, which will always be on the critical path in an omni-kernel. Similarly, the OKRT

object system, as described in Section 3.1.4, addresses the problems that arise with managing
the distribution of state among omni-kernel resources. Vortex also exemplifies how commodity
OS abstractions can be implemented within the constraints of the omni-kernel, as described in
Section 3.2, Section 3.3, and Section 3.4.

Implied by our thesis is that an OS with pervasive monitoring and scheduling capabilities
would also be an OS where schedulers have fine-grained control over all resource allocation.
The experimental results presented in Chapter 5 corroborate this. Through a series of experi-
ments, we demonstrate that control is thorough: all resource consumption is accurately mea-
sured and attributed to the correct activity, and schedulers are sufficiently empowered to control
resource allocation.

Our thesis last states that control can be achieved at reasonable cost. As discussed in Sec-
tion 5.8, even deciding on a metric for evaluating cost is a difficult problem. The metric we
decided on involves quantifying the fraction of CPU consumption that can be attributed to any-
thing but message processing. This metric concisely captures monitoring and scheduling over-
head, reflecting the main difference between Vortex and a conventionally structured OS. Using
the metric, we conduct experiments involving the very popular Apache, MySQL, and Hadoop
applications, quantifying cost as below 5% of application CPU utilization or substantially less.
Whether this cost qualifies as reasonable is debatable. The motivation for the work presented in
this dissertation is the need for stringent control over resource allocation in cloud environments.
Here, the service provider is subject to penalties for violating SLOS. It is our opinion that for
these environments, the cost is reasonable considering the consequent mitigation of risk. This
is strengthened by overall application performance being comparable on Vortex and Linux, as
described in Section 5.8. Also, as outlined in Section 6.3 below, there are unexplored aspects
of the omni-kernel architecture that may further increase its attractiveness.
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In Chapter 4 we explored the omni-kernel architecture from a resource management per-
spective, presenting concrete implementations for omni-kernel activities and more advanced
resource management abstractions. In particular, the compartment abstraction strengthens the
viability of the omni-kernel architecture by being a convincing example of its malleability.

6.2 Conclusions

Based on the work presented in this dissertation we draw the following conclusions:

1. The omni-kernel architecture is viable as a foundation for the construction of an OS kernel
with pervasive monitoring and scheduling.

2. Commodity OS abstractions and functionality can be implemented within the omni-
kernel architecture, as attested by the Vortex omni-kernel implementation.

In combination, these conclusions confirm the thesis of the dissertation.

6.3 Future Work

An OS is a complex piece of software that is expected to not only support the demanding
requirements of a variety of applications, but also to absorb and exploit the capabilities of a
rapidly evolving hardware platform. Despite the wide scope of the Vortex implementation,
there are a number of features expected from a modern OS that are not supported by Vortex.
Some of these features involve plain engineering challenges (e.g. a larger device driver base),
while others have the potential to yield interesting research results. In the following we outline
some of these interesting research avenues.

Power management Reducing power consumption is an important concern in computer sys-
tems. In a data center with tens of thousands of interconnected machines, the economy
of scale dictates that even small power savings can result in large aggregated savings.
Modern CPUS and chipsets offer a wealth of power management features. These range
from different core power levels, dynamically altering core clock frequencies, to sup-
port for selectively powering down parts of the chipset logic. Some of these features are
transparently activated by hardware and firmware, but most are expected to be controlled
by the OS. When to activate these features is a challenge, especially in a consolidated
services scenario where the provider has to meet SLOS. The control made possible by the
omni-kernel architecture might facilitate the power management decision process. For
example, by monitoring resource consumption, schedulers may emit load sharing deci-
sions with a short longevity and hence more rapidly adapt to changing load conditions,
perhaps freeing some system cores for reduced power levels.

NUMA and heterogeneous architectures The continuous improvements to manufacturing te-
chnology and reductions in size of transistors and gates have lead to physical limits be-
coming a major obstacle in computer systems design. Instead of improving performance
solely through better clock speeds, branch prediction, or techniques for exploiting in-
struction level parallelism, modern computer systems integrate an increasingly larger
number of cores to improve their performance. These may be tightly or loosely cou-
pled. For example, cores may or may not share caches, and might communicate through
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a message-based substrate or have coherent shared memory. Also, integration of spe-
cialized cores for accelerating certain tasks has become commonplace. Exploiting the
parallelism of multi-core systems is a challenge. Some recent systems have argued for
the OS to be loosely coupled, to align the OS structure with the topology of the hard-
ware [119, 121, 122]. Investigating the omni-kernel from a scalability perspective is
interesting, as was briefly discussed in Section 2.5.1. The system structure argued by
these recent OS works can be approximated through the comprehensive configuration
facilities of Vortex.

Vortex as a conventional VMM VMM reliance on an OS for the bulk of its functionality, and
the stringent control requirements of a virtualized environment, motivated the design
of the omni-kernel architecture. The work in [76, 77] is one step in the direction of
evaluating use of the omni-kernel architecture, and Vortex in particular, in a virtualized
environment. But this work only extends Vortex to make use of Intel’s VMX interfaces.
It adds no support for e.g. virtualized I/O devices, as would be needed for Vortex to
host a commodity OS in a virtual machine. Evaluation of Vortex as a conventional VMM

would strengthen the viability of the omni-kernel architecture, and perhaps reveal areas
for further improvements.

Schedulers and qualification as an isolation kernel An isolation kernel would have sufficient
control and instrumentation to prevent one service from affecting the SLO of another.
While innocuously defined, in practice, preventing a service from affecting another re-
quires possibly inordinate levels of control. For example, sharing of caches and buses
poses some hard challenges [3, 61, 62]. We believe the omni-kernel architecture is a very
good starting point for creating something that could qualify as an isolation kernel. Fur-
ther work in this direction would likely involve creation of schedulers that rely on even
more nuanced instrumentation data in their decision process.
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