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Abstract

Many authors think that ion outflows and naturally enhanced ion acoustic lines (NEIALs)

are correlated. In this work we investigated the relation between type-II ion outflows

and NEIALs. Currently, several ion outflows acceleration mechanisms and NEIALs gen-

eration theories have been proposed. In the first part of this thesis we review the most

important works regarding these two processes. In the second part we present the re-

sults of our analysis, together with some unexpected events which were not previously

described in the literature.

We searched for ion outflow in the data taken from the 42 m fixed antenna of the EISCAT

Svalbard radar, then we checked the incoherent scatter spectra in order to confirm the oc-

currence of NEIAL events. Afterwards, we removed the data dumps affected by NEIALs

and performed a second analysis employing the software GUISDAP 8.7. Finally, we used

a Matlab script which we wrote to plot field aligned ion velocities, electron densities, ion

and electron temperatures, temperature ratio and ion fluxes in order to: (1) investigate the

starting altitude of both NEIALs and outflows; (2) obtain information about the NEIALs’

generation theories, if they are compatible with our observations and at which altitude

range they can be valid.

We found some recurring situations for the NEIAL occurrence: particle precipitation and

ion outflows are usually involved for events above 300 km, while the few NEIAL events

below 200 km that we observed seem to be not always correlated with particle precipita-

tion and not embedded in ion outflows. Our results suggest that each of the three NEIAL

generation theories might prevail during its favorite conditions.
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1. Introduction

1.1. Overview

In this thesis we will discuss the relation between naturally enhanced ion acoustic lines

(often referred as NEIALs) and ion outflows, specifically type-II ion outflows.

NEIALs are enhancement in one or both ion shoulders of the power spectra received by

incoherent scatter radars. They are usually observed between 150 and 1000 km altitude

and are thought to be due to instabilities occurring in the ionosphere.

Ion outflows are strong upflows of ion particles which provide a significant source of

plasma for the magnetosphere. They are mostly made of H+ and O+ ions, but contribu-

tions from He+ and O++ have been observed (Lockwood et al., 1985). In this work we

will focus on the outflows observed in the polar region, albeit they have been observed in

mid-latitude areas as well (Yeh and Foster, 1990).

In chapter 1 we will describe the physical environment where these events occur. There-

fore we will discuss the Sun-Earth system, looking at the particles journey from the Sun

to the Earth’s upper atmosphere. This flux of plasma is known as solar wind. When the

particles interact with the Earth’s magnetic field, many phenomena can occur, e.g. auro-

ras, particle precipitation, ring currents and so on. NEIALs and ion outflows are processes

that are strongly related to this interaction. They occur mostly in the ionosphere, so we

will give a brief overview about its principal characteristics, with an eye to the peculiari-

ties of the polar ionosphere. This is in fact a fundamental environment for the Sun-Earth

interactions, since it has open magnetic field lines which, in particular conditions, can let

the particles enter into the ionosphere and lower regions of atmosphere, acting in practice

as a “highway” for the solar particles, which can overcome the barrier formed by the par-

ticular shape of the Earth’s magnetic field. Finally, we will briefly discuss the ionospheric

currents.

In chapter 2 we will first describe the difference between polar wind and auroral ion out-

flow, then we will discuss them in more detail, focusing on auroral ion outflows which are

a central topic of this thesis. We will give a short summary of the observational evidences

of the outflows and characterize the two different types known today. This is an important

point, since NEIALs are observed mostly during one of the two outflow types. Finally we

will discuss some of the theories proposed to explain their acceleration mechanisms.

The following chapter 3 is dedicated to naturally enhanced ion acoustic lines. After a

short introduction, we presented a summary of the most relevant observations of the last

25 years, trying to describe morphological characteristics, unusual spectral shapes, sta-

tistical analysis, correlations with other processes and other relevant features of NEIALs.
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Chapter 1 Introduction

Afterward we will describe the three most important theories about their generation mech-

anisms, highlighting strengths and weaknesses of each.

In chapter 4 we discuss the basics of incoherent scatter theory and techniques and intro-

duce the EISCAT radar system. We will then briefly describe the ionospheric parameters

which can be measured by the EISCAT radars and the parameters which can be derived

from the measured ones.

In chapter 5 we will describe our analysis methods, the software used and the possible

issues related to our approach. We made a case study type of work, so we will discuss

each case separately. We will try to relate our results to NEIALs and outflow theories and

we will compare our results with previous studies. We will finally highlight odd cases,

where we observed particular features which could be important for future studies.

Finally chapter 6 contains the conclusions of our work, together with the possibilities for

future studies to better understand the relation between NEIALs and ion outflows.

In Appendix A we tried to develop a method based on an idea of Prof. Björn Gustavsson,

aimed to identify NEIALs using the decay of electron density over time. We basically

assumed that after a NEIAL occurs, the electron density undergoes a sort of shutoff. We

investigated if the exponential decay of electron density could aid us in identifying the

presence of NEIALs.

In Appendix B we will list the Matlab routines, scripts and other customized code we

wrote in order to extrapolate and analyze data from the raw files.

1.2. The Sun-Earth system

The Sun is an average G-type main sequence star whose emission spectrum can be de-

scribed with a good approximation by a Planck radiation law:

Bν =
2hν3

c2

1

exp
(

hν
kBT

)

−1
(1.2.1)

The most important part of the spectrum as far as is concerned our work is the extra ultra

violet region (EUV) between 0.01 and 0.1µm, since it is the radiation responsible for the

formation of the ionosphere through the photoionization process (Brekke, 2012).

The emission of UV and X-ray radiation is often connected with sunspots, which in turn

are correlated to magnetic activity on Earth. Sunspots number varies periodically on an

average interval of 11.1 years. While the existence of a correlation between solar activity

and weather is not definitely proved to date, a close correlation between variation in the

sunspots number and variation of the Earth’s geomagnetic field is accepted among scien-

tific community. These variations of the Earth’s field are due to currents in the ionosphere,

which we will treat in the next section (Brekke, 2012).

Beside sunspots, other phenomena occurs on the Sun, e.g. solar flares (powerful explo-

sions in the solar atmosphere above sunspots that sends burst of energetic particles into

space) and coronal mass ejections (CME), which represent an important form of mass
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1.2 The Sun-Earth system

release from the Sun, with large CME containing as much as 1016 g of plasma moving

away from the Sun at speed as high as 1000km s−1 (Schunk and Nagy, 2004).

Thus, the Sun emits not only electromagnetic radiation but also particles. These charged

particles forms the solar wind, which flows from the Sun to the most remote areas of

the Solar system. The magnetic fields can be carried out by the particles from the Sun

through interplanetary space in a “frozen-in” manner. We will not go into details here,

but suffice to say that the “frozen-in” field concept means that where the plasma has a

high electrical conductivity (due to its collisionless nature), it can carry the magnetic field

along as a “glue” in the plasma. The solar magnetic field carried by the solar wind forms

the interplanetary magnetic field (IMF).

The solar wind will then stream out from the rotating Sun and it will move in spirals in a

similar fashion to the water from a spinning nozzle of a garden hose, hence the name gar-

den hose effect. However the magnetic field lines do not emanate only from the ecliptic

plane, but from any latitude of the Sun. This means that the resulting structure of the mag-

netic field is fairly complex and actually resembles the skirt of a ballerina. This “ballerina

skirt” structure, called heliospheric current sheet and depicted in Fig.1.2.1, is one of the

biggest continuous structure of the entire Solar System. The magnetic fields on the oppo-

site sides of the heliospheric current sheet have opposite polarity and as the different folds

of the skirt drape the various objects in the solar system, they are exposed to different IMF

polarities. This has an evident effect on the currents in the Earth’s atmosphere.

Above current sheet

Below current sheet

Earth

Earth orbit
Above
Below

Sun

Sun

B

B

Press, 2010

Figure 1.2.1.: Heliospheric current sheet. As the Sun rotates, its magnetic field twists into a Parker spiral,

a form of an Archimedean spiral, as it extends through the solar system. The inset at the top-right of the

figure shows the opposite directions of the magnetic field on the two sides of the current sheet. [from

Schunk and Nagy (2004)]

After the particles leave the Sun with an average velocity of 400 km/s, they flow through

the space and reach the Earth magnetic field after a trip lasting several hours. Like most

of the planets in the Solar System, the Earth has a magnetic field resembling, to a very

good approximation, a dipole. Since collisionless plasmas cannot flow across magnetic

fields, the Earth’s field acts as a hard obstacle, deflecting the flow around the Earth, which

in turn warps the magnetic field lines like showed in Fig.1.2.2.

When the supersonic solar wind hits the Earth’s magnetic field a bow shock is formed,

which heats and decelerates the particles (Schunk and Nagy, 2004). The heated solar wind
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Chapter 1 Introduction

is then accelerated again as it moves past the Earth. The thin layer (around 100 km) that

separates the magnetized solar plasma from that confined by the Earth’s magnetic field is

called magnetopause and its location is the result of the balance between dynamic pressure

of the solar wind and the compressed geomagnetic field. The extensive current flowing

along the magnetopause acts to separate the solar wind field from the geomagnetic field.

The region where the geomagnetic field dominates is known as the magnetosphere. The

plasmasphere is the region of the Earth’s magnetosphere consisting of low energy (cool)

plasma. The outer boundary of the plasmasphere is called plasmapause. It corotates with

our planet at about four Earth radii and it is characterized by a sharp decrease of electron

and ion density.

Bow
shock

Interplanetary
medium

Magnetosheath

Magnetopause

Mantle
Cusp

Dayside
boundary
layer
(entry
layer)

Solar
wind
plasma

Tail
boundary
layer

Bow
shock

Magnetosheath

Auroral oval

Plasmasphere

Radiation
belt region

Southern
tail lobe

Geomagnetic
field lines

Radiation
belt region

Neutral
sheet

Magnetotail

Field-aligned
currents

Auroral
precipitation

Ring current
Plasma sheet

Northern
tail lobe

Press, 2010

Figure 1.2.2.: Diagram showing the various regions of the Earh magnetosphere. [from Schunk and Nagy

(2004)]

Direct incoming of solar wind plasma into the atmosphere is possible on the dayside

near the polar cusp (Fig.1.2.2). This process occurs with a higher probability when the

IMF and the geomagnetic field have opposite directions, that is, when it is observed a

southward IMF. Solar wind particles can also reach the tail of the magnetosphere and then

populate the plasma sheet region. Particles in the plasma sheet can enter the Earth’s upper

atmosphere on the nightside along specific magnetic lines, which at low altitudes converge

in a region narrow in latitude, but extended around the Earth. This region is called auroral

oval (see Fig.1.2.2) and it is present both in northern and southern hemisphere, and is

typical not only of the Earth but also of other planets in the Solar System (Brekke, 2012).

Its name is of course related to the possibility to observe, from places which are located

within the auroral ovals, the northern lights, a spectacular phenomenon caused by the

interaction of solar wind particles with the atoms of upper atmosphere around 100 km

altitude.
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1.3 Ionosphere

1.3. Ionosphere

Overview

Fig.1.3.1 shows the various regions of Earth’s atmosphere, together with the tempera-

ture altitude profile and some important physical processes occuring in 0-600 km altitude

range. In this work we are mostly interested in the ionosphere which, as the name sug-

gests, is the ionized portion of the upper atmosphere. It extends from about 60 to 1000

km altitude, albeit the intensity of solar radiation plays an important role in producing

and sustaining ionization. As we mentioned, the main source for the ionosphere is the

photoionization of neutral molecules via solar EUV and soft X-ray radiation, although

other processes can be of importance (e.g. cosmic rays, especially at night). Together

with chemical reactions with neutrals and recombination with electrons, diffusion and

transport processes take place, strongly influenced by the Earth’s magnetic field.

Atmosphere

600 km

500 km

AURORAS

Mesopause

Stratopause

Stratosphere

Tropopause

Troposphere Lightning
Mt. Everest

Mesosphere Meteors

95 km

45 km

10 km

Exosphere

Cosmic rays

Whistler
Maximum

Minimum

Temperature

Ozone layer

10
2

10

200 K 250 K

500 K 700 K 900 K 1100 K

1

10
–1

10
–3

10
–5

Pressure,mb

Thermopause

Thermosphere

400 km

300 km

200 km

100 km

Press, 2010

Figure 1.3.1.: Earth atmosphere together with several phenomena of interest. The dark solid curves show

atmospheric temperature profiles for solar maximum and minimum conditions. [from Schunk and Nagy

(2004)]

The electron density variation with altitude determines the structure of the ionosphere,

which is divided in several layers, or regions (Fig.1.3.2), which are usually identified as

(Schunk and Nagy, 2004):

• D-region (60-100 km). The chemical processes are the most important, therefore

this region is sometimes referred as C-region due to its complicated chemistry.

Molecular ions are the most abundant and N2, O2 and O are the most abundant

neutral species. In the D region there are both positive and negative ions.
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Chapter 1 Introduction

900

800

700

600

500

400

300

200

100

0
103 104 105 106

Electron density (cm–3)

A
lt
it
u
d
e
 (

k
m

)

Io
n
o
s
p
h
e
re

T
o
p
s
id

e
io

n
o
s
p
h
e
re

P
ro

to
n
o
s
p
h
e
re

F2

F1
E

D

O2
+, N2

+, NO+

He+, H+

o+

Cambridge University 

Figure 1.3.2.: Density profiles for several ionospheric ions. Different ionospheric regions are also indicated.

Note that this figure is relative to a mid-latitude ionosphere. The polar ionosphere has in fact different

profiles, especially for the O+. [from Schunk and Nagy (2004)]

• E-region (100-150 km). Its name stems from the fact that it was initially observed

that this region was able to reflect electric fields. The chemical reactions are still

very important but not as complicated as in the D region. The major ions are NO+

and O+
2 . The ion density1 is about 1011 m−3, while the neutral density is about

1017 m−3, therefore the plasma is weakly ionized. Northern lights occurs in this

region. There exist observations of NEIALs at 146 km, at the boundary between

E-region and the above F-region (see Rietveld et al. 1991).

• F-region (150-350 km). It is often subdivided in F1 and F2 regions. At lower lati-

tudes O+ is the dominant ion species up to 300 km, then above 300 km H+ becomes

more and more abundant. In the polar ionosphere, however, O+may dominate up to

600 km and higher, depending on magnetospheric and solar conditions. The maxi-

mum electron density usually occurs around 300 km, in the F2 region, as a result of

balance between plasma transport and chemical loss processes. The electron den-

sity is about 1012 m−3 and the neutral density is about 1014 m−3, hence the plasma

is partially ionized, and collisions between the different charged particles and be-

tween the charged particle and neutrals must be taken into account. A lot of NEIAL

events occur in the upper part of this region.

• Topside ionosphere (350-1000 km). Although the neutrals still outnumber the ions,

the plasma can safely be assumed fully ionized and only collisions between charged

particles need to be considered. In the polar ionosphere, the dominant species are

O+ and H+ and, to a lesser extent, He+; their exact concentration depends on solar

conditions and temperatures (Banks and Kockarts, 1973). The most of NEIAL

events occurs in this region, together with strong ion outflows.

1Albeit it is widely referred as “density”, this is actually a number density, that is, the number of particles

per cubic meter.
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1.3 Ionosphere

The temperature of the ionosphere is essentially controlled by the absorption of UV solar

radiation. Since the electrons have a larger mobility and heat conductivity, their temper-

ature becomes higher than the ion temperature, reaching easily 2000 K at about 250 km

altitude. The ions interact by collisions more strongly with the neutral gas and much of

their excess energy is transferred to neutral gas. Therefore the ion temperature is mostly

equal to that of the neutrals up to 300 km. Above this altitude, where ion-neutral collisions

are less and less frequent, we can assume Te > Ti > Tn. Due to the strong dependence on

solar radiation, the ion and electron temperatures varies strongly with time of the day,

season and solar activity (Brekke, 2012).

Currents in the ionosphere

The magnetosphere-ionosphere-atmosphere system at high latitudes is strongly coupled

via several mechanisms, e.g. electric fields, particle precipitation and field aligned cur-

rents (Brekke, 2012 and Schunk and Nagy, 2004).

The convection electric field has origin in the solar wind and IMF. The latter penetrates the

magnetopause and connects with the geomagnetic field in a circular region called polar

cap. The connection between ionosphere and magnetosphere is held by open field lines,

along which charged particles can penetrate in the lower layers of atmosphere. Note

that field lines in the auroral oval are closed, but they are nevertheless stretched in the

magnetospheric tail (see Fig.1.3.3).

E

EE

E

E

B

X-line
X-lineOpen-closed field

line boundary

Magnetopause
current layer

Usw

U

Press, 2010

Figure 1.3.3.: Schematic view of Earth magnetosphere. On the left there is the solar wind flowing, carrying

a southward IMF. The X-line are the lines interested by the reconnection process. The electric field

points from dawn to dusk. North is up. [from Schunk and Nagy (2004)]

Now, since the solar wind is a highly conducting, collisionless and magnetized plasma,

it can be described to the lowest order by the MHD equations, where the electric field in

the solar wind is governed by the equation E = −usw×B (where usw is the solar wind

velocity vector). This electric field, visible in Fig.1.3.3, is of course always perpendicular

to B and it is mapped at ionospheric altitudes along the highly conductive geomagnetic

field lines. Fig.1.3.4 shows the fields and currents in the vicinity of the Earth. The mapped

9



Chapter 1 Introduction

electric field on the polar cap implies that the charges on the polar cap boundary (positive

on the right and negative on the left of Fig.1.3.4) act to induce electric fields on nearby

closed lines that are of opposite direction to the mapped electric field in the polar cap.

On the field lines that separate these opposite electric fields, field aligned currents flow

between the ionosphere and the magnetosphere. These currents are known as Birkeland

currents, in honor of the famous Norwegian physicist Kristian Birkeland (1867-1917).

The precipitating electrons are responsible for the upward Birkeland current, while the

associated upflowing electrons of ionospheric origin are responsible for the downward

Birkeland current. The current system is then closed by horizontal currents, as depicted

in Fig.1.3.4.

E E

E

E

E

B

E

E

E

Usw Usw

Dusk Dawn

Magnetopause

Field-aligned
currents

Pedersen currents

Press, 2010

Figure 1.3.4.: Electric and magnetic fields in the vicinity of the Earth. The Sun is in front of the observer

and the solar wind is flowing toward the observer. The north is at the top. [from Schunk and Nagy

(2004)]

The field aligned currents are concentrated in two regions that encircle the geomagnetic

pole (Fig.1.3.5). In the poleward Region-1 currents flow into ionosphere in the dawn side

and away from the ionosphere on the dusk side. In the equatorward Region-2 currents

flow away from the ionosphere on the dawn side and into the ionosphere on the dusk side.

When the IMF is northward, an additional current exists in the polar cap, called NBZ

current, (Northward Bz), due to its dependence on the Bz component of the IMF. The

intensity of the NBZ current is directly proportional to Bz; it has been observed that,

when the NBZ current is present, the Region 1 and 2 currents are still existing, but with a

diminished intensity.
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Figure 1.3.5.: Distribution in Region-1 and Region-2 of field aligned (Birkeland) currents for (a) quiet

conditions and (b) active periods. [from Schunk and Nagy (2004)]
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2. Ion outflows

2.1. Overview

During the past forty years, we have got an increasing knowledge regarding the many

physical processes occurring in the Earth’s atmosphere. Among them, ion outflows play

an important part, e.g. for their role as ions suppliers of the magnetosphere and their

probable connection with the natural enhanced ion acoustic lines (NEIALs).

There exists several outflow processes, and it is possible to group them into two general

categories: bulk ion outflows and ion energization processes. We can summarize their

characteristics (Yau and André, 1997):

• Bulk ion outflows : low energies (usually a few eV) and bulk ion velocities, where

all the ions acquire energy. Typical bulk ion outflows are the polar wind and the

auroral outflow, which is also referred as thermal ion upflow (TIU);

• Ion energization processes: higher energies where the energization can affect only

a fraction of the ions. Typical ion energization processes include upwelling ions,

ion beams, ion conics and transversely accelerated ions (TAI).

In this work we will focus on the auroral outflow, so when we use the term “ion outflow”

we actually mean bulk auroral ion outflow.

In this chapter we will look at the basic characteristics of the different bulk ion outflows

processes, the possible explanations of their acceleration mechanisms and their relation

with NEIALs.

The existence of bulk ion outflow was first theorized by Block and Fälthammar (1968).

The first observation of magnetic field-aligned bulk ion outflow is reported by Shelley

et al. (1972). They have been also observed in the polar regions using the incoherent

scatter technique by means of the EISCAT radar systems (Wahlund et al., 1992b and

reference therein).

As described by Schunk (2000), enhancements in the ion temperature Ti and electron tem-

perature Te lead to increasing pressures (due to P = nkT ) which in turn create plasma

upwellings from the F region. In non-auroral regions this flow is basically an ambipolar

flow. Usually, plasma pressures together with ambipolar electric fields are sufficient to

describe the upwelling of the lighter ions (H+ and He+) and this is in fact the basic mech-

anism explaining the generation of the classical polar wind. However, heavier ions require

higher energies which cannot be supplied by pressure gradient and ambipolar electric field

alone; the O+ions, for example, require about 10 eV to escape the ionosphere.

We will now discuss briefly the polar wind and then we will concentrate on the auroral ion

outflow. Note, however, that some of these processes tend to overlap, so it is not always

possible to fully categorize an event.
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Chapter 2 Ion outflows

2.2. Polar wind

Studies from the 1960s confirmed the possibility, for light ions such as H+ and He+,

to escape the Earth’s gravitational attraction (see e.g. Bates and Patterson, 1962). The

explanation is provided by the thermal evaporation theory: due to the lower pressure in

the tail with respect to the ionosphere, light ions can escape along the magnetic field

lines. At first, it was believed that the ions velocity should be comparable with their

thermal speed, but after successive studies and measurements it was clear that velocity

becomes supersonic at relatively high altitudes. The term “polar wind” was coined by

Axford (1968) to describe the supersonic ion flow at collisionless altitudes, in analogy to

the solar wind.

The characteristics of topside ionosphere are dependent, among other things, on the geo-

magnetic latitude. Satellite measurements have shown that at higher latitudes it is possible

to observe some peculiar effects. As pointed out in Banks and Kockarts (1973) the most

important anomalies in the polar ionosphere are:

1. O+ is the most abundant ion component up to 4000 Km at these latitudes, whereas

on lower geomagnetic latitudes the principal component is H+.

2. The polar nighttime electron densities are very small (down to 3×107 m−3 at 3000km)

3. Above 2000km a change in ion composition from H+ to O+ occurs near a magnetic

latitude of 60° as one progresses poleward.

4. Large-scale upward fluxes of H+ have been observed outside the plasmapause.

Satellite observations have shown that, outside the plasmapause boundary, much lower

densities are found. In Fig.2.2.1 it is shown the sharp decrease of H+ density. The O+

density, on the other hand, is not affected by such a large decrease and hence it is the

dominant ionic constituent in polar regions. The density is shown as a function of the

parameter L, which is defined as L = r0/Re where Re is the Earth radius and r0 is the

distance from the Earth center at which a given field line hits the equatorial plane. For

a place on Earth with magnetic latitude λm and where r = Re, the magnetic field line

through that place reaches the equatorial plane at a distance r0 =
Re

cos2 λm
(Brekke, 2012).

Successive studies helped to identify the phenomenon known as classical polar wind,

which is caused by an ambipolar outflow and, as we can read in Schunk and Nagy (2004),

goes through four different transformations as it flows up:

1. from chemical to diffusion dominated;

2. from subsonic to supersonic flow;

3. from collisional to collisionless regime;

4. from O+ to H+ions.

Other accelerating forces include plasma pressure gradients, magnetic mirror force and

E×B convection; decelerating forces include gravitation and ion-neutral collision (André

and Yau, 1997).

The presence of electric fields causes a horizontal motion in the form of convections in

and out of typical structures as the polar cap and nocturnal auroral oval. This effect is im-

portant because the timescale of the upflow is comparable with the timescale of the flow
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2.2 Polar wind

Figure 2.2.1.: H+ density as a function of L for different levels of magnetic activities Kp. [from Chappell

et al. (1970)]

across the polar cap, which means that the local conditions are always changing. Hence a

lot of complications can arise in modeling the polar wind and this is the reason why sev-

eral mathematical approaches are used in its theoretical description, e.g. hydrodynamic,

hydromagnetic, generalized transport and kinetic.

The hydrodynamic approach has shown that H+ outflow affects both H+and O+ temper-

atures. It was shown that as the H+ velocity increases the O+ temperatures decreases.

This happens because the increase in H+ velocity is related to a decrease in its density

and hence the O+ ions will be more coupled to the relatively colder neutrals, which will

cause the decrease of O+ temperature.

Regarding the H+ temperature, its behavior is complicated by the contribution to the

thermal balance from e.g. convection and frictional heating. However, the general trend

is that, due to frictional heating, H+ temperature increases as its velocity increases, since

H+ is moving faster and faster in a gravitationally bounded O+. Note, however, that this

is strictly true only for subsonic velocities.

Another important peculiarity of the polar wind is the H+ flux limiting character, as it can

be clearly see in Fig.2.2.2. Here the H+ flux is proportional to the H+ and O+ densities

until it reaches asymptotic values. The process behind this behavior is the exchange

reaction O++H←−→ O+H+, which limits the H+ production and, since the escape rate

is dependent upon the production, we get the limiting flux.

Similar solutions have been found also for He+. In addition, several other processes exist

in the polar wind, however their in-depth treatment is beyond the scope of this work.

It is important to note that there are several restrictions to all of this. First of all the above
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Figure 2.2.2.: The H+ escape flux for different boundary densities and neutral hydrogen densities. [from

Schunk and Nagy (2004)]

results are valid only if O+ ions are gravitationally bounded. If O+ is energized we have

an O+ outflow at lower altitudes which will cause a decrease in its density and hence will

affect the H+ flow.

In addition we need a collision-dominated environment. A rough relation to check if and

where this is true is: ui ≪ Hiνi (ui is the ion velocity, Hi is the scale height and νi the

ion-ion collision frequency); basically the ionosphere is collisionless up to 1500km for

H+ and up to 3000km for O+ and He+ (Schunk and Nagy, 2004).

The last assumption we need is a steady-state situation, which greatly simplifies the mod-

els, even though the polar wind is very rarely in a steady state. To overcome this difficulty,

3-D time-dependent simulations of polar wind have been used, which gave several inter-

esting results. Among them (see Schunk and Nagy (2004) for an in-depth treatment):

1. Plasma convection through the auroral oval and regions of high electric fields pro-

duces transient O+ upflows and downflows.

2. O+ upflows usually occur in the auroral oval at all local times and downflows occur

in the polar cap. However, if there is an increasing magnetic activity, O+ upflows

can occur in the polar cap. Generally the O+ upflows are stronger where both Te

and Ti are high.

3. During strong magnetic activity, O+ can be the dominant ion up to 9000km.

These polar wind simulations represent the classical polar wind, which is due to thermal

processes in the lower ionosphere. However there can be other processes affecting the

polar wind which are not included in the classical picture, e.g.

1. escaping photoelectrons, which may provide additional acceleration at about 7000km

since they drag the thermal ions with them.

2. cusp ion beams and conics can destabilize the polar wind when they pass through it

at high altitudes, resulting in a wave-particle interaction which modifies velocities

and fluxes.
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2.3 Auroral ion outflow

3. anomalous resistivity on auroral field lines can affect the polar wind as the plasma

convects through the nocturnal auroral oval

In this case the polar wind is usually referred as non-classical polar wind. Fig.2.2.3 shows

the non-classical processes that can affect the polar wind.
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Figure 2.2.3.: Main non-classical processes affecting the polar wind. [from Schunk and Nagy (2004)]

2.3. Auroral ion outflow

Observations have shown that there are several ion species involved in ion outflows, albeit

the most important are H+ and O+. Apart from the polar wind, in its classical and non-

classical occurrence, the other important bulk process is the auroral ion outflow, which

consists mainly of O+ ions, with sometimes a NO+ component and with an H+ compo-

nent less than 10% below 900km. The bulk ion auroral outflows are observed on a wide

range of altitudes, usually from 350 to 1500km, but it is possible to find them even at

lower altitudes (see, for example, Rietveld et al., 1991, Forme et al., 1995 and Ogawa

et al., 2011). The ions usually reach a velocity of 1500m s−1 between 900 and 1500km.
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Flux can be as high as 1014 m−2s−1. As showed by Ogawa et al. (2009), they are highly

correlated with the solar wind density and the IMF By component, but they occur less

frequently when the geomagnetic activity index (KP), solar wind velocity and negative

(southward) IMF Bz component are high.

The most evident difference between polar wind and auroral ion outflow is that the latter

will not usually push ions outside of the ionosphere, unless further energizations occurs at

higher altitudes. This is because the heavier ions such as O+ cannot easily escape gravity.

In addition, the flux is always subsonic, whereas the polar wind is supersonic above a

certain altitude. The ions that do not reach the escape velocity will fall down in the lower

altitude ionosphere.

The bulk ion auroral outflows are thermal processes. When the energies are much higher

the velocity distribution of the particles deviates from a maxwellian and non-thermal pro-

cesses (e.g. ion beams and ion conics) take place.

Statistical studies on outflows can be find in Endo et al. (2000). They determined the MLT

distribution and KP dependence of ion upflow and downflow events using the EISCAT

VHF radar in Tromsø. We can summarize their findings:

1. Ion outflow and downflow events can be observed at any MLT, both in dayside and

nightside, and for any KP.

2. Upflow and downflows are more common in the nightside.

3. Upflow events are usually more common than downflow events (except around mid-

night), irrespective of KP values.

4. Occurrence frequencies of both upflows and downflows are directly proportional to

KP level, however the occurrence frequencies of the downflows seem to stop after

a certain level (Fig.2.3.1), probably due to the fact that for higher KP the upflowing

ions can get energies high enough to escape gravity and therefore they will not fall

back on Earth.

There exist two different classes of auroral ion outflow, type-I and type-II, which were

identified by Wahlund et al. (1992b).

The type-I ion outflow is characterized by an enhanced and anisotropic ion temperature

Ti with Ti⊥ > Ti‖ and a low electron density, especially below 300km. The temperature

anisotropy is due to large (usually above 50mV m−1) perpendicular electric fields causing

strong frictional heating (Løvhaug and Flå, 1986) and the low electron density is due to

a lack of auroral particle precipitation. Fig.2.3.2 shows a good example of type I ion

outflow. We are now going to discuss this figure in more detail, since this type of color

plot is widely use in this work (e.g. in chapter 5). Panel 1 shows the electron density,

useful to check, for instance, the presence of particle precipitation. Panel 2 shows the

electron temperature, which in this particular case was not homogeneously enhanced for

the entire ion upflow event, while the ion temperature (Panel 3) was clearly enhanced at

about 1800 and 2030 UT. Panel 4 shows the ion velocity (positive means ions drifting

away from the Earth) and it was fundamental in this work to identify ion outflows to

analyze. Finally Panel 5 give us some information about the radar settings, e.g. system

temperature, elevation and azimuth. The last two are useful, for instance, to check if the
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2.3 Auroral ion outflow

Figure 2.3.1.: KP dependence of ion upflow and downflow for every MLT. Note how the downflow occur-

rence do not increase at high KP values (from Endo et al., 2000)

antenna was pointed field aligned or if the experiment was a multiposition one (i.e. the

antenna switched between 2 or more different positions at regular time intervals)

Since the 1970s it was theoretically clear that non-Maxwellian distributions can develop

if strong electric and magnetic crossed fields are present in collisional plasma (see, for ex-

ample, the in-depth review of St-Maurice and Schunk, 1979). In the case of the ionosphere

F region, if the ion-neutral collision frequency is less than ion cyclotron frequency and if

the E×B drift is larger than neutral thermal velocity, it will then result in a toroidal-shape

distribution in velocity space.

The basic mechanism explaining the ion (and neutral) temperature enhancement is the

Joule heating effect, which is responsible for the energy transfer between ions and neutrals

and can also be seen as a manifestation of the magnetosphere-ionosphere coupling, since

it is one of the mechanisms whereby the energy originated in the solar wind is released in

the Earth’s atmosphere (Davies et al., 1997).

The type-II ion outflow (Fig.2.3.3) is characterized by an enhanced electron temperature

(as high as 6000K), a fairly high electron density but a not affected ion temperature,

which enforce the idea that the acceleration mechanisms of type-I and type-II are, at least

partly, different, since the lack of high ion temperatures is in fact in contrast with the Joule

heating mechanism proposed for type-I outflows.

Nevertheless there exist several attempts to explain the generation mechanisms of type-II
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Chapter 2 Ion outflows

outflows; most of the authors agrees on some responsibility of field aligned electric field

for the ion outflow generation and acceleration. There are however some controversy

about the source of the field aligned electric field: many studies propose the soft electron

particle precipitation as a source for the field aligned electric field (e.g. Horwitz and

Moore, 1997; Burchill et al., 2010), while others proved that, at least in some cases, the

soft electrons are not a good explanation for the observed ion outflow (e.g. Kagan and

St.-Maurice, 2005).
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2.3 Auroral ion outflow

EISCAT UHF RADAR
NI, uhf, cp1l, 18 October 2001

Produced@EISCAT−T, 22−Nov−2004 Not for publication − see Rules−of−the−road
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Figure 2.3.2.: Example of type-I ion upflow occurring on 18 October 2001. Note the enhanced ion temper-

ature around 18:00 and 20:30 UT where the ion temperature exceeded the electron temperature. [from

EISCAT Scientific Association (2013)]
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EISCAT SVALBARD RADAR
CP, 42m, steffe, 27 September 2005

Produced@EISCAT−L, 28−Sep−2005 Not for publication − see Rules−of−the−road
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Figure 2.3.3.: Example of type-II ion upflow occurring between 07:00 and 12:00 UT on 27 September

2005. Note the enhanced electron temperature during this period while the ion temperature remained

mostly unaffected and always lower in magnitude than electron temperature. A weaker and shorter

type-II outflow is also visible around 21:00 UT. [from EISCAT Scientific Association (2013)]
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2.4 Acceleration mechanisms

2.4. Acceleration mechanisms

The acceleration mechanisms of the ion outflows are not yet fully understood. Several

theories have been proposed in the last thirty years, but so far none of them is able to pro-

vide a complete description of the acceleration process. The most common and recurring

in literature (see e.g. Burchill et al., 2010) are:

1. Frictional heating

2. Soft electron precipitation

3. Anisotropic ion heating of plasma waves

4. Precipitation of heavy ions from the ring current

5. High frequency turbulence affecting electrons

We will now give a brief overview of these different theories.

2.4.1. Frictional heating

Loranc and St. Maurice (1994) investigated the effect of ion frictional heating in ion

upflows developing a time-dependent gyro-kinetic model of the high latitude F region

response to frictional heating. The kinetic model gave them quantitatively different results

with respect to the fluid model, and they argue that the differences could not be due

to the limitations of the kinetic model they used, but rather that they may be linked to

the limitations of the fluid equations themselves. The reason lies in the assumptions

made about velocity distributions: the transport equation in the fluid model is built on

the assumption of zeroth-order maxwellian or bi-maxwellian distribution, whereas Loranc

and St. Maurice (1994) obtained some very large departures from maxwellian ion velocity

distributions.

They simulated the passage of a convecting flux tube through a spatially localized fric-

tional heating region by specifying the exobase parallel and perpendicular temperature

under different conditions (standard conditions, short duration heating, slow heating and

cooling, elevated electron temperature, small temperature increase and large temperature

increase) and under several assumptions about plasma components, exobase structure,

collisions, polarization fields.

As we mentioned, they used a kinetic model, where the single component O+ plasma is

described by the ion guiding center motion and electrons follows a Boltzmann distribu-

tion.

They considered the neutral exobase to form a discontinuous boundary between the weakly

ionized and the fully ionized plasma, which means that in the model the plasma changes

discontinuously from weakly to fully ionized across an altitude near the neutral exobase,

which was placed arbitrarily at 500km.

In addition they omitted the effects of ion-ion collisions and chemistry, which is usually a

fair assumption if the streams are equal or higher than 3000m s−1 for 400km altitude and

ion densities not higher than 1011 m−3; and this is indeed the case in the work of Loranc

and St. Maurice (1994).
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They also assumed that the ion distribution function below the exobase (and hence in the

collisional regime) could be approximated by a bi-maxwellian distribution function. Al-

beit it was observed that non-maxwellian distortions are an intrinsic part of frictional heat-

ing, they argued that in the parallel direction and for their particular study a maxwellian

distribution was reasonable.

We can summarize their findings:

1. Their model responded to the frictional heating with transient ion parallel velocities

higher than 3000m s−1, temperatures higher than 10000K and as high as 20000K

and fluxes higher than 1015 m2 s−1.

2. In all case studied, the largest parallel fluxes were produced near the exobase.

3. In contrast to the parallel flux, the parallel velocity and temperature initially in-

creased with altitude.

4. Well after heating ceased, large parallel temperature and downward velocities and

fluxes developed as the flux returned to diffusive equilibrium.

5. After the heating ceased, the maximum downward parallel velocities are compa-

rable in magnitude to the maximum upward velocities but the maximum parallel

temperatures were much less than the maximum temperatures during the heating

phase.

Loranc and St. Maurice (1994) observed that their model requires substantial electron

temperature enhancements and ion-neutral frictional heating to reproduce the largest ob-

served ion fluxes. However, there is an important difference between their conclusions and

the results from the fluid model: the upward ion parallel velocities and fluxes produced

by fluid models are significantly smaller than those produced by their kinetic model.

2.4.2. Soft electron precipitation

A review of the soft auroral electron precipitation role in the subject of the outflow ac-

celeration can be found in Horwitz and Moore (1997). They discuss the effects of soft

electron (i.e. with an energy below 0.5keV) precipitation on high latitude F region iono-

spheric upflows. Such electron precipitation can occur particularly during northward IMF

conditions (Makita et al., 1988).

Liu et al. (1995), in order to study the effect of soft-particle precipitation and frictional

heating on the ion outflow, made use of the so-called Field Line Interhemispheric Plasma

(FLIP) model. They included the effects of electron precipitation and ion frictional heat-

ing using measurements from HILAT and DE-2 satellites as inputs for the model. Results

indicated that the combined effects of soft electron precipitation and ion frictional heating

are the principal drivers of ion outflows. In particular the upflows can be attributed to

the precipitation-induced abrupt ionization and thermal electron heating and subsequent

plasma expansion, while the ion temperature variations can be attributed to variations

in frictional heating. Fig.2.4.1 shows indeed that the soft-electron precipitation is suffi-

cient to explain the peak upflow velocities at an altitude of 700km whereas the frictional

heating are of secondary importance in the driving of ionospheric upflow despite their

importance for the ion temperatures.
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l•igure 2. The data shown as dotted lines were ob- 
tained by the DE-2 satellite for November 4, 1981 from 
UT 16h45 m to 16h55 m when the satellite went through 
the nightside auroral region (data taken in part from 
Lu et al. [1992]). The model results are shown as the 
solid lines. 

Case B: DE-2-November 4, 1981 

In this case (Figure 2), we model the data presented 
by Lu et al. [1992] (displayed as dotted lines ifi Figure 
2), from the altitude range 700- 800 km from DE-2 on 
November 4, 1981 from 16•45 m to 16a55 m UT when 
the satellite went through the nightside auroral oval. It 
should be noted that the total electron energy flux from 
4 eV to 32 keV as presented by Lu et al. [1992] is not 
what is shown as the top panel of Figure 2. Since ion- 
ization in the F-region arises mainly from soft electron 
precipitation while harder electron precipitation con- 
tributes to the auroral emission and E-region ionization 
[e.g., Richards, 1995]. Therefore, we directly accessed 
the LAPI electron data for this pass and calculated the 
energy flux and the average energy as integrated or av- 
eraged only over energies less than I keV. These re- 
strictions provide much more appropriate parameters 
for F-region and topside ionospheric plasma dynamics. 

As in Figure 1, the frictional heating and the electron 
precipitation for the top panels of data are presumed 
(for lack of alternative information) to be turned on up 
to their current values (over ten minutes) for all these 

flux tubes 30 minutes earlier than the observation time 

(UT ~ 16h49"•30•). All the simulation inputs (pan- 
els (a), (b), (d)) and the results (the remaining bottom 
panels) are shown as the solid lines in Figure 2. The ver- 
tical lines at the peaks of precipitation energy flux and 
maximum convection speed are also shown to aid in the 
identification of correspondence with vertical flow, ion 
temperature and other ionospheric profile features. We 
slightly modified the neutral wind velocity used in the 
model so that the background plasma density (at 650 ) 
was approximately in agreement with observed density. 

We find from Figure 2 that the observed soft electron 
precipitation energy flux of 3 ergs cm -2 s -1 and about 
100 eV average energy can indeed produce the observed 
peak O + upward flux 3 x 109 cm -• s -• at about 68.4 ø. 
The other observed peak in upfiux near 69.2 ø is simi- 
larly reproduced primarily by the electron precipitation 
effects in the simulation. The latitudinal profiles of the 
simulated and observed ion densities and upfiow veloc- 
ities show good agreement. We also see that the ion 
temperature variation with latitude is also reproduced 
by the simulated profile, indicating that the frictional 
heating readily obtained from the observed convection 
speeds dominates the ion temperature behavior. 

In order to provide some indication of the relative 
importance of the convection heating and precipitation 
in such outflows as well the time constants involved, we 
modeled the time variation of the upfiow velocity and 
density for a typical flux tube at 700 km altitude, for 
selected values of electron primary energy flux and con- 
vection speed. The ionospheric plasma temporal varia- 
tions in Figure 3 are produced with an auroral electron 
precipitation of 3.7 ergs cm -• s -x with an average en- 
ergy of 125 eV, and/or an ion convection velocity of 
0.81 km/s. These two driving parameters correspond 
to the DE 2 data of Figure 2 for the invariant latitude 
68.4 ø, which has a peak for the electron energy flux and 
shows the largest ion outflow. 

In Figure 3, we show the temporal variation of the 
upfiow velocity and density when the electron precipi- 
tation and the cortvection velocity are linearly increased 
to the observed values over 10 minutes and then held 
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l•igure 3. The evolution of the upfiow velocity (left 
panel) and the O + density (right panel) at the altitude 
700 km including only electron auroral precipitation of 
3.7 ergs cm -• s -x for (b), only ion heating for a con- 
vection velocity of 0.81 km/s in line (c), and with both 
inputs in line (a). 

Figure 2.4.1.: Evolution of the upflow velocity (left) and O+ density (right) at an altitude of 700km includ-

ing: (a) electron precipitation and frictional heating; (b) only electron precipitation; (c) only frictional

heating. [from Liu et al. (1995)]

Caton et al. (1996) employed the same ionospheric plasma transport model as Liu et al.

(1995) but used measurements from EISCAT radar as input. In the 200− 900km alti-

tude range they used a precipitating electron energy flux equal to 1erg cm−1 m−2 with

an average energy of 100eV, a convection speed equal to 1200m s−1 and a downward

magnetospheric electron heat flux of 1.1×1010 eV cm−1 m−2 to match the temperature

gradient observed.

They turned on and off these inputs individually to study their impact on the altitude

profiles. As it can be seen in Fig.2.4.2 the soft-electron (< 1keV) precipitation has a

dominant role in the production of ionospheric outflows.
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Figure 2. EISCAT measurements (solid lines) a,t 0315 UT on June 23, 1992 together with model 
results including all three input parameters (dotted line). The dashed line is for the case when 
only convection is off (i• overlays the dotted line in the T• and N• plots). The dash-dot-dot-dot- 
dash line is for the case with only precipitation off (it is masked by the dashed line in the Ti 
plot). The dash-dot-dash line is the case when only the topside heat flux is off. 

heating, electron precipitation, and downward electron 
heat fluxes separately, Figure 2 includes the model re- 
sults with each of these inputs turned off individually. 
With no electron precipitation, the model results dis- 
play a significant reduction in the ion and electron tem- 
peratures, and the upflow velocities, throughout the al- 
titude range and a reduction of the modeled F-peak 
densities, indicating that the precipitation is a strong 
factor in producing the measured upflows and temper- 
atures. 

The neglect of convection ion heating significantly re- 
duced the ion temperature (leftmost Ti profile in Fig- 
ure 2) and somewhat reduced the upward ion velocity 
at higher altitudes, but had little effect on the elec- 

tron temperature or overall density profile. When only 
the downward electron heat flux was turned off, we see 
a drastic reduction of the electron temperature, and 
the ion temperatures at high altitudes as well (through 
reduction of the electron-ion collisional heating), and 
a partial reduction of the upflow velocities. It is in- 
teresting to note, however, that although the electron 
temperature reduction is greater when the heat flux is 
turned off than when the precipitation is turned off, the 
ion upflow velocities are larger when the precipitation is 
on. This highlights the importance of the precipitation- 
enhanced density gradient above the F-peak to the am- 
bipolar electric field which drives these upflows. 

A final model-data comparison is shown in Figure 3, 
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Figure 3. Same as Figure 1, for ElSCAT measurements at 1945 UT on March 19, 1991. 

Figure 2.4.2.: EISCAT measurement (solid lines) together with model results including all three input pa-

rameters (dotted line). Dashed line: only convection is off; dash-dot-dot-dot-dash line: only precipitation

off; dash-dot-dash line: only the topside eat flux is off. [from Caton et al. (1996)]

It should be note, however, that a convection velocity equal to 1200m s−1 could give rise

to non-Maxwellian (e.g. toroidal) ion distributions and this can in turn cause uncertainties

in the interpreted temperatures, leading to inaccuracies in the derived radar profiles (see

Davies et al., 1995).

Statistical studies have been conducted by Seo et al. (1997) using measurements from

DE-2 satellite in the 850− 900km altitude range for precipitating soft (≤ 1keV) elec-

trons. They examined 1137 independent samples (resulting from seven satellite passes)

of field aligned ion flow velocities, fluxes, Mach numbers, densities, ion and electron tem-

peratures, soft electron energy fluxes and soft electron average energies. In this data set
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Chapter 2 Ion outflows

the ion velocity range was 500−1500m s−1 and they slightly restricted the soft electron

energy range to 0−2erg cm−2 s−1.

Fig.2.4.3 shows the good correlations (r = 0.97) between electron temperatures and ion

upflow velocities (a) and fluxes (b). This result can be compared to Fig.2.4.4, where in-

stead the correlation is between ion temperatures and ion upflow velocities (a) and fluxes

(b); this time the correlation coefficient is a bit lower (r = 0.91 between ion tempera-

tures and ion velocities and r = 0.94 for ion temperatures and ion fluxes). These results

suggest that the ambipolar electric field associated with enhanced electron temperatures

(as heated by both direct collisions with the precipitating electrons as well as downward

magnetospheric heat fluxes) could have an important role in the driving of ionospheric

upflow. Similar results were obtained by Keating et al. (1990).
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Table 1. Data for the seven DE 2 high-latitude passes used in this study 

Date UT, h Invariant Latitude, de• 
October 27, 1981 0326 - 0330 66.07 - 78.23 

October 28, 1981 0343 -0346 66.88 - 76.08 

October 28, 1981 0646 - 0647 73.67 - 77.00 

October 28, 1981 0959 - 1002 72.84 - 82.36 

October 28, 1981 1144- 1147 66.41 - 73.80 

October 28, 1981 1311 - 1313 75.45 - 80.67 

October 28, 1981 1625 - 1628 69.64 - 77.99 

MLT Altitude, km 

1831 - 1937 857 - 906 

1836- 1925 850- 889 

1117 - 1158 943 - 944 

1049- 1434 937- 944 

2005 - 2016 898 - 920 

0810 - 0823 931 - 939 

0548 - 0700 929 - 941 

In order to elicit direct dependences of these temper- 
atures and field-aligned ion upfiow velocities and up- 
fluxes, we have averaged ion upfiow parameters within 
bins of 500 K extent and show the standard deviation 

bars for these averages as a vertical bar extending up- 
ward and downward from each average. We have then 
obtained linear least squares fits to the averaged field- 
aligned ion upfiow parameters versus the center point 
temperatures. We recognize that the actual relation- 
ships here and in subsequent analyses may not be linear, 
but we believe such procedures and the associated cor- 
relations can point to underlying physical relationships 
of interest. Although the slopes from the least squares 
fits to the field-aligned fluxes are nearly equal for the 
linear functional fits to the electron temperatures (3.38 
x 106, in Figure la) and to the ion temperatures (2.98 
x 106, in Figure 2a), the correlation of the upfiuxes 
is somewhat better with the electron temperatures, r=- 
0.97 with Te, as compared to r=- 0.91 for Ti. 

The correlations of the field-aligned flow velocities 
with the electron and ion temperatures are somewhat 
better than those involving the fluxes. The correlation 
of the field-aligned flow velocities with Te shown in Fig- 
ure lb is rather high, in fact, for such relationships, at 
r=- 0.97. The correlation of the upfiow velocities with 
Ti, shown in Figure 2b is slightly less compelling, with 
r=- 0.94. Field-aligned velocities in the range 500- 1500 
m/s were observed in the auroral zone at these altitudes 
(850- 950 km altitude), but none were larger than about 
1600 m/s for the seven passes examined. 

Relationships of Topside Field-Aligned 
Fluxes and Velocities to Characteristic 

Energies of Soft Electron Precipitation 
Figure 3a displays again the measured field-aligned 

ion fluxes from the IDM measurements plotted here 
versus the average or characteristic soft electron precip- 

3,1010 

'• 2,1010 
.•o 

• 1,1010 

10t 

-, ........ i ......... i ......... i ......... i ......... i ........ t 

Ion UpFlux= 3.38x106 Te- 7.23x10 ø (a 
r= 0.97 

ß No. of Points: 1 I'T ß . 
ß . . 

ß 

ß 

1500 

5OO 

0 

Vel.= 2.23x10 -I Te - 4.59x102 

r= 0.97 
ß 

,.k,:;:. ß .-:'• .... :" ' 

ß. ........ ,. :.:.;.,•.:...., ......... , ......... , ......... , ......... 

)0 2000 3000 4000 5000 6000 7000 1000 2000 3000 4000 5000 6000 7000 

Electron Temperature(K) Electron Temperature(K) 

Figure 1. (a) Ion topside field-aligned upfiuxes and downfluxes and (b) upfiow velocities versus 
the corresponding electron temperatures for the seven DE 2 intervals displayed in Table 1. These 
fluxes and velocities are averaged within 500 K temperature bins, with the standard deviations 
for these quantities displayed as vertical bars around these averages. Shown also are the linear 
least squares fit straight lines, together with the associated correlation coefficients, for the fits to 
these averaged parameters. 

Figure 2.4.3.: (a) correlation between electron temperature and ion outflow fluxes; (b) correlation between

electron temperature and ion outflow velocities. [from Seo et al. (1997)]

Another interesting feature observed by Seo et al. (1997) is the anticorrelation of elec-

tron temperatures and ion temperatures with the average energies of the precipitating

soft electrons (see Fig.2.4.5). From this figure is also evident that: large upflows (≥
5×109 ions cm−2 s) are only observed during periods of very soft (≤ 80eV average en-

ergy) electron precipitation (panel a); the occurrence frequency peaked at low average

energies (20eV) and there is a drastic decrease above 50eV (panel b); upward velocities

exceeding 500m s−1 were only observed for electron precipitation average energies be-

low 80eV and there is a reduction in upward velocity with increasing average electron

precipitation energy (panel c).

Burchill et al. (2010) employed the Cusp-2002 sounding rocket to retrieve information on

thermal ion upflow in proximity to the dayside cusp at altitudes between 640 and 768km.

They found significant correlation between upflow and precipitating magnetosheath elec-

tron energy flux and a weak correlation between ion upflow and wave power in the VLF

band. A summary of their observation:

1. There is a positive correlation (r = 0.62) between the magnitude of the ion up-

flow and the logarithm of the precipitating magnetosheath electron energy flux

when the fluxes are greater than about 1×1010 and less than 3×1011 eV cm−2 s−1

(Fig.2.4.6).

2. Ion upflow is not observed for electron energy fluxes less than about 1010 eV cm−2 s−1

(Fig.2.4.6).
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Figure 2. (a) Ion topside field-aligned upfluxes and 
downfluxes and (b) upfiow velocities versus the corre- 
sponding ion temperatures for the seven DE 2 intervals 
displayed in Table 1. These fluxes and velocities are av- 
eraged within 500 K temperature bins, with the stan- 
dard deviations for these quantities displayed as ver- 
tical bars around these averages. Shown also are the 
linear least squares fit straight lines, together with the 
associated correlation coefficients, for the fits to these 
averaged parameters. 

itation energy obtained through integration of the cor- 
responding distributions for electrons as measured by 
LAPI with energies _<1 keV. We have slightly restricted 
the energy flux range to 0 - 2 ergs cm -2 s -x for this 
plot, so that there were 1105 individual sample points 
obtained from the seven passes considered here. From 
Figure 3a, it is evident that large (>_5 x 109 ions cm -2 
s -x) upfiows are only observed during periods of very 
soft (<_80 eV average energy) electron precipitation. It 
further appears that there is a slight overall trend to- 
ward increasing fluxes at the lowest average energies for 
the "main" cluster of points in Figure 3a, together with 
the separate grouping of high upfiux events occurring at 
characteristic energies below 90 eV. Figure 3b displays 
the event fractional occurrence histogram with the soft 
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Figure 3. (a) Ion field-aligned fluxes plotted versus 
the soft electron precipitation average energy, (b) oc- 
currence histogram distribution of the soft electron av- 
erage energies, and (c) ion field-aligned velocities plot- 
ted versus the soft electron precipitation average energy 
versus the average energy of the _<1 keV precipitating 
electrons. In Figures 3a and 3c, the fluxes and velocities 
were averaged within 25 eV wide bins, with standard de- 
viations and linear least squares fits to the bin averages 
shown. 

Figure 2.4.4.: (a) correlation between ion temperature and ion outflow fluxes; (b) correlation between ion

temperature and ion outflow velocities. [from Seo et al. (1997)]

3. Ion upflow is not correlated with convection electric fields greater than 70mV m−1.

There is, however, a slightly negative correlation (r = −0.38) between ion upflow

and convection electric fields for magnitudes less than about 70mV m−1. One pos-

sible explanation provided by Burchill et al. (2010) is that the electron precipita-

tion leads to enhanced ionospheric conductivity and therefore weaker electric fields

(Fig.2.4.7).

4. Ion upflow correlates weakly with wave power in the VLF (r = 0.33) and BBELF

(r = 0.27) bands.

5. There are positive correlations between ion upflow and the parallel (r = 0.81) and

perpendicular (r = 0.70) ion temperatures (Fig.2.4.8).

6. Observations of ion downflows at the downstream edges of the upflow regions can

be indicative of a return to equilibrium outside the electron precipitation regions.

2.4.3. Anisotropic ion heating by plasma waves

Ganguli et al. (1994) investigated the possible importance of shear-driven processes in

particle energization and ionospheric dynamics.

When thermal ion upflows are located in the convective flow reversal region, the convec-

tive parallel velocity is usually small but spatial gradients can be large, which imply that
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Figure 2. (a) Ion topside field-aligned upfluxes and 
downfluxes and (b) upfiow velocities versus the corre- 
sponding ion temperatures for the seven DE 2 intervals 
displayed in Table 1. These fluxes and velocities are av- 
eraged within 500 K temperature bins, with the stan- 
dard deviations for these quantities displayed as ver- 
tical bars around these averages. Shown also are the 
linear least squares fit straight lines, together with the 
associated correlation coefficients, for the fits to these 
averaged parameters. 

itation energy obtained through integration of the cor- 
responding distributions for electrons as measured by 
LAPI with energies _<1 keV. We have slightly restricted 
the energy flux range to 0 - 2 ergs cm -2 s -x for this 
plot, so that there were 1105 individual sample points 
obtained from the seven passes considered here. From 
Figure 3a, it is evident that large (>_5 x 109 ions cm -2 
s -x) upfiows are only observed during periods of very 
soft (<_80 eV average energy) electron precipitation. It 
further appears that there is a slight overall trend to- 
ward increasing fluxes at the lowest average energies for 
the "main" cluster of points in Figure 3a, together with 
the separate grouping of high upfiux events occurring at 
characteristic energies below 90 eV. Figure 3b displays 
the event fractional occurrence histogram with the soft 
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Figure 3. (a) Ion field-aligned fluxes plotted versus 
the soft electron precipitation average energy, (b) oc- 
currence histogram distribution of the soft electron av- 
erage energies, and (c) ion field-aligned velocities plot- 
ted versus the soft electron precipitation average energy 
versus the average energy of the _<1 keV precipitating 
electrons. In Figures 3a and 3c, the fluxes and velocities 
were averaged within 25 eV wide bins, with standard de- 
viations and linear least squares fits to the bin averages 
shown. 

Figure 2.4.5.: (a) ion fluxes versus soft electron precipitation average energy; (b) occurrence histogram

distribution of soft electron preciptation average energies; (c) ion fluxes versus soft electron preciptation

average energy. [from Seo et al. (1997)]

the Joule heating effect is small. Therefore the high level of ion heating observed (few eV

or more) cannot be explained by the classical Joule heating alone but requires additional

heating source (e.g. plasma waves).

As investigated by Tsunoda et al. (1989), there is a strong correlation between ion heating

and shear in the convective velocities, which suggest an important role of velocity shears.

Ganguli et al. (1994) provided additional evidence for this correlation using measurement

from the DE-2 satellite. Fig.2.4.9 shows a nice example of the good correlation of ion

upflow with the shear in the large-convective flow.

Assuming an ideal ionosphere (only two species, no collisions), they investigated some

of the possible microinstabilities that can be triggered by the velocity shear and followed

their non-linear evolution. They found that a small amount of velocity shear in the trans-

verse flow can be sufficient to excite large-scale Kelvin-Helmholtz mode. Then they used

a particle-in-cell (PIC) code to investigate the non-linear evolution of these low frequency
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2.4 Acceleration mechanisms

Figure 2.4.6.: Ion upflow versus 0°− 45° electron energy flux. The vertical dashed line represents the

electron energy flux threshold at which the spacecraft potential begins to significantly affect the upflow

measurement. [from Burchill et al. (2010)]

Figure 2.4.7.: Relationship between ion upflow and magnitude of convection electric field. [from Burchill

et al. (2010)]

waves and found that they can steepen (i.e. formation of small-scale size density struc-

tures) and give rise to regions of strongly sheared flows. These stressed regions may then

seed plasma waves (microinstabilities) in the range of ion cyclotron to lower hybrid fre-

quencies (Fig.2.4.10), which are potential source of ion heating. Fig.2.4.11 summarizes

this scenario.

However, they also note that their model is still incomplete, since:

• the PIC code does not include collisions and hence cannot be applicable to very low

altitudes;

• they have not evaluated microscopic contributions from another class of shear driven

instabilities, such as the inhomogeneous energy density driven instability (IEDDI),

can potentially energize the ions more efficiently;

• the viscosity model needs further refinements.
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Chapter 2 Ion outflows

Figure 2.4.8.: (a) ion parallel temperature versus ion field-aligned velocity; (a) ion perpendicular tempera-

ture versus ion field-aligned velocity. [from Burchill et al. (2010)]

2.4.4. Precipitation of heavy ions from the ring current

Yeh and Foster (1990) presented an analysis of a 3-hour outflow event at mid-latitude

observed by the Millston Hill incoherent scatter radar during a strong magnetic storm. The

bulk ion speed increased with altitude above 600km and at times exceeded 3000m s−1 at

1000km altitude. The observations were made during an interval of strong frictional ion

heating at adjacent latitudes and intense local heavy ion precipitation from the storm-

inflated ring current.

In their paper Yeh and Foster (1990) examined two possible mechanisms to explain the

ion outflow:

• heavy ion ring current precipitation

• frictional ion heating

They found that intense O+ production (200ions cm−3 s−1) and upward acceleration (be-

tween 5 and 10m s−2) of ion bulk motion took place between altitudes of 600-800km. An

explanation of these features can involve a mechanism suggested by Torr et al. (1974) in

which intense precipitating O+ at mid-latitude during magnetic storms can produce large
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Figure 1. (continued) 

frictional heating. Average outward and return thermal ion 
fluxes are of the order of 109 cm -2 s -1 that can be easily 
supported on a global basis. However, fluxes in excess of 
10 lø cm -2 s -1 have been observed in temporally and/or 
spatially confined events such as those shown here [Heelis et 
al., 1984] and are believed to be associated with processes 
by which the ionospheric plasma may be provided with 
escape energy. 

Figure lb is another example that shows the magnetic field 
aligned and transverse (to the orbit plane) ion drifts mea- 
sured from the DE 1 spacecraft during a transit of the 
northern high latitude region from the high to low latitudes in 
the 1000-1200 MLT sector. Once again, ion energization and 
upwelling are found to be well correlated with the shear in 
the large-scale convective flow. The vertical drifts are shown 
by species for oxygen and helium ions. Hydrogen ions show 
an enhancement of both bulk velocity and flux that is similar 
to that of the helium. The data,show that a common feature 

of these "upwelling ion events" is the presence of a fast and 
localized convection channel that is associated with the 

"throat" of the dayside cusp region. The flow in the channel 
is eastward, toward noon, and the sense of the shears at the 
edges of the channel correspond to an upward field-aligned 
current at the equatorward edge, and a downward field- 
aligned current at the poleward edge. The magnitudes of the 
field-aligned flow are comparable to the transverse drifts. 
The helium drift and flux are strongly peaked near the 
equatorward shear feature, while the O + velocity and flux 
are more extended across the flow feature. A generally 
poleward component of drift (not shown) is also present, 

tending to carry the outflow in the poleward direction 
between the ionosphere and the observing point at nearly 
2RE geocentric. However, this component of drift is much 
smaller than either the field-aligned or transverse drifts. 
These observations lead naturally to an inquiry into the 
effects of frictional heating in the strong flow and viscous 
and/or wave heating in the strong shear feature. Here we will 
provide a theoretical framework within which such observa- 
tions might be explained. 

The ion upflow events such as the cleft ion fountain appear 
to be driven by a process which operates at low altitude to 
heat the ions and initiates a slow upflow. Other processes 
operating at higher altitude provide additional energization 
and may accelerate the flow. A number of possible mecha- 
nisms for high altitude heating exist. Simulations with the 
generalized fluid model of Ganguli and Palmadesso [1987] 
have shown that at high altitudes ions are heated in the 
perpendicular direction when macroscopic effects of plasma 
microprocesses (e.g., electrostatic ion cyclotron (EIC) insta- 
bility and anomalous resistivity in this case) are included. A 
number of other mechanisms have been suggested for ion 
conics [Crew et al., 1990, and references therein], which also 
occur at altitudes higher than the cleft ion fountain source 
region. It is not yet clear, however, what the mechanism is 
for the low-altitude ion heating in the cleft and/or cusp 
ionosphere. At low altitudes, where cleft ion fountain heat- 
ing is observed in high-density, low-velocity plasmas, it is 
difficult to excite current-driven instabilities with reasonable 

levels of field-aligned currents. For example, from Tsunoda 
et al. [1989], the field-aligned current (FAC) may be calcu- 

Figure 2.4.9.: Ion bulk parameters derived using DCE values from the short wire (z) antenna on DE-1

spacecraft. [from Ganguli et al. (1994)]

fluxes of back-splash energetic O+ moving upwards from the topside ionosphere. They

argue that the newly produced O+ can account for sufficient momentum to explain the

acceleration of the bulk ion motion with increasing altitude.

A second possible theory is based on the fact that upward O+ velocities larger than

2000m s−1 can develop in several hundred seconds on flux tubes subjected to ion tem-

peratures of 5000K in the collisional F region. Since large convection velocities and

evidence for strong frictional heating were observed immediately poleward of Millstone

Hill, Yeh and Foster (1990) suggested that the ion outflow they observed occurred on flux

tubes which had recently exited from a region of strong frictional heating.

2.4.5. High frequency turbulence affecting electrons

Kagan and St.-Maurice (2005) noticed that an explanation based on a field aligned elec-

tric field alone would disagree with the momentum balance. Therefore they introduced

the electron energy balance in the system, finding the consistency with the field aligned

electric field explanation, but with the additional presence of electron scattering due to a

high frequency turbulence.

They analyzed the three most probable explanations for a high electron temperature,

namely:

• soft electron precipitation, which is not possible because the temperature increases

above the F-peak and above the layer where electrons deposit their energy
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Figure 2. A hierarchy of microinstabilities that can be triggered by velocity shear. Note only the 
instabilities investigated by us are listed. In principle, many other waves may be excited by velocity shear. 

•, -• 12 mho, we see that the total power available is around 
1.2 to 30 ergs cm -2 s-• which is orders of magnitude larger 
than necessary. Thus, even if a very small fraction of the 
total available energy can be dissipated by the instabilities 
leading to ion energization, then ion upwelling can easily be 
sustained. Now the question is whether the instability mech- 
anism we suggest is efiScient enough to accomplish this. We 
return to this point later. 

Since the waves discussed above are sustained by velocity 
shear and there is strong observational correlation of ion 
heating to velocity shear, it is highly probable that these 
waves play an important role in energizing the ions. A 
primary focus of this investigation is to explore, quantify, 
and establish this possibility. In the following we report our 
preliminary results. Our theory depends on an interplay 
between macroprocesses and microprocesses. We achieve 
this by coupling the outcome of a two-dimensional fluid code 

I ß ß 

with a 2•-d•mens•onal particle code. We find that the cou- 
pling of macroprocesses and microdynamics can explain a 
number of observed features such as low-altitude energiza- 
tion, formation of hot tails, and density morphology. 

2. Model 

For the purpose of this study we assume an ideal iono- 
sphere (two species, no collision, etc.) but focus on to the 
important effects due to velocity shear. As low-frequency 
waves (such as the KH instability [Keskinen et al., 1988; 
Theilhaber and Birdsall, 1989]) evolve, they steepen and 
generate stressed regions with large shear frequency % 

self-consistently. We define the shear frequency, % = 
]dV/dx]max "• Vø/L, where V ø and L are the peak and the 
scale size of the flow velocity. It is a measure of the 
magnitude of velocity shear. Large to s is self-consistently 
generated by the density gradient [Romero et al., 1990]. It is 
found that as the density gradient scale size approaches an 
ion gyroradius, the self-consistent % can become compara- 
ble to the lower hybrid frequency [Romero et al., 1992b; 
Romero and Ganguli, 1993]. As % becomes large enough to 
resonate with various normal frequencies of the system, it 
can trigger high-frequency shear-driven waves as described 
below. Interestingly, in a recent laboratory experiment 
[Huang et al., 1992], it is shown that nonlinear evolution of 
the low-frequency Kelvin-Helmholtz mode can seed high- 
frequency noise. 

2.1. Velocity Shear-Driven Microinstabilities 

We first summarize the various microinstabilities that can 

be excited by velocity shear. The important parameter for 
assessing the role of transverse velocity shear in exciting 
these instabilities is the shear frequency %. If % is greater 
than the gyrofrequency of the species j, flj, then that species 
becomes effectively unmagnetized. Also, the magnitude of 
the shear frequency determines the character of the waves. 
In general, we find that as the magnitude of the shear 
frequency gets close to various natural frequencies of the 
system it leads to instabilities around these frequencies. For 
example, if % < fl i, then both the ions and the electrons are 
magnetized and the resulting shear-driven waves oscillate 
around the ion cyclotron frequency (also referred to as the 

Figure 2.4.10.: A hierarchy of some of the microinstabilities that can be triggered by velocity shear. [from

Ganguli et al. (1994)]

• heat conduction from above, which cannot be an explanation because the vertical

temperature gradients are too small to account for the observed temperatures

• friction between electrons and ions in presence of acceleration by a field aligned

electric field, which can be a possible explanation, but needed further analysis

They used a steady-state quasi-neutral two-fluid model based on ion and electron momen-

tum and electron energy balance equations, obtaining the surprising result that ions should

go down above 750km, which means that this model is not good enough to account for

ion acceleration in the topside ionosphere. The possible explanations analyzed by Kagan

and St.-Maurice (2005) are:

• the existence of a third species in the system (i.e. precipitating and super-thermal

electrons)

• high frequency turbulence, able to scatter electrons without affecting the ions

In order to solve this problem they introduced the electron energy balance equation, which

allowed them to derive the field aligned electric field (provided the field aligned velocity

is known and the gravity effects on electrons are neglected).

The numerical results state that only the turbulent scattering can be a good explanation.

Using their words: “We reach the surprising conclusion that, in the end, rather large, km/s,

ion outflows can be achieved with just a little bit of quasi-stationary turbulence to slow

down the electrons, and with a rather modest field-aligned electric field (in comparison

with the regular ambipolar field) to accelerate the charged particles”.
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Figure 9. Density variation at t = 8.20 in x direction for 
y = 2a and in y direction for x = 7a in nonlinear regime of 
the Kelvin-Helmholtz instability. 

ity, and thermal conduction, may affect the large-scale 
plasma modes and transport properties. Quantification of 
this aspect will be the topic of a future article. 

4. Discussions and Conclusion 

As mentioned earlier, the purpose of this study is to 
demonstrate the potential importance of shear-driven pro- 
cesses in particle energization and ionospheric dynamics. 
We now make a rough estimate of how efficient is the 
instability mechanism in thermalizing the power available in 
the convective flows. Let the energy gain by the ions due to 
the instability be e - miViAVi, where Vi is the average 
velocity of the convective flows (--• 105 cm/s) and A Vi is the 
average change of its velocity due to dissipation by the 
instabilities. Defining /3 = A Vi/V i the fractional ,velocity 
change due to instabilities, we have e - (2.7 x 10-13)/3 ergs 
for oxygen. Using the ionospheric O + density to be around 
104/cm 3 the energy density gained by the O + plasma due to 

instability is found to be -(2.7 x 10-9)/3 ergs/cm 3. Since, 
roughly the convective velocity is spread over a vertical 
extent of about 1000 km (= 10 8 cm), we find that the energy 
gained per unit area is -(2.7 x 10-1)/3 ergs/cm 2. Thus the 
power transferred by the instabilities to the ions from the 
convective flow is P = (2.7 x 10-1)/•w ergs cm-2 s-1, 
where w is the frequency of the instability. The growth rates 
of the EIH instability discussed here are around the lower 
hybrid frequency (---10 4 s-l). Even if we assume the insta- 
bility growth rate to be much lower, around the O + cyclo- 
tron frequency (-102 s-l), we see that the instability can 
transfer energy at the rate of (2.7 x 101)/3 ergs cm -2 s -1. 
With/• as small as 10 -5 the power flux can be "•10 -4 ergs 
cm -2 s -1 which (shown earlier) is needed to support ion 
upflow. This mechanism therefore is efficient and quite 
feasible. 

At the current stage our model is incomplete since, (1) the 
PIC code does not include collisions and therefore is not 

applicable to very low altitudes in its current form, (2) 
macroscopic contributions from another class of shear- 
driven instabilities (the IEDDI [Ganguli et al., 1988a]) 
around the ion-cyclotron frequency, which can potentially 
energize the ions more efficiently, have not been assessed 
yet, and (3) the viscosity model needs further refinements 
with more points from PIC simulations covering a large 
parametric range. These are conceptually straight forward 
issues and can easily be addressed in the future. What we 
have been able to demonstrate in this paper is that the stress 
buildup due to nonlinear steepening of low-frequency waves 
can self-consistently trigger a hierarchy of microinstabilities. 
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Figure 2.4.11.: A schematic view of the ion energization process. [from Ganguli et al. (1994)]

Regarding the possible origin of the field aligned electric field, Kagan and St.-Maurice

(2005) recall that thermal ion upflow of type-II are often accompanied by an auroral arc

moving southward, as observed for example by Wahlund et al. (1992b). This motion is

caused by an E×B drift, as shown in Fig.2.4.12. However, since there is an upward

current sheet, there should be a magnetic perturbation perpendicular to the current vector,

due to the Ampère’s law ∇×B = µ0J. This perturbation tilts the Earth magnetic field

towards east, which implies that the perpendicular westward electric field is tilted down-

ward. But since the total electric field must point in the west direction, it is necessary to

have an electric field pointing upward, which is exactly the field aligned electric field we

are searching, responsible for the acceleration of the particles: the ions will go upward and

the electrons downward, while the presence of turbulence will slow the electrons, which

in turn will enhance ions motion. Electrons are then heated, partly due to friction and

mostly due to heat advection. This process produces the enhanced electron temperature

observed in type-II ion outflows.

It is important to notice that the outflow described by Kagan and St.-Maurice (2005)

was of the type without enhanced ion acoustic lines. They speculate about the connec-

tion between NEIALs and high frequency turbulence, citing the work of Forme (1993)

about the decay of Langmuir turbulence as the origin of NEIALs. In addition, since it

is possible that higher field aligned electric field are triggered along the arcs, a stronger
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Chapter 2 Ion outflows

counter-streaming of electrons can occur, thus generating topside current instabilities, as

described by Kindel and Kennel (1971). These current instabilities could eventually cause

the destabilization of the ion acoustic lines leading to the observed NEIALs during type-II

ion outflows.

Figure 2.4.12.: Formation of the field aligned electric field. j‖ is the upward parallel current; B0 is the Earth

magnetic field; Bx the perturbation magnetic field; E0x is the component of the electric field driving the

arc to the south; E‖ is the field aligned electric field. Note that proportions of Bx and hence E‖ are

exaggerated.
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3. Naturally enhanced ion acoustic

lines

3.1. Overview

Enhancements in the ion acoustic shoulders of the incoherent scatter spectrum were ini-

tially predicted by Rosenbluth and Rostoker (1962). But, for nearly thirty years, the

enhancements of the ion acoustic lines observed by several radar facilities were dismissed

as an effect due to satellites passing in front of the radar beam. Eventually it was shown

by Foster et al. (1988) that some of these enhancements have a physical origin.

Afterwards, many authors reported observation of the so-called naturally enhanced ion

acoustic lines (NEIALs). We will put emphasis on the observations conducted in the

polar region, since we have used exclusively EISCAT data in this work.

Fig.3.1.1 shows the differences between the ion part of a standard incoherent scatter spec-

trum (a) and the same spectrum during a NEIAL event (b). It is useful to briefly describe

this figure, since we will extensively use it when discussing our results. The most impor-

tant elements for our analysis are the upper left panel, which shows the power received by

the instrument as a function of time, and the bottom left panel, which shows the ion part

of the incoherent scatter spectrum intensity profile at each altitude.

We call downshifted line the one on the negative part of the spectrum (i.e. on the left) and

upshifted line the one on the positive part (i.e. on the right). The terms “down” and “up”

are referred to the fact that the frequency receive is respectively lower or higher than the

frequency transmitted, due to the Doppler effect. In other branches of physics downshifted

and upshifted are called respectively redshifted and blueshifted. Usually at least one of

the ion lines is enhanced, and it is common to observe a changing behavior with respect

to altitude, e.g. an enhanced downshifted line at low altitudes and an enhanced upshifted

line at higher altitudes (see, for instance, Lunde et al., 2007).

Several theories have been proposed as a possible explanation of this phenomenon. How-

ever, at present none of them is able to fully explain the quite complex generation mech-

anisms of the NEIALs. Currently the most accredited theories in the literature are:

1. current-driven instabilities, involved intense field-aligned current densities, first

proposed by Collis et al. (1991) and Rietveld et al. (1991) and based on the studies

of Kindel and Kennel (1971);

2. ion-ion two stream instabilities, first proposed by Wahlund et al. (1992a);

3. parametric decay of Langmuir waves, proposed initially by Forme (1993), and then

updated by Forme (1999).
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Figure 3.1.1.: (a) Standard incoherent scatter spectra on a quiet day; (b) Incoherent scatter spectra during

a NEIAL event. Note the “bump” in the spectral power, corresponding to the altitude where enhanced

acoustic echoes are occurring.

NEIALs are usually related to ion outflow events. Many authors believe that the two

phenomena are closely working together, but so far there is no definitive conclusion on

the inner mechanisms of both of these processes and hence how they can actually be

linked to each other. In this work we tried to give new information about their relation.

On a side note, it is interesting to keep in mind that ion-acoustic enhancements can be

observed also when the radar beam is perpendicular to the geomagnetic field in the E

region (see e.g. Foster and Erickson, 2000). In this case the generation mechanism is
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3.2 Observations

thought to be the Farley-Buneman instability (Farley, 1963; Buneman, 1963), which can

grow when the E×B drift exceeds approximately 400m s−1 (Sedgemore-Schulthess and

St.-Maurice, 2001). In this work we treated exclusively field-aligned ion-acoustic en-

hancement, which, as we mentioned, have not yet a satisfying theory to explain their

generation.

3.2. Observations

Collis et al. (1991) used data (10 seconds dumps) from the EISCAT UHF and VHF radars

in Tromsø and a meridian-scanning photometer in Kilpisjärvi, 90 km at south-est of EIS-

CAT, together with all-sky TV images. They observed enhancements in ion acoustic lines

associated with the 630nm red aurora, specifically they observed NEIALs just before and

just after a red arc crossed the field-line where the radar beam was pointing (see Fig.3.2.1).

This implies down-streaming electrons equatorward of the maximum luminosity and up-

ward streaming electrons on the poleward side.

1032 Coilis et al.: Enhanced radar spectra, red aurora and FACs 

acoustic peaks between 1525 and 2128 UT. An out- in which the arc passed through the zenith of the photo- 
standing feature of the evening of 11 January in Scan- meter, thus miniraising errors introduced by having to 
dinavia was a display of red aurora. The earliest all-sky assume the altitude of the emissions. An altitude of 250 
image from Kiruna, at 15 UT (= 16 LT), showed a red km was used in the data reduction. The two sets of 
auroral arc near the northern horizon, which moved south spectra showing enhancements at the ion acoustic peaks 
and broke up in the vicinity of the radar beam at 1538 
LIT, coinciding with the time of the most intense anomal- 
ous radar returns. A photograph of the red aurora 
observed during this period, taken from northern Finland 
and showing elongated rays extending to high altitudes, 
can be seen in Sky and Telescope (1989). 

Photometer and TV observations from Kilpisj'•xvi began 
at 16 LIT. Measurements of the 630 nm oxygen emission 
showed a maximum 630 nm intensity of 270 kR this 
night. This value is to be contrasted with the previous 
'maximum of 15 kR from three winters of measurements 
(1986-1989) with the same instrument at the same site. 
The all-sky TV and scanning photometer data allow the 
motion of optical features to be tracked with time. A 
comparison of these measurements with the radar data 
show that active, red auroral forms were always present 
when enhanced spectra were detected. We illustrate in 
Figure 1 an example of the relationship between the 
position of a red rayed arc, defined by the location of 
maximum 630 nm luminosity with time, during a period 
when two intervals with enhanced radar spectra were 
detected. The 630 nm intensity was 23 kR for this event, 
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Fig. ! (Upper panel). Field-line location (km north of 
radar) of maximum 630 nm intensity from the scanning 
photometer (+) in relation to upshifted (.) and down- 
shifted (o) spectral enhancements detected by EISCAT on 
11 January 1989. (Lower panels). Radar spectra showing 
upshifted (1714:10 to 1714:20 UT, left) and downshifted 
(1715:00 to 1715:10 UT, right) enhancements, contrasted 
with normal spectra (1714:20 to 1714:30 UT, centre). 
Amplitudes are normalised to the maximum in each 
stack, in the ratio 5:1:4, left to right. 

are also included in Figure 1, together with a reference 
sample of normal spectra. The earlier of these shows an 
enhancement at the upshifted peak, and the later one, at 
the downshifted peak. These enhancements occurred 
respectively just before, and just after, the time that the 
arc crossed the field line along which the radar was 
pointing. As shown later, this implies downward stream- 
ing electrons equatorward of the maximum luminosity 
and upward streaming electrons on the poleward side. 

20 February 1990 

In this experiment, the 933 MHz radar was pointed 
along the geomagnetic field direction while the 224 MHz 
radar was directed vertically. Several periods of enhanced 
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Fig. 2 (Upper panel). Field-line location of enhanced 224 
MHz spectra (o) on 20 February 1990 in relation to that 
of maximum 630 nm intensity for two assumed heights 
of maximum emission: 250 km (+) and 400 km (A). 
(Lower panels). Three examples of 10-see averaged 
spectra (left to fight, 1803:00, 1804:00, 1805:00 UT) 
from the 224 MHz radar on 20 February 1990. Ampli- 
tudes are normalised to the maximum in each stack, in 
the ratio 2:3:26, left to fight. The enhancement above the 
normal incoherent scatter spectral level is shaded. 

Figure 3.2.1.: (Upper panel) Location of maximum 630nm intensity from the scanning photometer with

respect to NEIALs (black dot is upshifted, white dot is downshifted); (Lower panels) Radar spectra:

upshifted line (left), downshifted line (right), normal spectra (center). [from Collis et al. (1991)]

The incoherent scatter theory predicts that an asymmetry should develop if there is a

relative drift between the electrons and the ions (see Rosenbluth and Rostoker, 1962).

Collis et al. (1991) tried to estimate the field-aligned current (FAC) by fitting for the

electron drift speed. They found very large FAC densities (several mAm−2 while they are

usually measured in µAm−2) and an electron drift speed less than 0.3vth (where vth is the

electron thermal velocity). According to Kindel and Kennel (1971), the value of 0.3vth is
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Chapter 3 Naturally enhanced ion acoustic lines

approximately the threshold speed for the growth of the ion-acoustic instability when the

temperature ratio Te/Ti is approximately 3. Collis et al. (1991) argued that an instability

can develop for higher drift speeds but in such a case, where one should also observe

higher spectral asymmetries, their technique cannot be applied. They also cannot obtain

fits if both ion-acoustic shoulders are enhanced. This can be due to the presence of FACs

flowing in opposite direction, occurring either simultaneously or at different times, since

NEIALs can be very short living and the integration time was fairly long 10s.

In addition, they also note that more extreme conditions were required to see effects in

the UHF (933MHz) measurements with respect to the VHF (224MHz); this feature was

studied in detail by other authors (Cabrit et al. 1996).

Rietveld et al. (1991) used the EISCAT radar with the antenna pointing along the magnetic

field to obtain information on NEIALs in the 138-587 km altitude range. They observed

back-scatter power enhanced more than one order of magnitude with the ion-acoustic

enhancements appearing typically in two height regions:

• the boundary between E and F region, with a mean height of 168 km and the up-

shifted line usually enhanced but without a simultaneous enhancement of both up-

shifted and downshifted lines;

• the topside ionosphere, with a mean height of 450 km and often an occurring

switching in the enhancement from the upshifted to the downshifted line. Some-

times both shoulders were enhanced in the same 10-seconds data dump, implying

that these kind of spectra cannot be of an artificial (i.e. satellites) source.

They found that these enhancements are usually associated with disturbed magnetic con-

ditions, auroral electron precipitation and red aurora in the F region. The electron temper-

atures were usually high (which can imply a type-II ion outflow occurring) with a tem-

perature ratio Te/Ti approximately between 2 and 3, similar to what Collis et al. (1991)

found. The horizontal electric field was not very large, but could exhibit spatial and/or

temporal variations during the echoes. They found that the ion outflows associated with

the NEIALs started at an average altitude of 350 km. The duration of the NEIALs burst

was estimated varying from less than a second to several tens of seconds.

Regarding the source of NEIALs, they also argue, as Collis et al. (1991) did, that huge

thermal electron fluxes of more than 1mA m−2 are required to trigger the enhancements.

They suggest that parallel electric fields are created in the ionosphere by field-aligned

flows of soft electrons which deposit their energy in the horizontally poor conducting F

region and that these fields produce the thermal flows responsible for the onset of the

instability.

Wahlund et al. (1992b) (see also chapter 2) registered the presence of spurious enhanced

ion acoustic shoulders in their data during a type-II ion outflow. They discussed the

possible effects of plasma turbulence, namely that the turbulence may produce anomalous

resistivity which in turn could produce enhanced field-aligned electric fields, provided

that field-aligned currents exist. Such an enhanced field-aligned electric field may then

accelerate ions and contribute to the observed ion outflows.

The first categorization of NEIALs was made by Forme et al. (1995). Using both UHF

and VHF EISCAT data, they found that the observations can be separated in two types

depending on the physical conditions (see Fig.3.2.2):
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Figure 3.2.2.: EISCAT color plot showing the two different type of NEIALs observed by Forme et al.

(1995). The events occurring around 1330 UT and 1400 UT are type-A enhancement; the events occur-

ring between 1340 UT and 1350 UT are not associated to any ion upflow and are thought to be type-B

NEIALs. [from Forme et al. (1995)]

• Type-A: related to strongly enhanced electron temperatures (6000-8000 K), ion out-

flows with large vertical velocities, an altitude extent of 300-700 km and auroral

arcs and precipitating particles of 100eV to 10keV; the spectra are strongly asym-

metric and usually the downshifted line is enhanced. These characteristics lead us

to think that the outflows involved in their occurrence are the type-II.

• Type-B: corresponds to slightly enhanced electron temperatures, no ion outflow,

spatial extents of 100-200 km and an apparent lack of soft particle precipitation

(i.e. with average energies less than 1keV). The electron heating is more localized

and less pronounced then type-A. In this case the spectra are less asymmetric with

the upshifted line mostly enhanced.

Unfortunately in our study we did not find any NEIAL belonging to the type-B category,

and since it also seems that they are not abundant in the literature, they are perhaps a rare

event.

Like Collis et al. (1991), they found that NEIALs are more likely observable with the VHF

than UHF radar, probably due to a wavelength dependency effect. In addition they found

in some data an enhanced central peak; however, they are unsure about its geophysical
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origin, since such spikes can be produced by a residual DC offset in the receiving system.

One of the interesting conclusions of their work is that both the heat source and the ion

acceleration regions were localized within the turbulent regions, which imply that a great

effort is needed to obtain reliable data due to the non-maxwellian nature of the NEIALs

spectra.

An interferometric technique was employed by Grydeland et al. (2003) and Grydeland

et al. (2004) in order to greatly increase the data resolution. Indeed, they managed to

get a 0.2 seconds resolution, whereas with the usual incoherent scatter observations one

can achieve 10 or 6 seconds resolution for each dump. They were hence able to get very

interesting information about NEIALs and their fine structure, namely:

• simultaneously radar and optical observations show that NEIALs occurrence is as-

sociated with finely structured aurora.

• presence of filamentary structures of the order of 100 km long, aligned with the

Earth’s magnetic field, with scale size in the perpendicular direction of the order of

few hundred meters. This is within an order of magnitude of the smaller scale sizes

observed in optical aurora.

• when the enhancements in ion-acoustic lines occur simultaneously on the same

data dump, the two peaks are due to scattering from the same volume so that spatial

averaging can not be the cause of simultaneous upshifted and downshifted lines.

• the simultaneous upshifted and downshifted enhancements are not caused by tem-

poral averaging. This is evident in Fig.3.2.3 where the almost continuous behavior

of each curve implies that the time resolution is sufficient for resolving the scatter-

ing structure.

Figure 3.2.3.: Received power as a function of time for three different altitude ranges. The smooth profile

means that the resolution in time is good enough. Note how the upshifted line is enhanced at lower

altitudes, whereas the downshifted line is enhanced at higher altitudes. [from Grydeland et al. (2003)]

The last two points have a great importance in assessing the validity of the NEIALs gen-

eration theories and we will make use of such conclusions later on.

Michell et al. (2009) and Michell and Samara (2010) managed to get an integration time as

short as 12 ms, using the Poker Flat Incoherent Scatter Radar (PFISR) located in Alaska.
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Their results are in good agreement with Grydeland et al. (2003): they found simultane-

ously enhanced ion acoustic lines at short time scales and confirmed that NEIALs are a

prompt event associated with fine scale auroral structure and occurring on the boundary

of auroral luminous features. However, they also reported that for most of the cases the

ion acoustic lines were not simultaneously enhanced; on the contrary, in our work, we

observed many simultaneous enhancements in our data set, which are likely due to the

time averaging of ~6 s in our data dumps.

Several statistical studies have been conducted on NEIALs data. Rietveld et al. (1996)

analyzed the observations made in the period 1987-1993 with the UHF radar in Tromsø

(CP-1 experiment, mostly 10 seconds dumps). They found a correlation between the an-

nual occurrence of enhanced ion acoustic echoes and sunspot numbers (Fig.3.2.4). This

was somewhat expected since auroral activity, which is associated with enhanced acous-

tic echoes, is known to be correlated with the solar activity. They also found a lack of

NEIALs in the morning hours and a maximum occurrence between 12-24 UT time pe-

riod. This probably reflects the times when the auroral oval is above Tromsø, which is

most likely in the evening. Regarding the seasonal dependence, Rietveld et al. (1996)

found no significant variation over the year in their data. It should be noted, however,

that Ogawa et al. (2011) found an evident seasonal dependence in their data, both in ion

outflow and NEIALs occurrence frequencies. We will talk about this later on.
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(a) Histogram showing the occurrence of enhanced ion acoustic shoulders in CP-1 UHF data on an 
annual basis (bars), together with the average sunspot number (points). (b) Histogram showing the 
occurrence of enhanced ion acoustic echoes (solid bars) as a function of magnetic disturbance, measured 
in 3 h intervals by the K index in Kiruna. The shaded bars show the distribution of K during all the 706 

3 h intervals of CP-1 data examined. The echoes occured during 40 of these intervals. 

Because the remote  sites were point ing to alt i tudes 

below which enhanced  ion acoustic echoes are 

observed dur ing  mos t  of  the da ta  set examined,  and  

the rest of  the t ime the an tennas  were ei ther moving  

or poin t ing  to an  alt i tude where the occurrence of  

such echoes is no t  very high (278 km, see Fig. 6), there 

are very few cases where enhanced  ion acoustic echoes 

were observed at  the remote  sites. Nevertheless two 

cases were found  in the CP-1 da ta  set. One example of  

ra ther  weak echoes at  K i runa  and  Sodankyl/ i  occurred 

Figure 3.2.4.: Histogram showing the occurrence of NEIALs in the UHF data (bars) together with the

average sunspot number (points). It is evident a certain amount of correlation between the two physical

phenomena. [from Rietveld et al. (1996)]

As other studies pointed out, most of the NEIAL events lasts less than 10 seconds, hence

shorter integration time are needed to better characterize them. The interferometric tech-

nique employed by Grydeland et al. (2003) can overcome this difficulty. Rietveld et al.

(1996) found also a predominance of the downshifted lines above 300 km, together with

cases where both shoulders were enhanced, whereas no recorded cases of such double

enhancement were found below 300 km. Below 250 km the upshifted shoulder is more

often enhanced, as already found by Rietveld et al. (1991) and others. However, differ-

ently from Rietveld et al. (1991), they found that low altitude NEIALs are much rarer than

previously suggested.
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The subject of the cross section’s wavelength dependence during NEIAL events was stud-

ied in detail by Cabrit et al. (1996) using both VHF and UHF EISCAT radars. They found

a difference of more than 2 orders of magnitude in the back-scattering cross section at

224 MHz (VHF) and 933 MHz (UHF). This discrepancy cannot be explained by normal

thermal ionospheric density fluctuation, hence they argue that the observed difference is

due to anomalous echoes caused by low-energy particle precipitation. They analyzed two

possible explanations: (1) spatial localization and (2) k vector dependence.

They excluded the possibility of k vector dependence due to finite Debye length, since it

is very small and cannot account for the observed back scattering cross sections. They

also excluded satellites passing by a side-lobe of the antenna because the echoes comes

from many gates whereas only a few gates are usually affected by satellites.

They argue that a scattering by a local density enhancement is, from a geophysical point

of view, very unlikely to occur. Scattering from an anomalous echo could be a realistic

explanation, since many physical conditions characterizing NEIALs are the same as in the

observations made by Cabrit et al. (1996): discrete arc produced by low-energy electrons,

high altitude electron temperature increase and a strong perpendicular electric field at one

edge of the arc. However it is unlikely that during a time interval of 50 s the occurrence

of enhanced back-scatter in the VHF beam can always be explained by the unfortunate

spatial geometry of an extremely sharp localization of anomalous echoes.

That is why they focused on the k dependence in instability models and in the Langmuir

parametric model which, as we shall see, is a strong candidate for the NEIALs generation

mechanisms.

One of the most comprehensive statistical studies on NEIALs and outflows have been

done by Ogawa et al. (2011). They analyzed about 78000 field-aligned profiles obtained

from EISCAT Svalbard radar (ESR) between March 2007 and February 2008. They found

nearly 1500 NEIALs in the ESR data at altitudes between 100 and 500km. It is interesting

to look at the NEIALs and outflows distribution (Fig.3.2.5), where we can see that the

annual occurrence frequencies of NEIALs and outflows are anticorrelated, despite it is

believed that NEIALs happen mostly when we have an outflow event.

NEIALs occurrence is however correlated with ion flux, which is higher in summer than

in winter due to the higher electron density during summer months. The observed NEIAL

occurrence frequencies could also mean that NEIALs can occur when there is no sig-

nificant ion upflow. However, as Fig.3.2.6 shows, NEIALs at high altitudes are usually

shifted in frequency like being embedded in the outflows, so it is unlikely that a large

fraction of summer F region NEIALs occur without outflow. One possible explanation

provided by Ogawa et al. (2011) is that ion-acoustic lines are enhanced at wavelengths

near the ESR wavelength for relatively high electron densities but rather away from the

ESR wavelength for low densities.

On the subject of relation between NEIALs and upflows it is useful to look at the work

of Forme and Fontaine (1999) where they tried to evaluate electron temperature and ion

velocity inside the turbulence, which is usually not feasible due to the non-maxwellian

nature of the velocity distribution during NEIALs events.

The method they used to estimate the electron temperature is based on the fact that the ion

acoustic frequency and the Doppler shift are not modified by the enhanced ion acoustic
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Figure 3.2.5.: Monthly variation of: (a) occurrence frequency of ion outflows; (b) upward ion flux at 450

km altitude where the gray line indicated the average flux of all data (upflow, downflow and no flow

events); (c) occurrence frequency of NEIALs in the F region. Note that only data taken between 0700

and 1700 MLT were used for (a) and (b). [from Ogawa et al. (2011)]

fluctuation. They found the electron temperature to be as high as 11000K and the field

aligned velocity equal to 1300m s−1 at an altitude of 800km. Having these values allowed

them to use the vertical ion momentum equation to get information on the ion outflow.

The results show that a large electron temperature gradient (of the order of 0.02K m−1)

can increase the ambipolar electric field, leading to large ion upflow.

3.3. Generation theories

As we mentioned, there are currently three candidate theories to explain the generation

mechanisms of the NEIALs. If one takes in consideration the results of Grydeland et al.

(2003), Michell et al. (2009) and Michell and Samara (2010), could then be tempted to

think that the parametric decay of Langmuir waves can be the one that better suits ob-

servations. In fact, these authors showed that on very short timescales (as low as 12ms

in Michell and Samara, 2010) both ion acoustic lines can be enhanced simultaneously.

However, the current driven instability is not compatible with this observation unless the

currents change direction on very short time scales, while the ion-ion two stream instabil-

ity needs very large ion drifts to explain the simultaneous enhancements. Nevertheless,

as we shall see, many issues are still present, particularly at lower altitudes, where the

soft particle precipitation (less than 500eV) cannot have a primary role as required by the
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Figure 3.2.6.: (a) occurrence frequency of NEIALs at several altitudes. Note how the downshifted line

(red) is mostly enhanced at high altitudes with respect to the upshifted line (blue); (b) Power ratio of the

downshifted line to the upshifted line showing how at high altitudes the downshifted line has usually a

larger power then the upshifted line; (c) Center frequency between the downshifted and upshifted peak

at various altitudes. The shifting towards negative frequency with increasing altitude means probably

that most of the NEIALs are embedded in the outflow events. [from Ogawa et al. (2011)]

Langmuir decay theory, since most particles in this energy range are simply too weak to

reach the lower regions of the atmosphere.

In the following we will try to shed some light on these three possible explanations,

namely intense field-aligned current densities, ion-ion two stream instability and para-

metric decay of Langmuir waves.

3.3.1. Current driven instability

Rietveld et al. (1991) discussed the possible mechanisms underlying the observation of

intense ion-acoustic enhancements observed with the EISCAT radar. They argue that, in

order to develop an asymmetry in the ion-acoustic lines, it is required that electrons drift

at a speed which is a detectable fraction of their own thermal speed. When an asymmetry

is present in the spectra, it is possible that the plasma reaches conditions for the desta-

bilization of ion-acoustic waves, which they believe is due to a two-stream instability

between ions and electrons. Fig.3.3.1 shows that the spectrum associated with currents

from energetic beam electrons is the same as would be obtained without any parallel cur-

rent, which means that the ion acoustic peak is produced not by large fluxes of a small

number of energetic electrons, but by a displacement in the thermal electron distribution

function. As stated by Kindel and Kennel (1971), it is easier to reach an instability for
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the ion acoustic line when the temperature ratio Te/Ti is higher, and it is customary to

consider a temperature ratio of ~3 as a threshold to set the instability.

The weak point of this theory is the fact that the field aligned currents implied are huge, i.e.

~1mA m2, which was one order of magnitude higher than the largest currents measured

at the time. However, more recently, Neubert and Christiansen (2003), employing the

Ørsted satellite, observed high density small scale field aligned currents, which reached

1mA m2 during very disturbed conditions throughout the auroral oval and especially in

the cusp and in the pre-noon cusp.

Rietveld et al. (1991) described what possible physical mechanisms can lead to such in-

stability. The general idea is based on charge conservation arguments. Parallel currents

carried by soft particles of about 500 eV will collide with neutrals and be stopped around

200 km altitude. But the total current divergence has to be zero. Therefore, if the Peder-

sen conductivity, which is perpendicular to the magnetic field, is too small at the altitude

where the soft electrons are stopped, current continuity will force the thermal electrons

to carry the field aligned current that was originally carried by the beam electrons. In

this scenario, parallel electric fields will be only generated in the regions where the beam

electrons become collisional and the current dissipates.RIETVELD ET AL.: ENHANCED ION ACOUSTIC WAVES 19,301 
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Fig. 11. Theoretical ion acoustic wave spectra for the plasma parameters 
shown and in the pr½sei•'• of thermal electron flows equal to 10, 50, and 
100 km/s. The solid c•e is for the case where the currents are carried by 
large fluxes of energetic electrons. 

magnetic field lines at about 100 m/s everywhere between 400 and 
150 km altitude, while at the same time moving up at several 
hundreds of m/s above 400 km altitude. It should be mentioned, 

however, that such velocity profiles can also be found for extended 
periods at other times and are not rare compared to the unusual 
spectra discussed here. 

Before proceeding with a first-order explanation of at least 
some of the features borne by the observations we stress that the 
currents implied by the present observations are simply huge. We 
have several instances of electron densities in excess of 1011 m -3 

moving at speeds that seem to be at least 50 km/s and are probably 
more like twice that value if we compare the features of Figure 11 
with those of Figure i or 3, which were observed for similar 
temperature conditions. This means that for very short periods of 
time the ionosphere sustains parallel currents carried by thermal 
electrons that can easily be in excess of 1000 gAm -2 [see also 
Collis etal., 1991]. It is tempting to draw an analogy with 
lightning, in that for the situations described in the present paper, 
we seem to be faced with extremely large parallel current 
discharges over very brief periods of time. What might lead to such 
unusual situations is described in the next subsection. 

follow. First, the side over which the spectrum is enhanced 
indicates which way the thermal electrons are moving (when the 
ions do not move). An enhancement in the positive Doppler shifted 
frequencies indicates that the electrons are coming toward the 
observer (downward field-aligned motion of thermal electrons). 
Second, the larger the electron temperature is relative to the ion 
temperature, the easier it is to alestabilize the ion acoustic peaks 
[e.g., Foster et al., 1988; Kindel and Kennel, 1971]. A third point 
that is relevant for the data presented in Figures 1 and 3 is that 
counterstreams of thermal electrons do not lead to ion line spectra 
having both upshifted and downshifted ion acoustic peaks 
simultaneously. This means that when we observe what appear to 
be simultaneous upshifts and downshifts, we are either looking at a 
temporal feature (upward moving electrons for a while, followed or 
preceded by downward moving electrons for another short while), 
or we are observing very narrow spatial structures in latitude. In 
the latter case the observations may be due to a fast moving spatial 
structure or to two regions side by side carrying intense currents in 
opposite directions. More precisely, with the 0.6ø-wide EISCAT 
933-MHz radar beam, the spatial separation would be 4 km or less 
at 400 km altitude. 

Implications for the Morphology 

The main point to draw from our discussion of the spectra is 
that they are classical illustrations of what should be expected to 
occur when thermal electrons acquire drifts that become 
comparable to their own thermal speed. This explains the 
occasional large enhancement in the cross section (instability 
threshold exceeded), as well as the unusual nature of the 
observations (such events are rare). What needs to be addressed 
next is the physics behind the observations, namely, what is the 
origin of the currents and how can they be sustained even for brief 
periods of time? A satisfying explanation must also address the 
matter of the magnitude of the implied currents, their direction 
(which is predominantly upward below 200 km altitude), their 
apparent reversal at higher altitudes, their bursty nature, and the 
bursty nature of the burst periods themselves. It is also entirely 
possible that the unusual ion drift structures seen just before or 
after the bursts (e.g., Figure 7) are also part of the same physics. It 
is difficult to explain in particular how the ions can move down the 

Implications for the Generation of Parallel Currents and Parallel 
Electric Fields in the Lower Ionosphere 

Large downward fluxes of energetic electrons implying 
upward currents have Often been measured over the auroral 
regions. Currents of the order of 10 gA m -2 have also been inferred 
from magnetometer data onboard satellites [Burke et al., 1980; 
Sugiura etal., 1984; Bythrow etal., 1984]. In one report, however 
[Bythrow et al., 1984], evidence was presented for 100 !xA m -2 
currents being produced by the vertical motion of thermal electrons 
upwards along the field lines. This is still, nevertheless, 1 order of 
magnitude smaller than the currents implied by our observations. 
There is a way, however, by which such large bulk electron motion 
could be generated at ionospheric altitudes. The basic idea is based 
on charge conservation arguments. 

There are many situations for which the parallel currents 
carried by beam electrons generated by magnetospheric processes 
will not reach the conducting region of the ionosphere around 
120kin. If the energy of the beam electrons is 500eV, for 
example, the electrons will collide inelastically with neutrals and 
be stopped around 200 km altitude [e.g., Rees, 1963, 1964]. But, on 
time scales greater than 1 gs (=_ c•1•/œ o) the total current divergence 
has to be zero. If the Pealersen conductivity is then too small at the 
altitude where the beam electrons are stopped, current continuity 
will force the thermal electrons to carry the field-aligned current 
that was originally carried by the beam electrons. Interestingly 
enough, with this scenario, parallel ionospheric electric fields will 
only be generated in the regions where the beam electrons become 
collisional and their current dissipates. 

In more quantitative terms, when we can neglect contributions 
from perpendicular currents, we must have 

V.J, = V.J, t' + V.Jiii =- 0 (1) 

where j,t, and Jii i are the parallel current contributions from the 
beam electrons/protons and the ionospheric electrons, respectively. 
The divergence in the beam current is produced by inelastic 
processes and should be considered as an input for thi• problem. 

Once we specify a value j,b(oo) at infinity as our boundary 
condition, we obtain from (1), 

Jlli(z) '- (JII Ell =- Jilt'(z) + J,t,(oo) (2) 

Figure 3.3.1.: Theoretical incoherent scatter spectra with the upshifted ion acoustic line enhanced. The

solid curve represents the spectra obtained when the same current as was carried by thermal electrons

moving at 100 km/s is carried by 1% of the electrons (in the KeV energy range). Note how this spectra

is basically the same as would be obtained without any parallel current. [from Rietveld et al. (1991)]

As shown in Fig.3.3.2 electrons are mostly moving downward at lower altitudes whereas

they tend to move upward at higher altitudes. Since in their data there is no indication of

ion flow with a magnitude comparable to the electron thermal speed, Rietveld et al. (1991)

conclude that there must be an electric field reversal together with the current bursts (the

ions are in fact not moving together with the electrons).

They argue that if we assume that an electric field due to negative charges accumulation

is present in the region of current divergence and this field is actually responsible for the

acceleration of thermal electrons, than we have to conclude that there has to be an ambient

electric field implicitly assumed to be present according to this model. This ambient field
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For the intervals during the occurrence of the unusual echoes 
the results of the standard analysis are not valid and in some cases 
did not converge to a solution. This was, in fact, how we 
discovered the echoes in the first place, by examining the spectra 
for an interval when the signal to noise ratio was high but the 
analysis failed. When the analysis did give a result, the electron 
temperature was unusually high (12,000 K), as one expects from 
spectra with sharp ion acoustic shoulders. So a possible signature 
which could be used to find more examples is enhanced "electron 
density" and "electron temperature" with a poor fit quality. With an 
integration time of typically a few minutes, the duration and 
intensity of the enhanced echoes determine the extent to which the 
normal analysis is affected by these echoes. 

In Figure 7 the line-of-sight velocities from Troms0 are shown 
for the same normal echo cases that were displayed in Figure 6. 
The velocities cannot easily be determined from the enhanced 
spectra because of the spectral asymmetries and are therefore not 
shown. The increasing outward ion flow with increasing height is 
typical of most of the data around the times of unusual echoes, 
often reaching several hundred meters per second around 500 km. 
There is at least one case, however, where there is no upward flow 
associated with an unusual echo but a downward flow exists. In 

both cases in Figure 7, the velocity reverses sign to a downward 
flow below about 400 km, a feature also seen occasionally at other 
times. Increasing ion flows with increasing height as found here 
are only partly understood as discussed by Wahlund et al., [1991]. 
Two types of outflow were identified by Wahlund et al.: one 
associated with periods of strong perpendicular electric fields, 

enhanced ion temperatures and little auroral precipitation, and 
another associated with auroral arcs and elevated electron 

temperatures. As will become clear below, our outflows appear to 
be closer to the second (less well understood) type. 

All the spectral enhancements that we have found so far 
occurred at times of severe geomagnetic disturbance (typically 
500 nT deflection of the north-south component at Troms0) and 
during auroral particle precipitation events, as indicated by the 
enhanced E region densities that were measured simultaneously. 
The Kn index (K values for the northern hemisphere) for the 
October 25, 1989 event was 4, and Kp was 5. For the February 14 
events, Kn was 6-, and Kp was 6+. All-sky camera images taken 
every 2 min at Abisko, 120 km south of TromsO, showed red 
aurora from the F region and the normal green aurora from 
E region heights above TromsO from about 0250 to 0255 UT on 
October 25 [H. Lauche, Max-Planck-lnstitut far Aeronomie, 
unpublished data, 1990]. There was also evidence of aurora on the 
all-sky camera images taken during the February 14, 1990, events 
but cloud marred these data. Photometer data during the January 
1989 CP-1 event show bright red aurora (630-nm oxygen 
emission) from the F region clearly associated with the occurrence 
of enhanced ion acoustic shoulders in the radar data [Collis et al., 
1991]. 

The EISCAT remote site receiving antennas pointed to a 
common volume at 278 km in the F region for long times in both 
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Figure 1. 

Figure 3.3.2.: (Top panel) Distribution of enhanced spectra according to whether the upper (upshifted)

shoulder (representing downgoing electrons) or the lower (downshifted) shoulder (representing upgo-

ing electrons) is enhanced; (Bottom panel) Distribution of spectra where both shoulders are equally

enhanced. [from Rietveld et al. (1991)]

is responsible for canceling the field produced above the charged layer by the divergence

in the beam electron current. This is illustrated in Fig.3.3.3. Basically there is an ambient

electric field (EAMBIENT
‖ in the figure) between the magnetosphere and ionosphere and

when the beam electrons are stopped at F region heights, they produce an electric field

that tends to cancel the ambient field above the deposition layer and to amplify it below

this altitude. However, since a perfect balance is very unlikely, together with the beam

electrons there would be a parallel field, even at the altitudes where the beam travels with

no interaction with the surroundings.
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Since there are, in fact, perpendicular divergences in the 
ionospheric currents in reality, not all of the beam currents get to 
be cancelled by parallel i6nospheric currents. Nevertheless, 
equation (2) tells us that if, by chance, beam electrons do not make 
it to an altitude where there is enough perpendicular conductivity, 
the thermal electrons will have to carry the currents themselves 
down to the regions where the perpendicular conductivity will 
finally become large enough. Consequently, the thermal electrons 
can Carry up to as much current as the incoming beam electrons 
below the altitude where the beam electrons are stopped. The 
implication seems at first sight to be that if we observe 
1000 [xA m -2 in the lower ionosphere, the same cun•nts or stronger 
ones should be carried by energetic electrons at higher altitudes. 
And yet, these beam electrons would have to be reasonably "soft" 
in order to be stopped high enough above the conducting part of 
the E region, say above 200 km. This would imply that the auroral 
displays observed during events such as those that have been 
shown here should be very intense and be seen at rather high 
altitudes, say 200 km and above (large fluxes of moderately 
energetic electrons). This seems, in fact, to be the case, as we 
already mentioned [Collis et al., 1991]. 

We note that the mechanism discussed here could also work in 

reverse, with downgoing currents carried by energetic protons, for 
instance. In this case, the thermal electrons in the lower ionosphere 
would be moving upward rather than downward. 

The Question of a Reversal in the Electron Flow 

In transition altitudes and in the upper F region our data 
indicate that the electrons generally move upward while they 
generally move downward deep into the ionosphere during burst 
events (see Figure 5). Since there is no indication of ion flows of a 
magnitude comparable to the electron thermal speed in either case, 
we conclude that there must be an electric field reversal 

accompanying the current bursts (the electrons are not moving 
together with the ions). Furthermore, the altitude of the reversal 
may well be varying during the bursts, as evidenced by the fact that 
we see both upflows and downflows of electrons in the transition 
altitude region during 10-s intervals. Higher time resolution data 
are required to resolve this question. 

In what we have described so far we have not discussed the 

background electric field that accompanies our energetic electron 
precipitation events. Such a field had to be implicitly present, 
nevertheless, and was brought into equation (2) already. According 
to (2), however, there would be no net electric field in the upper 
altitude regions whe-re beam electrons are moving freely, that is, 
without interacting with their surroundings. And yet, according to 
(2), in the region of beam current divergence we produce a parallel 
electric field below the beam but not above it. If we view the 

region of current divergence as a region of negative charge 
accumulation responsible for the acceleration of the thermal 
electrons through the electric fields that it creates, we have to 
conclude from this that there has to be an ambient field implicitly 
assumed to be present according to this model. This ambient field 
is such as to cancel the field produced above the charged layer by 
the divergence in the beam electron current. 

The cartoon depicted in Figure 12 should help visualize what 
happens with the simple model that we have used so far. Basically, 
we have implicitly assumed that there should be an ambient 
electric field between the magnetosphere and the ionosphere to 
start with. As a result, a beam of electrons could be produced at 
very high altitudes through something akin to a double layer (more 
on this below). When the beam electrons are stopped at F region 

heights, they produce a field which tends to cancel the ambient 
field above the deposition altitude and amplify it below this same 
altitude. Unless the system is very well tuned, howeve r , there 
should be no exact balance between the ambient vertical electric 

field and the field produced by the stopped beam electrons. In that 
case the presence of beam electrons would now be accompanied by 
a parallel field, even at the altitudes for which the beam travels 
without interacting with the ambient medium. 

The fact that we do observe fast upgoing thermal electrons 
above the deposition layer during burst events indicates that the 
parallel electric field reverses its sign near the central altitude 
where the beam electrons are stopped. There may not even be, 
therefore, a parallel electric field higher up to trigger a beam of 
energetic electrons. The energetic electrons may just be allowed to 
reach the ionosphere because they are very hot. The physics behi nd 
the electric fields generated at the altitude where these hot 
electrons are stopped would then be similar to what takes place 
during the formation of a contact potential, for example, near the 
surface of a Langmuir probe. Fast moving hot electrons rush ahead 
of the other particles and reach the ionospheric "surface" first, 
creating a potential that in turn expels the cold ionospheric 
population away. In the present case, however, the ionospheric 
electrons are free to move on each side of the contact "surface" 

and, therefore, they do. 
The variability of the altitude would find a rather simple 

explanation in this context. It would be due to the variability of the 
energy of the beam electrons. More specifically, since fast 
electrons arrive first in the ionosphere, the altitude of the field 
reversal would systematically move up during the duration of a 
burst event. Notice that the arguments that we have used here 
would also apply if the beams were made of positively charged 
particles, once allowance is made for changes in the signs of the 
fields and flows. Electrons would still be the charge carriers as far 
as ionospheric currents are concerned, however. 

Finally, one might speculate as to what happens when thermal 
electrons start to move Upward in response to large ionospheric 
electric fields produced by the deposition of hot magnetospheric 
electrons. To start with, the current carried by the cold ionospheric 
electrons would be such as to nearly cancel the current carried by 
beam electrons. A magnetometer measurement from a rocket or 
sateBite might therefore not see as large a current (if any) as what 
is implied by thermal electrons or energetic particle measurements 
alone. Furthermore, plasma instabilities would most likely affect 
the thermal electrons as they try to move over large distances; in 
particular, the unstable waves generated by fast travelling thermal 
electrons might well slow them down considerably as they move 
up. Observations using the EISCAT VHF radar should help with a 
study of this question, as this radar can probe more deeply into the 
ionosphere than the UHF system can. 
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Fig. 12. Diagram illuslxating the connection between vertical electric 
fields and field-aligned currents and electron beams in the absence of 
good horizontal conductivities. 

Figure 3.3.3.: Diagram illustrating the various electric fields interacting with the beam electrons when low

horizontal conductivities are present. [from Rietveld et al. (1991)]

Rietveld et al. (1991) notes that one very important consequence of having thermal elec-

trons carrying the excess currents is that they can generate plasma instabilities, whereas

beam electrons carrying similar currents can only generate weak large scale waves, such

as Bernstein waves (see Laqua (2007) for an in-depth review). This is due to the fact

that currents carried by thermal electrons are much more unstable than currents carried by

beam electrons. This can have many consequences, e.g. instabilities generated by thermal

electrons are not produced exactly perpendicular to the magnetic field; once short-scale

wave parallel electric fields are produced, they are the cause for the scattering of electrons

trying to move along the magnetic field in response to the large scale electric fields. One
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direct effect of this is that the parallel conductivity σ‖ has to decrease, while the perpen-

dicular conductivity increases slightly. However, since the product J‖ = σ‖E‖ has to stay

constant, the parallel electric field must increase when the conductivity goes down. This

can greatly affect the ion motion. This is clear if we consider that the equation of motion

implies that q jE‖/m j
∼= ν jv‖ j

. Since the collision frequency is almost equal for ions and

electrons, the most important factor affecting the velocity v‖ j
is the mass m j, and we know

that the ratio mi/me is about 104 for a population formed mostly by oxygen ions. So, if the

ions are moving with a velocity of 100m s−1, this would normally imply electron drifts of

the order of 100-1000km s−1, enough to destabilize the ion acoustic waves and produce

effects on the incoherent spectra. However, if we assume that anomalous conductivities

are produced by the very fact that substantial thermal electron currents are present, then

the same velocity of 100m s−1 would correspond to an electron drift of 1-10km s−1 and

the effect on ion acoustic spectra would be almost impossible to observe. Rietveld et al.

(1991) argue that what we see could be only the “tip of the iceberg”, meaning that there

are probably many situations where smaller but important thermal field-aligned electron

drifts exist without being detected by incoherent scatter radars.

Forme et al. (1993) developed a model to calculate electron and ion temperatures when

current driven instabilities occur. They discussed three types of instabilities (see Fig.3.3.4):

the Buneman instability, which arises when vd,e > 1.8vth,e; the ion acoustic instability, for

which an approximate threshold condition on the drift velocity is vd,e > TiT
−1

e vth,e; the

ion cyclotron instability, which has the least stringent threshold, where vd,e > 15TiT
−1

e vth,i

(vd,e is the electron drift velocity, vth,e and vth,i are respectively the thermal electron and

ion velocity).

Among their results:

• the three instabilities lead to strongly enhanced electron temperatures, with elec-

tron heating rates bigger for the Buneman and ion acoustic instabilities then ion

cyclotron instability;

• the ion heating rates are of the same order for the ion acoustic and ion cyclotron

instabilities, while the ion heating rate in the Buneman instability is not affected by

the turbulence;

• the different heating rates affects temporal evolution of temperatures: after 2 s

Te/Ti ≈ 20 for the Buneman instability, Te/Ti ≈ 4 for the ion acoustic instability

and Te/Ti ≈ 1 for the ion cyclotron instability.

Fig.3.3.5 shows the temperature profiles for the ion acoustic instability, between 300 km

and 3000 km altitude. They argue that it seems difficult to explain the observations by

e.g. Wahlund et al. (1992b), Collis et al. (1991) and Rietveld et al. (1991), since they

present high temperatures at relatively low altitudes of 140-1500 km. Assuming a current

density of 1000 µA m−2, as proposed by Collis et al. (1991) and Rietveld et al. (1991),

could have indeed triggered the ion acoustic instability at 800 km altitude, but also lead

to unrealistically high electron temperatures.

The temperatures estimated by Forme et al. (1993) are indeed very high, however, we

must remember that the incoherent scattering technique becomes unreliable during NEIALs

events and that, as Forme and Fontaine (1999) have shown, the temperature inside the
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Fig. 1. Ion and electron distribution functions, arbitrarily 

normalized for (a) the Buneman instability, (b) the ion 

acoustic instability and (c) the ion cyclotron instability. 

J 3 m, ‘I’ 
Q4 =ape Y =2 G 

( > 
ape9 (18) 

and the anomalous collision frequency is assumed to 

have a simple form (PAPADOPOULOS, 1977) 

me 0 
l/3 

V, *=c( - 

mi 
Wpc 

where we have added the numerical coefficient cx which 

expresses qualitatively the efficiency of the anomalous 

collision processes. The turbulent electron heating 

rate in this case is calculated as described above : 

(20) 

The dispersion relation for this instability in a one- 

dimensional plasma is given by (BUNEMAN, 1959 ; KIN- 

DEL and KENNEL, 1971) 

where 

l+~e(k,~)+~,(k,w) = 0, (21) 

and 

xi(k,w) = - 3. 

From this dispersion relation we can estimate the 

ion heating rate due to turbulence compared to the 

electron heating rate, we find 

(24) 

Since only a small amount of energy goes to the ions, 

we will assume that the ion heating rate remains as in 

the classical case. 

As for the electron heating rate, the coulomb col- 

lision frequency is substituted by the anomalous one 

in the electron thermal conductivity while the ion ther- 

mal conductivity remains as in the classical case. 

3.2. Ion-acoustic instability (Z.A.) 

This is probably one of the most extensively studied 

plasma instabilities. An approximate threshold con- 

dition on the drift velocity is given by 

(25) 

The electron and ion distribution functions for this 

case are sketched in Fig. 1 b. It clearly shows that as 

in the B.I. case, this instability does not conserve the 

momentum. A commonly used value of vf is 

(BISKAMP, 1972) 

T Vde 
“, * = alO- -qr, 

T V,, 

We can notice that for marginal stability (i.e. 

V,, = V,) using (25) we can rewrite (26) as 

v, * = ctlO~%,,. The maximum value of the growth 

Figure 3.3.4.: Ion and electron distribution function for (a) Buneman instability; (b) ion acoustic instability;

(c) ion cyclotron instability. fe (dashed line) is the electron distribution function, fi (solid line) is the ion

distribution function, vth,e is the electron thermal velocity and vd is the drift velocity. [from Forme et al.

(1993)]

turbulent regions can become very high, even though the techniques to extrapolate pa-

rameters inside the turbulence are not very accurate.

3.3.2. Ion-ion two stream instability

The ion-ion two stream instability theory was first proposed by Wahlund et al. (1992a).

They argue that this kind of instability is the source of enhanced ion acoustic spectra,

since the enhanced ion acoustic lines are often observed together with ion outflows, au-

roral arcs, topside electron temperature enhancements (as high as 8000K), soft particle
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Figure 3.3.5.: Electron temperature (b) and ion temperature (c) profiles for the ion acoustic instability, with

a current density of 30 µA m−2 between 300 and 3000 km altitude and within 2 s from the onset of

instability. [from Forme et al. (1993)]

precipitation (∼ 500eV) and this conditions are favorable for triggering the ion-ion two

steam instability.

The ion-ion two steam instability occurs due to a relative drift between two ion species,

e.g. H+−O+ or NO+−O+, of which the latter would be more common at lower altitudes,

if the higher collision frequency would not prevent it. The H+−O+ two-stream instability

is usually developed when Te/Ti ≥ 3 and for ion drift velocities of the order of the ion

thermal speed.

Wahlund et al. (1992a) used the linear theory to describe their explanation and assumed

that each plasma component had a drifting maxwellian distribution, since most non-

maxwellian distributions can be approximated by a sum of drifting maxwellians. This

approach gave good results, even though it could not reproduce the spectral enhancement

of the central peak, a feature observed by some authors, e.g. Rietveld et al. (1991).

Wahlund et al. (1992a) first assumed an ion composition of 5% H+ and 95% O+, a tem-

perature ratio Te/Ti = 10, and several velocities ratio (vd/vth, where vd is the drift velocity

and vth is the thermal velocity). Fig.3.3.6 shows the simulation results. They argue that
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the initial acceleration may be due to a non-ambipolar quasi-static electric field. When

the instability is triggered, the ion acoustic turbulence will in turn create an enhanced

anomalous resistivity which, if field aligned currents are present, can enhance the parallel

electric field (due to J‖ = η−1E‖, where η = 1/σ is the resistivity and σ is the conductiv-

ity) and give ions an additional acceleration. It is important to note that for large ion drifts

(i.e. where vd/vth ≥ 4) both ion acoustic shoulders can be enhanced.

1920 Wahlund et al.' Scattering of Electromagnetic Waves ... 

We have used the standard notations for the dielectric func- 

tion e and susceptibilities for the different plasma compo- 
nents )C,- fqo is the zeroth order one dimensional parti- 
cle distribution function. The assumptions about the size 
of the scattering volume and its distance from the radar 
transmitter are as usual [e.g., Sheffield, 1975]. We further- 
more assume that each plasma component has a drifting 
Maxwellian distribution, as most non-Maxwellian distribu- 
tions may be reasonably well be approximated by a sum of 
drifting Maxwellian plasma components according to 

f qO,tot • Maxwell = Aqfqo (v)[•/• 
q 

= • Aq 1 exp[-(zq- q 7rl/2•)th,q 

where x,i,q=Va,q/vt•.,q is the drift/thermal velocity ratio and 
vO,,q=v/2ksozizTq/mq is the thermal velocity of the com- 
ponent in question. In this case the susceptibilities for a 
certain plasma component may be written 

Xq • t - - - 
th,q 

•q •d,q x exp[•2]d•- iwl/2(xq- Xd,q)exp[--(3z q -- Xd, q) 2] , 
dO 

where zq=v/vt•,.q. The numerical results for likely topside 
auroral ionospheric parameter conditions are presented in 
the next section. 

Results and Discussion 

Figure 1 shows a number of calculated ion acoustic line 
spectra for different drift velocities of the ions (5% H+, 
95% 0+) and T,/T•=10. It is assumed in this case that 

xlo-s 

an equal amount of energy is transferred to both H + and 
O+ in the acceleration process, i.e. VH+=4vo+. The initial 
acceleration may in this case be due to a non-ambipolar 
quasistatic electric field. When the instability thereafter is 
triggered the ion acoustic turbulence itself sets up an en- 
hanced "anomalous" resistivity [e.g., Galeev and Sagdeer, 
1979; Papadopolous, 1977], which in the presence of field- 
aligned currents can enhance the parallel electric field even 
more and give the ions an additional acceleration. The 
electrons are assumed to have zero drift velocity, but no 
significant change in the result of the calculations is ob- 
tained if the drift velocity of the electrons is adjusted such 
that the final current density becomes zero. It can be noted 
that the electron density is as large as observed by Wahlund 
et al. [1992b] near regions of enhanced ion acoustic turbu- 
lence, i.e. lx10 lim -a. The corresponding current driven 
electron-ion acoustic mode would under these conditions 
require a current density larger than about 670 #Am -2 
to become unstable. In our case, significant asymetrical 
enhancements of the ion acoustic line are already obtained 
at drifts around the thermal velocity of the ions. For drifts 
twice the ion thermal speed, enhancements of 1-2 orders of 
magnitude can be achieved, i.e. the fluctuations approach 
the strong turbulence regime. Of course, since we are using 
linear theory the exact shape of the ion acoustic line under 
conditions of turbulence cannot be reproduced. At even 
larger drifts one starts to leave the instability regime and 
a decrease of the density fluctuations back to normal ther- 
mal level is attained. It is interesting to note that for large 
drifts both ion acoustic lines are enhanced by an almost 
equal amount. Since EISCAT measurements sometimes 
reveal cases where both the ion lines are enhanced simul- 

taneously this could thus be an indication of very large ion 
drifts (more than 4 times the thermal velocity) of a minor 
ion component. 

In Figure 2 we show that the O+-NO + instability can 
enhance the ion acoustic lines in a similar manner, which 
can be applicable to the lower F region ionosphere. What 
is important for the ion-ion two-stream instability is that 
there exist two ion populations with different drift veloc- 
ities. In this case we have choosen a lower value for the 
T,/Ti ratio of 6. From the moderate ion line enhance- 

0 
-3 

Frequency (in units of VplffV•) 

Fig. 1. A set of ion acoustic line spectra produced when 
both H+ and O+ drifts with indicated fractions of their re- 
spective thermal velocity. Other parameters are 5% H+, 
95% 0+, N,=lx10• m-a, T•=i.0 eV, Ti=0.1 eV. Fre- 
quency scale is in units of the H+ thermal speed. 

-:5 -4 -3 -2 -I 0 1 2 3 4 

Frequency (in units of Vph/Vth) 

Fig. 2. Same as in Figure 1 but for a NO+(90%)- 
O+(10%) plasma and the parameters T,=0.6 eV, T•=0.!5 
eV, N,=5 x10 l• m -a. Frequency scale is in units of the O+ 
thermal speed. 

Figure 3.3.6.: Ion acoustic spectra produced in a plasma made of H+ (5%) and O+ (95%) with Ne =
1×1011 m−3, Te = 1eV, Ti = 0.1eV and for different velocity drifts. Significant asymmetrical enhance-

ment are already visible when velocity drifts is around the thermal velocity of ions. [from Wahlund et al.

(1992a)]

The biggest advantages of the ion-ion two stream instability theory against the current

driven ion acoustic instability theory, which needs a drift between electrons and ions,

is that the theory proposed by Wahlund et al. (1992a) does not need huge currents and

can explain situations where both the ion acoustic shoulders are enhanced, albeit, as we

mentioned, very large ion drifts are needed to enhance both lines simultaneously. The

latter is an important point, since we know now (see Grydeland et al., 2003 and Michell

et al., 2009) that simultaneously enhanced upshifted and downshifted ion acoustic lines

are not caused by temporal or spatial averaging, bur are thought to be a real physical

phenomenon.

St.-Maurice et al. (1996) showed that, while this mechanism can work above 400km, it

cannot be in action lower down where charged particles collide with neutrals, hence it

cannot explain the observation of NEIALs at lower altitudes (below 200 km), which are

presents e.g. in Rietveld et al. (1991), Lunde et al. (2007), Ogawa et al. (2011) and in our

work as well.

However, as one moves up in the F region, electrons collide mostly with ions above 225

km, while the ions collide increasingly less frequently with the neutrals. This means

that, in the presence of a parallel electric field, the electron velocity is limited by the

ions, while the ion velocity increases steadily with altitude as their collision frequency

decreases. Since ions having different masses will have different velocities as they move

up, St.-Maurice et al. (1996) think that an instability could be produced by a mixture of

relative ion and electron drifts.
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Another issue pointed out by St.-Maurice et al. (1996) is that, since relative drift between

ion species must be of the order of thermal speed of one of the species in order to achieve

instability, the total ion velocity distribution would be double-humped. They calculated

that this would require relative drifts along the magnetic field lines of the order of 1km s−1

for a typical ionosphere below 500km and if this drift arise from parallel electric fields,

the field would be so large that an instability produced by the relative drift between ions

and electrons (as the one proposed by Collis et al., 1991 and Rietveld et al., 1991) would

be already present and in control of nonlinear processes (Sedgemore-Schulthess and St.-

Maurice, 2001).

3.3.3. Parametric decay of Langmuir waves

A different approach to understand the generation mechanisms of NEIALs was employed

by Forme (1993). Instead of basing their theory on intense streaming of thermal particles,

they suggested that the ion acoustic fluctuation can be due to the decay of a beam gen-

erated Langmuir wave into ion acoustic waves on the scheme L→ L′+ S where L is the

“pump” Langmuir wave, L′ is the back-scattered Langmuir wave and S is the produced

ion acoustic wave.

They assumed an electron beam moving through a stationary background plasma. The

total distribution of electron and ions is then a “bump-on-tail” distribution, which, as Tsy-

tovich (1967) have shown, is unstable to the beam instability. There exists two analytical

forms of beam instability, the so-called “reactive” (or “resistive”) and the “kinetic” form;

both are actually two limiting versions of the beam instability. Forme (1993) used the

kinetic form, since the reactive model requires a mono-energetic beam, which is unlikely

to happen in the upper ionosphere.

The most important type of nonlinear interaction responsible for parametric instabilities

is the three-waves interaction, where an initial Langmuir wave with frequency ωl and

wave vector kl causes the growth of another Langmuir wave with frequency ωl′and wave

vector kl′and the growth of an ion acoustic wave with frequency ωs and wave vector ks.

The three waves are characterized at the threshold by the following relations, which stems

from the fact that wave energy and momentum must be conserved (see also Chen, 1984):

ωl = ωl′+ωs kl = kl′+ks (3.3.1)

Weakly turbulent mode coupling cannot in fact proceed directly from one electron plasma

oscillation to two other plasma oscillations. Weak turbulence can, however, proceed if

energy is put into another mode that would decay at a moderate rate, e.g. the ion acoustic

mode, especially if Te/Ti ≫ 1 (Chen, 1984 and Sedgemore-Schulthess and St.-Maurice,

2001). Note that the high temperature ratio is typical of type-II outflow events, which, as

far as we know, are more likely to be associated with NEIALs.

A way to better visualize the process is to look at the ω− k diagram in Fig.3.3.7 (from

Sedgemore-Schulthess and St.-Maurice, 2001, adapted from Chen, 1984). The upper

parabolic trace in figure is the wavelength dependence of electron Langmuir waves, which

is ω2
l = ω2

p + 3k2
l v2

e (where ve is the electron thermal velocity; we used subscripts to
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avoid a burdening in notation). The lower trace is one possible ion acoustic mode, with

ωs = kscs (where cs = [(3Ti+Te)/mi]
0.5 is the ion-acoustic speed with temperatures given

in electron-volt).

Figure 3.3.7.: Parallelogram construction on an ω− k diagram for a Langmuir decay instability. ωp in-

dicates the plasma frequency. The upper curve is the electron plasma wave’s dispersion relation. The

straight lines represent the ion acoustic wave’s dispersion relation. [from Sedgemore-Schulthess and

St.-Maurice (2001), adapted from Chen (1984)]

We can see how the Langmuir wave (ωl, kl) can decay into a backward moving Langmuir

wave (ωl′ , kl′) and an ion acoustic wave (ωs, ks) The parallelogram is the consequence of

the constrain in eq. (3.3.1). The vector (ωs, ks) must lie on the ion curve. Note that the

initial Langmuir wave cannot decay into two other Langmuir waves, because there is no

way to make the difference vector (ωl, kl)-(ωl′ , kl′) lie on the electron curve.

It is also possible to determine the threshold electric field magnitude Eth needed to trigger

the decay (see Fejer, 1979):

ε0E2
th = 4n0KBTi(νie/ωp)B

−1 (3.3.2)

where ε0 = 8.854×10−12 F/m is the permittivity of free space, n0 is the background elec-

tron density, KB = 8.617eV K−1 is the Boltzmann constant, Ti is the ion temperature, νie

is the ion-electron collision frequency, ωp is the plasma frequency and B is (in this case)

a numerical value (B ⋍ 0.58).

Forme (1993) proceeded to evaluate the parameters for which the decay L→ L′+ S oc-

curs. They assumed a background electron density n0 ≈ 1011−1012 m−3 and a tempera-

ture ratio Te/Ti ≈ 3. Fig.3.3.8 shows the beam parameters they estimated for a standard

ionosphere situation.

They estimate the electron beam velocity to be:

vb ≈
ωp

ωs
2cs

+
ωpcs

3v2
e

(3.3.3)

This gives, for the initial parameters they used, a numerical value in the interval 106 m s−1

to 107 m s−1, which correspond to beam energies of a few tens of eV (for UHF) to a a few
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2348 Forme: Enhanced Ion Acoustic Fluctuations 

defined by Cs = (K(T• + 3Ti)/mi) 1/2 and mi is the ion 
mass. 

The threshold field strength of the pump wave needed to 
induce the decay L---•L'+S may be calculated by equalizing 
the power transfered from one high-frequency wave to the 
other one. The threshold field is then given by [Fcjcr', 1979] 

•oE?h - 4r•oXTi(t//cop )B -1 (7) 

where Ti is the ion temperature, B is a numerical value 
• 0.58 for ionospheric conditions and v is the collisional 
frequency of electrons with ions. The equation (7) has been 
originally derived for artificial EM pump waves. However, 
[Fejer, 1979] has shown that the threshold field given by 
(7) was still valid for pump Langmuir waves. 

Decay of Beam Generated Langmuir Waves into Ion 
Acoustic Waves 

One may, now, have an overall picture of the model. We 
assume that a "bump on tail" distribution due to precipi- 
tating particles exists in the upper ionosphere. Such a dis- 
tribution is unstable to the beam instability and can excite 
Langmuir waves. For particular parameters of the beam Vb 
and rib, the electrostatic energy of the high frequency wave 
may exceed the threshold needed for the parametric decay 
to occur. Therefore, ion acoustic waves may be produced. 
This being said, we need to determine the parameters for 
which this process occurs. 
In order to evaluate the energy of the electron beam one 
may use the first of equations (6), the resonance condition 
co m kV• and co m cop. It follows that 

(c,/3 C + (8) 

or V• may exceed this va.lue if e.g. the propagation of the 
pump wave and the Langmuir wave are not strictly an- 
tiparallel. The bean] number density arises from the fact 
that the electrostatic energy of the pump wave has to ex- 
ceed the threshold for the parametric decay given by (7). 
The electric field of the Langmuir wave is 

E'- v/2W/eo (9) 

where W is given by (4). However, this expression of the 
electric field has been infered to be overestimated by a 
factor 100 presumably due to the effects of spatial inhomo- 
geneities and wave processes [Cairns, 1987b]. If one wants 
the threshold to be exceeded we need a beam number den- 

sity 

12noKTiv 
_> 

An estimation of the differential flux at the beam energy 
can be obtained fi'om the previous equation. One finds 

3noKT•v 
(•) 

where it is assumed that the pitch-angle dispersion A© b = 
AV•/•, i.e. the degree of collimation is equal to the degree 
of monoenergeticity. The electric field of the ion acoustic 
waves E * has the following form [e.g. Cairns, 1987a] 

E s < 84Tl%i/lTle(Cs/Vb)3/2j• l ß (•2) 

This value is in fact overestimated since their calculation 

did not take into account the ion acoustic damping. 

The Ionospheric Model 

Radar observations of naturally enhanced ion acoustic 
lines in the upper ionosphere have been reported by e.g. 
[Foster et aI., 1988; RietveId et aI., 1991; CoIIis et al., 
1991]. Enhanced ion acoustic fluctuations have been shown 
to be correlated with enhanced electron temperatures and 
soft precipitations in the energy range of a few 100 eV. 
Enhanced ion acoustic fluctuations have been detected ei- 

ther with the UHF radar (kvu r m 40m -•) or with the 
VHF radar for which kuur is about 10 m -•. This suggests 
that. if our mechanism is relevant for those observations the 

beam parameters in both cases are different. Typical iono- 
spheric parameters during times of enhanced ion acoustic 
fluctuations have been given by WahIund et aI., [1992]. The 
electron density is n o • 10 •2- 101•m -3, the temperature 
ratio T,/Ti • 3. Therefore, we will use these values to give 
an numerical estimation of the beam and wave parameters 
mentioned above. In the following we calculate the beam 
parameters making the distinction between the two wave- 
lengths mentioned above correponding to the k vector of 
the EISCAT VHF and UHF radar, respectively. The re- 
sults are summarized in Table 1 for electron densities of 

10 •2 and 10•m -3 corresponding to altitudes of about 400 
km and 1000 km in the upper ionosphere. The correspond- 
ing matching conditions are sketched in the dispersion di- 
agrams in Figure 1. 
One may, now calculate the beam velocity required to trig- 
ger the whole instability according to (8). It follows that 
Vb has typical values of about 10 • m/s to 107 m/s which 
corresponds to beam energies of a few tens of eV to a few 
hundred eV for UHF and VHF respectively. We then need 
to determine the beam density as well as the flux of the 
precipitating particles at the beam energy. The collisional 
frequency of electrons with ions can be estimated to be of 
about 10 to 100 s -• for the ionospheric parameters men- 
tioned above. According to (10) we find a beam density of 
about l0 s to 104 m -3 for UHF a.nd VHF respectively. The 
differential fluxes at the beam energy associated with these 
values are m 10 •ø and 10 • cm -2 s-•ster-•keV -• where it is 

assumed that the spread of the beam is half of its mean 
velocity. However, the reader should keep in mind that 
the Langmuir wave electric field might have been overes- 
timated by one or two orders of magnitude, which would 
diminish the beam density as well as the flux of the precipi- 
tating electrons. Finally, •he electric fields are estimated to 
be of about 100-200 mV/m and 17-1 mV/m for the Lang- 
muir and the acoustic waves respectively. The level of ion 

Table 1. Beam parameters and electric fields of Langmuir 
and ion acoustic waves for background electron densities 

of 10 TM and 10 •2 m -3. 

UHF VHF 

E b (eV) 3-30 45-450 
n b (m -3) 3-1 (lO s) 20-7 (10 3) 
ß b(cm2s s•er keV)-• 15-1.5 (10 •) 27-2.7 (10 •) 
E • (mV/m) 100- 190 100- 190 
E s (mV/m) 17 - 5 2 - 0.7 

Figure 3.3.8.: Beam parameters and electric fields of Langmuir (E l) an ion acoustic (Es) waves for back-

ground electron densities of n0 ≈ 1011−1012 m−3. The value of Es is probably overestimated by one or

two orders of magnitude, since the calculation did not take in account the ion acoustic damping. [from

Forme (1993)]

hundreds of eV (for VHF). These soft electron precipitation energies are indeed usually

associated with the NEIALs.

They finally estimated the beam density critical value as:

nb

n0
>

20Tiνei

mev2
bωp

(3.3.4)

where νei is the electron-ion collision frequency.

Unfortunately the shape of precipitating electrons distribution function is not obtainable

by means of incoherent scatter radars. It is, however, commonly measured by rockets and

satellites (see e.g. Robinson et al., 1987).

Some characteristics of enhanced ion acoustic fluctuations observed by incoherent scat-

ter radars are not explained with this decay model. For example precipitating electrons

enhance preferentially downgoing Langmuir waves which, in this model, decay in upgo-

ing Langmuir waves and downgoing ion acoustic waves. However, several authors (e.g.

Ogawa et al., 2011 and Lunde et al., 2007) have shown that, above 200− 300km, ion

acoustic waves propagate mostly upward. Forme (1993) argued that only upward propa-

gating Langmuir waves due to low energy counter-streaming electrons may explain this,

implying that upward propagating ion acoustic waves would correspond to more intense

fluxes of upgoing than downgoing electrons. They argued also that such low energy elec-

trons, of which the observation was reported by e.g. Fung and Hoffman (1991), may be

of a different origins, namely back-scattered and secondary electrons or photoelectrons.

In a subsequent article (Forme, 1999), they extended the Langmuir decay theory to better

explain the evidence of mostly enhanced downshifted lines at higher altitudes. Basically

what they did is to allow the newly produced Langmuir wave to cascade into a down-

shifted ion acoustic wave and a second upshifted Langmuir wave. Schematically:

L→ L′+S (3.3.5)

L′→ L′′+S′ (3.3.6)

They showed that for a given beam number density, the beam energy or the background

density is important to trigger either the left or the right ion line. A large energy spread of

the beam or low electron collision frequencies can explain the simultaneous observation

of enhanced left and right shoulders. This theory can therefore overcome the difficulties

to explain the observational features listed by Forme (1993) and be a strong candidate to

explain a large number of NEIAL observations.
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Chapter 3 Naturally enhanced ion acoustic lines

3.4. Summary

As we saw there is no predominant theory able to explain all the NEIALs observational

features. A good summary on this topic can be read in Sedgemore-Schulthess and St.-

Maurice (2001).

The direct excitation of unstable ion acoustic wave is characteristic of the plasma stream

instability theories, namely the current driven and the ion-ion two stream instabilities.

Direct excitation theories are able to explain many observed features. For example the

sharp cut-off in electrons precipitation can create intense parallel electric fields which

cause large drifts in thermal electron population (as it occurs in the current driven insta-

bility theory). This could be the reason why the simultaneous optical and radar observa-

tions have all located enhanced radar spectra on the edge of precipitation regions instead

of in the middle of an auroral arc. In addition, we know that the instability threshold

due to an electron drift decreases when the electron temperature is enhanced, hence, as

the observations point out, NEIALs are often observed together with electron temperature

enhancements. The wavelength dependence can be explained by a two stream instabil-

ity as well, since it is driven more easily at longer wavelengths, and this is very well

confirmed by observations.

The current driven instability requires very high parallel electric fields, which in turn

means huge parallel current densities; however, currents of such intensity are not so often

observed, although, as Neubert and Christiansen (2003) have shown, it is possible to

measure these high currents, especially in the pre-noon cusp.

On the other hand, the ion-ion two stream instability can produce both upshifted and

downshifted enhanced ion acoustic lines and does not need huge currents to occur. But it

has difficulties in explaining enhancements in ion acoustic lines enhancements occurring

at low altitudes (below 200 km), which seem to be not so common, although have been

observed in numerous occasions and are thought to have a geophysical origin.

The theory of Langmuir decay is an indirect excitation model, since it requires the decay

of a Langmuir wave in order to generate an ion acoustic wave. It does not require huge

parallel current densities, can explain the simultaneous occurrence of both downshifted

and upshifted lines at the same altitude and can also give a good explanation for the cut-off

in the scattered power with decreasing altitude. However, the theory of Langmuir decay

needs precipitating electrons as the trigger mechanism, which makes difficult to explain

the observations of enhanced ion acoustic waves on the edge of precipitation structures.

Mishin and Fiala (1995) proposed a cross between these theories. They have suggested

that Langmuir turbulence could heat the electrons and dramatically decrease the threshold

for a streaming instability. However the electron temperature would be very high, and, al-

though we cannot get precise values inside the instability regions, this huge enhancement

in the electron temperature would be unlikely to occur.

We can try to propose a way to let the theories fit together. At higher altitudes (above 200-

250 km) the dominant theories could be the parametric decay of Langmuir waves and the

ion-ion two-stream instability. The parametric decay can in fact explain the occurrence of

simultaneously upshifted and downshifted enhanced ion lines which are often observed at

54



3.4 Summary

these altitudes, while the ion-ion instability can be valid only above 400 km (as discussed

by St.-Maurice et al., 1996). At lower altitudes the current driven instability could be the

dominant one, especially below 250 km. We know that this theory is not able to explain

simultaneously enhanced ion lines, but usually they are not observed at this low altitude.

Still, the current driven instability needs very high current densities, which are not often

observed, albeit they are not anymore discarded as impossible to occur. For instance,

in the case shown in Fig.3.4.1, all of the three theories could be acting to produce the

enhancement in ion acoustic lines.
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Figure 3.4.1.: NEIAL spectra showing the possibility for the three theories to act together: at lower altitudes

(around 200 km) could dominate current driven instability. Further up around 400 km the parametric

decay of Langmuir waves can explain the simultaneous enhancement of both ion lines. The ion-ion

instability could explain the NEIAL around 600 km.
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4. Incoherent scatter theory and the

EISCAT system

4.1. Incoherent scatter

4.1.1. Theory of incoherent scatter

When spatial fluctuations are present in a medium, waves cannot propagate unperturbed

through it since energy will be scattered by the refractive index variations into other di-

rections. In the ionosphere these fluctuations are caused by the fact that the plasma con-

sists of charged discreet particles which, when they move through the plasma, will excite

electron density fluctuations which in turn can be detected by electromagnetic wave scat-

tering. This kind of scattering is called incoherent scattering (see e.g. the review by

Hagfors, 1995).
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Figure 22. Scattering of a single pulse for a monostatic system with a height resolution 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+cr. 

Using such multi-pulse techniques it has proved possible to obtain totally adequate 
spectral resolution, and by reducing the length of the individual pulses, the height 
resolution can be improved. If T is reduced too much, however, the signal-to-noise 
ratio eventually becomes inadequate. To improve height resolution still further 
while retaining an adequate signal-to-noise ratio each pulse can be split into a number 

I Pulses 

5;' 
, I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6 T' 

Figure 23. Scattering of multiple pulses of variable spacing. 

Figure 4.1.1.: Incoherent scatter experiment setting. A pulse of the order of 106 W is sent up in the iono-

sphere and then reflected and received back by the radar antenna. The received signal is of the order of

10−17 W. The height resolution is related to the pulse length and it is equal to 0.5cτ, where c is the speed

of light and τ is the pulse length. [from Beynon and Williams (1978)]

Fig.4.1.1 schematically shows an incoherent scatter radar experiment, where an high

power electromagnetic wave is transmitted into the ionosphere. Electrons which are hit

by the wave are accelerated and hence emit electromagnetic radiation, which is received
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Chapter 4 Incoherent scatter theory and the EISCAT system

by the radar as a weak, scattered signal coming from these electrons. The ions are prac-

tically not participating to the scattered signal, since their large mass prevents them from

being accelerated by the incoming radiation.

The scattered radiation contains also other frequencies, in addition to the radar frequency.

This is due to the Doppler broadening of the signal, which is caused by the thermal motion

of the particles. In addition there can also be a Doppler shift due to the collective motion

of the particles species.
Incoherent scattev of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAradio waves from ionosphere 919 

1.6 

Frequency shift ( k H z )  

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. Ion spectrum and plasma lines. N = 1012 m-3, Te = 1000 K, Ti= 1000 K, A= 1 m, 
Mi=16. 

sharp plasma lines at frequencies f r tF- (A) .  For the radar frequencies used in 
incoherent-scatter experiments AB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD so that F-(A) fp = 9N112 Hz. Under normal 
circumstances, the bulk of the scattered power is in the ion spectrum. Theory shows 
that the total scattered power corresponds to a scattering cross section per unit volume 
of UN, where : 

and 01=477D/A (Buneman 1962). For X9.D this reduces to: 

~ = ~ e ( l - ( 1 + 0 1 2 ) - 1 + [ ( 1 + ~ ' ) ( 1 + ~ ' +  Te/Ti)]-l} 

CT = U,( 1 + Te/Ti)-l 

which is of the same order as that predicted by simple Thomson theory. If, however, 
there is an influx of suprathermal electrons, or if the plasma is excited by a strong 
incident radio wave at the plasma frequency (see $8.2), then the plasma lines can 
become prominent. 

The theory of scattering thus turns out to be considerably more complicated 
than originally suspected, but it is now well established. I t  is clearly not a simple 
theory of incoherent scattering by free electrons; rather, it describes quasi-coherent 
scattering by thermally induced electron-ion acoustic waves. Nevertheless, no 
new name has yet been agreed for the process and it is still universally referred to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

T, I Ti 
1.2-  

Frequency shi f t  18k T , / m ,  . A 2 ] ' ' *  

Figure 7. Dependence of ion spectrum on Te/Ti. 

Figure 4.1.2.: Typical shape of the incoherent scatter power spectrum from the ionospheric F region. [from

Beynon and Williams (1978)]

Fig.4.1.2 shows a typical power density spectrum received by an incoherent scatter radar.

The information are extracted from this spectrum or, equivalently, from the auto-correlation

function of the received signal, which is the Fourier transform of the power density spec-

trum (due to the Wiener-Khinchin theorem). The central part is shaped by the two broad-

ened ion acoustic lines and the two lines on the side are the plasma lines. It is important

to note that the figure in not in scale, since the ion lines frequency is of the order of KHz,

whereas the plasma lines frequency is of the order of MHz.

Now we will briefly describe the physics behind the incoherent scatter spectrum, starting

with the definition of some useful quantities. Our references are Bjørnå (2005) and our

own notes.

The Debye length is a measure of the sphere of influence of a test charged particle placed

in a plasma. It is defined for electrons and ions, respectively as:

λe =

√

ε0kBTe

n0e2
λi =

√

ε0kBTi

n0e2
(4.1.1)

The total Debye length is hence written as:

1

λ2
D

≡
1

λ2
e

+
1

λ2
i

(4.1.2)

For distances r≫ λD the shielding cloud around the test particle will cancel its effects.

The Debye length in the ionosphere is of the order of 10−3 m.
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4.1 Incoherent scatter

The electron plasma frequency is defined as:

ωpe =

√

nee2

meε0
(4.1.3)

It represent the frequency at which the electrons oscillate when responding to the electric

fields built up when the plasma is slightly perturbed locally. The electric fields are built up

in order to restore the charge neutrality and pull the particles back to the original position.

But, because of their inertia, particles will overshoot and oscillations occur. These are

high frequency oscillations (of the order of MHz) and the ions are too massive to have

time to respond. These oscillation are called electron plasma oscillation or Langmuir

oscillations. Note that the electron plasma frequency is proportional to the square root of

electron density.

However, if one takes into account the thermal motion of the particles (vth,e =
√

kBTe/me)

the perturbation will propagate through the plasma and the result is a high frequency

electron plasma wave. In this case we can write the dispersion relation as:

ω = ωpe

√

1+3k2λ2
e (4.1.4)

where k = |k| is the wave vector magnitude.

Different types of waves in the plasma have different dispersion relations. A dispersion

relation has the form:

ε(k,ω) = 0 (4.1.5)

where ε(k,ω) is the dispersion function.

The ion acoustic waves are low frequency waves, where the ions have time to respond

to the propagation. They are described, if a fluid model of the plasma is used, by the

following dispersion relation:

ω = kCs (4.1.6)

where Cs is the ion acoustic speed:

Cs =

√

(

γekBTe + γikBTi

mi

)

(4.1.7)

where γe and γi are the ratio of specific heats (Cp/CV ) for electrons and ions respectively

and kB is the Boltzmann constant (not to be confused with the wave vector magnitude k).

However, the fluid model cannot describe some feature of the plasma, namely the Landau

damping. In order to study such phenomena, we need the kinetic theory, in which a central

element is the distribution function f = f (r,v, t) for each particle species. For a uniform,

isotropic and stationary plasma f is a function only of the velocity magnitude: f = f (v).
Perhaps the most important distribution function with this property is the Maxwellian,

which in the one-dimensional case is:

fM (vx) =

√

m

2πkBT
exp

[

−(vx− vd)
2

2v2
th

]

(4.1.8)
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Chapter 4 Incoherent scatter theory and the EISCAT system

In kinetic theory the wave frequency and the dispersion function are complex quantities

and can then be written as:

ω = ωr + ıωi ε = εr + ıεi (4.1.9)

where the first factor represents the oscillation in time at frequency ωr and the second

factor represent a growth if ωi > 0 or a damping of the oscillation if ωi < 0. This damping

is called Landau damping.

For the ion acoustic waves the kinetic theory gives, when the damping is weak (|ωi|≪ωr):

ωr =
kCs

1+ k2λ2
e

(4.1.10)

and ωi will be proportional to −ωr (Te/Ti)
3/2 exp [−Te/Ti] . The condition |ωi| ≪ ωr

is equivalent to Te ≫ Ti. In this case we have Cs ≈
√

kBTe/mi and hence ωr will be

determined by the electron temperature (the electron thermal motion) and the ion mass

(the ion inertia). For ion acoustic waves the damping depends on the temperature ratio

Te/Ti (the larger the ratio the stronger the damping) and it will determine the shape of ion

line in the incoherent scatter spectrum.

For the sake of completeness we report here the mathematical expression for the power

spectrum (Bjørnå, 2005):

S(k,ω) =C
ne

k

{

fe

(ω

k

)

∣

∣

∣

∣

1+
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2
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(ω

k
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∣

∣

∣

∣

2
}

(4.1.11)

where C is a numerical constant, fi and fe are the electrons and ions velocity distribu-

tion functions (in the direction of the magnetic field), ε(k,ω) is the complex dispersion

function and ε = 1−Ze−Zi, where Ze and Zi are integrals containing the respectively the

electrons and ions distribution functions.

4.1.2. Parameters measured by incoherent scattering

Many parameters can be directly measured by the incoherent scattering, while others can

be derived. We will now give a brief description of them. A thoroughly review can be

found in e.g. Beynon and Williams (1978).

Electron density

Electron density is basically proportional to the area of the incoherent scatter spectrum.

This means that it is proportional to the scattered power and to the temperature ratio Te/Ti

and it can be determined by measuring these two quantities. Another independent way to

get it is using Faraday rotation, for which one needs to know the magnetic flux density

and the angle between the path of the signal and the magnetic field lines.
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Figure 4.1.3.: Shape of incoherent scatter spectra depending on several ionospheric parameters. [from

Nygrén (1996)]

Temperature ratio Te/Ti

When Te≫ Ti is not strictly satisfied, the ion acoustic waves are more strongly damped,

which means that the two ion acoustic lines with peaks at ω ≈ ±kCs are broadened and

merge into one broad double-humped line, as it shows Fig.4.1.3.

The sharpness of the shoulders and the depth of the valley between them are dependent

on the damping and hence are a measure of the temperature ratio Te/Ti.
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Chapter 4 Incoherent scatter theory and the EISCAT system

Ion mass

When Te≫ Ti we can write eq. 4.1.7 as Cs ≈
√

kBTe/mi. This velocity is then proportional

to the broadening of the ion acoustic shoulders, and from the latter is hence possible to

estimate the mass of the ions.

Plasma velocity

If there is a bulk movement of the plasma the spectrum as a whole is Doppler shifted.

By measuring the mean Doppler shift of the scattered spectrum the component of plasma

velocity in the mirror direction can be determined (see Fig.4.1.4). However a great pre-

cision is required, since for the usual ionospheric conditions and radar configuration the

Doppler shifted frequency differs from the “zero frequency” often by less then 0.5% It is

also important to note that with a typical back-scattering configuration is impossible to

obtain a vector velocity, but only the velocity component along the radar beam. This is of

course due to the fact that the velocity component perpendicular to the line of sight has a

zero Doppler shift.

926 W J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG Bey non and P J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS Williams 

of the ion spectrum. For example, the ion spectrum of a plasma of O+ ions where 
Te= 1500 K and Ti= 1000 K has a half-power width of about 9 kHz when observed 
at 400 MHz. If the plasma is moving in the mirror direction at a velocity of 100 
m s-1-a large velocity for mid and low latitudes-the mean Doppler shift will 
be less than 0.3 kHz. An accurate measurement of the whole spectrum is therefore 
required to measure Vp, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm though it is the steep sides of the spectrum that are 
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Figure 14. (a) The mirror direction for a bistatic system, showing the component of plasma 
drift velocity (Vp, m) measured by such a system. (b)  Ion spectrum for zero 
plasma velocity (- ) and for a plasma velocity of 100 m s-1 in the mirror 
direction (- - - ). Te=1500 K, Ti=1000K,Mi=16 (O+), A = l  m. 

Figure 4.1.4.: The mirror direction in a bi-static configuration, showing the component of plasma drift

velocity measured in such a system. [from Beynon and Williams (1978)]

Other parameters

In particular conditions it is possible to measure also ion neutral collision frequency, elec-

tric current density and the spectrum of supra-thermal electrons.

In addition, from the parameters measured directly, several others can be estimated:

• electric field

• ionospheric conductivities (Hall and Pedersen conductivities)

• neutral wind velocity

• neutral temperature
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4.2 The EISCAT facility

• downward flux of heat from the exosphere

See Beynon and Williams (1978) for a complete discussion of the parameters that can be

derived by the incoherent scatter spectrum.

4.2. The EISCAT facility

The EISCAT (European Incoherent Scatter) Scientific Association conducts research on

the lower, middle and upper polar atmosphere and ionosphere using incoherent scatter

radars. There are two radars in Northern Scandinavia (Ramfjordmoen, near Tromsø, in

Norway) and one on Svalbard (Norway). At the Ramfjordmoen facility it operates an

ionospheric heater as well. Additional receiver stations are located in Sodankylä (Finland)

and Kiruna (Sweden).

The UHF radar (Ramfjordmoen) operates at 931 MHz with a peak transmitter power over

2 MW and a 32 m, fully steerable parabolic dish antennas. In Ramfjordmoen there are

the transmitter and one receiver, while two other receivers are located in Sodankylä and

Kiruna. This allows tri-static measurements to be made.

The VHF radar (Ramfjordmoen) operates at 224 MHz with a peak transmitting power of

2×1.5 MW and a 120 m ×40 m parabolic cylinder antenna, composed of four sectors. It

can be steered in the meridional plane from vertical to 60° north of the zenith.

The EISCAT Svalbard radar (ESR) is located near Longyearbyen in the Svalbard archipelago,

it operates at 500 MHz with a peak transmitter power of 1 MW. There are two antennas,

one fully steerable paraboloid of 32 m diameter and one fixed field aligned antenna of 42

m diameter.

In Tab.4.1 and Tab.4.2 are respectively summarized the geographic positions and some

technical characteristics of the EISCAT facilities.

Location Tromsø Kiruna Sodankylä Longyearbyen

Geographic Latitude 69°35’11” N 67°51’38” N 67°21’49” N 78°09’11” N

Geographic Longitude 19°13’38” E 20°26’07” E 26°37’37” E 16°01’44” E

Altitude 86.28 m 417.62 m 197.03 m 445 m
Table 4.1.: Geographical coordinates of EISCAT facilities. [from EISCAT Scientific Association, 2013]
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Location Tromsø Tromsø Longyearbyen

Band VHF UHF UHF

Transmitter frequencies 222.8 - 225.4 MHz 926.6 - 930.5 MHz 498 - 502 MHz

Transmitter 1 klyostron 2 klyostrons -

Peak power 1.6 MW 2 MW 1 MW

Average power 200 kW 250 kW 250 kW

Pulse duration 1 µs-2 ms 1 µs-2 ms 0.5 µs-2 ms

Minimum inter-pulse 1 ms 1 ms 0.1 ms

Receiver frequencies 214.3 - 234.7 MHz 921.0 - 933.5 MHz 485 - 515 MHz
Table 4.2.: Some technical characteristics of EISCAT radars transmitters. [from EISCAT Scientific Associ-

ation, 2013]
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As we mentioned in the introductory chapter, we are mostly interested in discussing the

relation between type-II ion outflows and naturally enhanced ion acoustic lines. There are

basically three physical parameters to take into account:

• Ion velocity, useful to investigate the starting altitude of the outflow when the

NEIAL event occurs, employing for instance a velocity altitude profile. An ion

velocity profile over time is useful to understand the ion outflow behavior with and

without the NEIAL event.

• Electron density, that in turn gives important information about the particle precip-

itation, which is thought to play a role both in ion outflow and NEIAL events. It is

useful to plot both the F region and the E region electron density over time in order

to identify soft and hard particle precipitation, respectively.

• Temperatures, which are important to assess the typology of the outflow the possible

the heating mechanisms during the events. In addition, they are useful to identify

“mixed” situations, e.g. type-II ion outflows with the ion temperature slightly en-

hanced. Temperature ratio is useful to investigate both the ion outflow typology and

the thresholds for instabilities to occur.

5.1. Results: Introduction

The analysis of EISCAT data followed a standard procedure:

1. Search for ion outflows (preferably type-II) looking at EISCAT auto-generated

color plots on the Madrigal database at http://www.eiscat.com/madrigal/. We

usually searched for field aligned experiments, so we looked mostly at data obtained

by the ESR 42m antenna.

2. Manual search for naturally enhanced ion acoustic lines looking at the real time

graph (RTG) using the remtg1 Matlab routine, which we customized in order to

download the RTGs to our PC. Unfortunately, we were not able to analyze some

data due to the lack of a working RTG definition file in the database. We down-

loaded all of the raw data we used from the EISCAT database at:

http://www.eiscat.com/rtg/rtg.cgi.

3. Analysis of data dumps near (during, before and/or after) NEIALs events. We de-

fined a NEIAL event as an event where enhanced acoustic lines were clearly visible

in one or more consecutive data dumps. We know that this is not necessarily an

1for further information, check http://www.eiscat.com/rtg/remtg.html
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exact definition, since we can actually have separated NEIAL events during 6 s (see

Michell et al., 2009); nevertheless, we believe that this is a good operative definition

in our case study scenario. To get reliable parameters, we manually removed the

dumps containing NEIALs from the chosen data set, since they can alter the inco-

herent scatter analysis results. In some case it was necessary to remove also dumps

containing satellites passes, since the software’s automatic check function was not

100% reliable. The software used to extract parameters was Guisdap 8.7, which

can be found at:

http://www.eiscat.com/groups/Documentation/UserGuides/GUISDAP.

4. Analysis of parameters and plotting. We used a Matlab routine written by us in

order to derive additional parameters (e.g. electron temperature and particle flux),

to remove data with errors considered too large and to plot several figures, like

ion velocity, temperatures and electron density, both as altitude profiles and time

varying quantities at a fixed altitude. Further information on this routine, together

with the source code, can be found in Appendix B.

We tried to follow a standard procedure to get comparable results along different exper-

iment types and conditions. First of all we usually tried to find a relation between the

NEIALs and the outflow starting altitude; in order to do this, we plotted the ion velocity

altitude profiles just before the NEIAL occurrence. The issue is that in order to get reli-

able values, we need to integrate for at least 60 s, more often 120 s. Hence we run the

risk to smooth out any peculiarities occurring just before the NEIAL. For example, a sud-

den increment in ion velocity occurring 10 s before the NEIAL will be heavily smoothed

out with a 120 s integration. However, as we shall see, useful information can still be

obtained.

Together with the ion velocity altitude profile, we evaluated the electron and ion temper-

atures, the temperature ratio Te/Ti, the flux and the electron density. We wrote a function

to evaluate also the parallel (i.e. field aligned) electric field, but the values we got had

very large errors, so we did not include any plot with it.

Afterwards we plotted values as a function of time. In this regard, the electron density

is very interesting since it can tell us something about the particle precipitation which, as

we have seen in chapter 3, is correlated with NEIAL events. Again, we have the usual

problem about the integration time, i.e. an integration time of 120 s can easily smooth

out a sudden parameter increase near the NEIAL occurrence. We tried to lower down the

integration time, as Rietveld et al. (1991) did, but we did not succeed due to very large

errors. We could, however, get good results, albeit the relatively long integration time.

The temperature time variation is important as well. In some cases we found an interest-

ing anti-correlation between electron and ion temperature, to which we could not give a

satisfactory physical explanation, even though we tend to exclude technical errors. The

cause of this behavior can be related to the the temperature measurements; we discuss a

possible explanation in sec.5.4.

Through many hours of analysis, we found “odd” cases here and there. Some of them

were not isolated cases, so we report here any unexpected observational feature we found

in the data. One of the most interesting is a sort of “slow-growing” NEIAL event, where,

instead of a sudden increase in power, we observed a smooth growing in time, lasting as
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much as 20 seconds. In other cases we observe very weak ion acoustic lines, especially

at altitudes above 400 km. These “failed NEIALs” have inhomogeneous enhancements,

which appear like weak spots in the spectrum. Since the presence of weak enhancement

in the ion acoustic lines is clear, these cases cannot be easily discarded as noise.

We chose to divide the result in two parts: the first part is made of standard field aligned

experiments with a fixed field aligned antenna; the second one is related to the Steffe CP-2

experiment, which was set in such a way to have the radar on for one minute and off for the

successive one minute. The reason why we included some of the observations here is that

this particular setting presents interesting features, namely very powerful NEIALs with

long duration. In addition, they were suited to our analysis due to the large signal-to-noise

ratio.

Note: all the times are given in Universal Time (UT), in the form “hhmm:ss”. All pa-

rameters are evaluated field aligned, unless specified. In addition, the white periods in

the color plots are due to the radar transmitter being off, thus no analysis was performed

during these time intervals. Finally, some figures does not correctly show the EISCAT

logo, due to issues in the GUISDAP software and/or the Matlab version we used. We

apologize for that.

5.2. Results: Part 1 - Standard field aligned experiments

5.2.1. Case 1: 31 March 2005

On 31 March 2005 (see Fig.5.2.1 for the color plots) we observed NEIAL events in the

interval 0600-0700 UT, where the type-II ion outflow was short but intense. We found

6 dumps containing NEIALs out of a total of 562. The low occurrence frequency is

probably due to the short duration of the ion outflow. We found two distinct NEIAL

events: one during the interval 0623:12-0623:31 UT and the other during the interval

0626:43-06:26:49 UT. We analyzed the second one, since it was more intense. Its spectra

are shown in Fig.5.2.2. The spectrum of each dump gives several information. The

upper left panel shows the power received by the antenna at every altitude. A “bump”

in the spectral power is a signature for the NEIAL event, while satellites are usually

characterized by a much more enhanced and square-like shape. The bottom panels shows

the actual spectra of the event at every altitude. Thus, the intensity of the lines is identified

by the colors, where black means no signal, white means a saturation and the color map

used is the same as in Fig.5.2.1. Note how the downshifted line is enhanced more and

more often than the upshifted one, as it is usually the case for NEIAL events above 300

km.

First we analyzed the field aligned ion velocity to check if the NEIAL and the outflow

started at the same altitude. Finding a NEIAL below an outflow would pose a problem

for the hypothesis stating that ion outflows are a necessary condition for the onset of

a NEIAL event. In this case we actually found a good agreement, as the top panel in

Fig.5.2.3 shows. Regarding the temperatures (Fig.5.2.3, bottom panel), we found that the

electron temperature was slightly lower than the average (but still enhanced with respect

to the standard ionosphere without any NEIAL occurring) and that the temperature ratio
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Te/Ti altitude profile oscillated between 2 and 4, which is a relatively low value. It is

possible however, that on a shorter integration time we would find higher temperature

ratio. We tried with a 60 s integration time (the figure is not reported here) and we got

very similar profiles, but this time the temperature ratio reached nearly 5 around 400 km

altitude, which is interesting, since the NEIAL event became intense at that very altitude.

Unfortunately, we had to keep the integration time above 60 s to get reliable results.

To investigate if the standard parameters went into a “preparation” phase before the

NEIAL appeared, we plotted the ion velocity, electron density, temperatures and tem-

perature ratio over time and at several altitudes, both with and without dumps containing

NEIALs. This is useful in order to study what is happening in the vicinity of the NEIAL

event we are focused on. We are going to show here only the results obtained without

dumps containing NEIALs, since they are usually more precise, especially for the elec-

tron density, which is reported by the software as exceptionally enhanced if one does not

remove the dumps containing NEIALs (on a side note, this is the very reason for the idea

discussed in Appendix A).

Fig.5.2.4 (top panel) shows the electron density over time. There is nothing special re-

garding NEIALs, except for the very weak enhancement visible at 612 km. The trend

seems to show an increasing electron density, but this is somewhat expected, since we are

in the morning and the Sun’s radiation is going to enhance the ionization, as is clearly

visible in Fig.5.2.1. Surprisingly, things changes drastically if we look at the electron

density in the E-region (bottom panel in Fig.5.2.4): here it is absolutely clear that hard

particle precipitation is correlated with NEIAL events. This result is in a very good agree-

ment with other authors, e.g. Rietveld et al. (1991). However, as we shall see in the next

observation, this is not a necessary condition for NEIAL occurrence.

Very interesting is also Fig.5.2.5, which shows the field aligned ion velocity over time at

several altitudes. It is clearly evident that the ion velocity in correspondence of NEIALs

is enhanced for each altitude considered here, especially at lower altitudes. This seems to

be a strong evidence for the close relation between ion outflows and NEIALs. There is,

however, an issue in this very figure: around 0630 UT, which correspond to block 30 in

the figure, the ion velocity was quite high, but no NEIAL occurred. This is a recurring

matter: it is not impossible to find common features for NEIAL events, even necessary

conditions, but we could not find any sufficient condition for their occurrence.

Finally, Fig.5.2.6 shows electron and ion temperatures (top panel) and the temperature

ratio Te/Ti (bottom panel). We have a slight enhancement when NEIALs occurred, both

in electron temperature and in temperature ratio (again as Rietveld et al. (1991) observed)

at several altitudes, for instance at 413 km, 493 km, 551 km and, only in the electron

temperature, at 612 km. However, in contrast to Rietveld et al. (1991), we did not observe

any enhancement in the ion temperature, except for a slight increase at 612 km, which is

in fact the reason for the lower temperature ratio at this particular altitude.
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EISCAT SVALBARD RADAR
RT, 42m, steffe, 31 March 2005
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Figure 5.2.1.: Color plot showing electron density, electron temperature, ion temperature, ion velocity and

radar parameters for the events observed on 31 March 2005. We analyzed the interval 0600-0700 UT.

[from EISCAT Scientific Association, 2013]
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Figure 5.2.2.: Spectra of the NEIAL event occurring between 0626:43 and 0626:49 on 31 March 2005.
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(a) Electron density (between 389 and 612 km)
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Figure 5.2.4.: Electron density at high altitude (a) and in the E region (b) during the two NEIAL events

occurring respectively between 0623:12 and 0623:30 UT and between 0626:43 and 06:26:49 UT on 31

March 2005. The red lines (blocks 24 and 27) indicate the NEIALs occurrence. Dumps containing

NEIALs are removed from the analysis. The time interval shown is 0600-0659 UT. Integration time is

60 s.
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Figure 5.2.5.: Field aligned ion velocity during the two NEIAL events occurring respectively between

0623:12 and 0623:30 UT and between 0626:43 and 06:26:49 UT on 31 March 2005. The red lines

(blocks 24 and 27) indicate the NEIALs occurrence. Dumps containing NEIALs are removed from the

analysis. The time interval shown is 0600-0659 UT. Integration time is 60 s.
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Figure 5.2.6.: Electron and ion temperatures (a) and temperature ratio (b) during the two NEIAL events

occurring between 0623:12 and 0623:30 UT and between 0626:43 and 06:26:49 UT on 31 March 2005.

The red lines (blocks 24 and 27) indicate the NEIAL occurrence. Dumps containing NEIALs are re-

moved from the analysis. The time interval shown is 0600-0659 UT. Integration time is 60 s.
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5.2.2. Case 2: 22 May 2004

On 22 May 2004 we found many NEIAL events in the interval 0600-1230 UT. We found

55 dumps containing NEIALs out of a total of 3937. In addition, we found 3 dumps show-

ing very weak enhancements, hence it was difficult to classify them as NEIAL events. We

observed two different types of NEIAL: one associated with high ion temperatures at low

altitude, the other without any enhancement in the ion temperature. In addition, both of

them did not show any clear enhancement in the E region electron density, as opposed to

the case discussed in sec.5.2.1 (see Fig.5.2.4). Fig.5.2.7 shows ionospheric parameters

for the interval 0600-1230 UT. It is possible to clearly see the four regions with enhance-

ments in the ion temperature between 0630 and 0900 UT. Interestingly, all of them show

a good correlation with both the ion velocity and the electron temperature enhancements.

After 1000 UT, we found two NEIAL events with the enhancement occurring only in the

electron temperature, as it is usually the case. Fig.5.2.8 shows the same ionospheric pa-

rameters of Fig.5.2.7, with the addition of ion flux, temperature ratio and NEIAL events.

For this case, we are going to compare results obtained at high altitude (topside iono-

sphere) and low altitude (E region). Fig.5.2.9 shows the electron density; in this case

we see a weak enhancement in the electron density at high altitudes, which is not corre-

sponded by a similar trend in the E region. Hence there was no hard particle precipitation,

but only soft particle precipitation around 400 km. Note that the behavior is the same both

for the NEIAL events associated with an enhancement in the ion temperature and for the

NEIAL events where only the electron temperature was enhanced.

We then looked at the temperatures. As shown in Fig.5.2.10 (top panel), at high al-

titudes, the electron temperature is always slightly enhanced in correspondence with

NEIAL events, while the ion temperature is weakly enhanced only for the events oc-

curring both before 0900 UT (which correspond to the events at the left of block 100 in

figure Fig.5.2.10) and below 600 km altitude. However, as we mentioned, in the upper E

region the temperatures show some peculiarity (see bottom panel of Fig.5.2.10): several

enhancements in the ion temperatures occurring together with the NEIAL events before

block 100; the ion temperature enhancements gets as high as 3000 K, while the average

ion temperature in E region is usually about 1000 K. The electron temperature, on the

other hand, did not show any appreciable enhancement.

After this general analysis, we investigated in more detail two NEIAL events, one occur-

ring at 0738:49 UT and belonging to the group where the ion temperature at low altitude

was enhanced; the other occurring between 1023:05 and 1023:12 UT and belonging to

the group where no enhancement in the ion temperature was observed. We chose them

because they were the most powerful of each group.

As Fig.5.2.11 shows, this event was not preceded by any build-up, but suddenly appeared

with both lines enhanced between 300 and 600 km and the downshifted line enhanced

more than the upshifted one. We found that the ion velocity (Fig.5.2.12, top panel) was

not very high before the NEIAL event. Furthermore, it gets positive only above 400 km

altitude, while the ion acoustic lines are significantly enhanced already at 300 km (as it

clearly shows the power profile in Fig.5.2.11). This is surprising, since we expect that

NEIALs are embedded in the outflow, and this seems not really to be the case. However,

we must take into account the fact that we are actually analyzing the ionosphere 128 s
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before the NEIAL event and this can be problematic, as we explained in the introduction

of this chapter. The bottom panel of Fig.5.2.12 shows information about the temperatures.

Again we did not find anything special about them and the temperature ratio is even less

than 3 at every altitude (and we know that a higher temperature ratio lowers the threshold

for the onset of the instabilities). This event, however, has a property that we can turn to

be an advantage: it lasts less than 6.4 seconds, i.e. only one dump. This means that we can

try to center our integration period on the event, instead of looking at what happened just

before (the dump containing the NEIAL will of course be removed from the analysis). The

results regarding ion velocity and temperatures are shown in Fig.5.2.13, where we used a

64 s integration time and we had to remove values above 500 km altitude due to very large

errors. The situation does not change a lot. We still have relative low ion velocities and

low temperature ratios. It is interesting to note, however, that the ion velocity becomes

positive around 300 km altitude, which is 100 km lower than the preceding analysis and

closer to the NEIAL starting altitude. We believe that with a smaller integration time they

would show a better agreement.

We can now point our attention to the event which occurred between 1023:05 and 1023:12

UT. Looking at the spectra in Fig.5.2.14, we see that the NEIAL grew up fast and reached

a high power at 1023:12 UT. Fig.5.2.14b shows a low altitude NEIAL around 150 km,

similar to other cases already reported by Rietveld et al. (1991) and Ogawa et al. (2011).

From our study, it seems that they appear only when very powerful events take place and

the upshifted line is usually more enhanced. However, since our work is not statistical, we

do not dare to draw definitive conclusions on this subject. As a matter of fact, statistical

studies, conducted by e.g. Ogawa et al. (2011), showed that only half of the NEIALs

occurring in the E region were accompanied by ion acoustic enhancements in the F region.

The ion velocity (Fig.5.2.15, top panel) was not strongly enhanced, but the NEIAL is

totally embedded into it, except for the enhanced upshifted line in the upper E region.

However, looking at the spectra shown in Fig.5.2.14, we see that there is an evident

variation in NEIAL morphology in just 6.4 s. This poses a serious concern when we

need to decide where the NEIAL started: is it starting at around 500 km like it seems to

suggest the enhanced downshifted line in Fig.5.2.14a, or is it starting at 400 km as shown

by the enhanced upshifted line in Fig.5.2.14b? When we encountered such a situation

(quite often, actually) we took as the starting altitude the one corresponding to the most

enhanced line in the most powerful spectrum, which, in this case, is 400 km. However,

when NEIAL events last for tens of seconds, with quick changes in consecutive spectra,

it is not so easy to set a definite starting altitude.

The ion and electron temperature altitude profiles together with the temperature ratio Te/Ti

for the event occurring between 1023:05 and 1023:12 UT are shown in the bottom panel

of Fig.5.2.15. While there is not anything special at high altitudes, we got two very

important results about the NEIAL occurring in the upper E region:

1. The NEIAL occurred together with the type-II outflow, but it is not embedded into

it.

2. The temperature ratio is lower than 1 at the altitude where the NEIAL event oc-

curred.

The two above points were never satisfied for the NEIAL events occurring above 300 km.
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This lead us to think that it is not so easy to discard the idea that two different mechanisms

can generate the low altitude and the high altitude NEIALs.
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Figure 5.2.7.: Color plot showing electron density, electron temperature, ion temperature, ion velocity for

the events observed on 22 May 2004 for the time interval 0600-1230 UT. We used a 128 s integration

time.
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Figure 5.2.8.: Color plot showing ion velocity, electron density, flux, electron temperature, ion temperature,

temperature ratio for the events observed on 22 May 2004 for the time interval 0600-1230 UT. Teal lines

represent NEIAL events. We used a 128 s integration time.
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Figure 5.2.9.: Electron density at high altitude (a) and in the E region (b) during several NEIAL events

(indicated by red lines) occurring on 22 May 2004. Dumps containing NEIALs are removed from the

analysis. The time interval shown is 0600-1230 UT. Integration time is 128 s. For better readability the

error bars are not shown in this figure, but we removed all the values with errors larger than 50%.
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Figure 5.2.10.: Electron (blue) and ion (green) temperature at high altitude (a) and in the E region (b) during

several NEIAL events (indicated by red lines) occurring on 22 May 2004. Dumps containing NEIALs

are removed from the analysis. The time interval shown is 0600-1230 UT. Integration time is 128 s. For

better readability the error bars are not shown in this figure, but we removed all the values with errors

larger than 50%.
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Figure 5.2.12.: Some ionospheric parameters evaluated with 128 s integration before the NEIAL event

occurring at 0738:49 UT on 22 May 2004. (Top panel) Ion velocity; (Bottom panel, left) Electron and

ion temperatures; (Bottom panel, right) Temperature ratio Te/Ti.
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Figure 5.2.13.: Some ionospheric parameters evaluated with 64 s centered on the NEIAL event occur-

ring at 0738:49 UT on 22 May 2004. (Top panel) Ion velocity; (Bottom panel, left) Electron and ion

temperatures; (Bottom panel, right) Temperature ratio Te/Ti.
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Figure 5.2.14.: Spectra of the NEIAL event occurring between 1023:05 and 1023:12 UT on 22 May 2004.
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Figure 5.2.15.: Some ionospheric parameters evaluated with 128 s integration before for the NEIAL event

occurring between 1023:05 and 1023:12 UT on 22 May 2004. (Top panel) Ion velocity; (Bottom panel,

left) Electron and ion temperatures; (Bottom panel, right) Temperature ratio Te/Ti.

86



5.3 Results: Part 2 - The Steffe CP-2 experiment

5.3. Results: Part 2 - The Steffe CP-2 experiment

The steffe CP-2 is a multiposition experiment run at the ESR (EISCAT Svalbard Radar).

The ESR runs the steffe CP-2 experiment with the 42m dish antenna field aligned and

the 32m dish moving through 3 different positions. We analyzed only the 42m, since it

is field aligned and more interesting for this work. However, as we mentioned in sec.5.1,

the 42m antenna was on for a minute and off for the successive one. Hence we had to

pick carefully the events we wish to analyze in order to avoid NEIAL events overlapping

on an on-off boundary.

5.3.1. Case 1: 9 June 2004

On 9 June 2004 (Fig.5.3.1) we observed outflows in the intervals: 0800-1000 UT, 1200-

1300 UT, 1600-1800 UT. We found NEIALs during each of them, specifically:

Time 0800-0859 0900-0959 1200-1259 2000-2059

0820:03 0911:21 - 0911:28 1236:16 2033:42 - 2033:48

0849:48 - 0850:08 0912:38 1246:49 2035:31

0921:10 1246:56

0927:34

0929:55 - 0930:08
Table 5.1.: All NEIAL events occurring in the specified time intervals. The bold intervals are events which

were discussed here.

We got 20 data dumps containing NEIALs out of a total of 1693.

We analyzed the NEIAL event occurring between 0911:21 and 0911:28 UT, whose spec-

trum is shown in Fig.5.3.2. The event started at about 350 km altitude. We have both

lines enhanced, with the downshifted line enhanced from 350 km to more than 800 km

and with the upshifted line strongly enhanced around 500 km in the first dump (a), while

in the successive dump (b) the upshifted line was always weaker than the downshifted

one.

The first panel in Fig.5.3.3 shows the field aligned ion velocity. We found a positive

velocity already at 350 km and above 400 km we saw a constant, sustained acceleration.

We conclude that in this case the two events are related and that the NEIAL starts at the

same altitude as the outflow.

We analyzed also the electron and ion temperatures altitude profiles (Fig.5.3.3). It is

interesting to look at the temperature ratio, which never exceeded the value of 3. This

value is usually considered the threshold for the onset of the ion-ion instability, and a

high temperature ratio is thought to be a facilitating condition for the onset of the other

instabilities as well. It is probable that the higher temperature ratio was smoothed out by

the long integration time. We plotted the electron density variation as a function of time

(Fig.5.3.4, panel (a)), to see if we could find any signature of the NEIAL event during the

period preceding it. We plotted also ion velocity, electron temperature, ion temperature

and temperature ratio (Fig.5.3.5) to search for any useful information. We compared 6
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altitudes and we could not find any strong evidence for the subsequent onset of a NEIAL

event.

We found however an interesting feature regarding the temperature; the electron and ion

temperature time profile shows a surprising anti-correlation, which is clearly visible e.g.

at 612 km altitude in Fig.5.3.5. This is not an isolated case, but we could not find any

distinctive or recurring physical background where this anti-correlation occurs. It is dif-

ficult to imagine a physical mechanisms acting in such a way to heat the ions and cool

the electrons (or vice versa) in a relatively short time scale of some tens of seconds. We

believe we can exclude coding error, since all it is needed to get the electron temperature

is to multiply the ion temperature by the temperature ratio, and both these parameters

are given by the incoherent scatter analysis. In section sec.5.4 we propose a possible

explanation for this issue.
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Figure 5.3.1.: Color plot showing electron density, electron temperature, ion temperature, ion velocity for

the events observed on 9 June 2004. We analyzed the intervals 0800-1000 UT, 1200-1300 UT, 1600-1800

UT, [from EISCAT Scientific Association, 2013]
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Figure 5.3.2.: Spectra of the NEIAL event occurring between 0911:21 and 911:28 UT on June 2004.
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Figure 5.3.3.: Some ionospheric parameters evaluated with 120 s integration between 0909:00 and 0911:08

UT on 9 June, 2004. (Top panel) Ion velocity; (Bottom panel, left) Electron and ion temperatures;

(Bottom panel, right) Temperature ratio Te/Ti.
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Figure 5.3.4.: Electron density (a) and ion velocity (b) during the NEIAL event at 0911:28 UT on 9 June

2004. The red line indicates the NEIAL occurrence. Dumps containing NEIALs are removed from the

analysis.
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Figure 5.3.5.: Electron and ion temperatures (a) and temperature ratio (b) during the NEIAL event at

0911:28 UT on 9 June 2004. Electron temperature is in blue, ion temperature is in green. The red line

indicates the NEIAL occurrence. Dumps containing NEIALs are removed from the analysis.
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5.3.2. Case 2: 16 June 2005

On 16 June 2005 we observed outflows in the interval 0900-1400 UT, and we found

NEIAL events. We also analyzed the interval 1800-2200 UT (where no outflow was

present) in order to check if NEIALs could occur without ion outflow. We did not find

any NEIAL event in this 4 hours interval, which of course does not mean that NEIALs

could not occur without ion outflow. However, there is no clear observation of NEIAL

events not associated with ion outflow, and our short 4 hour analysis is in agreement with

this.

In the following table we summarize the NEIAL events.

Time 0900-0959 1000-1059 1100-1159

0940:13-0940:19 1149:36

0944:04 - 0944:10 1150:27

Time 1200-1259 1300-1359

1202:50 1259:54-1300:52

1238:34-1238:47 1302:02-1302:37

1302:40-1302:59

1304:29-1304:55

Table 5.2.: All NEIAL events occurring in the specified time intervals. The bold intervals are events which

were discussed here.

Fig.5.3.6 shows only the interval 0900-1400 UT, which presents some interesting fea-

tures:

• Two clear outflow events (one around 0930 UT and the other after 1200 UT) sepa-

rated by a downflow event occurring in the time interval between the two upflows.

The data were too noisy to perform a reliable analysis of the parameters during the

downflow, however we checked for NEIALs event and we did not find any.

• The electron temperature is enhanced in the 0900-1400 UT interval, which is com-

patible with a type-II ion outflow scenario, except for the very low altitude en-

hancements around 100 km altitude, corresponding perhaps to an energetic particle

precipitation. But it is the ion temperature profile which is unusual in this period,

since it is strongly enhanced especially between 100 and 200 km altitude. We still

regarded the ion outflow events as type-II, albeit the ion temperature profile does

not appear to be unaffected as Wahlund et al. (1992b) suggested.

• The NEIAL events seem to occur preferably at the edge of the structure. We found

NEIALs in the middle hours of the 0900-1400 UT time interval, however, the most

enhanced ion acoustic lines were found around 0940 UT, 1230 UT and 1300 UT.

Especially the NEIAL event lasting from 1259:54 until 1300:52 UT was one of

the longest we ever observed. In addition, as reported in the table above, the time

interval 1259:54-1306:50 UT was rich of dumps containing NEIALs: 26 out of 36.

94



5.3 Results: Part 2 - The Steffe CP-2 experiment

We analyzed a total of 2528 dumps and we found that 36 of them contained NEIALs.

First we analyzed the event occurring between 0940:13 and 0940:19 UT, whose spectra

are shown in Fig.5.3.7. It has a very interesting feature: at 413 km altitude the tempera-

ture ratio Te/Ti is less than 1, which means that it is difficult to consider the NEIAL event

accompanied by a pure type-II ion outflow, although at all other altitude ranges the tem-

perature ratio is always larger than unity. This feature is evident in Fig.5.3.8. Albeit it is

tempting to relate this event to a type-I ion outflow (or to a hypothetically type-III ion out-

flow, which could be defined as an outflow where both the electron and ion temperatures

are enhanced), we must consider two aspects:

1. the temperature ratio is always larger than one, except at the mentioned altitude of

413 km, as it is shown in Fig.5.3.8

2. the unusual and large enhancement in the ion temperature is predominant at lower

altitudes (100-200 km, see Fig.5.3.6), where we did not find neither NEIALs nor

outflows.

Therefore we tend to discard this ion outflow as a type-I and rather consider it as a special

case of a type-II.

We also tried to analyze the event occurring between 1259:54 and 1300:52 UT. Unfor-

tunately, the data were not good enough to get reliable results. It is however interesting

to look at the spectra of this event. They are shown in Fig.5.3.11. From this sequence

it seems that there is not a gradual increase in power until a maximum, followed by a

decrease. What we observe here is a sort of “flaming”, where the intensity of the NEIAL

events varies almost randomly.
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EISCAT SVALBARD RADAR

CP, 42m, steffe, 16 June 2005
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Figure 5.3.6.: Color plot showing electron density, electron temperature, ion temperature, ion velocity for

the events observed on 16 June 2005, between 0900 and 1400 UT. We used a 128 s post-integration.

Note that for this figure we did not remove the dumps containing NEIALs. However, we removed them

afterward in order to carry out the analysis.
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Figure 5.3.7.: Spectra of the NEIAL event occurring between 0940:13 and 0940:19 UT on 16 June 2005.
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Figure 5.3.8.: Some ionospheric parameters evaluated with 128 s integration just before the NEIAL event

occurring at 0940:13 UT on 16 June 2005. (Top panel) Ion velocity; (Bottom panel, left) Electron and

ion temperatures; (Bottom panel, right) Temperature ratio Te/Ti.
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Figure 5.3.9.: Electron density (a) and ion velocity (b) just before the NEIAL event occurring at 0940:13

UT on 16 June 2005.
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Figure 5.3.10.: Electron and ion temperatures (a) and temperature ratio (b) just before the NEIAL event

occurring at 0940:13 UT on 16 June 2005. Electron temperature is in blue, ion temperature is in green.
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Figure 5.3.11.: Spectra of the NEIAL event occurring between 1259:54 and 1300:52 UT on 16 June 2005.
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5.3.3. Case 3: 10th September 2005

On 10 September 2005 we observed NEIAL events embedded into ion outflows with some

peculiarity that we want to report. Fig.5.3.6 shows electron density, electron temperature,

ion temperature, field aligned ion velocity and some radar parameters. We analyzed every

data dump between 0300 and 1400 UT; out of 3292 data dumps we found 46 dumps

containing NEIALs. The low percentage is probably due to the fact that the outflows did

not cover all of the data dumps; it would probably increase if one considers only dumps

containing outflows. Note that there were 13 additional data dumps that were difficult to

classify as containing NEIALs, since they did not show the typical power enhancement,

although they showed clear (albeit weak) enhancements in the ion acoustic lines.

Tab.5.3 summarizes NEIAL events we found in the time interval 0300-1500 UT.

Time 0300-0359 0400-0459 0500-0559 0600-0659 0700-0759

0537:19 0603:20-0603:33 0728:08-0728:27

Time 0800-0859 0900-0959 1000-1059 1100-1159

1038:07 1107:59-1108:05

1044:18-1044:43 1114:10-1114:29

1055:17-1055:49 1114:55-1115:08

Time 1200-1259 1300-1359 1400-1459

1215:37-1215:44

1221:16-1221:36

1223:37-1223:44

1249:07-1249:20

1249:39-1249:45

1253:29-1253:42

Table 5.3.: All NEIAL events occurring in the specified time intervals. The bold intervals are events which

were discussed here.

The event that first caught our attention was the one occurring between 1055:17 and

1055:49 UT. It shows a huge power increase, the largest we observed in our entire data set.

As it is shown in Fig.5.3.13, it is very intense and fast growing, since we go from a stan-

dard ionospheric situation (Fig.5.3.13a) to a full power NEIAL (Fig.5.3.13b) in no more

than 6.4 seconds. This would be in agreement with the hypothesis which regards NEIALs

as a prompt event (see e.g. Michell and Samara, 2010), rather than a “building-up” event.

However, as we shall see, we found events that differs from this view.

Fig.5.3.14 shows ion velocity and temperature profiles obtained just before the event.

The clear variability at various altitudes reflects the not so high quality of data, especially

above 550 km. We could however get reasonably good values, which show that the ion

outflow (Fig.5.3.14, top panel) is occurring above 300 km, despite the relatively low
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values around 400 and 500 km. The problem is that, as it is shown in Fig.5.3.14, that the

NEIAL event is already occurring at 200-250 km. This would represent an issue for the

hypothesis according to which the NEIAL event is embedded into the ion outflow. We

think that, at least in this particular case, it is unlikely that the NEIAL is actually occurring

below the outflow. It is probable that on a shorter timescale and during the NEIAL (if it

would be possible to analyze it), the ion outflow would be already present on a lower

altitude. Our opinion is also strengthened by the fact that, in almost all the events we

analyzed, the NEIAL occurred above the ion outflow.

The temperature profiles (Fig.5.3.14, lower panel) were standard for the type-II ion out-

flow event. We have observed a temperature ratio higher than 3 at some altitudes, but

not in a continuous way. We did not manage to get good time profiles due to the many

NEIALs and some satellite passing which occurred before our targeted event.

During our analysis we observed some “odd” spectra which were difficult to discard as

due to satellite passing, noise or technical issues. As we mentioned at the beginning of

this subsection, we observed many cases where the power seemed to be not enhanced, but

the ion acoustic lines were clearly visible. One such example is shown in Fig.5.3.15a. It

is interesting to note that the ion acoustic lines are not continuous, but rather they form

“spots”, which in this particular case are located at around 400, 600 and 800 km. This

is unusual, since the ion acoustic lines are mostly continuous in altitude when NEIAL

events occur. A similar case is shown in Fig.5.3.15b, where the spots are located between

450 and 700 km altitude. Common to all of these events is the tendency to observe the

weak enhancement only in the downshifted line, while the upshifted line seems not to be

affected at all. This is in agreement with the statistics, according to which the downshifted

lines are more enhanced at higher altitudes (see for example Lunde et al., 2007 and Ogawa

et al., 2011).

In addition to these isolated cases, there are “building-up” events that, again, does not

become full NEIALs. Fig.5.3.16 shows one of these cases: it seems that the NEIAL

is slowly growing in time, but then, instead of showing a full enhancement in power, it

just fades away. This behavior seems to be quite different from what one would expect

from a prompt event. We tried to find an inverse proportional relation, such that the more

powerful the NEIAL was, the more rapid they were growing. Unfortunately, this seems

not to be the case, since many “not-so-spectacular” events are indeed prompt events, not

showing any signs of a possible build-up. Furthermore, many of these cases had low

signal-to-noise ratio and the analysis we attempted failed due to very large errors.

We would like to remark that all of these events occur sometimes close to standard NEIAL

events, but they are always separated by at least one data dump, i.e. at least more than 6.4

s for the data sets we examined. That is why we considered them as isolated events.
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EISCAT SVALBARD RADAR
CP, 42m, steffe, 10 September 2005
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Figure 5.3.12.: Color plot showing electron density, electron temperature, ion temperature, ion velocity

and radar parameters for the events observed on 10 September 2005, where a 128 s post-integration was

used. [from EISCAT Scientific Association (2013)]
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Figure 5.3.13.: Spectra of the NEIAL event occurring between 1055:17 and 1055:36 UT on 10 September

2005.
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Figure 5.3.14.: Ionospheric parameters evaluated with 128 s integration just before the NEIAL event occur-

ring between 1055:17 and 1055:36 UT on 10 September 2005. (Top panel) Ion velocity; (Bottom panel,

left) Electron and ion temperatures; (Bottom panel, right) Temperature ratio Te/Ti.
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Figure 5.3.15.: Example of spectra showing weak ion acoustic lines enhancement occurring at (a) 0605:41

UT and (b) 1236:51 UT on 10 September 2005.
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Figure 5.3.16.: Example of spectra showing weak ion acoustic lines enhancement occurring at four con-

secutive dumps between 1106:04 and 1106:23 UT on 10 September 2005.
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5.4. Discussion

From the observations reported in this chapter, it is evident that NEIALs are a complex

phenomenon. It is difficult to find properties which are valid for every event, and finding

necessary conditions for NEIALs occurrence is even more problematic. Nevertheless, we

tried to establish their most common features in our study.

NEIALs occur in association with ion outflows. More specifically, they occur mostly

together with type-II ion outflows, i.e. when the temperature ratio Te/Ti is higher than

one and the electron temperature is enhanced. At present, we know only one case of

NEIAL occurring together with a type-I outflow (Argese, 2013). There are, however, two

different classes of NEIALs. In addition, it is very difficult to establish whether NEIAL

events are correlated with the ion velocity magnitude and duration. In order to get better

results on this topic, we need a statistical study. For example, on the basis of one year of

data, Ogawa et al. (2011) suggested, as we explained in chapter 3, that NEIALs are more

likely to occur when the outflows are more intense, i.e. when they have a higher flux (see

Fig.3.2.5). We hence plotted the flux for our observations to see if a correlation could

be found; unfortunately, the errors were large and we had to increase the integration time

past 120 s, thus making the analysis not applicable.

In a few cases we found outflows starting above the NEIAL events, which is an unex-

pected result. A continuous NEIAL event between 300 and 600 km associated with an

outflow where the ion velocity is positive from 400 km would be affected by the outflow

only between 400 and 600 km, while no relation with the outflow is present between 300

and 400 km. It is possible, nevertheless, that a shorter integration time would give similar

starting altitudes. There is, however, a feature which can be interesting to explore. What

we see as a continuous NEIAL in the RTG could actually be the overlapping at different

altitudes (or at different times) of isolated ion acoustic enhancements which could have

different generation mechanisms, one of them not requiring the NEIAL embedded into

the outflow. We can ground this hypothesis using the fact that the mechanisms generating

NEIALs could be embedded in the NEIAL itself, as Forme et al. (1995) suggested. In

addition, in our work we actually found enhancements (albeit very weak) distributed as

spots in the RTG (see, for instance, Fig.5.3.15) and a low extension “real” NEIAL can be

seen in Fig.5.2.14a. Finally, the need of two different mechanisms acting together could

be necessary for the explanation of NEIALs observed in the upper E region, as showed in

Fig.5.2.14.

As we said, we found two different types of NEIALs. They are not the same as Forme

et al. (1995) found, but rather are the ones reported by Lunde et al. (2007) and Ogawa

et al. (2011). The first type of NEIAL occurs at higher altitudes (above ~300 km), presents

enhancement in both lines, often simultaneously, and the downshifted line is usually more

enhanced than the upshifted line. This characteristics are in very good agreement with the

descriptions given by Lunde et al. (2007) and Ogawa et al. (2011). In this case it is possi-

ble to apply the parametric decay of Langmuir waves and the ion-ion two stream theories

when the events were occurring in the topside ionosphere (above 450-500 km). We of-

ten observe a weak particle precipitation, required for the parametric decay instability to

occur, and, while the temperature ratio is seldom higher than 3 (which is considered the

optimal value for the ion-ion instability to occur), it is very often above 2, hence compati-
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ble with the ion-ion instability. Furthermore, if we accept the reasonable assumption that

with shorter integration times and analysis centered on the NEIAL event we would get

higher temperature ratios, then it is very possible to give credit to the ion-ion instability

theory. However, when the events occur at lower ionospheric altitudes (300-450 km) it is

more difficult to use the ion-ion two stream instability theory because, as we explained in

chapter 3 citing the work of St.-Maurice et al. (1996), at these altitude ranges the current

driven instability would be already acting and in control of non-linear processes. If one

could get the current density values, then it would have been possible to try to assess the

validity of the current driven instability theory.

The second class of NEIALs occurs in the E region around 150 km. Such events have been

reported by e.g. Rietveld et al. (1991) and Ogawa et al. (2011); we noticed that they occur

together with the type-II ion outflow, but are not embedded into it. In addition, due to the

low altitude, the temperature ratio can be relatively low: it is possible to find cases where

Te/Ti∼ 1, which is very hard for the theories to explain, since the instabilities are likely to

occur for a higher temperature ratio value. In addition, we did not find any enhancement in

the electron density and temperatures associated with this type of NEIAL. At this altitude,

it is complicated to use both the ion-ion two stream instability (because we are further

down in the boundary between E and F regions and hence too low for it to be valid) and

the parametric decay of Langmuir waves, which requires soft particles precipitation. It

is possible in this case that the current driven instability plays a role, but we would need

to identify the electron population responsible for the electron-ion stream. In addition,

although in the example we reported here only one of the ion acoustic lines is enhanced,

we observed cases where both lines are enhanced, which makes difficult accepting this

theory for all the NEIALs appearing in the upper E region, unless we assume two anti-

parallel currents in a relatively small volume of space.

Ion temperature associated with NEIAL events occurring at high altitudes can show two

different behaviors; in some cases it can be enhanced at upper E region altitudes, although

no NEIAL occurs at such altitude; however, this seems to not affect the other parameters

in the F region and topside ionosphere, where the NEIALs actually occur. The second

behavior (which seems to be observed more often) consist in a relatively constant ion

temperature at every altitude, resembling the definition given by Wahlund et al. (1992b)

in their seminal paper about the type-II ion outflow, where they showed NEIALs occurring

together with type-II ion outflows. Our observation are in good agreement with Wahlund

et al. (1992b).

Electron temperatures show always an enhancement during type-II ion outflows, as ob-

served by Wahlund et al. (1992b); sometimes we have observed a further enhancement in

the electron temperature when close to a NEIAL event, however, we did not register the

very high electron temperatures (as high as 6000 K) they found. This could be actually

due to the low solar activity during the years we analyzed. Indeed, the years 2004 and

2005, where we found most of our data, were very close to the last solar minimum oc-

curring around 2007 and hence many of our “best” events would just be below-average

events on a very active year such as 2000.

We also found an unexpected anti-correlation between ion and electron temperatures,

particularly evident in the CP-2 experiments but present in some other cases as well.

We could not give any meaningful physical interpretation of this phenomenon, but it is

110



5.4 Discussion

difficult to discard it as a technical issue. What we think is the most plausible explanation

is the following: the incoherent scatter radar measures only Ti and Te/Ti. Thus, any

fluctuation in the temperature ratio will be interpreted as a fluctuation both in Te and Ti,

but there is a higher probability that the two will be anti-correlated due to the very fact that

Te/Ti is a ratio and Te is derived, not directly measured. Variations in Te/Ti will produce

a variation in the difference between Te and Ti, i.e. |Te− Ti| will increase when Te/Ti

increases and will decrease when Te/Ti decreases. Since a fluctuation in the temperature

ratio can be actually seen as successive increases and decreases, it follows that we will

see successive increases and decreases in |Te−Ti|.

In addition to the two different types of “real” NEIALs, we observed some particular cases

that deserve attention, such as the “failed NEIALs” showed in Fig.5.3.15 and Fig.5.3.16.

If we consider the NEIALs as a prompt event with an “on-off” behavior, these observa-

tions are difficult to explain. However, we should be aware that all of the events of this

kind we observed were actually embedded in a type-II ion outflow just as the standard

events, and often they happened near the standard events (within seconds or minutes) and

when we analyzed dumps not containing outflows we never found these events. We can-

not however discard them as non-existent without outflows, since we analyzed about 10

hours of data not containing NEIAL on a total of more than 130 hours. A more statistically

oriented study could discuss this matter in greater detail. In conclusions, our observations

lead us to think that “real” and “failed” NEIAL events have probably a lot in common. It

is possible, for instance, that what we observed as “failed” NEIALs are actually standard

but very fast events whose power is then smoothed-out on a 6.4 seconds dump. Indeed,

the works of Grydeland et al. (2003) and Michell and Samara (2010) suggest that the time

scale of a NEIAL event can be less than 0.1 s.

The electron density exhibits some interesting features: often it is enhanced at the same

altitudes as the NEIALs, which is an important clue about the particle precipitation, which

in turn is believed to play an essential role for NEIALs’ generation mechanisms and it is

thought to be important for ion outflow acceleration as well. The most interesting thing,

however, is the presence of enhanced electron density in the E region altitude ranges,

which can be related to the presence of hard particle precipitation. Since the paramet-

ric decay of Langmuir waves require soft particle precipitation, it is unlikely that this

theory can explain the events reported for instance in Fig.5.2.4, where we have a clear

enhancement in low altitude electron density but no evident enhancement above 400 km.

In addition, both the ion lines are enhanced (even though the upshifted is weaker) so it is

difficult to apply the current driven instability. Moreover, the ion-ion two stream instabil-

ity theory could find it difficult to explain the ion acoustic enhancements below 400 km as

in the case shown in Fig.5.2.2b. It is also possible that, on shorter time scales, the two ion

lines would not be simultaneously enhanced, thus making the current driven instability

applicable, provided that large current densities are present.

It is difficult to give a definitive answer regarding the validity of the theories using our

data set. The lack of field aligned electric field and current densities measurements is

an obstacle to assess the validity of the current driven instability, while the lack of data

about different ion species and electron populations makes it difficult to apply the ion-ion

two stream instability and the parametric decay of Langmuir waves, respectively. But the

most serious problem we had is the long integration time. We could never keep it below
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60 s and this is a lot longer than the duration of the average NEIAL. As Grydeland et al.

(2003) and Michell and Samara (2010) showed, we need a lower integration time to better

study what is happening close to a NEIAL event. However, even with a lower integration

time, we would still be unable to get ionospheric parameters during the NEIAL due to

the turbulence, a problem which is not surmountable with the incoherent scatter radar

technique. Satellites and rockets can provide a valid help in this regard.

Since we used almost exclusively the ESR, which runs in the UHF band at 500 MHz,

we cannot say anything about the higher frequency occurrence of NEIALs at VHF with

respect to UHF frequencies, as reported e.g. by Cabrit et al. (1996). A broader statistical

study is needed to give more information about this matter. Similarly, correlation with

solar activity (e.g. NEIALs-sunspots correlation) is left out from our work, since it is

necessary to have more homogeneous data (for instance, the same experiment mode and

frequency) and perform a continuous observation for several years (the optimal would be

for an entire 11-years solar cycle).
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Our results show that the NEIALs always occur in association with ion outflows. How-

ever, they are not always embedded into the ion outflow event. Throughout our analysis

we observed three possible situations:

• Events where NEIALs are embedded into the ion outflow and start at about the

same altitude

• Events where NEIALs start below the ion outflow

• Events where NEIALs are not embedded in the ion outflow

More in detail:

1. NEIAL events occurring above 300 km are always embedded into the ion outflows,

which we assumed to be type-II ion outflow in each case, although, in some cases,

it is possible to observe an enhancement in the ion temperature at lower altitudes,

namely in the E region. The majority of NEIAL events above 300 km started at

about the same altitude as the type-II ion outflow. Only occasionally, we observed

NEIAL events which appeared to start below the outflows, however, a shorter in-

tegration time usually tends to lower the differences between the starting altitudes.

Thus, this behavior can be due to the relative large integration time we needed to use

in our analysis to overcome the lack of sufficient time resolution in the experiment.

2. NEIAL events in the upper E region can occur without being embedded in ion

outflows, but in our data set they were associated with ion outflow and NEIALs

occurring at higher altitudes. However, NEIAL events in the upper E region were

quite rare in our data set, so we were not able to discuss them in a statistical way.

More insights can be found in e.g. Rietveld et al. (1991), Lunde et al. (2007) and

Ogawa et al. (2011).

3. We found two different types of background conditions when NEIALs can occur:

the first is associated with enhanced electron temperatures mostly in the F region

together with enhancements in the ion temperature (the latter especially in the E

region); the second is associated with enhanced electron temperatures alone, as

typical for type-II ion outflows.

4. We found a general good correlation between NEIALs and particle precipitation.

On some occasions, the electron density was not clearly enhanced when NEIAL

events occurred; in addition, we observed NEIALs in upper F region which showed

very good correlation with electron density enhancements in the E region. We can

conclude that particle precipitation is a necessary condition for NEIAL occurring,

but it is not a sufficient condition.

5. The temperature ratio is always above 2 but seldom more than 3 for the NEIAL

events occurring above 300 km, while Te/Ti ' 3 is usually considered the threshold
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for the instabilities to occur. It is worth to note, however, that on shorter integration

times the temperature ratio tends to increase at each altitude. Therefore, we believe

that very close to the NEIAL event the temperature ratio can easily be above 3. For

the events in the E region the temperature ratio is around 1, which is really low. It

is possible, nevertheless, that a sudden increase in electron temperature very close

to the NEIAL event will make the temperature ratio higher than 3. Alternatively, a

different and unknown mechanism could trigger these events, but this seems to us

less likely to occur.

6. There exist situations where the NEIALs seem to be slowly growing, but not always

reaching a full intensity. In addition, we found some cases where the ion acoustic

lines are very weakly enhanced, but no “real” NEIAL followed. In many of these

cases the weak enhancements seem to be not continuously distributed in altitude,

but rather “spotty”. We wonder if this particular morphology can be present also in

the standard NEIALs, but are hidden by the rapid growing of the event.

These results are interesting for the NEIALs’ generation theories. While previous studies

were directed towards assessing the validity of one and only one theory, our results tell us

that each of the three mechanisms might prevail during their favorite conditions. For in-

stance, the current driven instability theory (Rietveld et al., 1991) have no altitude restric-

tion, but needs very high current densities (which have been observed by e.g. Neubert and

Christiansen, 2003) and cannot explain simultaneously enhanced ion acoustic lines. Since

Michell et al. (2009) found that on shorter time scales simultaneously enhancements are

less frequently occurring, the current driven instability can be very capable of explaining

many NEIAL events. In addition, the presence of ion outflow and particle precipitation

that we observed close to the NEIAL events are consistent with the theory proposed by

Rietveld et al. (1991). Moreover, it is worth to note that the current driven instability is

the only theory which is compatible with the events occurring in the upper E region. The

ion-ion two stream instability theory (Wahlund et al., 1992a), on the other hand, cannot

be valid at lower altitudes, where collision frequency is high, i.e. we cannot employ it

below 400 km. However, it is able to explain simultaneously enhancement in ion acoustic

lines and the field aligned ion velocity we measured is of the same order of the thermal

velocity, which is compatible with the requirement vdri f t ≈ vthermal , together with soft

particle precipitation and high electron temperatures, which we observed in tpye-II ion

outflows. The tendency we observed, i.e. to have an increasing temperature ratio Te/Ti as

we get close to the NEIAL, is also important for assessing the ion-ion instability. Finally,

the Langmuir decay theory (Forme, 1993 and Forme, 1999) can explain simultaneously

enhanced ion acoustic lines and, in the version given by Forme (1999) can explain the

feature consisting in mostly enhanced downshifted lines at higher altitudes. In order to

trigger the instability, this theory requires soft particle precipitation, which we observed

in our data set. Furthermore, it does not need high current densities as the current driven

instability or, as the ion-ion two stream instability, two different ion populations, thus it

can be perfectly valid above 400 km in the cases where these conditions are not met.

As it is evident, the most important issue with this work is the integration time, which

is too long to get smooth behavior of ionospheric parameters very close to the NEIAL

events. For instance, Grydeland et al. (2003) showed that the time scale for NEIAL

events are about 200 ms and Michell and Samara (2010) identified NEIAL events on time
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scale of 12 ms. Unfortunately, in our work we had to use integration times of at least 60

s in order to get reliable ionospheric parameters. A new promising system which can be

successfully used to refine and extend this work is the EISCAT 3D, whose predicted mea-

surement improvements are between 10 and 50 times the actual EISCAT radars generation

(EISCAT Scientific Association, 2013).

Additionally, a statistical study, similar to the one carried on by Ogawa et al. (2011),

can give more information about the NEIAL morphology and the NEIAL occurrence

frequency. A perhaps demanding task would be to follow the NEIAL and ion outflow

processes for an entire solar cycle and see if there are significant differences in the cou-

pling of the two processes when different solar conditions occur, e.g. at solar maximum

and solar minimum.
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A. Identify NEIALs using electron

density enhancements

In order to identify NEIAL events, we try to implement an idea of Prof. Björn Gustavsson.

When a NEIAL occurs we measure a large enhancement in electron density. Note that it

is just the measured electron density which is enhanced, actually we do not know what

happens to the ionosphere parameters during a NEIAL event, since the incoherent scatter

analysis fails in those cases. When the event ends, the electron density measured comes

back to a standard value. We know from the theory that there is a limit for the decay rate

of the electron density. In order to better understand the problem, we are going to derive

the final relation for the electron density decay.

We start by considering the electron density continuity equation, neglecting any transport

processes. In this case the equation can be written as:

dne

dt
= qe− le (A.0.1)

where qe and le are respectively the production and loss terms for electrons. In the F

region the loss rate takes a so-called β-profile, namely le = βne, so that A.0.1 can be

rewritten as:

dne

dt
= qe−βne (A.0.2)

If the production qe = q0 is shut-off at a time t = 0, so that qe = 0 when t > 0, the solution

of the equation A.0.2 will be:

ne = ne,0 exp(−βt) (A.0.3)

where ne,0 = q0/β is the density at t = 0.

In the E region the loss rate is proportional to n2
e , hence the continuity equation is:

dne

dt
= qe−αn2

e (A.0.4)

Since NEIALs occur mostly in the F region, we used A.0.2 to describe the electron den-

sity. The factor β is:

β =
k1[N

2]+ k2[O
2]

1+ k1
α1

[N2]
ne

+ k2
α2

[O2]
ne

(A.0.5)

where the reaction rates in m3s−1 are (from Brekke, 2012, Chen et al., 1978 and Gustavs-

son and Eliasson, 2008):
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• k1 = 2×10−18 for O++N2 −−→ NO++N

• k2 = 3.33×10−18 exp
(

3.72300
Tf
−1.78300

Tf

)2
for O++O2 −−→ O+

2 +O and where

Tf =
Ti+Tn

2 and Tn indicates neutral temperature, which is usually around 1000K.

• a1 = 2.1×10−13
(

Te
300

)−0.85
for NO++ e−−→ N+O

• a2 = 1.9×10−13
(

Te
300

)−0.5
for O+

2 + e−−→ O+O

• ar = 7.8×10−14
(

Te
300

)−0.5
for O++ e−−→ O+hν

Now that we have all the necessary equations, we can think to use the electron density

decay to identify NEIALs. In fact if we stop the production we will have the fastest time

decay for electron density. Hence, if we observe a decay which is faster than what A.0.2

provide, we could conclude that the situation is unphysical, and therefore a NEIAL (which

as we said makes the measured electron density greatly enhanced) could be occurring.

Unfortunately our tentative didn’t succeed. The decay profiles we obtained were always

slowest than the observations. We tried several altitudes and dumps containing NEIAL

events. Fig.A.0.1 shows the electron density decay for a dump containing a NEIAL (top)

and a standard dump with no NEIAL (bottom). It is evident that in both cases the observed

electron density decays way faster than our numerical solutions (b) and (d) and theoretical

solutions (a) and (c). Basically every dump was considered containing a NEIAL. The time

constant 1/β was at least 103 bigger than what we needed, and that is way the calculated

decay seems a straight line instead of an exponential decay. Apart from a mistake in the

code, the principal reason of our failure could be a too strict assumption. For example, it

is possible that transport terms (which we neglected) play a role in shaping the electron

density decay. We probably need a more detailed model, including transport terms in the

equation, in order to better face this very interesting matter.

For reference Fig.A.0.2 shows the electron density over time, NEIALS were present at

blocks 27, 28, 29, 30. In this case we obviously did not remove the dumps containing

NEIALs.

Here we list part of the Matlab function we use to implement the density decay, which is

called from the main routine we used to analyze data (see Appendix B).

function neneial(ne,neerr ,te,ti,tr,t,alt,halt ,...

plotvector ,errorbars ,neial_t ,...

starttime_h ,starttime_m ,endtime_h ,endtime_m)

if plotvector (11) >0

time=0:0.1:6; %integration time

%densities

nN2=3.004E+13; %m^-3

%nN2=0;

nO2=1.318E+12; %m^-3

for a=32 %altitude vector (set a single number if want only one plot)

for j=[20] % Blocks containing NEIALs

Te=te(a,j);
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ical solution
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(c) Electron density after a NEIAL-free dump.
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Figure A.0.1.: Electron density decay after a block containing a NEIAL, obtained with a numerical (a) and

a theoretical (b) approach. Comparison with a block containing no NEIALs, where (c) is the theoretical

solution and (d) is the numerical one, shows almost no difference, which means that the calculated

electron density decay is too slow.

Ti=ti(a,j);

Tn=937; %taken from the database

Tr=tr(a,j);

Tf=Ti/2+Tn/2;

Ne=ne(a,j);

%reaction rates (see Brekke , 2012, pag. 259)

k1=2e-18; %O+ + N2 --> NO+ + N

k2=2e-17.*(Tr/300).^(-0.4); %O+ + O2 --> O + O2+

%The following k2 is supposed to be more precise

%k2=3.33e -18.*exp(3.72.*300./Tf - 1.78.*(300./Tf).^2);

a1=2.1e -13.*(Te/300).^(-0.85);

a2=1.9e -13.*(Te/300).^(-0.5);

ar=7.8e -14.*(Te./300)^(-0.5);
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Figure A.0.2.: Electron density time profile. The red line indicates the strongest NEIAL event (block

28), which was used to evaluate the electron density decay for a NEIAL event. The same results were

obtained for block 29, not reported here. Block 20 was used to evaluate electron density decay where no

NEIAL occurred.

beta=(k1.*nN2+k2.*nO2)./...

(1+ (k1./a1).*(nN2./ne(a,j)) + (k2./a2).*(nO2./ne(a,j)));

%beta=(k1.*nN2+k2.*nO2) %simpler beta

ne_c=ne(a,j).*exp(-beta.*time);

%solve diff eq numerically

[T N]=ode15s(@(time ,ne1) odefun(time ,ne1,beta),time ,Ne);

%PLOTS

ne_int=interp1([0 6],[ne(a,j) ne(a,j+1)],time ,'linear');

%Numerical solution

figure;plot(time ,ne_int ,T,N)

legend('Ne obs','Ne calc','Location','SouthWest');

xlabel('Time [s]');

ylabel('N_e [m^-3]');

title({sprintf('Ne decay at %d km (Block %d)',alt(a),j),...

'Numerical solution'})

set(gcf, 'Position', get(0,'Screensize'));

strfig = sprintf('Electron density decay - Numerical (%d:%d - ...

%d:%d)', starttime_h ,starttime_m ,endtime_h ,endtime_m);

if plotvector (11)==2

saveas(gcf,strfig ,'png');

saveas(gcf,strfig ,'epsc');

end
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%Theoretical solution

figure;plot(time ,ne_int ,time ,ne_c);

legend('Ne obs','Ne calc','Location','SouthWest');

xlabel('Time [s]');

ylabel('N_e [m^-3]');

title({sprintf('Ne decay at %d km (Block %d)',alt(a),j),...

'Theoretical solution'})

set(gcf, 'Position', get(0,'Screensize'));

strfig = sprintf('Electron density decay - Theoretical (%d:%d - ...

%d:%d)', starttime_h ,starttime_m ,endtime_h ,endtime_m);

if plotvector (11)==2

saveas(gcf,strfig ,'png');

saveas(gcf,strfig ,'epsc');

end

end

end

%PLOT ELECTRON DENSITY (for reference)

strfig = sprintf('Electron density (%d:%d - ...

%d:%d)',starttime_h ,starttime_m ,endtime_h ,endtime_m);

figure('Name',strfig)

sn=1;

for a=halt

subplot(3,2,sn);

if errorbars(1)==1

errorbar(t,ne(a,:),neerr(a,:),'-b');

else

plot(t,ne(a,:),'-b')

end

maxylim=max(ne(a,:))+max(neerr(a,:));

minylim=min(ne(a,:))-max(neerr(a,:));

set(gca,'YLim',[minylim maxylim])

set(gca,'XLim',[min(t)-1 max(t)+1])

%YL = get(gca,'ylim');

for j=1:length(neial_t)

line([neial_t(j) neial_t(j)],[minylim maxylim], ...

'LineStyle','-','Color',[0.9,0.0,0.0]);

end

title(sprintf('Electron density at %d km',alt(a)))

xlabel('Block number')

ylabel('N_e [m^{-3}]')

sn=sn+1;

end

set(gcf, 'Position', get(0,'Screensize'));

if plotvector (11)==2

saveas(gcf,strfig ,'png');

saveas(gcf,strfig ,'epsc');

end

end

end
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B.1. MATLAB scripts used to analyze NCAR files

The following Matlab scripts were used to extract parameters from NCAR ASCII data,

which were created from raw data using GUISDAP 8.7 software. Note that we used some

external function, namely:

herrorbar.m to plot vertical profiles with horizontal error bars

(http://www.mathworks.com/matlabcentral/fileexchange/3963-herrorbar)

pmkmp.m to use perceptually balanced color maps

(http://www.mathworks.com/matlabcentral/fileexchange/28982-perceptually-improved-

colormaps/content/pmkmp.m)

In the following we list first the main script (AnalyseNcar.m) and then the various func-

tions called from it. In order to work, the main script requires that an NCAR ASCII file is

already present (i.e. imported used the specific Matlab function). Alternatively, it is pos-

sible to import analyzed data set, together with the associated NEIAL times, previously

saved as a .mat file. The saving is automatically done by the routine. More information

about the functions are given in the code via comments (identified by the starting “%”

symbol and green colored). The code was not optimized for every type of NCAR data,

although we tried to write it in a way which is easily customizable and expandable. How-

ever, when the data are particularly bad (e.g. there are “holes” in the NCAR file) the script

usually fails.

B.1.1. AnalyseNcar.m (main script)

%==============================================================

%AnalyseNCAR.m

%==============================================================

%Matlab script which take an EISCAT data NCAR ascii file as

%input (manual import using Matlab's 'Input data' function)

%and extract , analyse and plot relevant ionospheric parameters.

%It's possible to save plots in a .fig/.eps file and

%analysed data in a .mat file.

%===============================================================

%clean console screen

clc;

%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% MANUAL INPUT PARAMETERS %

%%%%%%%%%%%%%%%%%%%%%%%%%%%

%altitude vector for plots (use 6 elements vector)

%NOTE: adjust depending on experiment type

%halt =(28:1:33); %topside ionosphere

%halt =(12:1:17); %E-region

halt=[29 30 31 33 35 37];

%delete first n and last m values (e.g. because not useful/too noisy)

n=6;

m=7;

%max error allowed (set errmax to 0 if don't want to check)

%Ex: 0.5=50%

errmax=0;

%limits on parameters for the color plot

%set vector=[0 0] to have no limits

vilim=[-300 500];

nelim=[0 0];

telim=[100 8000];

tilim=[100 6000];

trlim=[0.1 5];

%plot errorbars (0=no 1=yes)

errorbars=[1 1];

%plotting vector (1=plot 2=plot&save)

plotvector=[2 2 2 0 0 0 0 0 0 2 0 0 2];

%plotvector=[0 0 0 2 2 2 2 0 2 0 0 0 0];

%index [1 2 3 4 5 6 7 8 9 10 11 12 13]

%Structure:

%[1. ion velocity vs time

% 2. electron and ion temperatures vs time

% 3. temperature ratio te/ti vs time

% 4. ion velocity vs altitude

% 5. flux vs altitude

% 6. electron density vs altitude

% 7. temperatures vs altitude [PLOTS ONLY TE FOR MULTIBLOCK DATA]

% 8. electric field [WORKS ONLY FOR 1-BLOCK DATA!]

% 9. summury Ne Flux Vi [WORKS ONLY FOR 1-BLOCK DATA!]

% 10. color plots

% 11. NEIAL checking using ne variation [NEEDS NEIALS SPECTRA W ...

6-sec INT TIME!]

% 12. Te estimates during NEIALs [NEEDS NEIALS SPECTRA W 6-sec INT ...

TIME!][NOT IMPLEMENTED]

% 13. electron density vs time

%Automatically rename imported NCAR file to 'data'

%otherwise assume we have already loaded a mat data previously saved

%NOTE: in Matlab usually one should not use this eval() trick...

%Check if empty workspace

ncarname = who('-regexp','NCAR*');

dataname = who('-regexp','data*');

if isempty(ncarname) && isempty(dataname)
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disp('No data loaded!');clear;return;

end

if ~isempty(ncarname)

ncarname = ncarname{1};

data = eval(ncarname);

end

%restore backup if present

if exist('databak','var')

data=databak;

end

%i=pulse number

%change if you want to start from a successive time

%TODO: implement choosing start time and end time

i=1;

%Automatically check NCAR file for step and range

%range of altitudes (for ex. ipy=31,steffe=45,tau0=52)

firstNaN=find(isnan(data(1 :end ,4)),1);

range=firstNaN -9;

st=find(~isnan(data(firstNaN :end ,4)),1)+firstNaN -2;

if isempty(st)

st=length(data);

end

step=st*(i-1); %(step between successive times)*(pulse number)

start=5; %starting row for altitude and value

%backup of original data (useful if need to split data blocks in ...

separate variable)

databak=data;

% EX: if need to select only a particular block

% data1=data(1:st ,:); %select first block

%data2=data(st+1:st*2,:); %select second block

%datalast=data(length(data)-st+1:length(data),:); %select last block

%data=data2; %use only first block as data

%data=datalast; %use only last block as data

%Look for NEIALs times , otherwise ask for vector containing them

%Ex. [x y z] --> Neials occurring at x, y and z timestep

if exist('neial_t','var')==0

neial_t=input(sprintf('Insert neials timestep (0 for 1-block ...

data): '));

if neial_t==0

neial_t=[];

end

end

%SELECT DATE AND TIME

[starttime_h ,starttime_m ,...
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endtime_h ,endtime_m ,...

date_y ,date_m ,date_d]=selDateTimes(data ,start ,step ,st,range);

%data column numbers in NCAR file

calt=1; %column of altitude

cvo=10; %column of ion velocity

cvoerr=15; %column of ion velocity error

cti=7; ctierr=12; %ion temp

ctr=8; ctrerr=13; %temp ratio te/ti

cnel=6;cnelerr=11; %electron density

cneucl=3; %uncorrected electron density

cnr=5; %no/ne ratio

%select altitude and last altitude value

alt = data(start+step:start+range+step ,calt);

lastalt = alt(end -m+1);

% %select altitude range for uncorrected log(ne)

%alt_neucl=data(range+10+st*(i-1):st+st*(i-1),calt);

%check if the chosen altitude are ok

while halt (end)>range || length(halt)>6 || ...

halt(1) <=n || halt (end) >=(range+1) -(m-1) ||...

ismember(0,halt)

if ismember(0,halt)

disp([find(alt), alt])

end

disp('Uncorrect altitude range (*halt* variable)')

fprintf('Note: range=%d n=%d m=%d\n',range ,n,m)

halt=input(sprintf('Insert correct *halt* vector or press 0 to ...

see altitude vector: '));

end

% %select value (uncorrected log(ne))

%neucl=ucvalSelect(data ,range ,st,cneucl ,n,m);

%select values

nel=valSelect(data ,start ,range ,st,cnel ,n,m);

nelerr=valSelect(data ,start ,range ,st,cnelerr ,n,m);

vo=valSelect(data ,start ,range ,st,cvo,n,m);

voerr=valSelect(data ,start ,range ,st,cvoerr ,n,m);

ti=valSelect(data ,start ,range ,st,cti,n,m);

tierr=valSelect(data ,start ,range ,st,ctierr ,n,m);

tr=valSelect(data ,start ,range ,st,ctr,n,m);

trerr=valSelect(data ,start ,range ,st,ctrerr ,n,m);

nr=valSelect(data ,start ,range ,st,cnr,n,m);

%delete NaN/unreliable values
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[vo, voerr]=remBadValues(vo,voerr);

[ti, tierr]=remBadValues(ti,tierr);

[nel, nelerr]=remBadValues(nel,nelerr);

[tr, trerr]=remBadValues(tr,trerr);

%Evaluate other parameters

%conversion from logarithmic ne to usual ne

ne=10.^(nel*1e-3);

neerr=10.^(nelerr*1e-3);

%make tr varying between 0 and 1

tr=tr*1e-3;

trerr=trerr*1e-3;

%evaluate oxygen density

no=nr.*1e-3.*ne;

%evaluate flux

flux=no.*vo;

fluxerr=abs((no .* vo) .* (voerr./vo));

%%alternative flux (should be ok above 250-300 km)

% flux2=ne.*vo; %flux expressed as number of particeles*m^-2*s^-1

% fluxerr2=abs(ne .* vo) .* sqrt((neerr./ne).^2+(voerr./vo).^2);

%evaluate electron temperature

te=ti.*tr;

teerr=abs(ti .* tr) .* sqrt( (tierr ./ ti) .^ 2 + (trerr ./ tr) .^2 );

%Remove values with errors greater than errmax

[vo, voerr]=remBigErrs(vo,voerr ,errmax);

[ti, tierr]=remBigErrs(ti,tierr ,errmax);

[nel, nelerr]=remBigErrs(nel,nelerr ,errmax);

[tr, trerr]=remBigErrs(tr,trerr ,errmax);

%%%%%%%%%%%%%%%%%%

% PLOTS %

%%%%%%%%%%%%%%%%%%

%Set plots font size

set(0,'DefaultAxesFontSize',12)

set(0,'DefaultTextFontSize',12)

t=1:length(data)/st; %timestep vector

% ION VELOCITY vs TIME

plotVi(vo,voerr ,t,alt,halt ,...

plotvector ,errorbars ,neial_t ,...

starttime_h ,starttime_m ,endtime_h ,endtime_m)

%TEMPERATURES vs TIME

plotT(ti,tierr ,te,teerr ,t,alt,halt ,...

plotvector ,errorbars ,neial_t ,...

starttime_h ,starttime_m ,endtime_h ,endtime_m)

%TEMP RATIO vs TIME

plotTr(tr,trerr ,t,alt,halt ,...

plotvector ,errorbars ,neial_t ,...

starttime_h ,starttime_m ,endtime_h ,endtime_m)
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%ION VELOCITY vs ALTITUDE

plotViAlt(vo,voerr ,data ,st,alt,lastalt ,...

plotvector ,neial_t ,...

date_y ,date_m ,date_d ,starttime_h ,starttime_m ,endtime_h ,endtime_m)

%FLUX vs ALTITUDE

plotFluxAlt(flux ,fluxerr ,data ,st,alt,lastalt ,...

plotvector ,neial_t ,...

starttime_h ,starttime_m ,endtime_h ,endtime_m)

%ELECTRON DENSITY vs ALTITUDE

plotNeAlt(ne,neerr ,data ,st,alt,lastalt ,...

plotvector ,neial_t ,...

starttime_h ,starttime_m ,endtime_h ,endtime_m)

%TEMPERATURE vs ALTITUDE (plots only Te for multiblock data)

plotTAlt(te,teerr ,ti,tierr ,tr,trerr ,data ,st,alt,lastalt ,...

plotvector ,neial_t ,...

starttime_h ,starttime_m ,endtime_h ,endtime_m)

%ELECTRIC FIELD vs ALTITUDE

%Calculate Electric field

if plotvector(8) >0

[gradPi gradPe gradPierr gradPeerr efield efielderr]=...

calcEfield(data ,st,alt,ne,ti,te,neerr ,teerr ,tierr);

%Plot Electric Field and Pressure gradients

plotEfield(efield ,efielderr ,...

gradPi ,gradPierr ,gradPe ,gradPeerr ,alt,lastalt ,...

plotvector ,...

starttime_h ,starttime_m ,endtime_h ,endtime_m)

end

%SUMMARY PLOTS vs ALTITUDE (Flux , Vi, Ne)

plotFluxViNe(flux ,vo,ne,alt,lastalt ,...

plotvector ,...

starttime_h ,starttime_m ,endtime_h ,endtime_m)

%COLOR PLOTS (Ne, Vi, Flux)

plotColPlots(ne,flux ,vo,te,ti,tr,vilim ,nelim ,telim ,tilim ,trlim ,...

t,alt,lastalt ,plotvector ,neial_t ,...

starttime_h ,starttime_m ,endtime_h ,endtime_m)

%NEIALS CHECK USING ELECTRON DENSITY VARIATION

neneial(ne,neerr ,te,ti,tr,t,alt ,halt ,...

plotvector ,errorbars ,neial_t ,...

starttime_h ,starttime_m ,endtime_h ,endtime_m)

%Te VARIATION DUE TO ELECTRON COOLING

teneial(te,ti,ne,no,t,alt,halt ,...

plotvector ,errorbars ,neial_t ,...

starttime_h ,starttime_m ,endtime_h ,endtime_m)

%PLOT ELECTRON DENSITY VS TIME

plotNe(ne,neerr ,t,alt,halt ,...

plotvector ,errorbars ,neial_t ,...
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starttime_h ,starttime_m ,endtime_h ,endtime_m)

%save Neials time and data mat files

save(sprintf('%d%d%d_--_%d_%d_-_%d_%d',date_y ,date_m ,date_d ,...

starttime_h ,starttime_m ,endtime_h ,endtime_m),'data');

if length(data)/st~=1

save(sprintf('%d%d%d_--_%d_%d_-_%d_%d_neial_t',...

date_y ,date_m ,date_d ,...

starttime_h ,starttime_m ,endtime_h ,endtime_m),'neial_t');

end

%command to replace spaces and colons in namefiles with underscores

!rename "s/[ :]/_/g" *.eps && rename "s/[ :]/_/g" *.png

%Useful BASH script to convert eps in pdf (useful in some LaTeX ...

environment)

!bash -c 'for i in `ls *.eps`;do `epstopdf $i`; done'

%move all figures and data in a folder (works only in a UNIX -like ...

evironment)

!mkdir -p figs && mkdir -p figs/eps && mkdir -p figs/pdf;

!mv *.eps figs/eps; mv *.png *.mat figs; mv *.pdf figs/pdf;

%%clear variables if needed;

%clear

B.1.2. calcEfield.m

This function evaluates the electric fields using the electron and ion momentum equations.

It gives large errors, so it was not used for our analysis.

function [gradPi gradPe gradPierr gradPeerr efield ...

efielderr]=calcEfield(data ,st,alt,ne,ti,te,neerr ,teerr ,tierr)

% SIMPLE CODE (maybe inaccurate)

kBoltz=1.28*1e-23; %Boltzmann's const

eplus=1.6*1e-19; %electron charge (abs value)

gradNe=diff(ne)./diff(alt.*1e3);

gradNe=[gradNe; gradNe (end)];

gradTi=diff(ti)./diff(alt.*1e3);

gradTi=[gradTi; gradTi (end)];

gradTe=diff(te)./diff(alt.*1e3);

gradTe=[gradTe; gradTe (end)];

gradPi=kBoltz.*(ne.*gradTi + ti.*gradNe);

gradPe=kBoltz.*(ne.*gradTe + te.*gradNe);

efield=-1./(ne.*eplus).*gradPe;

gradNeerr=zeros(length(gradNe),length(data)/st);

gradTierr=zeros(length(gradTi),length(data)/st);

gradTeerr=zeros(length(gradTe),length(data)/st);

gradPierr=zeros(length(gradPi),length(data)/st);

gradPeerr=zeros(length(gradPe),length(data)/st);

efielderr=zeros(length(efield),length(data)/st);

%error propagation (mathematical way)
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for j=2:length(ne)

gradNeerr(j,:)=abs(sqrt(neerr(j,:).^2 + ...

neerr(j-1,:).^2)./(alt(j)*1e3-alt(j-1)*1e3));

gradTierr(j,:)=abs(sqrt(tierr(j,:).^2 + ...

tierr(j-1,:).^2)./(alt(j)*1e3-alt(j-1)*1e3));

gradTeerr(j,:)=abs(sqrt(teerr(j,:).^2 + ...

teerr(j-1,:).^2)./(alt(j)*1e3-alt(j-1)*1e3));

gradPierr(j,:)=abs(kBoltz.*sqrt(...

( (ne(j,:).*gradTi(j,:)).^2 .* ((neerr(j,:)./ne(j,:)).^2 + ...

(gradTierr(j,:)./gradTi(j,:)).^2) )+...

( (ti(j,:).*gradNe(j,:)).^2 .* ((tierr(j,:)./ti(j,:)).^2 + ...

(gradNeerr(j,:)./gradNe(j,:)).^2) )));

gradPeerr(j,:)=abs(kBoltz.*sqrt(...

( (ne(j,:).*gradTe(j,:)).^2 .* ((neerr(j,:)./ne(j,:)).^2 + ...

(gradTeerr(j,:)./gradTe(j,:)).^2) )+...

( (te(j,:).*gradNe(j,:)).^2 .* ((teerr(j,:)./te(j,:)).^2 + ...

(gradNeerr(j,:)./gradNe(j,:)).^2) )));

efielderr(j,:)=abs((1./eplus).*(gradPe(j,:)./ne(j,:)) .* ...

sqrt( (gradPeerr(j,:)./gradPe(j,:)).^2 + ...

(neerr(j,:)./ne(j,:)).^2 ));

end

end

B.1.3. neneial.m

Evaluates the electron density decay over time (see Appendix A for an explanation of this

technique)

function neneial(ne,neerr ,te,ti,tr,t,alt,halt ,...

plotvector ,errorbars ,neial_t ,...

starttime_h ,starttime_m ,endtime_h ,endtime_m)

if plotvector (11) >0

time=0:0.1:6; %integration time

%densities

nN2=3.004E+13; %m^-3

%nN2=0;

nO2=1.318E+12; %m^-3

for a=32 %altitude vector (set a single number if want only one plot)

for j=[20] % Blocks containing NEIALs

Te=te(a,j);

Ti=ti(a,j);

Tn=937; %taken from the database

Tr=tr(a,j);

Tf=Ti/2+Tn/2;

Ne=ne(a,j);

%reaction rates (see Brekke , 2012, pag. 259)

k1=2e-18; %O+ + N2 --> NO+ + N

k2=2e-17.*(Tr/300).^(-0.4); %O+ + O2 --> O + O2+
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%The following k2 is supposed to be more precise

%k2=3.33e -18.*exp(3.72.*300./Tf - 1.78.*(300./Tf).^2);

a1=2.1e -13.*(Te/300).^(-0.85);

a2=1.9e -13.*(Te/300).^(-0.5);

ar=7.8e -14.*(Te./300)^(-0.5);

beta=(k1.*nN2+k2.*nO2)./...

(1+ (k1./a1).*(nN2./ne(a,j)) + (k2./a2).*(nO2./ne(a,j)));

%beta=(k1.*nN2+k2.*nO2) %simpler beta

ne_c=ne(a,j).*exp(-beta.*time);

%solve diff eq numerically

[T N]=ode15s(@(time ,ne1) odefun(time ,ne1,beta),time ,Ne);

%PLOTS

ne_int=interp1([0 6],[ne(a,j) ne(a,j+1)],time ,'linear');

figure;plot(time ,ne_int ,T,N)

legend('Ne obs','Ne calc','Location','SouthWest');

xlabel('Time [s]');

ylabel('N_e [m^-3]');

title({sprintf('Ne decay at %d km (Block %d)',alt(a),j),...

'Numerical solution'})

set(gcf, 'Position', get(0,'Screensize'));

strfig = sprintf('Electron density decay - Numerical (%d:%d - ...

%d:%d)', starttime_h ,starttime_m ,endtime_h ,endtime_m);

if plotvector (11)==2

saveas(gcf,strfig ,'png');

saveas(gcf,strfig ,'epsc');

end

figure;plot(time ,ne_int ,time ,ne_c);

legend('Ne obs','Ne calc','Location','SouthWest');

xlabel('Time [s]');

ylabel('N_e [m^-3]');

title({sprintf('Ne decay at %d km (Block %d)',alt(a),j),...

'Theoretical solution'})

set(gcf, 'Position', get(0,'Screensize'));

strfig = sprintf('Electron density decay - Theoretical (%d:%d - ...

%d:%d)', starttime_h ,starttime_m ,endtime_h ,endtime_m);

if plotvector (11)==2

saveas(gcf,strfig ,'png');

saveas(gcf,strfig ,'epsc');

end

end

end

%PLOT ELECTRON DENSITY ()

strfig = sprintf('Electron density (%d:%d - ...

%d:%d)',starttime_h ,starttime_m ,endtime_h ,endtime_m);

figure('Name',strfig)

sn=1;

for a=halt

subplot(3,2,sn);

if errorbars(1)==1

errorbar(t,ne(a,:),neerr(a,:),'-b');

else
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plot(t,ne(a,:),'-b')

end

maxylim=max(ne(a,:))+max(neerr(a,:));

minylim=min(ne(a,:))-max(neerr(a,:));

set(gca,'YLim',[minylim maxylim])

set(gca,'XLim',[min(t)-1 max(t)+1])

%YL = get(gca,'ylim');

for j=1:length(neial_t)

line([neial_t(j) neial_t(j)],[minylim maxylim], ...

'LineStyle','-','Color',[0.9,0.0,0.0]);

end

title(sprintf('Electron density at %d km',alt(a)))

xlabel('Block number')

ylabel('N_e [m^{-3}]')

sn=sn+1;

end

set(gcf, 'Position', get(0,'Screensize'));

if plotvector (11)==2

saveas(gcf,strfig ,'png');

saveas(gcf,strfig ,'epsc');

end

end

end

B.1.4. odefun.m

Simply definition of a differential equation to use in neneial.m (see also Appendix A)

function dnedt=odefun(t,Ne,beta)

dnedt=-beta.*Ne;

end

B.1.5. plotColPlots.m

Generate color plots for electron density, ion temperature, electron temperature, tempera-

ture ratio, ion velocity and ion flux.

%COLOR PLOTS (Ne, Flux , Vi)

function ...

plotColPlots(ne,flux ,vo,te,ti,tr,vilim ,nelim ,telim ,tilim ,trlim ,t,...

alt,lastalt ,plotvector ,neial_t ,starttime_h ,starttime_m ,...

endtime_h ,endtime_m)

if plotvector (10) >0

% % create palette with nl levels

% % cut=[];

% % nl=[];

% % if isempty(cut), cut=0; end

% % if isempty(nl)
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% % nl=size(get(gcf,'colormap'),1);

% % end

% % f=[0 0 0 0 0 1 2 2 2 2 2 2 2

% % 0 0 0 1 2 2 2 1 0 0 0 1 2

% % 0 1 2 1 0 0 0 0 0 1 2 2 2]'/2;

% % nc=size(f,1);

% % n=nc-cut;

% % b=round([0:n-1]/(n-1)*(nl -1))+1;

% % f=sin(interp1(b,f(1:n,:) ,1:nl)*pi/2);

% % f=tanh(interp1(b,f(1:n,:) ,1:nl))/tanh(1);

% % colormap(f);

map=pmkmp(256,'linearl');

%map=pmkmp(256);

%map='jet';

%COLORT PLOTS: Ne, Vo, FLUX

strfig=sprintf('Color plots (%d:%d - ...

%d:%d)',starttime_h ,starttime_m ,endtime_h ,endtime_m);

figure('Name',strfig)

%Electron density

str = sprintf('Electron density [m^{-3}] (%d:%d - ...

%d:%d)',starttime_h ,starttime_m ,endtime_h ,endtime_m);

subplot(3,1,2)

if nelim(2)~=0

ne(ne>nelim(2))=NaN;

end

if nelim(1)~=0

ne(ne<nelim(1))=NaN;

end

pcolor(t,alt,ne); shading flat;

colormap(map);colorbar();

YL = get(gca,'ylim');

YL(2)=lastalt;

set(gca,'ylim',[YL(1) YL(2)])

for j=1:length(neial_t)

line([neial_t(j) neial_t(j)],[YL(1) YL(2)],...

'LineStyle','-','Color',[0.0,0.9,0.9]);

end

title(str)

xlabel('Block number')

ylabel('Altitude [Km]')

%Flux

str = sprintf('Flux [m^{-2}s^{-1}] (%d:%d - ...

%d:%d)',starttime_h ,starttime_m ,endtime_h ,endtime_m);

subplot(3,1,3)

pcolor(t,alt,flux);shading flat;

colormap(map);colorbar();

YL = get(gca,'ylim');

YL(2)=lastalt;

set(gca,'ylim',[YL(1) YL(2)])

for j=1:length(neial_t)

line([neial_t(j) neial_t(j)],[YL(1) YL(2)],...

'LineStyle','-','Color',[0.0,0.9,0.9]);

end
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title(str)

xlabel('Block number')

ylabel('Altitude [Km]')

%Ion velocity

str = sprintf('Ion velocity [m/s] (%d:%d - ...

%d:%d)',starttime_h ,starttime_m ,endtime_h ,endtime_m);

subplot(3,1,1)

if vilim(2)~=0

vo(vo>vilim(2))=NaN;

end

if vilim(1)~=0

vo(vo<vilim(1))=NaN;

end

pcolor(t,alt,vo);shading flat;

colormap(map);colorbar();

YL = get(gca,'ylim');

YL(2)=lastalt;

set(gca,'ylim',[YL(1) YL(2)])

for j=1:length(neial_t)

line([neial_t(j) neial_t(j)],[YL(1) YL(2)],...

'LineStyle','-','Color',[0.0,0.9,0.9]);

end

title(str)

xlabel('Block number')

ylabel('Altitude [Km]')

set(gcf, 'Position', get(0,'Screensize'))

if plotvector (10)==2

saveas(gcf,strfig ,'epsc2');

set(gcf, 'Renderer', 'zbuffer')

saveas(gcf,strfig ,'png');

end

%COLOR PLOT: TEMPERATURES

strfig=sprintf('Color plots - Temperatures (%d:%d - ...

%d:%d)',starttime_h ,starttime_m ,endtime_h ,endtime_m);

figure('Name',strfig)

%Electron temperature

str = sprintf('Electron temperature [K] (%d:%d - ...

%d:%d)',starttime_h ,starttime_m ,endtime_h ,endtime_m);

subplot(3,1,1)

if telim(2)~=0

te(te>telim(2))=NaN;

end

if telim(1)~=0

te(te<telim(1))=NaN;

end

pcolor(t,alt,te);shading flat;

colormap(map);colorbar();

YL = get(gca,'ylim');

YL(2)=lastalt;

set(gca,'ylim',[YL(1) YL(2)])
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for j=1:length(neial_t)

line([neial_t(j) neial_t(j)],[YL(1) YL(2)],...

'LineStyle','-','Color',[0.0,0.9,0.9]);

end

title(str)

xlabel('Block number')

ylabel('Altitude [Km]')

%Ion temperature

str = sprintf('Ion temperature [K] (%d:%d - ...

%d:%d)',starttime_h ,starttime_m ,endtime_h ,endtime_m);

subplot(3,1,2)

if tilim(2)~=0

ti(ti>tilim(2))=NaN;

end

if tilim(1)~=0

ti(ti<tilim(1))=NaN;

end

pcolor(t,alt,ti);shading flat;

colormap(map);colorbar();

YL = get(gca,'ylim');

YL(2)=lastalt;

set(gca,'ylim',[YL(1) YL(2)])

for j=1:length(neial_t)

line([neial_t(j) neial_t(j)],[YL(1) YL(2)],...

'LineStyle','-','Color',[0.0,0.9,0.9]);

end

title(str)

xlabel('Block number')

ylabel('Altitude [Km]')

%Temperature ratio

str = sprintf('Temperature ratio (%d:%d - ...

%d:%d)',starttime_h ,starttime_m ,endtime_h ,endtime_m);

subplot(3,1,3)

if trlim(2)~=0

tr(tr>trlim(2))=NaN;

end

if trlim(1)~=0

tr(tr<trlim(1))=NaN;

end

pcolor(t,alt,tr);shading flat;

colormap(map);colorbar();

YL = get(gca,'ylim');

YL(2)=lastalt;

set(gca,'ylim',[YL(1) YL(2)])

for j=1:length(neial_t)

line([neial_t(j) neial_t(j)],[YL(1) YL(2)],...

'LineStyle','-','Color',[0.0,0.9,0.9]);

end

title(str)

xlabel('Block number')

ylabel('Altitude [Km]')

set(gcf, 'Position', get(0,'Screensize'))
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if plotvector (10)==2

saveas(gcf,strfig ,'epsc');

set(gcf, 'Renderer', 'zbuffer')

saveas(gcf,strfig ,'png');

end

end

end

B.1.6. plotEfield.m

Generate field aligned electric field altitude profiles.

function ...

plotEfield(efield ,efielderr ,gradPi ,gradPierr ,gradPe ,gradPeerr ,...

alt,lastalt ,plotvector ,starttime_h ,starttime_m ,endtime_h ,endtime_m)

if plotvector(8) >0

j=1;

str=sprintf('Electric field vs Altitude (%d:%d - ...

%d:%d)',starttime_h ,starttime_m ,endtime_h ,endtime_m');

figure('Name',str)

set(gcf, 'Position', get(0,'Screensize'));

subplot(1,2,1)

herrorbar(efield(:,j),alt,efielderr(:,j),'-k')

maxylim=lastalt+10;

%line([0 0],[0 maxylim],'LineStyle','--','Color',[0.7,0.7,0.7]);

set(gca,'YLim',[50 maxylim])

title(str)

xlabel('E [V/m]')

ylabel('Altitude [Km]')

subplot(1,2,2)

gradPiLines=herrorbar(gradPi(:,j),alt,gradPierr(:,j),'--k');

set(gradPiLines ,'LineWidth',2)

set(gradPiLines(1),'LineStyle','none')

hold on

gradPeLines=herrorbar(gradPe(:,j),alt,gradPeerr(:,j),'-k');

set(gradPeLines ,'LineWidth',1)

set(gradPeLines(1),'LineStyle','none')

maxylim=lastalt+10;

%line([0 0],[0 maxylim],'LineStyle','--','Color',[0.7,0.7,0.7]);

set(gca,'YLim',[50 maxylim])

gradPiGroup = hggroup;

gradPeGroup = hggroup;

set(gradPiLines ,'Parent',gradPiGroup)

set(gradPeLines ,'Parent',gradPeGroup)

set(get(get(gradPiGroup ,'Annotation'),'LegendInformation'),...

'IconDisplayStyle','on');

set(get(get(gradPeGroup ,'Annotation'),'LegendInformation'),...

'IconDisplayStyle','on');

legend('grad(P_i)','grad(P_e)')

title('Pressure gradient')

xlabel('[Pa/m]')

ylabel('Altitude [Km]')

if plotvector(8)==2
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saveas(gcf,str,'png');

saveas(gcf,str,'epsc');

end

end

end

B.1.7. plotFluxAlt.m

If given only one block, it generates the altitude profile for the ion flux. If given more

than one block, generates the altitude profile for each block and will plot in red color the

altitude profile where the NEIAL took place, provided that the .mat file containing the

NEIAL events times is present.

%FLUX vs ALTITUDE

function ...

plotFluxAlt(flux ,fluxerr ,data ,st,alt,lastalt ,plotvector ,neial_t ,...

starttime_h ,starttime_m ,endtime_h ,endtime_m)

if plotvector(5) >0

if length(data)/st~=1

str=sprintf('Flux vs Altitude (1-6) (%d:%d - ...

%d:%d)',starttime_h ,starttime_m ,endtime_h ,endtime_m');

figure('Name',str)

set(gcf, 'Position', get(0,'Screensize'));

sn=1;

for j=1:length(data)/st

if mod(j-1,6)==0 && j~=1

%save figure and creates a new one

if plotvector(5)==2

saveas(gcf,str,'png');

saveas(gcf,str,'epsc');

end

str=sprintf('Flux vs Altitude (%d-%d) (%d:%d - ...

%d:%d)',j,j+5,starttime_h ,starttime_m ,endtime_h ,endtime_m');

figure('Name',str)

set(gcf, 'Position', get(0,'Screensize'));

sn=1;

end

subplot(2,3,sn);

if ismember(j,neial_t)

herrorbar(flux(:,j),alt,fluxerr(:,j),'-r')

else

herrorbar(flux(:,j),alt,fluxerr(:,j))

end

maxylim=lastalt+10;

line([0 0],[0 maxylim],'LineStyle','--','Color',[0.7,0.7,0.7]);

set(gca,'YLim',[50 maxylim])

title(sprintf('t=%d',j))

xlabel('Flux [m^{-2}*s^{-1}]')

ylabel('Altitude [Km]')

sn=sn+1;

end

if plotvector(5)==2
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saveas(gcf,str,'png');

saveas(gcf,str,'epsc');

end

else

j=1;

str=sprintf('Flux vs Altitude (%d:%d - ...

%d:%d)',starttime_h ,starttime_m ,endtime_h ,endtime_m');

figure('Name',str)

set(gcf, 'Position', get(0,'Screensize'));

h=herrorbar(flux(:,j),alt,fluxerr(:,j),'-ko');

set(h(2),'LineWidth',2);

maxylim=lastalt+10;

line([0 0],[0 maxylim],'LineStyle','--','Color',[0.7,0.7,0.7]);

set(gca,'YLim',[50 maxylim])

title(str)

xlabel('Flux [m^{-2}*s^{-1}]')

ylabel('Altitude [Km]')

if plotvector(5)==2

saveas(gcf,str,'png');

saveas(gcf,str,'epsc');

end

end

end

end

B.1.8. plotNe.m

Generates time plots of electron density at several altitudes, which can be customized in

the main routine. It works better when more blocks are provided.

%ELECTRON DENSITY VS TIME

function plotNe(ne,neerr ,t,alt,halt ,plotvector ,errorbars ,neial_t ,...

starttime_h ,starttime_m ,endtime_h ,endtime_m)

if plotvector (13) >0

strfig = sprintf('Electron density (%d:%d - %d:%d)',...

starttime_h ,starttime_m ,endtime_h ,endtime_m);

figure('Name',strfig)

sn=1;

for a=halt

subplot(3,2,sn);

if errorbars(1)==1

errorbar(t,ne(a,:),neerr(a,:),'-b');

else

plot(t,ne(a,:),'-b')

end

maxylim=max(ne(a,:))+max(neerr(a,:));

minylim=min(ne(a,:))-max(neerr(a,:));

set(gca,'YLim',[minylim maxylim])

set(gca,'XLim',[min(t)-1 max(t)+1])

%YL = get(gca,'ylim');

for j=1:length(neial_t)

line([neial_t(j) neial_t(j)],[minylim maxylim], ...
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'LineStyle','-','Color',[0.9,0.0,0.0]);

end

title(sprintf('N_e at %d km',alt(a)))

xlabel('Block number')

ylabel('N_e [m^-3]')

sn=sn+1;

end

set(gcf, 'Position', get(0,'Screensize'));

if plotvector(1)==2

saveas(gcf,strfig ,'png');

saveas(gcf,strfig ,'epsc');

end

end

end

B.1.9. plotNeAlt.m

If given only one block, it generates the altitude profile for the electron density. If given

more than one block, generates the altitude profile for each block and will plot in red color

the altitude profile where the NEIAL took place, provided that the .mat file containing

the NEIAL events times is present.

%ELECTRON DENSITY vs ALT

function plotNeAlt(ne,neerr ,data ,st,alt,lastalt ,plotvector ,neial_t ,...

starttime_h ,starttime_m ,endtime_h ,endtime_m)

if plotvector(6) >0

if length(data)/st~=1

str=sprintf('Electron density vs Altitude (1-6) (%d:%d - %d:%d)',...

starttime_h ,starttime_m ,endtime_h ,endtime_m');

figure('Name',str)

set(gcf, 'Position', get(0,'Screensize'));

sn=1;

for j=1:length(data)/st

if mod(j-1,6)==0 && j~=1

%save figure and creates a new one

if plotvector(6)==2

saveas(gcf,str,'png');

saveas(gcf,str,'epsc');

end

str=sprintf('Electron density vs Altitude (%d-%d) (%d:%d - ...

%d:%d)',j,j+5,starttime_h ,starttime_m ,endtime_h ,endtime_m');

figure('Name',str)

set(gcf, 'Position', get(0,'Screensize'));

sn=1;

end

subplot(2,3,sn);

if ismember(j,neial_t)

herrorbar(ne(:,j),alt,neerr(:,j),'-r')

else

herrorbar(ne(:,j),alt,neerr(:,j))

end

maxylim=lastalt+10;
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%line([0 0],[0 maxylim],'LineStyle','--','Color',[0.7,0.7,0.7]);

set(gca,'YLim',[50 maxylim])

title(sprintf('t=%d',j))

xlabel('N_e [m^{-3}]')

ylabel('Altitude [Km]')

sn=sn+1;

end

if plotvector(6)==2

saveas(gcf,str,'png');

saveas(gcf,str,'epsc');

end

else

j=1;

str=sprintf('Electron density vs Altitude (%d:%d - ...

%d:%d)',starttime_h ,starttime_m ,endtime_h ,endtime_m');

figure('Name',str)

set(gcf, 'Position', get(0,'Screensize'));

herrorbar(ne(:,j),alt,neerr(:,j),'-ko')

maxylim=lastalt+10;

%line([0 0],[0 maxylim],'LineStyle','--','Color',[0.7,0.7,0.7]);

set(gca,'YLim',[50 maxylim])

title(str)

xlabel('N_e [m^{-3}]')

ylabel('Altitude [Km]')

if plotvector(6)==2

saveas(gcf,str,'png');

saveas(gcf,str,'epsc');

end

end

end

end

B.1.10. plotT.m

Generates time plots of electron (blue) and ion (green) temperatures at several altitudes,

which can be customized in the main routine. It works better when more blocks are

provided.

%TEMP vs TIME

function ...

plotT(ti,tierr ,te,teerr ,t,alt,halt ,plotvector ,errorbars ,neial_t ,...

starttime_h ,starttime_m ,endtime_h ,endtime_m)

if plotvector(2) >0

strfig = sprintf('Temperature (%d:%d - %d:%d)',...

starttime_h ,starttime_m ,endtime_h ,endtime_m);

figure('Name',strfig)

sn=1;

for a=halt

subplot(3,2,sn);

if errorbars(1)==1

errorbar(t,ti(a,:),tierr(a,:),'LineStyle','-',...

'Color',[0.0,0.8,0.2]);
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hold on;

errorbar(t,te(a,:),teerr(a,:));

else

plot(t,ti(a,:),'LineStyle','-','Color',[0.0,0.8,0.2])

hold on;

plot(t,te(a,:));

end

maxylim=max(max(ti(a,:)),max(te(a,:)))+...

max(max(tierr(a,:)),max(teerr(a,:)));

minylim=min(min(ti(a,:)),max(te(a,:)))-...

max(max(tierr(a,:)),max(teerr(a,:)));

set(gca,'YLim',[minylim maxylim])

set(gca,'XLim',[min(t)-1 max(t)+1])

%YL = get(gca,'ylim');

for j=1:length(neial_t)

line([neial_t(j) neial_t(j)],[minylim maxylim], ...

'LineStyle','-','Color',[0.9,0.0,0.0]);

end

title(sprintf('Temperature at %d km',alt(a)))

xlabel('Block number')

%ylabel({'T [K]';'electron=blue , ion=green'})

ylabel('T [K]')

sn=sn+1;

end

set(gcf, 'Position', get(0,'Screensize'));

% legend1=legend('T_i','T_e','Location','Northeast');

% set(legend1 ,'FontSize ',6)

if plotvector(2)==2;

saveas(gcf,strfig ,'png');

saveas(gcf,strfig ,'epsc');

end

end

end

B.1.11. plotTAlt.m

If given only one block, it generates the altitude profile for the ion and electron temper-

atures together with the temperature ratio. If given more than one block, generates the

electron temperature altitude profile for each block and will plot in red color the altitude

profile where the NEIAL took place, provided that the .mat file containing the NEIAL

events times is present.

%TEMPERATURE vs ALTITUDE (plots only Te for multiblock data)

function plotTAlt(te,teerr ,ti,tierr ,tr,trerr ,data ,st,alt ,lastalt ,...

plotvector ,neial_t ,starttime_h ,starttime_m ,endtime_h ,endtime_m)

if plotvector(7) >0

if length(data)/st~=1

str=sprintf('Temperature vs Altitude (1-6) (%d:%d - ...

%d:%d)',starttime_h ,starttime_m ,endtime_h ,endtime_m');

figure('Name',str)

set(gcf, 'Position', get(0,'Screensize'));

sn=1;
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for j=1:length(data)/st

if mod(j-1,6)==0 && j~=1

%save figure and creates a new one

if plotvector(7)==2

saveas(gcf,str,'png');

saveas(gcf,str,'epsc');

end

str=sprintf('Temperature vs Altitude (%d-%d) (%d:%d - ...

%d:%d)',j,j+5,starttime_h ,starttime_m ,endtime_h ,endtime_m');

figure('Name',str)

set(gcf, 'Position', get(0,'Screensize'));

sn=1;

end

subplot(2,3,sn);

if ismember(j,neial_t)

herrorbar(te(:,j),alt,teerr(:,j),'-r')

else

herrorbar(te(:,j),alt,teerr(:,j))

end

maxylim=lastalt+10;

%line([0 0],[0 maxylim],'LineStyle','--','Color',[0.7,0.7,0.7]);

set(gca,'YLim',[50 maxylim])

title(sprintf('t=%d',j))

xlabel('T_e [K]')

ylabel('Altitude [Km]')

sn=sn+1;

end

if plotvector(7)==2

saveas(gcf,str,'png');

saveas(gcf,str,'epsc');

end

else

j=1;

str=sprintf('Temperature vs Altitude (%d:%d - ...

%d:%d)',starttime_h ,starttime_m ,endtime_h ,endtime_m');

figure('Name',str)

set(gcf, 'Position', get(0,'Screensize'));

subplot(1,2,1)

tiLines=herrorbar(ti(:,j),alt,tierr(:,j),'-g');

set(tiLines ,'LineStyle','-','Color',[0.0,0.8,0.2]);

%set(tiLines ,'LineWidth ',2)

hold on

teLines=herrorbar(te(:,j),alt,teerr(:,j),'-b');

tiGroup = hggroup;

teGroup = hggroup;

set(tiLines ,'Parent',tiGroup)

set(teLines ,'Parent',teGroup)

set(get(get(tiGroup ,'Annotation'),'LegendInformation'),...

'IconDisplayStyle','on');

set(get(get(teGroup ,'Annotation'),'LegendInformation'),...

'IconDisplayStyle','on');

legend('T_i','T_e','Location','SouthEast')

maxylim=lastalt+10;

%line([0 0],[0 maxylim],'LineStyle','--','Color',[0.7,0.7,0.7]);

set(gca,'YLim',[50 maxylim])

title(str)
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xlabel('T [K]')

ylabel('Altitude [Km]')

subplot(1,2,2)

herrorbar(tr,alt,trerr ,'-k')

xlabel('T_e/T_i [K]')

ylabel('Altitude [Km]')

title('Temperature ratio')

set(gca,'YLim',[50 maxylim])

if plotvector(7)==2

saveas(gcf,str,'png');

saveas(gcf,str,'epsc');

end

end

end

end

B.1.12. plotTr.m

Generates time plots of temperature ratio at several altitudes, which can be customized in

the main routine. It works better when more blocks are provided.

%TEMPERATURE RATIO vs TIME

function plotTr(tr,trerr ,t,alt,halt ,plotvector ,errorbars ,neial_t ,...

starttime_h ,starttime_m ,endtime_h ,endtime_m)

if plotvector(3) >0

strfig = sprintf('Temperature ratio (%d:%d - %d:%d)',...

starttime_h ,starttime_m ,endtime_h ,endtime_m);

figure('Name',strfig)

sn=1;

for a=halt

subplot(3,2,sn);

if errorbars==1

errorbar(t,tr(a,:),trerr(a,:));

else

plot(t,tr(a,:));

end

maxylim=max(tr(a,:))+max(trerr(a,:));

minylim=min(tr(a,:))-max(trerr(a,:));

set(gca,'YLim',[minylim maxylim])

set(gca,'XLim',[min(t)-1 max(t)+1])

%YL = get(gca,'ylim');

for j=1:length(neial_t)

line([neial_t(j) neial_t(j)],[minylim maxylim], ...

'LineStyle','-','Color',[0.9,0.0,0.0]);

end

title(sprintf('Temperature ratio at %d km',alt(a)))

xlabel('Block number')

ylabel('T_e/T_i')

sn=sn+1;

end

set(gcf, 'Position', get(0,'Screensize'));

if plotvector(3)==2
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saveas(gcf,strfig ,'png');

saveas(gcf,strfig ,'epsc');

end

end

end

B.1.13. plotVi.m

Generates time plots of ion velocity at several altitudes, which can be customized in the

main routine. It works better when more blocks are provided.

%ION VELOCITY VS TIME

function plotVi(vo,voerr ,t,alt,halt ,plotvector ,errorbars ,neial_t ,...

starttime_h ,starttime_m ,endtime_h ,endtime_m)

if plotvector(1) >0

strfig = sprintf('Ion velocity (%d:%d - %d:%d)',...

starttime_h ,starttime_m ,endtime_h ,endtime_m);

figure('Name',strfig)

sn=1;

for a=halt

subplot(3,2,sn);

if errorbars(1)==1

errorbar(t,vo(a,:),voerr(a,:),'-b');

else

plot(t,vo(a,:),'-b')

end

maxylim=max(vo(a,:))+max(voerr(a,:));

minylim=min(vo(a,:))-max(voerr(a,:));

set(gca,'YLim',[minylim maxylim])

set(gca,'XLim',[min(t)-1 max(t)+1])

%YL = get(gca,'ylim');

for j=1:length(neial_t)

line([neial_t(j) neial_t(j)],[minylim maxylim], ...

'LineStyle','-','Color',[0.9,0.0,0.0]);

end

title(sprintf('Ion velocity at %d km',alt(a)))

xlabel('Block number')

ylabel('V_i [m/s]')

sn=sn+1;

end

set(gcf, 'Position', get(0,'Screensize'));

if plotvector(1)==2

saveas(gcf,strfig ,'png');

saveas(gcf,strfig ,'epsc');

end

end

end
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B.1.14. plotViAlt.m

If given only one block, it generates the altitude profile for the ion velocity. If given more

than one block, it generates the altitude profile for each block and will plot in red color

the altitude profile where the NEIAL took place, provided that the .mat file containing

the NEIAL events times is present.

%ION VELOCITY VS ALT

function plotViAlt(vo,voerr ,data ,st,alt,lastalt ,...

plotvector ,neial_t ,...

date_y ,date_m ,date_d ,starttime_h ,starttime_m ,endtime_h ,endtime_m)

if plotvector(4) >0

if length(data)/st~=1

str=sprintf('Ion Velocity vs Altitude (1-6) (%d:%d - %d:%d)',...

starttime_h ,starttime_m ,endtime_h ,endtime_m');

figure('Name',str)

set(gcf, 'Position', get(0,'Screensize'));

sn=1;

for j=1:length(data)/st

if mod(j-1,6)==0 && j~=1

%save figure and creates a new one

if plotvector(4)==2

saveas(gcf,str,'png');

saveas(gcf,str,'epsc');

end

str=sprintf('Ion Velocity vs Altitude (%d-%d) (%d:%d - ...

%d:%d)',...

j,j+5,starttime_h ,starttime_m ,endtime_h ,endtime_m');

figure('Name',str)

set(gcf, 'Position', get(0,'Screensize'));

sn=1;

end

subplot(2,3,sn);

if ismember(j,neial_t)

herrorbar(vo(:,j),alt,voerr(:,j),'-r')

else

herrorbar(vo(:,j),alt,voerr(:,j))

end

maxylim=lastalt+10;

line([0 0],[0 maxylim],'LineStyle','--','Color',[0.7,0.7,0.7]);

set(gca,'YLim',[50 maxylim])

title(sprintf('t=%d',j))

xlabel('Vi [m/s]')

ylabel('Altitude [Km]')

sn=sn+1;

end

if plotvector(4)==2

saveas(gcf,str,'png');

saveas(gcf,str,'epsc');

end

else

j=1;

str=sprintf('Ion velocity vs Altitude (%d-%d-%d - %d:%d-%d:%d)',...

date_y ,date_m ,date_d ,starttime_h ,starttime_m ,endtime_h ,endtime_m');
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figure('Name',str)

set(gcf, 'Position', get(0,'Screensize'));

h=herrorbar(vo(:,j),alt,voerr(:,j),'-ko');

set(h(2),'LineWidth',2);

maxylim=lastalt+10;

line([0 0],[0 maxylim],'LineStyle','--','Color',[0.7,0.7,0.7]);

set(gca,'YLim',[50 maxylim])

title(str)

xlabel('Vi [m/s]')

ylabel('Altitude [Km]')

if plotvector(4)==2

saveas(gcf,str,'png');

saveas(gcf,str,'epsc');

end

end

end

end

B.1.15. remBadValues.m

Removes values which are considered unreliable by the GUISDAP software analysis.

% Remove bad values

% value = value to check

% valueerr = error on value to check

function [value , valueerr]=remBadValues(value ,valueerr)

%No data/known bad data received

valueerr(abs(value)==32767)=NaN;

value(abs(value)==32767)=NaN;

value(abs(valueerr)==32767)=NaN;

valueerr(abs(valueerr)==32767)=NaN;

%when error=32766 we are using assumed data , so set error=0

valueerr(valueerr ==-32766)=0;

end

B.1.16. remBigErrs.m

Removes errors larger than a certain value, customizable in the main script.

% Remove errors greater then errmax

function [value , valueerr]=remBigErrs(value ,valueerr ,errmax)

if errmax~=0

err=valueerr./value;

valueerr(err>errmax)=NaN;

value(err>errmax)=NaN;

end

end
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B.1.17. selDateTimes.m

Selects date and times from the imported file, in order to use them in the plots.

function [starttime_h ,starttime_m ,...

endtime_h ,endtime_m ,...

date_y ,date_m ,date_d]=selDateTimes(data ,start ,step ,st,range)

%select date and times

starttime_h = data(start -4+step ,7);

starttime_m = data(start -4+step ,8);

endtime_h = data(length(data)-st+range+start+1,11);

endtime_m = data(length(data)-st+range+start+1,12);

date_md=data(start -4+step ,6);

digits=sscanf(strrep(num2str(date_md ,4),'',''),'%1d');

if length(digits)==3

date_m=digits(1);

date_d=digits(2).*10+digits(3);

else

date_m=digits(1).*10+digits(2);

date_d=digits(3).*10+digits(4);

end

date_y=data(start -4+step ,5);

end

B.1.18. ucvalSelect.m

Selects the uncorrected values from the NCAR ASCII file. It selects only electron density

which is the only value of this type available in our data sets. We didn’t use this feature

in our work, so this function is commented in the main routine.

function value=ucvalSelect(data ,range ,st,cvalue ,n,m)

value=zeros(st-range -10+1,length(data)/st);

for j=1:length(data)/st

value(:,j)=data(range+10+st*(j-1):st+st*(j-1),cvalue);

%delete first n and last m values

%(not useful/too much noise/not interesting)

value(1:n,j)=NaN;

value(end -m+1 :end,j)=NaN;

end

B.1.19. valSelect.m

Selects the values from the NCAR ASCII file columns, which corresponds to the iono-

spheric parameters measured by radars and derived by the GUISDAP analysis.

function value=valSelect(data ,start ,range ,st,cvalue ,n,m)

value=zeros(range+1,length(data)/st);
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for j=1:length(data)/st

value(:,j)=data(start+st*(j-1):start+range+st*(j-1),cvalue);

%delete first n and last m values

%(not useful/too much noise/not interesting)

value(1:n,j)=NaN;

value(end -m+1 :end,j)=NaN;

end

end

B.2. Other useful Matlab scripts not related to the main

routine

B.2.1. convd.m

This is a short but useful script we made to convert date in seconds and vice versa, which

is useful when one wants to remove data dumps containing NEIALs (which are named

after the number of seconds since the start of the year) knowing only the date and hour of

the event.

function convd(date)

%calculate the number of second since beginning of the year and ...

copy the

%result to the clipboard

%if provided with year and number of seconds will give date

%

%date=[day month year hour min sec]

%ex. date=[23 4 2007 9 10 34];

%or

%date=[year seconds]

%ex. date=[2001 1258226]

while length(date)~=6 && length(date)~=2

disp('Input date error. Format allowed are:')

disp('[day month year hour minute seconds]')

disp('or')

disp('[year seconds]')

date=input(sprintf('Try to manually insert date: '));

end

if length(date)==6

days=[31 28 31 30 31 30 31 31 30 31 30 31];

%check for leap year

if (mod(date(3) ,100)~=0 && mod(date(3) ,4)==0) || ...

mod(date(3) ,400)==0

days(2)=29;

end

sec=(date(1) -1)*86400 + ...

date(4)*3600 + ...

date(5)*60 + ...

date(6) + ...
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sum(days(1:date(2) -1))*86400;

fprintf('Number of seconds: %d \n',sec)

clipboard('copy', sec)

end

if length(date)==2

datestring=datestr(date(2)/86400+ datenum(date(1) ,1,1));

fprintf('Date: %s \n',datestring)

clipboard('copy', datestring)

end

end

B.2.2. fig2pdf.m

This short script automatically converts Matlab figures in .pdf files, more suitable for

using in some LATEX environments. We use it to convert sequences of spectra containing

NEIALs.

% change path to your .fig spectra files location

path='/home/max/Uni/analysis/...

steffel_fixed_42m_1.40_CP20040522...

/rtg/fig/img';

%change both the following line and the seq command in line 12

%to match the sequence of spectra needed

seq=7965:2:7965;

for i=seq

openfig(sprintf('%s%d.fig',path ,i));

saveas(gcf,sprintf('img%d',i),'epsc');

close();

end

!mkdir -p figs/spectra;

!for i in `seq 7965 1 7965`; do var=$(printf 'img%d.eps' $i); ...

epstopdf $(echo $var);done;

!mv img*.pdf figs/spectra; rm img*.eps;

B.3. Customized routines to save RTG figures

B.3.1. Customized function in remtg routine

The standard RTG routine remtg doesn’t have an option to save spectra to a local disk for

successive analysis. This would result in a time consuming activity in order to manually

check every spectrum. Hence we decided to slightly modify the remtg code to save .fig

and .png files. We modified the function spitspec.m adding the following code at the

end (just before the last end):
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%save plot on file

%(change /home/max/tmp/rtg in the next two lines to what you need)

!mkdir -p /home/max/tmp/rtg

myFolder='/home/max/tmp/rtg';

filePattern = fullfile(myFolder ,'*.png');

jpegFiles = dir(filePattern);

baseFileName = strcat('img',int2str(length(jpegFiles)+1));

fullFileName = fullfile(myFolder , baseFileName);

saveas(gcf,fullFileName ,'png')

saveas(gcf,fullFileName ,'fig')

This is not a highly efficient way of doing it, because it generates a file each time the

function updateplot is called, which means that we generate e.g. 4 different files if we

have 4 different windows for the same dump. On the bright side, it is a very small and

harmless modification, which does not alter anything else in the code, thus in practice

reducing to zero possible complications.

B.3.2. Linux BASH script to take screenshots

An alternative way to save a figure to disk, with the advantage of not touching the code at

all, is to use a simple BASH script to take a screenshot. For example:

#!/bin/bash

#Save screenshots using scrot command

mkdir -p ~/Downloads/screenshots

i=1

while true; do

#using scrot (faster)

scrot -u ~/Downloads/screenshots/`printf %05d $i`.png

#using imagemagick and xprop

#activeWinLine=$(xprop -root | grep "_NET_ACTIVE_WINDOW(WINDOW)")

#activeWinId=${activeWinLine :40}

#import -window "$activeWinId" ~/Downloads/screenshots/`printf ...

%05d $i`.png

#using imagemagick and xdotool

#import -window "$(xdotool getwindowfocus -f)" ...

~/Downloads/screenshots/$i.png

sleep 0.9

echo 'Screenshot number '`echo $i`' saved'

let i++

done

exit 0

There are however many disadvantages if using such a solution. First of all, the computer

screen must be always on, thus wasting a lot more energy. In addition, it is needed to

manually set the time delay, it is not possible to save the .fig file, the image dimension
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is fixed and dependent on the screen resolution, therefore the resulting files are not of a

good quality and hence not suited for an official publication.
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C. Final notes

All the websites, references and Matlab external functions have been last accessed on 15

November 2013.

All the credit for the external routines and functions goes to their respective authors.

The code we wrote is free software: you can redistribute it and/or modify it under the

terms of the GNU General Public License as published by the Free Software Foundation,

either version 3 of the License, or (at your option) any later version.
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Nomenclature

ε0 permittivity of free space

kB Boltzmann constant

KP estimated planetary K-index

m j particle mass (either ion or electron)

n0 background electron density

Xe physical quantity X relative to electrons

Xi physical quantity X relative to ions

BBELF broad-band extremely low frequency

CME coronal mass ejection

ESR Eiscat Svalbard radar

EUV extra ultra violet

FAC field aligned current

IMF interplanetary magnetic field

ISR incoherent scatter radar

MHD magnetohydrodynamic

MLT magnetic local time

NBZ northward z-component of the interplanetary magnetic field

NEIALs naturally enhanced ion-acoustic lines

RTG real time graph

UHF ultra low frequency

VLF very low frequency
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