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Abstract 

The mitochondrion is a subcellular organelle with major functions related to energy 

production and control of apoptosis. The presence of mitochondria as a subcellular organelle 

has been known for more than one and a half century. However, only the last decades’ 

research has discovered their role in ageing and disease pathology, which have led to 

increasing interest in mitochondria as target for drug delivery. For a long time the 

mitochondria were thought to be static organelles, however, it was then discovered that they 

continuously fused together forming tubular networks followed by fission back into single 

organelles. 

The aim of the work was to evaluate whether liposomes could be recognized as artificial 

mitochondria and thereby be included in the fusion-fission cycle. 

Liposomes were prepared with different lipid compositions mimicking the composition of the 

outer mitochondrial membrane. A lipophilic fluorescent dye was incorporated in liposomes to 

evaluate their ability to fuse with isolated mitochondria.  

Based on the fusion experiments, it was confirmed that the level of fusion was altered in 

respect to the different lipid compositions. 

 

Key words: mitochondria, targeting, fusion-fission cycle, liposomes, drug delivery   
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1 General introduction 

Mitochondria are a subcellular organelles thought to rise from the endosymbiosis theory 

(Nunnari and Suomalainen, 2012). They have a distinct structure consisting of two 

membranes which is important in one of their major functions; producing the energy, in form 

of adenosine triphosphate (ATP), the cell need to carry on its function (Kowald and 

Kirkwood, 2011a). They are also important regarding their role in controlling apoptosis and 

mitochondrial dysfunctions shows to be the cause of an increasing number of human 

disorders (Nunnari and Suomalainen, 2012). 

It was earlier thought that mitochondria were static organelles, but they were later shown to 

be quiet dynamic with a constant on-going cycle of alternating fusion and fission (Kowald 

and Kirkwood, 2011a). Evidence shows that alternating fusion and fission is necessary as a 

quality control in order to repair or destroy damaged organelles (Otera and Mihara, 2012). 

The accurate delivery of proteins and lipids due to different needs regarding intracellular 

location (Otera and Mihara, 2012) and correct distribution in cell division (Zungu et al., 2011) 

is also managed by this cycle. 

Liposomes are a novel form of drug delivery systems, although they have been known for 

several decades (Brandl, 2001). Different lipids are distributed differently in biological 

membranes (Welti and Glaser, 1994) and might therefor have distinct roles in membrane 

function. 
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2 Introduction 

2.1 Mitochondria 

2.1.1 Structure and characteristics  

The mitochondrion is an approximately 2 μm long eukaryotic subcellular organelle which is 

thought to originate from the endosymbiosis theory. This theory states that an oxygen 

consuming bacterium was engulfed by a eukaryotic ancestor cell (Nunnari and Suomalainen, 

2012). Since both had benefits from the others function they stayed together in a symbiotic 

relationship (Jianping, 2010).  

There are two main factors, from a structural point of view, which differs the mitochondria 

from the other organelles – the double membrane, as illustrated in Figure 1, and the presence 

of mitochondrial DNA (mtDNA). 

 

Figure 1 Structure (left) (MolecularExpressions™, 2004) and micrograph (right) 

(Kimball'sBiologyPages, 2012) of mitochondria 

 

The double membrane consists of the outer mitochondrial membrane (OMM) and the inner 

mitochondrial membrane (IMM), both being phospholipid bilayers but with different 

composition, divided by an intermembrane space (IMS). The OMM consists of porins which 

allows ions and small molecules from cytosol to freely move into IMS. The IMS contain 

important ions, molecules and proteins for the mitochondrion to maintain normal functions. 

This includes protons responsible for the membrane potential and key participants in ATP 
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production and cytochrome c (cyt c) which serves as an inducing agent in apoptosis.  The 

IMM works as a barrier for most solutes to keep the IMM and the mitochondrial matrix (MM) 

as separate compartments. It also serves as the site of action for the electron transport chain 

(ETC) and the energy production in form of ATP.  

The mitochondria was observed as early as in the 1850s, but it took more than a century 

before its genome was discovered in the 1960s (Zick et al., 2009). According to the 

endosymbiosis theory, when the bacterium entered the cell it brought its own genome. During 

evolution most of the protein coding has been transferred to the nucleus, but there is still some 

intact genome left in the mitochondrion which codes for 13 proteins necessary in the 

respiratory complexes and RNAs necessary for the translocation (Taylor and Turnbull, 2005; 

Nunnari and Suomalainen, 2012).  

One of the most important tasks of the mitochondria is the production of ATP which counts 

for 90% of the energy needed in the cells and tissues (Kowald and Kirkwood, 2011a; Marchi 

et al., 2012). The mitochondria also function as a control point for the onset of apoptosis and 

have been shown to play a role in aging and different human disorders (Zick et al., 2009). 

The location of the mitochondria correspond to the energy consumption of the cell where the 

cells with the highest need of energy have the highest number of mitochondria and they tend 

to have intracellular accumulate where the energy is needed.  
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2.1.2 Metabolic functions 

The mitochondria are often referred to as the “powerhouse” of the cell. However, there are 

also other important activities located in different parts of the mitochondria, for example 

apoptosis (discussed below) and signalling (Zhang and Chan, 2007).  

In this section the focus will be on the mitochondrial metabolic pathway leading to ATP 

synthesis, starting with β-oxidation of fatty acids whose product, acetyl coenzyme A (aCoA), 

is a substrate in the tricarboxylic acid (TCA) cycle taking place in MM. Reduced 

nicotinamide adenine dinucleotide (NADH), produced in TCA cycle, drives the electron 

transport chain (ETC) whose resulting proton gradient across the inner membrane is necessary 

for the synthesis of ATP. 

 

Figure 2 Chemical pathway in β-oxidation of fatty acids (Nelson and Cox, 2008) 
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About 50-75% of fatty acid β-oxidation in animals occurs in the mitochondria, which includes 

fatty acids with a chain length shorter than 16 carbon atoms (Becker et al., 2006a). Longer 

acyl chains are first shortened in peroxisomes before transported to mitochondria for complete 

degradation. Even numbered acyl chains with number of C = n will, after complete β-

oxidation, result in n/2 aCoA and (n/2)-1 fully reduced flavin adenine dinucleotide (FADH2) 

and NADH as illustrated in Figure 2. 

ACoA can also be obtained from glycolysis where the primary end product is pyruvate. 

Through the IMM, the pyruvate carrier transports pyruvate into the MM where pyruvate 

dehydrogenase oxidizes pyruvate to aCoA with the help of coenzyme A and (nicotinamide 

adenine dinucleotide) NAD
+
 resulting in CO2 and NADH as by-products.  

To enter the TCA cycle aCoA condensation with oxaloacetate to generate citrate is catalysed 

by citrate synthase, as shown in Figure 3. One water molecule is consumed as the coenzyme 

A (CoA) and one proton is released.  

Via the intermediate cis-aconitate, citrate is transformed to isocitrate by the bidirectional 

aconitase. The next step is also via an intermediate, the unstable oxalosuccinate is formed by 

oxidation catalyzed by isocitrate dehydrogenase with help of NAD
+
 forming NADH followed 

by decarboxylation into α-ketoglutarate with release of CO2. A further oxidation catalyzed by 

α-ketoglutarate dehydrogenase and inclusion of NAD
+
 and CoA results in succinyl CoA and 

release of CO2 and the generation of another NADH. Conversion of succinyl CoA to 

succinate is catalyzed by the bidirectional succinyl-CoA synthetase and the CoA is released 

again. In the same step an inorganic phosphate is condensed with guanosine 5’-diphosphate 

(GDP) forming guanosine 5’-triphosphate (GTP) which can return to GDP by giving one 

phosphate to adenosine diphosphate (ADP) resulting in formation of one ATP. 

Succinate dehydrogenase catalyzes the oxidation of succinate to fumarate and one FADH2 is 

formed from flavin adenine dinucleotide (FAD). Fumarate hydratase then consumes one 

water molecule in order to hydrate fumarate to malate. Further oxidation by malate 

dehydrogenase results in oxaloacetate with additional formation of NADH from NAD
+
 and 

release of a proton. The cycle can then start over again with inclusion of a new aCoA. 

To summarize, the TCA cycle produce three NADH, two protons, one FADH2 and one ATP 

that can be utilized later. 
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Figure 3 Tricarboxylic acid cycle (Becker et al., 2006b) 

 

The ETC, also called respiratory chain, is a set of complexes gathered in the IMM.  The 

bottom line of the electron transport is the transport of electrons from coenzymes like NADH 

to molecular oxygen, and the function of the complexes is to link this transfer of electrons 

with the pumping of protons from MM to IMS (Weiss et al., 1991). However, it is not as 

straight forward as indicated in Figure 4. 

 

Figure 4 Basic schematic steps in the electron transport chain (Ow et al., 2008) 
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Complex I, also called NADH-coenzyme Q (CoQ) oxidoreductase, transfer two electrons 

from NADH to CoQ resulting in binding of two protons. Each pair of electrons that passes the 

complex results in pumping of four protons across the membrane directly from MM. 

Complex II, also called succinate-CoQ oxidoreductase, transfers two electrons to CoQ from 

FADH2. No proton pumping is coupled with this electron transfer.  

Complex III, also called CoQ-cytochrome c (cyt c) oxidoreductase, transfers the electrons 

from CoQ to cyt c. Each pair of electrons that passes the complex results in pumping of four 

protons across the membrane, two which comes from CoQ and two directly from MM. 

Complex IV, also called cyt c oxidase, transfers the electrons from cyt c to oxygen. Each pair 

of electrons entering the complex results in removal of four protons from MM. Two of those 

protons are used to make a water molecule together with one half of an O2 molecule. The two 

remaining protons are just pumped across the membrane. 

The ATP synthase, also called complex V in ETC, is located in the IMM where it uses the 

protons pumped out into the IMS by the ETC to drive the condensation of ADP to ATP, as 

illustrated in Figure 5. For each proton entering the MM though the IMM traversing part of 

the protein, one ADP and inorganic phosphate group is docked into binding sites, one ADP 

and inorganic phosphate group is condensed to ATP in another binding site and one ATP is 

released from a third binding site. This means that three protons are necessary to pass through 

the protein in order to complete one condensation process.  

 

Figure 5 ATP production in inner mitochondrial membrane and coupling with electron 

transport chain (Ow et al., 2008) 
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2.1.3 Apoptosis 

Apoptosis is programmed killing of cells in a way that is as gentle as possible to the 

surrounding cells (Indran et al., 2011) and it is essential both in organ development and in life 

as general (Desagher and Martinou, 2000). There are 2 main initial routes of apoptosis, as 

shown in Figure 6, one being activation due to cell death signal, left side, and the other being 

activation by removal of survival factors, right side.  There have been discovered cross talking 

between the routs (Wang and Youle, 2009), but it is the latter one will be in focus here.  

 

Figure 6 Schematic steps in apoptosis (Becker et al., 2006c) 

 

Survival, or trophic, factors keeps the cells alive. This is maintained by inhibiting activation 

of pro-apoptotic proteins, for example Bcl-2-associated X protein (Bax). In the absence of this 

factors, pro-apoptotic proteins will be activated and then accumulate in the OMM leading to 

release of IMS proteins like cyt c (Wang and Youle, 2009). However, there is always a 
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balance in the OMM between anti-apoptotic, for example B-cell lymphoma-2 (Bcl-2), and 

pro-apoptotic factors. The main function of anti-apoptotic factors has been shown to be 

preventing of cyt c release (Desagher and Martinou, 2000), but when the balance shifts 

towards pro-apoptotic factors the activation of apoptosis will start.  

The cytosolic cyt c binds to an adaptor protein, apoptosis protease-activating factor 1 (Apaf-

1), with help of ATP, making apoptosomes, and this complex will then activate the first 

caspase in the cascade; one caspase activates the next ending in activation of apoptotic 

morphological changes (Schug and Gottlieb, 2009). Cyt c release have been stated as a “point 

of no return” in apoptosis (Gogvadze et al., 2009), however, if the caspase activity is blocked 

it has been shown that the on-going process towards apoptosis will stop, which indicates how 

finely tuned and tightly controlled this process is (Wang and Youle, 2009). 

 

 

2.1.4 Fusion-fission cycle 

Fusion and fission are very common in the body and include exo- and endocytosis, 

fertilization and cell division. Mitochondrial fusion and fission are constant on-going 

processes (Westermann, 2010), as illustrated in Figure 7. However, the exact mechanism and 

the function of the alternating fusion and fission of mitochondria are still not totally clear. The 

main problem seems to be how the fusion of the outer and inner membranes is coordinated 

relative to each other.  

Experiments have shown that mitofusins 1 and 2 (Mfn1 and Mfn2) in the OMM and optic 

atrophy protein 1 (OPA1) in the IMM are essential in the mitochondrial fusion process 

(Westermann, 2010; Zungu et al., 2011). Mfn1 tends to facilitate the membrane tethering of 

the fusing mitochondria, Mfn2 the OMMs fusion and OPA1 the fusion of the IMMs (Zungu et 

al., 2011). 
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Figure 7 Overview of mitochondrial fusion-fission cycle (Westermann, 2010) 

 

Since mitochondria are unequally distributed throughout the cell their need for proteins varies 

due to different metabolic activity. Fusion might then solve the problem regarding accurate 

delivery to each organelle (Kowald and Kirkwood, 2011b). It has been shown that fusion 

depend on functional membrane potential and mitochondria with a diminished membrane 

potential will thereby be excluded (Twig et al., 2008), however, it might also play a role in 

repair of slightly damaged mitochondria (Zungu et al., 2011). Pro-apoptotic factors are 

thought to regulate mitofusin function and thereby regulate fusion which leads to the 

assumption that fusion protect against apoptosis. (Zhang and Chan, 2007). 

The cytosolic dynamin-related protein-1 (Drp-1) and fission protein 1 (Fis1) in the OMM are 

shown to be essential in the mitochondrial fission process (Zungu et al., 2011). Drp-1 lack 

docking protein in the membrane and therefor use Fis-1 as an adaptor protein to initiate 

fission, then dislocates back to cytosol after completed fission (Zungu et al., 2011). 

Fission is an important quality control where damaged mitochondria can be removed and the 

functional mitochondria can be distributed in the cell according to the local need of ATP 

(Otera and Mihara, 2012). It has also been observed increased fission rate in cells committed 

to apoptosis (Otera and Mihara, 2012) which might correlate to the fragmentation during 

apoptosis. Fission is also important in cell division regarding correct distribution of 

mitochondria and mtDNA to each daughter cell (Zungu et al., 2011). 
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2.1.5 Role in different diseases 

In the 1990s, evidences that mitochondrial dysfunction can cause diseases started to appear 

(Boddapati et al., 2008) and the number of disorders are continuously increasing (Nunnari and 

Suomalainen, 2012). Since mitochondria are present throughout the body, the impaired 

mitochondrial function can cause defects in any organ (Petruzzella et al., 2012). When 

dysfunctional mitochondria accumulate in the cell it will impair cellular function and might 

lead to several chronic diseases (Twig et al., 2008). These disorders are in basic thought to be 

unrelated, but evidence suggests that reactive oxygen species (ROS) is a common factor in the 

pathophysiology (Pieczenik and Neustadt, 2007). 

Most of the mitochondria in the human embryo come from the egg – the contribution from the 

sperm is almost negligible (Sato and Sato, 2012). As a result of this almost all mutations, and 

thereby diseases, are inherited from the mother.  

Diabetes mellitus (DM) is a metabolic disorder divided in two types. Type 1 is characterized 

by total absence of insulin production as a result of pancreatic β-cell destruction while type 2 

is characterized by insulin resistance and decreased insulin secretion (Correia et al., 2012). It 

has been thought that intracellular hyperglycemia can result in increased production of ROS 

and that the following oxidative stress experienced by the cell can contribute to the 

development of DM (Naudi et al., 2012). Hyperglycemia is also responsible for a relative 

decrease of antioxidants, due to increased glucose conversion, leading to increased sensitivity 

to oxidative stress (Rolo and Palmeira, 2006). There are two ways that can link mitochondria 

to the development of DM, the first being inheritance of mtDNA mutation (Enns, 2003) and 

the second being the fact that mitochondria are the main source of ROS with a majority 

generated from ETC (Rolo and Palmeira, 2006). 

Alzheimer’s disease (AD) is a common form of dementia with progressive increase in 

severity (Correia et al., 2012). Damages due to oxidative stress has been observed in AD 

patients (Enns, 2003; Moreira et al., 2010) and appears to be a key factor in both development 

and progression of the disease (Reddy, 2008). Together with a higher risk of AD in patients 

with DM it is suggested that the disorders have some common pathology (Correia et al., 

2012).  
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Parkinson’s disease (PD) is a common neurodegenerative disease characterized by muscle 

rigidity and tremor (Enns, 2003) which  is caused by degeneration of dopaminergic neurons in 

substantia nigra (Reddy, 2008). PD has a complex pathophysiology, but oxidative damage 

and reduced function of ETC, especially complex I, have been reported in PD (Enns, 2003; 

Reddy, 2008; Cali et al., 2011) and mtDNA mutations have been observed as possible and 

partly explanations for ECT dysfunction (Reddy, 2008; Cali et al., 2011). 

Cancer cells, whose natural onset of apoptosis is silenced, have a high rate of cell division 

(Gogvadze et al., 2009). Healthy cells get most of their ATP from ETC in mitochondria while 

cancer cells instead use up-regulated glycolysis as the main energy source (Indran et al., 

2011). There have been shown a proportional relationship between increased rely on 

glycolysis and aggressiveness of tumor cells (Gogvadze et al., 2009). ROS have a dual role 

regarding cancer since oxidative stress can lead to mutations or damages resulting in tumor 

development and the elevated level in cancer cells are vital to cell survival, but in excessive 

amounts it will lead to cell death (Azad et al., 2009). Both physiological alteration, like fewer 

mitochondria per cell, with smaller size and increased membrane potential (Indran et al., 

2011), and down-regulated metabolic activity (Gogvadze et al., 2009) might explain the 

resistance towards apoptosis in cancer cells. 

 

 

 

2.1.6 Strategies for mitochondrial targeting 

The goal with targeted therapy is to selectively treat the affected organ and not interfere with 

healthy parts (Torchilin, 2010). This will lead to lower dose needed for the treatment and 

decreased incidents as well as severity of side effects.  

Targeting can be divided into passive and active targeting. The former can be used in 

targeting tumors, for instance, where it takes advantage of the enhanced permeation and 

retention (EPR) effect, which relies on more leaky blood vessels relative to blood vessels in 

healthy tissue (Bitounis et al., 2012). When the cells or even subcellular organelles are to be 

reached, the therapy must be actively and selectively targeted. There are several possibilities 

in active targeting, but only a few are presented here. They focus on the fact that 

mitochondrial dysfunction can cause disorders and have therefor a common goal of inducing 

cell death, a concept introduced about 15 years ago (Weissig, 2011). 
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In cells resistant to chemotherapy the have been observed overexpression of anti-apoptotic 

Bcl-2 (Kang and Reynolds, 2009). Changes in sensitivity to apoptosis result in damaged cells 

and organelles not being removed and might lead to growth of cancer cells. The Bcl-2 would 

then be an appropriate target and down regulation, which would result in OMM 

destabilization and thereby cyt c release, can be achieved both on messenger RNA (mRNA) 

and protein level. A similar destabilization of OMM can be caused by inhibition of 3-

hydroxy-3-methyl-guaryl (HMG) CoA reductase which results in decreased amount of 

cardiolipin produced that can stabilize the membrane (Gogvadze et al., 2009). 

The majority of energy production in tumor cells is due to glycolysis, even though the 

mitochondria have a much higher output. In the glycolytic pathway one glucose and two ATP 

are consumed resulting in two pyruvate and four ATP. The net energy output is then two ATP 

in contrast to a total of 47 ATP after one complete cycle starting from production of one 

aCoA and ending with complex V. If glycolysis in or glucose transport into the tumor cells 

are depressed the ATP level will decrease. This will lead to permeabilization of OMM and 

thereby release of pro-apoptotic factors localized in IMS, resulting in massive cell death 

(Gogvadze et al., 2009).  

A direct change in mitochondrial activity might be another way in which cell death can be 

induced. Inhibition of ETC will cause increased amount of ROS (Chen et al., 2007). In low 

levels, ROS act as signalling molecules which is important in cell survival, but when the 

levels of ROS  increases it will cause cell death (Azad et al., 2009). 

The approaches presented so far have been on targeting specific mitochondrial functions. Yet 

another way is achieving targeting based on the affinity.  

Mitochondriotropic molecules are substances that, due to the membrane potential, will 

specifically accumulate in the mitochondria. One such example is triphenylphosphonium 

(TPP). By linking the TPP to a fatty acid it is possible to incorporate it in lipid membranes 

and thereby use it as a targeting moiety on liposome surface. Experiments have shown that 

TPP facilitates subcellular delivery and that incorporated drug shows increased induction of 

apoptosis relative to free drug or drug incorporated in non-targeted vehicle (Boddapati et al., 

2008). 
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2.2 Liposomes 

2.2.1 Liposomes as carrier systems 

Liposomes are spherical lipid vesicles normally prepared from phospholipids which makes 

them biocompatible and biodegradable and thereby nontoxic (Lasic, 1998). They are of 

different size and with different number of lipid bilayers, or lamellas, and can be defined as:  

Multilamellar vesicles (MLV) are generally referred to as larger than 100 nm and can 

range up to several µm.  

Unilamellar vesicle can be divided into:  

- Small unilamellar vesicles (SUV) with a general size bellow 100 nm, 

- Large unilamellar vesicles (LUV) with a general size lager than 100 nm, and 

- Giant unilamellar vesicles (GUV) with a general size larger than 1 µm (Martin 

et al., 2006).  

A great variety of components can use liposomes as carrier or protection since hydrophilic 

compounds can be encapsulated in the aqueous core and lipophilic and amphiphilic 

compounds can be incorporated in or associated with the lipid bilayer (Torchilin, 2005) as 

illustrated in Figure 8. This provides liposomes with a wide potential to be used in 

therapeutic, and cosmetic, applications.  

 

Figure 8 Schematic loaded liposome 

 



16 
 

One major drawback in liposomal pharmacotherapy is their fast clearance from blood through 

the mononuclear phagocyte system (MPS). To increase the circulation time, different 

hydrophilic polymers have been attached to the surface of the liposomes, where polyethylene 

glycol (PEG) is the most studied (Torchilin, 2005). It has also been reported that high-density 

lipoprotein (HDL) and low-density lipoprotein (LDL) reduce the liposomal stability as a 

result of lipid transfer, which have been solved by adding cholesterol to the liposomes 

(Bitounis et al., 2012).  

However, major advantage with liposomal delivery over free drug delivery is the ability to 

target the pharmacological treatment to specific sites and thereby reducing the occurrence and 

severity of side effects (Lasic, 1998).  

 

 

2.2.2 Lipids  

Lipids can be defined both due to their biological function and their chemistry. The lipids in 

focus here are categorized as important for the structure of membranes and are chemically 

called glycerophospholipids (GPL). Glycero- refers to the glycerol backbone and the –

phospho- refers to the phosphate binding the polar head group (denoted R-group) to the 

glycerol, as shown in Figure 9. In biological membranes the acyl chain connected to C1 is 

usually saturated with 16-18 carbon atoms while the acyl chain at C2 usually is unsaturated 

and has 18-20 carbon atoms.   

 

Figure 9 General structure of glycerophospholipids 

 

Different membranes have different lipid composition due to their biological activity and the 

surrounding temperature. There is variation within the same membrane as the inner and outer 

layer in the lipid bilayer serve different purposes and also inside the leaflets as lipids tend to 
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aggregate into lipid rafts or lateral lipid domains (Welti and Glaser, 1994).  Even though the 

GPLs serve as structural elements they play, in addition, important roles as second 

messengers and binding sites for proteins. 

 

Cardiolipin (CL) is an anionic GPL with four acyl chains, due to linkage of two phosphate 

groups as shown in Figure 10, in contrast to the normal two. It is, in eukaryotes, found only in 

or associated with mitochondrial inner membrane and is important in energy metabolism and 

electron transport (Hoch, 1992; Scherer and Schmitz, 2011) and is binding site for Ca
2+

 (Nie 

et al., 2010). CL is protective in apoptosis as decreased CL level leads to increased 

cytochrome c release (McMillin and Dowhan, 2002). In addition it serves as site for contact 

of inner and outer mitochondrial membrane (Houtkooper and Vaz, 2008) and might then play 

an important role in mitochondrial fusion-fission cycle. 

 

Figure 10 Molecular structure of R-group in cardiolipin 

 

Phosphatidylcholine (PC) (structure shown in Figure 11), also called lecithin, is a zwitter 

ionic GPL and the most common in mammalian membranes (Niebergall and Vance, 2012). It 

is mainly found in the outer part of the lipid bilayer (Marconescu and Thorpe, 2008) and is 

more frequently localized outside the lipid rafts rather than in the rafts (Ehehalt et al., 2010). 

The function of several pro-inflammatory receptors tend to depend on lipid rafts and might 

thereby be affected by PC concentration (Ehehalt et al., 2010). 

 

Figure 11 Molecular structure of R-group in phosphatidylcholine 
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Phosphatidylethanolamine (PE) (structure shown in Figure 12) is a zwitter ionic GPL and the 

second most common in mammalian membranes (Niebergall and Vance, 2012). It is mainly 

found in the inner part of the lipid bilayer, but is enriched on the surface blebs of apoptotic 

cells (Marconescu and Thorpe, 2008). 

 

Figure 12 Molecular structure of R-group in phosphatidylethanolamine 

 

Phosphatidylglycerol (PG) (structure shown in Figure 13) is an anionic GPL. In addition to 

serving as a messenger itself, PG is a substrate in the biosynthesis of CL and is, therefore, 

indirectly of high importance in mitochondrial function (Nie et al., 2010). 

 

Figure 13 Molecular structure of R-group in phosphatidylglycerol 

 

Phosphatidylinositol (PI) is an anionic GPL with a large head group (see Figure 14) and it is 

mainly found in the inner part of the lipid bilayer (Marconescu and Thorpe, 2008). As a result 

of this large head group it might contribute to a looser packaging and thereby result in a more 

fluidic membrane (Peng et al., 2012). PI might also have some kind of “stealth” properties as 

inclusion in vesicles has showed increased circulation time (Roerdink et al., 1983; Wassef and 

Alving, 1993). Phosphorylation might occur at position 3, 4 and/or 5 and this groups plays 

important roles to several proteins’ activity and in generating second messengers (Farooqui et 

al., 2000).  

 

Figure 14 Molecular structure of R-group in phosphatidylinositol 
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2.3 Fluorescent dyes 

Octadecyl rhodamine B chloride (R18) is a cationic fluorophore whose structure is shown in 

Figure 15. At concentration around 9 mol% relative to total lipid, R18 shows the highest 

effect of quenching and lower concentrations tend to be proportional with the degree of 

quenching (Hoekstra et al., 1984). Due to this self-quenching, R18 is a good choice of 

fluorescent dye for use in membrane fusion testing (Biotium, 2006) since fusion of labelled 

and non-labelled membranes decreases the density of R18 and thereby decreasing the effect of 

self-quenching, resulting in increased fluorescent intensity. Excitation wavelength for R18 

used in this work was 560 nm and emission wavelength 590 nm. 

 

Figure 15 Molecular structure of R18 (Biotium, 2006) 

 

Rhodamine 123 (R123) is also a cationic fluorophore whose structure is shown in Figure 16. 

It shows selective localization in mitochondria which is thought to be related to the opposing 

charges of the negative mitochondria and positive dye (Zhang and Chan, 2007). The negative 

charge of the mitochondria is a direct result of the membrane potential and changes will affect 

the fluorescent intensity of R123 (Huang et al., 2007). During exposure to cells, it tends to 

have a time dependent toxicity. After 10 minutes incubation no toxic effects are observed 

(Chen, 1989), while longer incubation cause inhibition of mitochondrial function (O'Connor 

et al., 1988; Hu et al., 2000). Excitation wavelength for R123 used in this work was 503 nm 

and emission wavelength 527 nm. 
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Figure 16 Molecular structure of R123 (AnaSpec, 2009) 

 

Calcein is a hydrophilic fluorophore whose structure is shown in Figure 17. It has been shown 

not to interact with bilayers and not affected by pH around physiologic value, and is therefore 

suitable for studying liposome stability (Grit and Crommelin, 1992). It is used in 

encapsulation as a model for hydrophilic drugs with intermediate molecular weight (Bahia et 

al., 2010), however, calcein might affect the kinetics of phospholipid hydrolysis (Grit and 

Crommelin, 1992). Excitation wavelength for calcein used in this work was 496 nm and 

emission wavelength 524 nm. 

 

Figure 17 Molecular structure of calcein (Sigma-Aldrich®, 2006) 
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3 Aim of the work 

Several diseases are caused by mitochondrial dysfunction. An ability to kill the responsible 

cells or organelles might therefor be used as a cure. 

The liposomes in this work have a composition that mimics that of the outer mitochondrial 

membrane from Guinea-pig liver. The approach was based on their ability to be recognized as 

mitochondria, thus the name mito-liposomes, and be included in the fusion-fission cycle, 

thereby being able to act as drug delivery system targeting mitochondria.  

In closer details the focus was on: 

 Preparing liposomes with different lipid composition to optimize the fusion efficiency 

with mitochondria 

 Trace the stability of the liposomes under normal storage conditions 

 Isolate functional mitochondria from pig liver to test the fusion 

 Preliminary experiments with encapsulation of dye to control uptake by fusion contra 

uptake from medium 
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4 Materials and Methods 

4.1 Materials 

4.1.1 Chemicals 

Adenosine 5’-diphosphate sodium salt (ADP), Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany 

Albumin from bovine serum (BSA), Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

Ammonium molybdate tetrahydrate, Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

Calcein, Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

Carbonyl cyanide 3-chlorophenylhydrazone (CCCP), Sigma-Aldrich Chemie GmbH, 

Steinheim, Germany 

Chloroform, Carl Roth GmbH, Karlsruhe, Germany 

D-Mannitol, Carl Roth GmbH, Karlsruhe, Germany 

D(+)-Sucrose, Carl Roth GmbH, Karlsruhe, Germany 

Dimethyl sulphoxide (DMSO), Carl Roth GmbH, Karlsruhe, Germany 

Ethanol (EtOH), Carl Roth GmbH, Karlsruhe, Germany 

Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA), Sigma-Aldrich 

Chemie GmbH, Steinheim, Germany 

Fiske-Subbarow-Reducer, Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

Hydrochloric acid 37%, Carl Roth GmbH, Karlsruhe, Germany 

Hydrogen peroxide solution 31.2% (w/w), Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany 
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Lipids: Cardiolipin sodium salt from bovine heart (CL), purity ≥98%, Sigma-Aldrich Chemie 

GmbH, Steinheim, Germany 

L-α-Phosphatidylinositol ammonium salt from Glycine max (soybean) (SPI), purity 

≥97%, Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

Phosphatidylcholine from egg yolk lecithin (EPC), purity ≥96%, Lipoid GmbH, 

Ludwigshafen, Germany 

Phosphatidylethanolamine from egg yolk lecithin (EPE), purity ≥97%, Lipoid GmbH, 

Ludwigshafen, Germany 

Phosphatidylglycerol from egg yolk lecithin (EPG), purity ≥98%, Lipoid GmbH, 

Ludwigshafen, Germany 

Methanol (MeOH), Carl Roth GmbH, Karlsruhe, Germany 

3-(N-morpholino)-propanesulfonic acid (MOPS), Carl Roth GmbH, Karlsruhe, Germany 

Octadecyl rhodamine B chloride (R18), Biotium, Inc., Hayward, CA, USA 

Potassium chloride, Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

Potassium hydrioxide,  Merck KGaA, Darmstadt, Germany 

Potassium phosphate dibasic trihydrate, Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

Potassium phosphate monobasic, Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

Rhodamine 123 (R123), AnaSpec, Inc., San Jose, CA, USA 

Sepharose CL-4B, GE Healthcare, München, Germany 

Sodium pyruvate, Biochrom AG, Berlin, Germany 

Sulphuric acid, Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

Tetrasodium pyrophosphate, Carl Roth GmbH, Karlsruhe, Germany 

Tris-(hydroxymethyl)-aminomethan (Tris), Carl Roth GmbH, Karlsruhe, Germany 
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Triton X-100 (Triton), Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

 

 

4.1.2 Tissue 

Pig liver, obtained from slaughterhouse in Tullastraβe 73, D-79108 Freiburg im Breisgau, 

Germany 

 

 

4.1.3 Working buffers and solutions 

0.1 M EGTA/Tris 

Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) (1.905 g) 

was dissolved in Millipore water (50 ml) and pH adjusted to 7.4 with 3-(N-

morpholino)-propanesulfonic acid (MOPS). Stored at 4 °C. 

0.1 M Tris/MOPS 

Tris-(hydroxymethyl)-aminomethan (Tris) (6.05 g) was dissolved in Millipore water 

(500 ml) and pH adjusted to 7.4 with Tris. Stored at 4 °C. 

Isolation buffer (IB) 

Sucrose (34.23 g), EGTA/Tris (5 ml 0.1 M) and Tris/MOPS (50 ml 0.1 M) were 

dissolved in Millipore water (total volume 500 ml) and pH adjusted to 7.4 with Tris 

and MOPS. Stored at 4 °C. 

Respiring buffer 

EGTA (0.475 g), potassium phosphate dibasic trihydrate (0.571 g), potassium chloride 

(4.846 g), MOPS (2.903 g) and tetrasodium pyrophosphate (0.223 mg) were dissolved 

in Millipore water (total volume 500 ml) and pH was adjusted to 7.15 with potassium 

hydroxide. BSA (0.5 g) was added prior the actual use. Stored at -80 °C. 
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Storage medium 

Dimethyl sulphoxide (DMSO) (20 ml), sucrose (2.3961 g) and mannitol (3.8262 g) 

were dissolved in Millipore water (total volume 100 ml) and pH was adjusted to 7.5 

with Tris and MOPS. Stored at 4 °C. 

Thawing medium 

Tris (0.1211 g) and sucrose (8.5575 g) were dissolved in Millipore water (total volume 

100 ml) and pH was adjusted to7.5 with hydrochloric acid.  BSA (0.4 g) was added 

prior the actual use. Stored at -80 °C. 

R123 stock solution (5 mM) 

Rhodamine 123 (R123) (3.808 mg) was dissolved in absolute ethanol (2 ml). Stored at 

-80 °C protected from light.  

ADP stock solution (10 mM) 

Adenosine 5’-diphosphate sodium salt (ADP) (4.27 mg) was dissolved in Millipore 

water (1 ml). Stored at -80 °C protected from light. 

CCCP stock solution (4 mM) 

Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) (8.18 mg) was dissolved in 10 ml 

absolute ethanol. Stored at -80 °C. 

IB-calcein (10 mM) 

Calcein (124.5 mg) was dissolved in IB (20 ml) and pH adjusted to 7.4 with Tris. 

Stored at 4 °C protected from light.  
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4.1.4 Equipment 

Concentrator: 5301, Eppendorf AG, Hamburg, Germany 

Hand extruder: LiposoFast-Basic, Avestin, Inc., Ottawa, Canada 

Zetasizer: Zetasizer Nano S, Malvern Instruments Ltd, Worcestershire, UK 

UV/visible spectrophotometer: Ultrospec 1000, Parmacia Biotech Biochron, Cambridge, UK 

Copper grid: Quantifoil® S7/2 Cu 400 mesh, holey carbon films, Quantifoil Micro Tools 

GmbH, Jena, Germany 

Cryo-sample container: Model 626-DH, Getan, Inc., Warrendale, Pennsylvania, USA 

Transmission-electron microscope: Leo 912 Ω-mega, LEO Electronenmikroskopie GmbH, 

Oberkochen, Germany 

Transmission-electron microscope: iTEM 5.0 (Build 1054), Olympus Soft Imaging Solutions 

GmbH, Münster, Germany 

Cryo-camera: Cryo-Box 340719, Carl Zeiss MicroImaging GmbH, Jena, Germany 

Camera TEM: Proscan HSC 2, Oxford Instruments, Abingdon, UK 

Photon correlation spectroscopy: Zeta Potential Analysis, Brookhaven, New York, USA 

Fluorometer: Fluorescence Spectrometer LS 55, Perkin Elmer, Waltham, Massachusetts, USA 

Homogenizer: 50 ml glass potter with Teflon pestle, Fisher Scientific, Pittsburgh, 

Pennsylvania, USA 

Centrifuge: 5804 R, Eppendorf AG, Hamburg, Germany 

Centrifuge: Avanti
®
 J-E, Beckman Coulter, Brea, California, USA 

Protein concentration kit: DC Protein Assay, Bio-Rad Laboratories, Inc., Hercules, California, 

USA 

SpectraCount
TM

: BS10001, Packard, now: Perkin Elmer, Waltham, Massachusetts, USA 

Thermomixer: Thermomixer comfort, Eppendorf AG, Hamburg, Germany  
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4.2 Methods 

4.2.1 Liposome preparation  

The liposomes were made by the film method (Torchilin and Weissig, 2003). The lipids and 

the R18 in the amounts as listed in Table 1 were prepared as aliquots and thereby dissolved in 

a mixture of chloroform and methanol (volume ratio 9:1) in a round bottom flask and placed 

on a rotary evaporator to remove the solvent. The water bath was set to 40 °C and the pressure 

was slowly decreased to 260 mBar until a visible lipid film was formed on the bottom of the 

flask. After 10 minutes at 260 mBar the pressure was further decreased to 0 mBar and let to 

stand for 1 hour.  

R18 mito-lipo 1 have the same lipid composition as OMM (Daum, 1985). 

 

Table 1 Lipid composition of the different R18 mito-lipos 

Preparation 

name 

Composition [molar ratio] 

R18 PC PE PI PG CL 

R18 mito-lipo 1 7.50 51.83 24.44 11.93 2.84 1.47 

R18 mito-lipo 2
- 

3.30 - 24.44 11.93 2.84 1.47 

R18 mito-lipo 3
- 

5.52 51.83 - 11.93 2.84 1.47 

R18 mito-lipo 4
- 

6.53 51.83 24.44 - 2.84 1.47 

R18 mito-lipo 5
- 

7.27 51.83 24.44 11.93 - 1.47 

R18 mito-lipo 6
- 

7.38 51.83 24.44 11.93 2.84 - 

R18 mito-lipo 2
+ 

11.70 103.66 24.44 11.93 2.84 1.47 

R18 mito-lipo 3
+ 

9.48 51.83 48.88 11.93 2.84 1.47 

R18 mito-lipo 4
+ 

8.47 51.83 24.44 23.86 2.84 1.47 

R18 mito-lipo 5
+ 

7.73 51.83 24.44 11.93 5.68 1.47 

R18 mito-lipo 6
+ 

7.62 51.83 24.44 11.93 2.84 2.94 

 

The rehydration of the films was done by adding 4 glass balls (Φ ≈ 2 mm) together with a 

specific volume of IB according to a lipid concentration of approximately 5 mM. The flask 

was placed at rotary evaporator for 20 minutes. If there were visible aggregates the flask was 

placed in sonication bath for a few seconds. After removal of the glass beads, the suspension 

was extruded through a 200 nm polycarbonate membrane 21 times, followed by extrusion 

through a 100 nm polycarbonate membrane 21 times and finally through a 50 nm 
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polycarbonate membrane 31 times. The liposomes were stored at 4 °C protected from light till 

further experiments.  

Samples were evaluated for total phosphorous content by Bartlett assay (Bartlett, 1959) and 

cryo-transmission-electron microscopy studies in addition to determination of particle size, 

fluorescent intensity and zeta potential. 

To determine the encapsulation efficiency for calcein, the lipid films was made in the same 

way as described above without inclusion of R18. The rehydration buffer used was IB-

calcein. A step with 3 times freeze-thaw cycles was added to increase the encapsulation 

efficiency, in which the liposomal suspension was frozen in liquid nitrogen, thawed in 25 °C 

water bath for 5 minutes and thoroughly mixed. The suspension was then extruded only 

through a 200 nm polycarbonate membrane 21 times.  

 

 

4.2.2 Encapsulation efficiency 

After extrusion, the calcein containing liposomes was separated from un-entrapped calcein on 

a Spharose CL-4B/IB column. Liposome fractions were evaluated by Bartlett assay (Bartlett, 

1959).  

To determine the encapsulation efficiency, the fluorescence intensity of 0% and 100% 

samples were used as standards. For the 0% value 10% (w/w) Triton (100 μl) was diluted with 

IB (total weight of 10 g). For the 100% value Triton (100 μl 10% (w/w)) and non-separated 

sample (100 μl) were diluted with IB (total weight 10 g). The further dilutions of the samples 

were prepared by diluting 100% sample until the fluorescent intensity was approximately 

800-900.  

For the encapsulation determination, the liposome fraction, after separating sample (100 μl), 

was diluted with IB (total weight 10 g) including Triton (100 μl 10% (w/w)). The same 

dilutions as for 0% and 100% were prepared and the fluorescent intensities used to calculate 

the efficiency of the encapsulation by the following formula: 
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FF
FF

0%100%

0%sample
  efficiencyion Encapsulat




  

Where Fsample represents the fluorescence intensity of the liposome fraction, F0% represents the 

fluorescence intensity of the 0% standard and F100% represents the fluorescence intensity of 

the 100% standard. 

 

 

4.2.3 Characterization of liposomes 

4.2.3.1 Determination of zeta potential 

Liposome suspension (0.5 ml 5 mM) was diluted in IB (0.5 ml) and transferred to a 

conductive cuvette. The measurements were performed at room temperature. The average of 3 

runs was calculated, each consisting 15 zeta runs. 

The refractive index of the IB was 1.340 and the viscosity was 1.0939 cP (Zhou, 2012). The 

dielectric constant was kept at 78.5. 

 

 

4.2.3.2 Total phosphorous content – Bartlett assay (Bartlett, 1959; Zhou, 2012) 

A potassium phosphate monobasic calibration curve was made with concentration ranging 

from 50 to 350 nmol. Three tubes without any phosphor were used as blanks. Sulphuric acid 

(0.5 ml 10 N) was added to each tube before incubation at 160 °C.  After 3 h hydrogen 

peroxide solution (200 µl 31.2% (w/w)) was added and the incubation continued for another 

1.5 h. Ammonium molybdate solution (4.5 ml 0.22% (w/V)) and Fiske-Subbarow-Reduces 

solution (200 µl 14.8% (w/V)) were added to each tube. The solutions was then mixed using 

vortex mixer before further incubation at 95 °C for 10 minutes. After cooled down to room 

temperature the samples were photometric measured at λ = 830 nm. 

 

Eq. 1 
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4.2.3.3 Cryo-transmission-electron microscopy (Zhou, 2012) 

Liposome suspension (3 µl 5 mM) was applied to a copper grid and excessive fluid was 

removed with filter paper prior to immediately freezing using liquid ethane. The grid was then 

fixed in a cryo-sample container and inserted in the transmission-electron microscope which 

operated with an acceleration voltage of 120 kV. The pictures were taken with a 

corresponding camera with magnifications ranging from 6300 times to 12500 times. 

 

 

4.2.3.4 Stability testing 

Control experiments were performed to evaluate the stability of the liposome suspensions 

upon storage in 4 °C. The control experiments were done after preparation and after 1 week, 2 

weeks, 3 weeks, 4 weeks, 2 months, 3 months and 4 months.  

Photon correlation spectroscopy (PCS) was used to measure the effective, or hydrodynamic, 

diameter in order to detect possible liposome fusion. The measurements were performed at 

room temperature. Liposome suspension (30 µl 5 mM) was added to sterile filtrated IB (1000 

µl). The count rate was kept between 50 and 60 kcps and the polydispersity was kept bellow 

0.1. Each run lasted 10 minutes and consisted of 5 sub runs. 

A fluorescence spectrometer was used to measure the fluorescence intensity in order to detect 

possible leakage of R18 from the liposomes into the IB. Liposome suspension (5 µl 5 mM) 

was added to sterile filtrated IB (2500 µl). The measurements were performed at room 

temperature and three parallels were noted.  
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4.2.4 Isolation of mitochondria (Frezza et al., 2007; Zhou, 2012)  

Fresh pig liver was brought in ice bath from the slaughterhouse and was kept in ice during all 

preparatory steps. The IB and all centrifugation tubes containing tissue homogenate between 

the centrifugations were also kept in ice bath. During all centrifugations the temperature was 

kept at 4 °C. 

The liver was washed in IB and minced while continuously being hydrated with IB. The 

minced liver was immersed in IB and centrifuged to remove blood. After starting the 

centrifuge, rotation was manually stopped when the speed reached 500 g. The supernatant 

containing the blood was discarded and the process was repeated 2-3 more times until the 

supernatant appeared almost colourless. Connective tissue was removed using forceps before 

diluting with IB in a ratio 4:1 (IB : minced tissue, w/w) for further homogenization in a 50 ml 

precooled glass potter with Teflon pestle. The glass potter was kept on ice and raised/lowered 

3-4 times with a pestle speed of 1600 rpm, as demonstrated in Figure 18. The homogenate 

was centrifuged at 600 g for 10 minutes to precipitate cellular fragments and organelles larger 

than the mitochondria. The supernatant was collected and centrifuged at 7000 g for 10 

minutes to precipitate the mitochondria. The supernatant was discarded, and the pellet re-

suspended in IB. The process was repeated 2 more times. After the last centrifugation, the 

pellet was kept in a concentrated from to preserve the quality of the mitochondria. The 

concentration was measured by protein assay and the viability tested by dye-time course. 
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Figure 18 Illustration photo of homogenization of tissue  
(Photo: Else Mari Ødegaard-Jensen) 

 

 

4.2.5 Freezing and thawing (Zhou, 2012) 

Both tissue and isolated mitochondria were kept frozen in liquid nitrogen and stored at -80 °C 

if not used immediately. The mitochondria did not require any pre-handling, but the tissue 

was first washed in storage medium. 

In order to use the frozen tissue, the thawing medium was first pre-warmed to 45 °C (tissue : 

thawing medium in ration 1:4) and added directly to the frozen tissue. The tissue was agitated 

or stirred in the thawing medium in order to fasten the thawing process. After complete 

thawing of the tissue, it was kept on ice during the isolation as described earlier.  

The frozen isolated mitochondria were thawed by holding the tube manually or through use of 

37 °C water bath until completely thawed. The tube was then placed on ice. 
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4.2.6 Viability testing 

4.2.6.1 Protein concentration assay (Bio-Rad) 

The measurements were done at room temperature and on a microplate. 

For standard curve 3-5 dilutions of BSA were prepared in IB with concentration ranging 

between 0.2-1.5 mg/ml. The mitochondria sample was diluted to desired concentrations. BSA 

standard dilutions (5 μl) and sample dilutions (5 μl) were transferred to microplate. Reagent A 

(25 μl) and Reagent B (200 μl) were added into each well. After gentle agitation, the plate was 

left for 15 minutes protected from light at room temperature for reaction to take place. The 

absorbance was detected at 750 nm using SpectraCount. The protein concentration detected in 

standard samples equals the concentration of mitochondria. 

 

 

4.2.6.2 Dye-time course (Huang et al., 2007; Zhou, 2012) 

The measurements were done at 37 °C (physiological temperature).  

R123 (2.5 µl 35 µM) and sodium pyruvate (250 µl 100 mM) were added to a cuvette 

containing magnetic stirrer and respiring buffer (2247.5 µl). After a few minutes, allowing the 

fluorescence intensity to stabilize, isolated mitochondria (25 µl 100 mg/ml; 1 mg/total ml) 

was added and a drop in fluorescent intensity observed due to self-quenching resulting from 

attractions between positive dye (see Figure 16) and negative mitochondria. After the 

fluorescence intensity was stabilized, ADP (25 µl 10 mM) was added and an increase in 

fluorescent intensity observed due to changed membrane potential resulting from 

condensation of ADP and inorganic phosphate into ATP. If the mitochondria were able to 

synthesize ATP, a drop in fluorescent intensity was observed when all the ADP was used. 

After the fluorescence intensity was stabilized, CCCP (2.5 µl 4 mM) was added as a control 

and a drastic increase in fluorescent intensity was due to uncoupling of the respiratory chain.  
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4.2.7 Fusion experiment (Zhou, 2012) 

To determine the encapsulation efficiency, the fluorescence intensity of 0% and 100% 

samples were used as standards. Both the 0% and the 100% was incubated in a thermomixer 

controlled at 37 °C and with a speed of agitation of 700 rpm for 5 minutes before the 

fluorescent intensity was measured. For the 0% value R18 mito-lipo suspension (10 µl 1mM) 

was added to IB (1990 µl). For the 100% value R18 mito-lipo suspension (10 µl 1mM) and 

Triton (100 µl 10% (w/w)) was added to IB (1890 µl).  

To determine the fusion efficiency R18 mito-lipo suspension (10 µl 1mM) and isolated 

mitochondria (20 µl 100 mg/ml; 1 mg/total ml) were added to IB (1970 µl) and incubated at 

37 °C in a thermomixer with a speed of agitation of 700 rpm for 45 minutes before measuring 

the fluorescent intensity. The fluorescent intensities observed were used to calculate the 

efficiency of the fusion by the following formula: 

FF
FF

0%100%

0%fusion  efficiencyFusion 



  

Where Ffusion represents the fluorescence intensity of the fused mito-lipo/mitochondria 

suspension, F0% represents the fluorescence intensity of the 0% standard and F100% represents 

the fluorescence intensity of the 100% standard. 

  

Eq. 2 
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5 Results and discussion 

5.1 Liposome characterization 

The control of particles size in drug delivery is important in order to avoid removal by MPS 

(Brandl, 2001). In addition, sedimentation of particles related to gravity will decrease with 

decreasing size of particles. The liposome suspensions were prepared having a mean size 

around 100 nm and the polydispersity was used as a measure of vesicle size distribution. As 

shown in Table 2, the sizes of liposomes were close to 100 nm and the polydispersities were 

below 0.1, which indicates a narrow size distribution. The exception was R18 mito-lipo 4
-
, 

however, similar results were reported previously (Zhou, 2012). 

 

Table 2 Physical properties of R18 mito-lipos 

 

Effective diameter 

(n = 5) 

Polydispersity 

(n = 5) 

Zeta potential 

(n = 3) 

Size [nm] SD [nm] p.i. SD ζ [mV] SD [mV] 

R18 mito-lipo 1 101.0 1.5 0.056 0.004 -35.8 15.4 

R18 mito-lipo 2
- 

109.4 0.4 0.064 0.010 -43.6 14.6 

R18 mito-lipo 3
- 

101.4 0.4 0.045 0.012 -50.1 14.5 

R18 mito-lipo 4
- 

125.0 0.9 0.173 0.008 -5.5 4.0 

R18 mito-lipo 5
- 

102.2 0.6 0.066 0.017 -46.0 11.7 

R18 mito-lipo 6
- 

106.3 0.7 0.055 0.006 -42.1 11.0 

R18 mito-lipo 2
+ 

99.5 0.4 0.069 0.012 -25.0 14.5 

R18 mito-lipo 3
+ 

99.5 0.6 0.076 0.014 -31.9 14.3 

R18 mito-lipo 4
+ 

97.6 1.7 0.045 0.012 -42.7 17.5 

R18 mito-lipo 5
+ 

93.8 0.6 0.037 0.012 -39.6 15.9 

R18 mito-lipo 6
+ 

100.8 0.8 0.053 0.008 -39.7 15.7 

 

Zeta potential can be used as a measure for the stability of liposome suspension; an increase 

in the absolute value of zeta potential decreases the probability of particle agglomeration 

(Zanatta et al., 2010). Zeta potential has also been linked to opsonization as it is known that a 

zeta potential value close to neutral makes the particle less prone to opsonization and thereby 

results in prolonged circulation time of particle (Kaasalainen et al., 2012).  

Zeta potential has been shown to affect the membrane interactions between cells and non-

specific nanoparticles where positive charged shows enhanced uptake due to the opposite 

charge of the cell membrane (Kaasalainen et al., 2012). According to this, R18 mito-lipo 4
-
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would be expected to have the highest fusion efficiency since it had the least negative charge 

(Table 2). 

The actual lipid concentration was measured in order to assure an accurate and comparable 

volume of liposome suspension in the fusion experiments. For the R18 mito-lipos, the results 

are listed in Table 3 and the actual concentration were found to be close to the theoretical 

values.  

 

Table 3 Phospholipid content in R18 mito-lipos 

 
Theoretical 

concentration [mM] 

Actual 

concentration [mM] 

R18 mito-lipo 1 

5.0 

4.9 

R18 mito-lipo 2
- 

4.5 

R18 mito-lipo 3
- 

4.7 

R18 mito-lipo 4
- 

4.7 

R18 mito-lipo 5
- 

4.8 

R18 mito-lipo 6
- 

4.7 

R18 mito-lipo 2
+ 

5.1 

R18 mito-lipo 3
+ 

5.0 

R18 mito-lipo 4
+ 

5.1 

R18 mito-lipo 5
+ 

4.6 

R18 mito-lipo 6
+ 

4.9 

 

Bartlett assay used in determination of phospholipid is determining the total amount of 

phosphor in the sample and it is limited in determination of the relative amount of the 

different lipids present in the liposomal formulation. This is a result of the process of turning 

lipid phosphate groups to free phosphate (Bartlett, 1959; Mrsny et al., 1986). During the 

preparation of liposomes, problems regarding aggregation with some of the liposome 

suspensions led to need for additional sonication in order to obtain homogenous suspensions. 

Due to the colour of the aggregates, it appeared that it was mostly due to un-dissolved R18. 

When liposomes were prepared without any fluorescent dye (data not shown) there were no 

visible aggregates. However, this does not exclude the possibility that the lipids are unevenly 

distributed throughout the liposome membranes and between the liposomes in the 

suspensions. An uneven distribution might cause problems or variability during fusion 

experiments. Still, there is no straightforward way to confirm a homogenous lipid distribution 

and it must therefore be assumed that lipid distribution was even. 
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Micrographs of the liposome suspensions were taken in order to evaluate the shape of the 

liposomes. We wanted to follow possible morphological alterations as a result of different 

lipid compositions of liposomes and the alterations in membrane structure which was 

expected to affect membrane fusion (Roy et al., 2010). Comparison of liposomes with 

different lipid concentration were made, with particular emphasis on the absence of specific 

lipids (Figure 19) relative to double amount of the same lipid (Figure 20) related to effect of 

fusion. 

All preparations showed irregular liposomes with large cavities, but R18 mito-lipo 1 was 

thought to contain the most spherical particles. There were also particles of very small sizes 

that might result from the use of 50 nm membrane during extrusion. 

For liposomes containing doubled amounts of PC (Figure 20b), PG (Figure 20e) and CL 

(Figure 20f) high numbers of disc-like liposomes were observed. For PG liposomes, in 

addition, a more regular shape was seen than when PG was absent (Figure 19e), possibly due 

to a stabilizing effect of hydrogen bonds, and for CL liposomes, a more uniform size than 

when CL was absent (Figure 19f). On the other hand, when PC was absent from the 

preparation it tend to contain more spherical particles (Figure 19b). 

Double amount of PI present in liposomes (Figure 20d) appears to have smaller cavities and 

more regular shape than when PI was absent (Figure 19d). This might be related to the large 

head group of PI as it can cause steric hindrance and thereby reduce the presence of cavities, 

or generation of hydrogen bonding to neighbouring lipids and/or buffer (Peng et al., 2012). 

When the amount of PE was double (Figure 20c) it showed fewer cavities than when PE was 

absent (Figure 19c) but the shape of the particles was more irregular.  

Sterols and proteins are present in biological membranes where they appear to have a 

membrane stabilizing role (Churchward and Coorssen, 2009; Roy et al., 2010). The prepared 

liposomes did not contain such stabilizers which might be one explanation to the folds and 

cavities in the particles, in addition to possible destabilizing properties of the lipids. 
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Figure 19 Cryo-Transmission-Electron micrographs  

of liposomes lacking specific lipids: 

a) R18 mito-lipo 1; b) R18 mito-lipo 2
-
; c) R18 mito-lipo 3

-
;  

d) R18 mito-lipo 4
-
; e) R18 mito-lipo 5

-
; f) R18 mito-lipo 6

- 
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Figure 20 Cryo-Transmission-Electron micrographs  

of liposomes with doubled amount of specific lipids: 

a) R18 mito-lipo 1; b) R18 mito-lipo 2
+
; c) R18 mito-lipo 3

+
;  

d) R18 mito-lipo 4
+
; e) R18 mito-lipo 5

+
; f) R18 mito-lipo 6

+
. 
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5.2 Stability testing of liposomes 

Liposome suspensions are prone to two types of degradation, namely hydrolysis and 

oxidation (Brandl, 2001). As stability of the lipid bilayer is reduced when the lipids are 

degraded (Grit and Crommelin, 1992), change in particle size and fluorescence intensity will 

reflect loss of stability. 

 

 

Figure 21 Changes in mean liposome size over four months period 

  

As Figure 21 indicates, there were some fluctuations in particle size, but from a general view 

the liposomes keep stable. During the storage period no sedimentation was visible, but that 

does not exclude the possibility of uneven distribution throughout the suspension which 

would result in fluctuations as observed. There occurred problems during some of the 

sampling which led to repetition of some measurements. If it was due to the sampling itself or 

the problems with the apparatus was not clear.  
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Figure 22 Changes in R18 fluorescence intensity over four months period 

 

Figure 22 shows that the self-quenching effect of R18 was stable throughout the storage 

period. The fluorescent intensity is highly susceptible to changes in both relative dye 

concentration and sample temperature (Trikash et al., 2010). Combined, this suggests that the 

liposomes keep stable in suspension and due to the sensitivity, fluorescent intensity might be 

a more reliable method for evaluating the stability than the size determination. 

The liposomes appeared to retain the incorporated dye under normal storage conditions (4 °C 

and protected from light) for at least four months. However, how much of active ingredient, 

such as drug or protein, will be retained when encapsulated or incorporated cannot be directly 

extrapolated. 

Stability of R18 mito-lipos without specific lipids was not evaluated since previous evaluation 

has shown them to be stable (Zhou, 2012). Due to the low zeta potential of R18 mito-lipo 4
-
 it 

would be expected that the vesicles are unstable, but that was not the case. 
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5.3 Viability testing of mitochondria 

In order to obtain reliable results when studying mitochondrial functions it is important to use 

well-respiring organelles (Frezza et al., 2007). There are several methods for purification of 

mitochondria, but purity and viability have to be estimated (Hornig-Do et al., 2009).  To 

evaluate the viability of the isolated mitochondria, the concentration had to be known and 

protein concentration in the samples (listed in Table 4) was used as a measure for the 

mitochondrial concentration.  

 

Table 4 Protein concentration of isolated mitochondria 

 

Protein concentration  

(n = 3) 

Protein [mg/ml] SD [mg/ml] 

Isolation from fresh tissue 94.11 3.45 

Isolation from frozen tissue 

(thawed and minced with knife) 
52.74 2.62 

Isolation from frozen tissue 

(not thawed and minced with grinder) 
48.82 2.00 



Isolation of mitochondria from fresh tissue was performed together with a well-trained 

personal and the processes were thereby performed at a higher speed. That might be the main 

reason for the high yield. When the isolations were performed from frozen tissue, the process 

was slower which might be the cause both the lower yield and decreased respiration. 

Dye-time course is based on the accumulation of R123 in MM, and thereby self-quenching 

effect, according to mitochondrial membrane potential (Huang et al., 2007). Changes in 

membrane potential leads to altered uptake of R123, resulting in a proportional change in 

fluorescent intensity. 

The mitochondria isolated from fresh tissue (Figure 23) showed decreased viability after 

storage (Figure 24). They also appeared to be non-respiring when isolated from frozen tissue 

(Figure 25 and Figure 26). This may as well be a result of slow experimental handling rather 

than the actual storage since previous (unpublished) experiments have also shown reduced 

viability with increased time used for isolation. It is evident that it is highly recommendable to 

use the mitochondria as soon as possible after isolation, as time affects their viability.   
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Figure 23 Dye-time course of mitochondria directly after isolation 

 

 

Figure 24 Dye-time course of mitochondria before fusion experiment:  

frozen in liquid nitrogen and stored in -80
o
C 
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Figure 25 Dye-time course of mitochondria isolated from frozen tissue:  

thawed and minced with knife 

 

 

Figure 26 Dye-time course of mitochondria isolated from frozen tissue:  

not thawed and minced with grinder 
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5.4 Fusion experiment 

The results from the fusion experiment are summarized in Figure 27, where the fusion 

efficiencies are illustrated relative to the fusion result for R18 mito-lipo 1. R18 mito-lipo 1 

was chosen as a baseline since it had the same composition as the OMM and is, according to 

the hypothesis, recognized as a mitochondrion and included in the fusion-fission cycle.  

 

 

Figure 27 Fusion efficiency of R18 mito-lipos with altered lipid composition relative to 

R18 mito-lipo 1. X-axis show the fusion efficiency of R18 mito-lipo 1, with the standard 

deviation bars at the very left being the standard deviation for R18 mito-lipo 1 

 

When PC was absent the fusion efficiency was increased, and when it was doubled the fusion 

efficiency decreased. As the most common lipid in mammalian membranes, PC would be 

expected to have positive, or at least neutral, effect on the fusion process. However, the 

results showed a clear inhibitory effect. At this point of the project, it is difficult to provide 

deeper insight on why PC is inhibiting rather the improving fusion process.  

On the other hand, when PI was removed the fusion efficiency was decreased, and when it 

was doubled the fusion efficiency increased. This indicates that PI plays an enhancing role in 

the fusion process. The expected increased ability to fuse for R18 mito-lipo 4
-
 due to its zeta 

potential did for sure not occur as it had the lowest fusion efficiency of all, and the data are 

15%

20%

25%

30%

35%

40%

45%

50%

55%

Fu
si

o
n

 e
ff

ic
ie

n
cy

 [
%

] 

R18 m-l 2-

R18 m-l 3-

R18 m-l 4-

R18 m-l 5-

R18 m-l 6-

R18 m-l 2+

R18 m-l 3+

R18 m-l 4+

R18 m-l 5+

R18 m-l 6+



48 
 

very clear. One possible reason why the theory proposed by Kaasalainen and co-workers does 

not correspond to the results presented here might be the complexity of the liposomes 

(Kaasalainen et al., 2012). They were not non-specific in nature but were rather made to 

mimic the composition of the mitochondrial membrane, which can be considered as targeting 

composition. Another possible explanation might be related to the large head group of PI 

(Figure 14). Peng and co-workers showed that inclusion of PI resulted in deeper water 

penetration in the membrane, however, they stated that the lipid had inhibitory effects in 

fusion (Peng et al., 2012). In our case, the opposite was seen.   

The other lipids seemed to have little or no specific effect on the fusion as they were in more 

or less the same region of the scale (Figure 27). However, a slight increase in fusion 

efficiency was observed in liposome preparations containing CL relative to when it was 

removed. Since CL is associated with proteins in ETC and OMM receptors and channels 

(Schug and Gottlieb, 2009), it acts as site for contact of inner and outer mitochondrial 

membrane (Houtkooper and Vaz, 2008), and also plays a role in apoptosis where decreased 

CL level lead to increased cyt c release (McMillin and Dowhan, 2002). It might therefore be 

an important vehicle component for drug delivery to mitochondria. 

When comparing Figure 19 and Figure 20 in respect to R18 mito-lipo 2
-
 and 2

+
 and R18 mito-

lipo 4
+
 and 4

-
, which are the liposomes with the highest and the lowest fusion, respectively, it 

can be concluded that liposomes tend to have a more spherical shape when they are able to 

fuse better. This is a theory supported by previous research as well (Roy et al., 2010). For the 

other samples it appeared that a more uniform size and shape, independent of the actual shape, 

improved fusion.  
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5.5 Encapsulation efficiency 

Based on the results in Figure 27 the R18 mito-lipo 1, R18 mito-lipo 2
-
 and R18 mito-lipo 4

+
 

were selected to be used for further experiments. Calcein was encapsulated in order to 

compare delivery via fusion and direct uptake from buffer to evaluate the efficiency of fusion 

delivery.  

The liposomes with encapsulated calcein were bigger than the R18 mito-lipos. This was to 

assure that calcein would pass the extrusion membrane and that it would stay inside the 

liposomes. As shown in Table 5, the size distribution of the liposomes was narrow.  

 

Table 5 Physical properties of Mito-lipos 

 

Effective diameter  

(n = 5) 

Polydispersity  

(n = 5) 

Size [nm] SD [nm] p.i. SD 

Mito-lipo 1 216.8  3.1 0.069  0.012 

Mito-lipo 2
- 

256.0  4.7 0.042  0.006 

Mito-lipo 4
+ 

266.9 1.3 0.073  0.016 

 

The actual lipid concentrations for the Mito-lipos are listed in Table 6 and it seems that there 

was no lipids present in Mito-lipo 2
-
. However, results in Table 5 indicate the presence of 

particles in the sample, moreover, particles with the expected size. The explanation for this 

discrepancy could be in a fact that the separation of un-encapsulated dye from liposome 

fraction was hard to perform as liposome fraction on the column appeared almost colourless. 

In Mito-lipos 2
-
 there was no coloured band visible on the column other than free calcein. 

This might have resulted in possibly that the actual fraction of liposomes passed through the 

column either before or after the sample was collected. 

 

Table 6 Phospholipid content in Mito-lipos 

 
Theoretic 

concentration [mM] 

Actual 

concentration [mM] 

Mito-lipo 1 0.5 0.5 

Mito-lipo 2
- 

0.3 0.0 

Mito-lipo 4
+ 

0.3 0.2 
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The amounts of calcein encapsulated in various types of Mito-lipos are listed in Table 7. The 

amount of encapsulated calcein was found to be too small to be followed and provide any 

significant results during fusion experiment, therefor the calcein experiments were stopped at 

this point. 

 

Table 7 Encapsulation efficiency of calcein 

 

Encapsulation efficiency  

(n = 3) 

EE [%] SD [%] 

Mito-lipo 1 0.346 
 

3.5∙10
-3

 

Mito-lipo 2
- 

0.043   8.8∙10
-4

 

Mito-lipo 4
+ 

0.079   2.3∙10
-3

 

 

It has been stated that methods that base encapsulation on passive diffusion, like the film 

method used here, achieve small amounts of substances encapsulated (Zadi and Gregoriadis, 

2000; Xu et al., 2012). As a result of steric hindrance, molecules with high molecular weight 

might therefore give low encapsulation efficiency (Adrian and Huang, 1979; Brandl, 2001). 

With Lipinski’s “rule of 5” in mind (Lipinski et al., 1997), calcein has a relative high 

molecular weight and with the high number of hydrogen bond acceptors the hydrodynamic 

size of the molecule will increase thereby increasing the steric hindrance.  

Another important fact that might affect the encapsulation process, and possibly also stability, 

is that after lipid film rehydration with IB-calcein, the presence of un-dissolved lipids was 

visible in the samples, floating on the surface. After extrusion, the suspensions were clear, but 

after storage precipitated lipids were observed again. This was not seen with the R18 mito-

lipos, therefor it might be contributed to the effect of calcein. It has been shown that 

liposomes made of phospholipids can hydrolyse in aqueous medium resulting in free fatty 

acids and lyso-phospholipids which will affect the stability of the suspension (Grit and 

Crommelin, 1992). More experiments are needed to clarify this phenomenon, including 

methods to analyse the precipitates. 
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6 Conclusion 

Up to date, there are no published data related the approach used in this project for 

mitochondrial targeting. To take advantage of the alternating fusion-fission cycle of 

mitochondria seems as an interesting way with potential in specific drug delivery and targeted 

distribution.  

The prepared liposomes had a lipid composition similar to the composition of outer 

mitochondrial membrane and variations in the composition were made in order to optimize 

the fusion efficiency.  

Particle size of the different preparations were controlled in the same range, and results of 

four months stability testing suggests that zeta potential did not affect stability of liposomes.  

All liposomal suspensions were able to fuse but their efficiency varied. This indicates that 

some of the lipids play highly positive role in fusion process and other might have limiting 

role. These findings can be used in further optimization of liposomal formulation. We are 

hoping that in the near future more information will be available on such exciting new area of 

mitochondrial delivery. 
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7 Perspectives 

Short term perspectives: 

- Optimize lipid composition relative to fusion efficiency 

- Increase encapsulation efficiency, for example by using a different and/or smaller 

fluorescent dye 

- Compare uptake of hydrophilic substance via fusion and absorption from buffer to 

evaluate the efficiency of the delivery system 

 

Long term perspectives: 

- Evaluate intracellular movement in intact cells 

- Evaluate stability by using relevant drug 
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