
Department of Computer Science

Large Multiples
Exploring the large-scale scattergun approach to visualization and analysis
—
Einar Holsbø
INF3990— Master’s thesis in computer science, May 2014

Abstract
We create 2.5 quintillion bytes of data every day. A whole 90% of the world’s
data was created in the last two years.¹ One contribution to this massive bulk
of data is Twitter: Twitter users create 500 million tweets a day,² which fact
has greatly impacted social science [24] and journalism [39].

Network analysis is important in social science [6], but with so much data
there is a real danger of information overload, and there is a general need for
tools that help users navigate and make sense of this.

Data exploration is one way of analyzing a data set. Exploration-based
analysis is to let the data suggest hypotheses, as opposed to starting out with a
hypothesis to either confirm or refute. Visualization is an important exploration
tool.

Given the ready availability of large-scale displays [1], we believe that an
ideal visual exploration system would leverage these, and leverage the fact that
there are many different ways to visualize something. We propose to use wall-
sized displays to provide many different views of the same data set and as such
let the user explore the data by exploring visualizations. Our thesis is that a
displaywall architecture [1, 42] is an ideal platform for such a scheme, providing
both the resolution and the compute power required. Proper utilization of this
would allow for useful sensemaking and storytelling.

To evaluate our thesis we have built a system for gathering and analyzing
Twitter data, and exploring it through multiple visualizations.

Our evaluation of the prototype has provided us with insights that will
allow us to create a practicable system, and demonstrations of the prototype
has uncovered interesting stories in our case study data set. We find that it is
strictly necessary to use clever pre-computation, or pipelining, or streaming
to meet the strict latency requirements of providing visualization interactively
fast.

Our further experiments with the system have led to new discoveries in
streaming graph processing.

1. http://www.ibm.com/software/data/bigdata/
2. http://about.twitter.com/company

i

Acknowledgements
Naturally thanks to my adviser Professor Otto Anshus and my co-adviser Asso-
ciate Professor Phuong Hoai Ha for help and guidance. Thanks also to Associate
Professor Lars Ailo Bongo for pointing out some serious structural problems in
this text—some of which I may have been able to fix—and for general helpful-
ness and encouragement.

Thanks Jan-Ove “Kuken” Karlberg for our fruitful proofreading symbiosis.
Thanks Bjørn Fjukstad, u r the wind beneath my wings. Thanks Erlend Graff for
totalitarian typography and various proofreading. If I have gotten any usage
correct in this text, it’s due to Erlend or to Garner’s Modern American Usage. I
take personal responsibility for all the usage I’ve botched.

Thank you Isabelle Stanton for taking the time to answer some dumb ques-
tions about partitioning.

Bestemor & bestefar, pappa, mamma, Ing, Øyst, Steff, øvrig familie.
Everyone else that deserves mention by name: sorry.

iii

Contents
Abstract i

Acknowledgements iii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Motivation and Idea . 2
1.2 Thesis Outline . 3
1.3 Contributions . 4

2 Networks, Graphs, and Visualization 5
2.1 Graph Terminology . 5
2.2 Social Networks and Complex Graph Structures 7
2.3 Visual Analytics . 9

2.3.1 Graph Visualization 9
2.3.2 Text Visualization 11

2.4 Graph Processing . 11
2.5 The Problem of Distributing Complex Graphs 13

3 Architecture and Design 15
3.1 Requirements and Design Considerations 16
3.2 System Design . 16
3.3 Display Wall Technology . 17

4 Implemented Visualizations 19
4.1 Longitudinal Studies . 19
4.2 Force Direction and the Hairball Problem 20
4.3 Lexical Analysis . 21
4.4 Circos . 21
4.5 Virality predictor . 23

4.5.1 Labeling . 23

v

vi CONTENTS

4.5.2 Features . 23
4.5.3 Community detection 24
4.5.4 Training and Classification 24

5 System Implementation 27
5.1 Communication . 27
5.2 Master . 28
5.3 Drawers . 28

5.3.1 Visualization hints 29
5.4 Workers . 29
5.5 Loaders . 29

6 Case Study Data Set 31
6.1 Tweet Anatomy . 31
6.2 Tweet Harvest . 32
6.3 Data Set Volume . 32
6.4 Social Network Harvest . 33
6.5 Words of Caution About Twitter, Big Data, and Sampling Bias 33

7 Evaluation 35
7.1 Metrics . 35
7.2 Experimental platform . 36
7.3 Experiments . 37

7.3.1 Roundtrip Latency 37
7.3.2 Social Network Coverage 37
7.3.3 Social Network’s Effect on Confusion Tendency 37

7.4 Results . 38
7.4.1 Roundtrip latency 38
7.4.2 Social Network Coverage 39
7.4.3 Social Network’s Effect on Confusion Tendency 41

8 Infinite Graph Partitioning 45
8.1 Partitioning Revisited . 45
8.2 Problem Description . 46
8.3 A Solution . 46
8.4 Evaluation . 48

9 Discussion and Related Work 51
9.1 Our System as a Whole . 51
9.2 Towards Streaming: Infinite Partitioning 52
9.3 Virality prediction . 53
9.4 Our Prototype and Case Study 53

10 Concluding Remarks 59

CONTENTS vii

10.1 Future Work . 60

Bibliography 61

Appendices

A Streaming search terms 67

List of Figures
1.1 Cost of DNA sequencing . 2
1.2 Large multiples . 3

2.1 A toy graph . 6
2.2 Les Mis character co-occurence 7
2.3 Adjacency matrices for the Les Misérables graph. 11
2.4 A wordcloud . 12
2.5 A theme river . 13
2.6 Two graph partitioning examples 14

3.1 System architecture . 15
3.2 System design . 16
3.3 WallScope . 17
3.4 Interaction spaces . 18

4.1 Visualization arrangement 20
4.2 The hairball problem . 21
4.3 A circos visualization . 22
4.4 A decision tree . 25

7.1 Latency experiments without caching. 39
7.2 Latency experiments with caching. 40

8.1 Graph partitioner overview 47
8.2 An infinite graph partitioning scheme 48
8.3 A simulated infinite partitioner 50

9.1 Armchair analyst. 54
9.2 The time around election week 55
9.3 A mom that is very interested in progress 56
9.4 Post-election disillusionment 57

ix

List of Tables
6.1 Quantifying the Twitter data set 32

7.1 Social network signal-to-noise ratios 40
7.2 Classifier accuracy w.r.t. different graphs 41
7.3 Classifier precision w.r.t. different graphs 42
7.4 Classifier recall w.r.t. different graphs 42

9.1 Results reported in Weng et al. 53

xi

1
Introduction
According to IBM¹ we create 2.5 quintillion bytes of data every day, and 90%
of the data in the world been created in the last two years. This data comes
from our using social media, running Large Hadron Colliders, sequencing DNA,
uploading cat videos to YouTube, etc., etc. Twitter reports² that their users
produce 500 million tweets per day. Facebook surpassed one billion users in
October 2012.³ DNA sequencing cost has dropped dramatically in recent past
(see Figure 1.1⁴).

An analyst facedwith suchmassive data would soon suffer from information
overload, and there is a general need for tools that help users explore and make
sense of data sets. The popularity of content curation websites such as Tumblr
or Reddit exemplifies this; finding the most interesting cat pictures on the Web
— arguably the biggest and messiest data set of all — is a major hassle.

As data have grown in volume, variety, and velocity, so too has our access
to compute power and screen real estate. Both the screen resolution and cpu
power of a 2014 mobile phone will be far superior to those of the 2006 MacBook
that this thesis is written on, at a much lower price. This opens up opportunities
for novel approaches to data exploration, storytelling, and sensemaking.

1. http://www.ibm.com/software/data/bigdata/
2. http://about.twitter.com/company
3. http://www.facebook.com/facebook/info
4. Figure adapted from http://www.genome.gov/sequencingcosts/ by Bjørn Fjukstad.

1

2 CHAPTER 1 INTRODUCTION

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Year

0.10$

1$

10$

100$

1000$

C
o
st

 p
e
r

m
e
g
a
b
a
se

Moore's law

Cost per Raw Megabase of DNA Sequence

Figure 1.1: Cost per RAW Megabase of DNA Sequence.

1.1 Motivation and Idea
Network analysis is important in social science [6], and the field of computa-
tional social science— amarriage between computer science and social science
— has emerged as a result of the ready availability of large social network data
sets that is now offered by for e.g. Twitter [24].

Data exploration is one way of analyzing a data set. Exploration based
analysis is to let the data suggest hypotheses, as opposed to starting out with
a hypothesis to either confirm or refute. An important tool in such exploration
is visualization.

But which visualization is conductive to hypotheses? And does a visualiza-
tion that makes sense to user A also make sense to user B? Not necessarily.
Shahaf et al. [55] reported, for e.g., quite disparate user comments to their
Metro Maps visualization of scientific literature. Although they report that
many of the negative comments could be addressed by improvements in UI
design, the UI is part of visualization.

An ideal visual exploration system would leverage large-scale displays and
the fact that there are many different ways to visualize something in such a
way that a user could easily discover the stories and hypotheses hidden in their
data.

Current work uses wall-sized displays to compare many data sets visualized
in the same way [31, 53], uses wall-scale displays to provide a massively scaled
up visualization of a single data set [20], or provides several suggested views
of data one at a time on small displays.⁵

We propose to use wall-sized displays to provide many different views of
the same data set and to let the user explore the data by exploring the many
possible visualizations. Our thesis is that a display wall architecture (see Section

5. http://www.tableausoftware.com/

1.2 THESIS OUTLINE 3

3.3) is an ideal platform for such a scheme, providing both the resolution and
the compute power required.

1.2 Thesis Outline
To evaluate our thesis we have built a system for gathering Twitter data and ex-
ploring this data through many visualizations. Instead of working directly with
the data set, we propose data exploration through visualization exploration.
We are especially interested in timelines and storytelling, which we believe to
be of interest to journalists and social scientists. Figure 1.2 shows our prototype
in action. This thesis builds on our previous work in gathering and analyzing
social network data from Twitter (see Holsbø et al., 2013 [32]).

Figure 1.2: Large multiples

Our evaluation of a prototype system has provided us with insights that will
allow us to create a practicable system, and demonstrations of the prototype
has uncovered interesting stories, which we outline in Chapter 9.

This text has three major branches: we begin with a chapter on graph- and
network theory, graph analysis, and visualization. We describe the architecture,
design, implementation, and evaluation of our system for large-display visual
exploration. Finally we describe and evaluate the groundwork we have laid
down towards adapting our system for streaming graph analysis.

4 CHAPTER 1 INTRODUCTION

1.3 Contributions
The main contributions of this work are as follows:

• We build and evaluate a prototype for the scattergun approach to social
network visualization, providing insights into how such a system should
be realized.

• We identify a novel problem in streaming graph computation. We propose
and evaluate a solution to this problem.

• We provide an overview of the different ways of gathering social media
data and evaluate how these impact state of the art trend prediction.

2
Networks, Graphs, andVisualization
This chapter largely describes historical relatedwork and important ground con-
cepts behind our system. We first define basic network- and graph terminology,
we also describe social networks, complex graph structures and visual analysis.
We finally describe the state of the art of graph processing, and how complex
graph structures are problematic to large-scale graph processing.

2.1 Graph Terminology
This section contains basic graph terms variously used in the other sections in
this chapter and throughout the thesis.

A graph, G = {V, E}, is a mathematical model for connections and relations.
Formally it comprises a set of vertices,¹ and a set of edges. Vertices, V = {v1, v2,
. . . , vn}, represent some set of things we wish to model, and edges represent
some connection or relation between pairs of vertices: E = {(vi,vj), . . . , (vy,vz)}.
Figure 2.1 below shows a node-link diagram of a toy graph with five vertices
(the points) and eight edges (the lines).

We use graphs to model different kinds of networks — note that some

1. Also called nodes.

5

6 CHAPTER 2 NETWORKS, GRAPHS, AND VISUALIZATION

Figure 2.1: A node-link diagram of a toy graph. This is a common way to draw graphs.

authors use ‘network’ about special graphs. Sedgewick uses the word about di-
rected, weighted graphs “for economy” [54], and Strang uses the word for any
weighted graph [58]. We will use it in its broadest dictionary sense— E.g.: com-
puter networks, collaboration networks, biological networks (such as protein
interaction networks and a brain’s network of neural connections).

Undirected graphs model symmetric relations: an undirected edge (v, u)
connects v to u and vice versa. A collaboration network contains symmetric
relations: if Bob has co-authored a paper with Alice, Alice must necessarily
have co-authored this same paper with Bob. Directed graphs similarly model
asymmetric relations. The edge (v, u) only connects v to u. The relation is
reciprocal if and only if both (u, v) and (u, v) exist in E. A road network, where
one-way streets might occur, can be modelled as a directed graph.

Edges can be weighted, in which case they have some number w associated
with them. In a road network example this might be the length of a road.

If it is possible to follow edges from vertex v (respecting their direction)
to vertex u, there is a path between v and u: they are connected. A graph is
connected if every pair of its vertices is connected. The longest shortest path
between two vertices is a graph’s diameter.

The number of edges that v participates in is called the degree of v. In a
directed graph we separate in-degree and out-degree — number of incoming
edges, and number of outgoing edges.

2.2 SOCIAL NETWORKS AND COMPLEX GRAPH STRUCTURES 7

2.2 Social Networks and Complex GraphStructures
The analysis and the visualizations in this work are based on social network
theory and graph computation. We outline the more relevant concepts in this
section.

Social networks are networks of social interactions and personal relation-
ships.² Collaboration networks, for instance, are social networks. These net-
works have certain common structural characteristics, the most important of
which we will highlight by examining a graph of character co-occurrence in the
novel Les Misérables. The graph (see figure 2.2) was compiled in the 1990s by
Donald Knuth [36], and although it models a small, fictional social network, its
characteristics are found even in Facebook-scale social network graphs.

Figure 2.2: Character co-occurrence in Victor Hugo’s Les Misérables.

2. Citing the New Oxford American Dictionary.

8 CHAPTER 2 NETWORKS, GRAPHS, AND VISUALIZATION

Scale-free
Scale-free networks have power law degree distributions. Formally: the fraction
P(k) of vertices with k neighbors will, for large values of k:

P(k) ∼ k−γ

Where γ is a constant that describes the distribution.
Scale free means that some vertices have degrees that greatly exceed the

average. Such vertices with a high k are called hubs. Figure 2.2’s most obvious
hub is towards the middle in light green. This is Jean Valjean, the novel’s
protagonist, who is bound to run into many other characters. Another slightly
smaller hub is somewhat to the right of Valjean in light violet; this is Marius,
who is another central character: love interest to Valjean’s adoptive daughter
and loosely affiliated with a revolutionary student club of some importance.
Many nodes have noticeably fewer neighbors, some connected to the graph by
only a single edge.

Small-world
In small-world networks, the average distance L between two randomly chosen
nodes grows logarithmically with the number of nodes,N in the network:

L ∝ logN

This implies that most nodes aren’t neighbors with one another, but most
nodes can reach any other node by traversing a small number of edges. The
graph in figure 2.2 has an average shortest distance of 2.6, which is to say that
on average the shortest path between any two nodes is 2.6 edges long.

Travers and Milgram [62] performed a famous early small-world experi-
ment in 1969. They asked 296 randomly chosen people to forward a letter to a
Boston stockbroker via people they knew on a first-name basis; these people
were in turn given the same instructions. In the end, 64 of the letters reached
the intended target, and the median path length of these traces in the global
social network was 6. This is where the concept “six degrees of separation” first
appeared.

Homophily
The idea that similar people are more likely to form social connections: a notion
at least as old as Plato [45].

We see evidence of homophily in figure 2.2. As mentioned, the figure shows
Marius as a hub in light violet. Most of his neighbors in the graph are also

2.3 VISUAL ANALYTICS 9

light violet, and most of their neighbors again are light violet. The vertices
thus colored are rich, young, revolutionary students that call themselves the
Friends of the ABC. Most of Marius’ friends are revolutionaries, hence (social
homophily suggests) Marius is likely to be a revolutionary himself.

Community Structures
Similar to the idea of homophily: some characters are more closely tied to
one another and will occur together more often, such as the above mentioned
Friends of the ABC.

Giant Connected Component
A connected component is a subset CC of vertices such that (i) all pairs of
vertices in CC are connected, and (ii) CC isn’t a true subset of another set
where (i) is true.

Social networks and other complex networks tend to have one giant con-
nected component where most vertices participate. Figure 2.2 shows a single
gcc.

2.3 Visual Analytics
The Figure 2.2–exercise was an example of visual analysis. The figure projected
a novel of about 1200 pages onto about half a page worth of node-link diagram
that held a lot of information about the socio-communal structures of the novel.
This section will provide some insight in the problems and concepts that pertain
to our visualizations.

Zhang et al. [66], succinctly outlines the visual analysis pipeline as follows:
data loading, integration, transformation, data mining, and data interpreta-
tion.³

2.3.1 Graph Visualization
A graph can be visualized in a myriad of ways, and a reasonable study of the
field would probably fill a master’s thesis in its own right. We don’t intend to
provide anything close to such a study, our goal is simply to illustrate some
common ways to draw graphs and to establish that there are always several

3. Paraphrasing the knowledge discovery pipeline of Fayyad & al. [18].

10 CHAPTER 2 NETWORKS, GRAPHS, AND VISUALIZATION

ways to visualize the same thing. Hence, in this section we will limit ourselves
force-directed node-link diagrams (nlds) and adjacency matrices.

Node-Link and Force-Direction
There are no rules for how a nld should be laid out, but it’s generally held that
edges crossings should be minimized, vertices distributed evenly, and graph
symmetry clearly shown [3, 22, 34, 50]. Battista et al. note that “In general, the
optimization problems associated with these aesthetics are NP-hard” [3].

Figures 2.1 and 2.2 were both force-directed nlds. Force-directed layouts
try to emphasize community structure while keeping clarity so as to fulfill the
aesthetics outlined above. They work by assigning attractive forces between
adjacent vertices (i.e., vertices that are neighbors), and repulsive forces between
all vertices. Fruchterman and Reingold [22] did important work in this area,
building on the ideas of Eades [15] and Quinn & Breuer [51].

Force-directed methods are generally acknowledged to produce pleasing
layouts, but they suffer from long run times as the general concept is similar to
the n-body problem, and as such has a computational complexity of O(|V|2).
Laterwork has gone towards improving on these long run times,Hu [34],whose
algorithm is included with Mathematica, reduces the complexity by working on
multiple levels of coarsened versions of the graph — i.e. simplified versions of
the graph where |V| and |E| have been reduced by coalescing pairs of adjacent
vertices into a single vertex.

Adjacency Matrix
An adjacency matrix is a graph data structure where the graph is represented as
a |V|2 matrix M, and entry Mu,v is 1 if the edge (u,v) exists, 0 otherwise.

This can easily be translated to a visualization: figure 2.3 shows the Les
Misérables graph from section 2.2. A 1 in the adjacency matrix is a colored
square in the figure, a 0 is the absence of same. Adjacency matrices, like node-
link diagrams can be presented in more or less helpful ways; the matrix in
Sub-figure 2.3a has its rows and columns ordered by character name, while
Sub-figure 2.3b has them ordered by community affiliation. The former looks
rather noisy and unhelpful, while the latter shows clear social structures and
signs of homophily.

A clear advantage the adjacency matrix has over the force-directed nld is
that it is computationally inexpensive to layout.

2.4 GRAPH PROCESSING 11

(a) Ordered by name (b) Ordered by cluster

Figure 2.3: Adjacency matrices for the Les Misérables graph.

2.3.2 Text Visualization
Text visualization is something of a new field, where the goal is to present an
abstract, succinct view of a longer text.

The wordcloud [35] is by far the most common way to visualize text. Fig-
ure 2.4 shows a wordcloud generated from Edsger Dijkstra’s 1968 article Go
To Statement Considered Harmful [14]. Basically the wordcloud is a way to
visualize a word count with more frequent words rendered larger than less
frequent ones. It is common to remove stop words, punctuation, capitalization,
etc., before counting the words.

Another text visualization is theme river [30],which is basically a wordcloud
over time. Themes are represented as bands in a river that flows in a timeline,
and the width of the band reflects the theme’s relative prominence. Figure
2.5 shows a theme river constructed from Associate Press news wire stories in
mid-1990.

2.4 Graph Processing
This section briefly outlines advances in graph processing at scale, some of
which is relevant to our partitioning work.

The MapReduce model has been a corner stone in large scale data pro-
cessing since Dean and Ghemawat’s seminal 2008 paper [13]. In time, though,
people realized how the model is ill-suited for graph problems: while MapRe-
duce is excellent for io-bound data parallel processing, graph computations
aren’t strictly speaking data parallel. The problem specifically is that a graph

12 CHAPTER 2 NETWORKS, GRAPHS, AND VISUALIZATION

process
can

clauses

program
pr

og
re

ss

statement
dynamic

on
e

repetition

numbertextual

describe

in
de

x

now

remark

room

successive

text
time

action

descriptions

indices

point

procedure

programmers

statements

use

ac
tio

ns

ch
ar

ac
te

riz
ed

conditional

coordinate

co
or

di
na

te
s

ho
ar

e

independent

le
t

lik
e

make

peoplepr
oc

ed
ur

es

processes

quite

sa
tis

fy

say
sequence

single

sufficient

values

well

Figure 2.4: A wordcloud

computation is very often iterative, which entails many short runs of MapRe-
duce, which again entails lots of disk io and wasted time. Spark [65], which
doesn’t have this prohibitive startup cost, was introduced in 2010.

Google recognized the unsuitability of MapReduce for graph computing,
and published Pregel⁴ [44] in 2010. Pregel pretty much did for graph processing
what MapReduce did for data parallel processing, and Apache Giraph⁵ is to
Pregel what Apache Hadoop⁶ is to MapReduce.

Pregel — a cluster system like MapReduce is — introduced a novel think
like a vertex programming model. Execution runs in bulk-synchronous paral-
lel [63]: A vertex is given some task, e.g. what is the weighted average of the
PageRank of your neighbors, performs this task, communicates the result with its
neighbors, receives results from its neighbors, repeats until convergence. The
communication stage crucially serves as a barrier synchronization, preventing
tiresome races.

Parallel to Pregel fromMalewicz et al., Bader et al. [2] wereworking STINGER
for streaming graph processing. Pregel’s graph model is essentially static, you

4. Named for the river in Köningsberg over which spanned the bridges of Euler’s seven bridges
problem.

5. http://giraph.apache.org/
6. http://hadoop.apache.org/

2.5 THE PROBLEM OF DISTRIBUTING COMPLEX GRAPHS 13

Figure 2.5: A theme river. Figure from Havre et al. [30].

load a graph, run some huge computation, get some output. STINGER’s graph
is modelled as an infinite stream of edge updates and deletions. This is a much
more complicated model to work with, and the field is quite new. The infinite
edge stream model requires new algorithms, data structures, and program-
ming models, where STINGER primarily provides data structures. Ediger et
al. [17] published a paper in 2011 presenting a framework for tracking con-
nected components in streaming graphs. For comparison, the basic algorithm
for finding connected components in a static graph was already well known in
1973 [33].

Interestingly, Google employs at least two special-purpose graph processing
systems for the training of deep networks [11, 12].

2.5 The Problem of Distributing Complex Graphs
Our attempted move towards streaming graph processing on compute clusters
(see Chapter 8) sparked an investigation into graph partitioning, we briefly
outline the main points and problems here.

Large scale distributed graph processing systems, e.g. Pregel orGraphLab [43],
partition the graph and distribute it to several machines, much as MapReduce
would partition data to several machines. The problem with this is that real-
world graphs are complex (most important here is the scale-free property de-

14 CHAPTER 2 NETWORKS, GRAPHS, AND VISUALIZATION

scribed in section 2.2) and hence notoriously difficult to partition cleverly.
This problem is known as balanced k-partitioning: how to split a graph in k

parts of equal size cutting⁷ as few edges as possible. Researchers have worked
on this problem since the 1970s at least [19], and the finding of an optimal
solution has long since been shown to be NP-complete [23].

This isn’t just an interesting academical problem. As most graph compu-
tations involve graph traversal, an edge cut is a message that has to be sent
between machines. It is tempting to ignore the issue (as indeed Pregel does,
encouraging the user to roll their own partitioner) and simply assign vertices
to machines randomly, but it can be shown that the expected cut⁸ size of a
random k-partitioning is

E[#edдes cut
#edдes

] = 1 −
1
k

which is quite expensive. It is, in fact, a very goodway to approximate amaximal
cut for any interesting value of k.

Figure 2.6 shows two graphs, where 2.6a has a cheap balanced 2-partition
with a cut size of a single edge, shown in red. The graph in 2.6b shows the star
motif that characterizes the hubs that are typical of scale-free networks. A hub
has no cheap cut; half the edges would have to be cut no matter which vertices
were put in which of the two partitions.

p0 p1

(a) Cheap

p0 p1

(b) Expensive

Figure 2.6: Two graph partitioning examples

7. cut (an edge), v.t.: to assign two adjacent vertices to different partitions so that the edge
between them spans partitions.

8. cut, n.: the set of edges that span partitions.

3
Architecture and Design

DATA SET

VISUALIZATION SET

VIS. SET VISUALIZATION

Figure 3.1: System architecture

Figure 3.1 shows our architecture’s main abstractions. There are many ways
of visualizaing a data set, in principle there is a visualization set that comprises
all these different visualizations. A subset of this could be presented to the user;
presenting a selection of visualizations to the user could be seen as a kind of
meta-visualization itself.

In principle the data could be anything from log files to cat videos, in
our prototype implementation we focus on Twitter data. Data could either be
stored or generated on-site, or feched from elsewhere.

A view into the visualization set must be created and presented; we imagine
a systemwhere the user is presented a handful of visualizations, and can quickly
exchange these for others if they don’t show anything useful.

15

16 CHAPTER 3 ARCHITECTURE AND DESIGN

3.1 Requirements and Design Considerations
The visualization pipeline mentioned in 2.3 defines the requirements related
to creating visualizations:

Data loading: The user needs to be able to load data into the system.
Integration: If the data comes from different sources, in different formats, or

have to be integrated in some other manner, the system should support
this.

Transformation: Data may have to be transformed or cleaned to be workable.
E.g. the handling of missing values, normalization, outlier removal, noise
reduction, reformatting. Different visualizations may require different
transformations.

Data Mining: Fitting models to-, or inferring patterns from the data.
Visualization: The data-mined results presented to the user as a visualization.

It is also necessary for the user to be able to interact with the system and
the different visualizations.

Lastly and importantly: low latency. The user should be able to quickly
change views of the data.

3.2 System Design

My system

D

D

D

D

W

W

W

W
L

M

DATA

USER
INPUT

Figure 3.2: System design: workers (W), drawers (D), loader (L), and master (M)

Figure 3.2 shows our design. The user loads data into the system by means
of a Loader (L), which performs data loading and integration. User requests

3.3 DISPLAY WALL TECHNOLOGY 17

for new visualizations go through the Master (M), which forwards instruc-
tions to the Drawers (D). The Drawers request visualizations from Workers
(W); Workers are responsible for most of the heavy lifting, being in charge
of transformation and data mining — both tasks that can be computationally
expensive. When the data mined results are ready, they are returned to the
Drawers, which then display the visualization. Note the similarity between
the Drawer-Worker interaction here and the nad-nac interaction of WallScope
described below.

Workers have a cache where they can store results from both transformation
and data mining. This first because the user might want to see a visualization
again, but also because some transformation and data mining results can be
re-used for different visualizations. For e.g. does three of our implemented
visualizations rely on an extracted communication graph to show different
aspects of the data set.

3.3 Display Wall Technology
This section will briefly describe the Tromsø Large Display Wall, which was
important to the design and development of our system. This section will be
heavily based on the 2013 nine-year retrospective of Anshus et al. [1].

Display walls are wall-sized tiled displays composed of several smaller dis-
plays and computers. Displays on such large scales often offer screen resolution
orders of magnitude larger than those of commodity desktop computers or lap-
tops. Among the main benefits from this is the multi-level view that large-scale
displays provide — far away from the display the user gets a top-level total
view of whatever is displayed, close up they’re provided high detail — and the
collaboration that the large display encourages over that of standing several
people stooped over a laptop [21].

Figure 3.3: WallScope, with the display wall to the left of the figure.

18 CHAPTER 3 ARCHITECTURE AND DESIGN

A display wall is constructed by tiling several displays and computers [42];
the Tromsø Large Display Wall (tldw) is a 22 megapixel rear-projected display
comprising a 7 by 4 grid of projectors. These projectors are driven by a 28-node
display cluster connected by a gigabit Ethernet switch.

Figure 3.3¹ shows an illustration of the tldw to the left. The figure as
a whole shows the WallScope architecture: a visualization system compris-
ing Network-accessible Display resources and Network-accessible Compute
resources. The pull-based nads request visualizations from the nacs.

Figure 3.4: Interaction spaces

There are several interfaces for interaction with the tldw, most notable of
which are the Interaction Spaces of Stødle et al. [60]. Figure 3.4² shows three
interaction spaces: the blue sphere is Camera-sense, which tracks objects in
three dimensions by means of commodity web cameras; the pink sphere shows
Arm-angle, which recognizes the angle at which a user points their arm by
means of a ceiling-mounted pan-tilt-zoom camera; and finally the yellow sphere
shows Snap-detect, which tracks a users location by way of four microphones
picking up sharp sounds such as the snapping of fingers or the clapping of
hands.

1. Figure from Hagen’s 2010 Ph.D. dissertation [28].
2. Figure from Stødle’s 2009 Ph.D. dissertation [59].

4
ImplementedVisualizations
This chapter describes the visualizations we have implemented for- or fitted to
our system.

Our prototype was built for Twitter type data, and our choice of visual-
izations is necessarily influenced by this. Graph analysis is central to Twitter
analysis, so too are topics such as opinion mining, trend analysis, lexical analy-
sis, etc.

4.1 Longitudinal Studies
It was clear to us from the start that it would be impractical to either implement
or integrate enough different visualizations to fit, say, one on each tile of the 28-
tile display wall, let alone enough of them to test our idea of allowing the user
to quickly switch between sets of visualizations on a large-scale display. Given
the temporal nature of Twitter data, it seems natural to present it as a time
series. A handful of different visualizations at many different times provide
many different views of the data.

Hence we arrange our visualizations as in figure 4.1. The x-axis is a time
series of our data in which the data is separated into snapshots of equal length
(e.g. all activity in a single day). The y-axis is different visualizations. Such

19

20 CHAPTER 4 IMPLEMENTED VISUALIZATIONS

v1, t1 v1, t2

v2, t1 v2, t2

vm, t1 vm, t2

v1, tn

v2, tn

vm, tn

…

…

…

…… …

Figure 4.1: How we arrange visualizations on the tldw. Different visualizations {v1,
v2, . . . , vm} show different steps in a time series [t1, tn].

analysis over time is called longitudinal study: observe some phenomenon over
time, e.g. politics-related Tweets and interactions; ascertain what changes and
how it changes.

4.2 Force Direction and the Hairball Problem
As discussed in chapter 2, force-directed node-link diagrams and adjacency
matrices can show community structure in a graph. We wish to visualize how
the users in our data set communicate; Smith et al. [56] recently published
a study in the conversational archetypes of Twitter such as polarized crowd,
which shows how partisan groups of users largely ignore one another; tight
crowd, which shows how tight-knit communities participate gather around e.g.
a conference or hobby, etc. (six in total). Signs of these archetypes may provide
the analyst with valuable insight.

A problem with visualizing graphs once they grow past a few hundred
vertices and edges is that the complexity of the graph completely dominates
the visualization. Figure 4.2 shows the @-graph of a snapshot from our data
set; the graph contains roughly 5200 vertices and 7000 edges. A force-directed

4.3 LEXICAL ANALYSIS 21

(a) Node-link diagram (b) Heatmap

Figure 4.2: Hairball problems

nld (Sub-figure 4.2a) appears as an intractable mess of edges with no clear
structure at this size. We choose to use only the coordinates that result from a
force-directed layout and heatmap these, as in Sub-figure 4.2b. This provides
topographical information (e.g. clustering) that is impossible to discern in Sub-
figure 4.2a.

We use the sfdp program from graphviz¹ to calculate our force-directed
vertex positions. The sfdp implements the multi-level force-directed layout al-
gorithm of Hu [34], which we briefly discussed at the end of Section 2.3.1.

4.3 Lexical Analysis
We use the R text mining² and wordcloud³ packages to create a wordcloud
for each snapshot in our data set. Section 2.3.2 showed an example word-
cloud.

4.4 Circos
Circos ⁴ is a collection of Perl scripts used to create visualizations of connections
and interactions in a data set. It was originally designed for visualizing genomic
data and has been used in for e.g. Nature Reviews [8]. From Krzywinski et

1. http://www.graphviz.org/
2. http://cran.r-project.org/web/packages/tm/index.html
3. http://cran.r-project.org/web/packages/wordcloud/index.html
4. http://circos.ca/

22 CHAPTER 4 IMPLEMENTED VISUALIZATIONS

al. [38]:

Circos uses a circular ideogram layout to facilitate the display of re-
lationships between pairs of positions by the use of ribbons, which
encode the position, size, and orientation of related genomic ele-
ments.

We use Circos to create another view of the communication graphs of our
data set. We first extract the 25 most active users in a snapshot and coalesce all
other users into one fat 26th user. We then count the number of times these 26
users send @-messages mentioning one another and enter this data into the
Circos table viewer.⁵ We wish to show how the data set’s most important actors
interact with one another and howwell they interact with the community.

Figure 4.3: A circos visualization from a snapshot in our dataset

Figure 4.3 shows such a visualization from the same snapshot that was
visualized in Figure 4.2. We have removed user names to maintain privacy. As
a Circos visualization takes some explanation and such an explanation isn’t
relevant to the thesis, we will omit the intricacies of the figure and simply
observe that it benefits from a display wall setting as there is an overall high-
level view in the bands that criss-cross its diameter, and there is a lot of fine

5. http://circos.ca/intro/tabular_visualization/

4.5 VIRALITY PREDICTOR 23

detail in the little ticks and numbers that run along its circumference.

4.5 Virality predictor
The final visualization is very simple graphically and quite complex compu-
tationally. The visualization simply shows a random hashtag⁶ out of a list of
hashtags that are likely to go viral.⁷ The computation of this list is the challenge,
and we devote the rest of the visualization chapter to outline the process.

Our implementation of virality prediction follows recent work by Weng
et al. [64], whose main contribution is a method for translating data about
community structure into features for predictive knowledge about what info
will spread widely.

4.5.1 Labeling
First it is useful to define rigorously what constitutes “viral.” Weng & al. propose
the thresholds θT and θU : if a hashtag is mentioned in more tweets than θT%
of the others, it is viral; if a hashtag is adopted by more users than θU% of the
others, it is viral.

4.5.2 Features
The “community structure” mentioned above is the social network in the data
set. This can either be follower–followee relationships or the graph induced by
communication (i.e. @-messages). We have tried different variants of both, the
results of which are provided in Chapter 7. Here we will limit ourselves to an
overview of the features proposed by Weng & al. The features are generated
from the first snapshot in which the hashtag occurs:

Number of early adopters: how many distinct users are observed using the
tag.

N.o. uninfected neighbors: how many users are neighbors to early adopters,
but not early adopters themselves.

N.o. infected communities: how many communities contain early adopters
(see below for a description of community detection).

Usage entropy: let rc(h) be the fraction of tweets in community c that contain

6. hashtag, n.: a little label that users attach to their messages to indicate topic.
7. viral (of information diffusion), a.: of the nature of a virus, i.e. spreads widely rapidly.

24 CHAPTER 4 IMPLEMENTED VISUALIZATIONS

hashtag h. The usage entropy Ht(h) of h is defined as follows:

H t (h) = −
∑
c ∈C

rc (h) log rc (h)

Adoption entropy: similarly to usage entropy, let gc(h) be the fraction of users
in community c that are early adopters of h:

Hu (h) = −
∑
c ∈C

дc (h) logдc (h)

Fraction of intra-community interactions: Howmany out of all pairwise user
interactions (@-messages or retweets) in a given community contain the
tag.

4.5.3 Community detection
We rely on the Louvain fast community unfolding method of Blondel et al. [4]
to detect communities for use in feature generation. The method is a heuristic
approach that aims to minimize the modularity of a partitioning of the graph.
Modularity is a measure for the density of edges within communities vs. that
of edges between communities, for which see Newman and Girvan [48].

We use a python implementation of the Louvain method.⁸

4.5.4 Training and Classification
We do supervised learning. To generate training data, gather a twitter set
over time and divide into snapshots as described in Section 4.1, gather a social
network to provide community structure as described in Chapter 6. To generate
labels, simply iterate over all the data and count hashtag uses and unique
adopters, and label according toθU andθT . This results in a binary classification
problem of “likely to go viral” or “unlikely to go viral.” Features are generated
as described above from the first snapshot in which a hashtag appears.

We use a Go-implemented random forest (see Breiman [7]) classifier.⁹
Random forest is an ensemble classifier of multiple decision trees, where the
idea behind ensemble classifiers is that many weak learners may make a strong
one together. Each tree in the forest gets a vote on which class a feature belongs
to, and the majority vote wins.

Decision trees comprise a large class of non-linear classifiers where clas-
sification is performed by means of several questions about the features of a

8. http://perso.crans.org/aynaud/communities/
9. https://github.com/sajari/random-forest

4.5 VIRALITY PREDICTOR 25

is the
passenger

male?

is age > 9.5
yrs?

is siblings+
spouse count

> 2.5?

y n

survived (0.73)

died (0.17)

survived (0.89)died (0.05)

Figure 4.4: A decision tree

feature vector, such as “is xi ≤ α?” where this threshold α will determine ei-
ther which class the feature should be classified as, or whether more questions
should be asked [61].

Figure 4.4 shows a decision tree over survival on the Titanic. The parenthe-
sized numbers show survival probability.¹⁰

10. Figure adapted from http://en.wikipedia.org/wiki/Decision_tree_learning

5
System Implementation
This chapter describes our prototype implementation. The prototype consoli-
dates different visualization programs and scripts — some our own, some by
others — by means of various wrapper/mediator Python code.

5.1 Communication
Workers, Drawers, and the Master communicate by means of the rpcHugs
python module from previous work of ours.¹ The module offers a simple remote
procedure call interface where the user creates a dummy object and simply
uses this as though it were a local object:

stub = RPC()
drawer = stub.getDummy((drawerIP, drawerPort))
drawer.draw(snapshotNumber)

1. http://github.com/transmetro/rpcHugs

27

28 CHAPTER 5 SYSTEM IMPLEMENTATION

5.2 Master
The prototype Master is a simple shell where the user can start and stop the
system, and select a range of snapshots to visualize.

The system is initialized by launching a Worker and a Drawer on each tile
on the Tromsø Large Display Wall. Once the Workers and Drawers are running,
the master sets each Drawer’s mode (see below) according to the arrangement
described in Section 4.1.

The user enters visualization requests into the master’s terminal command
line interface such as

$ window 5

which will cause the first column of drawers to visualize snapshot 5, the next
one to visualize snapshot 6, etc.

5.3 Drawers
A Drawer accepts two different remote calls: draw snapshot s, and change mode
to m.

Drawers start up with the default drawer mode of heatmapping. This means
that a Drawer will always return a heatmap visualization if this mode isn’t
changed. Four different modes correspond to the visualizations described in
Chapter 4. If a Drawer is meant to draw something other than a heatmap, it
must be explicitly set to different mode.

Drawers are programmed to know what work is required for a given vi-
sualization. They have a list of all the Workers from which they can request
work. When a Drawer receives a visualization request, it locates a Worker in its
Worker list by calculating the following index: let s be the requested snapshot,
letm be the Drawer’s current mode, and let w be the number of Workers:

i = sm mod w

This ensures that (i) the same Worker is always responsible for generating m
from s, which gives us cache utilization; (ii) a single Worker is unlikely to be
responsible for all different visualization work related tom for the same s or vice
versa, which would not be the case by simply i = s mod w , or i = m mod w ,
and which would cause workload hotspots; lastly, (iii), Worker lookup is quick
and cheap.

5.4 WORKERS 29

5.3.1 Visualization hints
Drawers are by design independent of one another, but they do sometimes
have to share information in the prototype. This is specifically a problem with
the heatmaps: heatmaps drawn completely independently of one another may
falsely appear to be of a similar size and density. To solve this, we allow the
drawers to provide one another with hints about how large the largest heatmap
generated thus far is and how dense the densest heatmap is. This allows the
drawers to scale down and lighten the appearance of their heatmaps if bigger
ones exist, which allows the user to relate heatmaps more easily.

The hints are delivered in a best-effort all-to-all manner within a row of
similar visualizations. As it is difficult to imagine very long rows of many dis-
plays (i.e. enough that all-to-all communication would be punitively costly),
this seems like a fair choice.

5.4 Workers
Workers, as mentioned in the design chapter, do most of the heavy lifting. They
are responsible for co-ordinating the various data mining programs we use,
and for performing any data transformations required. They keep all previously
performed work cached so that partial results can be reused in other work and
full results can be provided if the same visualization is requested later.

We set no restrictions about number of workers, there should at least be one.
For simplicity we run one worker per machine in the Display Wall cluster.

5.5 Loaders
Loaders receive data and decide where best to place them. As our data set
is fairly small, we simply duplicate it on all nodes in the display cluster to
minimize communication-incurred latency.

The loader generates snapshots from a large pile of Twitter data by taking
all the tweets that occurred within some time frame and placing them in the
same file, this is done sequentially for all of the data and the snapshots stored
by number:

/tmp/vis/data/0.twt
/tmp/vis/data/1.twt

...
/tmp/vis/data/n.twt

30 CHAPTER 5 SYSTEM IMPLEMENTATION

The data is only ever read, never modified. If a worker needs to generate a
temporary file as part of some work (e.g. a table for the Circos visualization),
this is created in a separate temporary directory.

6
Case Study Data Set
This chapter describes the data set we use as a case study in our work — how it
was gathered and its general characteristics. The work and observations in this
chapter largely build on previous work of ours [32], which in turn was based
on work by Tor Kreutzer [37], who was probably the first to seriously consider
how to systematically harvest Twitter data.

6.1 Tweet Anatomy
A tweet is a json object with many dimensions, we will only mention the
fields we used for our analyses here. For a complete enumeration see Twitter’s
developer resources.¹

tweet[‘text’]: The tweeted message.
tweet[‘entities’][‘hashtags’]: Hashtags used in the message.
tweet[‘entities’][‘user_mentions’]: User mentions.
tweet[‘retweeted_status’][‘user’]: The retweeted_status field only exists if

the tweet is a retweet of someone else’s message. This field provides
information about the originator of the tweet.

tweet[‘user’]: Information about the user who tweeted this message.

1. https://dev.twitter.com/docs/platform-objects/tweets

31

32 CHAPTER 6 CASE STUDY DATA SET

The user fields have several sub-fields, we are only interested in the id and
screen_name fields.

6.2 Tweet Harvest
We gathered our dataset in the months leading up to the Norwegian 2013
parliamentary election through Twitter’s stream api.² Our search parameters
were largely party names and the names of prominent politicians, which see
appendix A for the complete list.

The stream api provides at most a 1% sample of Twitter’s total activity
(they call this the streaming cap). If the volume of matching tweets is under
the streaming cap, all activity will be returned. If tweets are dropped due to
rate limiting, the stream provides messages informing the user about howmany
tweets were dropped. As such we can be certain that our gathered data is the
complete set — we never received rate limit messages.

6.3 Data Set Volume
The data set consists of roughly 400 mb of json data; table 6.1 provides a more
detailed view of the set’s volume. For one example about the dimensionality
this might entail, the graph induced by @-messages comprises the 19 k users as
vertices and the 75 k @-messages as edges: user A’s mention of user B results
in the directed edge (a, b).

Table 6.1: Quantifying the Twitter data set

Number of tweets 112 196
N.o. unique users 18 974
N.o. @-messagesa 75 419
@-messages within data set 21 192
Reciprocal @-messages 1 739

a An @-message is a user mentioning another
user.

While the set is somewhat sparse, it is real data of exactly the kind that an
analyst can gather during election times, which is a real advantage.

2. https://dev.twitter.com/docs/api/streaming

6.4 SOCIAL NETWORK HARVEST 33

6.4 Social Network Harvest
The Twitter stream doesn’t provide anything other than raw tweet data. This
means that if you’re interested in the community structures that connect the
users occurring in the stream, this must come from some other source. A few
options are open:

i. Use the induced @-graph as described in Section 6.3.
ii. Use the graph that Kwak et al. [39] crawled in 2010.
iii. Gather the graph yourself through Twitter’s rest api.³
iv. Apply for research access to Twitter’s data.
v. Purchase access to Twitter’s data.

Option (i) is tempting in its simplicity, but the graph will necessarily lack a
lot of information. Option (ii) requires only a very little extra work over (i), but
the graph is four years old at the time of writing and will necessarily lack a lot
of information. Option (iii) will provide the full graph, but it is a painstaking
and slow process of incrementally querying Twitter’s rest api while adhering
to their draconian rate limiting. Options (iv) and (v) will both provide the
full graph, but (v) is costly and the terms that govern (iv) “read like they [i.e.
Twitter] want to own [your] ideas” [5], which might deter researchers.

We have performed our experiments with i–iii, and we evaluate their cov-
erage of our data set in section 7.4.2.

6.5 Words of Caution About Twitter, Big Data,and Sampling Bias
The analyst working on found data data sets — whether they be Twitter data,
search trends, or otherwise— should proceedwith caution. For e.g. hasMorstat-
ter et al. [46] recently shown that there is evidence of bias in how the Twitter 1%
sample is chosen. They did this by purchasing access to the full 100% firehose⁴
and comparing this with the 1% sample.

In early 2013 Nature reported how Google’s much-lauded Flu Trends⁵ had
over-predicted flu levels by nearly two times that of US Center for Disease
Control reports [9]. Study has shown that gft has in fact consistently over-
predicted for a long time [40], and that the fit of simple forward projection of
already available cdc data is very nearly as good as that of gft [25].

Our data set is necessarily biased: it only contains tweets that fall within

3. https://dev.twitter.com/docs/api/1.1
4. This is what they call it.
5. http://www.google.org/flutrends/

34 CHAPTER 6 CASE STUDY DATA SET

the search defined in appendix A. It is not, however, biased from Twitter’s end;
as already mentioned in section 6.2, our harvest never hit the 1% streaming
cap.

There are other caveats to be made and cautionary tales to be told about
using found data, suffice it to say that we will be making no bold claims about
the Norwegian electorate in this report.

7
Evaluation
The economist reported in October, 2013, how science’s self-correction mecha-
nism may not correct all that well;¹ negative results are seldom reported, and
replication of results — though supposed to be the keystone in modern science
— is not generally encouraged.

In the spirit of thoroughness and in light of the above, we will (in addition
to our prototype) evaluate the classification system of Weng et al. [64] that we
implemented as one of our visualizations. This will also show how the method
works on a smaller, more specialized dataset.

7.1 Metrics
As specified in Chapter 3, the main requirement for our system is response time.
We measure this through roundtrip latency, which we define as the time from
the moment that a drawer receives a visualization request to its having updated
the display with the requested visualization. This times the path from drawer
to worker and back again. We measure roundtrip latency in seconds (s).

There are two main ways of evaluating a classification system: through
error probability estimates or through measuring the system’s tendency for
confusion (of classes). We take the lead from Weng & al. [64] and measure

1. http://www.economist.com/news/briefing/21588057-scientists-think-science-self-
correcting-alarming-degree-it-not-trouble

35

36 CHAPTER 7 EVALUATION

confusion by way of precision, accuracy, and recall.
A classifier’s confusion matrix is the matrix A = [A(i, j)] where the element

A(i, j) is the number of feature vectors whose true label was i that were classified
as belonging to class j. As we have implemented a binary classifier (viral or
not viral), we have a four-entry confusion matrix, where we will focus on the
precision and recall with regard to positives (i.e. “viral”). Let class 1 be positives,
and class 2 be negatives.

Precision: The fraction of all vectors classified as true that were true positives:

P =
A(1,1)

A(1,1) +A(2,1)
Recall: The fraction of vectors with true class label positive that were classified

as positive:

R =
A(1,1)

A(1,1) +A(1,2)
Accuracy : The fraction of vectors that were correctly classified:

Ac =
A(1,1) +A(2,2)

A(1,1) +A(1,2) +A(2,2) +A(2,1)
These measures can be expanded for more classes, they can also be calculated
w.r.t. different classes.

Signal to noise–ratio is the fraction of a data set that carries useful infor-
mation.

7.2 Experimental platform
We performed all experiments on the Tromsø Large Display Wall cluster, which
comprises 28 HP Z400 Workstations with the following hardware configura-
tion:

• Intel Xeon processor W3550, 3.06 GHz, 8 MB cache, 1066 MHz memory,
4.8GT/s QPI, Quad-Core, HT, Turbo

• 12 GB RAM (4 x 3) DDR3 1333 MHz
• Intel® X58 Express Chipset
• Integrated Broadcom 5764 LAN
• 1TB SATA Hitachi HDS72101
• 600 W power

7.3 EXPERIMENTS 37

All nodes in the cluster run Rocks 5.4 (Maverick), Linux version 2.6.18-
194.17.4.el5.

7.3 Experiments
7.3.1 Roundtrip Latency
This experiment is to evaluate the responsiveness of our system. We performed
the experiment by first simplifying our system by disabling the Master, and
modifying the Drawers to automatically access the entire data set from Chapter
6 sequentially — in total 36 snapshots of varying size (see results). We time
the path from Drawer to Worker and back again until the display is updated at
the Drawer. We performed this experiment twice, once with caching enabled
and once with caching disabled.

7.3.2 Social Network Coverage
This experiment measures the extent to which the different ways of collecting
a social network allows us to create feature vectors from our data set. As laid
out in section 6.4, there is a handful of ways to collect community structure
about a set of Twitter users. We evaluate the use of (i) the induced commu-
nication graph (“@-graph”); (ii) the 2010 graph collected by Kwak et al. [39]
(“Kwak2010”); and (iii) a graph gathered by requesting all friend lists of all
users in our data set through the Twitter rest api (“following”).

These are all directed graphs; we convert them to undirected graphs in
two ways: by removing the direction of all edges (“full”), and by having undi-
rected edges only where the original graph has an edge in both directions
(“reciprocal”).

The above gives us six graphs in total: the three different graphs in full and
reciprocal forms. Now consider the set of all hashtags used in our data set. We
wish to convert these to feature vectors by means of the community structure
provided by the different graphs. The signal in this set are the hashtags where
it is possible to find communal structure around the early adopters; our signal-
to-noise ratio is the fraction of the hashtag set that can usefully be converted
to feature vectors.

7.3.3 Social Network’s Effect on Confusion Tendency
This is to evaluate the confusion tendency of the virality prediction classifier
on our data set. We measure confusion tendency by means of 10-fold cross

38 CHAPTER 7 EVALUATION

validation using each of the above graphs to generate feature vectors.
In k-fold cross validation, the training set is divided into k subsets (folds)

of equal size. One of these is used as validation data (from which the confusion
matrix is calculated) and the k − 1 others are used for training data. This is
repeated k times so that each subset has been used once for validation data,
after which the precision, etc. are averaged across the folds. As there is some
randomness to how random forests [7] are generated, we perform 100 such
tests for each graph.

7.4 Results
This section describes and discusses our experimental results. Our box-and-
whisker plots are of the standard (sometimes called Tukey) style: the box
encapsulates the data between Q1 and Q3, the crossbar shows the sample
median, and the whiskers extend to the farthest points that are within 1.5
times the interquartile range IQR = Q3 −Q1 of the box.

We generate the box plots from n = 2400 samples per visualization per
snapshot. We omit outliers (i.e. points that fall outside the whiskers) to avoid
overplotting; the most extreme outliers fall somwehere close to 300s.

7.4.1 Roundtrip latency
Uncached
Figure 7.1 shows the roundtrip latency of different visualizations for different
sizes of snapshots in our data set, with caching disabled. The largest snapshot
— the days around election night — is roughly 80 mb large.

The most obvious result here is that on-demand computation of visualiza-
tions is out of the question: the latency for even small snapshots is unreasonable
for all visualizations.

Virality prediction, shown in Sub-figure 7.1c, is the most computationally
intensive and as such has the longest latencies. It is also the most variable in
latency.

Wordcloud (Sub-figure 7.1d) has the tightest latency distributions, and
doesn’t seem to take longer time as snapshot size grows at this scale. A word-
cloud is basically a word count, which can be performed with one pass of the
data. The snapshots are mostly within the same order of magnitude in size, so
it’s not surprising that the wordcloud performs consistently.

7.4 RESULTS 39

0 20 40 60 80
snapshot size (MB)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140

la
te

n
cy

 (
s)

(a) Circos

0 20 40 60 80
snapshot size (MB)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140

la
te

n
cy

 (
s)

(b) Heatmap

0 20 40 60 80
snapshot size (MB)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140

la
te

n
cy

 (
s)

(c) Virality prediction

0 20 40 60 80
snapshot size (MB)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140

la
te

n
cy

 (
s)

(d) Wordcloud

Figure 7.1: Latency experiments without caching.

Cached
Figure 7.2 shows the effect of caching. Caching allows sub-second delivery of
all visualizations for all snapshot sizes.

The heatmap is the only visualization that takes noticeably longer to deliver
for larger snapshots. This is simply because it is the only one whose worker-
provided analytic grows with data size: wordcloud and Circos are sent as im-
ages, virality prediction is sent as a fixed-size list of likely hashtags. Heatmap re-
quests the force-directed positions of all vertices in the @-graph. The logarithm-
like growth of the heatmap latency suggests that the number of vertices in the
@-graph doesn’t grow as fast as data volume, which in turn suggests that the
users already participating generate more content.

7.4.2 Social Network Coverage
Table 7.1 shows the signal-to-noise ratio of the different graphs enumerated in
section 7.3.2 — i.e. how many of the 7842 hashtags that occur in our data set
have to be thrown away because the feature vectors generated with a given

40 CHAPTER 7 EVALUATION

0 20 40 60 80
snapshot size (MB)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

la
te

n
cy

 (
s)

(a) Circos

0 20 40 60 80
snapshot size (MB)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

la
te

n
cy

 (
s)

(b) Heatmap

0 20 40 60 80
snapshot size (MB)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

la
te

n
cy

 (
s)

(c) Virality prediction

0 20 40 60 80
snapshot size (MB)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

la
te

n
cy

 (
s)

(d) Wordcloud

Figure 7.2: Latency experiments with caching.

training set signal to noise

Following, full 0.99
@-graph, full 0.91
Following, reciprocal 0.90
@-graph, reciprocal 0.49
Kwak2010, full 0.27
Kwak2010, reciprocal 0.24

Table 7.1: Social network signal-to-noise ratios

graph turns out to be a handful of early adopters and then all zeroes: a direct re-
sult of there being no community structure around these early adopters.

The take-home message of table 7.1 is that the Kwak2010 graph, while
valuable as a research tool, is impractical to use on a real-world dataset. Simply
too many users have signed up since the graph was harvested.

The hand-harvested full follower–followee graph naturally has the best
coverage. The reason there is still some data missing is that some users have
privacy settings that prevents public access of their friend lists.

Reciprocal graphs generally have poorer coverage because of the asymmetri-
cal nature of twitter: an @-message isn’t a conversation, it is simply a direction
that the message is intended to go, and there is no reciprocity tied to a user
following another user.

7.4 RESULTS 41

7.4.3 Social Network’s Effect on Confusion Tendency
These experiments are both classification system evaluations and social net-
work experiments. They show how our implementation of the virality predictor
works, but they also show how different social network graphs affect predic-
tion.

The tables in this section show how the use of different social networks
to create training data affects accuracy, precision, and recall in the virality
prediction. We include two naive approaches that ignore features entirely —
random choice: uniformly output either true or false; and prior probability-
based choice: 90% of the time output true, 10% of the time output false.

This is where it is interesting to look at the reciprocal graphs; it’s tempting to
conjecture that reciprocal graphs would cause better predictions, as a reciprocal
relationship reflects closer, more stable social connections [64].

It is important to keep in mind that the below tables have been computed
on the necessarily curtailed training sets that result from the different graphs.
Kwak2010-full, for example, had its precision, recall, and accuracy computed
with the 27% of the original 7842 training vectors that weren’t all-zeros.

training set mean sd

Following, full 0.92 0.00028
@-graph, full 0.91 0.00030
Following, reciprocal 0.91 0.00033
@-graph, reciprocal 0.86 0.00060
Kwak2010, reciprocal 0.83 0.0018
Kwak2010, full 0.82 0.0012
Prior probability 0.82 n/a
Random Guess 0.50 n/a

Table 7.2: Classifier accuracy w.r.t. different graphs

As mentioned, we use a θU = 90% threshold for virality, By definition 90%
of all training vectors will be false, and 10% of all training vectors will be true.
Prior probability–based classification (pp) will, based on this knowledge, have
an accuracy of:

AcPP =
0.12 + 0.92

1
= 0.82

Random choice (rc) will have an accuracy of:

AcRC =
0.5 · 0.1 + 0.5 · 0.9

1
= 0.5

The full follower–followee graphworks best, but only by a small margin over
the full @-graph, which is much more readily available. Accuracy isn’t a very
good measure for how well the classifier performs, however. For an example,

42 CHAPTER 7 EVALUATION

it is very simple to design a classifier with 90% accuracy in this case: always
output false.

training set mean sd

Kwak2010, reciprocal 0.89 0.0047
Kwak2010, full 0.89 0.0061
Following, reciprocal 0.88 0.0075
Following, full 0.87 0.0075
@-graph, full 0.86 0.0056
@-graph, reciprocal 0.86 0.0072
Random choice 0.10 n/a
Prior probability 0.10 n/a

Table 7.3: Classifier precision w.r.t. different graphs

Table 7.3 shows the precision of virality prediction in terms of different
graphs used for training data. We compute the precision of our naive ap-
proaches as follows:

PPP =
0.12

0.12 + 0.9 · 0.1
= 0.1

PRC =
0.5 · 0.1

0.5 · 0.1 + 0.5 · 0.9
= 0.1

So while pp performed tolerable in terms of accuracy, 90% of the positives
it returns will be false positives. The Kwak2010 graphs performs the best, but
only by a small margin, and only on a small fraction of the original training
set.

training set mean sd

Kwak2010, reciprocal 0.52 0.0047
Random choice 0.50 n/a
Kwak2010, full 0.47 0.0033
@-graph, reciprocal 0.31 0.0022
Following, reciprocal 0.26 0.0018
@-graph, full 0.26 0.0023
Following, full 0.25 0.0019
Prior probability 0.10 n/a

Table 7.4: Classifier recall w.r.t. different graphs

Table 7.4 shows the recall of virality prediction w.r.t. the different graphs.
We compute the recall of our naive approaches as follows:

7.4 RESULTS 43

PPP =
0.12

0.12 + 0.1 · 0.9
= 0.1

PRC =
0.5 · 0.1

0.5 · 0.1 + 0.5 · 0.1
= 0.5

Only the training set created from the reciprocal Kwak2010 graph gets over
the seemingly low bar of rc.

8
Infinite Graph Partitioning
Streaming graph computation is a new and exciting field, and we would like
to move our system in the streaming direction. We have noticed that there is
no comparable system to STINGER [16], a multicore server type system, in
cluster computing; the closest contender is perhaps Microsoft’s Naiad [47],
which enables the embedding of iterative steps into a dataflow pipeline. This
chapter describes our first steps towards a streaming graph system for clusters.
We identify a novel graph partitioning problem, and propose and evaluate a
solution to this problem.

8.1 Partitioning Revisited
A first, important step towards a cluster streaming graph system is that of load-
ing the graph and partitioning the data. The state-of-the-art graph processing
systems mostly ignore graph structure and randomly assign vertices to comput-
ers by a fast, random hash partitioning. As discussed in Section 2.5, a random
partitioning will result in a very large edge cut and, as a consequence, cause a
punitive communication overhead.

To sidestep the NP-completeness of optimal graph partitioning, heuristic
methods have been developed. A recent paper by Stanton andKliot [57] presents
a thorough comparison of online partitioning heuristics that partition the graph
as it is loaded onto the cluster. Their model is that the graph arrives as a stream
of edge lists: a vertex arrives along with all its edges.

45

46 CHAPTER 8 INFINITE GRAPH PARTITIONING

8.2 Problem Description
The streaming model we’re interested in is the edge tuple model of STINGER.
The edge tuple model sees graph as an infinite stream of edge insertions, up-
dates, and deletions. The stream could be ordered any way at all, and there is
no hint about the topology of the graph. This makes a partitioning based on a
priori knowledge very difficult, as we describe in more detail below.

We initially assumed that the heuristics of Stanton and Kliot could be
adapted directly to a massive streaming setting, but early experiments with
their best heuristics produced very poor partitions. This is due to their model; in
an edge tuple stream situation (as opposed to edge list), the first time a vertex
appears in the stream, which is when it needs to be placed in a bin, exactly one
neighbor is known — the other vertex in the edge tuple. Hence it is useless to
assign the vertex to a bin based on neighbor-counting heuristics.

The problem is broader than the lack of useful neighbor information: there
is no a priori way of knowing how large the graph is either, so it is difficult to
know how many partitions are needed. Ideally a graph would be partitioned
only if it is large enough that a single machine can’t fit it in memory. Twit-
ter choose to run their Who To Follow service in such a way that the graph
computation can be performed out of memory on one fat server [27].

There are three implied levels of a priori graph knowledge in this chapter
so far. First, with full knowledge of the entire graph, any graph partitioning
scheme can be used; second, with the one-pass edge list streaming model of
Stanton and Kliot — a much stricter model — the several neighbor-counting
heuristics that they propose and evaluate can be used; third, and stricter still,
is the no-knowledge level of edge tuple streams. This is to our knowledge
unexplored territory, and it is what we focus on here:

How to partition an infinite and unknowable graph such that (i)
the cut is usefully smaller than that of random partitioning, and (ii)
the throughput of the partitioner is not too far from that of random
partitioning.

8.3 A Solution
We begin with some design considerations:

• It is neither necessary nor desirable to partition a graph that can fit in
the memory of a single machine.

• The expected cut size of random partitioning is 1 − 1
k , where k is the

number of partitions. If two or three partitions is enough, random may
be good enough. E.g., in natural graphs, where there is no cheap cut, a

8.3 A SOLUTION 47

cut of 50%–60% of all edges may be tolerably close to the best offline
heuristics. For large values of k, the cut will be massive.

• Randomly assigning some number of vertices to bins that already contain
large, good partitions will probably not affect the size of the edge cut
significantly.

• A partitioner should support several loaders.

The above suggests that if there is no knowledge about a vertex, it is just as
well to do optimistic, best-effort partitioning. As edge tuples accumulate into
a larger graph, however, there will be more information available, and it will
be possible to make better partitioning decisions.

optimistic
partitioning

∞ edge stream

dynamic
rearrangement

Figure 8.1: Graph partitioner high-level view: optimistic initial partitioning, dynamic
rearrangement of partitions as knowledge accumulates.

Our solution is similar to array resizing schemes. When using an array as a
dynamic data structure (e.g., when implementing a linked list ADT), it is usual
to start with a conservatively small array and then resize it if a larger array is
needed. This is done by first allocating a larger array, then copying the data
from the small array into the larger one and swapping pointers.

Hence, when working with an infinite edge stream, start with a conserva-
tively small number of workers — one, for instance — and repartition once it
is apparent that more machines are needed. And as nothing is known about
the node apart from a single neighbor, it is just as well to randomly assign
it. On repartitioning, more will be known about vertices, and more informed
partitioning can be performed.

Figure 8.2 illustrates this: an optimal 2-partition is shown in red and black.
Inactive workers are shaded grey. In step (i), there is not enough graph to
warrant more than one worker, and the edge cut is exactly ∅. In step (ii),

48 CHAPTER 8 INFINITE GRAPH PARTITIONING

∞ edges

∞

i.

ii.

feeders

workers

Figure 8.2: A possible infinite graph partitioning scheme: (i) shows one worker in
commission, (ii) shows another brought in and the graph repartitioned.

another worker has been commissioned, and the graph has been split into a
tolerable 2-partition.

If the graph shrinks sufficiently (through edge deletions) that it is unrea-
sonable to keep all workers in commission, the worker with the smallest load
(i.e. the fewest vertices) is decommissioned and its load is distributed to the
remaining workers according to the repartitioning heuristic.

8.4 Evaluation
Time constraints prevented us from creating a functioning prototype, but we
have performed offline simulations to show that our idea has merit.

Let E be the set of edges in a graph, and let C ⊂ E be the set of edges that
span partitions (the cut). We measure cut severity by |C |

|E | .
We create test graphs with a Kronecker generator [41] that we have im-

8.4 EVALUATION 49

plemented for an earlier project.¹ The reason we use these synthetic graphs is
that the Kronecker generator can make graphs of arbitrary sizes, and it simu-
lates power law edge distribution fairly well, which is the property that makes
real life graph partitioning so difficult. Also, the Graph500 benchmarks for
graph supercomputing² use a Kronecker generator, so it has potential for be-
coming a standard benchmarking tool with consistent and well-understood
properties.

The Kronecker generator takes two parameters scale and edge factor, and
will use these to create 2scale vertices with an average neighbor count equal
to the edge factor. For our experiment, we use a scale of 19 and an edge factor
of 15. The generator produces edge tuples one by one in a random ordering,
and as such is a perfect simulation of an edge stream.

Our baseline is random hashing—it’s the only real contender. We use Stan-
ton and Kliot’s Linear Deterministic Greedy (ldg) partitioner to repartition on
commissioning a new worker: let k be the number of available bins; let P t (i)
refer to bin i at time t ; let v be the vertex we wish to assign to a bin, and Γt (v)
be all of its known neighbors at time t . Finally, let c be the capacity constraint
of a bin (i.e. how many nodes can the worker hold in memory). The index of
the bin to which v should be assigned is determined by

ind = argmax
i ∈[k]

�|P t (i) ∩ Γt (v)|w(t ,i)� ,

where w(t ,i) = 1 − |P t (i)|
c is a linear weight function to encourage the assign-

ment of vertices to bins with lower load. In other words: assign v to the bin
in which it currenly has the most neighbors, weighted by this linear weight
function.

Figure 8.3 shows our offline evaluation with partitioning badness as a func-
tion of received vertices in the edge stream. We use the repartitioning-at-need
scheme described above in Section 8.3. The black line shows repartitioning by
random hashing and the red line shows repartitioning by ldg. We have set
the capacity constraint to 219

10 ≈ 52000 to simulate ten available workers. The
abrupt steps are when new workers are commissioned and the graph reparti-
tioned.

Our evaluation confirms all of our conjectures: (i) a single worker has an
empty edge cut, (ii) the second and third worker steps are comparable to hash
partitioning, and (iii) adding random-partitioned vertices to already cleaned-up
partitions does not cause a very steep rise in partition badness.

Point (i) is self-evident. Point (ii) stems from the observation of the expected
cut size of a random cut, which is tolerable for few partitions. Point (iii) can
be seen in a signal-to-noise light: if the signal is very strong, a comparatively
small amount of noise won’t make that much of a difference (i.e. won’t push
the signal-to-noise ratio very far).

1. http://github.com/transmetro/krongen
2. http://www.graph500.org/

50 CHAPTER 8 INFINITE GRAPH PARTITIONING

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000

Ed
ge

s
cu

t p
er

 e
dg

es
 to

ta
l

N.o. vertices

Figure 8.3: Offline simulation of the proposed solution to measure the edge cut of
pure hashing (black) vs. hashing with rebalancing (red).

As a final remark, the use of random partitioning at load timemakes the task
of node assignment embarrassingly parallel, so that arbitrarily many loaders
can work in parallel. This is useful for large-scale systems; it’s impractical to
crawl the web from a single machine.

9
Discussion and RelatedWork
9.1 Our System as a Whole
We have built and evaluated a system for exploratory analysis through visu-
alization. Visual analysis, as all analysis, could either be hypothesis-based or
exploratory. Hypothesis-based analysis is in the safe realm of Popper’s “falsifi-
ability, or refutability, or testability” [49], where the researcher has a specific
hypothesis, and seeks to either confirm or refute it. Exploratory analysis is on
shakier philosophical ground; the approach is more about having a data set
known to be in some way relevant, but letting the data suggest hypotheses to
test. This is necessarily more risky (and indeed receives fewer research grants
than does hypothesis testing [29]). We harvest data from Twitter and visualize
it without really knowing that there is anything about the data to recommend
its exploration; hence we fall within the more extreme realms of exploratory
analysis.

Our experiments show that it is in most cases strictly necessary to do either
partial or full pre-computation of visualizations to provide the responsiveness
required for the scattergun-approach to visualization. This is especially clear in
the cases where we deal with graph computation, which is notoriously complex
and difficult to parallelize (cf. Section 2.5). As we have already mentioned,
the aesthetics of graph drawing are mostly NP-hard [3], and although we use
some of the fastest algorithms available for graph layouts [34] and community

51

52 CHAPTER 9 DISCUSSION AND RELATED WORK

detection [4], we are unable to provide visualizations on-demand at anything
near acceptable times without pre-computation and caching, even at the small
scale that we work with here. However, a display wall is an ideal setting for
such problems, as it has not only the resolution to display visualizations at scale,
but also the compute power to perform the necessary pre-computation.

It is clear that we either have to refine our implementation to pre-compute
more aggressively (i.e. at all), or change our design to either (i) employ a
pipelining scheme such as that of Naiad [47], or (ii) go full streaming as dis-
cussed below. This latter point (ii) would necessitate serious novel work in both
systems and algorithms.

Display walls have only recently reached the point where people are starting
to figure out how and why they are useful. Ruddle et al. [53] provide visual
comparative genomics analysis of copy number variation. Their work can be
said to leverage the full potential of display walls (in their words “WHirDs”)
in that they use the compute power as well as the screen real-estate that a
display wall provides. Fjukstad et al. [20] provide high-resolution weather
forecast visualization, where the display wall is used purely as a very large
display; Hibbs et al. [31] provide comparative analysis of microarray datasets
on a display wall. These systems provide either a comparison of several data
sets or a large-scale view of one data set. Our system provides many smaller
parallel views of the same data set.

The commercial business intelligence software Tableau¹ has a similar “mul-
tiple views of the data” philosophy to ours, and can suggest visualizations for
your data. In this sense, our system is similar to having many Tableaux showing
different things.

As a final note, the Norwegian Broadcasting Company (NRK) used both a
display wall and interaction spaces in their 2013 election night coverage.²

9.2 Towards Streaming: Infinite Partitioning
We have identified the infinite edge stream partitioning problem and provided
what is to our knowledge the only work on this exact problem. We propose and
evaluate a partitioner for the infinite edge stream that compares favorably to its
only real contender: the industry standard of random hash partitioning.

The field of graph partitioning is too broad to provide anything near a
complete overview,we will restrict ourselves to observing that other work either
ignores graph structure entirely [43, 44], or works with different assumptions
and models than we do [26, 57].

1. http://www.tableausoftware.com/
2. http://nrkbeta.no/2013/08/08/spillteknologi-i-nrks-valgstudio/

9.3 VIRALITY PREDICTION 53

9.3 Virality prediction
Our virality prediction system is an implementation of the work of Weng et
al. [64] and as such provides nothing new in itself. It is however an application
of the method to a specific real-world data set, and as such an interesting
exercise.

We kept to a θU = 90% threshold (as opposed to several thresholds) for
simplicity. Weng & al. report the following θU = 90% numbers:

Precision 0.62
Recall 0.42

Table 9.1: Results reported in Weng et al.

We achieved vastly better precision in all our cases and better recall in two
cases — cf. tables 7.3 and 7.4. Our data set is much smaller than theirs (∼ 7800
vs. ∼ 10 000 000) and more specialized than theirs (Norwegian politics vs the
random sample provided by Twitter). We conjecture that our results are due
to the specialized nature of the data set, but we can’t rule out over-fitting. We
use the 10-fold cross-validation of the original authors.

It is unclear how Weng & al. gather their social network (the raw tweet
data were gathered from the Twitter random sample stream), or how heavy
their graph computations were from a systems perspective — we were forced
to use only the immediate social network around the users in our streamed
data (a one-step breadth first search) to make the computations faster.

The main result that came out of our investigations of virality prediction
and social networks was the impracticability of using the Kwak2010 data set
for recent Twitter data, as it only covers a small part of the users that are likely
to tweet today.

The work of Weng & al. is very similar to that of Romero et al. [52]; the two
papers came out around the same time (2013) and seem to have been conceived
and written in parallel with each other. Romero et al. use a simpler predictive
model. Cheng et al. [10] published a 2014 paper on predicting the growth of an
information cascade, but rather than specifying a binary viral/not viral type of
classifier, they look at the prediction of whether a cascade will double in size,
which seems like a more sophisticated and realistic approach.

9.4 Our Prototype and Case Study
We have held several informal demonstrations of our system for armchair ana-
lysts, this section outlines reactions to- and experiences with the system and
the data set. Figure 9.1 shows an excited audience.

54 CHAPTER 9 DISCUSSION AND RELATED WORK

Figure 9.1: Armchair analyst.

First, the interface is cumbersome. Using a terminal to interface with a
display wall that has the interfaces described in Section 3.3 feels unnatural.
It is not immediately apparent to people that the visualizations are arranged
in a time series (“needs labels”), and people would like the virality predictor
to show several candidates instead of the single one it shows now (“could the
hash tag predictor also be a wordcloud?”).

On the other hand the system is very responsive when caches warm, as our
experimental evaluation also shows, and people enjoy digging around in the
different visualizations.

Figure 9.2 shows the heatmap of the communication graph in the weeks
around the election (a snapshot is three days). We see activity increasing, peak-
ing at the snapshot that contains election night, and dropping off slightly af-
ter election night — these latter also showing signs of community clustering
that might warrant closer investigation. A problem with the heatmaps is that
early in the election run-up, where activity was orders of magnitude lower, the
heatmaps look very small and sparse as a result of having been scaled rela-
tive to the densest periods. Finally the maps could benefit from some clearer
indication of original graph size in terms of |V| and |E|.

The Circos visualizations ended up showing a surprising analytic. We made
the circos plot so that it would show the 25 most active users of the commu-
nication graph, their interactions among one another, and their interactions
with the community (somewhat arbitrarily defined as “the users that aren’t
the 25 most active”). We had expected the top communicators to be catch-all
political party accounts, media outlet accounts, and similar, but one account
that was consistently in the top 25 (see figure 9.3) was simply a private citizen.
What’s more, this user was consistently the most active in interfacing with the

9.4 OUR PROTOTYPE AND CASE STUDY 55

Figure 9.2: The time around election week

community (indicated by the greenish band that crosses over toward the huge
red field off-figure, and its being much thicker than the other non-red bands).
This top player in Twitter politics describes herself as “mother of two and a
supporter of the Progress Party”. The other accounts in the top 25 seem to
communicate mostly among themselves. This is the kind of storytelling, we
imagine, that a tabloid journalist would love.

Figure 9.4 shows wordclouds generated from the tweets in the election
night snapshot and the three snapshots following election night. Common and
central to all is “frp”: the acronym for the Progress Party. This isn’t particular
to these snapshots, it’s a trend throughout the data set. We conjecture that this
is because the Norwegian Progress Party, if not universally well-liked, univer-
sally stirs emotions. More interesting are the words frequently occurring post
election night such as “throwback,” “class inequality,” “right-wing populism,”
etc.

Finally, the wordclouds provided a handy way to check whether the virality
predictor was doing its job: if a hashtag is projected as potentially viral and
later occurs in a word cloud, this should be counted as a success.

56 CHAPTER 9 DISCUSSION AND RELATED WORK

Figure 9.3: A mom that is very interested in progress

9.4 OUR PROTOTYPE AND CASE STUDY 57

frphø
yr

e debatten

venstre

si
v

je
ns

en

ko
m

m
er

krf

m
or

na

regjering

m
en

s

rø
dt

gledet leeeenge

ov
er

ga
ng

sa
ld

er
en

erna so
lb

er
g

sier

får

snikislamisering

går

m
en

er mer

politikk

bør

litt

tybringgjedde

va
lg

parti

vel

mye

norge

fr
ps

hei

arbeiderpartiet

slutten

dag

kanskje

mangler

nok

tror

httptcoaxnpfvne

helt

kutter

ber
bilder

httptcoehwyuegn

leaked

on
lin

e

senterpartiet

nyheter

ta
r

an
dr

e

mest

partiet

egentlig

gang

gj
ør

godt

lagt

ne
w

gjøre

va
lg

et

ig
je

n

br
uk

t

står

bra

gir

regjeringskabal

st
em

m
er

ansvar

bu
rd

e

drar

jens

vgkabal

fikk

folk

nei

rett ser

asylbarna

hele

høre

lenge

like

no
rg

es

vei

annet

fly
kt

ni
ng

er

po
lit

is
k

regjeringen
store

al
t

hå
r

kommuner

ve
lg

er
e

ve
t

ca
rl

fr
em

sk
rit

ts
pa

rt
ie

t

kaller frp
siv

valg

jensen

jens

erna
høyre

sier
ly

kk
e

m
or

na

re
gj

er
in

g

ve
l

solberg

krf

eg
en

tli
g

klasseforskjell

bu
rd

e

venstrefremskrittspartiet

får

no
rg

e

tatt

stort
ka

lle
r

nr
kv

al
g

st
re

ng
t

folkstoltenberg

he
te

m
oo

nw
al

kp
ar

tie
t

tilbakeskritt

va
lg

et

tenkte

gratulerer

går

no
k

ko
m

m
er

politikk

helt

pa
rt

i

stemme
rø

dt

lit
t

da
g

se
r fin

an
sm

in
is

te
r

talen

mer

vant

mye st
em

te

håper

bra

stemmer

ne
i

tr
or

bør

st
at

sm
in

is
te

r

neste

ar
be

id
er

pa
rt

ie
t

landet alt

fa
kt

is
k

godt

nye

hele

gjøre

os
lo

ta
r

va
lg

re
su

lta
te

ne

gang

sy
ne

s

fik
k

ka
ns

kj
e

står

boss

si
tte

r
te

en
ag

e

breivik

si
gb

jø
rn

drøyeste

johnsenblir

ut
ga

ve
n

un
de

r

an
dr

e
fire

heller

lik
e

m
es

t

ve
t

gj
ør

første ta
kk

norges

stortingettilbake

vi
rk

el
ig

bedre

dagen
bompenger

frp
siv

jensen

høyre

rødt

hø
yr

ep
op

ul
is

tis
k

er
na

venstre

pa
rt

i

gang

ne
st

e

krf

or
d

husk

hjertet
viktigere

va
lg

fine

snak jens
regjering

sier

få
r

vel

morna

solberg
nei

kort

kalle

kalt

mener

folk

aldri

mer

gj
ør

norge

se
r

go
dt

he
lt

litt

bør

holmås

an
dr

e

burde

st
ol

te
nb

er
g

tr
or

mens

skjønner

gå
r

norsk
valget

populistisk

synes

egentlig

hø
yr

ep
op

ul
is

m
e

lik
er

politikk

tar

he
le

stemme

ab
b

høyrepopulister

mye

står

sunket

om
ta

lt

la
vm

ål
et

kommer

hareide

partiet

dag

ht
tp

fr
em

sk
rit

ts
pa

rt
ie

t
he

ik
ki

kanskje

ka
lle

r

like

partier

sk
ei

st
em

m
er

utlandet

venstresiden

carl go
d

la
ng

t

nok

si
st

e

un
ns

ky
ld

ni
ng

ber

karikert

nye

sagt

ht
tp

tc
ov

oe
pl

d

ve
t

fin
ne

r

fortsatt
friskus

he
lle

r

høyrepopulistiske

makt frp
siv

je
ns

en morna

kommer

mens

høyre
gledet leeeenge

overgangsalderen

venstre

krf

rø
dt

erna

regjering

sier

solberg

får

sn
ik

is
la

m
is

er
in

g

pressekonferanse

valg

jens

da
g

fr
ps

parti

no
rg

e
sk

riv
er

politikk

ve
l

gå
r

se
r

bra litt

hvitvasking

nok

mer

m
ye

fo
lk

internasjonale

kort

pr
es

se

fik
k

vet

andre

engelsk

pr
es

se
ko

nf
er

an
se

n
se

nt
er

pa
rt

ie
t

bør

kl
am

sk
rit

tp
k

mener

stoltenberg

gang

lik
e

står

va
lg

et

alt

fin
ne

r

utlandet

ab
b

god

ne
st

e

tr
or

arbeiderpartiet

kommentar

or
d

sandra

siste

tybringgjedde

al
dr

i
go

dt

re
tt

ut
en

la
nd

sk

gjør

kanskje

borch

borgerlige

idet

tar

internasjonal
sagt

he
lt

mensen

ny
he

te
r

sluttet

synes

utenlandske

nrkvalg

stemme

dax

under

fle
re

fått

gj
or

t

håper

m
ed

ia

have

ne
i

norsk

partiet aftenposten

Figure 9.4: Post-election disillusionment

10
Concluding Remarks
This work has been a study in social network analysis in general, and Twitter
visual analysis in particular. Our thesis that display wall architectures are well-
suited to multi-faceted visualization and storytelling largely holds up. The
evaluation shows that it is strictly necessary to use clever pre-computation, or
pipelining, or streaming to meet the strict latency requirements of providing
visualization interactively fast. In general, what seems up front to be a straight-
forward task often isn’t: creating visualizations for a data set comprising about
400 mb of data — a truly tiny data set by today’s standards — might incur
worst-case latencies of hundreds of seconds.

Our contributions:

• We have designed, built, and evaluated a prototype for the scattergun
approach to social network visualization, providing insights into how
such a system should be realized (Chapters 3, 5, 7, and 9).

• We have found that our prototype does indeed uncover interesting stories
in our case study data set (Section 9.4).

• We provide an overview of the different ways of gathering social media
(Chapter 6) data and evaluate how these impact state-of-the-art trend
prediction (Section 7.4).

• We identify the infinite edge stream partitioning problem. We propose
and evaluate a solution to this problem (Chapter 8), showing that it
compares favorably with the state of the art.

59

60 CHAPTER 10 CONCLUDING REMARKS

10.1 Future Work
On the visualization side, our prototype could benefit frommoremeta-information.
Instead of scaling all heatmaps relative to the densest and largest among them,
it would be a good idea to do relative scaling within orders of magnitude, and
color-code different orders of magnitude. To more clearly show that visualiza-
tions are shown in a time-series, the snapshot time range should be displayed
somewhere. Graph sizes in terms of number of vertices and edges would also
be handy.

For smoother interaction, the prototype should be hooked up to the inter-
action spaces that the Tromsø Large Display Wall offers to replace the cumber-
some command line interface. It would also be interesting to provide several
levels of detail, for e.g. that the user could select a particular visualization for
a particular snapshot and blow it up on the entire wall, or show a finer-grained
view. This especially applies to the heatmaps, which hide a lot of informa-
tion.

The prototype, though in many ways quite unstable, works well enough
that it would be beneficial to present it to experts such as social scientists or
journalists to get some concrete feedback on what would be a sensible direction
to expand the system.

The system as it is only works on small scales, we should either branch out
in streaming, and build a working prototype with functionality similar to that
of STINGER [2]; or use clever pipelining schemes similar to those provided in
Naiad [47].

Finally, we would like to expand our trend prediction evaluation and look
at feature selection experiments. Weng et al. [64] indirectly provide a feature
selection conjecture in observing that viral cascades seem to spread as simple
contagions, which suggests that the features we use may be overkill, and per-
haps even that we only need the simplest features such as “number of early
adopters” and “number of uninfected neighbors.” We also believe that our sys-
tem would be well-suited for online learning instead of the offline learning we
do now.

Bibliography
[1] O Anshus, Daniel Stødle, T Hagen, Bård Fjukstad, J Bjørndalen, L Bongo,

Yong Liu, and Lars Tiede. Nine years of the tromsø display wall, 2013.
[2] David A Bader, Jonathan Berry, Adam Amos-Binks, Daniel Chavarría-

Miranda, Charles Hastings, Kamesh Madduri, and Steven C Poulos.
Stinger: Spatio-temporal interaction networks and graphs (sting) exten-
sible representation. Georgia Institute of Technology, Tech. Rep, 2009.

[3] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G Tollis.
Algorithms for drawing graphs: an annotated bibliography. Computational
Geometry, 4(5):235–282, 1994.

[4] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. Fast unfolding of communities in large networks. Journal of
Statistical Mechanics: Theory and Experiment, 2008(10):P10008, 2008.

[5] John Bohannon. Twitter offers entire data pool, but some wary of diving
in. Science, 343(6174):958, 2014.

[6] Stephen P. Borgatti, Ajay Mehra, Daniel J. Brass, and Giuseppe Labianca.
Network analysis in the social sciences. Science, 323(5916):892–895, 2009.

[7] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[8] Samuel F Bunting and Andre Nussenzweig. End-joining, translocations

and cancer. Nature Reviews Cancer, 13(7):443–454, 2013.
[9] Declan Butler. When google got flu wrong. Nature, 494(7436):155, 2013.
[10] Justin Cheng, Lada Adamic, P Alex Dow, Jon Michael Kleinberg, and Jure

Leskovec. Can cascades be predicted? In Proceedings of the 23rd interna-
tional conference on World wide web, pages 925–936. International World
Wide Web Conferences Steering Committee, 2014.

[11] Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catanzaro, and
Ng Andrew. Deep learning with cots hpc systems. In Proceedings of The
30th International Conference on Machine Learning, pages 1337–1345, 2013.

[12] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Quoc V Le, Mark Z Mao, Marc’Aurelio Ranzato, Andrew W Senior, Paul A
Tucker, et al. Large scale distributed deep networks. In NIPS, pages
1232–1240, 2012.

[13] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data process-
ing on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[14] Edsger W Dijkstra. Letters to the editor: go to statement considered

61

62 BIBLIOGRAPHY

harmful. Communications of the ACM, 11(3):147–148, 1968.
[15] Peter Eades. A heuristics for graph drawing. Congressus numerantium,

42:146–160, 1984.
[16] David Ediger, Robert McColl, Jason Riedy, and David A Bader. Stinger:

High performance data structure for streaming graphs. In High Perfor-
mance Extreme Computing (HPEC), 2012 IEEE Conference on, pages 1–5.
IEEE, 2012.

[17] David Ediger, Jason Riedy, David A Bader, and Henning Meyerhenke.
Tracking structure of streaming social networks. In Parallel andDistributed
Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE International
Symposium on, pages 1691–1699. IEEE, 2011.

[18] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From
data mining to knowledge discovery in databases. AI magazine, 17(3):37,
1996.

[19] Miroslav Fiedler. A property of eigenvectors of nonnegative symmetric
matrices and its application to graph theory. Czechoslovak Mathematical
Journal, 25(4):619–633, 1975.

[20] B Fjukstad,O Anshus, and J Bjørndalen. High resolution numericalmodels
on a display wall. In The 7th Annual Meeting of the European Meteoro-
logical Society (EMS) and the 8th European Conference on Applications of
Meteorology. Citeseer, 2007.

[21] Bjørn Fjukstad. NOWAC Data Exploration. http://bdps.cs.uit.no/papers/
capstone-bjorn.pdf, 2013.

[22] Thomas MJ Fruchterman and Edward M Reingold. Graph drawing by
force-directed placement. Software: Practice and experience, 21(11):1129–
1164, 1991.

[23] Michael R Garey, David S. Johnson, and Larry Stockmeyer. Some simpli-
fied NP-complete graph problems. Theoretical computer science, 1(3):237–
267, 1976.

[24] Jim Giles. Making the links. Nature, 488(7412):448–450, 2012.
[25] Sharad Goel, Jake M Hofman, Sébastien Lahaie, David M Pennock, and

Duncan J Watts. Predicting consumer behavior with web search. Proceed-
ings of the National Academy of Sciences, 107(41):17486–17490, 2010.

[26] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos
Guestrin. Powergraph: Distributed graph-parallel computation on natural
graphs. In Proceedings of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 17–30, 2012.

[27] Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma, Dong Wang, and
Reza Zadeh. Wtf: The who to follow service at twitter. In Proceedings
of the 22nd international conference on World Wide Web, pages 505–514.
International World Wide Web Conferences Steering Committee, 2013.

[28] Tor-Magne Stien Hagen. Interactive visualization on high-resolution
tiled display walls with network accessible compute-and display-resources.
2011.

http://bdps.cs.uit.no/papers/capstone-bjorn.pdf
http://bdps.cs.uit.no/papers/capstone-bjorn.pdf

BIBLIOGRAPHY 63

[29] Chris Haufe. Why do funding agencies favor hypothesis testing? Studies
in History and Philosophy of Science Part A, 44(3):363–374, 2013.

[30] Susan Havre, Beth Hetzler, and Lucy Nowell. Themeriver: Visualizing
theme changes over time. In Information Visualization, 2000. InfoVis 2000.
IEEE Symposium on, pages 115–123. IEEE, 2000.

[31] Matthew Hibbs, Grant Wallace, Maitreya Dunham, Kai Li, and Olga Troy-
anskaya. Viewing the larger context of genomic data through horizontal
integration. In Information Visualization, 2007. IV’07. 11th International
Conference, pages 326–334. IEEE, 2007.

[32] Einar J Holsbø, Phuong H Ha, and Otto J Anshus. The big digger &
puzzler system for harvesting & analyzing data from social networks.
Norsk informatikkonferanse (NIK), 2013, 2014.

[33] John Hopcroft and Robert Tarjan. Algorithm 447: Efficient algorithms for
graph manipulation. Commun. ACM, 16(6):372–378, June 1973.

[34] Yifan Hu. Efficient, high-quality force-directed graph drawing. Mathe-
matica Journal, 10(1):37–71, 2005.

[35] Owen Kaser and Daniel Lemire. Tag-cloud drawing: Algorithms for cloud
visualization. arXiv preprint cs/0703109, 2007.

[36] Donald E. Knuth. The Stanford GraphBase: A Platform for Combinatorial
Computing. ACM, New York, NY, USA, 1993.

[37] Tor Kreutzer. Harvest: a collaborative system for distributed retrieval of
social data. 2012.

[38] Martin I Krzywinski, Jacqueline E Schein, Inanc Birol, Joseph Connors,
Randy Gascoyne, Doug Horsman, Steven J Jones, and Marco A Marra. Cir-
cos: An information aesthetic for comparative genomics. Genome Research,
2009.

[39] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What
is twitter, a social network or a news media? In Proceedings of the 19th
international conference on World wide web, pages 591–600. ACM, 2010.

[40] David Lazer, Ryan Kennedy, Gary King, and Alessandro Vespignani. The
parable of google flu: Traps in big data analysis. Science, 343(6176):1203–
1205, 2014.

[41] Jurij Leskovec, Deepayan Chakrabarti, Jon Kleinberg, and Christos Falout-
sos. Realistic, mathematically tractable graph generation and evolution,
using kronecker multiplication. In Knowledge Discovery in Databases:
PKDD 2005, pages 133–145. Springer, 2005.

[42] Kai Li, Han Chen, Yuqun Chen, Douglas W Clark, Perry Cook, Stefanos
Damianakis, Georg Essl, Adam Finkelstein, Thomas Funkhouser, Timothy
Housel, et al. Building and using a scalable display wall system. Computer
Graphics and Applications, IEEE, 20(4):29–37, 2000.

[43] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo
Kyrola, and Joseph M Hellerstein. Distributed graphlab: a framework for
machine learning and data mining in the cloud. Proceedings of the VLDB
Endowment, 5(8):716–727, 2012.

64 BIBLIOGRAPHY

[44] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for
large-scale graph processing. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, pages 135–146. ACM,
2010.

[45] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a
feather: Homophily in social networks. Annual review of sociology, pages
415–444, 2001.

[46] Fred Morstatter, Jürgen Pfeffer, Huan Liu, and Kathleen M Carley. Is the
sample good enough? comparing data from twitter’s streaming api with
twitter’s firehose. Proceedings of ICWSM, 2013.

[47] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martin Abadi. Naiad: a timely dataflow system. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
pages 439–455. ACM, 2013.

[48] M. E. J. Newman and M. Girvan. Finding and evaluating community
structure in networks. Phys. Rev. E, 69:026113, Feb 2004.

[49] Karl Popper. Conjectures and refutations. the growth of scientific knowl-
edge. london and new york, 1963.

[50] Helen C Purchase, Robert F Cohen, and Murray James. Validating graph
drawing aesthetics. In Graph Drawing, pages 435–446. Springer, 1996.

[51] N Quinn and Melvin A Breuer. A forced directed component placement
procedure for printed circuit boards. Circuits and Systems, IEEE Transac-
tions on, 26(6):377–388, 1979.

[52] Daniel M Romero, Chenhao Tan, and Johan Ugander. On the interplay
between social and topical structure. In Proc. AAAI Intl. Conf. on Weblogs
and Social Media, 2013.

[53] Roy A Ruddle, Waleed Fateen, Darren Treanor, Peter Sondergeld, and Phil
Ouirke. Leveraging wall-sized high-resolution displays for comparative
genomics analyses of copy number variation. In Biological Data Visualiza-
tion (BioVis), 2013 IEEE Symposium on, pages 89–96. IEEE, 2013.

[54] Robert Sedgewick. Algorithms in c, part 5: Graph algorithms, 2002.
[55] Dafna Shahaf, Carlos Guestrin, and Eric Horvitz. Metromaps of science. In

Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1122–1130. ACM, 2012.

[56] Marc A Smith, Lee Rainie, Itai Himelboim, and Ben Shneiderman. Map-
ping Twitter Topic Networks: From Polarized Crowds to Community Clus-
ters. The Pew Research Center, pages 1–57, 2014.

[57] Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large
distributed graphs. In Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1222–1230. ACM,
2012.

[58] G. Strang. Linear Algebra and Its Applications. Thomson, Brooks/Cole,
2006.

BIBLIOGRAPHY 65

[59] Daniel Stødle. Device-Free Interaction and Cross-Platform Pixel Based Out-
put to Display Walls. PhD thesis, Ph. d. thesis, Uni. of Tromsø, 2009.

[60] Daniel Stødle, Olga Troyanskaya, Kai Li, and Otto J Anshus. Tech-note:
Device-free interaction spaces. In 3D User Interfaces, 2009. 3DUI 2009.
IEEE Symposium on, pages 39–42. IEEE, 2009.

[61] Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition,
Fourth Edition. Academic Press, 4th edition, 2008.

[62] Jeffrey Travers and Stanley Milgram. An experimental study of the small
world problem. Sociometry, 32(4):425–443, 1969.

[63] Leslie G Valiant. A bridging model for parallel computation. Communica-
tions of the ACM, 33(8):103–111, 1990.

[64] Lilian Weng, Filippo Menczer, and Yong-Yeol Ahn. Virality prediction and
community structure in social networks. Scientific reports, 3, 2013.

[65] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker,
and Ion Stoica. Spark: cluster computing withworking sets. In Proceedings
of the 2nd USENIX conference on Hot topics in cloud computing, pages 10–10,
2010.

[66] Leishi Zhang, A. Stoffel, M. Behrisch, S. Mittelstadt, T. Schreck, R. Pompl,
S. Weber, H. Last, and D. Keim. Visual analytics for the big data era —
a comparative review of state-of-the-art commercial systems. In Visual
Analytics Science and Technology (VAST), 2012 IEEE Conference on, pages
173–182, Oct 2012.

A
Streaming search terms

keywords = [
"valg 2013",
"valg2013",
"arbeiderpartiet",
"kristelig folkeparti",
"krf",
"frp",
"fremskrittspartiet",
"høyre",
"sosialistisk venstreparti",
"senterpartiet",
"venstre",
"rødt",
"stortingsvalg",
"nrkvalg",
"stortingsvalget",
"erna solberg",
"jens stoltenberg",
"siv jensen"

]

67

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and Idea
	1.2 Thesis Outline
	1.3 Contributions

	2 Networks, Graphs, and Visualization
	2.1 Graph Terminology
	2.2 Social Networks and Complex Graph Structures
	2.3 Visual Analytics
	2.3.1 Graph Visualization
	2.3.2 Text Visualization

	2.4 Graph Processing
	2.5 The Problem of Distributing Complex Graphs

	3 Architecture and Design
	3.1 Requirements and Design Considerations
	3.2 System Design
	3.3 Display Wall Technology

	4 Implemented Visualizations
	4.1 Longitudinal Studies
	4.2 Force Direction and the Hairball Problem
	4.3 Lexical Analysis
	4.4 Circos
	4.5 Virality predictor
	4.5.1 Labeling
	4.5.2 Features
	4.5.3 Community detection
	4.5.4 Training and Classification

	5 System Implementation
	5.1 Communication
	5.2 Master
	5.3 Drawers
	5.3.1 Visualization hints

	5.4 Workers
	5.5 Loaders

	6 Case Study Data Set
	6.1 Tweet Anatomy
	6.2 Tweet Harvest
	6.3 Data Set Volume
	6.4 Social Network Harvest
	6.5 Words of Caution About Twitter, Big Data, and Sampling Bias

	7 Evaluation
	7.1 Metrics
	7.2 Experimental platform
	7.3 Experiments
	7.3.1 Roundtrip Latency
	7.3.2 Social Network Coverage
	7.3.3 Social Network's Effect on Confusion Tendency

	7.4 Results
	7.4.1 Roundtrip latency
	7.4.2 Social Network Coverage
	7.4.3 Social Network's Effect on Confusion Tendency

	8 Infinite Graph Partitioning
	8.1 Partitioning Revisited
	8.2 Problem Description
	8.3 A Solution
	8.4 Evaluation

	9 Discussion and Related Work
	9.1 Our System as a Whole
	9.2 Towards Streaming: Infinite Partitioning
	9.3 Virality prediction
	9.4 Our Prototype and Case Study

	10 Concluding Remarks
	10.1 Future Work

	Bibliography
	A Streaming search terms

