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Abstract  
Swath bathymetry, high resolution seismic data and sediment cores were analyzed to 

reconstruct the Late Weichselian and Holocene sedimentary environments and glacier 

dynamics in Woodfjorden, Bockfjorden and Liefdefjorden, north Spitsbergen. 

Mega-scale glacial-lineations provide evidence of fast-flowing grounded ice draining the 

northwestern parts of the Late Weichselian Svalbard Barents Sea Ice Sheet. Numerous 

recessional moraines suggest that the deglaciation of the study area occurred stepwise, 

whereas the deep outer parts of Woodfjorden were deglaciated relatively rapidly (up to ~200 

m/yr). The ice fronts retreated slower (~160 m/yr to 50 m/yr) in the shallower middle and 

inner parts.  

Suspension settling, as well as ice-rafting from icebergs and sea-ice, are the dominating 

sedimentary processes. Ice-rafting becomes of relative higher importance with increasing 

distance from the fjord heads. Sediment supply from tidewater glaciers has a large influence 

in Liefdefjorden, suspension settling from glacifluvial runoff is higher in inner Woodfjorden 

and in Bockfjorden. The core data show a strong correlation of color and geochemical 

properties so that these proxies can be applied to study the influence of sediment sources on 

the study area over time. Red and Ca-rich sediments are indicative for sediments derived from 

Woodfjorden; brownish and Fe-rich sediments are characteristic proxies for sediment from 

Liefdefjorden. 

Enhanced ice-rafting and dominant sediment delivery from Woodfjorden occurred between 

~13,350 and ~13,200 cal. yr. BP. This was followed by an increase in sediment supply from 

Liefdefjorden until ~12,800 cal. yr. BP. Decreasing ice-rafting, likely related to increased sea-

ice cover and cooler surface conditions, occurred from ~12,800 to 12,100 cal. yr. BP. This 

might be related to climatic cooling during the Younger Dryas. A peak in IRD around 

~10,000 cal. yr. BP is inferred to indicate the final phase of deglaciation in Woodfjorden. 

Increases in ice-rafting from icebergs and sea-ice between ~6200 and ~5000 cal. yr. BP are 

probably related to a regional cooling. Reduced ice rafting occurred repeatedly during the last 

~4000 years, most probably related to the ongoing cooling. The sediment derived mainly 

from Liefdefjorden. However, periods of enhanced ice-rafting occurred repeatedly until 

~1500 cal.  
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1. Introduction  
1.1 Objectives 
This master thesis was carried out at the Department of Geology at the University of Tromsø, 

The Arctic University of Norway, from January 2013 to May 2014. In the process of writing 

the thesis four sediment cores, swath bathymetry data and seismic profiles from the fjords 

Woodfjorden, Bockfjorden and Liefdefjorden, north Spitsbergen (see Fig. 2.1 in Chapter 2 – 

Study area), were analysed to: 

- Establish litho- and seismo- stratigraphies for the investigated fjords 

- Investigate sedimentary processes and environments in these fjords from the last 

glacial to the present 

- Identify and describe sediment sources and estimate sedimentation rates 

- Reconstruct the dynamics and chronology of glacial activity during the last glacial, the 

deglaciation and postglacial times, and thus, improve the understanding of the 

northern Spitsbergen. 

  

1.2 Background 
The areas of investigation in this study are the fjords Woodfjorden, Bockfjorden and 

Liefdefjorden on north Spitsbergen (Fig. 2.2). Fjords are frequently used in 

palaeoenvironmental research because they form excellent archives of climate changes in the 

past. Furthermore, high sedimentation rates in these settings allow us to study such variations 

with high temporal resolution. The seafloor and shallow sub-seafloor of fjords on Svalbard 

often reveal well-preserved submarine glacial landforms and continuous marine sedimentary 

records (e.g. Elverhøi et al., 1995; Landvik et al., 1998; Dowdeswell & Elverhøi, 2002; 

Ottesen et al., 2005; 2007). These can provide information about the characteristics and 

dynamics of glaciers and sedimentary processes operating in the fjord from the last glacial to 

the present (e.g Slubowska-Woldengen et al., 2007; Forwick & Vorren, 2009). It also gives 

indications of on-going processes in and around the Arctic as they are not yet fully 

understood.   
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Fjords on Svalbard are ideal for investigations for mainly two reasons; 

1) Their location in the Northern Hemisphere. The position of Svalbard in the Barents 

Sea is especially important because both terrestrial and marine records on and around 

Spitsbergen are used for investigations of the growth and decay of the large marine-

based Svalbard-Barents Sea Ice Sheet (SBIS). The dynamics of marine-based ice 

sheets are poorly understood, and thus, reconstructions of the SBIS may be seen as an 

analogue to modern marine-based ice sheets such as the West Antarctic Ice Sheet (e.g. 

Jakobsson et al., 2011, 2012). The ocean currents flowing towards the north will 

penetrate into the fjords of Svalbard. Evidence for changes in oceanography is 

therefore preserved in Spitsbergen fjord bottom sediments, which makes them 

excellent for use in palaeoceanographic reconstructions (e.g. Hald et al., 2004; 

Rasmussen et al., 2012, Jernas et al., 2013). The advection of Atlantic Water towards 

the Arctic has proven to be a very important factor contributing to climate and 

oceanographic changes during the last glacial-interglacial cycle in the Barents Sea 

(e.g. Slubowska-Woldengen et al., 2007; Rasmussen et al., 2007; Jessen et al., 2010).  

2) Their accessibility. The fjords are (more or less) ice- free during the summers at 

present time, allowing the collection of, for example, acoustic, lithological and 

oceanographic data by research vessels. 

1.2.1 Glacial history of Svalbard  
During the last few decades there has been a strong focus on investigating the extent and 

dynamics of the SBIS, in particular during the Late Weichselian (e.g. Mangerud et al., 

1987;1992; Elverhøi et al., 1995; Landvik et al., 1998; Mangerud et al., 1998; Ottesen et al., 

2005; Ottesen & Dowdeswell, 2009; Andreassen et al., 2013; Bjarnadottir et al., 2013). The 

timing of the Last Glacial Maximum (LGM) has been debated, but is at present argued to 

have occurred around 20.000 years ago (Andersen et al., 1996; Vorren et al., 2011). At this 

time the SBIS extended to the shelf break west and north of Svalbard. Jessen et al. (2010) 

suggest an onset of LGM along the western Svalbard margin at 24.000 cal. y. BP (calendar 

years before present), but do not exclude that the ice sheet may have started to grow as early 

as 32.000 cal. y. BP.  Several studies indicate that during the last glacial ice streams drained 

the SBIS, likely from ice-divides located northeast of Kongsøya (Fig. 1.1; Landvik et al., 

1998; Ottesen et al., 2005; 2007; Ottesen & Dowdeswell 2009; Batchelor et al., 2011) in the 
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Figure 1.1: Reconstruction of Late Weichselian ice-flow regime and 
palaeo-ice streams of the SBIS and Eurasian Ice Sheet (modified from 
Ottesen et al., 2005.) 

northern Barents Sea and east of Svalbard (Landvik et al., 1998; Forman et al., 2004; 

Dowdeswell et al., 2010a). The ice-streams were mainly controlled by topography, and 

followed pathways through Svalbard’s fjord systems and cross-shelf troughs, such as 

Isfjorden, Bellsundet, Kongsfjorden, Storfjorden and the Hinlopen Strait (Fig. 1.1). As for the 

southern part of the SBIS, it has been suggested that the configuration and dynamics of the ice 

sheet were controlled by the ice-stream flowing through Bjørnøyrenna (Winsborrow et al., 

2010). The ice culminating over NW Svalbard was thinner and restricted to the fjords and the 

coastal areas, and the elevated plateaus stood up as nunataks and ice-free areas at Danskøya 

and Amsterdamøya (Landvik et al., 2003).  
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The Late Weichselian ice sheet started to retreat from its maximum position at the western 

shelf break around 24 cal. ka BP (thousand calendar years before present; Jessen et al., 2010). 

The deglaciation of the western and southern shelf areas seem to have occurred at two stages: 

shortly after 15 14C ka BP, when the ice retreated from the outer shelf, and between 12 and 13 
14C ka BP, when the ice retreated from the inner shelf and further into the fjords along the 

western Svalbard margin (Elverhøi et al., 1995; Polyak et al., 1995). The retreating ice 

continued to withdraw from the inner shelf and to the mouth of the fjords on the western 

margin and further during the Allerød (11.8-11 ka BP) (Landvik et al., 1998). Eastern 

Svalbard was ice-free slightly earlier than fjords on the Western side (Mangerud et al., 1992). 

Thinning of the ice sheet along the northern Spitsbergen margin occurred as early as 25-20 ka 

BP (Gjermundsen et al., 2013). Periods of waxing and waning of the SBIS occurred between 

19 and 16.2 14C ka BP (Knies et al., 2000). Retreat of grounded ice from the outer to inner 

northern Svalbard shelf did not occur before 15.9 ka BP (Hormes et al., 2013) and rapid ice-

sheet disintegration began at ~15.4 14C ka BP (Knies et al., 2000; 2001). The absence of 

grounding zone wedges in the Hinlopen Trough indicates rapid deglaciation of the northern 

Svalbard shelf (Batchelor et al., 2011). Datings indicate that deglaciation along the northern 

coast of Spitsbergen occurred prior to the Holocene (~10.8 ka BP, Mangerud et al., 1992; 

~14.6 ka BP, Gjermundsen et al., 2013).  

During the Younger Dryas (YD; 12.9 - 11.6 cal. ka BP) climate rapidly changed to near 

glacial conditions, resulting in glacier growth and advances in the Northern Hemisphere; i.e. 

in Scandinavia and northern Canada (e.g. Andersen et al., 1995; Lyså & Vorren, 1997; Dyke 

& Savelle, 2000; Vorren & Plassen, 2002). No unequivocal evidence of glacier growth on 

western Svalbard during the YD has been found so far. It is inferred that the glaciers of west 

Spitsbergen were small during the YD (Mangeud & Svendsen, 1990). The study of Mangerud 

& Landvik (2007) has suggested that western Spitsbergen cirque glaciers might have been 

even smaller during the YD than their maximum during the Little Ice Age (LIA; ~ year 1350-

1850) (see Chapter 1.2.2 below). However, a still-stand in the relative sea level and slowed 

rates of emergence, indicating delayed glacio-isostatic uplift between 10.6 – 10.0 ka BP, may 

indicate stagnate and/or growing glaciers on eastern Spitsbergen (Landvik et al., 1987; 

Lehman & Forman, 1987; Lehman & Forman, 1992; Svendsen et al, 1996; Landvik et al., 

1998). Landvik et al. (1998) and Svendsen et al. (1996) have inferred their findings to imply a 

westward expansion of the SBIS and glacier advance in Isfjorden during the YD, but no 

geomorphological evidences (e.g. terminal moraines) has been identified to support this. 
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Further indications that might reflect glacier re-advances during the YD include enhanced 

sea-ice formation and suspension settling, as well as reduced iceberg rafting (Forwick & 

Vorren, 2009). Based on the occurrence of eroded and compacted deposits, several sets of 

push or thrust moraines and deformation tills in tributaries close to the mouth of Isfjorden, as 

well as multiple sediment wedges and a submarine outwash fan in central and inner Isfjorden, 

Forwick & Vorren (2011a) tentatively suggested that glacier advances of up to 25 km may 

have occurred in the Isfjorden area during the YD. However, Kristensen et al. (2013) have 

found the Younger Dryas SBIS to be less extensive than previously thought, with an eastern 

ice margin located further west. 

 

By ~11.2 cal. ka BP the glaciers had retreated to the fjord heads (e.g. Lehman & Forman, 

1992; Svendsen & Mangerud, 1992; Elverhøi et al., 1995; Hald et al., 2004; Forwick & 

Vorren, 2009; Baeten et al., 2010.) The final phase of the deglaciation is often recognized by 

a series of transverse parallel moraine ridges (recessional moraines), indicating a stepwise 

retreat of Spitsbergen glaciers with several halts and/or readvances (e.g. Svendsen & 

Mangerud, 1992; Mangerud et al., 1998; Ottesen et al., 2005; Ottesen & Dowdeswell, 2006; 

Baeten et al., 2010; Dowdeswell et al., 2010a; Velle, 2012; Kempf et al., 2013). An annual 

retreat rate of ~140 m/yr has been inferred from recessional moraines in Smeerenburgfjorden, 

NW Spitsbergen (Velle, 2012). On western Spitsbergen retreat rates from Billefjorden and 

van Keulenfjorden are inferred to be ~170 m/yr and ~80-190 m/yr, respectively (Baeten et al., 

2010; Kempf et al., 2013).  

1.2.2 Holocene palaeoclimate of Spitsbergen  
The time shortly after the YD (early-mid Holocene ~11.65 – 9 cal. ka BP) was characterized 

by relatively warm climate conditions in the North Atlantic, and improved climate during the 

earliest Holocene (Preboreal oscillation). The warming was supported by high solar insolation 

(Birks, 1991) and inflow of warm Atlantic Water (AW) along the Spitsbergen margin and 

western Barents Sea (e.g. Hald et al., 2004; Rasmussen et al., 2007; 2012; Forwick & Vorren, 

2009; Jessen et al., 2010). This warm period is usually referred to as the Early Holocene 

Climatic Optimum or Holocene Thermal Maximum (11.2-8.8 cal. ka BP) (Birks, 1991; Hald 

et al., 2004; Miller et al., 2010). Reconstructions suggest summer temperatures around 9000 
14C years BP in the Arctic (north of 70ºN) to be 2.5ºC warmer (Birks, 1991). Sea ice 

formation and sea-ice rafting was significantly reduced in the Isfjorden area after ~10.2 and 

ice rafting occurred mostly from icebergs calving off the remnants of the Svalbard- Barents 
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Sea ice sheet (Forwick & Vorren, 2009). Hald et al. (2004) suggest that warm water appeared 

at the bottom of Van Mijenfjorden shortly after the deglaciation after YD. Studies from the 

Kongsfjorden Trough indicate increasing subsurface temperatures from 9600 years BP and 

gradual appearance of AW to the surface, an minimal ice-rafting from ~10 ka BP (Skirbekk et 

al., 2010; Rasmussen et al., 2013). Stratified water masses and strong seasonality with inflow 

of subsurface, warm AW during the summer is interpreted from Isfjorden (Rasmussen et al., 

2012).  

 

Climatic cooling on Svalbard leading to asynchronous glacier growth and reduced inflow of 

Atlantic Water into the fjords commenced around 9000 years ago (Svendsen & Mangerud, 

1997; Hald et al., 2004; Forwick & Vorren, 2007, 2009; Baeten et al., 2010; Forwick et al., 

2010; Skirbekk et al., 2010; Rasmussen et al., 2012, 2013). Cold conditions, eventually 

leading to the formation of more shore-fast or perennial sea-ice, were established from c. 

4000 cal. years BP (e.g. Svendsen & Mangerud, 1997; Hald et al., 2004; Forwick & Vorren, 

2009; Baeten et al., 2010; Rasmussen et al., 2012). However, repeated warm spills were 

documented during the last c. 2000 millennia (e.g. Jernas et al., 2013). Maximum glacier 

extents were reached at various times after c. 2700 cal. years BP, either related to climatic 

cooling during the Little Ice Age or due to glacier surges (e.g. Werner, 1993; Hald et al., 

2001; Plassen et al., 2004; Ottesen & Dowdeswell, 2006; Ottesen et al., 2008; Kempf et al., 

2013). 

1.2.3 Previous investigations of northern Spitsbergen fjords 
As previously mentioned, Svalbard’s fjords acted as pathways for ice streams draining the 

Late Weichselian SBIS (Fig. 1.2). This is largely documented on the western Spitsbergen 

margin, however, similar studies of past ice-sheet dynamics on northern Spitsbergen remain 

sparse. Submarine landforms at the fjord floor include mega-scale glacial lineations (MSGLs), 

providing evidence of fast-flowing ice through Woodfjorden and the adjacent cross-shelf 

trough during the LGM, terminating in a larger build-up of sediments on a trough mouth fan 

(Ottesen et al., 2007; Ottesen & Dowdeswell, 2009). An ice dome located between 

Smeerenburgfjorden and Liefdefjorden was first proposed by Salvigsen (1979). Gjermundsen 

et al. (2013) has also inferred a local ice dome over the central NW Spitsbergen with a surface 

>300 m higher than the present ice surface. However, Holocene strandlines show an 

increasing tilt from the head to the mouth of Liefdefjorden (Salvigsen, 1979). This suggests 

that the strandline pattern is dominated by emergence from the large SBIS ice center further 
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east rather than a local ice dome over NW Spitsbergen (Hormes et al., 2013; Gjermundsen et 

al., 2013). The inferred ice dome west of Liefdefjorden has therefore likely short-lived, or ice 

covering the area was thinner than data suggest (Gjermundsen et al., 2013).  

 

Salvigsen & Österholm (1982) mapped glacial striae on Reinsdyrflya (Fig. 1.3), which 

indicate that it was covered by ice. However, due to findings of undisturbed raised beach 

terraces which predate the Late Weichselian, and the lack of moraine deposits, they concluded 

that Reinsdyrflya was not overridden by ice during the LGM. Newer studies obtained from 
10Be exposure dating on a number of erratic boulders on NW Spitsbergen provide, however, 

different results (Gjermundsen et al., 2013). A 10Be age of ~14.6 ka from Reinsdyrflya and 

~13.7 ka from outer Woodfjorden suggest that the entire peninsula was covered by ice during 

the Late Weichselian and early deglaciation. Because of the well-preserved beach ridges and 

absence of a moraine (Salvigsen & Österholm, 1982), Gjermundsen et al. (2013) suggest that 

the ice covering Reinsdyrflya was cold-based. It is likely that this area acted as an inter-ice 

Figure 1.2: Reconstruction of Late Weichselian palaeo-ice streams of 
the Svalbard-Barents Sea Ice Sheet on the western and northern margin 
(Ottesen et al., 2007.) 
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stream area (Ottesen & Dowdeswell, 2009; Gjermundsen et al., 2013), where faster flowing 

ice was restricted to Liefdefjorden and Woodfjorden.  

 

The initial stage of deglaciation from the shelf break to the inner shelf is inferred to be fairly 

rapid (Hormes et al., 2013; Gjermundsen et al., 2013). Ice front flotation and retreat by 

iceberg calving in deep water likely dominated the process of deglaciation (Elverhøi et al., 

1995; Ottesen et al., 2007; Ottesen & Dowdeswell, 2009). However, the occurrence of 

grounding zone wedges in some areas shows that halts and/or re-advances interrupted the 

deglaciation. Exposure dates also suggest thinning of an ice dome in the mountains of central 

NW Spitsbergen, delaying initial deglaciation of the shelf, followed by rapid retreat to the 

coastal area (Gjermundsen et al., 2013; Hormes et al., 2013).  

Figure 1.3: A) Overview map of Svalbard with position of B (black rectangle). B) 
Northwestern Spitsbergen. Dashed lines represent the indicated margins of the LW 
glaciation. Black arrows indicate relative age and main directions of ice movement based 
on mapping of glacial striae (No.1: oldest, no. 3: youngest. Modified from Salvigsen & 
Österholm, 1982).  
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In some areas of Woodfjorden series of smaller transverse ridges are superimposed on the 

MSGLs, suggesting an episodic retreat of the ice and a more complex pattern of deglaciation 

here. Ottesen et al. (2007) found these transverse ridges in shallower water close to the 

inferred margins of the ice stream in Woodfjorden, suggesting that the deglaciation was 

influenced by water-depth. In the inner part of Liefdefjorden different orientation of old and 

younger glacial striae indicate that the ice front retreated more rapidly in the deeper, central 

part of the fjord (calving bays) (Salvigsen & Österholm, 1982).  

According to Gjermundsen et al. (2013), the distal lowlands of NW Spitsbergen were 

deglaciated between 15-14 ka BP. Some lowland areas on Reinsdyrflya might have become 

ice-free as early as 21.4 ±1.7 ka BP (Hormes et al., 2013). Dating of bivalve shells (M. 

truncata and M. edulis) from raised shore-and-beach sequences indicates that the outer part of 

Woodfjorden was deglaciated by ~11.5 ka BP, at least 1500 years earlier than inner 

Woodfjorden. The dates also indicate that the tributary fjords Bockfjorden and Liefdefjorden 

were deglaciated by ~9.5 ka BP, ~10.0 ka BP, and before ~9.4 ka BP, respectively (see Fig. 

1.3; Salvigsen & Österholm, 1982; Salvigsen & Høgvard, 2005). A rate of emergence 

exceeding 2 m /100 years was reconstructed for the Gråhuken area (Fig. 1.3) during the period 

between 11 – 9.4 ka BP. Similar rates were obtained in Mosselbukta at the mouth of 

Wijdefjorden (east of Woodfjorden), suggesting that the YD was a period rapid emergence 

and, thus, a time of deglaciation on northern Spitsbergen (Salvigsen & Österholm, 1982).  

Glaciers in Bockfjorden seem to have been less extensive during the major part of the 

Holocene than they are today and the marine climate was warmer during the early Holocene 

than at present (Salvigsen & Høgvard, 2005). Salvigsen & Høgvard (2005) concluded from 

their observations that Bockfjorden had most likely only small or no glaciers at all during the 

early Holocene, however, maximum glacier extents have been suggested for the LIA (Furrer 

et al., 1991; Salvigsen & Høgvard, 2005). 
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2. Study area 
 

2.1 Physiographic setting  
The Svalbard archipelago is located between 74⁰N to 81⁰N and 10⁰E to 35⁰E in the 

northwestern Barents Sea and at the boarder of the Arctic Ocean (Fig. 2.1). Occupying more 

than half of the total area, Spitsbergen (39 000 km2) is the largest island of the archipelago. 

Woodfjorden, Bockfjorden and Liefdefjorden belong to the second largest fjord system on 

north Spitsbergen (79⁰28’N - 79⁰88’N; 12⁰29’E - 14⁰52’E; Fig. 2.2). They are surrounded by 

Albert I Land to the west, Haakon VII Land to the southwest and Andrèe Land to the east. 

The approximately 65 km long and 10 km wide Woodfjorden is the largest fjord of the 

system. The ~8 km long Bockfjorden branch is approximately 6 km wide in the outer parts, 

Liefdefjorden is ~30 km long and varies in width from 4 km in the inner parts to 13 km at the 

fjord mouth. Water depths vary from ~50 m in the innermost part of the fjord arms to more 

than 200 m in Liefdefjorden and mid-Woodfjorden.  
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Figure 2.1: A) The North Atlantic region and position of Svalbard in the Barents 
Sea. B) The archipelago of Svalbard. Longyearbyen (red circle) and study area on 
northern Spitsbergen (Figure 2.2). 
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Figure 2.2: Woodfjorden, Bockfjorden and Liefdefjorden, north Spitsbergen. 
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2.2 Bedrock geology 
The dominant bedrock in the area is the Andrée Land Group (Early-middle Devonian Old Red 

Sandstone) with the Wood Bay Formation; consisting of multicolored sandstone, red siltstone 

and shale, as well as the Grey Hoek Formation, dominated by grey sandstone and shale 

(Dallmann et al., 2002). These bedrocks are found west of Woodfjorden on Andrée Land, east 

of Woodfjorden and Bockfjorden, on Germainahalvøya and along Liefdefjorden all the way 

north to Reinsdyrflya. Precambrian (Mesoproterozoic) basement rock is exposed south and 

west of Bockfjorden and west of Liefdefjorden (Fig. 2.3). It is mainly composed of 

metamorphic rocks such as marble and dolomites, gneisses and mica schist. The Bockfjorden 

Volcanic Complex is found in the southern part of the fjord. It contains basalts and 

pyroclastics of Quaternary age (Pleistocene), deposited from Sverrefjellet which is currently 

an extinct volcano (Dallmann et al., 2002; Salvigsen & Høgvard, 2005).  

The orientation of the fjords and mapped nearby zones of weakness in the bedrock seem to 

relate to one another. Woodfjorden is semi-parallel to Wijdefjorden in the east, and may thus 

be controlled by deeper geological features, e.g. the Billefjorden fault zone (BF in Fig. 2.3 A) 

which cuts through Wijdefjorden (Fig. 2.3). Breibogeforkastningssonen (BBF in Fig. 2.3 A) is 

another N-S oriented fault zone and is mapped across Liefdefjorden and along the fjord axis 

of Bockfjorden. A large fault, Keiserhjelmforkastningen, cuts across Liefdefjorden and 

separates metamorphic bedrock under the fault, from the Devonian sedimentary rocks above 

the fault boundary (Osmundsen et al., 2013). These sedimentary rocks are typically very 

coarse and immature, suggesting that the sediments are locally sourced and have a high relief.  

Recent studies from Osmundsen et al. (2013) have discovered a large extensional structure 

(normal fault) below the Devonian Basins on Spitsbergen. It is also suggested that the large 

N-S oriented faults on Spitsbergen follow the flanks of the large Devonian folds produced 

from E-W shortening of the rock in the “Svalbardian Fold Phase” (Ramberg & Bryhni, 2006; 

Fig. 2.3 B) and have been active during several time periods, e.g. in Carboniferous these large 

faults were reactivated during the formation of the Billefjorden Basin (Hjelle, 1993; Ramberg 

& Bryhni, 2006).  This is supported by the fact that the Sverrefjellet Volcano lies in the 

extension of a large N-S fault and has been active during the Quaternary period. The volcanic 

deposits include, as previously mentioned, basalts with fragments from the mantel, hence, 

there is a pipe down to the mantel along the flank of the Devonian antiform (Fig. 2.3 B). 

Seismic activity has been recorded in modern times from a large Devonian normal fault on the 

seafloor of the northern Svalbard shelf (Omundsen et al., 2013). It has been suggested that it 
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Figure 2.3: A) Geological map of northern Spitsbergen. B) A general west to east profile 
across northern Spitsbergen (modified from Ramberg & Bryhni, 2006 ). 

may be an extension of Keiserhjelmforkastningen or a similar structure that has been recorded 

in these seismic data.  
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2.3 Geomorphology 
Syvitski et al. (1987) and Howe et al. (2010) describe fjords as steep-sided, deep, marine 

basins, estuaries or near-coast troughs which are products of glacial erosion. Fjord valleys are 

located above sea level, whereas fjords are submerged. Fjords are found in a Northern Fjord 

Belt (north of 43⁰N) and Southern Fjord Belt (south of 42⁰S). These regions include e.g. 

Norway, Greenland, Canada, Alaska, Chile, New Zealand and Antarctica (Figure 2.4, Syvitski 

et al., 1987). Fjords are typically located parallel to “zones of weakness”, i.e. are often parallel 

or sub-parallel to faults and belts of softer, easily eroded bedrock (i.e. Wijdefjorden, Fig. 2.3). 

Glaciers (and ice streams) are typically topographically steered and often follow old river 

valleys that later become fjords (Howe et al., 2010).  

 

Spitsbergen fjords are usually classified as “Svalbard regime” fjords (after Hambrey, 1994). 

This classification is based on the influence and regime of the glacier having operated or still 

operating in the fjord. These types of fjords are described to have slightly cold, grounded but 

dynamic glaciers terminating in relatively shallow fjords (<200m deep), where large amounts 

of meltwater during a short summer season influence fjord sedimentation (Hambrey, 1994). 

Fjords can also be classified based on the climatic regime (after Domack & McClennen, 

1996), in which case Svalbard fjords are described as “Subpolar fjords”, where the sea ice 

covering fjords during winter breaks up during the summer season. A third classification 

(after Syvitski et al., 1987) is based on the physical regime operating in the fjord; here, 

sedimentation rates (high/low) are taken into account.  

Figure 2.4: General distribution of fjords in the world (Syvitski et al., 1987) 
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Several parameters affect the morphology of the fjord walls and bottom. The slope of fjord 

sides is dependent upon the bedrock that glaciers are cutting into (harder and more resistant 

rocks produce steeper slopes). Also, fjord sides are often polished or striated from erosion. 

Series of terraces and moraines may be found laterally on the mountain slopes of fjords 

(Syvitski et al., 1987).  In general, fjords have sills at their mouths. The sills are usually 

moraine ridges that were deposited during stillstands and/or advance of grounded glaciers 

(e.g. Ottesen et al., 2005, 2007; Ottesen & Dowdeswell, 2006; Forwick et al., 2010), or 

bedrock sills producing natural barriers, like in Van Mijenfjorden for instance (e.g. Hald et al., 

2004). Fjords described as multi basin fjords can have multiple basins where each basin is 

separated by sills (Syvitski et al., 1987). Multi basin fjords are common on Spitsbergen (i.e. 

Billefjorden, Isfjorden, Smeerenburgfjorden, Woodfjorden). The presence of sills in a fjord 

will affect not only hydrography and circulation of the fjord, but also influence sedimentary, 

chemical and biological processes (Syvitski et al., 1987; Hambrey, 1994).  

The seafloor in the outer part of Woodfjorden and the adjacent cross shelf trough show 

extensive streamlined features interpreted to be MSGLs (Ottesen et al., 2007). They are up to 

3 m high, several kilometers long and have spacing of aprox. 300 m. Beyond the trough 

threshold the lineation diverge towards the northwest along the trough axis west of Moffen 

(see Fig. 2.5 in Chapter 2.4 below). A series of transverse ridges up to 10 km long and 10 m 

high, are found superimposed on the MSGLs in the Woodfjorden cross shelf trough (Ottesen 

et al., 2007). Large, lateral moraines in the outer part of the trough further suggest the 

presence of an ice stream draining through this area. The formation of these ice-flow parallel 

ridges is likely related to shear zones and high stress gradients at the lateral margins between 

the fast-flowing ice-stream and the slow-flowing ice (Ottesen et al., 2005). Even though the 

Holocene sediment cover is estimated to be up to ~10 m (Elverhøi et al., 1983), these 

landforms are clearly visible on swath bathymetry data.  

2.4 Glaciology 
Today approximately 60 % of Svalbard’s land area is covered by glaciers, which vary in 

shape from large ice caps to small cirque glaciers. In the three-armed fjord system of 

Woodfjorden, Bockfjorden and Liefdefjorden, there are more than one hundred glaciers; 

however, it is only in Liefdefjorden that glaciers terminate in the fjord basin (Fig. 2.5). 

Information about the largest glaciers within the study area is summarized in Table 2.1 below.  
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Woodfjorden 
 
Glacier Type  Area (km2) Volume (km3) Glacier front Activity 
Vonbreen Outlet 169 33 Terminating on land Slight retreat 
Abrahamsenbreen Outlet  107 19 Terminating on land Known surge 
Elnabreen Outlet  26.5 3.5 Confluent  Stationary  
Johanbreen Valley  12.5 1.4 Expanded foot  Slight retreat 
 

Bockfjorden 

Karlsbreen Valley 104 19 Terminating on land Slight retreat 
Friedrichbreen Valley  28.2 3.8 Terminating on land Slight retreat 
Børrebreen Valley  19.3 2.4 Terminating on land Stationary  
 

 

Table 2.1: Glacier type, area, volume, character of the glacier front and documented activity of 
the glacier tongue of largest glaciers in the fjord system is presented here. Data is based on 
Hagen et al., 1993.  

Figure 2.5: A 3D view of the study area (from http://toposvalbard.npolar.no/). Ice domes, 
glaciers and place names are included. 
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Liefdefjorden 

Monacobreen  Outlet 408 91 Calving  Marked retreat  
Seliegerbreen Valley  47.4 7.2 Calving  Marked retreat 
Emmabreen Valley  15.7 1.8 Calving  Slight retreat 
Idabreen Outlet 8.6 0.83 Terminating on land  Marked retreat 
Erikbreen Valley  9.5 0.9 Expanded foot Slight retreat 
Hannabreen Valley  9.2 0.94 Terminating on land Stationary  
 

The drainage basin of the fjord system is ~1400 km2 and glaciers are fed by two large ice 

caps; Isachsenfonna in the west and Holtedahlfonna in the east (Fig. 2.5). Four tidewater 

glaciers operate in Liefdefjorden at present, all of which are fed largely by Isachsenfonna. 

Monacobreen, which is one of the largest outlet glaciers on Svalbard, operates here as the 

dominant tidewater glacier. An area of 408 km2 of Monacobreen is documented by Hagen et 

al. (1993), however Błaszczyk et al. (2009) observes a much lower area of 344.5 km2, 

indicating a marked retreat of the overall glacier. The last active surge phase of Monacobreen 

was from 1995-1996 (Murray et al., 2003; Błaszczyk et al., 2009). Seliegerbreen converges 

with the front of Monacobreen from the west. Emmabreen and Idabreen are the two smaller 

tidewater glaciers here. Idabreen is an outlet glacier from Raudfjordbreen in Raudfjorden west 

of Liefdefjorden. Monacobreen, Seliegerbreen, Idabreen and Emmabreen have estimated 

calving intensities of 0.0907 km3/yr, 0.0360 km3/yr, 0.0118 km3/yr and 0.0006 km3/yr, 

respectively (Błaszczyk et al., 2009). 

In and around Woodfjorden glaciers terminate on land. The largest glaciers are 

Abrahamsenbreen and Vonbreen in Woodfjorddalen (Fig. 2.5).  Both glaciers are fed by 

Hotledahlsfonna and terminate on land several km from the fjord head. Surges have been 

observed in modern times from Abrahamsenbreen in 1978 and Elnabreen around 1930 

(Błaszczyk et al. 2009). All glaciers on Andreé Land terminate on land and are generally 

small. The largest glaciers in Bockfjorden are Karlsbreen and Friedrichbreen. The tongue of 

Friedrichbreen is close to the fjord basin, a couple hundred meters at most, whereas 

Karlsbreen has retreated more than 7 km up the valley. Smaller glaciers in the area are, in 

general closer to the fjord head. 

2.5 Sediment sources 
All the glaciers within the catchment area of Woodfjorden, Bockfjorden and Liefdefjorden 

contribute to sediment supply to the fjord basins either directly when in contact with the fjord 

basin or indirectly by input from meltwater rivers. Seeing as most of these glaciers terminate 
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on land, the main sediment source of the study area at present is glacio-fluvial. In 

Liefdefjorden the most important sediment sources are the four tide water glaciers (see ch. 

2.4, Fig.2.5) releasing sediment-laden meltwater into the inner fjord basin throughout the 

year. Further out in Liefdefjorden, one can assume that ice-rafted debris from icebergs are of 

relatively higher significance.  In Bockfjorden, a large river plain, Watnelieøyra (Fig. 2.5), has 

developed from the head of the fjord to the front of Karlsbreen. The rivers operating on the 

plain are significantly contributing to sediment input into the innermost Bockfjorden basin. In 

inner Woodfjorden the main sediment input come from the large river in Woodfjorddalen. 

The largest source to this river is meltwater from Abrahamsenbreen, however, smaller rivers 

from nearly glaciers in the west and east also contribute. Along the eastern Woodfjorden side, 

deltas build out into the fjord basin at several places, for instance at the end of Stjørdalen and 

at Verdalspynten (http://toposvalbard.npolar.no/). Networks of rivers enter the fjord basin in 

Jakobsenbukta and in Mushamna (Fig. 2.5). Rivers from melting glaciers on Andreé Land are 

therefore also important sediment sources.  

2.6 Geochemistry  
A geochemical atlas of Spitsbergen (Ottesen and Volden et al., 2010) was used to describe the 

main geochemistry of the study area. This atlas summarizes the main results from regional 

research projects performed by the Geological Survey of Norway (NGU) from 1986 – 1988. 

The method of geochemical mapping includes systematic sampling of rocks, sediments, soils 

and waters, chemical analysis of the samples and finally illustrating the results on maps.  

Samples were collected from overbank sediments (<0.06 mm thick) at different locations on 

Spitsbergen. Within the area of interest in this study, the atlas presents results mainly from 

Andrée Land, the eastern side of Woodfjorden and Woodfjorddalen, and the south-eastern 

Bockfjorden area. There are no results from the area around Liefdefjorden and Reinsdyrflya. 

Relevant element values are presented either in parts per million (ppm) or percentage content 

in the sediment. The values of the elements which most commonly occur within the study 

area are presented in Table 2.2 below. 
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Element Occurs: Parts per million 
(ppm) 

% content in 
sediment 

Al Outer Woodfjorden, Andrée 
Land, Bockfjorden 

- 2.171 - 4.560 

Ba Inner Woodfjorden, 
Woodfjorddalen 

700 -1300 - 

Ca Andrée Land, Woodfjorden - 7.01 -15.01 
Fe Inner Woodfjorden, Bockfjorden - 4.266 - 9.3 
K Andrée Land, Woodfjorden, 

Bockfjorden 
- 1.803 – 4.5 

Mg Mid and inner Woodfjorden, 
Bockfjorden 

- 2 - 3 

Mn Outer Woodfjorden - 0.109 – 0.234 
Na  Inner Woodfjorden, Bockfjorden - 1.3 - 3.6 
Ni Andrée Land and outer 

Woodfjorden 
45.1 - 158 - 

Rb Bockfjorden, inner Woodfjorden 151 - 200 - 
Sr Bockfjorden, inner Woodfjorden 78 - 296 - 
Ti Andrée Land, inner 

Bockfjorden, inner Woodfjorden 
- 0.22 - 0.92 

Zr Andrée Land, outer and mid-
Woodfjorden, inner Bockfjorden 

< 14.5 - 

 

Values from outer and mid-Woodfjorden are based on samples from the eastern side of the 

fjord on Andrée Land. Aluminum is found with sediment content percentage of up to ~4.5 % 

from the fjord mouth of Woodfjorden and Andrée Land, and east in inner Bockfjorden. The 

highest amounts of Calcium are observed along the western side in inner Woodfjorden with a 

content percent of as much as 15 %. Iron (up to 9.3 %) and Sodium (up to 3.6 %) values are 

highest in inner Woodfjorden and Bockfjorden. Relatively high values (2.616 – 4.5 %) of 

Potassium are observed in Bockfjorden and along the eastern side of Woodfjorden. Titanium 

does not seem to occur in any preferred area and is found all the way from the mouth of 

Woodfjorden to Bockfjorden. Phosphorous and Sulfur contents are generally lower than 1 % 

in all analyzed samples from this area.   

Table 2.2: Content of various elements occurring in overbank sediment in Woodfjorden, 
Bockfjorden and Liefdefjorden (based on studies from Ottesen & Volden et al., 2010). 
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2.6 Climate 
Climatic measurements carried out on the Svalbard archipelago at present are based on 

observations and made on 5 weather stations sited on Spitsbergen (see Fig. 2.6; Svalbard 

Airport, Sveagruva, Barentsburg, Ny-Ålesund and Hornsund), and 3 stations on islands in the 

Barents and Norwegian-Greenland Sea (Hopen, Bjørnøya and Jan Mayen; Førland & 

Hanssen-Bauer, 2003). 

Spitsbergen receives less than 250 mm precipitation per year; the mean measured annual 

precipitation is 192 mm/y according to Førland & Hanssen-Bauer (2003). This is due to 

stable, stratified air masses which hold small amounts of water vapor (Førland & Hanssen-

Bauer, 2003). The low annual precipitation rates classify Spitsbergen as an Arctic desert. 

With a mean annual temperature of about -6℃, West Spitsbergen has a slightly milder climate 

than more central inland areas, where climate is of a more continental character (Hagen et al., 

1993). During winter months, local sea ice cover can cause near continental climate 

conditions in coastal area due to reduced moisture supply and therefore reduced precipitation. 

Central Spitsbergen annual precipitation is only half (c. 200 mm/y) of the amount that falls 

over western Spitsbergen (c. 400 mm/y), mainly because of orographic effects (Hagen et al., 

1993). Thus, there are strong precipitation gradients between central and coastal areas of 

Spitsbergen, and also strong local annual precipitation rates between the measuring stations 

(Fig. 2.6; Førland & Hanssen-Bauer, 2003; Førland et al., 2009). Ny-Ålesund receives more 

than 400 mm/y of precipitation, i.e. twice as much as at Svalbard Airport (Fig. 2.6).  Like the 

precipitation, winter temperature gradients vary from south to the north of Svalbard with 

~2.5℃/latitude degree (Hisdal, 1998 in Isaksson et al., 2003; 2005). Northern and eastern 

parts of Svalbard experience colder annual temperatures than southern and western coastal 

Spitsbergen mainly due to oceanographic influence (see Chapter 2.7 – Oceanography).  
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The average annual precipitation has increased by more than 2.5% per decade during the 20th 

century (2.7% for Svalbard Airport; Førland & Hanssen-Bauser, 2003). Three sub-periods of 

annual temperature variations on a multi-decadal scale, as well as seasonal variability since 

1910, are recognized for Svalbard and Jan Mayen (Fig. 2.7; Førland et al., 2009). Figure 2.7 

shows an abrupt warming until the 1930s, followed by a negative trend with minimum 

temperatures during the 1950s to 1960s. Thereafter, temperature increases until the present 

(Førland & Hanssen-Bauer, 2003; Førland et al., 2009).  

 

Figure 2.6:  Annual precipitation measured at stations on Svalbard and Jan Mayen 
over the last century (Førland et al., 2009). 

Figure 2.7: Mean measured annual temperature of Svalbard and Jan Mayen (Førland 
et al., 2009). 
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2.7 Oceanography  
The North Atlantic Current (NAC) is a surface current that transports warm (>3˚C), saline 

(>35 per mil) Atlantic Water (AW) into the North Atlantic and further into the Arctic Ocean 

(e.g. Saloranta & Svendsen, 2001; Slubowska-Woldengen et al., 2007; Rasmussen et al., 

2007; Aagaard-Sørensen et al. 2010). The Atlantic Water follows the Norwegian continental 

slope northwards as the Norwegian Atlantic Current (NwAC). The current splits in the SW 

Barents Sea into the northward continuing West Spitsbergen Current (WSC) and the eastward 

flowing North Cape Current (NCaC) (Fig. 2.8; Kristensen et al., 2013). The WSC follows the 

western Spitsbergen shelf and continues into the Arctic Ocean through the Fram Strait (Fig. 

2.8; Rudels et al., 1994; Slubowska et al., 2005). The presence of Atlantic Water keeps the 

near-shore areas of western Spitsbergen more or less sea ice free year-round, while sea ice 

regularly forms south, east and north of Svalbard. At around 78˚N the Atlantic water 

submerges under the colder and less saline Polar surface water. At present, the Atlantic Water 

occupies the water column between approximately 50-500 m on the western and northern 

Svalbard shelf, and between 120-200 m in the northern Barents Sea (Slubowska-Woldengen 

et al. 2008; Rasmussen et al. 2007).  

 

Figure 2.8: A) Figure showing the origin of Atlantic Water in the northern Atlantic Ocean. 
B) Dominating ocean currents in the southern Barents Sea and around Svalbard. Black 
arrows are showing the flow-pattern of Atlantic Water, dashed arrows show the transport 
of Arctic Water masses (modified from Kristensen et al., 2013). 
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A cold Arctic surface current enters the Barents Sea from the north east of Spitsbergen. This 

is Arctic Surface Water (ASW), formed by mixing of Polar Water from the Arctic Ocean and 

Atlantic Water (AW); it dominates the northern Barents Sea. It is colder and less saline than 

the other water masses and flows towards the south via the East Spitsbergen Current (ESC) 

and the Bear Island Current (BIC) (Fig. 2.9; Aagaard-Sørensen et al. 2010).  Sea ice (drift ice) 

produced in the Arctic Ocean passes through the Fram Strait and is transported south with the 

East Greenland Current (EGC) (Rudels et al., 2000). Cold polar air, together with drift ice, 

cools the water masses in the northeastern Barents Sea, resulting in colder climates in the 

northern parts of Svalbard. ASW follows the western Spitsbergen shelf further northwards 

with the Coastal Current (CC), injecting cooler water masses to the inner shelf (Rasmussen et 

al., 2007). Mixing of Arctic Water and AW occurs along the shelf. The AW penetrating into 

fjords is therefore transformed (Transfomed AW - TAW) and slightly different from AW in 

WSC (Svendsen et al., 2002; Nilsen et al., 2008). Because AW is flowing northwards with the 

West Spitsbergen Current (WSC) the West Spitsbergen continental margin is a very sensitive 

area with regards to climatic changes (Hald et al., 2004).  

  

Figure 2.9: Main water mass distribution of the North Atlantic and southern Barents 
Sea region. Summer and winter sea ice limits are shown with dotted and dashed lines, 
respectively. Arrows represent ocean currents (Aagaard-Sørensen et al., 2010). 
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Figure 2.10: CTD profiles based on measurements performed during the autumns of 1998 
- 2001in Storfjorden. A) Salinity plots and B) Temperature plots from CTD stations 
through the water column in Storfjorden (modified from Skogseth et al., 2005). 

The Arctic Front represents the boundary between the AW and Arctic Water masses where 

the WSC and CC meet. It produces a density front in the surface layer (0-50 m) and a deeper, 

subsurface layer (>50 m) characterized as a salinity-temperature front (Saloranta & Svendsen, 

2001).  

CTD profiles (Fig. 2.10 - Storfjorden) through the water column of Spitsbergen fjord reveal 

water masses stratified into three primary layers; a cold, low salinity (fresh) surface layer, an 

intermediate layer and a deep, dense water mass at the bottom (e.g. Cottier et al., 2005; 

Skogseth et al., 2005; Nilsen et al., 2008; Cottier et al., 2010). Stratified water masses are 

observed in fjords with and without sills at their mouth. The origin and stratification of the 

different water masses are known to vary on an inter-annual basis (Cottier et al., 2007). 

Because the fresh surface water is commonly derived from river run-off and glacial 

meltwater, stratification is normally established and best developed during late spring and 

summer (Nilsen et al., 2008). Intermediate water masses largely originate from TAW. On its 

way into the fjord basin TAW may mix with the overlying surface layer (Nilsen et al., 2008; 

Cottier et al., 2010). Deep and dense water is formed alongside sea-ice during the winter 

season as the saline AW freezes and salt is rejected from the ice structure (brine formation; 

Skogseth et al., 2005; Nilsen et al. 2008). Overturning and mixing of the water masses usually 

occurs in the autumn when sea-surface or atmospheric temperatures decrease and wind, and 

surface water cooling collapse stratification (Skogseth et al., 2005; Cottier et al., 2010).  
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The general circulation pattern varies with a number of factors and is fundamental to sediment 

distribution within the fjord. The circulation also influences biogeochemical reactions taking 

place in porewaters and at the sediment-water interface, and is also dependent upon the 

overall bathymetry of the fjord. Such factors can be, for example the hydrographic regime, 

tide-effects, internal waves and jets, and the Coriolis force (Howe et al., 2010).  Due to the 

Coriolis force effect flow is deflected to the right on the Northern Hemisphere (Syvitski et al., 

1987). This may for instance cause across-fjord variations in distribution of freshwater 

because it will deflect towards the right in the direction of the fjord mouth (Svendsen et al., 

2002; Cottier et al., 2010). Sills in fjord may act as barriers, restricting exchange of coastal 

and fjord basin water, subsequently causing periodically or permanent anoxia of bottom water 

masses (Howe et al., 2010).  

The location of the fjord system in this study on northern Spitsbergen influences the 

oceanographic conditions in the fjords. The Barents Sea branch of WSC follows the shelf 

edge into the eastern Barents Sea (Fig. 2.8 above). Woodfjorden, Bockfjorden and 

Liefdefjorden are therefore relatively more influenced by Arctic water masses than fjords 

located further west (i.e. Smeerenburgfjorden and Kongsfjorden). Hallanger et al. (2011) 

performed studies to see differences in bioaccumulation in Atlantic-influenced and Arctic-

influenced fjords, respectively. They review Liefdefjorden as an Arctic-influenced fjord. 

Figure 2.11 below shows a CTD-station from Liefdefjorden. The surface layer here is not as 

distinct as in the profiles from Storfjorden (Fig. 2.10); salinity increases with depth and there 

is no clear boundary between intermediate and deeper water masses. The temperature 

gradients show a relatively gradually decrease in temperature from 1-2℃ to sub-zero 

temperatures below ~100 m. Figure 2.12 shows a CTD transect through Smeerenburgfjorden 

on NW Spitsbergen, west of the study area. The CTD data was collected in August of 2004. 

In Smeerenburgfjorden Atlantic Water was present but confined to the slope. At this time the 

fjord trough was primarily occupied by Arctic Surface and Polar water masses (Ślubowska-

Woldengen et al., 2007; Fig. 2.12). Karnovsky et al. (2011) describe Smeerenburgfjorden as 

an “Atlantic environment” and have documented the presence of AW in the fjord trough and 

over the shelf area from July to August 2008. Differences in findings may be explained by 

large variations in oceanography in fjords on an interannual and shorter-timescale basis 

(Cottier et al., 2007). High fluxes of glacial meltwater during summer and early autumn may 

drive AW out of the fjord and onto the shelf/slope.  
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Figure 2.12: A) CTD transect line (blue line) in Smeerenburgfjorden, NW Spitsbergen. 
Dark grey arrow: Spitsbergen Coastal Current (CC), light grey arrow: WSC. B) CTD 
transect from Smeerenburgfjorden. Tick marks on top correspond with the position of the 
CTD stations. AW = Atlantic Water (confined to the slope). ASW= Arctic Surface Water. 
LAIW = Lower Arctic Intermediate Water. PW = Polar Water (modified from Ślubowska-
Woldengen et al., 2007). 

 

Figure 2.11: A) Position of CTD station in Liefdefjorden. B) CTD profile. Temperature is 
plotted as a solid line, salinity as a dotted line (modified from Hallanger et al., 2011). 
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3 Materials and methods  
The sediment cores and chirp data used in this Master’s thesis were collected during an 

educational cruise with the research vessel R/V Helmer Hanssen (previously R/V Jan Mayen) 

of the University of Tromsø (UiT), the Arctic University of Norway, on August 2nd, 2012. 

The swath bathymetry data was made available by the Norwegian Hydrographic Survey and 

was collected between 1999 and 2011. 

3.1 Swath bathymetry data 
The swath bathymetry data was collected accordingly: 

- Summer 1999; vessel: Sjømåleren; instrument: Kongsberg Simrad EM 1002 
(outermost part of Woodfjorden and the Woodfjorden cross-shelf trough) 

-  Summer 2004; vessel: HU Sverdrup II; instrument: Kongsberg Simrad EM 1002 
(outer and mid- Woodfjorden, and Liefdefjorden) 

- 2011; vessel: Hydrograf (two surveys “Wood East” and “Wood West”). Further 
information about data collection was not possible to obtain before the deadline of this 
thesis.  

Access to this data was provided by Sjøkartverket; it has not been published by the University 

of Tromsø. Swath bathymetry data was imported directly into the Fledermaus software used 

to visualize the data. The resolution of the swath bathymetry data is 5x5 m. 

3.2 Chirp sonar  
Chirp sub-bottom profilers are quantitative acoustic systems which offer real-time, high-

resolution and artifact-free measurements of acoustic attenuation in unconsolidated marine 

sediments (Schock et al., 1989). The chirp sonar differs from normal short-pulse, single-

frequency profilers, such as sparkers and boomers, in the character of the chirp source-

signature; it can transmit a “sweep” of computer-generated frequencies between 400 Hz and 

20 kHz which compensates for amplitude and phase (Quinn et al., 1998; Mosher & Simpkin, 

1999). This provides a wider bandwidth, but most importantly the correction of amplitude-and 

phase compensation and precise waveform of the chirp pulses influence vertical resolution by 

suppressing source-ringing and improving signal-to-noise ratio (Schock et al., 1989; Quinn et 

al., 1998). 

The data were collected with an EdgeTech 3300-HM hull-mounted sub-bottom profiler 

("Chirp"; 4x4 arrays) on R/V Helmer Hanssen on August 2nd 2012. The ship travelled with a 
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speed between 8 and 11 knots. During station work data was acquired while the ship was 

drifting. The pulse frequency was 2 – 10 kHz, the length of each pulse was 20 ms, and a ping 

rate (shot rate) of 2 Hz was used (i.e. two shots per second; Rasmussen & Forwick, 2012). 

The Kingdom 8.6 software was used to visualize data and produce figures.  

3.3 Sediment cores 
Four sediment gravity cores were used in this study. The gravity cores were collected on R/V 

Helmer Hanssen on August 2nd, 2012 (Rasmussen & Forwick, 2012). The table below shows 

the coring positions and times of the cores and further details (see Table 3.1).  

 

Station Date Time 
(UTC) 

Location Latitude [N] 
Longitude [E] 

Water 
depth 

[m] 

Recovery 
[cm] 

Comment 

HH12-964GC 
 

02/08-
12 

12:12 Woodfjorden 79.39.038’ 
013.45.286’ 

173  334 4 sections 

HH12-966GC 
 

02/08-
12 

13:13 Liefdefjorden 79.38.361’ 
013.12.862’ 

154 117 2 sections 

HH12-967GC 
 

02/08-
12 

15:15 Bockfjorden 79.28.187’ 
013.15.867’ 

99 169 2 sections 

HH12-969GC 
 

02/08-
12 

17:54 Woodfjorden 79.20.894’ 
013.57.585’ 

50 161 2 sections 

 

The gravity corer onboard R/V Helmer Hanssen consists of a 6 m long steel barrel attached to 

a 1600 kg weight. Inside the steel barrel is a 6 m long plastic liner fixed at the bottom with a 

core catcher and core cutter. The gravity corer is attached to a wire and deployed into the 

water column to penetrate the seafloor. When going into the sediments the core cutter acts 

like a knife slicing through the sediment and allowing it to enter into the plastic liner more 

easily. The core catcher prevents the sediment from falling out of the plastic liner when 

retrieving the gear from the seafloor. On deck, the liner is removed from the steel barrel, and 

cut into approx. 1 m sections. Finally, each section is sealed with plastic caps and tape on both 

ends, labelled and brought to a cool fridge (~4⁰C) to be stored until opening.  

3.4 Laboratory work  
Laboratory work was carried out in the period between March and November 2013. Most of 

the work took place at the Department of Geology at the University of Tromsø, Norway. 

However, the grain-size distribution analyses were carried out in November 2013 at the 

Alfred Wegener Institute in List-on-Sylt, Germany. XRD analysis was performed at the 

Table 3.1: Core station locations and information about the cores used in this study. 

30 
 



Central Laboratory of Crystallography and Applied Material Sciences (ZEKAM), University 

of Bremen, Germany.  

3.4.1 Physical properties 
Prior to opening, physical properties of the sediment cores including magnetic susceptibility, 

gamma-ray attenuation, temperature, P-wave velocity and amplitude, were measured using a 

GEOTEK Multi-Sensor-Core-Logger (MSCL). The measurements were used to calculate 

acoustic impedance (AI) and fractional porosity (FP) of the sediments. The MSCL consists of 

a set of cylindrical plastic tracks with a core pusher driven by a stepper motor. The core 

section is put onto the tracks and driven forward by the core pusher, passing through 

measuring sensors on the way (figure 3.1). The logger was calibrated for gamma-ray counts 

before measurements. This is done by sending a dummy core section through the MSCL. This 

plastic liner contains water and an aluminum core of variable thickness. The dummy is 

measured in 1 cm intervals with long measuring times (50 seconds) and the results were used 

for processing the data. Each core section in this study was measured in 1 cm intervals with 

10 seconds measuring time for every sample interval, and an opening diameter  of 5 mm was 

chosen to collimate the gamma-rays. 

 

3.4.1.1 Gamma-ray attenuation (wet bulk density) 
A 137Cs source and gamma-ray detector is mounted on opposite sides of the track. The gamma 

radiation (photons) produced by the decay of the source passes through a collimating hole, 

which focuses them into a beam (Fig. 3.1). As the photons pass through the sediments, 

Figure 3.1: Principal sketch of the Multi-Sensor-Core-Logger. The main features are 
indicated with arrows (from GEOTEK, 2000). The set-up of the MSCL at the Institute of 
Geology at the Univeristy of Tromsø (used in this study) is 90 degrees from this one; i.e. 
the instrument measures horizontally, not vertically as indicated in the sketch above. 
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electrons in the sediment scatter the photons, attenuating the gamma-rays. The detector 

quantifies the un-attenuated portion of the bean and relates this to the density of the sediment 

using the diameter of the core measured by the transducers (see section 3.4.1.2 – P-wave 

velocity below; GEOTEK, 2000).  

3.4.1.2 P-wave velocity 
A pair of transducers is placed on each side of the instrument (Fig. 3.1). As the core section 

passes between them, a transmitter produces a p-wave pulse which propagates through the 

core, and a receiving transducer detects the time it takes for the pulse to travel through the 

sediment. The system also measures the thickness of the core liner (travel distance), which 

together with travel time is used to calculate p-wave velocity. The p-wave amplitude is logged 

as it moves through the sample in order to determine the amplitude difference between the 

produced and detected p-wave (GEOTEK, 2000). 

Values for p-wave amplitudes are expressed in order of percentage of coupling between the 

liner and transducers where 100 percent represents perfect acoustic coupling. Direct contact 

between the transducers and the core liner is essential to obtain proper measurements. Water 

was dropped into the contact between the liner and transducers to ensure this. Low p-wave 

amplitude values may thus indicate poor measurements, or it could reflect changes in density 

(higher porosities) of the sediment (GEOTEK, 2000). In addition, liners which are not entirely 

filled may also result in poor coupling with the transducers. 

3.4.1.3 Magnetic susceptibility (MS) 
Magnetic susceptibility is a measure of how easily sediments can be magnetized and the 

results obtained from the loop sensor measurements provide information about this. The loop 

sensor on the MSCL (Fig. 3.1) calculates magnetic susceptibility by exposing the core 

sections to a magnetic field as they are pushed through the loop. An oscillator circuit the loop 

sensor produces a low intensity alternating magnetic field of ~565 Hz. The sensor records 

changes in the frequency-intensities of the field when magnetically susceptible materials near 

it. These changes can be converted to either mass-specific or volume-specific MS values 

(GEOTEK, 2000). In this study mass-specific MS values are used. 

3.4.1.4 Temperature measurements 
The cores were removed from the cooling room approximately 24 hours prior in order to 

adjust to room temperature. This is significant because some physical properties of the 

sediments, like magnetic susceptibility and p-wave velocity, are temperature-dependent and 
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may influence the measurement results (Weber et al., 1997; GEOTEK, 2000). On the MSCL a 

thermometer measures the current room temperature.  

3.4.2.5 Opening, description and logging of the cores 
The cores were opened from the bottom to the top using a circular saw to cut the plastic 

liners; a spatula was used to split the sediments. One of the halves was labelled archival, 

wrapped in plastic foil and stored away in a cooling room, while the other was used for 

further lab work. The surface of the work sections were cleaned and described systematically 

in accordance to visual properties of the sediment surface, such as bioturbation, fossils, grain 

size variations, clast distribution, sedimentary structures (e.g. lamination), and color after 

Munsell Soil Color Chart. Lithological logs are used to present the results (see chapter 6 - 

Lithostratgraphy).  

3.4.3 X-ray photography 
X-ray photographs of the cores were taken using a Philips Macrotank machine at the 

Department of Geology at the UiT, the Arctic University of Tromsø. The radiographs show 

the difference x-rays in attenuation of the in the sediment; this attenuation related to the 

density of the material the x-rays travel through. Higher density materials, such as clasts, 

appear as brighter objects than the surrounding lower density, mud.  

Misplacement of objects may be observed between for instance the lithological log and the 

core photos, the grain size distribution and wet bulk density. This is likely related to 

displacement issues when performing x-ray photography of the core section. The x-ray 

instrument images 40 cm sections of the core in each measurement. The x-ray source emits x-

rays from the central part of the 40 cm section. If a high density object (i.e. clasts) occurs 

above or below the central measuring point, the x-rays will scatter when they meet the 

obstacle and project an image on the film with an angle to the object. As a result, a clast may 

be imaged with a position a few mm to cm higher or lower in the core on x-ray photographs 

than in the actual core. 

3.4.4 Element geochemistry 
X-ray fluorescence scanning (XRF) of the core halves was performed using the Avaatech 

XRF core scanner at UiT, the Arctic University of Tromsø. This method is non-destructive, 

provides high-resolution records of chemical compositions of sediment cores, and requires 

very little preparation time prior to scanning (Richter et al., 2006). The XRF core scanner 

performs qualitative measurements of all the elements from Mg to U. The scanner consists of 

a rhodium x-ray source emitting x-rays into a helium chamber, and a detector. When the 
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source exposes the sediments to radiation, electrons are ejected from an inner shell of atoms, 

generating secondary electromagnetic radiation (fluorescence). The energy of the emitted 

radiation is different and characteristic for each element. Therefore, the amplitudes of the 

peaks detected in the XRF spectrum are reflecting the concentration of the corresponding 

elements (Richter et al., 2006; http://www.avaatech.com/). A helium-flushed chamber is part 

of a measuring triangle that lands on the sediment surface for the measurements. This is 

important to avoid measurements through air; particularly because light elements emit weak 

secondary radiation which may be absorbed into the air before the detector records the waves 

(Richter et al., 2006; http://www.avaatech.com/). 

The measuring triangle move stepwise down the sediment core surface. Ideally, the material 

being measured should have a homogenous, dry and flat surface (Richter et al., 2006). Since 

this is generally not the case for sediment cores, some preparations were done prior to 

scanning. The sediment surfaces of the core half-sections were cleaned and smoothened, and 

covered with a thin (4 μm) foil to avoid contamination as the measuring triangle is moving 

down the core surface. It is important to make sure that the foil is as tightly as possible put 

onto the sediment to avoid measuring through air bubbles (see matrix effects in the next 

paragraph). The core sections were measured using a 10 mm down-core and 12 mm cross-

core slits settings. Standard settings at the Department of Geology were used with the 

following measurement settings: 1) 10 kV, 1000 μA, 10 seconds counting time, no filter, for 

measuring the elements Al, Si, S, Cl, K, Ca, Ti, Mn, Fe and Rh, and 2) 30 kV, 2000 μA, 10 

seconds counting time, Pd-thick filter, for measuring the elements Rb, Sr and Zr. The XRF 

scanner measures other elements than the above mentioned, but since they are not relevant for 

this study they were not included in the results.  

The issues of so-called matrix effects, meaning the effects of uneven surface, porosity and 

water content of the sediments, are discussed by Tjallingii et al. (2007) and Weltje & 

Tjallingii (2008).  XRF scans preformed on wet sediment cores, in contrast to dry sediment 

samples, show greatly reduced element intensities of light elements such as Si and Al 

(Tjallingii et al., 2007; Weltje & Tjallingii, 2008). Results are usually presented in element 

ratios, where every single element is plotted against another element, or the sum of several 

elements. Further reduction of errors can be done by allowing the cores to adjust to room 

temperature before attaching the micro-foil and performing XRF scanning. This prevents a 

water film to from forming on the sediment surface via condensation (Tjallingii et al., 2007; 

Weltje & Tjallingii, 2008).  
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In Table 6.1 in Chapter 6 - Lithostratigraphy element geochemistry data are presented as 

specific element ratios (e.g. Fe/Ca) and as “Element/sum” ratios (e.g. Fe/sum). The “sum” 

refers to the sum of all element with count rates >10 000 during the 10 kV run. These ratios 

are used to better clarify variations in the various elements, and thus, infer sediment 

provenance. Mean values for Fe and Ca counts are also presented to illustrate variations in 

these elements between the four coring sites.   

3.4.5 Color imaging of the cores 
Color images of the core sections were taken using a Jai L-107CC 3 CCD RGB Line Scan 

Camera (70 μm resolution) mounted on the Avaatech XRF core scanner. The sediment 

surfaces of each core section were cleaned and smoothened using a plastic card prior to taking 

photographs. After cleaning the core sections was left to dry at room temperature, allowing 

pore water to escape and evaporate, reducing reflection effects during photographyof the 

sediment surfaces.   

3.4.6 Sampling 
Sediment samples were collected to perform X-ray diffraction (XRD) and grain size 

distribution analyses. All the four cores were sampled in 1 cm thick slices every 5 cm of the 

half core section for XRD analyses (see chapter 3.4.7). Approximately 0.125 cm3 of sediment 

was sampled for grain-size analysis every 2 cm from core HH12-964-GC and every 4 cm 

from cores HH12-966-GC, HH12-967-GC and HH12-969-GC (see chapter 3.4.8 below).  

3.4.7 X-ray diffraction (XRD) analysis 
XRD analysis of clay minerals is a common method for reconstructing pathways of sediment 

transport and sedimentary environments of fjords based on precise determination of the 

sediment composition (Vogt et al., 2002). Measurements and quantifications provide 

individual mineral contents expressed as percentages of bulk material assemblage.  

The samples were put in small, open plastic bags after collection and left in a freezer 

overnight. The following day the samples were dried using a freeze-dryer for approx. 12 

hours. The dried samples were then ground into a fine powder using an electric mortar and 

stored in labelled plastic bags. The samples were shipped to Germany and XRD analysis of 

the samples was carried out by Dr. Christoph Vogt at the Central Laboratory of 

Crystallography and Applied Material Sciences (ZEKAM), University of Bremen. The XRD 

measurements were performed using an X’Pert Pro MD with CU-radiation and an X’Clerator 

detector system. Finally, quantification of mineral contents was carried out using the QUAX 

software. These calculations are performed on a computer and produce standard deviations 
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and mixing curves of mineral assemblage. The standard deviation for feldspar and clay 

minerals ranges between ±5 – 10 % (cf. Vogt et al., 2002).  

3.4.8 Grain-size distribution analysis 
After sampling, the plastic bags were put in the freezer overnight and freeze-dried the 

following day for approx. 8 hours. The grain size distribution analysis of the samples was 

performed at the Alfred Wegener Institute of Polar and Marine Research (AWI) in List-on-

Sylt, Germany using a CILAS 1180L laser-diffraction particle size analyser. Grain-size 

distribution presented below is divided into volume percentage of clay, silt and sand, 

respectively (c.f. Hass et al., 2010). The gravel fraction of the sediment cores is not included 

in the results. This is because the CILAS Laser-Diffraction Particle Size Analyser can only 

measure particles up to 2.5 mm (see Table 3.2).  Grains larger than 2 mm (>sand) are 

regarded as “clasts”, and are drawn into the lithological logs individually. In this study, 

however, all grains exceeding 63 μm are interpreted to represent ice-rafted debris from either 

icebergs or sea ice (e.g. Elverhøi et al., 1995; Hass, 2002).  

3.4.8.1 Sample preparation 
Approximately half of each sample volume was transferred into plastic containers (100 ml) 

using a spoon. Each sample was treated with acetic acid (CH3COOH) to dissolve and 

eliminate carbonates and hydrogen peroxide (H2O2) to remove any organic matter. After each 

treatment the samples were left overnight and then flushed with water twice. A small amount 

of sodium polyphosphate (Calgon/Graham’s salt) was added to the samples to prevent 

aggregates from forming, and finally the containers were left for 24 hours on a shaking table 

(compare with Hass et al., 2010).  

Some of the samples had broken up and pulverized during transport. In order to avoid sorting 

effects sediment aggregates of the samples were used when possible. In the pulverized 

samples the sediment was distributed at the bottom of the plastic bag and half of it transferred 

to the container with a spoon. Sorting effects are regarded to be small and not a significant 

source of error. 

3.4.8.2 Measurements and calculations 
The CILAS 1180L laser-diffraction particle size analyser at the AWI measures grain size 

volumes in the range from 0.04 to 2500 μm (www.particle-size-analyser.com). Some of the 

samples contained grains larger than ~2000 μm; these were removed by using a sieve with a 2 

mm mesh size. Most of the samples had to be diluted in the particle size analyser before 

measuring because their concentrations were too high. The data was presented in an Excel-file 
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Table 3.2: An overview of terminology used when despcribing grain sizes. For this 
study, the GRADISTAT terminology in the column to the right was used (from Blott & 
Pye, 2001). 

and the GRADISTAT v.8.0 software by Blott & Pye (2001) was used to perform statistical 

calculations on the data. Normal subdivisions of the grain sizes (e.g. fine, medium, coarse, 

etc.) are not used in the following text; it is only referred to as clay, silt and sand (Table 3.2). 

Because the particle size analyser measures grain size volumes, the results in the following 

text are presented in volume percentages.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.9 Radiocarbon dating  
The sediment cores in this study contain very few macrofossils. As only a few of the core 

sections had shells and fossil fragments on the sediment surface, the x-ray photographs were 

used to identify macrofossils in the cores. Suitable samples of shell valves and fragments from 
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Table 3.3: Shell valves, fragments and benthic foraminifera used for radiocarbon dating. 

all four cores were collected, washed in tap water and weighed. Benthic foraminifera were 

picked for dating from the bottom of the HH12-964-GC core due to very sparse content of 

macrofossils there.  In total, eleven samples (Table 3.3) were collected and shipped to the 
14CHRONO Centre at Queens University, Belfast, Northern Ireland, for AMS dating. The 

most frequently occurring species of the shells were identified to be Bathyarca glacialis and 

Yoldiella lenticula. Sedimentation rates were calculated from the mean of the 1 σ range 

calibrated radiocarbon dates (Table 6.2 in Chapter 6 – Lithostratigraphy).  

 

3.4.9.1 Principle 
There are three naturally occurring isotopes of Carbon: 12C (99%), 13C (~1%) and 14C. The 
14C isotope is rarest and radioactive. This unstable isotope is continuously formed in the upper 

atmosphere when 14N-nitrogen and neutrons collide. 14C will quickly bind to oxygen to form 

CO2, which mixes throughout the atmosphere and dissolves into the oceans. The carbon 

dioxide is further included into calcareous marine organisms, and biosphere through 

photosynthesis. The 14C levels will, in principle, remain in equilibrium with the atmosphere as 

long as the organisms are living. Once the organism dies, 14C will no longer be exchanged 

through the biosphere and will start to decay with a half-life of 5730 years (Bowman, 1990).  

Lab reference Core Sampling depth (cm) Species 

UBA-23224 HH12-966-GC 57 Bathyarca glacialis 

UBA-23225 HH12-966-GC 65 Yoldiella lenticula 

UBA-23226 HH12-966-GC 96 Bathyarca glacialis 

UBA-23227 HH12-969-GC 20 Bathyarca glacialis 

UBA-23228 HH12-969-GC 144 Thracia papyracea? 

UBA-23229 HH12-964-GC 10 Yoldiella lenticula 

UBA-23230 HH12-964-GC 38 Bathyarca glacialis 

UBA-23231 HH12-964-GC 222 Yoldiella sp. 

UBA-23232 HH12-967-GC 162 Fragments un-ident. 

UBA-23233 HH12-967-GC 15 Spine from fish? 

UBA-23398 HH12-964-GC 327-334 Benthic foraminifera 
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3.4.9.2 Accelerator Mass Spectrometry (AMS) 
The samples were prepared and measured at the 14CHRONO Centre at Queens University, 

Belfast (http://chrono.qub.ac.uk/) using the Accelerator Mass Spectrometry (AMS) method. In 

AMS, addition of the electron from the C-ion occurs before acceleration by the electric field. 

They then pass through a stripping device which removes the added electron and turns the 

negative ions to positive ions before they pass through the magnetic field. The magnetic field 

deflects them to different angles as a function of their mass:charge ratio. Even though the 

lightest isotopes are deflected the most, the more highly charged heavy ions are deflected 

more than the lighter, more weakly charged, ions (Bowman, 1990; Vogel et al., 2005). 

3.4.9.3 Calibration and marine reservoir effects 
14C is continuously formed in the atmosphere, but the concentration is not constant. Mixing of 

radiocarbon into the oceans occurs only at the atmosphere-ocean interface. Due to a stable 

supply of 14C from the atmosphere, surface waters have a near-uniform concentration of 

radiocarbon and a modern 14C ages (Bowman, 1990, Ruddiman, 2001). The unstable isotope 

is further incorporated into sediments, marine organisms and deep water. When surface water 

masses sink, there is no mixing and fresh supply of 14C from the atmosphere and the decay of 

the isotope occurs in a closed system. The time it takes for the water to be isolated and 

regarded as a closed system gives the water masses an increased apparent age-termed the 

marine reservoir effect. The age effect can vary up to a thousand years (Ruddiman, 2001). A 

local reservoir effect (ΔR) is also recognized and considered (Reimer & Reimer, 2001). When 

dating calcareous marine organisms this ageing effect (ΔR) needs to be accounted and 

corrected for as it can cause large regional variations. Samples dated by performing AMS, 

therefore, have to be calibrated to be given in calendar years before present (cal. yr. BP).  

The 14C ages obtained from AMS dating were calibrated into years BP using the CALIB 7.0 

software from Stuiver & Reimer (1993; 2014; http://calib.qub.ac.uk/calib/calib.html). This 

software uses a calibration curve with an average marine reservoir age of 400 years and a 

regional marine reservoir age (∆R) from the North Atlantic of 105±24 (Mangerud et al., 

2006). 

Calibrated ages (cal. y. BP) used in this study regard the year 1950 to be age zero of the 

radiocarbon time scale. More modern ages are not reliable and they will likely calculate to be 

erroneously young. Due to an increased release of 14C to the atmosphere via the burning of 

fossil fuels in the 1900s, the dropping of nuclear bombs over Japan in 1945, and nuclear 

accidents from nuclear weapons testing (Bowman, 1990).    
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4. Swath bathymetry  

4.1 Introduction  
A swath bathymetry data set was used to describe the morphology and landforms on the 

seafloors of Woodfjorden, Bockfjorden and Liefdefjorden, respectively. These data were 

supplemented with chirp penetration echo sounder data to allow a more complete and clearer 

interpretation of the shallow sub-seafloor and the sedimentary processes in the fjord system. 

The large-scale morphology of the fjord system is summarized in Figure 4.1. The outermost 

part of the fjord system and inner shelf are also covered by the swath bathymetry data set, but 

will not be addressed in detail as it has previously been described by Ottesen et al. (2007). 

Identification, description and interpretation of submarine landforms are performed in the 

following chapters. The figures are presented by geographic subdivision of the area (Figure 

4.2 – Inner Woodfjorden & Bockfjorden, Figure 4.3 – Liefdefjorden & Mid-Woodfjorden, 

Figure 4.4 – Outer Woodfjorden). Common features occurring in all three fjords are described 

in Chapter 4.2 – Large-scale morphology of the fjord system. Features occurring only in a 

specific area are further discussed in Chapter 7. 
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Figure 4.1: A) Bathymetry of the fjord system of Woodfjorden, Bockfjorden and 
Liefdefjorden, north Spitsbergen. Black frames indicate the locations of Figure 4.2, 4.3 
and 4.4, respectively. 
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Figure 4.1: B) Interpretation of the large-scale morphology of the fjord system.  
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4.2 Large-scale morphology of the fjord system 
The fjord system consists of three fjord arms (Fig. 4.1) in which multiple basins separated by 

sills occur. The fjords generally deepen into the northerly direction. However, the water depth 

in Woodfjorden decreases at its mouth. Along the fjord axes, Woodfjorden and Bockfjorden 

are asymmetrically deep, with increasing depths towards the west. The deepest basin of 230 m 

depth occurs in Liefdefjorden.  

In inner Woodfjorden there are two large basins separated by sills (Fig. 4.2). The water depth 

varies from c. 40 m in the inner part of the fjord arm to c. 90 m in the outer part. The seafloor 

appears as generally flat, but with a number of large- and small-scale landforms. Bockfjorden 

is the smallest fjord arm of the system (Fig. 4.2). At present, there are no glaciers terminating 

in the fjord basin of Bockfjorden and Woodfjorden (http://toposvalbard.npolar.no/). Although 

many similar morphological features are found in both inner Woodfjorden and Bockfjorden, 

the seabed in the two fjords appears quite different. Where Woodfjorden is relatively flat and 

highly detailed in landforms, Bockfjorden is relatively flat and smooth. The fjord is deepest 

(~110 m) in the central parts and shallows towards the fjord mouth (~75 m). The innermost 

part of the fjord is shallow (~50 m) and very smooth. 

The seafloor of Liefdefjorden is largely characterized by several deep basins (>200 m), 

shallow heights, ridge complexes and, in general, very hummocky structures (Fig. 4.3 and 

4.11). At present, there are a series of islands in the fjord (i.e. Lernerøyane, Andøyane and 

Måkeøyane; see Fig. 2.5 in Chapter 2). The basins are sharply outlined and have steep slopes 

(from 15° up to >30°) towards the deepest parts. These areas where there is an abrupt change 

in gradient are indicated with red lines in (Fig. 4.3 B)  and are interpreted to be fault and/or 

fractures that are possibly related to larger fault systems identified on land (i.e. Breibogen 

Fault Zone, Friedrichbreoverskyvningen, Keiserhjelmforkastningen; see Fig. 2.3 in Chapter 

2). Large ridges are shown in Figure 4.1 and 4.3. Swath bathymetry data alone does not allow 

a complete interpretation of these ridges as to whether they are related to bedrock or glacier-

deposited moraines (see Chapter 5 - Seismostratigraphy). The three fjord arms show great 

differences in terms of morphology and landforms occurring on the seafloor. Common large-

scale landforms are described in the sections below. 
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Figure 4.2: A) Bathymetry of inner Woodfjorden and Bockfjorden. Black dotted 
lines indicate artefacts that resulted during data acquisition.  
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Figure 4.2: B) Interpretation of landforms on the seafloor of inner Woodfjorden 
and Bockfjorden.  
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Figure 4.4: A) The seafloor of outer Woodfjorden.  
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Figure 4.4: B) Interpretation of submarine landforms in outer Woodfjorden.  
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4.2.1 Large bedrock ridges/moraines and sediment wedges 
Large ridges, or sills, occur perpendicular to the fjord troughs, some of which stretch all the 

way across the basins of the fjord arms (Fig. 4.1). The ridges occur at several places in 

Liefdefjorden, and mainly in the outermost part of Bockfjorden and Inner Woodfjorden. They 

generally vary in lengths from 2-5 km, widths of 200 m up to 1.5 km, and heights up to 40 m.  

The largest ridges occur in Liefdefjorden, where the outermost ridges are up to 70 m high.  

Cross profiles over the ridges (Fig. 4.5) show a general asymmetry, with a steeper in-fjord 

side, and a gentler slope of the outward direction.  

 

These ridges are interpreted to be bedrock sills, or moraines deposited during advances and/or 

longer still-stands of glaciers occupying the fjords. The outermost ridge in Inner Woodfjorden 

is draped by lobe-shaped features beyond its front. It is interpreted to represent a grounding-

zone wedge, formed at the front of a glacier which most likely was pinned on shallower 

bedrock ridges, allowing a sediment wedge to form over some time (e.g. Ottesen et al., 2007). 

Large sediment lobes are also identified along the eastern side in Mid-Woodfjorden (Fig. 

4.1.B).  

Figure 4.5: Cross profile (a-a’) over the innermost ridge in Woodfjorden 

(see Fi.g 4.2 for location). 
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4.2.2 Mega-scale-glacial-lineations   
Several sets of relatively evenly spaced, parallel linear to curvi-linear landforms are identified 

throughout the entire seafloor of Inner and Outer Woodfjorden (Fig.4.1, 4.2, 4.3 and 4.4). 

They appear as narrow troughs and ridges, c. 100-200 m wide and with heights of mostly 2-3 

m, and occasionally up to 10 m. They are oriented parallel to sub-parallel to the fjord axis and 

extend for several kilometers in some areas (Fig. 4.1.B). Shorter features are described as 

elongated ridges and grooves (for example in Liefdefjorden, Fig. 4.3 and 4.12). They seem to 

be overlain by the large transverse moraine ridges/sills (Chapter 4.2.1), and by smaller 

transverse, parallel ridges (see Chapter 4.2.3 below). The sediment cover over the ridges 

makes it difficult to distinguish features under the sediments and do not allow an 

interpretation of the large ridges whether or not they are depositional or bedrock features. 

These linear features are interpreted to be mega-scale-glacial-lineations (MSGLs) or glacial 

lineations, formed under fast-flowing ice by deformation of soft sediments (Clark, 1993; 

Stokes & Clark, 1999; Ottesen et al., 2005; Baeten et al., 2010). Because MSGLs form at the 

base of ice-streams these types of landforms allow indentification of fast-flowing areas of past 

ice-sheets and are used to indicate palaeo-ice-flow-direction (e.g. Ottesen et al., 2005, 2007). 

4.2.3 Recessional moraines 
A series of smaller transverse, parallel and semi-regularly spaced ridges occur on the seafloor 

and along the sides of Woodfjorden, in the innermost part of Bockfjorden and in 

Liefdefjorden (Fig. 4.2, 4.3 and 4.4). In Woodfjorden and Liefdefjorden these ridges are 

located mainly in clusters along the shallower, eastern fjord side. However, they are also 

identified in the central parts of the basins in Woodfjorden and Liefdefjorden. They vary in 

lengths from a few hundred meters and up to 1.5 km. Most of these ridges are a few meters 

high (3-5 m), but some are as high as 10 m. The spacing between the ridges vary from up to 

~200 m in outer Woodfjorden, ~160 m in the middle parts of the fjord and ~80 m in inner 

Woodfjorden and in Liefdefjorden. The shorter ridges are often relatively straight-crested, 

whereas the longer ones typically have a curved or undulating shape. Smaller ridges identified 

in Bockfjorden are different in character from the ridges in the deeper parts of the fjords (see 

paragraphs below). 

The transverse ridges are interpreted to represent recessional moraines deposited during minor 

halts and/or re-advances in overall glacier retreat, reflecting stepwise retreat of the glacier 

front.  Moraines can form as push moraines during small winter-season re-advances of 
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tidewater glaciers when the presence of sea ice suppresses iceberg calving (Boulton, 1986; 

Ottesen & Dowdeswell, 2006, 2009).   

Figure 4.6 below shows the area of the seafloor in front of Freidrichbreen in Bockfjorden. A 

series of undulating, semi-regularly spaced ridges here are identified. The ridges on the flat 

seabed are 1-2 m high and ~50 m wide, however, towards the shallower sloping fjord side 

they change in character. These ridges have a stronger relief, occur closer together and are 

higher (up to 5 m) and narrower (20-40 m). The ridges are located with a distance between the 

ridge crests from ~25 m up to ~80 m.  They vary in shape from relatively straight to very 

irregular. The ridges are interpreted to represent recessional moraines formed by stepwise 

retreat of the glaciers terminating in the fjord. The sharply outlined ridges in the shallower 

fjord sides likely represent annual retreat moraines deposited by Friedrichbreen, and 

indicating slower glacier retreat compared to the outer parts of the fjord. The moraines may be 

more prominent here than further out in the fjord basin due to sediment covering the 

moraines, making them less prominent (see Chapter 7).  

 

Figure 4.6: Recessional moraines in Bockfjorden are indicated with arrows. Profile a-
a’ is drawn across the sharply outlined moraines at the fjord head (see Fig. 4.2 for 
location). Each moraine on the profile is indicated with a small black arrow. 
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4.2.4 Large irregular, glacier-modified ridge 
A sharp and steep change in water depth occurs at the boundary from Liefdefjorden to 

Woodfjorden (Fig. 4.7). The elevation difference from the seabed in Woodfjorden and to the 

top of the “ridge” is more than 40 m. The character of the ridge changes towards the north 

from relatively straight to undulating or irregular. Linear ridges parallel to the Liefdefjorden 

trough occur on top of the ridge. A profile over the ridge (Fig. 4.7 a-a’, parallel to the fjord 

axis) show a shallowing in water depth over the ridge in relation the deep basin in the fjord to 

the west.  

The irregular ridge is interpreted to be a glacier-modified marginal moraine. The irregularity 

of the ridge suggests that the tide-water glacier in Liefdefjorden advanced over the ridge, 

squeezing the moraine deposits into an irregular shape. It may further indicate that the glacier 

front has been oscillating at some point during retreat. 

 

Figure 4.7: Irregular ridge in outer Liefdefjorden (see Fig. 4.3 A for location). Large 
recessional moraines are indicated with arrows. Profile a-a’ shows the change in depth 
from the deep basin in the west to the shallow mouth of the fjord arm. 
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4.2.5 Iceberg plough marks 
Elongated furrows are identified several places in inner Woodfjorden. They occur frequently 

in the outer part of the fjord arm and mostly in shallower areas (<50 m water depth; Fig. 4.8). 

These furrows are also found on the shallow seafloor along the fjord sides in Bockfjorden and 

Liefdefjorden, and on shallow bedrock heights in mid- and outer Woodfjorden (~100 m and 

down to >200 m water depth). In outer Woodfjorden the furrows are mostly straight and occur 

alongside the MSGLs (Fig. 4.4). Plough marks in the inner part of Liefdefjorden appear to be 

sharper outlined than in Woodfjorden. A profile across the furrows reveals that they are 

bounded by levees (Fig. 4.9). The furrows are relatively straight to irregular and zigzagged. 

They do not show any preferred orientation but rather a chaotic pattern. With widths varying 

from a few meters and up to 40 m, some are very short (50-100 m) while others can be 

followed for hundreds of meters and up to kilometers. The termination of the furrows is often 

rounded (Fig. 4.7). Crossing furrows occur in some places. 

The furrows are interpreted to be iceberg plough marks because they are sharply outlined and 

occur mostly in shallow areas. Plough marks that appear more sharply outlined are assumed to 

be younger (compare with e.g. Baeten et al., 2010). At present there are no glaciers in 

Woodfjorden, suggesting that the plough marks here have formed at a time when the glacier 

(Abrahamsbreen/Vonbreen, see Fig. 2.5 in Chapter 2) was still occupying the fjord. Plough 

marks in Liefdefjorden typically have a “younger” appearance, as expected since tidewater 

glaciers are operating in the fjord at present (Fig. 2.5).  

4.2.6 Pockmarks  
Elongated to circular depressions occur on the seafloors of all fjords in the study area. The 

depressions occur as single features and in clusters (Fig. 4.2 B and Fig. 4.3. B). Their sizes 

vary from ~20 m width and 2-3 m depth, up to 100 m width and 7 m depth. On profile b-b’ on 

Fig. 4.9 it is clearly visible that the depressions are rimmed. Depressions which occur on a 

sloping surface typically have a conical or sub-circular to elongated shape and are often 

asymmetric (Fig. 4.9). In Bockfjorden the depressions occur mostly individually, and are 

relatively small (1 m deep and ~20 m wide). 

These depressions are interpreted to be pockmarks. Pockmarks form when unconsolidated 

seabed sediments are removed by fluids escaping through the seafloor (Hovland & Judd, 

1988; Judd & Hovland, 1992). The fluids are most commonly gas, and the size of the 

pockmarks varies according to the nature of the sediment in which they form (Hovland & 

Judd, 1988). Studies from Spitsbergen fjords propose that migration of porewater fluids also 
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may form pockmarks (Forwick et al., 2009). Pockmarks are common features in Spitsbergen 

fjords (e.g. Forwick et al., 2009; Kempf et al., 2013).  

 

Figure 4.8: Complex seabed over a sediment wedge in mid-Woodfjord (see Fig. 4.3 A for 
location). Plough marks are indicated with arrows on bedrock heights and on the 
sediment wedge. The plough marks are separated from the chaotic pattern of the complex 
ridges by the fact that they are rounded in the front where the icebergs have disturbed 
the soft seabed sediments. 
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4.2.7 Sediment Creep and Mass Transport Deposits (MTDs) 
A number of incisions or furrows are identified in the innermost part of Woodfjorden. They 

are interpreted to be gullies and channels. Channels occur mainly along the eastern fjord side 

(Fig. 4.2 and 4.10 A). They are mostly 2-3 m deep and up to 500 m long. Some channels are 

larger and up to 7 m deep. Beyond the channels, lobe-shaped features occur. Closely-spaced 

ridge-like structures appear on the lobes (Fig. 4.10 A). Channels and gullies occur in 

Bockfjorden as well. Similar lobes with small ridges are identified here. However, the outline 

of the lobes is not very defined and it appears more like hummocky seabed.  

The lobe-shaped features in inner Woodfjorden are suggested to reflect post-glacial re-

sedimentation process, e.g. gravitational sediment creep, slumping or sliding (compare with 

Figure 4.9: Sediment wedge in the outer part of Inner Woodfjorden 
(see Fig. 4.2 A for location). The dotted line indicates the outline of the 
front of the wedge. Profile a-a’ shows a cross section over iceberg 
plough marks. Profile b-b’ shows a cross section over three pockmarks. 
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Forwick & Vorren, 2011b). What appear as small ridges are therefore likely an effect of slow, 

retrogressive slide-out of sediment due to increased sediment loading here. Increased loading 

can be accounted for from meltwater rivers from Woodfjorddalen and Andrée Land, 

supplying sediments into the fjord basin (see Chapter 2- Sediment sources). An additional 

explanation may be that the ridges are compressional ridges formed as a result of 

compressional forces created during emplacement of the slide mass (Prior et al., 1982). 
However, since the ridges start at the mouth of the channels they are more likely a result from 

sediment creep. 

Another type of sediment lobes occurs in at several sites in the fjord system. These lobes are 

smaller, narrower and more clearly outlined and rounded at the front. The lobes are found 

along fjord sides both in the innermost part and in the outer part of Bockfjorden, mainly along 

the western side, the southern side of Liefdefjorden and along both fjord sides in mid– and 

outer Woodfjorden (see Figures 4.2.B, 4.3.B and 4.4.B).  

The sediment lobes are interpreted to be debris lobes. This is also (most likely) a non-glacial 

re-sedimentation process, however, it is a more rapid and turbulent process than the slow 

sediment creep. Debris flows result from gravitational forces acting on sediments on a slope 

and may be triggered by small earthquakes related, for instance, to glacio-isostatic rebound 

(Forwick & Vorren, 2011b).  Other triggering mechanisms may be increased sediment supply, 

waves and tides, and increased porewater pressure from gas (e.g. Prior et al., 1981; 

Zajączkowsksi & Włodarska-Kowalczuk, 2007; Szczuciński & Zajączkowski, 2012). 

However, a steep slope of the fjord combined with high sediment load, may increase pore-

pressure sufficiently to cause a slide.   

4.3. Eskers  
On the seafloor of all the three basins in Inner Woodfjorden irregular ridges are identified. 

The ridges are generally sub-parallel to the fjord axis and vary in crest shape from relatively 

straight to sinuous and zigzagging. Small mounds occur on top of the ridges (Fig. 4.10 B, 

profile b-b’). A profile along a ridge in the innermost basin (Fig. 4.10 B) shows that the ridges 

are irregular and vary in heights up to maximum 12 m, widths from 50-100 m and up to 3 km 

in lengths. In the outermost two basins the ridges are less continuous than in the inner basin. 

Although it is not very clearly seen, the recessional moraines seem to cross on top of these 

undulating ridges (see profile b-b’ in Fig. 4.10 B). 
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The irregular ridges are interpreted to be eskers, formed by infilling of subglacial meltwater 

channels (Benn & Evans, 2010; Kempf et al., 2013). The sinuosity of the eskers is assumed to 

mimic the meltwater “river” at the base of the ice. The discontinuity of the eskers may be a 

result of discontinuous deposition. The mounds on the eskers indicate that they are beaded 

eskers, where the mounds indicate halts in the retreat of the glacier front (e.g. Boulton, 1986; 

Kempf et al., 2013).  As for the discontinuity of some of the eskers, it may be explained by 

thicker sediment cover and higher degree of burial.  

4.4 Drumlins and crag & tails 
In the eastern part of the innermost basin in Woodfjorden elongated hills are observed. The 

hills are elongated parallel to the fjord axis with asymmetry towards the fjord mouth (Fig. 

4.10 B and profile a-a’); the in-fjord facing ends are rounded and steeper than the subsequent 

elongated “tail”. Further out in Woodfjorden similar landforms are found (Fig. 4.10 C). They 

have the same asymmetric geomorphology with the steep in-fjord facing end and a gentler 

elongated tail tapering off towards the fjord mouth. However, the steep end of these features 

does not seem to be rounded like the hills in the innermost part of the fjord. Whereas the hills 

in the inner part have lengths of 500-600 m, widths up to 100 m and heights of 8-10 m, the 

landforms in the outer part of the fjord arm are longer (1-2 km), wider (up to 200 m) and 

higher (up to 40 m).  

Although their shapes are similar, these features are interpreted to represent two different 

landforms. The rounded hills in the innermost basin are interpreted to be drumlins due to the 

steep but rounded stoss side and gentler lee side. Drumlins are associated with streaming ice, 

formed at the base of the ice by simultaneous deposition and erosion of unconsolidated till, 

and used to infer glacier flow direction (e.g. Benn & Evans, 2010). In this case, drumlins are 

parallel to the interpreted MSGLs and indicate glacier flow in the out-fjord direction. The 

abrupt steepness and height of the landforms in the outer part of the fjord arm allows them to 

be interpreted as “crag & tails”, where the steep core (crag) is likely a resistant rocky hill and 

the tail is composed of softer, eroded sediments. Crag & tails are, like drumlins, used to infer 

glacier flow (e.g. Benn & Evans, 2010).  

4.5 Complex ridges and small mounds 
An area of complex ridges and small mounds occur directly in front of the interpreted 

sediment wedge in Inner Woodfjorden (Fig.4.10 D). The ridges are up to several hundreds of 

meters long and 1-3 m high. They seem to cross each other to form a rhombohedral to 

complex pattern. Small mounds, 1-2 m high and ~30-50 m wide, are found in the area but do 
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not follow any pattern and they are distributed randomly. Similar ridge patterns are observed 

further out in Woodfjorden (see section about Liefdefjorden and mid-Woodfjorden).  

Studies from Solheim & Pfirman (1985) observed similar rhombohedral ridge patterns and 

mounds in association with Bråsvellebreen, Nordaustlandet, Svalbard, and have interpreted 

these ridges and mounds to reflect relief at glacier soles during surge. These features are also 

documented in association with surge glaciers on land, and are referred to as “crevasse fills” 

produced when soft sediments are squeezed up into fractures (or crevasses) at the base of 

glaciers (Solheim & Pfirman, 1985; Boulton, 1986; Boulton et al., 1996).  Preservation of 

these features requires that the glacier must have become stagnant (Solheim & Pfirman, 

1985). Crevasse fill ridges are previously observed on Spitsbergen in Borebukta, Isfjorden, 

Billefjorden and Van Mijenfjorden (Ottesen & Dowdeswell, 2006; Ottesen et al., 2008; 

Baeten et al., 2010). The probability of whether or not a surge glacier may have operated in 

this area and deposited these features is further discussed in Chapter 7. 
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Figure 4.10: A) Seabed at the head of inner Woodfjorden (see Fig. 4.2 for location). 
Channels are indicated along the eastern fjord side. Post-glacial sediment creep 
occurred at the head of the fjord arm. The profile (a-a’) shows the morphology of one 
creep deposit. B) Eskers and drumlins in inner Woodfjorden (see Fig. 4.2 for location). 
Profile a-a’ shows a cross section over a drumlin. Recessional moraines are 
superimposed on the drumlins. Profile b-b’ shows a profile along an esker. C) Crag & 
tails in the outer part of inner Woodfjorden (see Fig. 4.2 for location). Profile a-a’ 
shows the asymmetric shape with a steep stoss side and a gentler lee side. D) 
Complex/rhombohedral ridges and mounds in front of the sediment wedge in Inner 
Woodfjorden (see Fig. 4.2 for locations). 
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4.6 Ridge complex and glacial cavity fills 
Figure 4.11 shows the complexity which characterizes the seafloor in the inner part of 

Liefdefjorden. Ridges varying in height from 4-5 m and up to as much as 30 m occur in the 

innermost area of the fjord. The largest ridges are 1-2 km long, up to 300 m wide and do not 

have a clear appearance. Smaller ridges, superimposing the larger ridges, are however, more 

clearly visible. They are shorter and narrower (30-50 m) and have an irregular or undulating 

shape. The ridge complex is interpreted to represent large and smaller moraine ridges 

deposited during several episodes of glacier advance and/or retreat. The small ridges are 

deposited on top of the large ones, suggesting that they are younger, recessional moraines. 

Alternatively, the ridges may be crevasse fill ridges produced by glacier surge, like the ones 

identified at the mouth of inner Woodfjorden (Ottesen et al., 2008; see Chapter 7.1 – 

Morphology and origin of submarine landforms). 

The ridges disappear under a large lobe-like feature further northwest (Fig. 4.11). The surface 

of the lobe is relatively smooth, but modified with iceberg plough marks. A profile (Fig. 4.12, 

profile a-a’) across the front of the lobe shows a change in gradient, with a seabed sloping 

towards the northeast and then abruptly it steepens in the same direction. Similar basin 

settings, where there is elevation towards the basins sides, are found further out in 

Liefdefjorden as well (Fig. 4.12). These large lobe-features are interpreted to be sub-glacial 

cavity fills, formed when sediments accumulate in depressions on the seafloor. Similar 

features are documented by Boulton (1982) where they have interpreted depression infills and 

thick sediment accumulations on the lee side of obstacles to represent infill of sub-glacial 

cavities. The origin of the sediment lobe is further discussed in Chapter 7. 

The middle part of Liefdefjorden is characterized by relatively large changes in water depth, 

as well as a very variable bathymetry. A number of recessional moraines are interpreted, and 

another cavity fill is documented (Fig. 4.12). A probable explanation for the variable pattern 

of the seafloor here is that it is the relief of partly buried recessional moraines and irregular 

bedrock topography, in combination with the occurrence of randomly distributed pockmarks 

and iceberg plough marks, mostly along the shallower fjord sides.  
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Figure 4.11: Complex seabed of Inner Liefdefjorden (see Fig. 4.3 A for location). A 
general pattern of large ridges superimposed by smaller ridges are identified. Iceberg 
plough marks occur along the shallow western fjord side and on top of the sediment 
body, interpreted to represent a cavity fill. Profile a-a’ show a cross profile over the 
cavity fill.  
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Figure 4.12: Hummocky seafloor in Liefdefjorden (see Fig. 4.3 A for location). 
Recessional moraines are indicated with black arrows. Profile a-a’ shows the irregular 
and hummocky seafloor here. Streamlined landforms are indicated with white arrows. 
Cavity fill is indicated with an arrow. 

65 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

66 
 



5. Seismostratigraphy 
5.1 Introduction  
In the following chapter the chirp sonar data will be addressed to supplement the swath 

bathymetry data. Because the swath bathymetry data and sediment cores are the main focus of 

this thesis, only the main features of the chirp sonar data will be described. A total number of 

seven chirp lines (Fig. 5.1) were collected in the fjord system of Woodfjorden, Bockfjorden 

and Liefdefjorden. Two lines were selected to visualize the main features of the shallow sub-

surface in the study area: 

- HH12-Geo3144-8144-Wood007 which was acquired along the eastern side of 

Woodfjorden (Fig. 5.2) 

- HH12-Geo3144-8144-Wood004 located along the western side of Bockfjorden and all 

the way out to mid-Woodfjorden (Fig. 5.3) 

The main seismostratigraphy and common units between the fjords are described below. 

However, local differences occur between the fjord arms. This is further addressed in Chapter 

7 and not included here. The y-axis of the chirp profiles show the two-way travel time (TWT) 

and is used to estimate sediment thickness in the fjords. 
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Figure 5.1: Locations of the chirp sonar profiles used in this thesis, as well as 
core locations. 

68 
 



Figure 5.2: A) Chirp line from Woodfjorden (see Fig. 5.1 for location). B) Interpretation of the lowermost (R1) and topmost (R2) 
reflection. An area of prominent recessional moraines is indicated. Note the large bedrock sill at the fjord mouth. 
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5.2 Seismostratigraphic description and interpretation  
The reflection patterns vary between the three fjords, as well as within each fjord. However, 

two regional reflections properties and four units recur throughout the fjord system. They are 

addressed in greater detail in the sections below. 

Figure 5.3: A) Chirp line collected from Bockfjorden to mid- Woodfjorden (see Fig. 5.1 for 
location). B) Interpretation of the lowermost (R1) and topmost (R2) reflection. The 
approximate position of the internal reflection, the top of Unit 2 (blue line), is also indicated. 
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5.2.1 Reflection R1 and Unit 0 – Subglacial deposits 
The R1 reflection is the lowermost regional reflection. It is recognized on all the chirp lines 

(green line in Figs. 5.2 and 5.3). It is generally characterized by being very hummocky, with 

several smaller and larger mounds or spikes appraently penetrating into the overlying Unit 1. 

This reflection is often diffuse and discontinuous and, in consequence, difficult to trace in 

some areas, e.g. along profile Wood007. Reflection R1 defines the top of Unit 0 that appears 

as an up to 5 milliseconds [ms] thick (TWT), irregular layer lying directly upon the acoustic 

basement (transparent). The layer is generally acoustically semi-transparent with a diffuse 

lower boundary and a stronger upper reflection (see Fig. 5.4 below).  

 

Figure 5.4: Section from chirp line HH12-Geo3144-8144-Wood007 (see Fig. 5.2 for 
location) showing an area where Unit 1 is nicely stratified. The tentative position of the 
Top U2 reflection is indicated (blue dotted line). The “spikes” indicate the recessional 
moraines from Unit 0 penetrating into Unit 1. 
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The lower boundary of Unit 0 cannot be identified on the chirp sonar data. However, due to 

its stratigraphic location (below glacier-proximal glacimarine deposits; Unit U1, see below), 

this unit is interpreted to be of glacigenic origin, or bedrock (e.g. Syvitski & Praeg, 1989; 

Forwick & Vorren, 2011a; Batchelor et al., 2011). The relatively thin intervals are interpreted 

to be basal till. Since ice streams typically remove most of the pre-glacial deposits from fjords 

(see e.g. Syvitski & Praeg, 1989; Forwick & Vorren, 2011a), it is reasonable to assume that 

the basal till was deposited during the Last glaciation. The mounds/spikes correlate with the 

small transverse ridges described in Chapter 4. They are, therefore, interpreted to represent 

recessional moraines deposited at the glacier front during stillstands and/or smaller re-

advances in overall glacier retreat during the deglaciation (Fig. 5.5; e.g. Ottesen & 

Dowdeswell et al., 2006, 2009; Baeten et al., 2010; Forwick et al., 2010). Larger ridges are 

interpreted to be push or thrust moraines formed during glacier readvances when significant 

amounts of sediment are eroded and pushed beyond the glacier front (e.g. Boulton, 1986; 

Lønne, 1995;  Forwick et al., 2010; Forwick & Vorren, 2011a; Kempf et al., 2013). However, 

it should be noted that some larger mounds can be artifacts that appeared due to a change in 

sailing direction during data collection (see e.g. bedrock sill in Fig. 5.2).  

 

Figure 5.5: Cjirp line from outer Woodfjorden of an area with prominent recessional 
moraines (indicated with arrows).  
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5.2.2 Unit 1 – Glacier-proximal deposits 
Unit 1 is identified in all three fjord arms and all the way out to the outer fjord mouth. It 

appears typically as a 3-4 milliseconds [ms] thick, acoustically stratified sequence (Fig. 5.4 

above). However, its thickness varies between 7 ms in the deepest basins in Liefdefjorden and 

2 ms towards the mouth of Woodfjorden. The continuity and coherency of the stratification 

varies and, occasionally, the reflection pattern within this unit appears to be more chaotic and 

irregular, or massive and transparent. In areas where recessional moraines occur, this units 

appears as infill between the mounds/spikes (Fig. 5.4).  

The acoustic stratification in Unit 1 is interpreted to reflect repeated changes in the 

lithological composition of the sediments, most probably related to a glacier-proximal 

environment with deposition of sediments mainly by suspension fall-out and ice rafting 

(compare with Forwick & Vorren, 2009, 2011a; Forwick et al., 2010; Kempf et al., 2013). 

The acoustic stratification may reflect temporal variations in ice-rafting and/or sediment 

supply from different sources. In areas where these internal reflections seem more chaotic, the 

lithological changes may be a result of mass-transport activity (Forwick & Vorren, 2011b). 

5.2.3 Unit 2 – Glacier – distal deposits 
Unit 2 is characterized by a transparent to semi-transparent layer which can be identified on 

all the profiles within the entire study area. The unit rests directly on top of Unit 1 and partly 

masks the positive features of R1. The top of the unit is either gradational or defined by a 

stronger reflection (Fig. 5.6 below). The thickness of Unit 2 varies from more than 10 ms in 

the basins in inner Woodfjorden, Bockfjorden and Liefdefjorden, to less than 2 ms in the mid 

– and outer part of the fjord system. Its thickness is typically relatively even over long 

distances, but it wedges out towards obstacles (moraines/sills, Fig. 5.2, 5.3 and 5.6).  

The semi-transparent to transparent character of Unit 2 is suggested to reflect a relatively 

uniform lithological composition of the sediments. It formed most probably from continuous 

rain-out/suspension settling from turbid meltwater plumes in a glaciomarine environment (e.g. 

Hjelstuen et al., 2009; Forwick et al., 2010; Forwick & Vorren, 2011a). Because the top 

reflection of Unit 2 can be identified over large distances and not only as a local internal 

reflection it is interpreted to represent a regional signal of change in lithology. In sediment 

core HH12-964-GC, this change is reflected by a marked change in acoustic impedance (see 

Chapter 6.2) and an overall increase in grain size. It is, therefore, suggested that the top 

reflection of Unit 2 represents a regional climate signal, most probably increased ice-rafting 

and, thus, deposition of larger amounts of IRD (Forwick & Vorren, 2011a).  
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Figure 5.6: Section from chirp line HH12-Geo3144-8144-Wood004 (see Fig. 5.3 for 
location) showing all of the three units observed throughout the fjord system. In this 
area the recessional moraines are clearly visible in the chirp sonar data, however, they 
are not observed on the seabed on the swath bathymetry data. 

74 
 



5.2.4 Unit 3 and reflection R2 – Glaciomarine (glacier-distal) deposits 
Unit 3 is the uppermost seismostratigraphic unit. It is generally semi-transparent to 

acoustically stratified (Fig. 5.4), and varies in thickness from 2-3 ms in the outer parts of the 

fjord arms and outer Woodfjorden, to more than 10 ms in the innermost basins in 

Woodfjorden, Bockfjorden and Liefdefjorden. Its thickness appears even where underlying 

surface is relatively flat (red line in Fig. 5.2 and 5.3), and it wedges out towards larger 

moraines or sills where it is generally very thin or occasionally even absent. Acoustic 

stratification increases in the topmost part of the unit and is more prominent in innermost 

parts of Woodfjorden and Bockfjorden. The topmost reflection, R2, is a strong and irregular 

reflection, which largely mimic the general trend of the seabed.  

The reduced transparency of Unit 3 compared to Unit 2 may indicate more frequent changes 

in lithology. Increased stratification is interpreted to indicate higher amounts of IRD, 

presumably related to climatic fluctuations and/or glacier surges in a glaciomarine 

evnironment (e.g. Baeten et al., 2010; Forwick & Vorren, 2011a; Forwick et al., 2010; Kempf 

et al., 2013). Rivers have been known to account for acoustically stratified sediments 

representing lithological changes related to seasonal variations in sediment supply, or mass-

wasting (compare with Forwick & Vorren, 2007, 2011a&b). 

The seafloor reflection (R2) is mirroring the underlying R1 reflection in certain areas (Fig. 5.2 

and 5.3). However, in other areas, positive features (like recessional moraines) are 

documented in the R1 reflection, but they do not occur on the present seabed (Fig. 5.4).This is 

often the case where the sediment cover is thicker, i.e. in the deep basins. However, it is 

occasionally also observed in areas where the sediment cover is not thicker than average. The 

“disappearance” of landforms on swath bathymetry data might be related to bottom currents, 

leading to smoothening/masking of the underlying morphology (Syvitski & Praeg, 1989; 

Forwick & Vorren, 2011a). These observations are highlighting the importance of using 

shallow seismic to supplement swath bathymetry data. 
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6. Lithostratigraphy  
6.1 Introduction 
In this chapter the results from the collected sediment cores (Fig. 6.1) are presented in order to 

reconstruct and interpret depositional processes and environments, as well as to complement 

the results from the geophysical data presented in the previous chapters. 

  

Figure 6.1: Core locations (see Table 3.1). The red circle indicates the 
approximate core station for core HH12-969-GC. 
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Lithological logs for each sediment core (Fig. 6.2) based on X-radiographs, observations from 

the sediment surface, and partly from grain-size distribution analysis data. The surface of the 

sediment cores is generally relatively sparse in sedimentary structures and other features and 

the clear dominance of the silt fraction in all four cores gives the sediment a relatively 

homogenous character. Color changes are generally gradual. All cores are regarded to be 

composed of one lithological unit, because variations in the above mentioned parameters are 

regarded to be neither abrupt nor significant enough to form a natural unit boundary. 

Therefore, each core is described from bottom to top with particular emphasis of intervals or 

specific depths in which interesting features occur. Changes in grain size, physical properties 

and geochemistry of the cores are described relative to the general trend of the cores and 

mean values of each graphic plot (mean values in Table 6.1 below).  

 

 

 HH12-964-GC HH12-966-GC HH12-967-GC HH12-969-GC 

Wet bulk density (g/cm3)     

Min 1.45 1.50 1.11 1.46 

Max 1.85 2.32 1.96 1.85 

Mean 1.60 1.62 1.74 1.77 

Magnetic susceptibility  

(10-8 m3/kg) 

    

Min 5.64 4.56 3.38 4.68 

Max 9.49 10.77 10.39 9.39 

Mean 7.45 8.84 7.95 7.27 

Sedimentation rate (mm/yr)  

(see also Table 7.1) 

 

0.91/0.18 

 

0.42/0.57 

 

No data 

 

0.49 

Fe/Ca ratio mean 2.75 5.36 3.33 1.51 

Ca/Sr ratio mean 34.42 19.90 29.24 56.27 

Ca/Zr ratio mean 24.87 12.58 16.70 48.07 

Zr/Rb ratio mean 1.51 1.25 1.69 1.20 

Fe/sum ratio mean  0.46 0.48 0.47 0.39 

Ca/sum ratio mean 0.18 0.092 0.15 0.27 

Si/ sum ratio mean 0.16 0.14 0.11 0.12 

K/ sum ratio mean 0.15 0.14 0.13 0.12 

Al/ sum ratio mean 0.018 0.016 0.014 0.014 

Ti/sum ratio mean 0.047 0.052 0.052 0.040 

Rh/sum ratio mean No data 0.078 0.074 0.060 

Table 6.1: Max, min and mean values for the measured physical properties, sedimentation rates 
and mean values from element geochemistry data.  

78 
 



Physical properties of the sediments are presented as continuous plots; however, 

measurements from the top, bottom and at section boundaries appeared occasionally as 

outliers and were in such cases removed. Results from calibrating radiocarbon dates are 

presented in Table 6.2. 

 

Lab 

reference 

Core Sampling 

depth (cm) 

Species 14C age  BP Cal. yr BP 

Calib 7.0.2 

1 σ range 

Cal. yr BP 

Calib 7.0.2 

2 σ range 

Cal. yr BP 

Calib 7.0.2 

1 σ mean 

UBA-23224 HH12-966-

GC 

57 Bathyarca 

glacialis 
1527±31 918 - 1009 889 - 1067 964 

UBA-23225 HH12-966-

GC 

65 Yoldiella 

lenticula 
1646±31 1050 - 1158 984 - 1207 1104 

UBA-23226 HH12-966-

GC 

96 Bathyarca 

glacialis 
2349±29 1800 - 1901 1731 - 1949 1851 

UBA-23227 HH12-969-

GC 

20 Bathyarca 

glacialis 
665±27 145 - 168 

172 - 254 

77 - 282 185 

UBA-23228 HH12-969-

GC 

144 Thracia 

papyracea? 
3017±32 2666 - 2742 2543 - 2771 2704 

UBA-23229 HH12-964-

GC 

10 Yoldiella 

lenticula 
460±30 Invalid age Invalid age Invalid age 

UBA-23230 HH12-964-

GC 

38 Bathyarca 

glacialis 
2466±30 1924 - 2039 1879 - 2100 1982 

UBA-23231 HH12-964-

GC 

222 Yoldiella sp. 10800±53 11949 - 12220 11844 - 12401 12085 

UBA-23232 HH12-967-

GC 

162 Fragments 

indet. 
1614±29 1003 - 1120 960 - 1165 1062 

UBA-23233 HH12-967-

GC 

15 Spine from 

fish? 
507±28 Invalid age Invalid age Invalid age 

UBA-23398 HH12-964-

GC 

324-327 Benthic 

foraminifera 
11831±47 13152 - 13274 13096 - 13332 13213 

 

 

 

 

 

 

Table 6.2: Radiocarbon dates and calibrated ages. 
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6.2 Core description  
After opening, black mottles/areas were observed on the sediment surface. This color 

disappeared when the sediments were revisited a few days later. Sediment color varies 

strongly between each core and especially within the HH12-964-GC core. The main 

composition of all the sediment cores is a muddy matrix with varying amounts of clasts, 

which is interpreted to indicate a glaciomarine sedimentary environment (e.g. Powell et al., 

2003; Forwick & Vorren, 2009; Baeten et al., 2010; Kempf et al., 2013). The sub-chapters 

below will address the main properties and differences in each core. Core HH12-964-GC is 

chosen as the key core for this study and is therefore described in greater detail. The cores are 

described in the sections below. Interpretation of the cores is summarized in Chapter 6.3. 

6.2.1 Core HH-12-964-GC – mid- Woodfjorden 
Core HH12-964-GC was retrieved from mid-Woodfjorden (Fig. 6.1). It is 335 cm long (Table 

3.1). 

Lithology and stratigraphy 

Sediment color vary repeatedly and the color transitions are generally gradual (Fig. 6.2). The 

lowermost 10 cm are reddish brown (Munsell code 5YR 3/3). They are overlain by reddish 

grey sediment (5YR 4/2). Around 320 cm thin bands of a lighter greyish color occur. A 

gradual transition to very soft and sticky reddish brown sediments (5YR 4/3-4) with faint 

laminations of lighter colored bands occurs between 280 and 220 cm. The interval between 

220 cm to 200 cm is characterized by a darker band of dark reddish grey (5YR 4/2) with 

lighter reddish brown (5YR 4/3-5/3) in between. A gradual transition from grayish red 

(2.5YR 4/2-3) to dark greyish red sediment (5YR 4/2-3) occurs from 200 cm to 170 cm. From 

the latter depth and up-core there is a general transition to more grayish brown colored 

sediments (7.5YR 4/2). Between 115 cm to 95 cm, the sediment is generally brown (7.5YR 

4/2-3/2) with slightly darker land lighter thin bands. A gradual transition to a dark greyish 

brown (7.5YR 4/2) occurs between 95 and 75 cm. The uppermost 20 cm are dark brown 

(7.5YR 4/2-3/2).  

Silt (78.6 %) is the overall mean dominating grain size. Clay and sand percentages are 21 % 

and 0.48 %, respectively (Fig. 6.3). A peak in the sand content (>10 %) occurs in the 

lowermost 10 cm, followed by an abrupt drop to less than 2 % between 330 cm and 110 cm. 

A general increase in clay content to a maximum of 40 % occurs between 280 and 250 cm. 

This is followed by an up-core increase in silt content (Fig. 6.3). A marked increase in silt and 
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sand contents occur around 110 cm, the latter increasing to a maximum of 4.4 %. The clay, 

silt and sand contents remain relatively stable at ~20 %, 80 % and < 1% in the uppermost 50 

cm of the core. However, a marked peak in silt content (87.9 %) occurs at 33 cm. 

Clasts are observed frequently throughout the entire core (Fig. 6.2 and 6.3). They appear 

mostly as single grains scattered throughout the muddy matrix. However, high accumulations 

of clasts (“coarse” layers; Fig. 6.3) occur at 330, 300, 280, 215, 170, 90, 80, 70, 60, 45 and 30 

cm, respectively. In the interval between 275 cm to 220 cm, the number of clasts is relatively 

low. Clasts with a distinct red color are observed at the sediment surface within the interval 

between 175 cm to 60 cm. Single valve shells and shell fragments occur mostly above 170 

cm; the sediments appear barren in fossils below this depth. Bioturbation is more intense in 

the upper ~200 cm of the core than below. Polychaeta worms are observed in the topmost 50 

cm of the core. Bioturbated intervals also occur deeper in the core. 

 

Figure 6.4: X-ray photograph between 40 and 80 cm in core 964. Interpretation (to the right) 
of clasts, clast-rich layers, bioturbation and shells is shown. 
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Physical properties 

The wet bulk density is up to 1.8 g/cm3 and generally decreases up-core (Fig. 6.3). It exceeds 

2 g/cm3 within the lowermost 10 cm of the core, and reaches a minimum of 1.6 g/cm3 

between 275 cm to 255 cm. Another high-density interval is located between 120 cm and 80 

cm. Magnetic susceptibility varies throughout from 5.64 to 9.49 10-8 m3/kg with a mean value 

of 7.45 10-8 m3/kg. Relativey high magnetic susceptibilities occur in the intervals 325-300 cm, 

295-280 cm, 260-205 cm and the topmost 30 cm (Fig. 6.3). The p-wave velocity and acoustic 

impedance reveal similar trends as the wet bulk density. However, the fractional porosity 

mirrors the wet-bulk density, indicating a general upwards increase in porosity. P-wave 

amplitude values are higher than 88 indicating good contact between the measuring sensors 

and the core liner during logging using the MSCL. 

Element geochemistry 

The Fe/Ca ratio fluctuates around a mean of 2.75 (Fig. 6.5). The most pronounced 

fluctuations occur between 280 and 75 cm. A general and relatively marked up-core increase 

characterizes the uppermost ~75 cm. The Zr/Rb ratio follows the trend of the Fe/Ca ratio until 

~250 cm, where it stabilizes at ~1.5. Relatively high ratios (3-4) occur between ~110 and 80 

cm. Whereas an abrupt increase in the Ca/Sr and Ca/Zr ratios occurs in the interval 275-250 

cm, a more gradual increase was observed between 210 and 180 cm. The Fe/sum ratios 

increase slightly towards the top of the core, with minor fluctuations. The trends of the 

Ca/sum ratio mirror the Fe/Ca trend. Lastly, the Ti/sum increases generally slightly up-core, 

interrupted by relatively marked decreases in the intervals 280-250 cm and 210-175 cm. 

XRD – bulk mineral assemblage 

Clay minerals are most abundant. Their percentages generally vary between 40-50 % through 

the entire core (Fig. 6.6). The most noticeable changes in mineral distribution occur in the 

interval 280-250 cm where the percentages of mixed layered clays (~10 %) and calcite 

increase (up to 20 %), whereas the contents of quartz (~5%)and plagioclase (2.5 %) decrease. 

A general upwards decrease in calcite content, and upward increase in plagioclase is 

observed. Illite & Mica and mixed layered clays content generally increase between 190-100 

cm. A marked increase in quartz up to approx. 27 %, and relative decrease in clay minerals 

occurs around 100 cm. 
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Chronology and sedimentation rates 

Three shell samples and one sample of foraminifera from core HH12-964-GC were collected 

and radiocarbon dated (Table 6.2). The shell sample collected from 10 cm depth produced an 

invalid age after calibration (Fig. 6.2). The invalid age is likely due to a low age of the shell. 

Because the general marine reservoir age of 400 years, and regional age of 105±24 

Figure 6.5: Lithological log and selected element ratios of core HH12-964-GC.   

Figure 6.6: Lithological log and bulk mineral assemblage from core HH12-964-GC.  
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(Mangerud et al., 2006), were used for calibration, it is giving too high uncertainties to 

provide a realistic age (Stuvier & Reimer, 1993; 2014; see Chapter 3.4.9.3). Thus, an age of 

460 14C will be calibrated to a younger age than year 1950 AD, which is considered as “year 

zero” (See Chapter 3.4.9.3).  

The deepest dated interval from 324-327 cm provided an age of 13,213 cal. yr. BP. Additional 

ages were 12,085 cal. yr. BP (222 cm) and 1982 ca. yr. BP (38 cm), respectively. Based on 

these ages, the following sedimentation rates were estimated: 0.91 mm/yr between 13,213 and 

12,085 cal. yr. BP and 0.18 mm/yr between 12,085 and 1982 cal. yr. BP (Fig. 6.3). Assuming 

linear sedimentation rates and that the top of the core represents the present seafloor, a 

sedimentation rate of 0.19 mm/yr was calculated for the topmost 10 cm. This provides and 

average linear sedimentation rate for core HH12-964-GC of 0.55 mm/yr. 

 

6.2.2 Core HH12-966-GC - Liefdefjorden 
Core HH12-966-GC, that is 117 cm long, was collected in northern Liefdefjorden (Fig.6.1; 

Tab. 3.1). 

Lithology and stratigraphy 

Sediment color show mainly variations in versions of grayish brown (10YR 5/2) to dark 

grayish brown (10YR 4/2), and light grayish brown (7.5YR 5/1) in the lowermost 7 cm. 

Bioturbation occurs throughout the entire core but is particularly intense in the uppermost 40 

cm. Furthermore, polychaeta worms are found down to a depth of 70 cm (Fig. 6.2 and 6.7).  

The average grain distribution is 0.67 % sand, 79.1 % silt and 20.2 % clay (Fig. 6.7). 

Variations in grain size are generally very small apart from a marked increase in the 

lowermost 30 cm. Here, the sand content increases up to 3-4 % and silt up to ~82 %, whereas 

clay content decreases slightly. The upper 50 cm are dominated by silt and clay exclusively.  

High accumulations of clasts occur in the lower 17 cm. Some of the clasts have a distinct red 

color. A large clast occupies the entire width of the plastic liner between 95 and 104 cm 

depth. The intervals 95-70 cm and 62-48 cm are relatively sparse in clasts. “Coarse” layers 

with high abundance of clasts are occur between 68 and 63 cm, and 47 and 43 cm. In the 

upper 40 cm clasts are generally small and occur in clusters (Fig. 6.7).  

 

86 
 



 

Physical properties  

The p-wave amplitude was generally below 80, which indicates poor contact between the core 

liner and the sediment (see Chapter 3.4.1.2). As p-wave amplitude values are used to indicate 

reliability of p-wave velocity and acoustic impedance, the values for this core were 

considered unreliable, and therefore not included (Fig. 6.7).  

The wet bulk density is relatively high in the lowermost ~30 cm (Fig. 6.7). The maximum for 

the entire core, occurring in this interval, was caused by a clast. Only minor variations are 

observed in the overlying ~90 cm. The magnetic susceptibility remains low, mostly below 10 

10-8 m3/kg. It is lowest in the area where the large clast occurs.   

Element geochemistry 

The element ratios vary only slightly throughout the core, apart from the lowermost ~10 cm, 

i.e. in the interval with high amounts of clasts (Fig. 6.8). A low in the Zr/Rb ratio occurs 

between 117 cm and 110 cm.  

 

 

 

Figure 6.7: Colorphoto, bioturbation, fossils, Munsell color codes, lithological log, grain-size 
distribution, physical properties and estimated sedimentation rates for core HH12-966-GC. The 
legend for the lithological log is included in Fig. 6.2.  
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XRD – bulk mineral assemblage 

The bulk mineral assemblage is generally stable within the uppermost 80-90 cm of the core, 

whereas the sum of clay minerals and Illite & Mica contents decreases significantly below 80 

cm. The percentages of quarts, calcite and plagioclase generally increase (Fig. 6.9). 

 

 

Figure 6.8: Lithological log and selected element ratios of core HH12-966-GC.  Data 
from the interval where the large clast occurs is not included. 

Figure 6.9: Lithological log and bulk mineral assemblage from core HH12-966-GC.  
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Chronology and sedimentation rates 

Three radiocarbon dates were obtained from core HH12-966-GC (Table 6.2). They provided 

ages of 1851 cal. yr. BP (on top of the large clast at 96 cm), 1104 cal. yr. BP (65 cm) and 964 

cal. yr. BP (57 cm). The linear sedimentation rates varied between 0.42 mm/yr (between 96 

and 65 cm), 0.57 mm/yr (65-57 cm) and 0.56 mm/yr in the uppermost 57 cm (Fig. 6.6).  

 

6.2.3 HH12-967-GC – Bockfjorden  
Core HH12-966-GC was retrieved from Bockfjorden in front of the slope proximal to 

Friedrichbreen (Fig. 6.1; Friedrichbreen, see Fig. 2.5 in Chapter 2). The core is 169 cm long 

(Table 3.1).  

Lithology and stratigraphy 

Sediment color varies quite a lot from the bottom to the top, and color changes are generally 

gradual (Fig. 6.10). The lowermost 19 cm comprises muddy, reddish brown (7.5YR 4/2) 

sediments. From 145 cm to 127 cm color change to dark grayish brown (10YR 4/2). Around 

80 cm the color gradually changes to reddish brown (5YR 4/2-4/3) and back to grayish to 

dark grayish brown (10YR 4/2-5/2). The topmost 15 cm are reddish brown (5YR 4/2-5/2). 

Bioturbation is strongest in the interval 10 to 90 cm (Fig. 6.10) and occurrence of fossils is 

sparse. 

Large fluctuations in grains sizes are observed throughout the core. Average grain size 

volumes are 8 % sand, 82 % silt and 10 % clay (Fig. 6.10). X-ray photographs reveal higher 

density intervals between 145-137 cm, 135-127 cm and 67-62 cm with relatively sharp lower 

boundaries (Fig. 6.17). These intervals correlate with layers with increased sand, and sand 

lenses identified on the sediment surface, which have a darker color. From ~130-140 cm sand 

volume increases up to ~70 %, and between 67 and 62 cm up to > than 30 %. The bottom of 

the core (169-145 cm) is dominated by silt (~80 %) and clay (<15 %). Intervals between the 

coarser sand layers have higher volumes of silt and clay (Fig. 6.10). 

Large clasts occur in the bottom of the core (169-155 cm).  Clasts are also identified in the 

sand layers (Fig. 6.2). The silty/clayey intervals (125-70 cm and 60-20 cm) have relatively 

low amounts of clasts. Clasts in the topmost 50 cm of the core are generally small (Fig. 6.10). 
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Physical properties 

An abrupt decrease in wet bulk density occurs in the lowermost ~10 cm. Peaks in density 

occur in the sandy intervals 145-137 cm, 135-127 cm and around 65 cm (Fig. 6.10). P-wave 

velocity and acoustic impedance follow the same trend as the wet bulk density. Fractional 

porosity show negative peaks around 140 cm and 130 cm, increases in the interval from 120 

cm up to 70 cm, and then drops around 65 cm. The average magnetic susceptibility of the 

core is 7.95 10-8 m3/ kg. Magnetic susceptibility varies most significantly between 130 and 90 

cm (Fig. 6.10). 

Element geochemistry  

Results from XRF data include only the part of the core down to 161 cm. Because the core is 

not full from ~160-169 cm and the sediment surface was disturbed, the XRF scanner did not 

measure the lowermost 8 cm of the core. 

The most significant changes in element geochemistry are observed in Fe/Ca, Zr/Rb, Ca/sum 

and Ti/sum ratios (Fig. 6.11). Fe/Ca ratio is decreasing from ~6 in the bottom of the core to 

~2 around 145 cm. Abrupt decreases in Fe simultaneously with increasing Ca, Zr and Ti 

occurs at ~140 cm and ~130 cm. A marked drop in Ti/sum occurs at 40 cm. This negative 

peak is also observed in Ca/Zr and Ca/Sr ratios (Fig. 6.11). At 65 cm there is a very abrupt 

and large increase in Zr/Rb ratio.  

XRD – bulk mineral assemblage 

The sum of clay minerals and Illite & Mica contents show a general decrease from the bottom 

of the core and drops more abruptly from ~145 cm to ~130 cm (Fig. 6.12). In the same 

interval quartz, calcite and plagioclase contents increase to approx. 25 %, 8% and 12 %, 

respectively. Smaller fluctuations in bulk mineral assemblage occur in the topmost ~60 cm.  

Chronology and sedimentation rates  

Shell fragments were collected at a depth of 162 cm. It provided an age of 1062 cal. yr. BP 

(Fig. 6.2). The second dating from 15 cm gave an invalid age after calibration, suggesting the 

age is calibrated before 1950 AD and therefore, considered modern. Assuming preservation of 

the seabed in the core top and a linear sedimentation rate from 162 cm to the top of the core, a 

sedimentation rate of 1.44 mm/yr was estimated.  
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Figure 6.11: Lithological log and selected element ratios of core HH12-967-GC.   

Figure 6.12: Lithological log and bulk mineral assemblage from core HH12-967-GC.  
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6.2.4 HH12-969-GC 
The HH12-969-GC core was collected from the innermost ridge in inner Woodfjorden (red 

circle in Fig. 6.1). The core measures 161 cm (Table 3.1).  

Lithology and stratigraphy 

The core comprises massive, reddish brown sediments. The color of the sediments vary from 

dull reddish brown (5YR 4/3) in the lower 10 cm to a gradually darker reddish brown (5YR 

3/3), and dull reddish brown (5YR 4/3) towards the top of the core (Fig. 6.13). Bioturbation 

occurs mainly in in the topmost 20 cm and in the interval from 90 cm to 125 cm.  

Grain size distribution show average dominant volumes of silt (84.6 %), 15.2 % clay and 0.2 

% sand (Fig. 6.13). The lowermost 5 cm show an increase in silt content to ~90 %, and ~1 % 

sand. The sand content never increases above 1 % at any point in the core. Only very minor 

fluctuations in grain size distribution occur (less than 3 % change in silt and clay).  

Clasts occur mainly on the lowermost 8 cm of the core and in high accumulation bands 

(“coarse” layers). These layers are observed at 130 cm, between 124 and 120 cm, 100 and 92 

cm, and 55 and 50 cm, respectively (Fig. 6.13). The intervals between the clast-rich layers 

comprise silty mud and few clasts. 

Physical properties 

The mean values for wet bulk density and magnetic susceptibility are 1.77 g/cm3 and 7.27 10-

8 m3/ kg, respectively (Table 6.1). Wet bulk density varies only slightly from the mean value 

throughout the core. Noticeable changes occur from 125-120 cm where density decreases, and 

in the topmost 30 cm density increases (Fig. 6.13). The magnetic susceptibility shows a 

general decreasing trend towards the top of the core with only small variations.  

Element geochemistry 

The Ca/sum is generally increasing from the bottom of the core up to ~30 cm. An increase in 

Fe/Ca is observed in the topmost 30 cm (Fig. 6.14).  

XRD –bulk mineral assemblage 

The content of Illite & Mica does not change significantly throughout the core (Fig. 6.15). A 

low in clay mineral content occurs around ~70 cm. A marked decrease occurs around 80 cm, 

and an increase is observed around 60 cm. There is an overall decrease upwards in quartz and 

plagioclase. Calcite is generally increasing towards the top.  
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Chronology and sedimentation rates  

Two samples from 144 and 20 cm provided an age of 2704 cal. yr. BP, and 185 cal. yr. BP, 

respectively (Fig. 6.2).  A linear sedimentation rate of 0.49 mm/yr for the interval between 

144 cm and 20 cm was estimated. The sedimentation rate for the uppermost 20 cm was 

calculated to be 0.81 mm/yr (assuming preservation of the modern seabed in the top of the 

core).  

Figure 6.14: Lithological log and selected element ratios of core HH12-969-GC.   

Figure 6.15: Lithological log and bulk mineral assemblage from core HH12-969-GC.  
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6.3 Interpretation  
As previously mentioned, the sediments recovered in the cores were deposited in a 

glaciomarine environment. The dominant sediment composition of muddy silt infers rain-out 

from suspension. Clasts and “coarse” layers, i.e. intervals where clasts occur in high 

abundance, are interpreted to be ice-rafted debris, IRD, deposited by icebergs or sea ice 

(compare with Forwick & Vorren, 2009). Coarse layers may either reflect periods of 

enhanced ice rafting or material deposited by overturning icebergs dumping larger amounts of 

sediments (e.g. Vorren et al., 1983). Coarse layers generally have smooth or gradual 

boundaries which imply that the cores probably have not been subject to or disturbed by mass 

transport deposits (Forwick & Vorren, 2007, 2011b). The fact that bioturbation occurs 

throughout most of the core indicates that the sediments most likely have not been reworked. 

The general up-core decrease in wet bulk density, for example in HH12-964-GC, can be 

explained by increased compaction of sediments with depth. Forwick et al. (2010) have found 

that wet bulk density can reflect changes in grain size. This correlation is also recognized for 

all the cores; an increase in wet bulk density is generally found where there is an increase in 

grain size, and vice versa (e.g. in core 964 between 280 and 250 cm, and around ~100 cm; Fig 

6.3). Accordingly, a stable trend in wet bulk density is found where the sediment composition 

is relatively homogenous (e.g. in core 966 and 969). The dominant trends in element 

geochemistry and bulk mineral assemblage in core 966, 967 and 969 can generally be 

correlated with the strongest variations in wet bulk density and grain size (see previous 

figures). Additionally, a relationship between sediment color and element geochemistry is 

observed in core 964, and partly in core 967.  

6.3.1 Core 964 
The wet bulk density and large changes in grain size generally correlate well, i.e. in the 

intervals 280-250 cm and ~110-80 cm (Fig. 6.16). Furthermore, changes in grain size and wet 

bulk density are accompanied with an increase in either Fe or Ca. The increases in Ca occur in 

in the lowermost few cm, between ~280 and 250 cm, and between ~210 and 180 cm. These 

intervals show a stronger reddish color compared to the rest of the core (yellow intervals in 

Fig. 6.16). Therefore, an increase in Ca in reddish intervals in core 964 is interpreted to 

represent a change in sediment provenance. Low amounts of IRD and increase in clay and 

clay minerals from 280 to 250 cm may indicate a decrease in ice-rafting and/or increase in 

sea-ice cover with deposition mainly from suspension settling (see Chapter 7 – Discussion). 

Higher Fe and few clasts from ~250 to 210 cm can be signal of increased sea ice cover 
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restricting iceberg rafting to the core site (Ó Cofaigh & Dowdeswell, 2001; further discussed 

in Chapter 7). Lower sedimentation rates (0.18 mm/yr) and gradual change to higher Fe, 

brownish sediments from approx. 190 cm suggests a decreasing influence of the high-Ca 

source to the core site. From ~110 to 80 cm an increase in Ca, Zr, quartz and sand content 

occur in brownish sediments. Increasing Zr and quartz can be explained by the higher 

amounts of sand, which can further be interpreted as a signal of increases ice-rafting from 

icebergs and/or sea-ice (e.g. Vorren et al., 1983; Forwick et al., 2010). Since high Ca is 

normally found in red intervals, this is not regarded as a change in provenance, but may rather 

be a result of increased biological productivity (e.g. Richter et al., 2006; see Chapter 7). 

Increasing amounts of IRD in the topmost ~100 cm is represented in bands of high 

accumulations of clasts. Deposition of IRD has therefore likely occurred by dumping of 

sediments from dirty icebergs overturning (e.g. Vorren et al., 1983).  

 

6.3.2 Core 967 
There is generally good correlation between physical properties, grain size distribution, 

element geochemistry and bulk mineral assemblage throughout the core. High density 

intervals observed on x-ray photographs correspond to sand layers and lenses observed on the 

sediment surface and in sand content (Fig. 6.17). The lower boundaries of the high density 

intervals are relatively gradual. Increases in quartz and Zr occur in the sandy interval. Sandy 

intercals like these have previously been interpreted to represent mass-wasting events (e.g. 

Forwick & Vorren, 2011b). However, since the sandy intervals do not show sharp lower 

Figure 6.16: Correlation of sediment color, grain size, physical properties and element 
ratios in core 964. 
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boundaries they are most likely not mass-transport deposits. The origin of these sandy layers 

are further discussed in Chapter 7.2, where it is suggested that they are a result of period of 

extreme run-off and/or flooding events from the rivers in Bockfjorden (e.g.  Zajączkowski & 

Włodarska-Kowalczuk, 2007; Forwick et al., 2010). The content of clasts is generally 

distributed in the intervals between the sand layers (below 145 cm, between 130 and 80 cm 

and in the topmost 60 cm). The clasts are interpreted to be deposited during periods of 

increased ice-rafting from icebergs and/or sea-ice (see Chapter 7.5).  

 

 

 

Figure 6.17: X-ray photograph between 100 and 140 cm in core 967. Artifacts and 
bioturbation is interpreted in the figure to the left. Blue lines indicate the boundaries or 
tentative boundaries between intervals of different densities. 
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7. Discussion 
 In this chapter the results from the previous three chapters will be compiled and compared in 

order to reconstruct glacial activity and sedimentary processes that has operated in the fjord 

system. The morphology and origin of the submarine landforms interpreted from acoustic data 

will be discussed. Secondly, lithostratigraphy will be correlated with the seismostratigraphy. 

Sediment distribution (thickness) and sedimentation rates in the three fjords are addressed 

next. In addition the main sedimentary processes are reviewed. Sedimentary provenance is 

also interpreted. Lastly, the abovementioned sections are compiled to summarize the glacial 

history and sedimentary environments of Woodfjorden, Bockfjorden and Liefdefjorden since 

the Late Weichselian. 
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7.1 Morphology and origin of submarine landforms 

 

Figure 7.1: Swath bathymetry with interpretation of large-scale features, 
approximate core positions and position of chirp lines. 
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Mega-scale-glacial-lineations and other subglacial landforms 

The sparse occurrence of MSGLs in Bockfjorden and, in particular, Liefdefjorden compared 

to Woodfjorden (Fig 7.1) may suggest thicker ice cover towards the east; the ice reached a 

thickness large enough to cause ice streaming, and in turn, produce MSGLs. However, chirp 

data reveals significantly thicker sediment cover in Bockfjorden which can be draping any 

lineations (see Fig. 5.2 and 5.3 in Chapter 5), and therefore not appear on the swath 

bathymetry data. The hummocky character of the seabed in Liefdefjorden may be responsible 

for the lack of MSGLs here: the ice can have been pinned on the large ridges and shallow 

banks of the islands currently present in the fjord (Fig. 2.5 in Chapter 2) and therefore not 

achieved sufficient streaming to form MSGLs. In Woodfjorden MSGLs are nicely developed 

and clearly visible on the seabed (Fig. 4.1). As the fjord trough gets successively deeper 

towards the mouth and is lacking any significant topographic obstacles it is likely that the ice 

were more constrained by the deepening though and therefore produced MSGLs. Lineations 

in the inner part of Woodfjorden are less striking than in the outer parts. Relatively thicker 

sediment cover in inner Woodfjorden can account for the dimmer character of the MSGLs 

here (see Chapter 7.3). 

Recessional moraines are identified on top of the MSGLs suggesting that the lineations were 

formed prior to the recessional moraines. The lineations are also disappearing underneath the 

interpreted sediment wedges in the Woodfjorden trough. The MSGLs are therefore interpreted 

to have been formed some time ago, most likely during the last glacial, and are therefore 

considered the oldest of the glacigenic landforms. It is reasonable to assume that most of any 

deposits from previous glacial have been removed by the ice-streams during the Late 

Weichselian (compare with Forwick & Vorren, 2011a). 

Salvigsen & Österholm (1982) inferred three main directions of ice streaming based on 

mapping of glacial striae; the oldest direction towards the NW from Andreé Land, the second 

direction towards the NE (along the axis of Woodfjorden) and thirdly, from Liefdefjorden 

towards the NE on Reinsdyrflya (see Fig. 1.3 in Chapter 1). The glacial lineations 

documented in this study confirm ice streaming through the Woodfjorden trough at some 

point, and likely during the last glacial. The directions of glacial lineations from Andreé Land, 

which are also interpreted to be the oldest (Salvigsen & Õsterholm, 1982), can be produced 

from a growing ice dome in the east (e.g. Landvik et al., 1998; Ottesen et al., 2005; 2007; 

Ottesen & Dowdeswell, 2009).  
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Crag & tails occur in relations to MSGLs (Fig. 4.8) and are therefore interpreted to have 

formed relatively simultaneously with the latter, i.e. during the last glacial when an ice stream 

(grounded ice) was occupying the fjord. Drumlins and eskers occur only in the inner part of 

Woodfjorden. Chirp data reveals a thicker sediment cover here and glacial lineations are not 

observed on swath bathymetry data this far in-fjord (Fig. 4.2). It is therefore not possible to 

suggest an age of the drumlins relative to the glacial lineations. However, both the eskers and 

drumlins are overlain by recessional moraines, suggesting that they were formed prior to the 

final deglaciation. The drumlins are thought to have been formed under relatively fast-flowing 

ice, most likely at a time of full glacial conditions (Benn & Evans, 2010). Because eskers are 

formed by infilling of subglacial meltwater channels, they must have been formed at a time 

when the glacier was still occupying the entire width of the fjord basin (i.e. during glacial 

conditions), but after fast ice flow had come to an end, otherwise they would have been 

destroyed. 

Recessional/annual moraines and retreat rates 

The recessional moraines are one of the most prominent features observed in both bathymetric 

and chirp data. Recessional moraines are formed during the winter season by small and short-

lived readvances of the (tidewater) glacier front during overall retreat. Winter sea ice cover at 

the glacier front is suppressing iceberg calving, thus causing the glacier to grow, and thus, 

push, fold and thrust sediments at the glacier front and form a recessional moraine (Boulton, 

1986; Ottesen & Dowdeswell, 2006, 2009; Ottesen et al., 2007). To compare, several studies 

from for example Ottesen & Dowdeswell (2006, 2009), Baeten et al. (2010), Forwick et al. 

(2010), Velle (2012) and Kempf et al. (2013) found similar ridges in fjords on Spitsbergen. 

The recessional moraines are superimposed on the MSGLs, eskers and drumlins, and occur 

below Unit 1 (Fig. 5.4 and 5.5). Therefore, they are interpreted to be deposited at a later stage 

than these landforms, most likely during the deglaciation when the glaciers started to retreat 

from the shelf into the fjord (e.g. Baeten et al., 2010; Forwick et al., 2010; Kempf et al., 

2013). In Woodfjorden, recessional moraines occur mainly along the eastern flank of the outer 

fjord and are found all across the fjord in the inner parts (Fig. 4.2, 4.3 and 4.4). Recessional 

moraines are not observed on the present seabed in the western (deep) and outermost part of 

Woodfjorden. The moraines are most prominent in the outer part of the fjord system and in 

Bockfjorden directly in front of Friedrichbreen (Fig. 2.5, 4.6). Chirp data reveals recessional 

moraines buried by sediments and therefore they do not appear on swath bathymetry data 
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(Fig. 5.5). In these areas where the moraines do not occur on the seabed the sediment cover is 

usually thicker than average thickness of ~10-12 m; see Fig. 5.2 and 5.3).  

The spacing between the crests of recessional moraine ridges varies from between 200 m in 

outer Woodfjorden to ~50 m in Bockfjorden (Fig. 4.2, 4.3 and 4.4). The average retreat rate 

for outer Woodfjorden to the mouth of the three fjord arms is estimated to ~160 m/yr. A 

general decrease in retreat rate is observed from the mouth to the head of the fjord arm. In 

inner Woodfjorden the retreat rate is estimated to be less than 100 m/yr, in Liefdefjorden 

varying from ~50-80 m/yr, and in Bockfjorden between ~50-75 m/yr. This supports the 

interpretation of the small ridges to be recessional moraines. The average retreat rate in this 

study (~160 m/yr for the outer fjord) is also relatively similar to retreat rates documented from 

e.g. Billefjorden (~170 m/yr), Smeerenburgfjorden (~140 m/yr) and between 80-190 m/yr in 

Van Keulenfjorden (Baeten et al., 2010; Velle, 2012; Kempf et al., 2013).  

External forcing factors, such as atmospheric and oceanic warming, are known to cause nearly 

synchronous dynamic behavior of marine-terminating outlet glaciers over decadal time scales. 

These dynamic changes are generally characterized by flow acceleration, thinning and retreat 

(e.g. Howat et al., 2007; Andresen et al., 2012; Nick et al., 2013; Stokes et al., 2014).  

However, controls on millennial-and century-scale behavior of outlet glaciers remain 

uncertain. Recent studies of the deglaciation pattern of marine-terminating outlet glaciers 

from the Fennoscandian Ice Sheet (FIS) suggest that retreat happens asynchronously between 

fjords influenced by the same climatic and oceanographic (external) forcing factors (Stokes et 

al., 2014). By investigating eight neighbor outlet glaciers along the northern margin of the FIS 

during the deglaciation, they suggest that the bathymetry beneath the glacier, the width of the 

fjord and the size of the catchment area are important internal forcing factors (Fig. 7.2 from 

Rydningen et al., 2013; Stokes et al., 2014). Five of the investigated glaciers had their most 

rapid retreat (>100 m/yr) during the early deglaciation when the air temperatures were still 

relatively low. These high retreat rates are typically observed on the outer and middle parts of 

the fjords or across overdeepenings on the continental shelf (e.g. Altafjorden, Varangen and 

Andfjorden, Malangen; Stokes et al., 2014). Although one would expect glacier retreat to be 

more rapid through deep water (cf. Schoof, 2007), Stokes et al. (2014) found that fjord width 

shows a somewhat stronger correlation with retreat rate, rather than water depth. Because the 

correlations do not vary too strongly it may indicate a complex interplay between the two 

factors, i.e. glaciers may retreat slowly in wide fjords if they are shallow, and in deep fjords if 

they are wide. It has also been inferred that outlet glaciers with larger catchment areas are 
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more likely to be able to sustain ice fluxes and maintain grounding line positions in deep 

water or on reverse slopes (Schoof, 2007; Stokes et al., 2014).  

 

 

The recessional moraines identified in Woodfjorden are occurring mainly in the shallower 

parts in the outer and middle parts. These are the same areas where the highest retreat rates 

(up to 200 m/yr) occurred. The relatively deep and very wide (~10 km) Woodfjorden is thus 

Figure 7.2: Time-distance diagram for glacier terminus positions in fjords in Troms, 
Norway. Retreat rates (and max. ranges in brackets) are included for each substage in the 
retreat. ML = marine limit/approx. relative sea level during retreat (from Stokes et al., 
2014).  
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providing a favored setting for rapid deglaciation. This suggests that the ice occupying 

Woodfjorden retreated rapidly from a partly floating ice front from the shelf to the 

outer/middle part of the fjord where the glacier was able to ground in the shallower parts in 

the east, leading to a change to a stronger stepwise character of retreat. Decreasing retreat 

rates towards the fjord heads can be explained by the general shallowing trend in the same 

direction. Shallower water could allow the glacier(s) to maintain more stable grounding lines, 

and retreat more slowly in the inner parts of the fjord arms (inner Woodfjorden and 

Bockfjorden). Lower retreat rates are also observed in Liefdefjorden. They vary from ~80 

m/yr in the outer parts to ~50-60 m/yr further in-fjord, and on the seabed in front of 

Monacobreen (Fig. 2.5). The complex bathymetry with ridges and shallow banks in 

Liefdefjorden acted, most probably, as pinning-points for the glacier(s), stabilizing the 

grounding line and resulting in lower retreat rates. Monacobreen is also fed by the lrge ice 

field Isachsenfonna (Fig. 2.5), and has a larger catchment area than the glaciers in 

Woodfjorddalen. Sustained ice flow might have delayed deglaciation and also resulted in the 

lower retreat rates observed here (compare with Stokes et al., 2014). 

Recessional moraines deposited after the Little Ice Age (LIA, AD 1350-1850) maximum ice 

extent have been observed in multiple fjords on Svalbard, for example in Smeerenburgfjorden 

(Velle, 2012), Billefjorden (Plassen et al., 2004; Baeten et al., 2010) and Tempelfjorden 

(Plassenet al., 2004; Forwick & Vorren, 2011a). Chirp data terminate ~4 km beyond the head 

of Woodfjorden and ~1 km beyond the head of Bockfjorden. This, combined with thicker 

sediment cover in the innermost parts of the fjord arms, do not allow studying recessional 

moraines deposited after maximum glacier extents related to climatic cooling during the LIA. 

At present the glaciers in Woodfjorddalen (Abrahamsenbreen and Vonbreen, see Fig. 2.5) 

have retreated onshore. The front of Abrahamsenbreen is currently located ~18 km inland. 

Vonbreen has retreated more than 4 km from the head of the fjord 

(http://toposvalbard.npolar.no/). Due to the significant distance from the fjord basin it is 

reasonable to assume that any records related to glacier re-advances during the LIA are found 

on land. The innermost part of Liefdefjorden in front of Idabreen is covered by a large 

sediment lobe which is likely draping any features in the shallow subsurface; however, this 

lobe could be related to the LIA (Fig. 4.11). The presence of sharply outlined complex ridges 

directly in front of Monacobreen suggests relatively recent activity at the glacier front (Fig. 

4.11).The morphology of the ridges have previously been compared with the complex ridges 

in Woodfjorden and interpreted to be crevasse fill ridges produced by glacier surge (Ottesen 
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et al. 2008; Fig. 4. 10 D and 4.11). It is therefore reasonable to assume that there has been 

recent surge activity from Monacobreen, possibly related to the LIA. 

Iceberg plough marks and ice thickness 

Iceberg plough marks are identified in all three fjords and along the fjord axis of outer 

Woodfjorden. The different character and appearance of the plough marks indicate several 

generations or phases of ice ploughing. Figure 4.9 show plough marks on the large ridge at 

the mouth of inner Woodfjorden. These ploughmarks appear as relatively randomly oriented 

plough marks that are sharply outlined. The “fresh” appearance suggests that they are 

relatively young and have not been smoothened by sediments. In the outer part of 

Woodfjorden, the plough marks are dimmer, have a relatively straight shape and occur more 

closely spaced together (Fig. 4.4). These plough marks are distinguished from the MSGLs in 

that the depressions are rounder in the front and generally are more irregular. The plough 

marks here are therefore interpreted to be relatively older than for instance the iceberg plough 

marks documented further in-fjord. Because they occur at a greater depth they are likely 

formed by large, deep-keeled icebergs (e.g. Ottesen et al., 2010).  

Iceberg plough marks are identified even in the deepest parts of Woodfjorden (~200 m), 

suggesting that the ice occupying the fjord trough during the last glacial exceeded a thickness 

of 200 m. Gjermundsen et al. (2013) and Hormes et al. (2013) have performed dating of 

erratic boulders on northwestern Spitsbergen, including Hornemantoppen (1090 m.a.s.l. 

located to the west of Liefdefjorden), and on the low-lying flat on Reinsdyrflya (Fig. 2.5 and 

7.14). Datings from high elevation erratics suggest that the ice was >250-300 m thicker in this 

area during the Late Weichselian than today. Results from exposure datings on Langskipet 

(611 m.a.s.l.) in the ~300m deep Krossfjorden/Möllerfjorden southwest of the study area 

suggest an even larger thickness (>900 m) of the Late Weichselian ice cover in the area 

(related to the local ice dome west of Liefdefjorden inferred by Gjermundsen et al., 2013). 

Icebergs calved off from an ice cover of this dimension could easily account for the “deep” 

plough marks observed in outer Woodfjorden. 

Pockmarks 

Pockmarks occur in clusters and as single features throughout the fjord system (Fig. 4.2, 4.9). 

They occur at various depths in the fjord basins and on top of sediment lobes and cavity fills 

(4.11). Most of the pockmarks have a strong appearance and can be described as sharply 

outlined, others are somewhat dimmer. It is mostly along the fjord sides that the dim 
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pockmarks are identified. The difference in appearance of the pockmarks is likely related to 

the age and/or position of the pockmarks in the fjord. Sharply outlined pockmarks are 

assumed to have been formed and/or been active during recent times, whereas older have been 

draped and smoothened with sediments and therefore have a dimmer look (Forwick et al., 

2009). Rivers located along the fjord sides eject sediment-laden, highly turbid waters into the 

basins and pockmarks located close to these point sources may therefore have a higher degree 

of burial than pockmarks in the deeper parts of the basins. Pockmarks have been documented 

in several fjords on Spitsbergen (e.g. Forwick et al., 2009; Baeten et al., 2010; Kempf et al., 

2013). 

The formation of pockmarks in Spitsbergen fjords has been discussed by Forwick et al. (2009; 

see Fig. 7.3), where pockmarks also occur within the depression of glacial lineations. They 

suggest that pockmarks form by seepage of thermogenic gas migrating through faults in the 

underlying strata or directly from organic-rich bedrocks below the sediments. Pockmark 

formation has also been related to seepage of porewater through glacigenic debris lobes 

(Ottesen et al., 2008). Faults and fractures within the study are inferred from the swath 

bathymetry data (Fig. 4.3, 4.4 and 4.12) and from structural maps (Dallmann et al., 2002; 

Ramberg & Bryhni, 2006). The formation pockmarks in Woodfjorden, Bockfjorden and 

Liefdefjorden are therefore interpreted to be related to either gas migration through faults in 

the basement, or porewater seepage thought soft sediments on debris lobes.  

 

Figure 7.3: Conceptual model for the origin and distribution in subpolar fjords 
(from Forwick et al., 2009). 
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7.2 Correlation of acoustic data and sediment cores 

7.2.1 Core HH12-964-GC  
The 964-core was retrieved from mid-Woodfjorden (Fig. 7.1), where the sediment thickness is 

estimated to be less than ~5 m. It is interpreted to consist of mainly glaciomarine sediments. 

Figure 7.4 shows the approximate position of the core. All of the four main reflections (R1, 

Top Unit 1, Top Unit 2 and R2, respectively) identified throughout the fjord system occur at 

the coring site (Fig. 7.4). However, the core is 335 cm long, suggesting that the lowermost the 

units (Unit 0 and 1) are not fully represented in the sediment succession that was retrieved 

from the site. Therefore the lowermost ~10 cm of core 964 (strong reddish color, see Fig. 6.2 

and 6.3) are correlated with the topmost part of Unit 1 – glacier-proximal sediments deposited 

mainly from suspension fall-out (see Chapter 5.2.2).  

 

The boundary between the lower reddish 10 cm and the overlying sediments with a more 

grayish color is relatively sharp, and correlates with an abrupt change in acoustic impedance 

in the lower part of Unit 2. A marked change in acoustic impedance in the sediment core 

occurs around ~280 cm, which correlates to another color boundary, from grayish to stronger 

reddish sediments. The change in acoustic impedance proved difficult to correlate with the 

Figure 7.4: The approximate position of core 964 in mid-Woodfjorden on seismic data. 
Internal reflections (unit boundaries) are indicated. See Fig 7.1 for line location. 
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chirp data, probably because the core site is not precise (see Chapter 3 and 6). However, the 

boundary is interpreted to be related to changes in sediment provenance (section 7.4 below). 

From ~250 cm up to ~110 cm acoustic impedance of the sediment is not varying significantly, 

which correlates with the homogenous, semi-transparent character on Unit 2 in the chirp data 

(Fig. 7.4).  

At ~110 cm the marked increases in grain size, density and acoustic impedance is interpreted 

to correlate to the Top Unit 2 reflection in the chirp data. This interval was interpreted to 

reflect a regional climatic signal. The transition into Unit 1 is correlating well with an interval 

of clast accumulations in the sediment core (Fig. 6.2). Around the same depth, a color 

transition to more brownish sediments occurs and there are marked changes in geochemistry 

(Fig. 6.5). Increased stratification in Unit 3 is not apparent at the coring site of core 964. This 

correspond well with only minor variations in physical properties and geochemistry in the 

topmost ~80-90 cm of the core (Fig. 6.16). 

7.2.2 Core HH12-966-GC 
Core 966 is 117 cm long and was collected from a relatively deep plateau in the central parts 

of Liefdefjorden (Fig. 7.5). The approximate position of the core is indicated in Figure 7.5. 

An estimated sediment thickness of ~1.5-2 m was inferred assuming sediment velocity of 

1600 m/s, as estimated from previous studies from Spitsbergen fjords (Elverhøi et al., 1995; 

Plassen et al., 2004; Forwick & Vorren, 2011a). At the coring site the R1 and R2 reflections 

are the most prominent. Top Unit 1 and Top Unit 2 can be identified to some degree across 

the plateau (Fig. 7.5). For this core the p-wave amplitude measurements were low (<80) so 

the p-wave velocity was considered unreliable. Therefore the acoustic impedance was 

excluded from the results. This makes correlation of the sediment cores and chirp data 

difficult, especially since there are no apparent variations in wet bulk density either. Because 

the core is relatively short it is assumed that the sediments mainly contain the glaciomarine 

sediments from the two uppermost units (Unit 2 and 3). However, high amounts of clasts in 

the lowermost part of the core suggest that the core penetrated into the bottom units (Unit 1 

and possibly Unit 0).  The color change ~8 cm above the base of the core supports this. The 

sediment thickness has only been roughly estimated, therefore the sediments in the core is 

correlated down to the lowermost unit even though thickness is estimated higher than the 117 

cm retrieved in the core. Compression in the top or removal of sediment during sampling may 

also explain the discrepancy between the lithological and chirp data. The Top Unit 2 

reflection may correlate with the clast-rich intervals in the top half of the core (Fig. 6.7) 
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7.2.3 Core HH12-967-GC 
The chirp profile in Figure 7.6 shows the approximate position of core 967. The core is 169 

cm long and was retrieved from Bockfjorden approximately 2 km from the fjord head in front 

of Friedrichbreen. The purpose of coring at this site was to collect sediments from the time of 

deglaciation. However, the chirp data reveals a much thicker sediment cover (up to ~20 m) in 

this area compared to further out in the fjord. The sediments at the coring site are acoustically 

stratified. These internal reflections are identified in addition to the R1 and R2 reflections and 

Unit 0 to 3. However, the topmost, strongly stratified interval thins out towards the fjord 

mouth where the “general” seismostratigraphy (Unit 0 to Unit 3) is re-established. Variations 

in acoustic impedance are recorded in the physical properties of core 967 and generally 

correspond to intervals with higher sand contents and marked changes in geochemistry 

(Fig.6.10 and 6.11). The lowermost dating, at 162 cm, was calibrated to 1062 cal. yr. BP. This 

suggests that the core contains relatively modern sediments deposited in a 

glaciomarine/glaciofluvial environment. The sediment package thinning out can be related to 

the build-out of a delta at the fjord head. The acoustic stratification of the sediments is 

possibly caused by periods of extreme run-off, transporting coarser sediments into the fjord 

basin (e.g. Zajączkowski & Włodarska-Kowalczuk, 2007; Forwick et al., 2010). Acoustic 

Figure 7.5: The approximate position of core 966 in Liefdefjorden on seismic data. 
Estimated positions of internal reflections (unit boundaries) are indicated. See Fig 7.1 for 
line location. 
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stratification can also be a result of intervals with higher clast content, however, it is not 

found in core 967, which makes the first statement more likely. Additionally, sand layers 

occur which a gradual lower and a sharp upper boundary (Fig. 6.2). This also argues against 

the sand layers being mass-transport deposits and further proposing an interpretation of them 

to be related to periods of flooding and extreme run-off of meltwater rivers in Bockfjorden 

(Zajączkowski & Włodarska-Kowalczuk, 2007). 

   

 

7.2.4 Core HH12-969-GC 
Core 969 is 161 cm long and was collected on top of the innermost sill in inner Woodfjorden 

(Fig. 7.3). The sediment cover on the ridge is estimated to be 3-4 m assuming a sediment (p-

wave) velocity of 1600 m/s,. In the chirp data the sediment package on the sill has a 

homogenous, semi-transparent character with a slight increasing acoustic stratification (Fig. 

7.7). It suggests that the core generally contains sediments from Unit 2 and 3. This correlates 

well with the physical properties of the sediments which are relatively homogenous (Fig. 7.7). 

“Coarse” layers in the core can possibly correlate to the weak reflections in the stratified part 

of the seismic package, however, additional dates are needed to confirm this. 

Figure 7.6: The approximate position of core 967 in Bockfjorden on seismic data.  
Internal reflections (unit boundaries) are indicated. See Fig 7.1 for line location. 
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7.3 Sediment thickness and sedimentation rates 
The sediment thickness has an average of ~0.006 s (~0.012 s TWT) throughout the central 

parts of the fjord arms to mid-Woodfjorden (Fig. 5.2 and 5.3).  Using velocity through the 

sediments of 1600 m/s this constitutes an average sediment thickness of c.10 m (compare with 

Elverhøi et al., 1983). A sediment thickness of up to ~18 m (~0.020 s TWT) is observed in 

deep basins in Liefdefjorden, inner Bockfjorden and Woodfjorden (Fig. 5.2 and 5.3). Basins 

act as sediment traps, and thus, have higher accumulation rates. As previously mentioned, the 

sediment thickness is generally decreasing towards the fjord mouth. The sediment cover on 

large ridges/sills within the fjord arms is generally less than 4-5 m (Fig. 7.7). In the middle 

and outer parts of Woodfjorden the R1 and R2 (seabed) reflection is very close or even 

overlapping, due to thin sediment cover in general, and particularly on the large ridges (Fig. 

5.2). This is most likely related to the exponentially decreasing sedimentation rates with 

increasing distance from the source (e.g. Syvitski et al., 1987; Zajączkowski, 2008; 

Szczuciński & Zajączkowski, 2009; see Chapter 7.4.1 – Suspension settling, below).  

Figure 7.7: The approximate position of core 969 in inner Woodfjorden on seismic data.  
Internal reflections (unit boundaries) are indicated. Top U2 is not included as it is difficult 
to localize precisely. See Fig 7.1 for line location. 
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Sedimentation rates were calculated based on the assumption of continuous and linear 

sediment accumulation between the dated intervals. The results are summarized in Table 7.1 

below. Sedimentation rates between the topmost dated interval and the core tops were 

calculated assuming that the modern seabed is preserved in the top of the core (age cal yr. AD 

when adding 62 years from AD 1950 to AD 2012). However, as mentioned above, core 

disturbance may occur, so these rates should therefore be regarded as minimum rates. 

 

Core Depth 

interval (cm) 
Cal. yr. BP 1 σ 

mean 

Age yr  Sedimentation 

rate (mm/yr) 

Sedimentation 

rate (cm/ka) 

HH12- 964-

GC 

324-222 13,213-12,085 - 0.91 91 

 222-38 12,085-1982 - 0.18 18 

 38-0 1982-0 2044 0.19 19 

HH12-966-GC 96-65 1851-1104 - 0.42 42 

 65-57 1104-964 - 0.57 57 

 57-0 964-0 1026 0.56 56 

HH12-967-GC 162-0 1062-0 1124 1.41 141 

HH12-969-GC 144-20 2704-185 - 0.49 49 

 20-0 185-0 247 0.81 81 

 

Core 964 was collected in mid-Woodfjorden approx. 43 km from the head of Woodfjorden.  

Three ages were obtained from radiocarbon dating; 324-327 cm, 222 cm and 38 cm, 

respectively. A sedimentation rate of 91 cm/cal. ka was estimated for the interval between 

13,213-12,085 cal. yr. BP, which is the highest sedimentation rate observed in the core (Fig. 

7.13). In the interval between 222-38 cm (12,085-1982 cal. yr BP) it decreases to 18 cm/ka 

BP. Higher sedimentation rates in the lower part suggest a glacier-proximal environment up to 

~12,000 cal. yr. BP. The sedimentation rate for the topmost 38 cm (2044 yr) was estimated to 

be 18.6 cm/ka, indicating a slight increase in sediment supply over the last ~2000 yr (Fig. 

7.13). The highest estimated rate is still an order of magnitude lower than maximum 

sedimentation rates previously estimated for fjords on Spitsbergen. In Kongsfjorden 

sedimentation rates as high as 5000-10,000 cm/ka have been inferred up to 10 km from the 

glacier front (Elverhøi et al., 1983). Sedimentation rates are observed to be highest in vicinity 

of the of glacier fronts and innermost fjord basin, e.g. in Tempelfjorden (3800 cm/ka; Forwick 

et al., 2010) and in front of Kronebreen in Kongsfjorden, where rates up to ~30,000 cm/ka 

Table 7.1: Sedimentation rates.  
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near the glacier front, and 6000-9000 cm/ka in the inner basin were found (Trusel et al., 

2010). An abrupt decrease in sedimentation rate (from >200 cm/ka to 3.2 cm/ka) from c. 8800 

cal. yr. BP was documented in Van Mijenfjorden (Hald et al., 2004). Studies from several 

fjords on Svalbard suggest that sedimentation rates generally were higher during the Early 

Holocene compared to the mid-and late Holocene (e.g. Svendsen & Mangerud, 1997; 

Ślubowska et al., 2005; Forwick & Vorren, 2009; Skirbekk et al., 2010). This corresponds 

with the pattern of sedimentation rates found in core 964. 

At site 966 from Liefdefjorden a sedimentation rate of 42 cm/ka was estimated between 1851 

and 1104 cal. yr. BP (Fig. 7.8). It increased to 57 cm/ka from 1104-964 cal. yr. BP and 

remained almost constant (56 cm/ka) since then. As Liefdefjorden is the only fjord arm that 

has tidewater glaciers at present, it may suggest that the glaciers are producing more 

meltwater depositing fine-grained sediments from suspension. Jernas et al. (2013) provided 

evidence of increased sedimentation rates between c. 1200 and 1500 AD in Kongsfjorden and 

in the Hinlopen Trough. A relative increase in the same time span has also been interpreted 

from sediment cores in Smeerenburgfjorden (Velle, 2012). It is reasonable to assume that 

these intervals of higher sedimentation rates exist also in the cores in his study, but additional 

dates are needed to confirm this.  

The highest sedimentation rate was estimated for Bockfjorden. The date from 162 cm in core 

967 provided a calibrated age of 1062 cal. yr. BP, and a linear sedimentation rate of 141 

cm/ka was estimated (Fig. 7.8). The sediment cover in the vicinity of the core site is inferred 

to be much thicker compared to the other core sites from chirp data (Fig. 7.6). As inferred 

previously, the core site is located relatively close to the fjord head and therefore closer to 

sources (e.g. Friedrichbreen and Watnelieøyra, Fig. 2.5 in Chapter 2). Furthermore, buoyant 

sediment-laden plumes are identified in the fjord on satellite and aerial photographs (see 

Chapter 7.4 – Sedimentary processed, sources and provenance) provide evidence of 

substantial sediment supply. 

Two calibrated dates from core 969 were used to estimate sedimentation rates for inner 

Woodfjorden. Rates of 49 cm/ka between 2704 and 185 cal. yr. BP, and 81 cm/ka over the 

remaining ~250 years were calculated (Table 7.1; Fig. 7.8), suggesting that the influence of 

different sources on the sediment supply to the core site has intensified over the last few 

millennia (see Chapter 7.4 – Sedimentary processes, sources and provenance).  
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Average sedimentation rates in Liefdefjoden and Woodfjorden have been estimated by 

Elverhøi et al. (1983): ~50 cm/ka for Liefdefjorden and ~100 cm/ka for Woodfjorden from 

sediments deposited post-Late Weichselian. These rates are comparable with rates estimated 

from the cores in this study. The differences in sedimentation rates between the three fjord 

arms are possibly also related the composition of the bedrock. Most of the rocks in and around 

Woodfjorden and Bockfjorden are sedimentary rocks from the Andrée Land Group (Fig. 2.3 

in Chapter 2). The glacier-covered part of Liefdefjorden is dominated by pre-Devonian 

basement rocks, and sedimentary rocks from the Red Bay Group compromising sandstones 

and conglomerates (Harland, 1997). Sedimentary bedrocks, combined with the presence of 

glaciers and large river flats may be responsible for the relatively higher sedimentation rates 

in Bockfjorden. The relatively smaller drainage basin of Bockfjorden (Hagen et al., 1993) and 

smaller area of the fjord is likely causing sediments to accumulate at a higher rate and 

therefore resulting in thicker sediment package here. 

In summary, the sediment thickness show a decreasing trend out-ward in the fjord because of 

the increasing distance from major sediment sources. The differences in sedimentation rates 

observed within the three fjords are assumed to be related to differences in underlying 

bedrock, size of drainage basin, and influence from glaciers and river systems (see section 7.4 

below).  

Figure 7.8: Estimated sedimentation rates for core 966, 967 and 969. 

115 
 



7.4 Sedimentary processes, sources and provenance 
Present day sediment sources are discussed in Chapter 2. Today, most of the fjord system is 

dominated by glaciofluvial processes, mainly including rivers draining small lakes and 

glaciers in adjacent valleys entering the basins (Fig. 2.5). Liefdefjorden is dominated by 

sediment supply from tidewater glaciers. This is consistent with Svalbard regime fjords which 

are typically dominated by sedimentation from rivers and glaciers (Hambrey, 1994). 

Transportation of sediments into the fjord basin occurs by several processes; at the glacier 

front (ice-contact), ice rafting, fluvial processes and deep-water currents. Redistribution 

occurs through mass transportation as well as wave and tidal activity (Fig. 7.9 below; 

Hambrey, 1994). The distribution of sediments within the fjord is furthermore reliant not only 

on the bathymetry of the fjord, but the hydrographic regime (tide-effects, waves and jets, the 

Coriolis force) operating here (e.g. Syvitski et al., 1987; Howe et al., 2010).  

 

7.4.1 Suspension settling  
The main portion of the sediment cores contains structureless and massive mud. This suggests 

that the main sedimentary process is rain-out of fine-grained sediments from sediment-laden 

meltwater plumes. Suspension settling has previously been documented to be a major process 

in Spitsbergen fjords (e.g. Elverhøi et al., 1980; Plassen et al., 2004; Forwick et al., 2010). 

Sediment in suspension enters the fjord basin through sub- or- englacial meltwater outlets at 

the glacier terminus (Powell et al., 2003; Zajączkowski, 2008). The coarsest fraction of the 

suspended material is deposited immediately in front of the glacier, whereas the fine-fraction 

Figure 7.9: Main depositional processes and products in a glaciated fjord (from Hambrey, 
1994). 
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is carried in suspended load in brackish water and transported further out into the fjord basin 

(Fig. 7.10; e.g. Syvitski et al., 1987; Hambrey, 1994; Svendsen et al., 2002). Studies from 

Kongfjorden reported a concentration of the sediment plume of up to 500 mg/l close to the 

glacier terminus (Elverhøi et al., 1980). Additional measurements were reported by Trusel et 

al. (2010) indicating sediment concentrations as high as 0.392 kg/m3 close to the glacier, and 

0.020 kg/m3 4-5 km from the glacier. A decrease of 23% in sediment concentration in the 

plume at a distance of 1 km from a glacier has been observed in Kongsfjorden (Zajączkowski, 

2008). As the suspended plume travels out-fjord the current velocity decreases resulting in 

increased deposition from suspension. At a distance of 5 km an additional 71% of the 

sediments had fallen out of suspension (Zajączkowski, 2008). This implies an exponential 

decrease in sediment deposition from suspended load with distance from a point source.  

The rivers within the drainage basin of Woodfjorden, Bockfjorden and Liefdefjorden are 

important contributors to deposition from suspension into the fjord system. However, 

fluvial/glacio-fluvial discharge from rivers can be regarded as seasonal sources because run-

off mostly occurs during the summer months (June to September), because the rivers are 

frozen during the winter (Plassen et al., 2004; Zajączkowski & Włodarska-Kowalczuk, 2007; 

Szczuciński & Zajączkowski, 2012). In addition, meltwater discharge can vary on an annual 

and inter-annual basis (Svendsen et al., 2002; Cottier et al., 2010; Nilsen et al., 2008), 

meaning that the annual sediment flux to the fjord system fluctuates.  

The largest rivers occur in Bockfjorden (Watnelieøyra) and Woodfjorden (river in 

Woodfjorddalen) (Fig. 2.5). Rivers and build-out of deltas occur especially on Andrée Land 

along the eastern side of Woodfjorden (Fig. 7.10). Swath bathymetry data reveal that the 

eastern seabed side of Woodfjorden is generally shallower than further west. This is probably 

mostly caused by the topography of the underlying bedrock, however, it is reasonable to 

assume that the sediment cover is thicker here due to the proximity to large point sources. The 

Coriolis force may additionally cause deflection of currents to the right fjord side and may 

enhance the observed shallowing along the eastern (cf. Syvitski et al., 1987; Syvitski, 1989; 

Forwick et al., 2010). Differences in sediment thickness on chirp profile suggest that 

deposition of sediment vary; the sediment cover is typically thicker in basins than on heights 

(Fig. 5.2 and 5.3). The bathymetry affects the circulation pattern and currents in the fjord, 

which in turn affects where sediments fall out of suspension (Syvitski et al., 1987). Figure 5.6 

in Chapter 5 shows that recessional moraines from the R1 reflection may not be visible on the 

present day seabed, whereas in other areas moraines can be observed on the seabed. Areas 
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where moraines are not visible on swath bathymetry data do not necessarily correlate with the 

areas of thickest sediment cover in the chirp (Fig. 5.6). Therefore, it is suggested that there are 

local variations in strength of bottom currents and circulation within the fjord system causing 

irregular sediment deposition from suspended load (Fig. 7.10).  
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Figure 7.10: Satellite/aerial photograph over the study area. Suspended sediment 
plumes from the fjord arms are easily identified. Color variations of the sediment plumes 
are clearly visible (from http://toposvalbard.npolar.no/). Black frames (A-D) show the 
position of the aerial photographs in Fig. 7.12. 
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7.4.2 Ice rafting 
The clasts observed in all the cores suggest that ice-rafting is and has been an important 

process distributing sediments throughout the fjord basin (Fig. 6.2). “Dirty” icebergs calving 

off tidewater glacier fronts are transported out into the fjord basin and deposit sediments 

mainly by three processes: 1) dumping by overturning icebergs, 2) outwash and 3) dropping 

as the icebergs melt (e.g. Vorren et al., 1983; Dowdeswell & Dowdeswell, 1989, Fig. 7.11 

below). Re-suspension and re-deposition can occur when grounded icebergs (deep-keeled) 

deposit, plough and/or re-suspend sediment from the seabed (Vorren et al., 1983). The calving 

rate of glaciers is influenced by the sea-ice conditions in the fjord in which the glacier 

terminates. During the winter season, sea-ice cover in front of the glacier suppresses iceberg 

calving, and calved icebergs may be trapped in the sea-ice. When the sea-ice breaks up the 

icebergs are released into the fjord (Dowdeswell & Dowdeswell, 1989). Sediments are 

incorporated into sea-ice when 1) the sea-ice freezes onto land – shorefast sea-ice, 2) when 

sediments in suspension freezes onto sea-ice, or 3) by formation of anchor ice (Polyak et al., 

2010).  

 

An annual calving intensity of 0.0907 km3/yr for Monacobreen has been estimated based on 

ASTER images (Błaszczyk et al., 2009). This is one of the highest calving rates reported 

among Svalbard’s tidewater glaciers in that study. It implies that icebergs are important for 

deposition of sediments into Liefdefjorden. The lowlands of Reinsdyrflya, Watnelieøyra, and 

deltas and strandflats on Andrée Land provide suitable areas where shorefast ice is likely to 

form (Fig. 2.5). This suggests that also sea-ice rafting can be a significant transport 

mechanism for sediments and debris into the fjord system. Ice-rafted debris (IRD) are in the 

case of this study regarded as all grains larger than 2 mm (see Chapter 3.4.8 and Chapter 6 - 

Figure 7.11: Types of deposition from ice-rafting (modified from Vorren et al., 1983). 
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Lithostratigraphy). However, icebergs and sea-ice can entrain grain sizes from clay to 

boulders (Gilbert, 1990). 

7.4.3 Mass-transport deposits 
Mass transport activity has been documented in several fjords on Spitsbergen (e.g. Ottesen & 

Dowdeswell, 2009; Forwick & Vorren, 2011b and references therein; Kempf et al., 2013).  

The main triggering mechanisms for slope failure in fjords are thought be controlled by to be 

topography, sediment properties and supply. Mass wasting may also be initiated by seismic 

activity in relation to glacioisostatic rebound, sea-level fluctuations and storms (e.g. Syvitski 

et al., 1987; Forwick & Vorren, 2007).  

Mass wasting has been identified in several places within the fjord system on swath 

bathymetry data (Fig. 4.2, 4.3 and 4.4), but there are no clear indications of mass transport 

deposits in the lithological record investigated in this study. The MTD sediment lobes 

observed on the swath bathymetry are generally small, especially in the fjord arms. MTD 

sediment lobes in mid-and-outer Woodfjorden are somewhat larger with widths up to 400 m 

and generally smaller run-out distances than 1000 m.  This implies that mass wasting is of less 

importance in the fjord arms compared to suspension settling and ice-rafting. However, 

because the importance of ice-rafting and suspension settling generally decrease towards the 

fjord mouth as one move further away from point sources, mass wasting becomes relatively 

more important. High velocity debris flows can cause long run-out distances due to 

hydroplaning effects (Vorren et al., 1998; Laberg & Vorren, 2000; Laberg & Vorren, 2003). 

But because the run-out distances of MTDs in the fjord system are so short, it is unlikely that 

they are high-velocity flows, and rather small debris flow events.  

7.4.4 Sediment provenance 
XRF core scanning provides high-resolution records of chemical compositions of sediment 

cores. By looking at the distribution of geochemistry of the fjords (Table 2.2) and variations 

in different element ratios from XRF core scanning results; it is possible to indicate the 

providence of the sediments (see Chapter 2.6 and 3.4.4). Of all the analyses performed on the 

sediment cores, the XRF core scanning data seem to be the most useful proxy to study the 

sediment provenance. Changes in geochemical composition have been suggested to correlate 

well with variations in sediment color (see Chapter 6 – Lithostratigraphy). The Fe/Ca and 

Ca/sum ratios have been useful to indicate sediment provenance. XRF data has mostly been 

used to indicate provenance in deep ocean basins, and in NE Atlantic sediment cores, where 

the Fe/Ca ratio is suggested to reflect variations in the relative abundance of terrigenous 
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material and biogenic carbonate (e.g. Croudace et al., 2006; Richter et al., 2006). XRF 

application to fjords is generally new research and has not been used in any published data, 

only in M.Sc. thesis at the Department of Geology, UiT. In this study XRF data has been used 

to infer glacial activity from the different glaciers within the fjord system. 

The red intervals are typically characterized by a higher content of Ca. This indicates that 

Woodfjorden generally has a higher content of Ca rich sediments (see Table 2.2 and Table 6.1 

in Chapter 6). Similar results have been found in red sediments in Tempelfjorden, west 

Spitsbergen (Forwick et al., 2010). Cores 966 from Liefdefjorden and 967 from Bockfjorden 

have the lowest Ca contents (Table 6.1). The sediments from Bockfjorden are more reddish to 

grayish brown than the distinct red in Woodfjorden. Liefdefjoden sediments are typically 

brown to grayish brown and have a higher content of Fe relative to Ca (Table 6.1). The 

variations in sediment color and element geochemistry throughout core 964 in mid-

Woodfjorden are therefore inferred to represent the influence of different sediment sources; 

glaciers with different sediment provenance. The degree of red color and fluctuations in Ca-

content is used as an indicator for sediment supply from Woodfjorden. Brownish sediments 

with relatively higher Fe values are interpreted as a relatively stronger activity signal from the 

glaciers in Liefdefjorden where erosion of pre-Devonian basement rocks occurs. Bockfjorden 

carries similar signals as the two other fjords, but since it is the smallest fjord (with the 

smallest drainage area, Hagen et al., 1993) this study focuses on sediment supply from 

Woodfjorden and Liefdefjorden. Figure 7.12 below show aerial photographs of sediment 

plumes in the three fjord arms and the distinct colors of the sediments. The eastern side of 

Bockfjorden show similar color of the meltwater plume as in inner Woodfjorden (red). The 

red color of the Devonian sedimentary rocks is evident (Fig. 7.12 A & B). On the western side 

of Bockfjorden (Fig. 7.12 C), basement rocks are exposed and the sediments entering the fjord 

have a grayish brown color. Sediments in Liefdefjorden have colors varying from brown to 

lighter grayish brown (Fig. 7.12 D). 

Increases in Ca content occurring without changes in sediment color are interpreted to 

represent a change in geochemistry due to other factors than source changes, as e.g. increased 

biological productivity. An increase in productivity can be further supported using XRD data, 

where one also could expect an increase in calcite or aragonite content (see section 7.5, 

below).  
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7.5 Last glacial and Holocene history and climate of the fjord system 
In the following sections results from the previously discussed chapters will be viewed 

together with external forces (climate, sea-level, tectonics; Dowdeswell, 1987) in order to 

reconstruct glacier activity and sedimentary environments in Woodfjorden, Bockfjorden and 

Liefdefjorden from the time when the fjord was covered by grounded ice and throughout the 

Holocene up to present times. Holocene glacial history is reconstructed based mainly on the 

contents of IRD, sediment color and element geochemistry (sediment provenance) in 

comparison to published data from Svalbard. IRD is a useful proxy for climate 

reconstructions, however, several factors can influence the amount of IRD delivered to the 

fjord basins; for instance icebergs are produced by glacial advance and retreat (Forwick et al., 

Figure 7.12: Aerial photographs from different sites in the fjord system (see Fig. 7.10 for 
locations; from http://toposvalbard.npolar.no/). A) Sediment plume from the river in 
Woodfjorddalen, inner Woodfjorden (http://toposvalbard.npolar.no/a/25160276.jpg). B) 
Suspended sediments from Watnelieøyra, inner Bockfjorden 
(http://toposvalbard.npolar.no/a/25160816.jpg). C) Glacifluvial river from Børrebreen 
entering the fjord basin western side of Bockfjorden 
(http://toposvalbard.npolar.no/a/25160820.jpg). D) The front of Monacobreen in inner 
Liefdefjoren supplying brown sediments into the fjord basin 
(http://toposvalbard.npolar.no/a/25160657.jpg). 
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2010), and thus increase IRD content. Furthermore, surface water temperatures will control 

how long icebergs or sea-ice drift before melt-out occurs.  

Seismostratigraphic Unit 0 is interpreted to be till deposited during the last glacial, and Unit 1 

directly above to compromise sediments deposited during the early deglaciation (see Chapter 

5 – Seismostratigraphy). The deglaciation history is based upon characteristics of glacial 

landforms on swath bathymetry data, in addition to the lithological record in core HH12-964-

GC (Fig. 6.1). The lowermost date in this core provided ages between 13,096 and 13,332 cal. 

yr. BP, suggesting that core 964 compromises sediments deposited during the last c. 13,200 

years. After correlation with seismic data and based on dates in the core from inferred 

sedimentation rates, the glacial history of the fjord system is divided into four main time-

slices; 1) Late Weichselian (>13,000 cal. yr. BP), 2) Late Weichselian/early Holocene 

(~13,000-7000 cal. yr. BP), 3) mid-Holocene (~7000-4000 cal. yr. BP) and 4) late Holocene 

(~4000-present). The remaining three cores were used to supplement the record from the late 

Holocene.  
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7.5.1 Late Weichselian (>13,000 cal. yr. BP) 
An increase in sand (~13 %) and clusters of clasts in a matrix of red sediments are observed in 

the lowermost few cm of core 964. Based on the dating at 324 cm of ~13,200 cal. yr. BP, 

assuming a linear sedimentation rate of 0.91 mm/yr. BP, the red interval compromises approx. 

the interval from13,200-13,350 cal. yr. BP (blue interval in Fig. 7.13). The sand content 

increase and IRD content are probably related to increased iceberg calving and ice rafting to 

the coring site. This is expected to occur during a period of deglaciation (e.g. Forwick & 

Vorren, 2009). A deglaciation age from Mushamna (east side of Woodfjorden, Fig. 2.5) of 

13.4 ±1.0 ka was postulated by Gjermundsen et al. (2013) and Hormes et al. (2013). The 

interval falls within the Bølling-Allerød interstadials (c. 14,500-12,600 yr BP). Sedimentary 

records from the Hinlopen Strait reveal decreasing fluxes of IRD and increasing flux of 

foraminifera, indicating increased advection of relatively warm Atlantic Water (Ślubowska et 

al., 2005; Ślubowska-Woldengen et al., 2007). However, there is also evidence of low 

productivity and extensive sea-ice cover during this period (Ślubowska et al., 2005). Records 

from Isfjorden suggest that during the Allerød most of the ice-rafting occurred mainly from 

icebergs, not sea-ice (Forwick & Vorren, 2009). The red color of the sediments (with higher 

Ca content) suggests that during this time there was a dominating sediment flux from the 

glacier occupying Woodfjorden to the core site. 

Retreat rates suggest that the outer part of the fjord was deglaciated more rapidly (up to ~200 

m/yr). A general decrease in retreat rate is observed from the mid to inner parts of 

Woodfjorden (Chapter 7.1 – Recessional/annual moraines and retreat rates). The earliest 

deglaciation age of northern Reinsdyrflya was estimated to 14.8 ± 1.0 ka, and an age of 13.4 ± 

1.0 ka for the southern part of Reinsdyrflya (Hormes et al., 2013; Fig. 7.14). Assuming an 

average retreat rate of 180 m/yr for the outer and middle parts of the fjord, the glaciers would 

have retreated to the middle parts of the fjord system (~30 km from the mouth) over a period 

of only ~160 yr. This may indicate that the fjord trough was deglaciated more rapidly and at 

an earlier time than the surrounding land areas, and that a calving bay in outer-mid 

Woodfjorden existed.  
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7.5.2 Late Weichselian/Early Holocene (~13,000 – 7000 cal. yr. BP) 
An estimated sedimentation rate of 0.91 mm/yr prevails through the assumed Late 

Weichselian/earliest Holocene interval transition in the core (~13,000-12,000 cal. yr. BP; 

Yellow interval in Fig. 7.13). A slight increase in IRD content is observed up to 270 cm 

(~12,800 cal. yr. BP) in core 964, suggesting continued melting of icebergs. In this interval 

the color changes towards a grayish-reddish brown (higher Fe content), indicating a change to 

enhanced sediment supply from Liefdefjorden (section 7.4.4 – Sediment provenance). 

The longest interval with the lowest amounts of IRD in core 964 is found from 270 cm to 220 

cm (~12,800-12,100 cal. yr. BP, please note that this is a very rough estimation due to limited 

availability of dating material; Fig. 7.13). Furthermore, a change in provenance is indicated by 

Figure 7.14: Exposure dates from erratic boulders collected at different locations on 
Svalbard from the Bølling interstadial (orange points), late deglaciation (green points) 
and early Holocene (green diamonds). The study area of this study is framed (mofified 
from Hormes et al., 2013).  
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a shift towards red and more Ca-rich deposits, indicating sediment supply predominantly from 

the Woodfjorden glacier. An increase in clay content follows the decrease in IRD. 

The interval falls within the time-frame of the Younger Dryas (12,600-11,500 yr BP). Low 

fluxes of IRD have been suggested to indicate less melting icebergs, i.e. on the western and 

northern Svalbard shelf (Koç et al., 2002; Ślubowska-Woldengen et al., 2007). Records from 

other Spitsbergen fjords, i.e. Isfjorden (Forwick & Vorren, 2009) and Kongsfjorden (Skirbekk 

et al., 2010) found fine-grained sediments with low contents of IRD which likely indicates 

proximal glaciomarine environments with cool surface conditions and increased sea-ice 

cover; the latter suppressing calving. The Younger Dryas cooling of north Svalbard is 

characterized by the presence of sea-ice, influence of meltwater, cold surface and bottom 

water masses and the vicinity of the Polar Front (Ślubowska et al., 2005). Evidence of glacier 

advance during the Younger Dryas on Spitsbergen still remains sparse. However, Forwick & 

Vorren (2010) inferred that glacier re-advance up to 25 km may have occurred in the Isfjorden 

area during the Younger Dryas (Forwick & Vorren, 2010). Salvigsen & Õsterholm (1982) 

postulate based on the findings of high rates of emergence around the Woodfjorden area, that 

the Younger Dryas was a time of deglaciation on north Spitsbergen. Swath bathymetry and 

chirp data do not show any clear indications of a Younger Dryas advance in any of the fjord 

arms. The large sediment wedge in the outer part of inner Woodfjorden is one of the most 

prominent features that occur within the fjord system (Fig. 4.2 and 4.9). It is possible that this 

may represent the Younger Dryas position of the tidewater glacier in Woodfjorden. However, 

further investigations are necessary to confirm this. Sedimentation rates were still relatively 

high compared to the upper part of the core, implying the glaciers was still melting. Even 

though there are no clear indications of a glacier readvance, low amounts of IRD is suggested 

to be a result of colder surface conditions on northern Spitsbergen during the Younger Dryas. 

The abrupt increase in IRD and decrease in sedimentation rate (0.18 mm/yr) from ~220 cm 

suggest warmer surface conditions and enhanced iceberg rafting. Studies from Kongsfjorden 

and Hinlopen revealed high IRD fluxes at 11,500 cal. yr. BP and increased influx of saline 

Atlantic water (Ślubowska-Woldengen et al., 2007; Skirbekk et al., 2010), interpreted as a 

rapid disintegration of the remnants of the ice-sheet and glaciers on northern Svalbard. A two-

step warming from the Younger Dryas into the Holocene between 11,500-10,800 cal. yr. BP 

is documented in the Nordic Seas (e.g. Karpuz & Jansen, 1992; Hald & Aspeli, 1997), as well 

as from the western and northern Svalbard shelf (e.g. Ślubowska et al., 2005; Skirbekk et al., 

2010). The first signal is correlated to the Preboreal Oscillation (Björck et al., 1997; 
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Ślubowska et al., 2005; Skirbekk et al., 2010). The second signal is a warming with influx of 

Atlantic Water (AW) concurrent with a high IRD flux. Strong IRD signals along the 

northwestern (10,700 cal. yr. BP) and northern Svalbard shelves (10,200-10,000 cal. yr. BP), 

as well as in the northern Barents Sea (10,000 cal. yr. BP) indicate the final collapse of the 

SBIS, presumably be related to progressing inflow of Atlantic Water (e.g. Lehman & Forman, 

1992; Duplessy et al., 2001; Landvik et al., 2005; Ślubowska et al., 2005; Skirbekk et al., 

2010). Salvigsen & Høgvard (2005) propose a deglaciation age of 10,900 cal. yr. BP for 

Bockfjorden and that the glaciers were less extensive than today during most of the Holocene. 

In core 964 an increase in IRD occurs around ~10,000 cal. yr. BP and may therefore indicate 

the final retreat of the glaciers in the fjord arms. There are a number of studies from 

Spitsbergen indicating that the deglaciation in many fjords had terminated around 11,200 cal. 

yr. BP (e.g. Mangerud et al., 1992; Everhøi et al., 1995; Forwick & Vorren, 2009). On 

western Spitsbergen retreat rates from Billefjorden suggest that the glacier retreated 5 km over 

a period of only 30 years and complete deglaciation by ~11,200 cal. yr. BP (Baeten et al., 

2010). Van Keulenfjorden was deglaciated by c. 10,700 cal. yr. BP (Kempf et al., 2013). 

Another explanation for the increase in IRD may be locally enhanced ice-rafting. Despite of 

increased inflow of AW after 10,800 cal. yr. BP, the northern Svalbard margin experienced 

seasonal sea-ice cover, proximity to the Polar Front and low ice-rafting. This implies that 

increased AW flux did not result in strong temperature changes along the northern margin 

throughout the Holocene (Ślubowska et al., 2005). The gradual transition to more brownish 

sediments indicates that sediment supply from Liefdefjorden dominated, thus suggesting that 

the glacier in Woodfjorden had retreated a greater distance from the core site.  

Lower amounts of IRD and brownish sediments are characterizing the interval between ~160 

and 110 cm in core 964. Based on the available data, the time frame for the deposition of this 

interval was estimated to ~9500-7000 cal. yr. BP (Fig. 7.13). The decrease in IRD fluxes is 

suggested to reflect a general change from a glacier-proximal to a glacier-distal environment. 

The warming is likely related to the warming of the North Atlantic and western Svalbard shelf 

before ~10,000 cal. yr. BP, commencing to the early Holocene climatic optimum (e.g. Birks, 

1991; Sarnhein et al., 2003; Hald et al., 2004; Ślubowska et al., 2005; Ślubowska -Woldengen 

et al., 2007; Forwick et al., 2009; Baeten et al., 2010; Skirbekk et al., 2010; Rasmussen et al., 

2012). Salvigsen & Österholm (1982) suggested deglaciation of inner Woodfjorden and 

Bockfjorden by ~9500 14C yr. BP and 10,000 14C yr. BP, respectively. They also propose that 

Liefdefjorden was deglaciated before ~9400 14C yr. BP. However, the occurrence of IRD in 
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core 964 suggests that tidewater glaciers were present in the fjord system during the early 

Holocene. The brownish color of the sediment indicates an origin of the sediment from the 

Liefdefjorden glaciers. This is further supported by a relative increase in Fe/Ca ratio (Fig. 

7.13).  

Relatively warm climatic and oceanographic conditions in Kongsfjorden and Hinlopen 

Trough prevailed until ~7200 cal. yr. BP (Ślubowska et al., 2005; Ślubowska-Woldengen et 

al., 2007; Skirbekk et al., 2010). Because Woodfjorden, Bockfjorden and Liefdefjorden are 

located in the vicinity of these study areas it is reasonable to assume that similar 

environmental conditions apply to the fjord system on north Spitsbergen as well. The 

presence of IRD indicates melting of icebergs, correlating with warm surface conditions. 

However, it is possible that the relatively low IRD fluxes in core 964 is a result of relatively 

few icebergs surviving all the way out to the core site in mid-Woodfjorden, assuming the 

icebergs were produced by tidewater glacier(s) in Liefdefjorden. It is indicated that the IRD 

are mainly iceberg-rafted debris because of the inferred warm oceanographic conditions 

during this period. It is therefore less likely that sea-ice has formed. 

7.5.3 Mid-Holocene (~7000 -4000 cal. yr. BP) 
The mid-Holocene is characterized by (oscillating) increases in IRD and sand contents 

between ~6200 and ~5000 cal. yr. BP (green interval in Fig. 7.13), most probably related to 

enhanced ice rafting from icebergs and sea ice. The increases in sand content correlate with 

the oscillating IRD fluxes. An increase in acoustic impedance allows an interpretation of this 

interval to represent the Unit 2/Unit 3 boundary in the chirp data (Fig. 7.4). Even though 

generally higher Ca/sum ratios characterize this interval, the sediment color varies from 

lighter to darker brown (Fig. 7.13). It is suggested that this increase in Ca is related to a 

relative increase in biological productivity (cf. Richter et al., 2006), rather than enhanced 

influence from the glaciers in Woodfjorden.  

Multiple studies inferred a decrease in summer insolation and regional cooling during the 

mid-Holocene (e.g. Birks, 1991; Sarnthein et al., 2003; Hald et al., 2004). Summer sea-

surface temperatures (SST) declined between c. 7000-4000 cal. yr. BP in the Norwegian and 

Greenland Seas (Koç et al., 1993; Birks & Koç, 2002; Andersen et al., 2004). Mid-Holocene 

increase in IRD fluxes are observed on sediment cores from several Spitsbergen fjords, e.g. 

Isfjorden (Forwick & Vorren, 2009; Rasmussen et al., 2012), Billjefjorden (Baeten et al., 

2010), Tempelfjorden (Forwick et al., 2010), Van Mijenfjorden (Hald et al., 2004), 

130 
 



Smeerenburgfjorden (Velle, 2012) and Van Keulenfjorden (Kempf et al., 2013). The increase 

in IRD was accompanied by increase in sea-ice cover both in fjords (e.g. Ślubowska -

Woldengen et al., 2007; Baeten et al., 2010) and on the western Svalbard margin (Müller et 

al., 2012). Reduced inflow of AW is also indicated in e.g.  Hinlopen (Ślubowska et al., 2005), 

Kongsfjorden (Skirbekk et al., 2010) and in Isfjorden (Rasmussen et al., 2012). Increased 

glacial activity during the mid-Holocene has been inferred in Van Keulenfjorden (from ~6750 

cal. yr. BP; Kempf et al., 2013), Van Mijenfjorden (from ~7500 cal. yr. BP; Hald et al., 2004) 

and Tempelfjorden (from ~5600 cal. yr. BP; Forwick et al., 2010). In Smeerenburgfjorden 

increased glacial activity is inferred from ~6200 cal. yr. BP and correlate well with the 

inferred increase in glacier activity in the fjord system of Woodfjorden, Bockfjorden and 

Liefdefjorden. Analysis of the clasts in relation to provenance has not been performed for this 

study, however, it is assumed based on the sediment color that the sediment derives largely 

from glaciers in the catchment area of Liefdefjorden. Interpretations from Salvigsen & 

Høgvard (2005) who suggested the glaciers in Bockfjorden to be small throughout the 

Holocene, supports these assumptions. Fluctuations in Ca-contents within the brownish 

sediments are suggested to reflect temporarily higher organic productivity as inferred for 

other Spitsbergen fjords (e.g. Skirbekk et al., 2010). 

7.5.4 Late Holocene (~4000 cal. yr. BP to present) 
The topmost c. 70 cm in core 964 were deposited during the last ~4000 years (purple interval 

in Fig. 7.13). The interval up to ~1500 cal. yr. BP is characterized by dark brownish 

sediments with low (<2%) sand content, and varying amounts of clasts interlayered with 

intervals relatively barren in clast (Fig. 7.13). A marked increase in Fe continues towards the 

top of the core. However, periods of increased ice-rafting occurred. The high contents of Fe 

point to provenance of sediment mainly from Liefdefjorden glacier(s). Low IRD fluxes are 

also observed in the lower half of core 969 (~3000-1100 cal. yr. BP). The last ~1500 years of 

core 964, 966 and 969 contain generally small amounts of clasts. Ca content is increasing 

towards the top of core 969. No prominent changes in geochemistry are recorded in core 964. 

More permanent sea-ice cover and/or the formation of shore-fast sea ice suppressing iceberg 

and sea-ice rafting after ~4000 cal. yr. BP has been suggested for Isfjorden (Forwick & 

Vorren, 2009; Rasmussen et al., 2012), Billefjorden (Baeten er al., 2010), Kongsfjorden 

(Skirbekk et al., 2010) and Bellsund (Ślubowska -Woldengen et al., 2007). Break-up of the 

more permanent sea-ice cover may cause temporarily enhanced ice rafting (pulses in ice-

rafting) leading to the deposition of the intervals with higher clast contents observed in cores 
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964, 966 and 969. Alternatively, the coarse layers may be random deposits from overturning 

icebergs (Vorren et al., 1983) or increased iceberg rafting during and after glacier surges 

(Dowdeswell et al., 1998). The generally brownish sediment colors, as well as relatively high 

Fe-contents in core 964 are suggested to indicate that the pulses of ice rafting into central 

Woodfjorden most probably derived from enhanced iceberg flux from tidewater glaciers in 

Liefdefjorden (note that Liefdefjorden is the only fjord in the study area with a tidewater 

glacier at the present). The presence of “fresh” crevasse fill ridges on the seabed proximal to 

the glacier, and documented surges of Monacobreen during modern times (1995-1996; see 

Chapter 2.4 – Glaciology), and may indicate that surges may have occurred in Liefdefjorden 

over the last few millennia (see Kempf et al., 2013). 

Increasing Ca up to ~20 cm in core 969 in Woodfjorden (~300 cal. yr. BP) might be 

interpreted as a signal of gradually stronger sediment supply of Ca-rich sediments or an 

increase in biological productivity. However, an abrupt decrease in Ca occurred during the 

last ~300 years. Ślubowska-Woldengen et al. (2007) proposes low seasonal biological 

productivity prior to ~1000 cal. yr. BP on the northern Svalbard shelf (Hinlopen). An increase 

in IRD and unstable conditions were observed over the last c. 1000 years. Jernas et al. (2013) 

imply enhanced inflow of AW from AD 700 to 1200 in the Hinlopen and Kongsfjorden 

Troughs followed by development of high productivity fronts from 1200 to 1500 AD at both 

locations (Fig. 7.15, below). The interval from AD 1500 to 1900 was characterized by harsh 

conditions in the Hinlopen Trough with decreased productivity and flux of sediments as a 

result of icreased sea-ice cover (Jernas et al., 2013). The increase in Ca towards in the topmost 

~20 cm in core 969 may correlate to the time interval AD 1200 to 1500 with inflow of AW 

and improved conditions for productivity, and thus, an increase in Ca up to ~300 cal. yr. BP. 

Finally, the decrease in the topmost part of the core might represent a time of enhanced sea-

ice formation in inner Woodfjorden and harsher living conditions for any fauna. However, 

sedimentation rates are estimated to increase in the topmost 20 cm of core 969. The fine-

grained composition of the red sediments suggests that sedimentation occurred by suspension 

settling from turbid meltwater plumes from glaciers in Woodfjorddalen and from Andrée 

Land (see section 7.4 above).  
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Figure 7.15: Reconstructions of palaeoenvironments in the Hinlopen and Kongfjorden 
Trough over the last 2000 years (Jernas et al., 2013). Red rectangle indicates the position 
of Woodfjorden, Bockfjorden and Liefdefjorden. 
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Core 967 from Bockfjorden contains sediments from the last approx. 1100 years. The sandy 

layers in the core have previously been interpreted to most likely be related to periods of 

extreme run-off and delta progradation in Bockfjorden (e.g. Forwick et al., 2010; 

Zajączkowski, 2008). Salvigsen & Høgvard (2005) suggested that the glaciers in Bockfjorden 

reached their maximum Holocene extent during the Little Ice Age (LIA, c. AD 1350 to 1850). 

Variations of IRD in the core (from ~650 cal. yr. BP) most probably reflect fluctuations of 

Friedrichbreen in Bockfjorden during the latest Holocene while it was still a tidewater glacier, 

and possibly during the LIA. Overall, sedimentation in Bockfjorden seem to be stronger 

affected by glacifluvial processes over the last millennia because the glaciers at present are 

small. In addition the largest glacier, Karlsbreen, has retreated all the way up in the valley and 

the present sedimentary environment is dominated by sediment flux from Watnelieøyra (Fig. 

2.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

134 
 



8. Summary and conclusions 
Swath bathymetry, high-resolution seismic data and sediment cores were analyzed to 

reconstruct sedimentary environments and glacier dynamics from the last glacial to the 

present.  

• Mega-scale glacial lineations suggest that the fjords, in particular Woodfjorden, acted 

as pathways for fast-flowing ice streams draining the northwestern parts of the 

Svalbard-Barents Sea Ice Sheet during the Late Weichselian glaciation (Fig. 8.1-1). 

• Several sets of recessional moraines visible on swath bathymetry and chirp data 

indicate a stepwise retreat of the glaciers during the deglaciation. The moraines occur 

throughout the study area, but are occasionally exclusively visible on the chirp data 

due to masking by overlying sediments. 

• Annual retreat rates of up to ~200 m/yr in outer Woodfjorden suggest a relatively fast 

deglaciation in the deeper, outer parts of the fjord (Fig. 8.1-2). The shallower middle 

and inner parts of the fjords were deglaciated at rates between ~160 m/yr to ~50 m/yr. 

• Four seismostratigraphic units were defined: 1) Unit 0-irregular to semi-transparent, 

compromising till and moraines from the last glacial, 2) Unit 1-acoustically stratified 

glacier-proximal sediments deposited during the deglaciation, 3) Unit 2- transparent 

early Holocene glaciomarine sediments and 4) Unit 3- semi-transparent glaciomarine 

deposits from the late Holocene to the present. The thickness of the units decrease 

towards the fjord mouth, suggesting a decrease in sedimentation rate with increasing 

distance from the fjord heads. 

• The dominating sedimentary processes in the fjord system are suspension settling from 

turbid meltwater plumes entering the fjord basins at the front of tidewater glaciers, 

large river mouths, and ice-rafting from icebergs and sea-ice. Liefdefjorden is the only 

fjord of the system occupied by tidewater glaciers at present, thus, glacial meltwater 

runoff is regarded to be the most important source here. However, fluvial input is 

considered to be of larger importance in Woodfjorden and Bockfjorden. Ice-rafting 

and sediment reworking become more important in the out-fjord direction as 

sedimentation rates decrease. 

• Sediment color and quantitative element geochemistry from XRF core scanning are 

useful proxies for provenance studies. 
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• High Ca contents in reddish sediments (deriving from erosion of Devonian 

sedimentary rocks) can be used to reconstruct the activity of the glacier in 

Woodfjorden. Sediment deriving from sources in Liefdefjorden is characterized by 

higher Fe contents and brownish to grayish colors. 

• Increased contents of IRD in red sediments deposited in central parts of the study area 

between ~13,350 and ~13,200 cal. yr. BP (Bølling-Allerød) are inferred to reflect 

enhanced ice-rafting and sediment delivery mainly from the glacier in Woodfjorden 

during this period of deglaciation. However, between c. 13,000 and 12,800 cal. yr. BP, 

enhanced sediment supply from Liefdefjorden occurred (Fig. 8.1-3). 

• Low amounts of IRD and fine-grained (increased clay) red sediments deposited 

between ~12,800 to 12,100 cal. yr. BP are suggested to reflect suspension settling 

from glacial meltwater deriving from Woodfjorden, as well as reduced ice rafting. 

This lithology might be a result of enhanced sea-ice formation leading to reduced ice 

rafting due to climatic cooling during the Younger Dryas. 

• Sedimentation rates decrease around 12,000 cal. yr. BP. Synchronously, ice rafting 

increases, culminating in a maximum at c. ~10,000 cal. yr. BP. This change is 

suggested to reflect the final phase of glacier retreat in Woodfjorden, possibly related 

warming surface waters (Fig. 8.1-4).  

• Relatively low amounts of IRD from ~9500 cal. yr. BP are inferred to reflect reduced 

ice rafting in a glacier-distal environment. The gradual change to brown sediment 

color and relatively high Fe-contents indicate a decreasing influence from 

Woodfjorden relative to Liefdefjorden. 

• The mid-Holocene (~7000-4000 cal. yr. BP) is characterized by (oscillating) increases 

in IRD and sand content between ~6200 and ~5000 cal. yr. BP due to enhanced ice-

rafting from icebergs and/or sea-ice related to a general climatic cooling on Svalbard. 

• Generally low amounts of IRD are suggested to reflect decreased ice rafting during the 

last c. 4000 cal. yr, most probably related to enhanced formation of shore-fast and/or 

more permanent sea ice suppressing the drift of icebergs and ice floes (Fig. 8.1-5). 

However, periods of enhanced ice-rafting occurred occasionally. The sediments 

derived mainly from Liefdefjorden (high Fe) (Fig. 8.1-6). 
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