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Abstract. Various interpretations of the notion of a trend
in the context of global warming are discussed, contrasting
the difference between viewing a trend as the determinis-
tic response to an external forcing and viewing it as a slow
variation which can be separated from the background spec-
tral continuum of long-range persistent climate noise. The
emphasis in this paper is on the latter notion, and a gen-
eral scheme is presented for testing a multi-parameter trend
model against a null hypothesis which models the observed
climate record as an autocorrelated noise. The scheme is
employed to the instrumental global sea-surface temperature
record and the global land temperature record. A trend model
comprising a linear plus an oscillatory trend with period of
approximately 70 yr, and the statistical significance of the
trends, are tested against three different null models: first-
order autoregressive process, fractional Gaussian noise, and
fractional Brownian motion. The parameters of the null mod-
els are estimated from the instrumental record, but are also
checked to be consistent with a Northern Hemisphere tem-
perature reconstruction prior to 1750 for which an anthro-
pogenic trend is negligible. The linear trend in the period
1850-2010 AD is significant in all cases, but the oscillatory
trend is insignificant for ocean data and barely significant for
land data. However, by using the significance of the linear
trend to constrain the null hypothesis, the oscillatory trend in
the land record appears to be statistically significant. The re-
sults suggest that the global land record may be better suited
for detection of the global warming signal than the ocean
record.

1 Introduction

At the surface of things, the conceptually simplest approach
to detection of anthropogenic global warming should be the
estimation of trends in global surface temperature through-
out the instrumental observation era starting in the mid-
nineteenth century. These kinds of estimates, however, are
subject to deep controversy and confusion originating from
disagreement about how the notion of a trend should be un-
derstood. In this paper we adopt the view that there are sev-
eral, equally valid, trend definitions. Which one that will
prove most useful depends on the purpose of the analysis and
the availability and quality of observation data.

At the core of the global change debate is how to distin-
guish anthropogenically forced warming from natural vari-
ability. A complicating factor is that natural variability has
forced as well as internal components. Power spectra of cli-
matic time series also suggest to separate internal dynamics
into quasi-coherent oscillatory modes and a continuous and
essentially scale-invariant spectral background. Over a vast
range of time scales this background takes the form of a per-
sistent, fractional noise or motion (Lovejoy and Schertzer,
2013; Markonis and Koutsoyannis, 2013). Hence, the issue
is threefold: (i) to distinguish the climate response to an-
thropogenic forcing from the response to natural forcing, (ii)
to distinguish internal dynamics from forced responses, and
(iii) to distinguish quasi-coherent, oscillatory modes from the
persistent noise background. This conceptual structure is il-
lustrated by the Venn diagram in Figure 1a. Figure 1b il-
lustrates three possible trend notions based on this picture.
Fundamental for all is the separation of the observed climate
record into a trend component (also termed the signal) and
a climate noise component. The essential difference between
these notions is how to make this separation.



2 Østvand, Rypdal, and Rypdal: Statistical significance of trends in global temperature

forced' internal'

natural'

anthropogenic'
variability=trend'

forced'variability'='trend'

forced'variability'+'oscillatory'modes'='trend'

persistent'
noise'

forced'natural'

oscillatory'

forced' internal'

natural'

anthropogenic'
forcing'

natural'
forcing'

oscillatory'
modes'

persistent'
noise'

(a)'

(b)'

Fig. 1. Venn diagrams illustrating the interplay between forced, in-
ternal, and natural variability and various definitions of trend. (a):
Natural variability can be both forced and internal. Forced variabil-
ity can be both anthropogenic and natural. Internal variability is nat-
ural, but can consist of quasiperiodic oscillatory modes as well as a
continuum of persistent noise. (b): The three different trend notions
discussed in the text.

The widest definition of the trend is to associate it with all
forced variability and oscillatory modes as illustrated by the
upper row in Figure 1b. With this notion the methodological
challenge will be to develop a systematic approach to ex-
tract the trend from the observed record, and then to subtract
this component to establish the persistent noise component.
The physical relevance of this separation will depend on to
what extent we can justify to interpret the extracted trend as a
forced response with internally generated oscillatory modes
superposed. If detailed information on the time evolution of
the climate forcing is not used or is unavailable such a justi-
fication is quite difficult. In this case we will first construct
a parametrized model for the trend based on the appearance
of the climate record at hand and our physical insight about
the forcing and the nature of the dynamics. The next step
will be to estimate the parameters of the trend model by con-
ventional regression analysis utilizing the observed climate
record. The justification of interpreting this trend as some-
thing forced and/or coherent different from background noise
will be done through a test of the null hypothesis which states
that the climate record can be modeled as a long-range mem-
ory (LRM) stochastic process. Examples of such processes
are persistent fractional Gaussian noises (fGns) or fractional
Brownian motions (fBms). LRM processes exhibit stronger
random fluctuations on long time scales than short-memory
processes and hence a null model based on LRM-noise will

make it more difficult to reject the null hypothesis for a given
estimated trend. For comparison we will also test the null hy-
pothesis against a conventional short-memory notion of cli-
mate noise, the first-order autoregressive process (AR(1)). In
general, rejection of the null hypothesis will be taken as an
acceptance of the hypothesis that the estimated trend is sig-
nificant, and will strengthen our confidence that these trends
represent identifiable dynamical features of the climate sys-
tem.

A trend can be rendered significant under the AR(1) null
hypothesis, but insignificant under an LRM-hypothesis, and
then it could of course be argued that the value of this
kind of analysis of statistical significance is of little inter-
est, unless one can establish evidence that favors one null
model over another. One can, however, test the null models
against the observation data, and here analysis seems to fa-
vor the fGn/fBm models over short-memory models. There
are dozens of papers that demonstrate scaling properties con-
sistent with fGn or fBm properties in instrumental tempera-
ture data (see Rypdal et al. (2013) for a short review and
some references). But, since the instrumental records may be
strongly influenced by the increasing trend in anthropogenic
forcing, it is difficult to disentangle LRM introduced by the
forcing from that arising from internal, unforced variability.
Detrending methods such as the detrended fluctuation analy-
sis (Kantelhardt et al., 2001) are supposed to do this, but the
short duration of the instrumental records does not seem to
allow us to make an undisputable distinction between AR(1)
and fGn/fBm. We analyze this issue in section 3.3, where we
also comment the methods and conclusions in a recent study
by (Vyushin et al., 2012).

There are also other approaches that favor the LRM mod-
els for description of random internal variability in global
data on time scales from months to centuries. One is based
on analysis of temperature reconstructions for the last millen-
nium prior to the anthropocene (Rybski et al., 2006; Rypdal
et al., 2013). These temperature data are not influenced by
an anthropogenic trend, but exhibit self-similar scaling prop-
erties with spectral exponent β ≈ 1 (to be explained in sec-
tion 2) on time scales at least up to a century. Short-memory
processes like the AR(1) will typically exhibit scaling with
β ∼ 2 up to the autocorrelation time, and a flat (β ∼ 0) spec-
trum on time scales longer than this, but this is not observed
in these data. Another line of investigation has been to use
available time-series information about climate forcing in a
parametrized, linear, dynamic-stochastic model for the cli-
mate response (Rypdal and Rypdal, 2013). The trend then
corresponds to the deterministic solution to this model, i.e.,
the solution with the known (deterministic) component of the
forcing. In this model the persistent noise component of the
temperature record is the response to a white noise stochastic
forcing. In (Rypdal and Rypdal, 2013) analysis of the resid-
ual obtained by subtracting the deterministic forced solution
from the observed instrumental global temperature record
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shows scaling properties consistent with an fGn model and
inconsistent with an AR(1) model.

The method is described in Rypdal and Rypdal (2013),
where only exponential and scale-free long-range persistent
responses are modeled, without allowing for quasi-coherent
oscillations. The approach in that paper adopts the trend def-
inition described in the second row of Figure 1b. Here the
trend is the forced variability, while all unforced variability
is relegated to the realm of climate noise. It is possible, how-
ever, to incorporate forced and natural oscillatory dynamics
into such a response model.

The lower row in Figure 1b depicts the trend notion of
foremost societal relevance; the forced response to anthro-
pogenic forcing. Once we have estimated the parameters
of the forced response model, we can also compute the
deterministic response to the anthropogenic forcing sepa-
rately. One of the greatest advantages of the forced-response
methodology is that it allows estimation of this anthro-
pogenic trend/response and prediction of future trends un-
der given forcing scenarios, subject to rigorous estimates of
uncertainty. On the other hand, that method is based on the
assumption that the forcing data employed are correct. The
construction of forcing time series relies heavily on uncer-
tain observations and modeling, hence there is an obvious
case for complementary approaches to trend estimation that
do not rely on this kind of information. This is the approach
that will be explored in the present paper.

2 Trend Detection Methodology

2.1 The null models

The noise modeling in this paper makes use of the concept of
long-range memory (LRM), or (equivalently) long-term per-
sistence (LTP) (Beran, 1994). In global temperature records
this has been studied in e.g., Pelletier and Turcotte (1999);
Lennartz and Bunde (2009); Rybski et al. (2006); Rypdal
and Rypdal (2010); Efstathiou et al. (2011); Rypdal et al.
(2013); Rypdal and Rypdal (2013). Emanating from these
studies is the recognition that ocean temperature is more per-
sistent than land temperature and that the 20’th century ris-
ing trend is stronger for land than for ocean. LRM is charac-
terized by a time-asymptotic (t→∞) autocorrelation func-
tion (ACF) of power-law form C(t)∼ tβ−1 for which the
integral

∫∞
0
C(t)dt diverges. Here β is a power-law expo-

nent indicating the degree of persistence. The correspond-
ing asymptotic (f → 0) power spectral density (PSD) has the
form S(f)∼ f−β , hence β is also called the spectral index
of the LRM process. For 0< β < 1 the process is stationary
and is termed a persistent fGn. For 1< β < 3 the process is
non-stationary and termed an fBm. As a short-memory alter-
native we shall also consider the AR(1) process which has
an exponentially decaying ACF and is completely character-

ized by the lag-one autocorrelation φ (von Storch and Zwiers,
1999).

2.2 Previous work using LRM null models

Bloomfield and Nychka (1992) studied the signficance of a
linear trend in 128 years of global temperature assuming
different stochastic models, including fractionally integrated
white noise. They found that the trend in the record could not
be explained as natural variability by any of the models.

Significance of linear trends under various null models,
some exhibiting LRM, was also studied by Cohn and Lins
(2005). One of their main points was that trends classified as
statistically significant under a short-memory null hypothe-
sis might end up as insignificant under an LRM hypothesis.
The paper is a theoretical study of trend significance and is
motivated by the strong persistence which is known to ex-
ist in hydroclimatic records. As an example they study the
Northern Hemisphere (NH) temperature record and find that
their test renders the trend insignificant under the LRM null
hypothesis. They conclude that the trend might be due to nat-
ural dynamics. Analyses with similar and other methodolo-
gies on other records indicate that the global trend signal is
significant in spite of LRM (Gil-Alana, 2005; Rybski et al.,
2006; Lennartz and Bunde, 2009; Halley and Kugiumtzis,
2011; Rypdal et al., 2013). We show in the present paper
that the global land temperature record turns out to exhibit
a stronger trend and weaker LRM than the NH temperature
which is sufficient to establish trend significance. In contrast,
the weaker trend and stronger LRM of global ocean temper-
ature yield a less significant trend for this signal.

Some recent papers on LRM and trends are Fatichi et al.
(2009); Rybski et al. (2009); Franzke (2009, 2010); Franzke
and Woollings (2011); Franzke (2012a,b); Franzke et al.
(2012). Fatichi et al. (2009) and Rybski et al. (2009) study
station temperatures under different LRM null hypotheses,
and find significant linear trends in some, but not all, of the
records. Franzke (2012b) applies a methodology similar to
that of Cohn and Lins (2005) to single-station temperature
records in the Arctic Eurasian region. He emphasises that al-
most all stations show a positive trend, and that the melting
of Arctic sea ice leaves no doubt about the reality of an an-
thropogenic warming signal in the Arctic. By evaluating all
station data together, for instance by analysing the regional
averaged temperature, one would most likely arrive at a sig-
nificant trend. His point is that the natural variability for sin-
gle stations is so large and long-range correlated that it may
mask the warming signal at the majority of individual sta-
tions at the present stage of global warming. This is an im-
portant message to convey to those policymakers who have
got the impression that local climate projections universally
are sufficiently reliable to implement adaptive measures.
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2.3 Hypothesis testing methodology

In the present paper our main objective is to establish be-
yond doubt the significance of the global warming signal,
and if possible also the multidecadal oscillation. From the
studies discussed above, we know that there are many tem-
perature records from which this significance cannot be es-
tablished under an LRM null hypothesis, so we should search
for a signal that is optimal for trend detection. Such an opti-
mal signal seems to be the instrumental global land temper-
ature record HadCRUT3 (Jones et al., 2012). We will con-
trast this with analysis of the global ocean record (Kennedy
et al., 2011). These records are land-air and sea-surface
temperature anomalies relative to the period 1961-90, with
monthly resolution from 1850 to date. The analysis is made
using a trend model which contains a linear plus a sinusoidal
trend, although the methodology developed works for any
parametrized trend model. We test this model against the null
model that the full temperature record is a realization of an
AR(1) process, an fGn, or an fBm (the fBm model is of in-
terest only for the strongly persistent ocean data).

The significance tests are based on generation of an en-
semble of synthetic realizations of the null models; AR(1)
processes (φ < 1), fGns (0< β < 1), and fBms (1< β < 3).
Each realization is fully characterized by a pair of param-
eters; θ ≡ (σ,φ) for AR(1) and θ ≡ (σ,β) for fGn and fBm,
where σ is the standard deviation of the stationary AR(1) and
fGn processes and the standard deviation of the differenced
fBm. For an LRM null model the estimated value of β̂ de-
pends on which null model (fGn or fBm) one adopts. As we
will show below, for ocean data, it is not so clear whether
an fGn or an fBm is the most proper model (Lennartz and
Bunde, 2009; Rypdal et al., 2013), so we will test the signif-
icance of the trends under both hypotheses.

Technically, we make use of the R package by McLeod
et al. (2007) to generate synthetic fGns and to perform a
maximum-likelihood estimation of β. Since generation of
fBms is not included in this package, synthetic fBms with
memory exponent 1< β < 3 are produced by generating an
fGn with exponent β− 2 and then forming the cumulative
sum of that process. This is justified because the one-step dif-
ferenced fBm with 1< β < 3 is an fGn with memory expo-
nent β−2 (Beran, 1994). Maximum-likelihood estimation of
β for synthetic fBms and observed data records modeled as
an fBm is done by forming the one-time-step increment (dif-
ferentiation) process, estimate the memory exponent βincr for
that process and find β = βincr + 2. There are some problems
with this method when β ≈ 1. Suppose we have a data record
(like the global ocean record) and we don’t know whether
β < 1 or β > 1. For all estimation methods there are large er-
rors and biases for short data records of fGns/fBms for β ≈ 1
(Rypdal et al., 2013). This means that there is an ambiguity
as to whether a record is a realization of an fGn or an fBm
when we obtain estimates of β in the vicinity of 1. For the
MLE method this ambiguity becomes apparent from Figure
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Fig. 2. The red symbols and 95% confidence intervals represent the
maximum-likelihood estimate β̂ for realizations of fGns/fBms with
memory parameter β by adopting an fGn model. Hence, for β > 1
we find the estimate β̂ from a realization of an fBm with a model
that assumes that it is an fGn. The green symbols represent the cor-
responding estimate by adopting an fBm model, i.e., for β < 1 we
we find the estimate β̂ from a realization of an fGn with a model
that assumes that it is an fBm. “Adopting an fBm model” means
that the synthetic record is differentiated, then analyzed as an fGn
by the methods of McLeod et al. (2007) to obtain β̂incr, and then
finally β = β̂incr + 2.

2. Here we have plotted the MLE estimate β̂ with error bars
for an ensemble of realizations of fGns (for 0< β < 1) and
of fBms (1< β < 2) with 2000 data points. The red symbols
are obtained by adopting an fGn model when β is estimated.
Hence, for β > 1 we find the estimate β̂ from a realization of
an fBm with a model that assumes that it is an fGn. It would
be expected that the analysis would give β̂ ≈ 1 for an fBm,
but we observe that it gives β̂ considerably less than 1 in the
range 1< β < 1.4, so if we observe a β̂ in the vicinity of
1 by this analysis we cannot know whether it is an fGn or
an fBm. The ambiguity remains by estimating with a model
that assumes that the record is an fBm, because this yields a
corresponding positive bias as shown by the green symbols
when the record is an fGn. This ambiguity seems difficult to
resolve for ocean data as short as the monthly instrumental
record.

The standard method for establishing a trend in time-series
data is to adopt a parametrized model T (A; t) for the trend,
e.g., a linear model A1 +A2t with parameters A= (A1,A2),
and estimate the model parameters by a least-square fit of the
model to the data. Another method, which brings along addi-
tional meaning to the trend concept, is the MLE method. This
method adopts a model for the stochastic process; x(t) =
T (A; t) +σw(t), where w(t) is a correlated or uncorrelated
random process and establishes the set of model parameters
A for which the likelihood of the stochastic model to produce
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the observed data attains its maximum. The method applied
to uncorrelated and Gaussian noise models is described in
many standard statistics texts (von Storch and Zwiers, 1999),
and its application to fGns is described in McLeod et al.
(2007). If w(t) is a Gaussian, independent and identically
distributed (i.i.d.) random process, the MLE is equivalent
to the least-square fit. If w(t) is a strongly correlated (e.g.,
LRM) process, and the trend model provides a poor descrip-
tion of the large-scale structures in the data, MLE may as-
sign more weight to the random process (greater σ) than the
least-square method. On the other hand, if the trend model is
chosen such that it can be fitted to yield a good description
of the large-scale structure, the parameters estimated by the
two methods are quite similar, even if w(t) used in the MLE
method is an LRM process. In this case we can use least-
square fit to establish the trend parameters without worrying
about whether the residual noise obtained after subtracting
the estimated trend can be modeled as a Gaussian, i.i.d. ran-
dom process.

In the following, we make some definitions and outline
the methodology we adopt to assess the significance of the
estimated trend. Concepts defined are named with bold-
face fonts. Our methodology is based on standard hypoth-
esis testing, where the trend hypothesis (termed the “alterna-
tive hypothesis”) is accepted (although not verified, which is
stronger) by rejection of a “null hypothesis.” Failure of re-
jection of the null hypothesis implies failure of acceptance of
the alternative hypothesis, and hence the trend will be char-
acterized as insignificant under this null hypothesis. Hence, it
is clear that the outcome of the significance test will depend
on the choice of alternative hypothesis (trend model) as well
as on the null hypothesis (noise model).

Let us take the pragmatic point of view that a trend is a
simple and slowly varying (compared with a predefined time
scale τ ) function T (A; t) of t, parametrized by the trend co-
efficients A= (A1, . . . ,An). It is also required that for the
optimal choice of parameters, A= Âobs the trend T (Âobs; t)
makes a good fit to the large-scale structure of the data
record. In practice, this means that the trend should be close
to a low-pass filtered version of the signal, for instance a
moving average over time-scale τ . The trend is significant
with respect to a particular null model if the fitted T (Âobs; t)
is very unlikely to be realized in an ensemble of fits T (Â; t)
to realizations of the null model.

The alternative hypothesis can be formulated as follows:
The observed record x(t) is a realization of the stochastic
process

T (A; t) +σw(t), (1)

where the trend T (A; t) is a specified function of t depend-
ing on the trend coefficients A= (A1, . . . ,An), and w(t) is a
Gaussian stationary random process of unit variance. These
coefficients are estimated from a least-square fit to x(t) and
have the values Âobs. We assume that the trend model can be

fitted so well to the data that MLE-estimates of A with dif-
ferent noise models (white noise vs. strongly persistent fGn)
give approximately the same Âobs.

The null hypothesis states that the record x(t) is a real-
ization of a stochastic process

ε(θ; t), (2)

with certain properties to be specified (e.g., the process is
AR(1), fGn, or fBm). Like for the alternative hypothesis, the
parameters θ should be restricted to be close to the values
θ̂obs found from estimating it from fitting the null model (2)
to the data record by means of MLE.

The Monte Carlo null ensemble is the collection of real-
izations xi(θ) , i= 1,2, . . . , of the null model process (2).

The best choice of null model would be to utilize all
our possible knowledge about the true parameter set θ. This
implies considering θ as a random variable, and hence a
Bayesian approach (Gelman et al., 2004). We generate the
null ensemble by drawing θ from the conditional distribution
P (θ|θ̂obs), i.e., the probability that the “real” parameters of
the observed process are θ given that the estimated parame-
ters from the observed data are θ̂obs. One way of establishing
this distribution is to generate an ensemble of realizations of
the noise process with θ varied in a range around θ ≈ θ̂obs and
establish the conditional distribution P (θ̂|θ). From Bayes’
theorem one then has P (θ|θ̂) = P (θ̂|θ)P (θ)/P (θ̂). By set-
ting θ̂ = θ̂obs, and assuming a flat prior distribution P (θ) in
the range in the vicinity of θobs corresponding to the width of
the distribution we the find P (θ|θ̂obs) = P (θ̂obs|θ).

As an alternative to the Bayesian ideas described above
one could employ a frequentist approach. This means that we
assume that the null model has a fixed true parameter value θ.
This parameter value is unknown, and the strategy is to create
the Monte Carlo null ensemble xi(θ̂obs) , i= 1,2, . . . , using
the θ-values estimated from the observed data. We must then
take the uncertainty in the θ-estimates into account, since θ̂obs
may deviate from the true θ. This estimation error can be
quantified using the bootstrap method, which assumes that
the error in the parameter estimates in the null model with
parameters θ can be well approximated by the corresponding
errors for the null model with parameters θ̂obs. When estima-
tion errors are quantified one can easily adjust for these in the
hypothesis tests.

Pseudotrend estimates Â(i) are the coefficients obtained
by least-square fit of the trend model T (A; t) to the realiza-
tions xi(θ; t) of the null ensemble.

Pseudotrend distribution is the n-dimensional PDF
P (Â) over the null ensemble.

Null-hypothesis confidence region is the region Ω in n-
dimensional A-space for which P (A)> Pthr, where Pthr is
chosen such that

∫
Ω
P (A)dA= 0.95.

Significance of the trend model is established if the null
hypothesis is rejected, e.g., the full n-dimensional trend is
95% significant if Âobs /∈ Ω.
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If the null hypothesis is rejected by this procedure, we are
rejecting only those aspects of the null model that are rele-
vant to the full trend model, i.e., the trend model (alternative
hypothesis) produces trend coefficients Âobs that give a good
fit to the large-scale structure of the data, while it is very im-
probable that the null model can produce Â in the vicinity of
Âobs.

2.4 The trend model explored in this work

We will apply the method described in the previous subsec-
tion to global temperature record using the following trend
model:

T (A; t) = δ+A1t+A2 sin(2πft+ϕ). (3)

This is a simplified version of the models used in several
works by N. Scafetta (e.g., Scafetta, 2011, 2012) and the os-
cillation is supposed to model the 60-yr cycle observed in
the instrumental record (Schlesinger and Ramankutty, 1994).
The frequency f is not to be considered as a free model pa-
rameter to be estimated from the observed record and from
realizations of the null ensemble. When estimating pseu-
dotrends it has little meaning to let f be a free parameter,
since the synthetic noise records contain no preferred fre-
quencies. We rather treat f as a fixed quantity which is an
inherent part of the alternative hypothesis. In practice we se-
lect f from a least-square fit of the trend model to the ob-
served record varying all five parameters including f , but
this is not essential. We could just as well have hypothesized
a reasonable value of f by inspection of the record or from
other evidence of this oscillation presented in the literature.
The important thing to keep in mind is that the value of f
is part of the hypothesis. Of the estimated pseudotrend co-
efficients (Â1, Â2, δ̂, ϕ̂) only (Â1, Â2) quantify the strength
of the trend, so the relevant pseudotrend distribution to es-
tablish is P (Â1, Â2) irrespective of the values of irrelevant
parameters (δ̂, ϕ̂). Table 1 shows the estimated θ̂obs accord-
ing to the null model in (2) using AR(1), fGn and fBm as the
stochastic process ε(θ; t). Also in this table are the estimated
trend parameters (Â1, Â2) from applying the trend model in
(3) and the period T = 1/f of the oscillatory trend. Since, as
mentioned above, this period has been selected from a fitting
procedure it has slightly different values for the ocean and
land records.

2.5 Results

The results of the analysis are shown in Figure 3. We observe
that the trend parameters (Â1, Â2)obs are outside the null-
hypothesis 95% confidence region for all three noise models
and for ocean as well as land records. But we also observe
that the significance is more evident for land than for ocean,
and is reduced as more strongly persistent noise models are
employed. For the fBm model applied to ocean data the trend
is barely outside the 95% confidence region.
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Fig. 3. In panels (a-e) the red dots represent the estimated trend
coefficients (Â1, Â2)obs and the dashed, closed curve the 95% con-
fidence contour of the distribution P (Â1, Â2). (a): ocean data and
AR(1) null model. (b): land data and AR(1) null model. (c): ocean
data and fGn null model. (d): land data and fGn null model. (e):
ocean data and fBm null model. (f): Black curves: The global ocean
and land temperature records. Red curves: the linear and sinusoidal
trends.

It is the full trend model equation (3) that is accepted by
this test, but something can also be said about the separate
significance of the individual trends represented by the in-
dividual trend coefficients from the pseudotrend distribution
P (Â1, Â2). For the AR(1) and fGn null models it is appar-
ent from Figure 3a-d that the linear trend is highly signifi-
cant since Â1,obs is located far to the right of the confidence
region. On the other hand, except for the AR(1) model ap-
plied to land data in Figure 3b, A2,obs is not totally above the
confidence region. This means that the linear pseudotrends
observed in the null ensemble has negligible chance of get-
ting near the observed trend, while there is some chance to
find oscillatory trends in the null ensemble which are as large
as Â2,obs. The significance of those separate trends against
these null models is determined by forming the separate one-
dimensional PDFs,P (Â1)≡

∫
P (Â1, Â2)dÂ2 andP (Â2)≡∫

P (Â1, Â2)dÂ1 and form the confidence intervals in the
standard way. In Figure 4 we have formed the corresponding
one-dimensional cumulative distribution functions (CDFs)
from the two-dimensional PDFs for ocean data shown in Fig-
ure 3a, c, and e. We observe that the linear trend is significant
for the AR(1) and fGn null models, but barely significant for
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Table 1. Estimated noise parameters θ̂obs from the null hypotheses in (2) and trend parameters Âobs estimated from the trend model (3). The
units for the trend estimation are months for τ̂obs, 10−3 ◦C/yr for Â1,2,obs, and yr for the oscillation period T .

AR(1) fGn fBm Trend
τ̂obs β̂obs σ̂obs β̂obs σ̂obs Â1,obs Â2,obs T

Ocean 21.3 0.994 0.25 1.45 0.086 4.21 0.128 69.7
Land 3.43 0.654 0.49 6.34 0.186 73.4
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Fig. 4. Curved lines are CDFs for trend coeffecients Â1 and Â2

established from the null model ensemble for ocean data. Vertical
dashed line marks the upper 95% confidence limit. Vertical solid
line marks Â1,2,obs. (a) and (b): AR(1) null model. (c) and (d): fGn
null model. (e) and (f): fBm null model.

the fBm model. The oscillatory trend is insignificant for all
models.

The corresponding CDFs for land data are shown in Figure
5. The linear trend is even more significant than for ocean
data, while the oscillatory trend is significant for the AR(1)
model, but barely significant for the fGn model.

One important lesson to learn from this analysis is that the
stronger persistence in the ocean temperature record makes
it harder to detect significant trends as compared to the land
record. This effect outweighs the increased trend significance
from the lower noise levels in the ocean record compared to
the land record. Another is that the land record analysis es-
tablishes beyond doubt that there is a significant global linear
trend throughout the last century, and that the reality of an

-6 -4 -2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

A1 +10-3 ÎCsyear/

C
D
F

-0.1 0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

A2 +ÎC/

C
D
F

-6 -4 -2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

A1 +10-3 ÎCsyear/
C
D
F

-0.1 0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

A2 +ÎC/

C
D
F

(a) (b)

(c) (d)

Fig. 5. Curved lines are CDFs for trend coeffecients Â1 and Â2

established from the null model ensemble for land data. Vertical
dashed line marks the upper 95% confidence limit. Vertical solid
lines mark Â1,2,obs. (a) and (b): AR(1) null model. (c) and (d): fGn
null model.

oscillatory trend is probable, but not beyond the 95% confi-
dence limit.

3 Constraining and Evaluating the Null Hypothesis

By estimating the parameters for the null model from the
full observed record (without detrending), and allowing this
model to be an LRM noise, we have selected the fractional
noise model that is most likely to explain the variance of the
full record. Hence it can be considered as the null model for
the climate noise that is least likely to be rejected by the ob-
served trend. If this null model is rejected, i.e., if the trend
is found to be significant under this null, it is very unlikely
that it will be found insignificant under other reasonable null
hypotheses. Since we have found that the linear trend in the
global land record is significant under this null, we should
have very high confidence in this result. The non-significance
of the oscillatory trend, however, deserves a reassessment in
the light of the established significance of the linear trend.
In a Bayesian spirit, it would be appropriate to investigate
the oscillatory trend further by including the linear trend as
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Table 2. Estimated noise parameters θ̂obs from the new null hy-
potheses in (4). The units are same as in Table 1.

AR(1) fGn
τ̂obs β̂obs σ̂obs

Land 2.04 0.584 0.391

an established fact and construct a null model constrained to
accept the existence of the linear trend;

3.1 A constrained null model yields significant oscilla-
tion

δ̂obs + Â1,obst+ ε(θ; t). (4)

We now first estimate a new θ̂obs by fitting the new null
model (4) to the observed land record. The new estimated
noise parameters are shown in Table 2. Then we produce a
new null ensemble of records from the null model by draw-
ing θ from the conditional distribution P (θ|θ̂obs). Finally we
fit the trend model (3) to each realization in the ensemble and
form P (Â1, Â2). The result is shown for land data and ε(θ; t)
modeled as an fGn in Figure 6a. The inclusion of the linear
trend in the null model will imply that we shall fit ε(θ; t) to
the record x̃(t)≡ x(t)− (δ̂obs + Â1,obst) rather than to x(t).
Since we already have established that x(t) contains a sig-
nificant linear trend, the variability of x̃(t) may be consider-
ably less than the variability of x(t) and hence the new esti-
mated noise parameters θ̂obs may correspond to smaller σ̂obs
and β̂obs than we obtained for the original null model. This re-
duction in noise parameters leads to narrowing of P (Â1, Â2),
and a narrower CDF for the oscillation trend parameter Â2,
as shown in Figure 6b. The result is that this constrained test
establishes that the oscillatory trend is also significant.

3.2 Evaluation of the null model

The long-range memory associated with fractional noises
and motions gives rise to larger fluctuations on long time
scales that allows description of such variability as part of
the noise background rather as trends. The implication is that
variability which has to be described as significant trends un-
der white noise or short-memory noise hypotheses may have
to be classified as insignificant trends under an LRM null
hypothesis. The issue of the most proper choice of null hy-
pothesis was touched upon in section 2, but let us re-examine
the issue in the light of the results we have obtained so far.

One way to deal with this issue is to apply an estimator
that characterizes the correlation structure of the observed
record and compare the outcome with those arising from ap-
plying the same estimator to different models for the climate-
noise background. There are several estimators, for instance
wavelet variances and detrended fluctuation analysis, that are
well suited for extracting the scaling properties of a time se-
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Fig. 6. (a): The 95% confidence contour of the distribution
P (Â1, Â2) for land data obtained by the new null model (4) with
ε(θ; t) an fGn process. (b): The CDF derived from P (Â2) for this
null model, with upper 95% confidence limit marked as dotted ver-
tical line.

ries and estimating a β-exponent. For LRM processes such
as fBm and fGn (which are respectively self-similar pro-
cesses and the differences of self-similar processes) the fluc-
tuation level of a time series varies as a power law ver-
sus time scale τ , and one can therefore analyze data using
double-logarithmic plots of the so-called fluctuation func-
tions. For processes with a characteristic time scale τc, such
as the AR(1) processes, the fluctuation functions will not be
power laws, and this can be seen from the estimated fluctu-
ation functions. For an AR(1) process, which has an auto-
correlation function on the form e−t/τc , the time series be-
haves like a Brownian motion (β = 2) for time scales t� τc
and a white noise process (β = 0) for t� τc. If a time series
is sufficiently long, the crossover between these two scaling
regimes is clearly visible in the estimated fluctuation func-
tions, and since we do not observe such crossovers in global
temperature records, we can use fluctuation functions to il-
lustrate that LRM processes are better suited than AR(1) pro-
cesses as models for the global temperature. This idea is pur-
sued in (Rypdal and Rypdal, 2013), where detrended fluc-
tuation analysis is employed to show that a residual signal
(constructed by subtracting the deterministic response to the
external forcing) is inconsistent with an AR(1) process, but
consistent with an LRM process.

The test described above utilizes a method designed to es-
timate the scaling exponent β in LRM processes. As an al-
ternative, we can use a test based on an estimator for the
correlation time τc in an AR(1) process. For this test we
should think of our time series as a discrete-time sampling
of a continuous-time stochastic process. The continuous-time
analog of an AR(1) process is the Ornstein-Uhlenbeck (OU)
process. If a time series Tk is obtained from an OU process
by sampling it at times tk = k∆t, then the one-lag autocor-
relation of Tk is φ(∆t) = e−∆t/τc . We can obtain a standard
sample estimate φ̂(∆t) of the lag-one autocorrelation, and
from this we obtain an estimate of the correlation time:

τ̂c =
∆t

− log φ̂(∆t)
. (5)
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Fig. 7. Panels (a) and (b) show the estimated decorrelation time τc
as a function of sampling time ∆t for the ocean temperature (black
circles) and for ensembles of synthetic realizations of three differ-
ent stochastic processes: An OU process (cyan) in panel (a), and
fGns (red) and fBms (green) in panel (b). The synthetic processes
are generated with parameters estimated from the observed record
by the MLE method, and the colored areas are the 95% confidence
regions for these estimates. The gray area in panel (a) is the con-
fidence region for τc for a white noise process. Panels (c) and (d)
show the decorrelation time of the linearly detrended ocean temper-
ature and for the synthetic realizations of the processes generated
from the new null model; equation (4).

Monte Carlo simulations show that this estimate is indepen-
dent of ∆t, as long as ∆t < τc. However, if the process
is an fGn rather than an OU process, then the autocorrela-
tion function of the time series Tk is approximated well by
(β+ 1)β(k∆t)β−1, and hence the lag-one autocorrelation is

φ(∆t) ≈ (β+ 1)β∆tβ−1 .

If τc is defined via τc = ∆t/(− logφ(∆t)), then

τc =
∆t

− log(β+ 1)β− (β− 1) log∆t
.

This shows that OU processes and fGns can be distinguished
by how an estimator of the correlation length depends on the
sampling rate for the time series: For an OU process the esti-
mate of τc is independent of ∆t as long as ∆t < τc, and for
fGns the estimates of τc grow with ∆t. In Figures 7 and 8
we have plotted the estimates of τc according to equation (5)
for ocean and land temperatures respectively, with and with-
out linear detrending. For the land temperature, full detrend-
ing (removing the trend (3)) is also included. The estimates
are shown as the circular plot markers in the figures. There
is a clear increase in the τc estimate as ∆t varies from 1 to
30 months. We have compared the results with Monte Carlo
simulation of a white noise process, OU processes, fGns and
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Fig. 8. Panels (a) and (b) show the estimated decorrelation time τc
as a function of sampling time ∆t for the land temperature (black
circles) and for ensembles of synthetic realizations of three different
stochastic processes: An OU process (cyan) in panel (a), and fGns
(red) in panel (b). The synthetic processes are generated with pa-
rameters estimated from the observed record by the MLE method,
and the colored areas are the 95% confidence regions for these es-
timates. The gray area in panel (a) is the confidence region for τc
from a white noise process. Panels (c) and (d) show the decorre-
lation time of the linearly detrended land temperature and for the
synthetic realizations of the processes generated from the new null
model; equation (4). Panels (e) and (f) show the decorrelation time
of the land temperature after removing the full trend; equation (3),
and for the synthetic realizations of the processes generated from
the detrended record by the MLE method.

fBms. Here the synthetic temperature series are constructed
using parameters obtained by MLE. For the ocean tempera-
ture without detrending the test shows that the data is most
consistent with a nonstationary fBm, and after linear detrend-
ing it is more consistent with an fGn than with an OU pro-
cess. For the land temperature we observe that neither of the
processes fit the data unless we perform a detrending, and
for the detrended data there are only small differences be-
tween a white noise process, an OU process and the fGn with
β = 0.54. The reason for this is that the ML estimate of τc is
so small (close to the monthly time resolution of the tempera-
ture record) that the model OU process is effectively reduced
to a white noise on all resolved time scales. The white noise
process is a special case of an fGn, so the fGn class of pro-
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cesses is clearly preferred in this case as well, although the
test presented here is not suitable for estimating the β expo-
nent. There are other tests that are better suited for accurate
estimation of β, and if we apply these we will see that a per-
sistent process (β > 0) is a better model for detrended land
temperatures than white noise (β = 0) (Rypdal et al., 2013).

The model selection test we have described here illustrates
the important point that if one decides to model global tem-
perature fluctuations as OU processes, then the choice of op-
timal model depends strongly on the time resolution of the
time series. The same is not true for fGns and fBms, and this
reflects the fact that global temperature data to a good ap-
proximation are scale invariant.

The method presented here can be seen as a generalization
of the method presented by Vyushin et al. (2012), who at-
tempt to distinguish between scale-free processes and AR(1)
processes by considering estimates of φ(∆t) for two different
time resolutions ∆t (monthly and annual). However, our re-
sults show that this test fails if the estimated τc is less than
a year, which turns out to be the case for the land record.
Vyushin et al. (2012) analyze a large number of local and
regional time series and find that some are consistent with
fGns, other with AR(1)s, but most are inconsistent with both.
It is reasonable to expect that many of these records are in the
category for which the test fails.

4 Conclusions

In this paper we have attempted to classify the various pos-
sible ways to understand the notion of a trend in the climate
context, and then we have focused on the detection of a com-
bination of a rising and oscillatory trend in global ocean and
land instrumental data when no information about the climate
forcing is used. It is well known that the statistical signifi-
cance of the trends depends on the degree of autocorrelation
(memory) assumed for the random noise component of the
climate record (Cohn and Lins, 2005; Rybski et al., 2006,
2009). It is also known that the linear trends are easier to de-
tect and appear to be more significant in global than in local
data (Lennartz and Bunde, 2009), although local records ex-
hibit weaker long-term persistence than global records. De-
spite this fact, much effort is spent on establishing trends and
their significance in data from local stations (e.g., Franzke,
2012b) with variable results. The failure of detecting con-
sistent trends in local data records reflects the tendency of
internal spatiotemporal variability to mask the trend that sig-
nals global warming, and we believe therefore that investi-
gation of such trends should be performed on globally aver-
aged data. For global data records our study demonstrates
very clearly that the long-range memory observed in sea-
surface temperature data leads to lower significance of de-
tected trends compared to land data. This does not mean,
of course, that the global warming signal and internal os-
cillations are not present in all of those records. It is just

not possible to establish the statistical significance of these
trends from these records alone, since the large short-range
weather noise in local temperatures and the slower fluctua-
tions in ocean temperature both reduce the possibilities of
trend detection. Hence, one needs to search for the optimal
climate record to analyze for detection of the global warming
signal, and our results suggest that the global land tempera-
ture signal may be the best candidate for such trend studies.

While a linear trend is only marginally significant under
the long-range memory null hypothesis in ocean data, it is
clearly significant in land data. Hence, there should be no
doubt about the significance of a global warming signal over
the last 160 years even under null hypotheses presuming
strong long-range persistence of the climate noise.

Assessment of the statistical significance of a linear trend
is of course not the only way to detect the global warming
signal in temperature records. An alternative hypothesis in
the form of a second- or third-order polynomial trend would
give a more precise, but more technically complex assess-
ment. Other approaches are not based on trend estimates at
all. Some methods compare spatiotemporal observations to
patterns of natural variability obtained from global climate
models. These patterns represent the null model, and the de-
tection is typically performed through “fingerprint methods”
rather than using just single observable such as the global
temperature (Hasselmann, 1993; Hegerl, 1996). The validity
of the method depends, of course, on the assumption that the
climate model correctly describes the relevant aspects of the
pattern of natural variability, e.g., the long-range correlation
structure in space and time. This is not an obvious assump-
tion, since there are significant differences between climate
models in this respect (Govindan et al., 2001; Blender and
Fraedrich, 2003).

Other methods are based on null models like those con-
sidered in the present paper, but rather than estimating trends
one estimates the probability of observing the recent cluster-
ing of record-breaking temperatures at the end of the instru-
mental record (Zorita et al., 2008). The method is concep-
tually and technically simpler than the trend assessment, but
it depends crucially on the assumption that the null model
is strictly true on the shortest inter-annual time scales, since
it assumes that the probability of variation from one year to
the next is determined by this model. In contrast, the trend as-
sessment emphasizes the properties of the null model on time
scales up to a century, so it rather assumes the null model
is strictly true on multi-decadal to century scales. The two
approaches are complementary, but we believe the trend ap-
proach is better designed to detect the smooth, monotonic
global warming signal, since it will be insensitive to particu-
lar interannual to decadal variability such as ENSO, or vari-
ability due to forcing from clusters of volcanic eruptions or
solar-cycle variations. The elimination of these variabilities
may be important for detection of the anthropogenic trend,
as was shown by multiple regression techniques by Foster
and Rahmstorf (2011) and Lean and Rind (2009). Moreover,
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in the approach of Zorita et al. (2008) inclusion of the 70 yr
oscillation in the null model would lead to enhanced proba-
bility of clustering of record-breaking temperatures at the end
of the twentieth century, and hence a reduction of the signifi-
cance of the warming signal. These are examples illustrating
that one may arrive at misleading results without careful se-
lection of the alternative as well as null models based on the
data at hand and existing knowledge. In a Bayesian frame-
work this is obvious.

Our initial analysis leaves some doubt about the signifi-
cance of the 70 yr oscillatory mode in the global signal, as
shown in Figure 4d and 4f and Figure 5d. By means of a
Bayesian iteration, however, utilizing the established signif-
icance of a linear trend to formulate a constrained null hy-
pothesis, we are able to establish statistical significance of
the oscillatory trend in the land data record. We believe this
is an important result, because it means that we cannot dis-
miss this oscillation as a spontaneous random fluctuation in
the climate noise background. By the analysis presented here
we cannot decide whether this oscillation is an internal mode
in the climate system or an oscillation forced by some exter-
nal influence. Such insights can be obtained from a general-
ization of the response model of Rypdal and Rypdal (2013)
by employing information about the climate forcing, and will
be the subject of a forthcoming paper. There are various pub-
lished hypotheses about the nature of this oscillation. The
least controversial is that this is a global manifestation of
the Atlantic Multidecadal Oscillation (AMO) which is essen-
tially an internal climate mode (Schlesinger and Ramankutty,
1994). Some authors go further and suggest that this oscilla-
tion is synchronized and phase locked with some astronomi-
cal influence (Scafetta, 2011, 2012). Although some of these
suggestions seem very speculative, there are some quite well-
documented connections between periodic tidal effects on
the Sun from the motion of the giant planets and radioisotope
paleorecord proxies for solar activity on century and millen-
nium time scales (Abreu et al., 2012). So far there exists no
solid evidence that these, and multidecadal, variations in so-
lar activity have a strong influence on terrestrial climate, but
the issue will probably be in the frontline of research on nat-
ural climate variability in the time to come. The work pre-
sented here cannot shed light on the physical cause of this
oscillation, but it presents evidence that it is a phenomenon
that stands out from the long-memory background of random
temperature fluctuations. Its importance for our assessment
of anthropogenic global warming is obvious from the obser-
vation that the oscillation seems to peak at the turn of the
millennium and hence provides a possible explanation of the
current hiatus in global temperature.
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