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Abstract

Long-range memory (LRM) has been found in numerous natural data records, both in geophysics
and other fields. In this thesis LRM in surface temperature time series is studied. Short-range
memory (SRM) models, especially the first order auto-regressive model AR(1), have been widely
used to describe geophysical data, and in the more recent years, SRM and LRM models have been
compared. SRM is therefore also included in this thesis.

Trends are important in climate studies, but the trend definition is ambiguous. Two different
approaches are included here: the trend described as a function with parameters estimated from
the data, and a response model to external forcing. The most commonly used trend function is
the linear trend, often used as a measure of anthropogenic effects on global warming. This ap-
proach is illustrated by the application to a local instrumental temperature record from Cheyenne
(Wyoming, USA). The significance of the trend is dependent on the noise model assumed to
describe the data, and here AR(1) and fractional Gaussian noise (fGn) are used. In the example
of the Cheyenne record, the trend could not be explained as natural variations in any of the two
models. Since the forcing data available are global, the response model is applied to global land
temperature, with AR(1) and fGn used as models for the stochastic response.

Some methods for investigating SRM and LRM are described, and the Cheyenne record used
as an example of applications, showing how a linear trend affects the analysis. In this section,
comparison of SRM and LRM is also included, and applied to local temperature records from
Cheyenne and Prague (the Czech Republic) and the Niño3 index (area averaged sea surface tem-
perature over Niño region 3) to find which model best describes the data. The results suggest that
temperature is best described as an fGn on large time scales. The Niño3 index is not perfectly
described by any of the noise models, but AR(1) is a better statistical model than fGn. Appli-
cation to the response model approach shows that fGn is a far better model than AR(1) for the
stochastic response in the case of the global land temperature.

The thesis also includes a literature review. In the scientific literature mostly local temperature
records have been analysed with regards to LRM. Global and hemispheric temperature means
are far less studied, so this has been our main focus. In Paper I, the LRM properties of local and
global instrumental records and a Northern Hemisphere temperature record were studied after
detrending with different polynomial trend models. LRM was found on a wide range of time
scales, but different trend models were needed for the different records to yield the best scaling
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properties. Proper error bars for LRM scaling exponents were an important part of this study and
represents improvement of previous work. In Paper II, the significance of trends in global ocean
and land temperature was investigated under three null models for noise, i.e., AR(1), fGn and
fBm. A linear trend was clearly significant in the land temperature, and incorporating this in the
null model showed that an oscillation also stands out from the natural variations that could be
explained by the noise models. The significance of trends was not so apparent for the ocean tem-
perature, but an AR(1) noise model could be rejected. Temperature from different climate model
experiments was studied in Paper III, including control runs and experiments with full dynamic
forcing. Two temperature reconstructions were also analysed for comparison with the simulated
temperatures. Scaling properties in agreement with persistent LRM noise was found for a wide
range of scales for most of the simulated temperatures. The temperature from the control runs
and the runs with dynamic forcing showed similar scaling exponents. Only the HadCM3 con-
trol run differed from the other climate model experiments, yielding a temperature with a clear
cross-over from a motion to a persistent noise.

The overall conclusion that can be drawn from the present work is that long-range persistence on
time scales from years to centuries is ubiquitous in observed Earth surface temperature records,
and that similar persistence is present in the most advanced climate models to date. This per-
sistence weakens the significance of observed temperature trends, but not enough to render the
rising temperature trends throughout the last century statistically insignificant.
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Chapter 1

Introduction

1.1 Motivation

The first studies of long-range memory (LRM) include Hurst (1951), who studied the hydrol-
ogy of the Nile river. Hurst et al. (1965) developed the rescaled range (R/S) analysis where
the scaling parameter H, known as the Hurst exponent, was found through a power-law relation
R
S =

(T
2

)H . T is the time scale, R is the range and S is the standard deviation during this time.
This power-law relation was first found in river flow, but also in lake levels, thicknesses of tree
rings and varves, atmospheric temperature and pressure, and sunspot numbers. Mandelbrot and
Wallis (1969) suggested adjustments to the (R/S) analysis with applications to a large number of
geophysical data, discarding some of the values for the scaling exponent obtained by Hurst et al.
(1965), but confirming the presence of LRM. Since then, various methods have been developed
to investigate scaling properties and estimate a scaling parameter. Many studies focus on the per-
formance of the methods when applied to processes which are known to be scale invariant with a
known scaling exponent (Heneghan and McDarby, 2000, Weron, 2002, Delignieres et al., 2006,
Mielniczuk and Wojdyłło, 2007, Franzke et al., 2012). Geophysical time records, however, often
exhibit deviations from pure scale-invariance which influence the estimation of the scaling pa-
rameter. Trend estimation and detrending have therefore become important in LRM studies. The
time series is then modelled as a trend superposed on an LRM noise process, but inherent in such
modelling are ambiguities concerning how to separate the trend and the noise. The statistical
significance of the trend depends on how one models the noise process against which the trend
is tested, as some noise processes naturally have slow variations which may be falsely regarded
as trends, while others do not. The separation of the trend from the noise is an issue that needs
to be resolved, and one needs to clarify whether time series which appear to have long-range
memory really do so, or if they can be better described as time series with short-range memory
with superposed trends.

A number of studies suggest that atmospheric temperature have long-range memory, and a review
of these is given in Chapter 5. Although there is increasing evidence of the presence of LRM
in such time series, a precise physical explanation of the phenomenon has been elusive. Studies
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2 CHAPTER 1. INTRODUCTION

of instrumental data indicate that sea surface temperature is more persistent than air tempera-
ture over land (Pelletier, 1997, Eichner et al., 2003, Monetti et al., 2003, Lennartz and Bunde,
2009), so ocean dynamics seem to be an important component. Spatial averaging also influences
the persistence, as temperature averages over larger regions are more persistent than local data
(Lennartz and Bunde, 2009). Some studies also indicate that persistence is large close to the
equator, and is reduced with location closer to the poles (e.g., Pattantyús-Ábrahám et al., 2004,
Huybers and Curry, 2006, Vyushin and Kushner, 2009). There are some studies of temperature
from model experiments that suggest that several types of dynamic forcing must be included to
find scaling exponents in agreement with those from instrumental records. Dynamic CO2 forcing
alone is not enough, but adding dynamic solar and volcanic forcing has been claimed to be nec-
essary to produce scaling properties in better agreement with those of observed records (Vyushin
et al., 2004, Rybski et al., 2008). There are also indications that in some data records the scaling
properties may differ in different regimes of time scales (Pelletier, 1997), suggesting that differ-
ent physics govern the different regimes. The goal of the present thesis is to shed light on some
of these issues.

1.2 Thesis Outline

This thesis is organized as follows: Chapter 2 provides a brief introduction to the concepts of
short- and long-range memory. Trend estimation is a major issue in climate science, and involves
analysis of time series with short-range and long-range memory. The approaches used here are
described in Chapter 3. Chapter 4 explains methods for estimating parameters for different noise
processes. A wide range of methods is used in the literature regarding LRM, and there are
also several methods for analysing SRD series. In addition there are variations of some of the
methods. The methods described in Chapter 4 are limited to the methods used in this thesis.
A literature review is given in Chapter 5. The papers are summarized in Chapter 6, and some
concluding remarks are given in Chapter 7.

1.3 List of Publications

Papers

Paper I

Rypdal, R., L. Østvand, and M. Rypdal, Long-range memory in Earth’s surface tempera-
ture on time scales from months to centuries. J. Geophys Res. Atmos., 118, 7046-7062,
doi:10.1002/jgrd.50399, 2013.

Paper II

Østvand, L., R. Rypdal, and M. Rypdal, Statistical significance of rising and oscillatory trends
in global ocean and land temperature in the past 160 years. Submitted to Earth System
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Dynamics Discussions, 2014.

Paper III

Østvand, L., T. Nilsen, R. Rypdal, D. Divine, and M. Rypdal, Long-Range Memory in Millennium-
Long ESM and AOGCM Experiments. Submitted to Earth System Dynamics Discussions,
2014.

Other Publications and Presentations

As first author

Østvand, L., T. Nilsen, K. Rypdal, and M. Rypdal, Long range memory and trends in model
data. Poster presentation at American Geosciences Union Fall Meeting, San Francisco, Decem-
ber, 2013.

Østvand, L., M. Rypdal, and K. Rypdal, The performance of wavelet-variance analysis as
a method for estimating long-range memory in climatic temperature record. Poster presen-
tation at European Geosciences Union General Assembly, Vienna, April, 2013.

Østvand, L., O. Løvsletten, M. Rypdal, and K. Rypdal, Maximum Likelihood Estimates of
trend- and memory-coefficients in climatic time series. Poster presentation at European Geo-
sciences Union General Assembly, Vienna, April, 2012.

Østvand, L., O. Løvsletten, M. Rypdal, and K. Rypdal, Maximum Likelihood Estimates of
trend- and memory-coefficients in climatic time series. Oral presentation at Workshop on
Complexity and Climates, Tromsø, March, 2012.

Østvand, L., K. Rypdal, and M. Rypdal, Universal Hurst exponent of local an global Earth
temperature records?. Poster presentation at European Geosciences Union General Assembly,
Vienna, April, 2011.

As co-author

Rypdal, M., K. Rypdal, L. Østvand, and O. Løvsletten, Stochastic modelling of global temper-
ature. Oral presentation at Workshop on Complexity and Climates, Tromsø, March, 2012.

Zivkovic, T, L. Østvand and K. Rypdal , On the connection between the multifractality and
the predictability from the auroral index time series. Poster presentation at 24rd Summer
School and International Symposium on the Physics of Ionized Gases, Novi Sad, Serbia, Au-
gust 2008. Published in Publications of the Astronomical Observatory of Belgrade, 84, 511-514,
2008.
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Chapter 2

Short- and Long-Range Memory

2.1 Short-Range Memory

Although the main theme in this thesis is long-range memory, a brief discussion of short-range
memory cannot be avoided. SRM processes have been widely used to model climate series, and
in the more recent years both SRD and LRD processes have been used for statistical modelling
of climate time series (Percival et al., 2001, Zorita et al., 2008, Vyushin et al., 2012). SRD
processes are characterized by an autocorrelation function (ACF), ρ(t), for which the integral∫

∞

0 ρ(t)dt is finite. One of the simplest and most commonly used SRD processes is the first order
auto-regressive process AR(1), given by (e.g., Box and Jenkins, 1970)

x(t) = φx(t−1)+σw(t), t = 1,2, . . . , (2.1)

where w(t) is a discrete Gaussian white noise process of unit variance. AR(1) is part of the wider
AR(p) family,

x(t) =
p

∑
l=1

φlx(t− l)+σw(t). (2.2)

AR(p) has an autocorrelation function

ρ(k) =
p

∑
l=1

φlρ(l− k), (2.3)

and power spectral density (PSD)

S( f ) =
σ2

x

|1−∑
p
l=1 φl exp(−2πil f )|2 , (2.4)

where f is the frequency. The PSD is defined in the interval−1/2 < f < 1/2. For AR(1), the ACF
and PSD becomes

ρ(k) = φ
|k|, (2.5)
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6 CHAPTER 2. SHORT- AND LONG-RANGE MEMORY

S( f ) =
σ2

x
1+φ2−2φcos(2π f )

. (2.6)

The ACF can be written as an exponentially decaying function,

ρ(k) = φ
|k|

= exp(logφ
|k|) = exp(−|k|/τc).

The decorrelation time τc is then determined by φ through

τc =−
1

logφ
. (2.7)

If φ≈ 1, τc ≈ 1
1−φ

. If 2π f � 1 and φ≈ 1, then

S( f )∼ 1
1+φ2−2φ(1− (2π f )2/2)

∼ 1
(1−φ)2 +φ(2π f )2

∼ 1
τ
−2
c +(2π f )2

.

The spectrum has the form of a Lorenzian, showing that the process behaves as Brownian motion
with β = 2 on scales t < τc and as white noise on scales t > τc.

AR(1) is the discrete equivalent of an Ornstein-Uhlenbeck process, which is the solution of
the Langevin stochastic equation:

dx(t)+
1
τc

x(t)dt = σdB(t), (2.8)

where B(t) is the Wiener process (Brownian motion).
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2.2 Long-Range Memory

For stationary processes, long-range memory (LRM) is characterized by a slowly decaying au-
tocorrelation function, ρ(t)∼ t−γ as t→ ∞, with 0≤ γ < 1. In this range of γ we have that∫

∞

0
ρ(t)dt = ∞. (2.9)

Equivalently, the power spectral density (PSD) of a long-range memory time series follows a
power law,

S( f )∼ f−β. (2.10)

As different methods for studying the phenomenon have been introduced, so are different scaling
parameters. The Hurst exponent H, after Hurst (1951), is widely used, and so is the power
spectral density parameter β. The relation between the parameters is

H = 1− γ

2
=

β+1
2

. (2.11)

The LRM ranges corresponding to stationary processes for H and β are 1/2<H ≤ 1 and 0 < β≤ 1.
Nonstationary self-similar processes (with stationary increments) are characterized by 1< β≤ 3.
LRM time series are often called persistent processes. Stationary processes for which−1< β< 0
are anti-persistent, while β = 0 represents a completely random process (white noise).

Two generic processes with LRM properties are fractional Gaussian noise (fGn) and fractional
auto-regressive integrated moving average (FARIMA). An fGn can be cumulatively summed
to yield a fractional Brownian motion (fBm), commonly denoted BH(t), where H is the Hurst
exponent for the increments. An fBm, BH(t), exhibits the properties (i)-(iv):

(i) BH(t) is Gaussian.

(ii) BH(0) = 0 almost surely.

(iii) E[BH(t)−BH(s)] = 0.

(iv) var[BH(t)−BH(s)] = σ2|t− s|2H .

An fBm is self-similar, i.e., BH(at) d
=aHBH(t), where d

= means equal in distribution. Using this
property, it can be shown that an fGn has the following autocorrelation function,

ρ(k) =
1
2

σ[(k+1)2H−2k2H +(k−1)2H ]. (2.12)

The asymptotic behaviour follows by Taylor expansion, where ρ(k) is first rewritten:

ρ(k) =
1
2

σk2Hg(k−1), g(x) = (1+ x)2H−2+(1− x)2H
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g(x) = g(0)+g′(0)x+g′′(0)x2 +O(x3)

= 4H(2H−1)x2 +O(x3).

Then

lim
k→∞

ρ(k) = 2H(2H−1)σk2H−2 ∼ k−γ, (2.13)

explaining the relation H = 1− γ/2 in eq. (2.11).

An ARMA(p,q) model is the stationary solution of

φ(B)x(t) = ψ(B)w(t), (2.14)

where B is the backshift operator Bx(t) = x(t−1) and w(t) is Gaussian white noise. φ and ψ are
given by

φ(x) = 1−
p

∑
j=1

φ jx j and

ψ(x) = 1+
q

∑
j=1

ψ jx j.

A FARIMA(p,d,q) process is an ARMA(p,q) process which holds for the dth difference (1−B)dXt ,

φ(B)(1−B)dXt = ψ(B)w(t). (2.15)

(1−B)d can be defined for any real number d by

(1−B)d =
∞

∑
k=0

(
d
k

)
(−1)kBk. (2.16)

The FARIMA(0,d,0) process, where d = H− 1/2, is often preferred due to its simple autocorre-
lation function,

ρ(k) = σ
Γ(1−d)Γ(k+d)
Γ(d)Γ(k+1−d)

, (2.17)

where Γ is the gamma function. Similar to an fGn, this process is stationary for −1/2 < d < 1/2

(Beran, 1994).



Chapter 3

Trends

3.1 Trends and noise

In climate studies, it is common to separate the time series into a trend component and a ran-
dom component, often called the “climate noise”. The notion of climate noise may be slightly
misleading in climate studies, since the noise contains interesting information about the climate
system. Another source of confusion is that the trend definition is ambiguous. In some studies,
the trend refers to a linear increase or decrease, while in others it is the slow variation of the
observed record. This slow variation is often characterized through a function which may be,
e.g., a polynomial, an oscillation or a combination of both.

The simplest and most commonly used noise model is white noise, which is completely uncor-
related. Correlated noise may be a short-range memory (SRM) process or long-range memory
(LRM) process. Common examples are AR(1) (SRM, Section 2.1) and fGn (LRM, Section 2.2).
When a model for the trend has been selected, the trend could be subtracted from the record, and
the correlation structure of the residual studied. Different methods may be applied to estimate
parameters for the noise model. For an LRM model these parameters could be the scaling param-
eter β and standard deviation σ. Some methods have detrending incorporated in the estimator for
the scaling parameter, e.g., DFA which removes polynomial trends. If a polynomial trend model
is chosen, prior detrending is unnecessary using this estimator. However, the residual may not
be completely described by a simple noise model. Hence, to to call it a noise may therefore be
misleading, and the broad term residual is preferred.

Detrending is important, because trends may influence both the estimation of noise parame-
ters and scaling properties of the time series. However, too much detrending or choosing a poor
trend model may also generate spurious correlations in the residual. The significance of trends
is therefore assessed more convincingly by exploring different noise models and search for a
combination of trend and noise where the trend represents a good fit to the slow variations of
the record and the noise model represents a good description of the statistical properties of the
residual. Generally, noise models with no or only short-range memory do not exhibit strong slow
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10 CHAPTER 3. TRENDS

variations, while persistent long-range memory processes do.

3.2 Trend estimation

A trend model is based on the hypothesis that observed record can be modelled as a realization
of a stochastic process of the form

x(t) = T (A; t)+σw(t), (3.1)

where T (A; t) is the trend model with parameters A = (A1, . . . ,Am) and σw(t) is some noise
process. The model in eq. (3.1), with parameters A estimated from the observed record, is the
hypothesis whose significance we will test, and is denoted the alternative hypothesis. If our
trend model is properly selected, it captures a great fraction of the variance of the record, and
hence the noise part has a small variance. In that case a maximum likelihood estimation of the
trend parameters A under different noise models (white or “coloured”) will yield results similar
to what is found by a least-square fit. For the estimation of trend parameters it does not matter
much what the correct model for the climate noise is. We shall see, however, that it matters a lot
when we formulate the null hypothesis against which the trend model is tested.

Some typical trend models are:

T (a0,a1; t) = a0 +a1t linear trend

T (a; t) =
m

∑
k=0

aktk polynomial trend

T (A,ω,ϕ; t) = Asin(ωt +ϕ) oscillatory trend

T (a,A,ω,ϕ; t) =
m

∑
k=0

aktk +Asin(ωt +ϕ) combination of polynomial and oscillatory trend

(3.2)

An aid in formulating the alternative hypothesis could be to do a low-pass filtering to capture the
slow variations, and denote this the “trend”. This can be done through, e.g., Fourier analysis,
wavelet analysis or principal component analysis. Everything in the record not captured by the
trend is called noise or residual from the trend, and is typically considered to be the fast variation
in the record. One should keep in mind that the trend model is of interest only if it reflects some
hypothesized physical reality, e.g., a rising trend due to anthropogenic forcing and/or a distinct
oscillation of natural origin that stands out of the background climate noise continuum.

In the null model, all the slow variability of the observed record is assumed to be captured
by a particular noise model ε(θ; t). Here θ = (θ1, . . . ,θn) are the parameters which characterize
this noise process. Monte Carlo studies can be made to assess the probability that the estimated
trend may be explained as a natural fluctuation produced by the null model. The work flow is as
follows:
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(i) Select a trend model and a null model.

(ii) Estimate the parameters of both models from the observed record.

(iii) Construct a Monte Carlo ensemble of realizations of the null model noises with the esti-
mated noise parameters.

(iv) Estimate “pseudotrend” parameters for each realization by fitting the trend model to each
realization, and estimate a probability distribution for these parameters.

(v) Test statistical significance of the trend by observing whether the observed trend parameters
are outside the 95 percentile of the pseudotrend distribution. If they are, the null hypothesis
is rejected and the trend is significant. If they are not, the trend is deemed insignificant.

If the null hypothesis is rejected, a new null model is formed where the trend is included, i.e.,
x(t) = T (A; t)+ ε(θ; t). The new null model can then be tested against new alternative models,
until a model that describes the record in a satisfactory way is found, as shown in Figure 3.1.

Test trend 

significance 

Null model 

Reject: 

Adjust null mod. 
Accept 

Figure 3.1: Flowchart of hypothesis testing

In Paper II we consider SRM as well as LRM null models. This does not imply that any null
model is appropriate for a given data set. A proper null model should be consistent with the cor-
relation structure of the observed data record. For instance, if the null model is an LRM noise,
a correlation measure derived from the record should be consistent with an LRM model, and
inconsistent with an SRM model. Methods for selecting the proper null model are discussed in
Chapter 4.
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Example
Figure 3.2 illustrates fitting a linear trend to monthly temperature at Cheyenne, Wyoming, USA
(Brohan et al., 2006, Jones and Moberg, 2003). The temperature is the anomaly from the temper-
ature mean from 1961 to 1990. This record was chosen because it is one of the local continental
time series with the longest record without any missing data. It covers the period 1871-2010 AD,
and thus consists of 1680 data points. Cumulative distribution functions (CDFs) for the slope of
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Figure 3.2: Temperature anomaly at Cheyenne. The red line is the linear trend fitted to the record.
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Figure 3.3: Significance of trends under (a) AR(1) null hypothesis and (b) fGn null hypothesis. Ensem-
bles of synthetic noises are produced with the same parameters as those estimated under each
hypothesis by maximum likelihood estimation (MLE). The pseudotrend parameters are then
estimated by least-square fitting to each realization, and the CDF for the slope parameter is
found. The dashed line marks the 95 percentile for the CDF and the solid line marks the trend
slope found for the observed temperature.

the linear trend are found by generating ensembles of realizations of AR(1) and fGn processes
with parameters found by maximum likelihood estimation (MLE) from the temperature record.
This means that the parameters (φ,σ) are estimated from the AR(1) model and (β,σ) from the
fGn model. The pseudotrend parameters are then estimated by least-square fitting to each real-
ization, and the CDF for the slope parameter is found, as shown in Figure 3.3. The CDF for the
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synthetic AR(1) is narrower than that for the fGn, which is expected since long-range correla-
tions may produce more slow variations in the synthetic realizations. The dashed line in each
figure indicates the 95% confidence and the solid line is the slope estimated from the temperature
record. The trend is found to be significant for AR(1) as well as fGn noise models. Which noise
process that best describes the noise is discussed in Chapter 4.

3.3 Response Model

A different approach is to consider a linear response model of the surface temperature which
incorporates deterministic and stochastic forcing. The deterministic forcing describes known,
external climate forcing components and the stochastic forcing represents the internal dynamics
on unresolved spatiotemporal scales. The response to the deterministic forcing is the counterpart
of the trend in the trend models, but differs from this in the sense that the deterministic forcing can
contain both fast and slow variations. In the trend models the fast, forced variations are relegated
to the residual noise, whereas the response model is capable of separating this fast response from
the internal, stochastic variability driven by the stochastic forcing. The separation of externally
driven from internal, natural variability is one of the central problems in climate science. The
starting point for this approach is the linearized energy-balance equation (e.g., Hansen et al.,
2011, Rypdal, 2012),

dQ(t)
dt

+
1

Seq
T (t) = F(t). (3.3)

Q is the total energy content of the climate system, and F and T are perturbations of radia-
tive influx and surface temperature relative to a reference state in radiative equilibrium. Seq is
the climate sensitivity. Using the effective heat capacity C (dQ = CdT ) and the time constant
τc =CSeq, this can be rewritten to

LT (t)≡C
(

d
dt

+
1
τc

)
T (t) = F(t), (3.4)

where the linear operator L has the Green’s function G(t) = C−1 exp(−t/τc). The solution of
eq. (3.4) is the deterministic response to the forcing,

T (t) =
∫ t

−∞

G(t− s)F(s)ds. (3.5)

An equilibrium reference state is defined such that T is the temperature relative to the initial tem-
perature T̂0, i.e., T = T̂ − T̂0. The forcing F(0) at t = 0 is not necessarily 0, and also usually not
known a priori. The forcing data is given as F(t) = F(0)+FG(t), where FG(t) is the total “given”
forcing and F(0) is one of the parameters to be estimated. A perfect match to the observed record
cannot be obtained because the forcing should also have a stochastic component corresponding
to the random forcing of the ocean-land heat content from the atmospheric weather system. This
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can be introduced by rewriting eq. (3.5) to

T (t) =
∫ t

−∞

G(t− s)F(s)ds
︸ ︷︷ ︸

deterministic response

+σ

∫ t

−∞

G(t− s)dB(s)
︸ ︷︷ ︸

stochastic response

, (3.6)

where B(t) is the Wiener process. The stochastic response yields an Ornstein-Uhlenbeck pro-
cess, corresponding in the discrete case to an AR(1). The linear operator can be replaced with a
fractional derivative operator to obtain a scale-free response model with a Green’s function with
a power-law, G(t) = (t/µ)β/2−1ξ, where µ is a scaling factor in the units of time characterizing
the strength of the response and ξ ≡ 1 Km2/J is a factor needed to give G(t) the right physical
dimension. The stochastic response will then be an fGn when −1 < β ≤ 1 and an fBm when
1 < β ≤ 3. The σ in eq. (3.6) is the standard deviation of the noise process. Different Green’s
functions can be used, and the correlation structure of the residual from the deterministic re-
sponse can be analysed by methods (e.g. DFA) that will distinguish LRM processes from SRM
processes (Rypdal and Rypdal, 2013). The parameters (F(0),C,σ,τc) for the exponential model,
and (F(0),µ,σ,β) for the scale-free model are estimated using MLE, as will be described in
Chapter 4.

Example
The forcing data available are global, so in the following example, global land temperature (Jones
et al., 2012) is used. Figure 3.4 shows the global land temperature record in black, and determin-
istic response in cyan and red using the exponential and scale-free response model respectively.
The two models yield quite similar deterministic responses, and it is not clear which one is the
better fit. The difference between the temperature and the deterministic response will therefore
be analysed further with the methods given in Chapter 4.
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Figure 3.4: Yearly averaged global land temperature (black), and deterministic response using the expo-
nential response model (cyan) and scale-free response model (red).



Chapter 4

Methods

4.1 Short-Range Memory

There are several methods for estimating the parameters φk in an AR(p) process. In our studies
we have limited the use of SRM processes to AR(1), and have used the following methods to
estimate φ.

Autocorrelation Function

For an AR(1) the autocorrelation function (ACF) is given by ρ(t) = φ|t|. This means that the
lag-one correlation ρ(t = 1) = φ. Although estimators of ACF are noisy and inaccurate, most of
them are unbiased and with low uncertainty for the smallest lag. For the purpose of comparing
AR(1) to fGn as models for a times series it works well enough for estimating φ.

Maximum Likelihood Estimation
In maximum likelihood estimation (MLE) the log-likelihood function of a process is optimized.
For AR(1) we can rewrite eq. (2.1);

δ(t) = x(t)−φx(t−1) = σw(t), (4.1)

and use δ(t) as input time series in the log-likelihood function of a white noise with standard
deviation σ, and then optimize with respect to (φ,σ).

A slightly different approach is to use the log-likelihood function of an Ornstein-Uhlenbeck
process,

logL(λ,σ) =− N +1
2

log(πσ
2)− x(0)2

σ2 −
1
2

N

∑
k=1

log(1− exp(−2λ∆)) (4.2)

−
N

∑
k=1

x(k)− exp(−λ∆)x(k−1))2

σ2(1− exp(−2λ∆)
, (4.3)

15
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Figure 4.1: Bias and error bars for ACF (red) and MLE (green).

where ∆ is the sampling rate, N is the length of the time series and λ = 1/τc =− logφ.

Figure 4.1 shows bias and error bars when applying the ACF method and MLE to estimate φ

in an AR(1) process. The two methods seem to perform very similar. They are unbiased, with
decreasing error bars as φ increases.

4.2 Long-Range Memory

The toolkit of methods to estimate scaling parameters for long-range memory includes rescaled
range R/S analysis, variations of the variogram, variations of spectral analysis, wavelet vari-
ance analysis (WVA), detrended fluctuation analysis (DFA) and maximum likelihood estimation
(MLE). MLE is in this case used to optimize the log-likelihood function of an LRM process,
e.g., an fGn with respect to the scaling parameter H. Only the methods used in this thesis are de-
scribed here. There are several studies comparing different estimators of LRM parameters (e.g.,
Heneghan and McDarby, 2000, Weron, 2002, Delignieres et al., 2006, Mielniczuk and Wojdyłło,
2007, Franzke et al., 2012). All methods have their advantages and disadvantages, and their per-
formance depends on the data at hand and the purpose of the analysis. Trends may be present,
generally leading to overestimation of the scaling parameter. Methods like DFA and WVA has
polynomial detrending incorporated, but are in some cases biased. Correct estimation also pre-
sumes choosing correct detrending order. If the order is to low, β is in general overestimated, but
choosing a high order leads to a smaller scaling regime. MLE is unbiased for most β and has the
smallest error bars, but depends on choosing the correct noise model and a good representation
of trends if they are present. MLE also tends to emphasize the short scales, which may be prob-
lematic, e.g., if several scaling regimes are present or there are trends affecting the short scales
to a large degree. The periodogram is noisy and does not include any detrending, but may give
good indications of whether scaling is at all present, whether there are several scaling regions
and whether there are oscillations in the investigated record. Application of several methods to
the same data sets therefore gives a clearer picture of scaling regimes, possible trends and the
value and uncertainty of the estimated scaling parameter.
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Semivariogram
The semivariogram (Matheron, 1963) is given by

γ[k] =
1

2(N− k)

N−k

∑
n=1

(y[n+ k]− y[n])2, (4.4)

where k is the time lag between two values of the cumulatively summed time series y[n] = ∑
n
i=1 x[i].

The semivariogram scales with k (Mandelbrot and Van Ness, 1968),

γ[k]∼ k2H (4.5)

Periodogram
The periodogram is a simple estimator for the power spectral density (PSD),

S( f ) =
2

N∆t
|X( f )|2, (4.6)

where X( f ) is the Fourier transform of the time series to be analysed, x(t). Since the PSD is
symmetric, the frequencies of interest is f = m/N, m = 1,2, . . .N/2. For these frequencies, a
self-affine time series scales as a power-law (e.g., Voss, 1986)

S( f )∼ f−β. (4.7)

To put equal emphasis on all scales, log-binning is often used before fitting a straight line to the
PSD in a log-log plot. The periodogram is known to have variance problems, but this is reduced
by the log-binning, and the scaling behaviour is still easily seen. The periodogram can be used
as a first analysis to look for power-law scaling. For an accurate estimate of β, other methods are
recommended.

Wavelet Variance Analysis
The wavelet transform was introduced by Grossmann and Morlet (1984). The continuous version
is given by

W (t,τ;x(t),Ψ(t)) =
∫

∞

−∞

x(t ′)
1√
τ

Ψ

(
t ′− t

τ

)
dt ′, (4.8)

i.e., the convolution between a time series x(t) and the wavelet Ψ(t). The mother wavelet Ψ(t)
and all rescaled versions of it must fulfil the criteria∫

∞

−∞

Ψ(t ′)dt ′ = 0. (4.9)

For self-similar time series, the variance F(τ) = ∑
N
t=1W (t,τ) scales as a power-law (Flandrin,

1992, Malamud and Turcotte, 1999).

F(τ)∼ τ
β. (4.10)
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(a)

(b)

8τ

t=4τ+1

Figure 4.2: The time series is covered by the wavelet (a) for only the last half of the time when the wavelet
is centred in t = 1 and (b) at all times when it is centred in t = 4τ+1.

The method is therefore known as the Wavelet Variance Analysis (WVA). Eq. (4.10) is also valid
for the discrete wavelet transform. Any wavelet can be used, but not all wavelets exist for both
the continuous and discrete transform. If trends are present in the time series to be analysed, it is
preferable with a wavelet with a high number of vanishing moments. For polynomial trends of
order p, the wavelet must have p+ 1 vanishing moments to detrend the data properly and give
the correct value for β (Abry and Veitch, 1998). In our studies we have used the nth derivative of
Gaussian wavelet,

(−1)n+1
√

Γ(n+ 1/2)

∂n

∂tn exp
(
−t2

2

)
, (4.11)

and use the notation WVAn to indicate which order of the wavelet that has been used. The num-
ber of vanishing moments corresponds to the order of the derivative.

When performing the wavelet transform, the times near the beginning and the end of the time
series will not be covered by the wavelet. This will influence the wavelet coefficients at these
times, and these are therefore deleted before computing the variance. The derivative of Gaussian
wavelet has a width 8τ, and the time series will not be completely covered by the wavelet until
t = 4τ+1, see figure 4.2.
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Detrended Fluctuation Analysis

The Detrended Fluctuation Analysis (DFA) (Peng et al., 1994, Kantelhardt et al., 2001) was
explicitly designed to remove polynomial trends. The method can be summarized in four steps.
First, the cumulative sum (the profile) is computed,

Y (i) =
i

∑
t=1

x(t)−〈x〉, (4.12)

where 〈x〉 denotes the mean. In the second step the profile is divided into Nτ = N/τ non-
overlapping segments of equal length τ. This is done starting both at the beginning and at the end
of the profile, so 2Nτ segments are obtained altogether. In the third step, an nth order polynomial
is computed and subtracted for each segment,

Yτ(i) = Y (i)− pν(i), (4.13)

where pν(i) is the polynomial fitted to the νth segment. The notation DFAn is used to indicate
the order of the polynomial. In the final step, the variance of each segment is computed,

F2(ν,τ) =
1
τ

τ

∑
i=1

Y 2
τ [(ν−1)τ+ i]. (4.14)

The fluctuation function is given by the square root of the average over all the segments,

F(τ) =

[
1

2Nτ

2Nτ

∑
ν=1

F2(ν,τ)

] 1
2

. (4.15)

The scaling exponent is defined by the relation

F(τ) ∝ τ
α. (4.16)

α corresponds to the Hurst exponent H when 0 < H < 1. DFA may also yield α > 1, and is
related to β through β = 2α− 1. For a time series with no trends, the detrending in the third
step is unnecessary, and the standard fluctuation analysis, FA, can be used. Then a simplified
definition of the variance for each segment, F2

FA(ν,τ) = [Y (ντ)−Y ((ν−1)τ)]2, replaces F2(ν,τ)
in eq. (4.15) (Bunde et al., 2001).

By definition the scales must be τ > n+ 2 (Kantelhardt et al., 2001). The effect of trends was
studied in Hu et al. (2001), where an upper limit of τ < N/10 for the scaling region was sug-
gested, where N is the record length. The practical implication is that scaling properties can only
be accurately assessed up to time scales one tenth of the time record analysed.



20 CHAPTER 4. METHODS

Maximum Likelihood Estimation
In Maximum Likelihood Estimation of the Hurst exponent H, a log-likelihood function using the
autocorrelations for the LRM process is optimized with respect to H. This function is given by

logL(µ,σ,H) =−1
2

log |CN(H)|− (2σ)−1S(µ,H)− (N/2) logσ, (4.17)

where S(µ,H) = (x− µ1)>[CN(H)]−1(x− µ1). x is the time series to be analysed expressed as
a column vector, and CN(H) is the correlation matrix (McLeod and Hipel, 1978). The autocor-
relations are given by eq. (2.12) for fGn and eq. (2.17) for FARIMA(0,d,0). The inversion of
CN(H) has a high computational cost, so the implementation of the MLE method was done by
using the R package FGN (McLeod et al., 2007), where the Durbin Levinson algorithm is used
to compute the log-likelihood function.

The advantage of WVA and DFA is that the methods can be applied to both stationary and non-
stationary time series, with scaling exponent in the range 0 < β < 3 (although for some β there
is a bias). One problem with both WVA and DFA is to find the best scaling regime to determine
the scaling parameter. LRM processes do not always scale well on the smallest scales, as LRM
defined by the asymptotic behaviour, but it is not straightforward to find when this behaviour
starts (Beran, 1994). Furthermore, the time series may include different scaling properties for
different scales, e.g., in the presence of trends or if the dynamics change with time. In DFA, this
is often seen as a clear cross-over at a certain scale. However, if the time series is short, the range
of scales available is small, and it may be hard to find the proper scaling regime.

For MLE, the problem of finding the proper scaling regime is shifted to selecting the most
proper model, both with regards to noise process and trends. Trends could be included in the
model such that trend coefficients for, e.g., a polynomial function is estimated together with H.
Then z = x−T, where T is the trend, is used instead of x in eq. (4.17). Observational data often
contain trends, but the nature of these is usually unknown. A model with few parameters may
not reproduce the observational data well. Using many parameters may fit the data better, but
introduces higher uncertainty with a higher number of parameters to be estimated. There is also a
chance of overfitting, and thus attributing properties of the noise to the trend. Another alternative
is to apply a response model, using z = x−GF instead of x in eq. (4.17), where G is the Green’s
function and F is the forcing described in Chapter 3.

Comparing LRM Methods
To compare the performance of the methods, we can produce ensembles of synthetic fGn and
fBm, and estimate β. The mean and 95% quantiles for each ensemble is computed, and shown
as dots and error bars respectively in Figure 4.3. If the mean of the estimated β corresponds
to the given β, there is no bias. Figure 4.3(a) shows bias and error bars for fGn/fBm analysed
with DFA2, WVA2 and MLE for an fGn, which are the methods we have used most frequently
to estimate β in our studies. DFA2 and WVA2 eliminate linear trends in the data. The MLE
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Figure 4.3: (a) Bias and error bars for DFA2 (red), WVA2 (blue) and MLE (green). (b) Bias and error
bars for MLE. fGn and fBm with different β analysed as fGn (red) and fBm (green). analysing
as fBm means that the increments are analysed as fGn and β̂ = β̂incr +2.

estimates of β are unbiased given that the correct noise model (fGn/fBm) is chosen, except when
the given β is close to 3. Both DFA2 and WVA2 have a negative bias when β→ 1+, and WVA2
has a similar bias when β→−1+ as well. DFA2 is slightly overestimating β in the same range.
Figure 4.3(b) illustrates the problem with choosing the wrong noise model when applying MLE.
In the method used here, the autocorrelation function of fGn is used in the estimation of β, shown
in red. This means that the estimation can only return β̂ in the range −1 < β̂ < 1, even when
the synthetic data set is a realization of an fBm with β in the range 1 < β < 3. The result of
such an estimation for synthetic records with 0 < β < 3 is shown as the red dots in Figure 4.3(b).
To provide correct estimated β̂ for synthetic fBms in the range 1 < β < 3, the record must be
differenced, and the method applied to the increments. The estimated β̂ is then β̂ = β̂incr+2. The
result of this approach is shown in green. When the correct noise model is used, the estimates
are unbiased. When fBm are analysed as fGn, β̂→ 1 as β increases, but smaller values are found
when β→ 1+. When the increments of fGns are studied, β̂→ 1 as β decreases, but larger values
are found when β→ 1−.

Example
The results of applying the semivariogram, periodogram, WVA, and DFA to the Cheyenne tem-
perature record are illustrated in Figure 4.4, and show that the methods cannot be applied uncrit-
ically. The semivariogram yields a higher value for β (β = 0.50) than the other methods. The
periodogram follows a fairly straight line corresponding to β = 0.22, but there are some devia-
tions at the lower frequencies. These are not included in the estimation of β, but would lead to a
higher estimate if they were. WVA and DFA are applied for order 1-4. For order 2-4 they both
yield β≈ 0.2, while WVA1 and DFA1 show higher estimates when all scales up to about 1/10 of
the record length are used. This is due to the influence of a trend, apparent as a change in scaling
regimes. In Figure 3.3(b) in Chapter 4, a linear trend was found to be clearly significant when
adopting an fGn null model. This typically leads to an overestimation of the scaling exponent if
not taken into account, and this is exactly what we observe. WVA1 and DFA1 do not detrend, but
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Figure 4.4: Temperature anomaly at Cheyenne analysed with (a) semivariogram, (b) periodogram, (c)
WVA of order 1-4 from top to bottom and (d) DFA of order 1-4 from top to bottom. The red
lines indicate the scaling range used to estimate β. The red circles in panel (b) are the result
of log-binning.

order 2 and above eliminate linear trends. Hu et al. (2001) described how the fluctuation function
of the noise is dominant on small scales and the fluctuation function of the trend is dominant on
large scales for DFA. The change in regimes is not very obvious for DFA1 for the temperature
at Cheyenne as the cross-over scale is fairly large. The effect is very visible for WVA1. If only
the smaller scales are used in the estimate of β, overestimation is not a problem. In Figure 4.5
the scales used to estimate β are chosen by eye. The estimated β corresponds better to the ones
found for the higher orders of WVA and DFA. There is, however, a problem not knowing at ex-
actly what scale the cross-over takes place, as the transition is not very sharp. Including too high
scales will make the estimate influenced by the trend, but only including the scales well below
the cross-over leads to a smaller scaling regime, potentially leading to poor statistics. Using order
2 of DFA and WVA, or performing linear detrending prior to applying the estimation method, is
therefore a safer choice. The higher orders of WVA do not follow a completely straight line. This
could be an effect of trends (e.g. higher order polynomials or oscillations), but some waves in the
wavelet variogram occur even for pure noises. WVA tends to enhance oscillations which appear
as statistical fluctuations in realizations of a persistent noise, especially on the large scales. As
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seen in Figure 4.3(a), WVA and DFA mostly have error bars of the same order, although DFA
does not have the problem with wavy structure. For pure noises, the waviness in WVA mostly
affects the error bars of the wavelet variance at each scale, and not so much the error bars of the
estimated β.
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Figure 4.5: Temperature anomaly at Cheyenne analysed with (a) WVA1 and (b) DFA1. The red lines
indicate the scaling region when all scales up to about 1/10 of the record length are used to
estimate β. The green lines show the scaling region when only the scales up to the assumed
cross-over scale where the trend becomes dominant are used.



24 CHAPTER 4. METHODS

4.3 Comparing Short-Range and Long-Range Memory Pro-
cesses

Selecting the correct null noise model is not straightforward, but one can select a few models
and compare their scaling properties with those of the observational data. We have chosen to
compare AR(1) and fGn/fBm, as these processes are widely used in the climate community. The
theoretical spectra are well known, given in eq. (2.6) for AR(1) and eq. (2.10) for power-law
scaling. WVA and DFA can also be used to distinguish between the two processes. In some
cases it is difficult to draw firm conclusions on what process best fits the data. One example
is local temperature records from continental interiors. These records show low persistence on
time scales from months to decades; hence if they are sampled with monthly or longer sampling
interval, they appear as white or very weakly persistent fractional noises. With higher sampling
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Figure 4.6: (a) WVA2 and (b) DFA2 applied to the temperature anomaly at Cheyenne (black crosses).
Ensembles are generated of synthetic realizations of two different stochastic processes: An
AR(1) process (cyan) and fGns (red). The synthetic processes are generated with parameters
estimated from the observed record by the MLE method, and the coloured areas are the 95%
confidence regions for these estimates. Panel (c) and (d) show WVA2 and DFA2 applied to
the linearly detrended temperature record and for the synthetic realizations of the processes
generated with parameters estimated from the detrended record.
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rates there will be correlations on scales shorter than a month that may be reminiscent of that of
a Brownian motion. Hence the total correlation structure may be similar to that of an Ornstein-
Uhlenbeck (OU) process with τc of the order of a month or less. The temperature from Cheyenne
serves a good example. Figure 4.6 shows WVA2 and DFA2 applied to the temperature record be-
fore and after linear detrending. The cyan area is the 95% confidence area for an AR(1) process
and the red area is the 95% confidence area for fGns. The noise processes have parameters esti-
mated from the record with MLE. The results are fairly similar before and after the detrending.
The estimate of τc of an AR(1) model from the monthly record yields τc ≈ 0.5 months and the
estimate of β of an fGn model yields β≈ 0.2. This explains why the WVA fluctuation functions
for the synthetic realizations of these two processes are very similar on time scales from months
and up. Since the fluctuation function of the observed process is within the confidence areas for
both models on these time scales we cannot select between AR(1) and fGn models on the basis
of these monthly data.

In another method for distinguishing between noise models, we use the fact that a discrete-
time sampling of the continuous-time OU process yields an AR(1) process, but that the lag-one
correlation φ(∆t) then will depend on the sampling time ∆t. When we apply the relation

τ
(∆t)
c =− ∆t

logφ(∆t)
(4.18)

for the decorrelation time, and estimate φ̂(∆t) from the AR(1) process resulting from sampling
the OU process at time-lag ∆t, we find that τ̂c ≈ τc as long as ∆t < τc, but when ∆t � τc the
AR(1) process cannot be distinguished from a white noise, resulting in τ̂c ∝ ∆t. This feature is il-
lustrated in Figure 4.7, which demonstrates explicitly that this method can be used to distinguish
between AR(1) and weakly persistent fGn if the time resolution is better than τc, but otherwise
not. In this figure the cyan area is the 95% confidence area for an ensemble of realizations of the
Ornstein-Uhlenbeck (OU) process with τc = 10. The grey area is the 95% confidence area for
white noise. The application of this method to the Cheyenne monthly temperatures is shown in
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Figure 4.7: Estimated τc as a function of ∆t for an Ornstein-Uhlenbeck process with τ = 10 (cyan) and
white noise (grey).
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Figure 4.8: Panel (a) and (b) shows the estimated decorrelation time τc as a function of ∆t for the temper-
ature anomaly at Cheyenne as black circles. Ensembles are generated of synthetic realizations
of two different stochastic processes: An OU process (cyan) in panel (a), and fGns (red) in
panel (b). The synthetic processes are generated with parameters estimated from the observed
record by the MLE method, and the coloured areas are the 95% confidence regions for these
estimates. The grey area in panel (a) is the confidence region for τc from a white noise pro-
cess. Panel (c) and (d) show the decorrelation time of the linearly detrended temperature
record and for the synthetic realizations of the processes generated with parameters estimated
from the detrended record.

Figure 4.8. In panel (a) and (c) the cyan areas are the 95% confidence areas for an OU process
and the grey areas are the 95% confidence for white noise. They almost completely overlap.
The red areas in panel (b) and (d) are the 95% confidence area for fGns. The parameters of the
synthetic realizations are the same as those in Figure 4.6. The estimated τ̂c shows the behaviour
of a white noise for almost all ∆t when compared to synthetic realizations of an OU process,
which is expected for OU processes with small τc. Since the white noise behaviour is domi-
nant on most of the times scales, one would expect to see this when applying the standard LRM
methods in Figure 4.4. In all cases the estimated β > 0, but error bars must also be taken into
account. For WVA2, the lower error bar stretches below zero for given β = 0.2, indicating that
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the temperature record could be white noise. However, for DFA2 the estimate is β = 0.19±0.10
and β = 0.20± 0.05 using MLE after linear detrending. The results altogether indicate that the
Cheyenne temperature may be described as an fGn with β = 0.2 superposed on a linear trend.

In Chapter 3 both the exponential and scale-free response models were applied to global land
data, but from the deterministic response alone we could not really determine which response
model that gives the best reproduction of the observed record. The clue to this assessment is
found in the residual, i.e., the difference between the temperature record and the deterministic
response. If this residual is analysed with DFA2, and the fluctuation function is compared with

1 10 100 1000

0.1

1

10

Τ Hmonths L

F
HΤL

Figure 4.9: DFA2 applied to the residual from the deterministic response of the exponential response
model (black circles) and scale-free response model (black crosses). The cyan area is the
95% confidence for realizations of AR(1) and the red area is the 95% confidence area for
realizations of fGn. The noises are produced with parameters estimated with the response
models.

those produced from synthetic realizations of AR(1) and fGn, we obtain the results shown in
Figure 4.9. The black circles and crosses are the fluctuation functions for the residuals from the
exponential response model and scale-free response model, respectively. The coloured areas are
the 95% confidence areas for synthetic noises with parameters estimated from the two models,
where the cyan area is for AR(1) and the red area is for fGn. In Figure 3.4 the two deterministic
responses were quite similar, and DFA2 applied to the residuals shows almost identical results.
When comparing with synthetic noises, however, the scale-free response model is clearly fa-
vored. The fluctuation function falls mostly within the confidence area of the fGns, while it
clearly deviates from the confidence area for the AR(1) model. The reason why we are able to
select one model above the other for the global data set, but not for the Cheyenne record, is that
the global data shows strong persistence even at time scales up to a century. When one tries to
fit an AR(1) model to such data, the estimated τc exceeds a decade, and hence the fluctuation
function of the synthetic AR(1) process has the steep slope α ≈ 1.5 (β ≈ 2) corresponding to a
Brownian motion for τ < 100 months as shown by the cyan area in Figure 4.9. This is clearly
distinguishable from the fluctuation function for the global record, for which α < 1.

Two more examples are given to illustrate methods for distinguishing between AR(1) and fGn:
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Figure 4.10: (a) 10 000 data points (∼ 28 years) for Prague, daily temperature. (b) DFA2 applied to the
record (black crosses). The cyan area is the 95% confidence for realizations of AR(1) and
the red area is the 95% confidence area for realizations of fGn. Panel (c) and (d) shows the
estimated decorrelation time τc as a function of ∆t for the record as black circles. Ensembles
are generated of synthetic realizations of two different stochastic processes: An OU process
(cyan) in panel (c), and fGns (red) in panel (d). The synthetic processes are generated with
parameters estimated from the observed record by the MLE method for the OU processes
and with DFA2 for the fGn, and the coloured areas are the 95% confidence regions for these
estimates. The grey area in panel (c) is the confidence region for τc from a white noise
process.

Daily mean temperature from Prague, the Czech Republic (Klein Tank et al., 2002) and the
Niño3 index (Rayner et al., 2003). The first 10 000 data points from the Prague daily mean tem-
perature record was used after removing the seasonality, with the results shown in Figure 4.10.
The Prague temperature is widely used in temperature studies since it has a long record. In the
analysis with DFA2 (Figure 4.10(b)), the AR(1) seems to be a better fit than fGn, at least on
the smallest scales. The approach where the decorrelation time is estimated as a function of the
sampling rate is shown in Figure 4.10(c) and (d), and τc = 5.6 was found for the OU process.
For the smallest ∆t, there is a quite good fit for the estimated τc from the record to that of an OU
process. For the larger sampling rates (∆t > 10), the estimated τc for the record are larger than
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that of the OU process, which starts to behave as white noise. For these scales, the fGn seems
to be a better fit. Caballero et al. (2002) found for daily mean temperature at three locations a
good fit to the FARIMA(1,d,1), which may capture both the AR(1) behaviour on small scales
and LRM scaling on large scales. The results in Figure 4.10 suggest that this process also might
well describe the daily temperature at Prague.

The Niño3 index is the area averaged monthly sea surface temperature from 5S-5N and 150W-
90W. DFA2 (Figure 4.11(b)) does not show a perfect fit to neither noise process, but the record
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Figure 4.11: (a) The deseasonalized Niño3 index. (b) DFA2 applied to the record (black crosses). The
cyan area is the 95% confidence for realizations of AR(1) and the red area is the 95% con-
fidence area for realizations of fGn. For AR(1), τc = 11.8 was found with MLE, while
β = 0.62 was found with DFA2.

has a closer fit to AR(1) than fGn. No trends are obvious from the record (Figure 4.11(a)), and
DFA2 does not show influences typical for low-order polynomial functions or oscillations. It
seems that the Niño3 index has a more complex underlying process than those described in this
thesis.
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Chapter 5

Literature Review

Earthquakes, rainfall and river flows all give rise to geophysical records with long-range memory
(Hurst et al., 1965, Mandelbrot and Wallis, 1969), but LRM has also been found in fields like
medicine (Goldberger and West, 1987, Stanley et al., 1992), finance (Vandewalle and Ausloos,
1997) and internet traffic (Abry and Veitch, 1998). Since LRM is so ubiquitous, this literature
review is restrained to studies of Earth surface temperature records, which is the focus in this
thesis. This includes observational temperature, temperature from model experiments, recon-
structed temperature, and to some extent temperature proxies. It is common practice to remove
daily and seasonal variations from the temperature records prior to analysis, if this is not already
done in the record. Some analysis includes the removal of so called trends, often regarded as a
slow variation or linear tendency in the time series, as explained in Chapter 3.

5.1 Instrumental Data

Universal Scaling Exponent?

Records of instrumental temperature from numerous stations have been available for a long time,
and are widely used in studies of LRM. In the first approaches, the records are more or less ran-
domly picked and studied to find if there is good scaling in agreement with LRM, and what
the scaling exponent is if so. A variety of methods have been used. Bodri (1994) applied the
rescaled range R/S analysis as defined in Mandelbrot and Wallis (1969) to annual mean tem-
perature from 7 stations in Hungary. They found Hurst exponents between 0.72 and 0.81 with
mean 0.77, corresponding to β between 0.44 and 0.62 with mean 0.54. Bodri (1995) applied the
same approach to Central Europe annual mean temperature, yielding H = 0.69 (β = 0.38). This
temperature was estimated using records from 224 stations by Hansen and Lebedeff (1987). The
average periodogram for monthly mean temperature from 94 stations was estimated, yielding
β ≈ 0.43 in Pelletier (1997). Pelletier and Turcotte (1999) applied the periodogram to monthly
averaged atmospheric temperature for Central England (CET) (Parker et al., 1992) among other
time series, resulting in β ≈ 0.47. The CET is representative of a roughly triangular area of the
United Kingdom enclosed by Lancashire, London and Bristol, and is widely studied since it is
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the longest instrumental record in the world. In Koscielny-Bunde et al. (1998a) and Koscielny-
Bunde et al. (1998b) DFA and a wavelet technique were applied to daily temperatures from 14
stations and 12 stations respectively. Roughly the same exponent of α ≈ 0.65, corresponding
to β ≈ 0.3, was found for all the temperature records. The result led to the question whether
a universal scaling exponent was true for temperature. The exponent was found to be slightly
smaller than in other studies of temperature from continental stations, and suggest that the R/S
and periodogram estimates are influenced by trends that are eliminated in the DFA method.

Difference Between Air Temperature over Land and Oceans
The analyses mentioned so far, only regards records from continental stations. Several studies
suggest that the temperature is more persistent at ocean sites than land sites. Pelletier (1997)
analysed daily mean temperature from 90 maritime and 1000 continental stations. Average pe-
riodograms gave β ≈ 0.63 for the maritime stations. For the continental stations β ≈ 0.37 was
found for frequencies less than f ≈ 1/(1 month) and β≈ 1.37 above this frequency. Both the pe-
riodogram and DFA were applied to daily temperature records from 20 continental and maritime
stations in the USA in Weber and Talkner (2001). They found higher values of β for maritime
stations (0.30 < β < 0.36) than for continental stations (0.24 < β < 0.44, but with most values
around β ≈ 0.25) in the low frequency range f < 1/(10 days). These values are smaller than
what Pelletier (1997) found, and they explained this by different ways of eliminating the annual
cycle from the temperature records prior to the scaling analysis. Eichner et al. (2003) applied
DFA to temperature from 95 stations all over the globe. They found that for continental sta-
tions, the scaling exponent is close to α = 0.65 (β = 0.3). Temperature from island stations has
a distribution between 0.65 and 0.85, with an average of 0.8, corresponding to β between 0.3
and 0.7 with mean 0.6. Their study confirms previous findings from DFA applied to continental
temperature. For maritime stations, the result agrees well with Pelletier (1997), but the value
of β is larger than what was found in Weber and Talkner (2001). Monetti et al. (2003) studied
monthly and weekly sea surface temperature at different sites in the Atlantic and Pacific Oceans
with DFA. A scaling exponent of α ≈ 1.4 (β ≈ 1.8) was found for the North Atlantic sites and
α≈ 1.2 (β≈ 1.4) for the rest of the ocean sites for time scales below 10 months. In the region of
the tropical Pacific where the El Niño-Southern Oscillation (ENSO) takes place, oscillations start
to influence the fluctuation function above this time scale. Outside the ENSO region, α ≈ 0.8
(β ≈ 0.6) for large time scales. The studies suggest that sea surface temperatures are motions
(β > 1), while the temperatures at islands are persistent noises (0 < β < 1). The higher per-
sistence at islands than at continents is probably due to the influence of the ocean. Lennartz
and Bunde (2009) also applied DFA to a number of local temperature records, with results in
agreement with, e.g., Eichner et al. (2003), Monetti et al. (2003).

Altitude Dependence
A few studies also investigate scaling differences for stations at low altitudes and stations located
at mountains. Talkner and Weber (2000) and Weber and Talkner (2001) analysed daily minimum,
maximum and mean temperatures with DFA and variations of spectral analysis. They found
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lower values for the scaling exponent (0.06 < β < 0.25) at mountain sites, but these records did
not show good scaling behaviour. These studies indicate that the scaling exponent is not the same
all over the globe, but that air temperature at high altitudes is more random than other land air
temperatures. In Kurnaz (2004a) monthly averages of maximum daily temperatures from 129
stations in the continental US were investigated with DFA to find scaling exponents α = 0.60±
0.05 (β = 0.20±0.10). The authors also looked for correlations between scaling exponents and
elevation of weather stations, and between scaling exponents and distance from the stations to
the ocean, without finding any clear patterns. However, they used the standard deviation of the
temperature fluctuations to classify different climate types, finding slightly different exponents
for each type. Kurnaz (2004b) applied DFA to monthly temperatures from 384 stations in the
Western US, finding similar results.

Latitude Dependence

Pattantyús-Ábrahám et al. (2004) analysed daily temperature from 61 stations in Australia with
DFA, finding that the scaling exponent varies from station to station. Generally it decreases with
increasing distance from equator. They also found different scaling exponents for minimum and
maximum temperature from the same station, but no pattern for magnitude. Király and Jánosi
(2005) applied DFA to daily temperature records from 61 stations in Australia and 18 stations
in Hungary. 48 of the Australian stations were based on the continent, while the remaining 13
were located on islands. They found a decreasing correlation exponent with increasing distance
from the equator for the Australian station temperatures, in agreement with Pattantyús-Ábrahám
et al. (2004). For the stations on islands the temperature analysis is in agreement with Weber
and Talkner (2001) and Monetti et al. (2003). Huybers and Curry (2006) used the NCEP-NCAR
instrumental re-analysis (Kalnay et al., 1996) to find a global map for β using spectral analysis.
In this study it was found that β is smaller over land than over ocean, but also that β is smaller
toward higher latitudes, in agreement with Király and Jánosi (2005). They also found that the
temperature for the Southern Hemisphere has a larger β than the Northern Hemisphere, probably
because of larger ocean areas in the Southern Hemisphere. Temperature proxies together with
observational data were analysed to get a patched periodogram for high latitudes and the tropics.
Between annual and centennial time scales the tropical marine compilation has β ≈ 0.56 and
the high-latitude compilation β ≈ 0.37, in agreement with the findings in their global map. At
centennial time scales the spectra look more similar, but for time scales longer than centuries the
tropics has β≈ 1.29 and the high latitudes β≈ 1.64. Király and Jánosi (2006) analysed several
thousands of temperature records from the Global Daily Climatology Network with DFA. They
did not find systematic dependence on geographic parameters similarly to Pattantyús-Ábrahám
et al. (2004), Király and Jánosi (2005). It was concluded that the pattern for scaling exponent
has no simple dependence on latitude, longitude or distance from oceans. Vyushin and Kushner
(2009) did a study on monthly mean re-analysis air temperature (ERA-40, Uppala et al. (2005)),
where the Hurst exponent was calculated at each longitude, latitude and pressure. They used both
DFA and spectral methods. A decrease of H from the tropics to the extratropics was found, and
the spectral methods showed a pronounced maximum in the Southern Hemisphere. The authors
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attribute the latter finding to linear trends, since they did not find this with DFA.

Scaling Regimes
In studies of daily temperature, several scaling regimes have been found (Pelletier, 1997, Talkner
and Weber, 2000, Weber and Talkner, 2001, Caballero et al., 2002), although with different
cross-over scale (from 3 days to 1 month). The typical time scale of general weather regimes
is about 10 days, and up to this time scale the weather is highly correlated, explaining the high
scaling exponents on these scales. Different cross-over scales for daily records may be found
if they are from sites with different climate types. Different methods may also yield different
cross-over scales. For monthly and annual instrumental records, cross-overs are usually not
apparent. Longer records must be used to investigate if there are new regimes at scales above
100 years, and proxies going far back in time may be studied to indicate such changes. Pelletier
(1997) studied a Vostok deuterium record converted into degrees Celsius. The Vostok station
is located in Antarctica, and the record is the based on the isotopic fractions between 18O and
2H in ice cores. Three scaling regimes were found with the periodogram. For frequencies less
than f ≈ 1/(40 kyr), β ≈ 0, i.e. the time series is a white noise. The regime between f ≈
1/(40 kyr) and f > 1/(2 kyr) displayed β≈ 2 (Brownian motion), and for the regime with f ≈
1/(2 kyr) β ≈ 0.5 was found. Pelletier and Turcotte (1999) also applied the periodogram to the
Vostok record, with the same result discussed in Pelletier (1997). Solar luminosity was studied
in this paper, showing regimes in the periodogram similar to that of the Vostok record. The
authors concluded that the physics of the radiating layer of the sun must strongly resemble the
physics of the Earth’s atmosphere. Markonis and Koutsoyiannis (2013) studied a number of
temperature time series consisting of satellite, instrumental, proxy and reconstruction data. They
applied a type of variogram combining the standard deviation as a function of scale for all the
temperature series, spanning scales from 1 month to 50 million years. The authors did not find
several scaling regimes, but an overall slope corresponding to β = 0.84, unlike Pelletier (1997).
However, variogram methods are not always an accurate tool to investigate scaling properties, as
they are in some cases biased and do not incorporate detrending. It is also disputable how well
the variogram follows this slope at different time scales.

Difference Between Local, Regional and Global Temperature
Baillie and Chung (2002) analysed two different annual temperature series for the Northern
Hemisphere, Southern Hemisphere and the entire globe (total of six records) with a FARIMA(0,d,0)
model. They found d = 0.38 and d = 0.33 (β= (0.76,0.66)) for the global temperature, d = 0.40
and d = 0.30 (β = (0.80,0.60)) for the Northern Hemisphere temperature and d = 0.25 and
d = 0.32 (β = (0.50,0.64)) for the Southern Hemisphere temperature. Alvarez-Ramirez et al.
(2008) applied DFA to four monthly temperature sets for continents and oceans in the North-
ern and Southern Hemisphere. They estimated the scaling exponent for subsample windows
of approximately 20 years with a 2-month slide to test for time-varying degrees of long-range
memory, finding the same persistence pattern in time. Using the full record they found for North-
ern Hemisphere land temperature, Northern Hemisphere ocean temperature, Southern Hemi-
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sphere land temperature and Southern Hemisphere ocean temperature the scaling exponents
α≈ (0.69,0.93,0.78,0.90), corresponding to β≈ (0.38,0.86,0.56,0.80), respectively. They also
claimed that multifractality is present in the temperature data, and more evident for the land tem-
perature. In Lennartz and Bunde (2009), DFA2 was applied to monthly land air, sea surface and
combined temperatures of the globe, and the Northern and Southern Hemisphere. They found
scaling exponents of α ≈ 1.22 (β ≈ 1.44) for Northern Hemisphere sea surface and α ≈ 0.79
(β≈ 0.58) for Northern Hemisphere land temperature. The result for the sea surface temperature
in the Northern Hemisphere is in agreement with Monetti et al. (2003), while the exponent for
land temperature is higher for the Northern Hemisphere than for local stations. This may indicate
that spatial averaging increases persistence. Alvarez-Ramirez et al. (2008) found smaller values
for β for the Northern Hemisphere than Lennartz and Bunde (2009), and ocean temperature with
β < 1, which is not in agreement with previous studies. Like Huybers and Curry (2006), they
find higher values for the Southern Hemisphere than the Northern Hemisphere, while Baillie
and Chung (2002) found the opposite. This might be due to different methods estimating β, or
differences in the records (e.g. trends) influencing the estimation.

Trends
Bloomfield and Nychka (1992) studied the significance of a linear trend in a global annual tem-
perature record (Folland et al., 1990) using 7 different short-range and long-range memory noise
models. They found that the trend was significant for all of the models. Beran and Feng (2002)
suggested a semi-parametric method for simultaneous estimation of trends and parameters for
FARIMA(p,d,0). The method was applied to temperature data for the Northern Hemisphere.
For land+sea data, d = 0.38 (β = 0.76) was found and the trend was just at the border of signif-
icance at the 5% level. For land temperature only, d = 0.09 (β = 0.18), and no significant long
memory was found. The trend was clearly significant. Koutsoyiannis (2003) applied a variogram
approach to a Northern Hemisphere temperature record (Jones et al., 1998). For the Northern
Hemisphere, H = 0.88 (β = 0.76) was found, and a trend study showed no strong evidence that
temperature increase was of an unusual change of climate. They also studied a Paris temperature
time series, yielding H = 0.79 (β = 0.58) and no significant trends. Craigmile et al. (2004) sug-
gested using the discrete wavelet transform to extract a polynomial trend from an LRM record.
They applied this approach to a 150 year record of the sea surface temperature from the Sey-
chelles, in the Indian Ocean (Charles et al., 1997), and found that the large scale variations in
the record could be attributed to the stochastic variations rather than to a deterministic trend. In
Gil-Alana (2005) the monthly Northern Hemisphere temperature record (Jones and Briffa, 1992)
was examined by means of fractional integration techniques. It was found that the record follows
a FARIMA(0,d,0) with 0.3 < d < 0.4 (0.6 < β < 0.8), and that there is a statistically significant
linear trend in the record. Cohn and Lins (2005) considered the Northern Hemisphere temper-
ature by Jones et al. (1999). They found almost the same value for the slope of a linear trend
under different noise models, but different significance levels. For white noise and short-range
memory processes, the trend was significant, while for long-range memory processes it was not.
Fatichi et al. (2009) analysed 26 temperature records in the Tuscany region with three different
non-parametric trend detection procedures, using FARIMA processes to model the records. They
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found significant linear trends for 9 of the station records. Rybski and Bunde (2009) studied trend
significance in temperature records from six stations. They used a DFA-based technique to es-
timate linear trends, and found the probability that a given long-term correlated record contains
a certain trend. They found significant trends for two of the six records. Lennartz and Bunde
(2009) performed a trend analysis to decide if a linear trend could be a natural part of an LRM
record, or if the trend was of external origin. They found that the trends were more significant in
global than local records, and that the annual increase over the last 50 years was a weaker indi-
cator of an anthropogenic trend than the lower increase over the last 100 years. Franzke (2010)
used spectral analysis to estimate LRM parameters for temperature at eight Antarctic stations,
finding 0.16 < β < 0.56. A trend study was done under two null models: that the data are rep-
resented by an AR(1) (SRM) and that the data are represented by a FARIMA(0,d,0) (LRM). A
significant trend was found for 3 stations under the SRM hypothesis, and for 1 station under the
LRM hypothesis. In Franzke (2012a) the significance of trends in temperature records was tested
against three null models: SRM, LRM and phase scrambling. The records analysed were daily
temperature records from central England (CET), Stockholm, Faraday-Vernadsky and Alert. The
last two stations are in two polar regions that have experienced some of the most dramatic en-
vironmental changes in the last two decades. Different trends were investigated, and the cubic
polynomial fit had the smallest RMS error for all four time series. The temperature record at
Faraday-Vernadsky showed the largest warming, which could not arise by chance for any of the
null models. For CET and Stockholm temperature records, the warming trends were significant
under the SRM and phase scrambling null model, but not for LRM. The Alert temperature record
had a warming trend which could be reproduced by all three models, i.e., the trend was not sig-
nificant. A similar approach was done in Franzke (2012b) on daily mean temperatures from
109 stations in the Eurasion Arctic region. This resulted in significant trends in 17 temperature
records against the SRM null model, in 3 temperature records against the LRM null model and 8
temperature records against the phase scrambling null model.

The trend studies show variable results for how significant trends are in temperature records. The
significance depends on the null model (LRM/SRM), the trend model and the location, length,
and temporal and spatial resolution of the records. When the trend is found to be insignificant,
it does not mean that the record is not affected by global warming, but rather that properties like
high variance and persistence may make it hard to detect a global warming signal.

Comparing Different Models
Talkner and Weber (2000), Weber and Talkner (2001) found slightly different scaling expo-
nents using the periodogram and DFA. Caballero et al. (2002) estimated the scaling parame-
ter d for daily mean temperature from Central England, Chicago and Los Angeles using four
methods: Periodogram, aggregated variance, differenced variance and maximum likelihood es-
timation of an FARIMA(1,d,1) process. They found that long memory was present with two
scaling regimes in the temperature data. This was best captured by the FARIMA(1,d,1) noise
model with d = (0.20,0.13,0.23), corresponding to β = (0.40,0.26,0.46), for Central England,
Chicago and Los Angeles respectively. The cross-over was around 1/(6 days). The other meth-
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ods yielded slightly different scaling parameters. If pure noises are studied, the different methods
should yield similar scaling exponents. Different scaling exponents may be due to influence of
trends or multiple scaling regimes.

Percival et al. (2001) analysed the Sitka, Alaska, winter air temperature record, and fitted two
models, AR(1) and FARIMA(0,d,0), to the time series. They compared the autocorrelation
function and periodogram with the theoretical ACFs and PSDs for the models with parameters
from the record, and applied a goodness-of-fit test. They found that there was no statistical
evidence to favour one model over the other.

5.2 Simulated Temperature From Model Experiments

Many different climate models have been used in the study of LRM in simulated temperature, but
most of them are coupled Atmosphere-Ocean General Circulation Models (AOGCM). Different
climate model experiments from the same models are often available, where the difference lies
in which forcings are kept fixed and which are dynamic. The forcings used in the model exper-
iments usually consist of total solar forcing, volcanic forcing, CO2 or GHG forcing and aerosol
forcing, and for some model experiments forcings related to land use change and orbital forcing
are also included.

Controlruns/Fixed Forcings

In Fraedrich and Blender (2003) DFA was applied to global fields of observed and simulated
surface temperatures from an AOGCM climate model experiment. The result from observa-
tional data was mostly in agreement with previous studies of temperature in oceanic and coastal
regions, but the authors found α≈ 0.5 corresponding to white noise in inner continents. A 1000-
year simulation from the model experiment yielded similar exponents to what was found for the
observational data in this study. They did not find decreasing exponents with increasing distance
from equator like Király and Jánosi (2005), who comment that this might be due to lower spatial
resolution over Australia in Fraedrich and Blender (2003). Blender et al. (2006) compared ap-
plication of DFA to Greenland ice core δ18O time series with near surface temperature from an
AOGCM simulation. The analysis showed LRM scaling up to millennial time scales during the
Holocene in the ice core data, and that the LRM was reproduced by a 10000 year simulation.

Dynamic CO2 Forcing

Syroka and Toumi (2001) studied persistence in observed temperature, the NCEP re-analysis
(Kalnay et al., 1996) and temperature from a HadCM3 model experiment with daily resolution.
Data from Central England (CET), the El Niño region and global data were used. A variogram
approach was used to determine scaling regimes and exponents. They found different scaling
regimes for the different records, and anti-persistence on scales larger than 1 year in the El Niño
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region. The authors found that the temperature from the model experiment reproduces high per-
sistence on time scales less than one year, but that the persistence on larger time scales is smaller
than for the global temperature and CET. For the El Niño region the model experiment and NCEP
produce temperatures with similar features. The authors also concluded that neither the observa-
tions nor the model simulations can be interpreted in terms of an AR(1) process by comparing
power spectra of the data and synthetic noise. One should be careful with the interpretation of
these results, as variogram approaches do not incorporate detrending, and cannot yield β > 1. In
the El Niño region, the temperature have oscillations, which also affects the scaling behaviour.
Still, this study may give indications of how well the climate model simulation of temperature
reproduces the observed temperature.

In Bunde et al. (2001), observed maximum daily temperatures from 6 sites, among them Prague,
was studied with DFA. Temperature data from Prague from different climate model experiments
with AOGCM models were analysed with the same methods, and the results compared. They
used time series cut off at the year 1992, and time series extending into the future. For all the
observational data they found an α ≈ 0.65 corresponding to β ≈ 0.3 for time scales above 10
days. The temperatures from the model experiments showed good scaling for the data from the
CSIROMK2 experiment, with a scaling exponent close to that for the Prague record. The tem-
peratures from the experiments with ECHAM4/OPYC3 and HadCM3 showed a crossover after
about 3 yr, where the data had an exponent corresponding to white noise. In Govindan et al.
(2001) a similar study was done, but with comparison between observational data and data from
model experiments from two sites, Prague and Melbourne. The same models were used. The
Prague results were discussed as in Bunde et al. (2001). For Melbourne the results were similar,
except for the temperature from the HadCM3 experiment, which yielded a slightly higher expo-
nent than the observational data. In Vjushin et al. (2002) temperature records at four sites from
seven climate model experiments were analysed with DFA. All the models were AOGCM’s. His-
torical forcing records were used up to 1990, and a 1% increase in CO2 level was assumed after
that. The authors found that the different model experiments varied significantly with regards to
LRM, and also found variations from location to location. Scaling exponents differed from those
found for observational temperature record. They concluded that the gradual addition of CO2
makes the temperature from the model experiments lose their memory, and that the results may
be improved by changing the method for adding CO2.

Blender and Fraedrich (2003) did a similar analysis as Fraedrich and Blender (2003) with tem-
perature from two different model experiments with dynamic greenhouse gas forcing included.
The results of these two studies are in agreement.

Dynamic CO2 and Aerosol Forcing
Govindan et al. (2002) made another study applying DFA to observational data and temperature
from climate model experiments. They used records from six sites, and temperature from more
model experiments than previously used in Bunde et al. (2001) and Govindan et al. (2001). In
addition, both experiments with dynamic greenhouse gas forcing and with dynamic greenhouse
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gas plus aerosol forcing were included. The main conclusion was that the temperature from the
model experiments fail to reproduce the scaling behaviour found for observational data, and that
the models display large differences in scaling at different sites. Of the two scenarios, the one
with dynamic greenhouse gas plus aerosol forcing performed better. The authors claimed that
since LRM is underestimated in the temperature from the climate model experiments, it follows
that anticipated global warming is overestimated. Bunde and Havlin (2002) applied DFA to
mean daily temperature from a number of sites with different climate, as the locations are on
continents, coast lines, islands and in the ocean, finding exponents in agreement with the DFA
studies of instrumental records already mentioned. They compared to simulated temperature,
where three types of climate model runs were used: control runs with all forcings fixed, run
with dynamic greenhouse gas forcing and run with dynamic greenhouse gas plus aerosol forc-
ing. The authors found that the experiments with dynamic greenhouse gas and aerosol forcing
produce temperatures that perform best with regards to scaling exponents, but they are not per-
fectly reproducing that found for observational temperature. Govindan et al. (2003) analysed the
temperature volatility, i.e., the increments, from a few selected sites and compared with tempera-
ture volatility from climate model experiments, using DFA. For the observational data they found
scaling exponents similar to that of the direct analysis of observational temperature. Temperature
from model experiments were obtained with the same three types of model runs as in Bunde and
Havlin (2002). Here the temperature volatility showed a wider range of scaling exponents and
conclusions were harder to draw.

Including Dynamic Volcanic Forcing
In Vyushin et al. (2004) temperature from model experiments with no forcings, greenhouse gas,
sulphate aerosol, ozone, solar, volcanic forcing and various combinations were studied (these
forcings were dynamic, other forcings fixed). Scaling exponents for temperature at 16 land sites
and 16 sites in the Atlantic Ocean were estimated. They found that dynamic volcanic forcing was
the most relevant for obtaining scaling exponents close to those found for observational records.
Rybski et al. (2008) used model experiments with constant forcing and with dynamic solar, vol-
canic and greenhouse gas forcing. They analysed data from grid cells all over the globe. They
found that for the forced run experiment, the temperature showed a scaling exponent in agree-
ment with observational temperature, but that the temperature from the control run generally
yields somewhat lower scaling exponents.

Comparing Different Models
Vyushin et al. (2012) analysed a large number of records from temperature re-analysis and tem-
perature from model experiments. They used methods for estimating both the lag-one auto-
correlation φ for an AR(1) and the scaling parameter H and made geographical maps of these
noise parameters. The H values for the simulations were largely consistent with the results in
Fraedrich and Blender (2003), Blender and Fraedrich (2003), Blender et al. (2006), Rybski et al.
(2008). Goodness-of-fit tests were also applied, but it was found that neither AR(1) nor fGn pro-
vided a better fit to the observed and simulated data. Their method was similar to the one we
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applied in Figures 4.7 and 4.8, but the sampling intervals considered was limited to monthly
and annual. Application of a larger range of sampling rates would have given a clearer picture
and favoured the fGn model. Zhu et al. (2010) used experiments from COSMOS to investigate
temperature simulations all over the globe. LRM properties and forecast experiments based on
an AR(1) linear predictor were studied, with various results. They demonstrated the existence of
long-range memory in the near-surface temperature field in high-latitude oceans, while in areas
with LRM, the prediction skills of the AR(1) predictor were poor. In the central South Atlantic
on the other hand, the predictable component by AR(1) was enhanced due to local strong decadal
and bicentennial fluctuations, while LRM scaling were poor.

5.3 Reconstructed Temperature

Rybski et al. (2006) apply DFA2 to six reconstructed temperature records for the Northern Hemi-
sphere. This resulted in scaling exponents corresponding to 0.6 < β < 1. For the Moberg recon-
structed temperature they found β = 0.72. In their study the authors concluded that their work
support the claim that the most recent observed warming is inconsistent with the hypothesis of
purely natural dynamics. In Mills (2007) the periodogram was applied to the Moberg Northern
Hemisphere reconstructed temperature, as well as fitting a FARIMA(2,d,2) to the record. The
author analysed the temperature divided into different subperiods as well as the full record, to
find d ≈ 0.5 (β ≈ 1) for most of the periods. The periodogram and FARIMA(2,d,2) approach
gave almost the same scaling parameter with a few exceptions. Rea et al. (2011) analysed six
temperature reconstructions for Northern Hemisphere, Western USA, Colorado (USA), Shihua
(near Beijing, China), Tasmania (Australia) and Torneträsk (Sweden) with 11 different estima-
tors of the scaling exponent. They found a wide range of scaling exponents for each location,
and concluded that although some of the methods suggest a good fit to long-range memory pro-
cesses, there are phenomena present in the data, e.g., oscillations, that cannot be explained by
LRM. They claim that the apparent long-range memory is merely an artefact of the method of
analysis, but do not consider the possibility that the reconstructions could be a long-range mem-
ory process superposed on a trend. Halley and Kugiumtzis (2011) did a non-parametric testing
of linear trends in 9 temperature reconstructions for the Northern Hemisphere using a type of
surrogate data preserving the LTP structure of the records. They found that the rising trend had
a low probability of being natural fluctuations.

For reconstructed temperature there are few studies, and it is harder to draw an overall picture.
The studies of the Northern Hemisphere reconstructions mostly indicate that this temperature is
a highly persistent noise with a superposed trend.



Chapter 6

Summary of Papers

The papers in this thesis focus on long-range memory in time series of surface temperature.
We have mostly studied global and hemispheric temperature means, since such records are far
less studied than local temperature time series in the existing literature. A regional instrumental
record, the Central England temperature (CET) was included in Paper I, together with global
land temperature, combined global land temperature and ocean temperature and a Northern
Hemisphere (NH) temperature reconstruction. In Paper II, only global land and global ocean
temperature were used. In Paper III, the focus was on Northern Hemisphere temperature. Local
data at Reykjanes Ridge were also studied, using a model temperature simulation, reconstructed
temperature based on proxies and reconstructed temperature based on temperature observations.
Proper error bars for the estimated scaling exponents and more rigorous testing for LRM and
trends including Monte Carlo simulations distinguish Paper I from previous work on LRM in
temperature records. The local data in Paper III were included to illustrate that local ocean tem-
perature also is strongly persistent, as opposed to local continental temperature which is usually
random or only weakly persistent.

The scaling behaviour was investigated with a number of methods. In Paper I, WVA, DFA,
periodogram, variogram and autocorrelation function were used to find if the correlation struc-
ture of the records was consistent with that of fGns, with positive result after proper detrending.
However, other noise models were not considered. The significance of trends under an AR(1)
model was included in Paper II, and therefore an approach for finding the noise model that best
describes the temperature records was applied. The correlation time τc was estimated as a func-
tion of the sampling rate ∆t for the full data set, the detrended data set, and synthetic data under
the two null hypothesis. This showed that for the land temperature, the time series was more con-
sistent with fGn than AR(1) after detrending. The ocean temperature was most consistent with
fBm without detrending, and with fGn after linear detrending. Due to the high persistence in the
ocean temperature, we could not decide whether fGn or fBm was the best model, but AR(1) was
rejected. In Paper III, the periodogram, DFA and WVA was applied to temperature from model
experiments and reconstructed temperature for the Northern Hemisphere and Reykjanes Ridge.
Based on the results from these methods and the results in Paper II, it was not found necessary
to test an AR(1) hypothesis. To avoid the effects of linear trends associated with anthropogenic
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global warming, the time series were cut off at 1750 AD. Instead of assuming that the records
should be divided into a trend and a noise, an approach considering a deterministic and stochastic
response to external forcing was performed.

Our papers confirm that global and hemispheric temperature means are more persistent than
local temperature, and that temperature over oceans is more persistent than temperature over
land. In Paper I, we found for CET H = 0.64± 0.07, corresponding to β = 0.28± 0.14, for
global land temperature H = 0.75± 0.07 (β = 0.50± 0.14), for combined land and ocean tem-
perature H ≈ 1 (β ≈ 1) and for the NH reconstruction H = 0.9± 0.1 (β = 0.8± 0.2). In Paper
III we found a somewhat lower scaling exponent for the NH reconstruction, 0.6 < β < 0.7. For
the NH temperature simulated by climate model experiments, 0.6 < β < 1 was found, and the
temperature from Reykjanes Ridge showed slightly lower persistence with 0.4 < β < 0.6.

Trends are important in our papers in two ways: they tend to influence the estimation of memory
exponents, and LRM tends to influence the statistical significance of trends. In Paper I, three
trend models were considered: linear, cubic, and 7th order polynomial. For CET, the linear
detrending resulted in the best scaling behaviour, while for the global land temperature and com-
bined global land and ocean temperature, the cubic trend model gave the best result, although
the results for the latter record were slightly harder to interpret due to β ≈ 1. For the NH re-
construction, polynomial detrending did not give good scaling, so a wavelet filtering approach
was done to simulate an oscillation. The record was well described by an fGn with such a trend
superposed. In Paper II, a rigorous study of significance of trends in global land temperature
and global ocean temperature was performed. A trend model consisting of a linear function and
an oscillation was chosen, but the procedure could have been used for any trend model. The
method of hypothesis testing was emphasized, as the testing of significance of trends in LRM
records previously have been done with different approaches, leading to different conclusions.
In our approach, a correlated noise was chosen as the null model, with the alternative model that
a trend was present in the temperature records. Three noise models were used: AR(1), fGn and
fBm (for ocean temperature only). The noise parameters for each noise model were estimated
for the two records, and ensembles of synthetic noises with the same parameters constructed.
The trend model parameters were estimated for each ensemble, and used to obtain 95% confi-
dence contours of the distribution for the trend parameters. When the trend parameters for the
ocean temperature were compared to the 95% confidence, the trend was significant for AR(1)
and fGn, but not for the fBm null model. For the land temperature, the linear part of the trend
was clearly significant. The null hypothesis could then be rejected, and a new null model includ-
ing the linear trend was formed. It was then found that the oscillation also was significant in the
land temperature record.



Chapter 7

Concluding Remarks

The study of different surface temperature time series, including instrumental records, recon-
structions and climate model simulations, shows that LRM is present on time scales from months
to centuries. Most of the time series can be described as persistent noise. Global ocean tempera-
ture may be described as a highly persistent noise or a nonstationary motion, but the distinction
is unclear because of biases and errors in the methods when β≈ 1. Significant rising trends can
be found in temperature time series over the last 100-200 years, but may be hard to detect in
local records due to high variance and in ocean records due to high persistence. The global land
temperature over the last 160 years works as a great example of a temperature record showing
a clear rising trend as well as an oscillation with a period of ∼ 70 years. The study of North-
ern Hemisphere temperature from climate model experiments shows that external forcing alone
cannot explain LRM in temperature, since LRM is found in both temperature from control runs
and in the residual from a deterministic response to forcing. The scaling exponents are in this
case close to that of the temperature from the experiments with full dynamic forcing. Although
some of the previous studies of simulated temperature indicate that some types of dynamic forc-
ing is important for reproducing LRM in agreement with that found in observational data, this is
not always the case. These studies focus on local data, so the smaller scaling exponents could
perhaps be explained by other features masking the LRM, e.g., higher variance, oscillations, or
generally lower persistence in local than in global data. The lack of persistence in control runs
is not found for the Northern Hemisphere mean used in our studies. This suggests that LRM
arises from internal dynamics of the climate system, and since sea surface temperature is more
persistent than land air temperature, ocean dynamics must be a crucial component for LRM in
temperature.
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[1] The paper explores the hypothesis that the temporal global temperature response can
be modeled as a long-range memory (LRM) stochastic process characterized by a Hurst
exponent 0.5 < H . 1.0 on time scales from months to decades. The LRM is a
mathematical representation of the multitude of response times associated with the
various subsystems. By analysis of instrumental and reconstructed temperature records,
we verify LRM on time scales from months to centuries. We employ well-known
detrending methods to demonstrate that LRM increases when one goes from local and
regional (H � 0.65) to global (H � 0.75) land temperature records, and LRM is highest
in records strongly influenced by the ocean (H � 1.0). The increasing trend through the
last century cannot be explained as an unforced LRM fluctuation, but the amplitude of the
observed 60 year oscillation can be reconciled with the LRM process. We investigate
statistical bias and error of the analysis methods employed, and conclude that, for these
short record lengths, the error in estimated H is˙0.07 for the instrumental records.
Analysis of a northern-hemisphere reconstruction confirms that the LRM-scaling prevails
up to at least 250 years with H = 0.9˙ 0.1. We show that, if this reconstruction is correct,
the temperature difference between the Medieval Warm Period and the Little Ice Age
cannot be explained as an LRM fluctuation.
Citation: Rypdal, K., L. Østvand, and M. Rypdal (2013), Long-range memory in Earth’s surface temperature on time scales from
months to centuries, J. Geophys. Res. Atmos., 118, 7046–7062, doi:10.1002/jgrd.50399.

1. Introduction
[2] The standard paradigm of natural climate variability

up to millennial time scales is that global fields of cli-
matic variables can be decomposed into a diverse set of
quasi-coherent modes imbedded in a red-noise stochastic
field. This field has spatial correlation length of a few thou-
sand kilometers and autocorrelation time of the order of a
year [Mann and Park, 1994; Mann and Lees, 1996; Mann
and Park, 1999]. The red-noise hypothesis has replaced an
older white-noise assumption and is motivated by a num-
ber of empirical studies which suggest that the climate
noise can be adequately described as a first-order autore-
gressive (AR(1)) process xk = �xk–1 + wk, characterized
by the lag-one autocorrelation �. The red-noise stochas-
tic process exhibits short-range memory (SRM), i.e., the
temporal autocorrelation function C(t) is typically exponen-
tially decaying. Another class of processes is characterized
by long-range memory (LRM) and exhibit autocorrelation
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functions of power-law form C(t) � tˇ–1 for which the
integral

R
1

0 C(t) dt diverges. Such processes may be
Gaussian or non-Gaussian and monofractal or multifractal
[Franzke et al., 2012]. In fact, they do not even have to
belong to this wide class. It is sufficient that the process is
stationary with finite second-order structure function, which
is a power-law in the time lag [Rypdal and Rypdal, 2012].
The Gaussian approximation is valid for deseasonalized sur-
face temperature records, which are averaged over synoptic
spatiotemporal scales (e.g., monthly means averaged over
spatial scales & 103 km). Such records are also devoid of
signatures of multifractality Rypdal and Rypdal [2010]. For
all data records analyzed in the present paper, Gaussianity of
the deseasonalized and detrended records has been tested by
the standard Q-Q-plot technique [Wilk and Gnanadesikan,
1968], suggesting that fractional Gaussian noise (fGn) is
a proper model for the LRM in these data [Beran, 1994].
The power spectral density (PSD) of an fGn has the form
S( f ) � f –ˇ , and the range 0 < ˇ < 1 describes persistent
LRM noise. Here ˇ = 0 corresponds to uncorrelated (white)
noise and ˇ = 1 to strongly persistent (pink) noise.

[3] The majority of papers dealing with LRM proper-
ties in climatic records are confined to analysis of local
time records. Thus, Koscielny-Bunde et al. [1996, 1998];
Weber and Talkner [2001]; Govindan et al. [2003]; and
Eichner et al. [2003] apply the detrended fluctuation analy-
sis (DFA) method to atmospheric instrumental temperature
records from localized sites. Király et al. [2006] apply it to
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localized records over land, Monetti et al. [2003] over the
oceans, and Bunde and Havlin [2002] supplement these with
records from atmospheric measurements on islands, coastal,
and continental stations, and compare with corresponding
records from climate models. Bunde et al. [2001]; Govindan
et al. [2002]; and Vjushin et al. [2002] also focus on com-
paring LRM in localized records with climate model results,
pointing out a lack of correspondence between observations
and models. There are also a few studies of global land
and ocean records which suggest LRM properties on time
scales from months to decades [Pelletier and Turcotte, 1999;
Lennartz and Bunde, 2009a; Rybski et al., 2006; Rypdal
and Rypdal, 2010; Efstathiou et al., 2011], and of zonally
averaged temperature data which indicate stronger LRM
at higher latitudes than in the tropics [Varotsos and Kirk–
Davidoff, 2006]. It is possible to infer from these papers
that temperatures over oceans are more persistent than over
land and that global records are more persistent than local.
A common feature of virtually all these studies is that biases
and uncertainties, arising from the limited record lengths,
are not estimated. Thus, one of the main objectives of the
present paper is to provide proper error bars on the estimated
LRM exponents.

[4] The trends in the instrumental global temperature
record (1850–2012) are dominated by a monotonic rise
superposed on an oscillation with period of approximately
60 years. It is debated how much of the rising trend, which
is of anthropogenic origin, and the nature of the oscillation
is poorly understood. Schlesinger and Ramankutty [1994]
found some evidence that the oscillation is of internal origin,
but it has also been suggested that it is related to the motion
of the giant planets in the solar system [Scafetta, 2010,
2011a, 2011b]. Hence, it is a challenge to determine to what
extent this oscillation and the rising trend are driven by some
natural or anthropogenic forcing, or are natural fluctuations
internal to the climate system. For internal fluctuations, it is
also important for predictability on multidecadal time scales
to determine if they are constituents of coherent climate
modes detectable with high confidence under an LRM-noise
null hypothesis, or if they are plausibly explained as fluc-
tuations consistent with a long-memory process. The length
of the global instrumental records does not allow us to esti-
mate LRM properties of the records on time scales longer
than about 20 years. To establish LRM on longer time scales,
we need records of reconstructed temperatures. Rybski et al.
[2006] employ DFA to establish Hurst exponent of six differ-
ent reconstruction records, among these the Moberg record
analyzed here, and for the latter, they establish a spectral
index ˇ = 0.86 ˙ 0.03. The method by which they obtain
the error estimates is not explained, but it seems to be based
on a standard regression analysis, which assumes a linear
model for the log-log fluctuation function with a Gaussian
noise superposed. This method, which is based on only one
realization of the record, is completely inadequate for testing
an fGn-model of the signal, and gives too low error bars and
no information about statistical bias. The proper method is
to employ Monte Carlo simulations which explores the vari-
ability of different realizations of the LRM process. In the
present paper, we obtain error bars on this estimate, which
allows us to address the important question of whether the
millennium oscillation in the reconstruction record, separat-
ing the medieval warm period (MWP) from the little ice age

(LIA), can be completely described as a realization of an
fGn process with the estimated memory exponent. This pos-
sibility was suggested by Rybski et al. [2006], but without
quantitative assessment.

[5] In a recent study, Vyushin et al. [2012] compared the
performance of the AR(1) statistical model and an LRM
model for temperature time series from local observations
distributed in a global grid. They also used correspond-
ing data from multimodel ensemble simulations associated
with the Coupled Model Intercomparison Project 3, and con-
cluded that both statistical models describe these local data
equally well. The persistence in both statistical models are
higher over oceans than over continents, and in the climate
models, the persistence is independent of the forcing, hence,
the LRM properties are associated with the climate response
rather than with correlation structures in the forcing. Vyushin
et al. [2012] do not extend their study to time series of
regional and global averages and therefore miss the oppor-
tunity to observe that the SRM properties fade away in favor
of LRM as one goes from local to global behavior. One
of the purposes of the present study is to demonstrate that
strong LRM is a fundamental characteristic of global cli-
mate response. The methods employed here does not allow
us to make tests which discriminate more clearly between
SRM models like AR(1) and LRM models like fGn for local
climate records. In a forthcoming paper, we will employ
methods which utilize the information in available records
of global radiative forcing and allow us to test the valid-
ity of the two models in describing the recorded climate
responses to the known forcing. The result is that also local
temperature series are consistent with an LRM process and
inconsistent with an AR(1) process.

[6] In section 2 of this paper, we present a stochastic-
dynamic model (SDM) of a global climate variable exhibit-
ing LRM response to external deterministic and internal
stochastic forcing. This model allows us to estimate ˇ in
those cases where time series of the deterministic com-
ponent of the forcing are available. What we estimate by
this method are the LRM-properties of the climate response
function, independent of correlation structures present in the
forcing. Due to space limitations, we will have to show
the results of this method in a forthcoming paper. The rea-
son for sketching the method here is to point out that the
problem of separating stochastic signal and trend disappears
when forcing data is available and is taken into account, and
that systematic methods of analysis exist. Section 3 gives
a brief summary of more conventional detrending methods
which do not require knowledge of deterministic forcing,
but have to devise ways to eliminate deterministic trends in
the signals. We also present here some new results on how
to evaluate the consistency of a given record with the LRM
hypothesis using Monte Carlo simulations, and estimates
of biases and uncertainties of ˇ for the different estima-
tion methods. In section 4 we present detailed analyses
of global, regional, and local instrumental records, utiliz-
ing methods and results presented in section 3. Section 5
extends these results to centennial time scales by analyzing
a northern hemisphere temperature reconstruction covering
the last two millennia. The LRM estimates of instrumental as
well as reconstructed temperature records are presented with
an evaluation of statistical biases and uncertainties result-
ing from the finite record length. The results allow us to
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draw general conclusions about the spatiotemporal origin of
LRM (local versus global) and about the roles of land and
ocean in its genesis. Section 6 provides further discussion of
the results, and we conclude that the oscillations on multi-
decadal and multicentennial time scales can be considered as
inherent parts of a realization of a long-memory fGn model
with ˇ � 1, while the rising trend over the last century
cannot be reconciled with such a null hypothesis.

2. Estimation of LRM-Response
to Known Forcing

[7] For the period since 1880 the global radiative forc-
ing F(t) of the Earth’s climate has been estimated with
annual resolution, and is routinely used as input in climate
models [IPCC, 2007]. The evolution of global climatic vari-
ables, like the global mean surface temperature (GMST),
on decadal to centennial time scales can be modeled as the
integrated response of the atmosphere-ocean system to F(t)
in addition to stochastic forcing of GMST from internal
synoptic-scale dynamics. To illustrate this point, let us con-
sider a simple one-box energy balance model for the GMST
anomaly T(t) resulting from an external forcing F(t) and an
internal stochastic forcing �w(t), where w(t) is a Gaussian
white-noise process of unit variance,

dT
dt

+
1
�c

T =
1
C

[F(t) + �w(t)]. (1)

Here C is the effective heat capacity of the climate system
and �c is the time constant for the climate response. An ele-
mentary explanation of the one-box model can be found in
Vallis [2012], and a derivation is given in Rypdal [2012].
The stationary solution of this equation in presence of a con-
stant forcing F and zero stochastic forcing is T = SeqF, where
Seq = �c/C is the equilibrium climate sensitivity. Since the
equation is linear, the general solution can be separated into
a response to the deterministic and stochastic forcing,

T(t) =
1
C

Z
G(t – s)F(s) ds„ ƒ‚ …

deterministic solution

+
�

C

Z
G(t – s) dw(s)„ ƒ‚ …

Ornstein-Uhlenbeck

. (2)

where G(t) = e–t/�c #(t) is the impulse response, and #(t)
is the Heaviside step function. The response to the stochas-
tic forcing is the well-known Ornstein-Uhlenbeck stochastic
process, which has the character of a Brownian motion on
time scales shorter than �c and of a white noise on scales
longer than �c. This stochastic process is the continuous-time
analog to the discrete-time AR(1) process. Equation (1) can
be generalized to yield an LRM-process (a fractional Gaus-
sian noise (fGn) or a fractional Brownian motion (fBm)) as
solutions to the stochastic forcing problem. Formally this is
done by replacing the left-hand side of the equation with
a Liouville fractional derivative operator Dˇ/2 [Herrmann,
2011], such that the equation takes the form,

1
�(ˇ/2)

(Dˇ/2T)(t) =
1
C

[F(t) + �w(t)]. (3)

In practice, it is not essential to know the definition of the
fractional derivative, since the equation is uniquely defined

by its solution, which is far more instructive;

T(t) =
1
C

2
6664
Z

(t – s)ˇ/2–1
+ F(s)ds„ ƒ‚ …

deterministic solution

+ �
Z

(t – s)ˇ/2–1
+ dw(s)„ ƒ‚ …

1/fˇ noise

3
7775 . (4)

The stochastic part of this solution (the term to the right)
has a power spectral density of the form S( f ) � f –ˇ ,
and is an fGn (a stationary process) if –1 < ˇ <
1 and an fBm (nonstationary) if 1 < ˇ < 3. The
physical rationale behind replacing the exponential cli-
mate response with a power-law response is discussed in
Rypdal [2012]. It is argued that the climate response involves
more than one single time constant (which has also been
noted by several other authors), and that the main fea-
tures of the GMST record can be better reproduced by
the LRM response than by the exponential response. An
LRM-like response can also be constructed from multi-box
energy balance models involving a hierarchy of interact-
ing subsystems with increasing time constants, such as
the atmosphere, ocean mixed layer, sea ice, deep ocean,
and so on.

[8] In a forthcoming paper, we employ equations (2) and
(4) as parameterized stochastic-dynamic models with the
known forcing function F(t) as input and observed and
reconstructed global temperature time series as output. The
unknown parameters {C, � , �c} in equation (2) and {C, � ,ˇ}
in equation (4) are then determined by maximum-likelihood
estimations (MLE). The MLE method is described in Beran
[1994] and in most intermediate or advanced textbooks on
time series analysis. By modeling the response rather than
the signal, the trends are represented as the response to the
deterministic component of the forcing. The stochastic com-
ponent of the signal is uniquely defined as the response
to the stochastic forcing, and hence no explicit detrend-
ing is needed. This is an obvious advantage compared to
those methods where ˇ is inferred from the temperature
records alone.

[9] When forcing information is not available, or avail-
able but not used, trends must be modeled along with the
stochastic component of the signal. This can be done within
a fully parametric model, e.g., by modeling the signal as an
fGn superposed on a polynomial trend of a given order, leav-
ing the memory exponent and the polynomial coefficients
to be estimated by MLE. But trends can also be modeled
or eliminated in a semiparametric approach where the trend
is determined by some smoothing procedure, sometimes
guided by physical insight or assumptions, or eliminated
by techniques designed to remove polynomial components
in the signal up to a given order. We call this approach
semiparametric because the methods do not estimate trend
parameters. The fully parametric models represent a more
systematic approach, but the results are more sensitive to
the selection of model, e.g., the selection of the polynomial
order of the trend.

[10] In the present paper, we shall not use information
about forcing, and hence we will have to separate trends
from noise. A major goal is to establish sound physical intu-
ition on this issue by applying a number of semiparametric
methods, which derive directly from the scaling properties
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of the LRM noise. For this reason, we shall also avoid the
more abstract MLE methods in this paper.

3. Detrending Methods
[11] These methods have to be implemented if reliable

data about the deterministic forcing component are unavail-
able, or can be used as a complement to the methods
described in the previous section even when forcing records
exist. Let us assume that the stochastic component of the
observed record is a discrete-time stationary stochastic pro-
cess x1, x2, : : : (a “noise") and let y0, y1, : : : be the cumulative
sum (also called the “profile” of the sequence {xk});

y0 = 0, and yt =
tX

k=1

xk, for all t = 1, 2 : : : . (5)

In other words, xt = yt – yt–1 is the differenced profile
time series. For a self-similar process {yt} the second-order
structure function is a power law [Beran, 1994],

S2(� ) � E[(yt+� – yt)2] = E[y2
� ] / �2H. (6)

Here H is the self-similarity exponent for the profile {yt} and
the Hurst exponent for the differenced noise process {xt}.
If the probability density function is Gaussian, the process
{yt} is called a fractional Brownian motion (fBm), and {xt}
is a fractional Gaussian noise (fGn). Strictly, self-similarity
on all scales is defined only for a continuous-time stochas-
tic process, but the results above are still valid for discrete
processes which are self-similar (scale invariant) on scales
larger than the time step of the discrete process. The impor-
tance of the Hurst exponent is its relation to correlations
in the noise {xt}. If it is an fGn then the autocorrelation
function (ACF) takes the form [Beran, 1994],

C(� ) � E[xtxt+� ] � (2 – � )(1 – � )�–� . (7)

where � = 2 – 2H. Equation (7) implies that the correla-
tion function of {xt} has algebraic decay for all H 2 (0, 1)
except for H = 1/2, for which {xt} is an uncorrelated noise.
For 1/2 < H < 1, the integral over the correlation func-
tion

R
1

0 C(� ) d� is infinite, and this property is what defines
long-range memory (or long-range persistence). By taking
the Fourier transform of equation (7) it is easy to show that
the power spectral density (PSD) also has a power-law form
[Beran, 1994],

S( f ) / f –ˇ , (8)
where ˇ = 2H – 1 is the spectral index. Thus, H = 1/2 cor-
responds to a “flat” PSD (white noise) and H = 1 to S � 1/f
(pink noise). In this paper we shall mainly be concerned
with persistent, fractional Gaussian noises (or LRM noises).
These are processes characterized by spectral indices in the
range 0 < ˇ < 1, or equivalently; Hurst exponents in the
range 1/2 < H < 1, or autocorrelation exponents in the range
0 < � < 1. The instruments to estimate these exponents
are then the instruments to estimate power spectral densities
S( f ), second-order structure functions S2(� ), and autocorre-
lation functions C(� ). For S( f ) we shall invoke the Fourier
transform technique, also known as the periodogram,
due to its conceptual simplicity, but for actual computa-
tion of the spectral index, we shall employ the Wavelet
Variance Analysis (WVA) [Flandrin, 1992; Malamud and

Turcotte, 1999] because of its ability to eliminate the effect
of trends. For S2(� ), we will perform fluctuation analy-
sis (FA), supplemented by detrended fluctuation analysis
(DFA). For ACF, we will use a standard moving-window
averaging technique for estimation:

C(� ) =
1

(N – � )�2

N–�X
k=1

(xk+� – �)(xk – �), (9)

where � and � 2 are the true mean and variance for the
stationary process, respectively. In numerical realizations
(samples) of stochastic processes, the true mean and vari-
ance are known, but in observed time records, they usually
are not. In those cases they have to be replaced by the
sample mean and variance, and this gives rise to a biased
estimate when records are short. In this paper the purpose
of generating numerical samples of specified processes is to
subject them to the same analysis as applied to observed time
records. Since the ACF of the observed record can only be
estimated using the sample mean and variance (the biased
estimate), we have to do the same with the numerical sam-
ples. Analytic expressions for the ACF bias, and methods
for corrections, have been obtained by Lennartz and Bunde
[2009b]. The bias of the ACF estimate is one reason for not
using it to estimate the Hurst exponent. On the other hand,
the ACF is the most intuitive and direct measure of LRM,
and is why we shall use it to test if an observed record is
consistent with an fGn model for which the Hurst exponent
has already been estimated by other methods.

[12] The PSD is estimated with the periodogram, which
for the evenly sampled time series x1, x2, : : : , xN is defined in
terms of the discrete Fourier transform Hm as

S(m) =
2|Hm|2

N
, m = 1, 2, : : : , N/2.

Since our time unit here is the sampling time, the frequency
measured in cycles per time unit is fm = m/N. The smallest
frequency which can be represented in the spectrum (and the
frequency resolution) is 1/N, and the highest frequency that
can be resolved (the Nyquist frequency) is fN/2 = 1/2.

[13] If we want to eliminate the effect of a linear trend
on the estimate of H, an elegant approach is to use Wavelet
Variance Analysis (WVA) [Flandrin, 1992]. Suppose we
have chosen a mother wavelet  (t). Common choices of
 (t) are nth order derivatives of the Gaussian function,
among which the second-order derivative (the Mexican-hat
wavelet) is most frequently used. For an fGn characterized
by ˇ = 2H – 1, the variance of the wavelet coefficient
W(t, s) = (1/

p
s)
R
 [(t0 – t)/s] dt0, i.e.,

Vw(s) =
1
N

NX
t=1

|W(t, s)|2

depends on the wavelet scale s like

Vw(s) � sˇ .

The WVA method, with nth order derivatives of the
Gaussian wavelet, filters out oscillations on the scale s and
has much in common with the local Fourier transform.
Because it is a local filter, it reduces the effects of trends on
longer scales than the scale s and eliminates exactly poly-
nomial trends of order n – 1 and lower. In this paper we
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Figure 1. (a) Blue: a numerical realization of an fGn with
ˇ = 0.8 (H = 0.9). Red: the same signal, but with zero
sample mean. (b) The blue, irregular curve is the unbiased
ACF estimate from the blue signal in Figure 1a. The red,
irregular curve is the biased ACF estimate from the red sig-
nal in Figure 1a. The thick, blue curves mark the border of
the 95% confidence region for the unbiased ACF estimate,
based on an ensemble of 5000 realizations of the fGn. The
red, thick curves mark the border of the confidence region
for the biased estimate.

will restrict ourselves to the Mexican-hat wavelet, which
completely eliminates linear trends and reduces the effect
of higher-order trends. In the figures, we shall plot the
wavelet variance as a function of the stretched scale � =
(10/3)s which for this wavelet is approximately the period
of oscillation in the wavelet. Using this as the scale param-
eter allows direct comparison with Fourier methods like the
periodogram.

[14] Because of the stationarity of the increments of the
profile yt, the square root of the second-order structure func-
tion

p
S2(� ) can be estimated by the fluctuation function;

F(� ) �

vuut 1
N – �

N–�X
l=1

|yl+� – yl|2. (10)

According to equation (6), the fluctuation function of an
LRM process with Hurst exponent H scales with � as

F(� ) = k�H, (11)

where k is a constant, and hence log F(� ) = H log � + log k.
The plot of log F versus log � is a straight line with slope H
if {xt} is an LRM noise.

[15] Like the FA method, the detrended fluctuation analy-
sis (DFA) is performed on a fluctuation function based on the

profile {yt} [Koscielny-Bunde et al., 1996, 1998]. The pro-
file is divided into N� = N/� non-overlapping segments of
equal length � and enumerated by the index � = 1, : : : , N� .
In each segment an nth order polynomial fit is computed and
subtracted from yt for each segment, thus producing a locally
detrended signal. In the final step, the variance F2(�, � ) for
the detrended signal in each segment is computed, and the
fluctuation function is found as the square root of the average
over all the segments;

F(� ) =

"
1

N�

N�X
�=1

F2(�, � )

# 1
2

, (12)

The Hurst exponent is then estimated from the asymptotic
relation F(� ) � �H by plotting log F(� ) against log � and
computing the slope of the linear regression line. The fluc-
tuation function depends on the order of the detrending
polynomial, hence, for polynomial order n, we denote the
method as DFAn. For a time series with no trends, our
detrending function is a zeroth-order polynomial, i.e., we
subtract the segmental mean from yt in every segment. We
shall adopt the convention of denoting this method DFA0, in
accordance with Eichner et al. [2003]. This is not identical
to FA, where the record mean is subtracted in every segment.

[16] The fact that all measures of LRM have their uncer-
tainties and biases is not an unsurmountable problem if
one explores the opportunity to clarify these through Monte
Carlo simulation of the specified LRM processes. When
we know the biases through analysis of large ensembles of
simulated realizations of the processes, we can correct our
analysis results, and we can obtain confidence estimates. In
this paper we shall show some examples on how this can be
done, which will give us an idea about how accurate the esti-
mates we can obtain from the relatively short climate records
that we have at hand. The method we employ to generate an
LRM process with a given Hurst exponent is described in
McLeod et al. [2007]. The resulting signal has the desired
correlation structure, a PSD on the form S( f ) � f –ˇ , and is
a realization of an fGn with H = (ˇ + 1)/2.

[17] In Figure 1a, the blue curve is a realization of an fGn
with H = 0.9 (ˇ = 0.8 , � = 0.2) containing 2000 data points.
The true mean (ensemble mean) of the process is zero, but
the sample mean is not. The red curve is the same signal
with zero sample mean. In Figure 1b, we have plotted the
ACF estimate for this realization (blue irregular curve). The
theoretical ACF for this process decays as 1/�� , but due to
the finite length of the sample, the estimate is very noisy.
The red irregular curve is the biased ACF estimate obtained
from the red signal with zero sample mean in Figure 1a.
By computing these unbiased and biased estimates for an
ensemble of 5000 realizations of the fGn process, and com-
puting the ensemble mean, we obtain one smooth curve for
the unbiased estimate and another for the biased estimate.
The former is a 1/� 0.2-function, but the latter will attain
negative values for large � due to the bias [Lennartz and
Bunde, 2009b]. This negative bias is more pronounced for H
approaching unity. At any given � we compute the 95% con-
fidence interval for the distribution of ACF estimates. The
border of these intervals are shown as the blue thick curves
in Figure 1b for the unbiased estimates, and as the red, thick
curves for the biased estimate. If an observed record has a
biased ACF estimate within the confidence limits marked by
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Figure 2. ˇFA (red) and ˇWVA (blue) plotted against ˇ.
Every point has been computed from an ensemble of numer-
ically generated fGn records of only 2000 data points. The
error bars are 95% confidence intervals and are approxi-
mately ˙0.14 for both estimation methods.

the red curves, the variability of the record can be described
as a natural fluctuation within the LRM process, and hence
needs not be explained as trends imposed by external forc-
ing. On the other hand, if the estimate extends way beyond
these confidence limits, one has to conclude the existence of
trends, provided the null hypothesis is an LRM process with
the prescribed Hurst exponent. A great advantage of this
simple test is that it is capable of detecting both slow and fast
signal components violating the null hypothesis, not only
the slow trends. For instance, climate oscillations which are
incompatible with the LRM hypothesis could be detected,
irrespective of their characteristic period.

[18] The estimates which yield equation (11) are unbiased
only if {xk} are samples of a process with true mean� = 0. If
{xk} are samples with zero sample mean, the variogram is a
strongly biased estimate for H close to 1, where it returns too
small values for short records. This was observed in Monte
Carlo simulations by Malamud and Turcotte [1999], and
computed analytically by Lennartz and Bunde [2009b]. Such
biases is one of many reasons to use several different esti-
mators when one investigates data for long-range memory.
DFA does not have this bias problem because it is inherent in
the method to subtract the segment mean, and the same is the
case with power spectra and wavelets. Finite length of the
records also introduce large uncertainties in the estimates,
and this is a problem with all methods, although some are
worse than others [Franzke et al., 2012]. This is shown for
FA and WVA in Figure 2, where estimates have been made
based on ensembles of 1000 realizations with record length
2000 data points, which is the typical length of the climatic
data records we analyze in this paper. Here we observe that
while the typical bias for ˇWVA is negligible, the bias for ˇFA
when ˇ approaches 1 is close to –0.2. The ˙2� error for
both estimates over the entire ˇ-interval is approximately
˙0.14. Since H = (ˇ + 1)/2, the corresponding figures for H
is ˙0.07.

[19] In Figure 3, we investigate the detrending capabil-
ity of FA and WVA for records of 2000 data points. We
generate a numerical realization x(ˇ)

t of an fGn with ˇ = 0.5
and unit variance and analyze this record and another record
X(ˇ)

t = x(ˇ)
t + 0.001(t – 1000). The growth in X(ˇ)

t due to the

added linear trend over the record is twice the standard devi-
ation of the noise, which is not more than what is obtained
by linear regression of the instrumental temperature records,
which we will analyze in the next section. The chosen value
of ˇ is also in the range found in these records, so this sig-
nal exhibits roughly the LRM- and trend-properties of the
instrumental records. Figure 3a shows the variogram for the
fGn signal (red) and the signal with trend (black). The for-
mer has slope H = 0.75, corresponding to ˇ = 0.50, while
the latter has slope H = 0.82, corresponding to ˇ = 0.64.
Hence, FA for the signal with trend gives a clear overesti-
mate of the true exponent ˇ = 0.5. For a stronger trend,
FA on the signal with trend will return ˇ � 1, i.e., the
FA is totally overwhelmed by the trend. How such analy-
ses have lead to misinterpretations were discussed by Rypdal
and Rypdal [2010]. In Figure 3b, we show the correspond-
ing results from the WVA. The fluctuation function for both
signals look very similar up to a certain scale; in this case
�+ � 60. The effect of the trend appears in the black curve
for � > �+ as a cross-over to a scaling dominated by the trend.
The value of �+ is reduced for stronger trend. The curvature
for � � �– � 3 is inherent in the wavelet method. Hence,
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Figure 3. (a) FA of synthetic fGn record with ˇ = 0.5 (H =
0.75), � = 1 and length 2000 data points (red) and FA of the
same record with the linear trend with slope 0.001 (black).
Over the entire record, the trend implies an increase of 2� .
The slope of the red curve is H = 0.75 and for the black
curve H = 0.82. (b) The same as in Figure 3a, but for WVA.
The slope of the red curve corresponds to H = 0.72 and for
the black curve to H = 0.73. The scale � used in the WVA
is � = (10/3) s, where s is the wavelet scale parameter. This
convention is used in all WVA plots throughout the paper.
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Figure 4. (a) WVA of the CET record. The slope of the
black line is ˇ = 0.26, corresponding to H = 0.63. (b)
DFA0–8 of CET. The upper curve is the fluctuation func-
tion for DFA0, the ones below are DFAn, n = 1, : : : 8, with
DFAn + 1 coming as the curve right below DFAn.

we conclude that if the trend is weak enough to provide a
segment �– < � < �+, which is long enough to fit a straight
line, the WVA will allow us to obtain a good estimate of ˇ
for the underlying noise process. However, the method is not
fool proof. One has to examine the fluctuation function to
find the best fitting interval (if possible), and one has to take
into consideration the uncertainties that were demonstrated
in Figure 2.

[20] The detrending properties of DFA with respect to
a linear trend can be studied the same way as we did for
FA and WVA in Figures 2 and 3. We find that the bias
for DFA and WVA are both negligible, while the errors are
somewhat larger for DFA. In our WVA analysis we have
used the Mecixan-hat wavelet. Higher-derivative wavelets
will have effects similar to higher-order DFA. They will in
principle have better detrending capabilities, but for short
records higher-order wavelets will give rise to stronger oscil-
lations in the fluctuation function and high-order DFA has
spuriously steep fluctuation function for small � . Thus, the
general performance and detrending capabilities of the two
methods are quite similar. Curiously, DFA has completely
dominated the literature on LRM in climate records.

[21] Throughout this section we have for conceptual sim-
plicity used the fGn as our paradigmatic model, and it could

be objected that this is also a parametric model, requir-
ing self-similarity and Gaussianity. However, all results
described above, except for those based on the Monte Carlo
simulations of fGns, are valid for a much broader class of
processes. The power-law dependence of the ACF and PSD
depends only on the power-law dependence of the second-
order structure function S2(� ) [Rypdal and Rypdal, 2012].
Hence, the PDFs do not have to be Gaussian, the only
requirement is that the second moment is finite. Moreover,
the process does not have to be self-similar. It could be mul-
tifractal, i.e., the qth structure function Sq(� ) = E[y2

� ] / ��(q)

does not need to have scaling exponent 	(q) which is linear
in q. And it does not even have to belong to the class of mul-
tifractals, since we don’t require that Sq(� ) are power laws in
� , except for q = 2. Hence, the techniques of periodogram,
FA, DFA, and VWA all estimate the scaling exponent H for
a wide class of stationary processes with finite second-order
structure function, which scales like S2(� ) / �2H. This is the
strength of these techniques, which make them worthwhile
to pursue in spite of weaknesses as estimators.

4. Analysis of Instrumental Temperature Records
[22] In this section we analyze three different instrumen-

tal temperature records with detrending methods. We start
the analysis of each record by WVA and DFA0–8 to obtain
a first assessment of the scaling properties and an “auto-
matic” estimate of the Hurst exponent. This is followed by
estimation for different degrees of polynomial detrending of
periodograms, FA, and ACF estimates with confidence lim-
its determined from Monte Carlo simulations. The purpose
of applying these simple estimators on the polynomially
detrended signals is to establish which degree of polyno-
mial detrending we can undertake before we destroy the fGn
scaling at long time scales. The physical significance of the
results are discussed on the way.

4.1. The Central England Temperature Record
[23] The Central England temperature record (HadCET)

is the longest continuous instrumental record in the world.
The monthly mean temperatures are recorded from 1659 to
date and are representative of a roughly triangular area of
the United Kingdom enclosed by Lancashire, London, and
Bristol [Manley, 1974; Parker et al., 1992]. The data set
can be downloaded from the Hadley Center Met Office web
site. It is assumed to be representative of the monthly mean
temperature variations over a region with spatial extent of a
few hundred kilometers, and hence is somewhat less influ-
enced by weather noise than records from a single station,
but much more than hemispheric or global records. The sea-
sonal variation of this record is obtained by computing the
climatology, which is the mean temperature of a given month
averaged over the record. The climatology curve over the
year is very close to a sine function with peak-to-peak ampli-
tude of approximately 12 K. The deseasonalized record is
obtained by subtracting the climatology.

[24] The WVA and DFA estimates of the deseasonalized
CET record are shown in Figure 4. In this case it is a bit
difficult to determine the exact position of the crossover �+
in the WVA fluctuation function. This is because of a wave-
like structure on the fluctuation function, which is an effect
of the finite record length. These waves are present also in
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Figure 5. (a) PSDs of deseasonalized monthly CET record 1659–2011 A.D. with variable degree of
detrending. Gray: undetrended. Red: P1 detrended. Purple: P3 detrended. Blue: P7 detrended. Thick line
has slope –ˇ = –0.30, corresponding to H = 0.65. Vertical dashed lines mark the 60 year period (blue),
and the 1 year period (red). (b) FA of the CET record with variable degree of detrending. Black: after no
detrending. Red: after P1-detrending. Purple: after P3-detrending. Blue: after P7-detrending. The slope of
the black line is H = 0.73 and of the red line is H = 0.66. (c) Gray: Deseasonalized monthly CET record in
degrees Kelvin (time origin starts 1659 A.D.). Colored: Polynomial fits. Red curve: P1-fit. Purple: P3-fit.
Blue: P7 fit. (d): Black: ACF estimate from undetrended, deseasonalized CET record. Red: ACF estimate
from P1-detrended, deseasonalized CET record. The shaded area represents the 95% confidence interval
for the ACF computed from an ensemble fGns of the same length as the GMLT record and with H = 0.65.

numerical realizations of fGns (see e.g., the red curve in
Figure 3 b), but are reduced for longer records. For the CET
record, the positive phase of this wave incidentally coincides
with �+ and makes the crossover less evident. However,
with this insight, we estimate that �+ � 27 and use this as
the upper border of the fitting region, giving the estimate
H = 0.63. Interestingly, an analysis of a shorter record from a
single station (Durham, UK, 1880–2012) yields the same H,
suggesting that local and regional Central England temper-
atures on time scales longer than a month exhibits the same
scaling properties. The uncertainty of the estimate shown in
Figure 4a is greater than usual, because of the uncertainty in
estimating �+. Figure 4b shows an DFA0-slope of H = 0.79
converging toward H � 0.64 for DFA8. We made assess-
ments of bias and uncertainty of these estimates in section 3
(Figure 2), and found negligible bias and uncertainty of
˙0.07 for both WVA and DFA8. This suggests an fGn pro-
cess with H = 0.64 ˙ 0.07 superposed on a linear trend,
which is significant enough to influence the DFA0 analysis.

[25] We shall supplement these estimates with a more
intuitive heuristic analysis based on the periodogram and
the FA. The deseasonalized record is shown in Figure 5c,
along with linear (P1), third-order (P3), and seventh-order
(P7) polynomial least-square fits to this record. When a
Pn polynomial fit is subtracted from the deseasonalized
record, we shall refer to the result as a Pn-detrended record.
The P1-detrended, deseasonalized CET record has standard
deviation 1.39 K.

[26] Since the most intuitive measure of LRM is the
estimated PSD (we use the periodogram estimator) in a
log-log plot, we have made such plots for varying degrees
of detrending. In general, detrending reduces the low-

frequency components in the spectrum, and more so for
higher degree of the detrending polynomial. For the CET
record, the power in the lowest frequencies is not very much
above a linear fit to the log-log spectrum, but a P1-detrending
seems to give a better power-law behavior of the PSD. The
black line in Figure 5c is not a fit to any of the spectra, but a
line of slope –ˇ = –0.30 (H = 0.65). The reason for plotting
this line derives from the results of WVA and DFA shown in
Figure 4, but also from the FA curves, as will be explained
in the following. Fluctuation functions for Pn-detrended
records are shown in Figure 5b. Both the undetrended and
P1-detrended record exhibit good scaling (straight log-log
variograms) on scales up to 29 months (about 40 years),
but higher-order detrending destroys the scaling for � > 27

months (about 10 years). This means that Pn-detrending with
n > 1 removes low-frequency components in the record,
which are consistent with the LRM-scaling, and hence, peri-
odograms for such detrended records will show power in
the low frequencies below the straight line in Figure 5a.
The slope of the variogram for the P1-detrended record is
H = 0.66, which corresponds to a spectral index ˇ = 2H–1 =
0.32. Recalling that the FA bias is negligible for this small
ˇ, this result is consistent with those found from WVA and
DFA. In summary, WVA, DFA, and FA yield H estimates
of 0.63, 0.64, and 0.66, respectively, suggesting the best
estimate H = 0.65˙ 0.07 for the CET record.

[27] We can also use Monte Carlo simulations to check
that our estimates are consistent with the conjecture that
the P1-detrended record is a realization of this fGn pro-
cess. What we want to demonstrate is that the P1-detrended
observed record falls well within the ensemble of simu-
lated fGns with our estimated H, or more precisely, that the

7053



RYPDAL ET AL.: LONG-RANGE MEMORY IN EARTH TEMPERATURE

0 2 4 6 8

-6

-4

-2

0

2

0 2 4 6 8 10

0

2

4

6

8

10

12
H=0.91

H=0.84

H=0.66
H=0.68
H=0.70
H=0.71
H=0.70
H=0.72

H=0.73

(a)

(b)

Figure 6. (a) WVA of the GMLT record. The slope of the
black line is ˇ = 0.48, corresponding to H = 0.74. (b)
DFA0–8 of GMLT. The upper curve is the fluctuation func-
tion for DFA0, the ones below are DFAn, n = 1, : : : 8, with
DFAn + 1 coming as the curve right below DFAn.

long time-scale variability of this record (which alternatively
could be interpreted as trends) lies within the statistical
spread of the simulated ensemble. One measure we can use
to estimate this spread is the biased ACF. In Figure 5d, we
have estimated the ACFs for the undetrended (black) and
P1-detrended (red), deseasonalized CET record. Since the
record has a finite length, this estimate is too noisy to be
used to assess whether the ACF has a power-law asymp-
totic dependence, and if so, to estimate the exponent � . A
problem in this context is that estimating an exponent would
require to look at the ACF estimate in a log-log plot, but
this is impossible since the noisy estimate is not always
positive. This, in addition to the known bias, is an obvious
reason for using the PSD estimate (which is positive defi-
nite), rather than the ACF, for estimating memory exponents.
What we can do, however, is to estimate the statistical spread
of the biased ACF estimates in the simulated ensemble. This
spread is shown as the shaded area in Figure 5d. The fact
that the estimated ACF for the P1-detrended record mostly
falls within the ˙2� confidence interval (� is the standard
deviation of the distribution of the simulated ACFs) shows
that the fluctuations on all time scales of the P1-detrended
record are within the limits of fluctuations that can be
expected in realizations of an fGn with H = 0.65.

[28] In the present example, this result is quite obvi-
ous and trivial, since the noise dominates the “trends” and
the long-range correlations appear to be rather weak. The
results are consistent with the findings of Bunde et al. [2001]
for records from individual continental stations. The situa-
tion changes, however, when observations from individual
stations are synthesized into a global temperature record.
We have analyzed the global, monthly mean temperature
records from land, ocean, and combined land-ocean from
1850 A.D. to present [Brohan et al., 2006]. These data sets
are freely downloadable from the Hadley Center. The ocean
sea surface temperatures are so dominating in the combined
data set, that the analysis of the two data sets (ocean and
combined land-ocean) yields virtually identical results. In
this paper we therefore only present the results from the
combined data set.

4.2. The Global Land Temperature Record
[29] Figures 6 and 7 show the results of the analysis

of the global mean land temperature record (GMLT), the
CRUTEM4 global data set. The result of WVA is shown in
Figure 6a and yields H = 0.74. Figure 6b presents the result
of the DFA. Here, DFA0 yields a slope of H = 0.91, which
converges to H � 0.73 for DFA1-8. The temperature record
itself is shown in Figure 7c along with polynomial fits P1, P3,
and P7. The standard deviation of the P3-detrended record is
0.35 K. This is four times less than the standard deviation for
the CET data set, and demonstrates the dramatic reduction
global spatial averaging introduces on monthly fluctuation
levels. Fluctuation levels are reduced for both data sets if one
performs a moving average with a time window � , and the
reduction is larger for larger � . The rate at which the fluctu-
ations change with window size is exactly what fluctuation
analysis measures, i.e., the standard deviation of the mov-
ing average with window � is F(� )/� . Hence, if the data set
exhibits scaling with Hurst exponent H, the fluctuations of
the moving average scales as �H–1. It may not come as a sur-
prise that the fluctuation level of the CET data set decreases
faster with increasing � than the corresponding fluctuation
level for the GMLT data, since the monthly fluctuations for
the former is so much higher, and after averaging over sev-
eral decades, the fluctuations of two data sets are both dom-
inated by global variability and are of similar magnitude.
A faster decrease of the moving average with increasing �
implies a smaller H, hence, we should expect that the FA
yields smaller H for CET than for GMLT. This is exactly
what is found in Figure 7b. Here the dotted line has a slope
H = 0.77 (and corresponds to the thick line in Figure 7a), and
is the representative scaling exponent after P3-detrending.
In this range of Hurst exponents (H = 0.77, ˇ = 0.54),
the bias of H for FA estimates is close to –0.03, and the
error approximately ˙0.07. This should yield H = 0.80 ˙
0.07. H for WVA has negligible bias and error ˙0.07 and
yields H = 0.74 ˙ 0.07. DFA converges to something near
H = 0.73, with negligible bias and error (for DFA8) ˙0.07.
A value that is consistent with all these constraints must be
close to H = 0.75.

[30] The different scaling for CET and GMLT is phys-
ically very important because it illustrates that local
variability is dominated by the horizontal spatial structure of
the atmospheric circulation systems, while the global vari-
ability is dominated by different dynamical mechanisms (as
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Figure 7. (a) PSD of monthly GMLT record 1850–2010 A.D. Gray: undetrended. Red: P1 detrended.
Purple: P3 detrended. Blue: P7 detrended. Thick line has slope –ˇ = –0.54, corresponding to H = 0.77.
Vertical dashed lines mark the 60 year period (blue), and the 1 year period (red). (b) FA of the GMLT
record with variable degree of detrending. Black: after no detrending. Red: after P1-detrending. Purple:
after P3-detrending. Blue: after P7-detrending. The slopes for n = 1, : : : , 4 correspond to the following:
black: H = 0.91, red: H = 0.82, purple: H = 0.78, and blue: H = 0.65. The slopes for n = 5, : : : , 8 are as
follows: black: H = 0.87, red: H = 0.70, purple: H = 0.77, and blue: H = 0.23. Dotted line has slope 0.77.
(c) Gray curve: Monthly GMLT anomaly record 1850–2010 in degrees Kelvin (time origin starts 1850
A.D.). Red curve: P1- fit. Purple: P3-fit. Blue: P7 fit. (d) Black: ACF estimate from undetrended GMLT
record. Purple: ACF estimate from P3-detrended record. The shaded areas represent the 95% confidence
interval for the ACF computed from ensembles of fGns of the same length as the GMLT record and with
H = 0.75.

will become evident in the next subsection) influenced by
the ocean-atmosphere interaction.

[31] We have not yet explained why we have chosen a P3
detrended signal for estimation of H for the GMLT by the FA
method. Again, this is based on an assessment of the result
of the analysis using several different methods. The peri-
odograms for undetrended and P1-detrended records show
more power in the lowest frequencies than consistent with
a straight-line fit to the corresponding log-log periodogram,
and for detrending higher than P3 there is too little power
in these frequencies. The corresponding signatures in the FA
plots in Figure 7b is that scaling is lost for � > 3 years
for higher polynomial detrending. This picture is supported
by the ACFs in Figure 7d. The undetrended ACF estimates
is outside the confidence limits for a Monte Carlo ensem-
ble with H = 0.75, while the P3 detrended ACF is within
these limits. This implies that the monotonic trend is incon-
sistent with an fGn with H = 0.75, while the apparent 60 year
oscillation, which is prominent in the P7-detrended record,
can consistently be described as an fGn-fluctuation with this
Hurst exponent.

4.3. The Combined Global Ocean and Land Record
[32] This is the HadCRUT3 global data set for global

mean surface temperature (GMST), for which results are
shown in Figures 8 and 9. As mentioned earlier, this data
set is very similar to the HadSST global ocean sea sur-
face temperature data. The main difference from the analysis
of the GMLT is that the WVA and all DFA3-8 curves
have slopes corresponding to H � 1.0 (Figure 8), and the

log-log periodogram of the P3-detrended record is well fit-
ted by a line with slope –ˇ = –1 (Figure 9a). For H � 1.0
the bias of H for WVA and DFA3 is negligible, while the
error for WVA is ˙0.07 and for DFA3 is ˙0.14. However,
the variograms of the Pn-detrended records have slopes sim-
ilar to that of the GMLT record (Figure 9b), suggesting a
lower Hurst exponent in the range 0.8 < H < 0.9. One rea-
son why the slopes of the Pn-detrended variograms is lower
than H = (ˇ + 1)/2 = 1 suggested by the periodogram, WVA,
and DFA is the large bias of the variogram when H is close
to unity, as shown in Figure 2. This bias of H is –0.12 and
the error is ˙0.07. We must also take into account that the
estimates of bias and errors for FA in Figure 2 are done for
fGns without trends. As is apparent from Figure 9b, it is
difficult to assess accurately the appropriate degree of poly-
nomial detrending, and the appropriate fitting interval for the
FA, although of the variograms displayed, the one for P3
detrending gives the most constant scaling over the entire
range of � . That P3 detrending is the most appropriate is
confirmed by the results shown in Figure 9d. Here the ACF
estimates for the undetrended record are outside the confi-
dence intervals for ACFs for an H = 0.99-ensemble, whereas
the ACF estimate for the P3-detrended record is within these
confidence limits.

[33] The P7 polynomial fits for GMLT og GMST highlight
the existence of an oscillation in the instrumental records
with period of about 60 years. It has been suggested that
this oscillation is of astronomical origin [Scafetta, 2010,
2011a, 2011b], while the mainstream view is that it is of
internal origin and associated with the Atlantic Multidecadal
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Figure 8. (a) WVA of the GMST record. The slope of the
black line is ˇ = 1.07, corresponding to H = 1.03. (b)
DFA0–8 of GMST. The upper curve is the fluctuation func-
tion for DFA0, the ones below are DFAn, n = 1, : : : 8, with
DFAn + 1 coming as the curve right below DFAn.

Oscillation (AMO). Our analysis shows that removal of this
oscillation by P7-detrending destroys the scaling properties
of the record on time scales longer than a decade (the blue
variograms in Figures 7c and 9c, and that these oscillations
(which are present after P3-detrending) are within the con-
fidence limits for fGns with the estimated Hurst exponents.
In other words, these oscillations are explicable as natural
LRM-fluctuations superposed on a P3 growing trend, which
most likely is of anthropogenic origin. This is not inconsis-
tent with the AMO interpretation, since the AMO is not a
coherent oscillation, but rather one of many natural oscil-
lations of the climate system whose totality might be well
represented in the global temperature record as a pink-noise
LRM process.

[34] Since the GMST record is very similar to the global
sea surface temperature (SST) time series, it is reasonable
to assume that the higher memory in the GMST data, com-
pared to the GMLT, is due to the thermal inertia of the
oceans. However, the time constant of the thermal inter-
action between the atmosphere and the ocean mixed layer
is estimated to be at most a few years [Padilla et al.,
2011], while we find LRM extending at least over sev-
eral decades. This high inertia must involve heat exchange
between the mixed layer and the deep ocean which involves
the thermohaline overturning circulation [Vallis, 2012].

[35] The standard deviation of the monthly P3-detrended
GMST is only 0.17 K, which is half of that of the GMLT. On
multidecadal time scales, the two records have similar vari-
ability, so, this is consistent with the higher Hurst exponent
for the GMST. It may also suggest that the physical source
of the LRM in land temperatures is really associated with
ocean dynamics and ocean-atmosphere interaction, and not
within the atmosphere itself.

5. Analysis of Hemispheric Reconstructions
[36] A rule of the thumb is that scaling in a time record

of length N can be verified by FA or DFA only for time
scales up to � � N/10. For longer time scales, the number
of independent samples (the number of independent win-
dows of length �) is so low that the tail of the distribution
of the fluctuations is not well represented and the variance
is underestimated. The result is that the log-log curve of
the fluctuation function bends over for these large � . For
the WVA, the fluctuation function develops a wavy struc-
ture on these time scales. This is the reason why we have
only fitted straight lines to the log-log fluctuation function
for the global records up to log2 � = 8, corresponding to 256
months or about 20 years. From the instrumental records,
it is hard to verify if the LRM scaling holds for longer
scales than this, and is a major motivation for analyzing
longer records of reconstructed temperatures based on paleo
proxies. Unfortunately, the multitude of published northern-
hemisphere temperature reconstructions differ in the timing
of fluctuations on decadal and multidecadal time scales, and
also in the amplitude of the long oscillation of period approx-
imately a millennium, encompassing the Medieval Warm
Period (MWP) and the Little Ice Age (LIA). This ambi-
guity turns out to be a serious problem for establishing a
reliable assessment of the LRM properties of the records on
centennial time scales.

[37] We shall illustrate the issue by analyzing the longest
existing paleo reconstruction of northern hemisphere tem-
peratures [Moberg et al., 2005]. This reconstruction spans
the last two millennia (0–1979 A.D.) and is given with
annual resolution, although it appears smooth on time scales
less than a decade. We shall also give some consideration
to another recent reconstruction [Mann et al., 2009], which
spans the somewhat shorter period 500–1850 A.D. The lat-
ter, however, is more heavily low-pass filtered so that the
record appears smooth on time scales up to a few decades.
This makes the range of scales available for scaling analysis
smaller than for the Moberg record. Among the published
reconstructions, the Moberg record has one of the largest
amplitudes of the millennium oscillation, while the Mann
record is in the lower end; the difference being roughly a
factor two.

[38] The Moberg record itself is shown in Figure 10c
along with the seventh order (P7) polynomial fit. Lower-
order polynomial fits give insignificant trends as shown by
the variograms in Figure 10b. The undetrended variogram
suggests a Hurst exponent of H = 0.90 and the correspond-
ing line with slope –ˇ = –0.80 is plotted in Figure 10a along
with the periodogram of the undetrended and P7-detrended
signals. The periodogram of the P7-detrended record (i.e.,
the millennium oscillation is subtracted from the record)
displays a reduced power in the low-frequency part of the
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Figure 9. (a) PSD of monthly GMST record 1850–2010 A.D. Gray: undetrended. Red: P1 detrended.
Purple: P3 detrended. Blue: P7 detrended. Thick line has slope –ˇ = –1.0, corresponding to H = 1.0.
Vertical dashed lines mark the 60 year period (blue), and the 1 year period (red). (b) FA of the GMST
record with variable degree of detrending. Black: after no detrending. Red: after P1-detrending. Purple:
after P3-detrending. Blue: after P7-detrending. The slopes for n = 1, : : : , 4 correspond to the following:
black: H = 0.96, red: H = 0.92, purple: H = 0.88, and blue: H = 0.83. The slopes for n = 5, : : : , 8 are as
follows: black: H = 0.88, red: H = 0.82, purple: H = 0.78, and blue: H = 0.48. Dotted line has slope 0.77
and is the same as the dotted line in Figure 7b. (c) Gray curve: Monthly GMST anomaly record 1850–2010
A.D. Red curve: P1 fit. Purple: P3-fit. Blue: P7 fit. (d): Black: ACF estimate from undetrended GMLT
record. Purple: ACF estimate from P3-detrended record. The shaded area represents the 95% confidence
interval for the ACF computed from an ensemble of 5000 realizations of fBms of the same length as the
GMST record and with H = 0.99.

spectrum (i.e., for periods above 250 years). This creates a
flat variogram for � > 28 years and makes it difficult to fit
a straight line to any extended range of time scales � in the
variogram as shown by the blue, dotted curve in Figure 10b.
This detrending obviously does not remove only the actual
trend, but also the low-frequency part of the fGn noise back-
ground, and this may be the cause of apparent lack of scaling
of the detrended signal. On the other hand, it may not be
obvious from this analysis to which extent the millennium
oscillation should be interpreted as a trend, an inherent part
of the noise, or a combination of the two. The fact that
the power in the frequency corresponding to the 1000 year
period in the PSD of the undetrended signal is consider-
ably above the fit-line in Figure 10a suggests that all of the
power in this mode cannot be a part of the noise. This is
confirmed by the observation in Figure 10d that the biased
ACF estimated from the undetrended record is outside the
confidence limits for the biased ACF estimates for sam-
ples from the Monte Carlo ensemble of fGns with H = 0.9
(and this will also be the case for records with detrending
lower than seventh order). This means that the millennium
oscillation has too large amplitude to be consistent with
a H = 0.9 noise process.

[39] If the Moberg record can be modeled as a
millennium-oscillation trend similar to the blue curve in
Figure 10c superposed on an fGn with Hurst exponent of
the magnitude derived from WVA, FA, or DFA, it should be
possible to subject Monte Carlo realizations of such a model

to the same analysis as the observation data. The result of
these analyses should then agree within the established con-
fidence limits for the respective methods. We have done this
analysis as follows. First we produce a wavelet-filtering of
the Moberg signal which is similar to the P7 polynomial fit
shown in Figure 10c, but believed to be a somewhat bet-
ter representation of the millennium oscillation trend. The
detrended signal is obtained from subtracting this filtered
signal from the original record. We then produce a synthetic
Moberg signal consisting of this trend superposed on a real-
ization of an fGn with H = 0.87 and variance equal to that of
the detrended Moberg record. The results of the WVA and
FA applied to this signal and the observed Moberg record are
shown as the black and red curves in Figures 11a and 11b.
The same analyses have been applied to the fGn realization
and the detrended Moberg record in Figures 11c and 11d.
There is an overall good agreement between the analysis

results for the synthetic records and the observed ones. Since
the red curves in Figures 11c and 11d are results from anal-
ysis of a synthetic fGn, it is clear that most of the apparent
loss of scaling for large � in the variogram for the detrended
record is a feature of the FA method applied to a short record
and not a loss of LRM on these scales.

[40] Figure 12a shows results of the DFA applied to the
Moberg reconstruction, and Figure 12b to the detrended sig-
nal. This should be compared to the DFA of the synthetic
signal with the trend superposed on the fGn with H = 0.87
in Figure 12c and of the fGn itself in Figure 12d. For the
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Figure 10. (a) PSD of undetrended Moberg record 0–1979 A.D. (gray) and of P7-detrended record
(blue). Thick line has slope –ˇ = –0.80, corresponding to H = 0.90. Vertical dashed lines mark the 60
year period (blue), and the 1000 year period (red). (b) Variogram of the “profile” y(t) of the Moberg
record with variable degree of detrending. Black: after no detrending. Red: after P1-detrending. Purple:
after P3-detrending. Blue: after P7-detrending. The slope of the black line is: H = 0.90, red line: H = 0.89,
and purple line: H = 0.88. (c) Gray: Moberg record 0–1979 A.D. in degrees Kelvin. Blue: P7 fit . (d)
Black: ACF estimate from undetrended Moberg record. Blue: ACF estimate from P7-detrended record.
The shaded area represents the 95% confidence interval for the biased ACF computed from an ensemble
fGns of the same length as the Moberg record and with H = 0.90.

(a)

(c) (d)

(b)

Figure 11. (a) WVA of undetrended Moberg record (black) and of synthetic record consisting of
wavelet-filtered signal plus fGn with H = 0.87 (red). The slope of the black line is ˇ = 0.80 (H = 0.90)
and of the red line ˇ = 0.76 (H = 0.88). (b) FA of the same signals as in Figure 11a. The slope of the black
line is H = 0.90 and of the red line H = 0.86. (c) WVA of Moberg record detrended by subtraction of
wavelet-filtered signal (black) and of synthetic record consisting of fGn with H = 0.87 (red). The slopes
of the black and red lines are both ˇ = 0.70 (H = 0.85). (d) FA of the same signals as in Figure 11c. The
slopes of the black and red lines are H = 0.75 and H = 0.82, respectively. In the FA-curves the fit has
been made in the range of the full lines. The dashed lines are continuation of these lines to help visualize
the departure from scaling for large � .
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Figure 12. (a) DFA0–8 of undetrended Moberg record. The upper curve is the fluctuation function for
DFA0, the ones below are DFAn, n = 1, : : : 8, with DFAn + 1 coming as the curve right below DFAn. (b)
DFA0–8 of Moberg record detrended by subtraction of wavelet-filtered signal. (c) DFA0–8 of synthetic
record of wavelet-filtered Moberg record superposed on synthetic fGn with H = 0.87. (d) DFA0–8 of
synthetic fGn with H = 0.87.

observed signals in Figures 12a and 12b, there is an increas-
ing slope for increasing order of the DFA, which is related to
a downward curving of the fluctuation function for small � .
This anomaly is obviously caused by the smoother character
of the Moberg record for time scales less than a few decades,
as is clearly observed in the PSD shown in Figure 10a. It is
the same feature of the Moberg record that yields the dis-
crepancy for small � between the observed and synthetic
signals in the WVA shown in Figures 11a and 11c. Another
clear anomaly is the large slope of DFA0 for the signals
with trend, and the corresponding smaller slope of DFA0 for
the detrended signals. The former is due to the effect of the
trend on DFA0, the latter is due to a negative bias on esti-
mates like FA and DFA0. This bias will be discussed in the
next section. For DFA1–4 the results in Figures 12a–12d are
similar and consistent with the value H = 0.87, but with
some random scatter in the estimated H-values due to the
previously discussed errors associated with short records.

[41] We should bear in mind that the analysis on synthetic
records here has been done on one arbitrary realization of the
fGn. Estimates of H from other realizations will give some-
what different results. In section 3, we estimated biases and
error bars for WVA, FA, and DFA applied to ensembles of
realizations of fGns containing 2000 data points. The length
of 2000 data points in the record was chosen because the
global instrumental time series contain approximately 2000
data points with monthly resolution. The Moberg record also
contains nearly 2000 data points with annual resolution, but

from the periodogram in Figure 10a, we observe a strong
depletion of the spectrum for high frequencies, indicating
that the record is smooth on scales less than 4 years. This
is also the reason why the fluctuation function for WVA of
the Moberg signal in Figure 11a (black dots) is depleted for
� < 22. This means that the meaningful sampling interval
for the study of the scaling properties of this time record
is 4 years, and hence that the “real” length of the record is
about 500 data points. Hence, in a Monte Carlo study rele-
vant for this record, we should generate fGns of this length.
The result of such a study for FA and WVA yields results
similar to those shown in Figure 2, but with larger errors and
larger negative bias for FA. The negative bias of estimated
ˇ for FA is now –0.30 when ˇ approaches unity, and the
error for both FA and DFA is approximately ˙0.20. Since
H = (ˇ + 1)/2, the corresponding figures for the Hurst expo-
nent is a bias of –0.15 for FA and error for H of˙0.10. From
these bias and error estimates it makes little sense to give the
estimate of H for the detrended Moberg record with more
than one decimal, i.e., our best estimate is H = 0.9˙ 0.1 on
scales up to � � 250 years.

[42] A more rigorous approach to this problem is to make
Monte Carlo simulations with fGns properly filtered to yield
a PSD similar to that of the Moberg record. We do this by
wavelet filtering and show the WVA fluctuation function of
the filtered signal as the red dots in Figure 13a. The dots
are the mean values computed from an ensemble of filtered
fGns with ˇ = 0.75 (H = 0.875). The error bars are the 95%
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Figure 13. (a) Black dots: WVA fluctuation function for
the Moberg record. Red dots: Mean WVA fluctuation func-
tion for an ensemble of filtered fGns with ˇ = 0.75 (H =
0.875). The error bars indicate the 95% confidence intervals
estimated from the ensemble. (b) Periodogram for one real-
ization of the filtered fGn. The black straight line has slope
–0.8, corresponding to H = 0.9.

confidence intervals computed from this ensemble. The
black dots is the fluctuation function computed from the
Moberg signal, and is the same as the black dots in
Figure 11a. Recall that the red dots in Figure 11c represent
the fluctuation function for the unfiltered fGns and note how
the filtering makes the fluctuation function coincide with
that of the Moberg record for small time lags. The same is
seen in the PSD of a realization of the filtered fGn shown
in Figure 13b, which should be compared to the PSD of the
Moberg record in Figure 10a.

[43] We can now repeat the estimates of biases and errors
with a full length record of nearly 2000 data points, of fil-
tered fGns. The result of the WVA for such an ensemble
agrees very well with those of unfiltered fGns of length 500
data points, both in the small bias and the estimated error
bars. The results of the ACF estimates in Figure 10d are not
influenced noticeably by the filtering since the fluctuations
on the shortest time scales have little impact on the corre-
lations on longer time scales. A weakness of that analysis,
however, is that it is done for one specific value of ˇ, which
is the ˇ estimated from the WVA. But as our analysis shows,
this estimate has an uncertainty of ˙0.2, so we cannot be
certain that we have used the right ˇ to test if the millennium

oscillation in the Moberg record can be reconciled with the
fGn hypothesis. Below we shall show that we can do better.

[44] The procedure is as follows: for the observed record
xobs(t), we estimate ˇobs from the WVA method. The esti-
mate is Ǒobs. By low-pass wavelet filtering, we find an
estimated millennium-oscillation trend xT

obs(t) and we char-
acterize the strength of the trend by means of the range
Orobs � max (xT

obs) – min (xT
obs). Then we generate numerically

an ensemble of appropriately filtered fGns of length equal
to that of the Moberg record (1978 data points) and repeat
this procedure for each realization in the ensemble. The true
ˇ values for the synthetic fGns are drawn at random from a
prior probability density distribution p(ˇ). From this ensem-
ble, we can establish a conditional joint PDF p(Or, Ǒ|ˇ) and
the joint distribution of estimated Or, Ǒ is

p(Or, Ǒ) =
Z

(p(Or, Ǒ|ˇ)p(ˇ)dˇ. (13)

Our knowledge prior to the analysis in this section is that the
observed record can be described by an fGn, possibly super-
posed on an oscillatory trend. We also know an estimate Ǒobs
and the PDF for this estimate derived from an ensemble of
fGns generated with ˇ = Ǒobs. If the prior distribution p(ˇ) is
chosen to be this PDF, the joint PDF given by equation (13)
should be interpreted as the likelihood of observing the pair
(Or, Ǒ) provided the null hypothesis; that the signal is an fGn
without a trend, is true. In Figure 14, we have drawn the con-
tour of constant p(Or, Ǒ) that separates an internal region for
which the total probability is 0.95 from an external region
for which it is 0.05. It shows that if the WVA yields a small
estimated memory exponent Ǒ it is unlikely that the low-
pass wavelet filtering will estimate a spurious trend with a
high range parameter Or, but at high Ǒ it is more likely that
the estimates return a spurious strong trend. If the WVA and
wavelet detrending of the observed record yield (Orobs, Ǒobs)
lying in the region where p(Or, Ǒ) is large, it is not possible
to conclude that there is a real trend, i.e., we cannot falsify
the null hypothesis that no trend exists. On the other hand,
if (Orobs, Ǒobs) is well outside this region, the null hypothesis
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Figure 14. The closed contour indicates the line of con-
stant p(Or, Ǒ) inside which the integrated probability is 0.95.
The red dot is the estimated (Orobs, Ǒobs) for the Moberg
record. The blue dot is the same estimate for the modified
Moberg record where the millennium-oscillation amplitude
is reduced by a factor two.
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is falsified, and we have to conclude that there exists a sig-
nificant trend that goes beyond the fGn model. The red dot
in the plot is (Orobs, Ǒobs) for the Moberg record, and since
it is located outside the confidence region, it confirms our
result from previous sections that millennium oscillation in
this record is incompatible with the fGn null hypothesis,
and hence is a significant trend. But the red dot is not very
far outside the 95% confidence region, and it is therefore
imperative to investigate how sensitive this result is to the
estimated amplitude of the millennium oscillation.

[45] As mentioned in section 3, the millennium oscilla-
tion in the Moberg record has larger amplitude r than in
most other reconstructions. For instance, it is about twice the
amplitude of the more recent reconstruction by Mann et al.
[2009]. A crucial question is then if the significance of this
millennium trend will survive if the range r of the oscilla-
tion is reduced by a factor two. We produce such a signal by
adding a signal corresponding to the wavelet-filtered trend-
signal, but with half its amplitude, to the “detrended” signal.
The WVA fluctuation function of this modified Moberg
record coincides with the ensemble mean of the WVA fluc-
tuation function of the filtered fGns shown by the red dots in
Figure 11a, which already indicates that reducing the ampli-
tude in the slow oscillation by a factor two makes the result
consistent with an fGn. This conclusion is enforced by com-
puting Or, Ǒ for the modified record. The result is marked as
the blue dot on Figure 14b and falls close to the center of the
joint distribution.

6. Discussion and Conclusions
[46] In this paper we have employed non-parametric

detrending techniques on regional and global surface tem-
perature records. These techniques should be considered
complementary to the more model-dependent parametric
statistical methods. The results obtained confirm the exis-
tence of strong (H � 1) long-range memory in the global
temperature records on time scale from months and at least
up to several centuries obtained by non-parametric meth-
ods [Rybski et al., 2006], and on scales from months to
decades by parametric methods [Gil-Alana, 2005]. The error
bars (˙0.07) obtained on these estimates are due to the
short lengths of the records and not strongly dependent
on the analysis technique. Ensembles of numerical realiza-
tions of the same fGn process with 2000 data points shows
considerable diversity and is an unsurmountable source of
uncertainty when it comes to estimating the memory param-
eter from a single realization. The results further suggest
that the LRM is more pronounced in global than in local
records, and more pronounced in ocean records than in land
records. They also suggest that the LRM is associated with
the thermal inertia of the oceans, and not only the inertia of
the ocean mixed layer. Response times longer than a decade
must involve overturning circulations that couple the mixed
layer to the deep ocean [Delworth et al., 1993].

[47] It is well known that aggregation of AR(1) processes
with a wide distribution of lag-one autocorrelations � can
give rise to a long-memory process [Granger, 1980]. This
can be the case even if the individual processes are indepen-
dent. In principle, this could explain the emergence of LRM
as local temperature records are merged into a global record.
However, as we will demonstrate in a forthcoming paper,

there is strong evidence that even local temperature records
exhibit LRM, so the problem to deal with is rather aggre-
gation of relatively weakly persistent LRM-processes to
produce a strongly persistent fGn. On the other hand, the var-
ious subsystems of the climate system (atmosphere, ocean
mixed layer, deep ocean, sea ice, etc.) may exhibit exponen-
tial response functions with varying time constants, whose
aggregation may produce an LRM-response on the global
scale. These are challenging issues for future research.

[48] Our analysis confirms that the rising temperature
trend over the last century is too strong to be consis-
tently described as part of the LRM process associated with
undriven climate variability [Schlesinger and Ramankutty,
1994]. However, the 60 year oscillation that is observed in
these records, and especially strong in the ocean SST record,
is explicable as a natural LRM fluctuation, and does not have
to be externally driven.

[49] In Rypdal [2012], the deterministic version of
equations (1) and (3) were studied for a prescribed forc-
ing record F(� ), but without any stochastic forcing. The
result can be interpreted as the non-stochastic response to
this forcing, i.e., in one specific meaning of the word, as a
trend. The deterministic response signal shown in that paper
appears rather “noisy” in the sense that it contains some saw-
tooth-like spikes. These are the responses to forcing from
volcanic eruptions, which are present in the deterministic
parts of the forcing. Hence, with this definition, trends do
not have to be slow, and this makes the detection problem
more difficult. However, it helps a lot if we have knowledge
about the forcing F(t) that gives rise to the trend. The tradi-
tional approaches to detecting long-range memory in climate
records is to disregard the available information about the
deterministic forcing function F(t) and analyze the signal
as if it is the response to the stochastic forcing superposed
on some hypothesized slow trend. One such approach is to
assume that the response to the deterministic forcing can be
described by a low-order polynomial, and that the stochas-
tic second term of the solution is an LRM process. In the
present paper we have employed some of these techniques
to regional and global instrumental temperature records with
emphasis on establishing proper confidence limits on the
estimates of memory exponents.

[50] The results of our analysis of the Moberg recon-
struction are consistent with those obtained by Rybski et al.
[2006] and provide proper error bars which imply that the
actual Hurst exponent for the Moberg record is in the inter-
val 0.8 < H < 1.0, with the most probable value H = 0.9. The
millennium-oscillation trend consistent with this estimate is
given as the blue curve in Figure 10a. The last half-period
of this oscillation coincides approximately with the period
and phase of a number of reconstructions of total solar irra-
diance based un sunspot number observations, which do not
go further back than to the early 17th century, and hence
may incorporate the Maunder minimum and the LIA, but
do not extend back to the MWP [Gray et al., 2010]. How-
ever, a number of more recent multiproxy reconstructions,
which extend back to 850 A.D., show much higher ampli-
tudes of an oscillation with period of roughly 200 years than
of the millennium-period oscillation [Schmidt, 2011]. This
period is not very prominent in the Moberg record, so it may
be difficult to explain the millennium oscillation exclusively
as an effect of solar variability on the basis of these TSI
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reconstructions. It is not our ambition in this paper to provide
a physical explanation of the millennium oscillation in the
Moberg reconstruction of northern hemisphere temperature,
but one cannot disregard the possibility that this reconstruc-
tion overestimates its amplitude. Reducing this amplitude by
a factor of two will bring it in more in line with the majority
of other reconstructions, and then the null hypothesis; that
the millennium oscillation is an inherent part of the LRM
noise, and cannot be rejected. This means that, unless we
use information about the forcing record, it will not be pos-
sible to settle with any certainty the issue of whether this
oscillation is an LRM fluctuation or a forced variation of the
global climate. Fortunately, forcing reconstructions for the
last millennium exists, and using it to settle this issue will be
addressed in a forthcoming paper.

[51] Acknowledgments. The authors are grateful to Ola Løvsletten
for illuminating discussions and for contributing to a numerical routine for
accurate generation of fractional Gaussian noises.
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Abstract. Various interpretations of the notion of a trend
in the context of global warming are discussed, contrasting
the difference between viewing a trend as the determinis-
tic response to an external forcing and viewing it as a slow
variation which can be separated from the background spec-
tral continuum of long-range persistent climate noise. The
emphasis in this paper is on the latter notion, and a gen-
eral scheme is presented for testing a multi-parameter trend
model against a null hypothesis which models the observed
climate record as an autocorrelated noise. The scheme is
employed to the instrumental global sea-surface temperature
record and the global land temperature record. A trend model
comprising a linear plus an oscillatory trend with period of
approximately 70 yr, and the statistical significance of the
trends, are tested against three different null models: first-
order autoregressive process, fractional Gaussian noise, and
fractional Brownian motion. The parameters of the null mod-
els are estimated from the instrumental record, but are also
checked to be consistent with a Northern Hemisphere tem-
perature reconstruction prior to 1750 for which an anthro-
pogenic trend is negligible. The linear trend in the period
1850-2010 AD is significant in all cases, but the oscillatory
trend is insignificant for ocean data and barely significant for
land data. However, by using the significance of the linear
trend to constrain the null hypothesis, the oscillatory trend in
the land record appears to be statistically significant. The re-
sults suggest that the global land record may be better suited
for detection of the global warming signal than the ocean
record.

1 Introduction

At the surface of things, the conceptually simplest approach
to detection of anthropogenic global warming should be the
estimation of trends in global surface temperature through-
out the instrumental observation era starting in the mid-
nineteenth century. These kinds of estimates, however, are
subject to deep controversy and confusion originating from
disagreement about how the notion of a trend should be un-
derstood. In this paper we adopt the view that there are sev-
eral, equally valid, trend definitions. Which one that will
prove most useful depends on the purpose of the analysis and
the availability and quality of observation data.

At the core of the global change debate is how to distin-
guish anthropogenically forced warming from natural vari-
ability. A complicating factor is that natural variability has
forced as well as internal components. Power spectra of cli-
matic time series also suggest to separate internal dynamics
into quasi-coherent oscillatory modes and a continuous and
essentially scale-invariant spectral background. Over a vast
range of time scales this background takes the form of a per-
sistent, fractional noise or motion (Lovejoy and Schertzer,
2013; Markonis and Koutsoyannis, 2013). Hence, the issue
is threefold: (i) to distinguish the climate response to an-
thropogenic forcing from the response to natural forcing, (ii)
to distinguish internal dynamics from forced responses, and
(iii) to distinguish quasi-coherent, oscillatory modes from the
persistent noise background. This conceptual structure is il-
lustrated by the Venn diagram in Figure 1a. Figure 1b il-
lustrates three possible trend notions based on this picture.
Fundamental for all is the separation of the observed climate
record into a trend component (also termed the signal) and
a climate noise component. The essential difference between
these notions is how to make this separation.
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Fig. 1. Venn diagrams illustrating the interplay between forced, in-
ternal, and natural variability and various definitions of trend. (a):
Natural variability can be both forced and internal. Forced variabil-
ity can be both anthropogenic and natural. Internal variability is nat-
ural, but can consist of quasiperiodic oscillatory modes as well as a
continuum of persistent noise. (b): The three different trend notions
discussed in the text.

The widest definition of the trend is to associate it with all
forced variability and oscillatory modes as illustrated by the
upper row in Figure 1b. With this notion the methodological
challenge will be to develop a systematic approach to ex-
tract the trend from the observed record, and then to subtract
this component to establish the persistent noise component.
The physical relevance of this separation will depend on to
what extent we can justify to interpret the extracted trend as a
forced response with internally generated oscillatory modes
superposed. If detailed information on the time evolution of
the climate forcing is not used or is unavailable such a justi-
fication is quite difficult. In this case we will first construct
a parametrized model for the trend based on the appearance
of the climate record at hand and our physical insight about
the forcing and the nature of the dynamics. The next step
will be to estimate the parameters of the trend model by con-
ventional regression analysis utilizing the observed climate
record. The justification of interpreting this trend as some-
thing forced and/or coherent different from background noise
will be done through a test of the null hypothesis which states
that the climate record can be modeled as a long-range mem-
ory (LRM) stochastic process. Examples of such processes
are persistent fractional Gaussian noises (fGns) or fractional
Brownian motions (fBms). LRM processes exhibit stronger
random fluctuations on long time scales than short-memory
processes and hence a null model based on LRM-noise will

make it more difficult to reject the null hypothesis for a given
estimated trend. For comparison we will also test the null hy-
pothesis against a conventional short-memory notion of cli-
mate noise, the first-order autoregressive process (AR(1)). In
general, rejection of the null hypothesis will be taken as an
acceptance of the hypothesis that the estimated trend is sig-
nificant, and will strengthen our confidence that these trends
represent identifiable dynamical features of the climate sys-
tem.

A trend can be rendered significant under the AR(1) null
hypothesis, but insignificant under an LRM-hypothesis, and
then it could of course be argued that the value of this
kind of analysis of statistical significance is of little inter-
est, unless one can establish evidence that favors one null
model over another. One can, however, test the null models
against the observation data, and here analysis seems to fa-
vor the fGn/fBm models over short-memory models. There
are dozens of papers that demonstrate scaling properties con-
sistent with fGn or fBm properties in instrumental tempera-
ture data (see Rypdal et al. (2013) for a short review and
some references). But, since the instrumental records may be
strongly influenced by the increasing trend in anthropogenic
forcing, it is difficult to disentangle LRM introduced by the
forcing from that arising from internal, unforced variability.
Detrending methods such as the detrended fluctuation analy-
sis (Kantelhardt et al., 2001) are supposed to do this, but the
short duration of the instrumental records does not seem to
allow us to make an undisputable distinction between AR(1)
and fGn/fBm. We analyze this issue in section 3.3, where we
also comment the methods and conclusions in a recent study
by (Vyushin et al., 2012).

There are also other approaches that favor the LRM mod-
els for description of random internal variability in global
data on time scales from months to centuries. One is based
on analysis of temperature reconstructions for the last millen-
nium prior to the anthropocene (Rybski et al., 2006; Rypdal
et al., 2013). These temperature data are not influenced by
an anthropogenic trend, but exhibit self-similar scaling prop-
erties with spectral exponent β ≈ 1 (to be explained in sec-
tion 2) on time scales at least up to a century. Short-memory
processes like the AR(1) will typically exhibit scaling with
β ∼ 2 up to the autocorrelation time, and a flat (β ∼ 0) spec-
trum on time scales longer than this, but this is not observed
in these data. Another line of investigation has been to use
available time-series information about climate forcing in a
parametrized, linear, dynamic-stochastic model for the cli-
mate response (Rypdal and Rypdal, 2013). The trend then
corresponds to the deterministic solution to this model, i.e.,
the solution with the known (deterministic) component of the
forcing. In this model the persistent noise component of the
temperature record is the response to a white noise stochastic
forcing. In (Rypdal and Rypdal, 2013) analysis of the resid-
ual obtained by subtracting the deterministic forced solution
from the observed instrumental global temperature record
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shows scaling properties consistent with an fGn model and
inconsistent with an AR(1) model.

The method is described in Rypdal and Rypdal (2013),
where only exponential and scale-free long-range persistent
responses are modeled, without allowing for quasi-coherent
oscillations. The approach in that paper adopts the trend def-
inition described in the second row of Figure 1b. Here the
trend is the forced variability, while all unforced variability
is relegated to the realm of climate noise. It is possible, how-
ever, to incorporate forced and natural oscillatory dynamics
into such a response model.

The lower row in Figure 1b depicts the trend notion of
foremost societal relevance; the forced response to anthro-
pogenic forcing. Once we have estimated the parameters
of the forced response model, we can also compute the
deterministic response to the anthropogenic forcing sepa-
rately. One of the greatest advantages of the forced-response
methodology is that it allows estimation of this anthro-
pogenic trend/response and prediction of future trends un-
der given forcing scenarios, subject to rigorous estimates of
uncertainty. On the other hand, that method is based on the
assumption that the forcing data employed are correct. The
construction of forcing time series relies heavily on uncer-
tain observations and modeling, hence there is an obvious
case for complementary approaches to trend estimation that
do not rely on this kind of information. This is the approach
that will be explored in the present paper.

2 Trend Detection Methodology

2.1 The null models

The noise modeling in this paper makes use of the concept of
long-range memory (LRM), or (equivalently) long-term per-
sistence (LTP) (Beran, 1994). In global temperature records
this has been studied in e.g., Pelletier and Turcotte (1999);
Lennartz and Bunde (2009); Rybski et al. (2006); Rypdal
and Rypdal (2010); Efstathiou et al. (2011); Rypdal et al.
(2013); Rypdal and Rypdal (2013). Emanating from these
studies is the recognition that ocean temperature is more per-
sistent than land temperature and that the 20’th century ris-
ing trend is stronger for land than for ocean. LRM is charac-
terized by a time-asymptotic (t→∞) autocorrelation func-
tion (ACF) of power-law form C(t)∼ tβ−1 for which the
integral

∫∞
0
C(t)dt diverges. Here β is a power-law expo-

nent indicating the degree of persistence. The correspond-
ing asymptotic (f → 0) power spectral density (PSD) has the
form S(f)∼ f−β , hence β is also called the spectral index
of the LRM process. For 0< β < 1 the process is stationary
and is termed a persistent fGn. For 1< β < 3 the process is
non-stationary and termed an fBm. As a short-memory alter-
native we shall also consider the AR(1) process which has
an exponentially decaying ACF and is completely character-

ized by the lag-one autocorrelation φ (von Storch and Zwiers,
1999).

2.2 Previous work using LRM null models

Bloomfield and Nychka (1992) studied the signficance of a
linear trend in 128 years of global temperature assuming
different stochastic models, including fractionally integrated
white noise. They found that the trend in the record could not
be explained as natural variability by any of the models.

Significance of linear trends under various null models,
some exhibiting LRM, was also studied by Cohn and Lins
(2005). One of their main points was that trends classified as
statistically significant under a short-memory null hypothe-
sis might end up as insignificant under an LRM hypothesis.
The paper is a theoretical study of trend significance and is
motivated by the strong persistence which is known to ex-
ist in hydroclimatic records. As an example they study the
Northern Hemisphere (NH) temperature record and find that
their test renders the trend insignificant under the LRM null
hypothesis. They conclude that the trend might be due to nat-
ural dynamics. Analyses with similar and other methodolo-
gies on other records indicate that the global trend signal is
significant in spite of LRM (Gil-Alana, 2005; Rybski et al.,
2006; Lennartz and Bunde, 2009; Halley and Kugiumtzis,
2011; Rypdal et al., 2013). We show in the present paper
that the global land temperature record turns out to exhibit
a stronger trend and weaker LRM than the NH temperature
which is sufficient to establish trend significance. In contrast,
the weaker trend and stronger LRM of global ocean temper-
ature yield a less significant trend for this signal.

Some recent papers on LRM and trends are Fatichi et al.
(2009); Rybski et al. (2009); Franzke (2009, 2010); Franzke
and Woollings (2011); Franzke (2012a,b); Franzke et al.
(2012). Fatichi et al. (2009) and Rybski et al. (2009) study
station temperatures under different LRM null hypotheses,
and find significant linear trends in some, but not all, of the
records. Franzke (2012b) applies a methodology similar to
that of Cohn and Lins (2005) to single-station temperature
records in the Arctic Eurasian region. He emphasises that al-
most all stations show a positive trend, and that the melting
of Arctic sea ice leaves no doubt about the reality of an an-
thropogenic warming signal in the Arctic. By evaluating all
station data together, for instance by analysing the regional
averaged temperature, one would most likely arrive at a sig-
nificant trend. His point is that the natural variability for sin-
gle stations is so large and long-range correlated that it may
mask the warming signal at the majority of individual sta-
tions at the present stage of global warming. This is an im-
portant message to convey to those policymakers who have
got the impression that local climate projections universally
are sufficiently reliable to implement adaptive measures.
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2.3 Hypothesis testing methodology

In the present paper our main objective is to establish be-
yond doubt the significance of the global warming signal,
and if possible also the multidecadal oscillation. From the
studies discussed above, we know that there are many tem-
perature records from which this significance cannot be es-
tablished under an LRM null hypothesis, so we should search
for a signal that is optimal for trend detection. Such an opti-
mal signal seems to be the instrumental global land temper-
ature record HadCRUT3 (Jones et al., 2012). We will con-
trast this with analysis of the global ocean record (Kennedy
et al., 2011). These records are land-air and sea-surface
temperature anomalies relative to the period 1961-90, with
monthly resolution from 1850 to date. The analysis is made
using a trend model which contains a linear plus a sinusoidal
trend, although the methodology developed works for any
parametrized trend model. We test this model against the null
model that the full temperature record is a realization of an
AR(1) process, an fGn, or an fBm (the fBm model is of in-
terest only for the strongly persistent ocean data).

The significance tests are based on generation of an en-
semble of synthetic realizations of the null models; AR(1)
processes (φ < 1), fGns (0< β < 1), and fBms (1< β < 3).
Each realization is fully characterized by a pair of param-
eters; θ ≡ (σ,φ) for AR(1) and θ ≡ (σ,β) for fGn and fBm,
where σ is the standard deviation of the stationary AR(1) and
fGn processes and the standard deviation of the differenced
fBm. For an LRM null model the estimated value of β̂ de-
pends on which null model (fGn or fBm) one adopts. As we
will show below, for ocean data, it is not so clear whether
an fGn or an fBm is the most proper model (Lennartz and
Bunde, 2009; Rypdal et al., 2013), so we will test the signif-
icance of the trends under both hypotheses.

Technically, we make use of the R package by McLeod
et al. (2007) to generate synthetic fGns and to perform a
maximum-likelihood estimation of β. Since generation of
fBms is not included in this package, synthetic fBms with
memory exponent 1< β < 3 are produced by generating an
fGn with exponent β− 2 and then forming the cumulative
sum of that process. This is justified because the one-step dif-
ferenced fBm with 1< β < 3 is an fGn with memory expo-
nent β−2 (Beran, 1994). Maximum-likelihood estimation of
β for synthetic fBms and observed data records modeled as
an fBm is done by forming the one-time-step increment (dif-
ferentiation) process, estimate the memory exponent βincr for
that process and find β = βincr + 2. There are some problems
with this method when β ≈ 1. Suppose we have a data record
(like the global ocean record) and we don’t know whether
β < 1 or β > 1. For all estimation methods there are large er-
rors and biases for short data records of fGns/fBms for β ≈ 1
(Rypdal et al., 2013). This means that there is an ambiguity
as to whether a record is a realization of an fGn or an fBm
when we obtain estimates of β in the vicinity of 1. For the
MLE method this ambiguity becomes apparent from Figure
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Fig. 2. The red symbols and 95% confidence intervals represent the
maximum-likelihood estimate β̂ for realizations of fGns/fBms with
memory parameter β by adopting an fGn model. Hence, for β > 1
we find the estimate β̂ from a realization of an fBm with a model
that assumes that it is an fGn. The green symbols represent the cor-
responding estimate by adopting an fBm model, i.e., for β < 1 we
we find the estimate β̂ from a realization of an fGn with a model
that assumes that it is an fBm. “Adopting an fBm model” means
that the synthetic record is differentiated, then analyzed as an fGn
by the methods of McLeod et al. (2007) to obtain β̂incr, and then
finally β = β̂incr + 2.

2. Here we have plotted the MLE estimate β̂ with error bars
for an ensemble of realizations of fGns (for 0< β < 1) and
of fBms (1< β < 2) with 2000 data points. The red symbols
are obtained by adopting an fGn model when β is estimated.
Hence, for β > 1 we find the estimate β̂ from a realization of
an fBm with a model that assumes that it is an fGn. It would
be expected that the analysis would give β̂ ≈ 1 for an fBm,
but we observe that it gives β̂ considerably less than 1 in the
range 1< β < 1.4, so if we observe a β̂ in the vicinity of
1 by this analysis we cannot know whether it is an fGn or
an fBm. The ambiguity remains by estimating with a model
that assumes that the record is an fBm, because this yields a
corresponding positive bias as shown by the green symbols
when the record is an fGn. This ambiguity seems difficult to
resolve for ocean data as short as the monthly instrumental
record.

The standard method for establishing a trend in time-series
data is to adopt a parametrized model T (A; t) for the trend,
e.g., a linear model A1 +A2t with parameters A= (A1,A2),
and estimate the model parameters by a least-square fit of the
model to the data. Another method, which brings along addi-
tional meaning to the trend concept, is the MLE method. This
method adopts a model for the stochastic process; x(t) =
T (A; t) +σw(t), where w(t) is a correlated or uncorrelated
random process and establishes the set of model parameters
A for which the likelihood of the stochastic model to produce
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the observed data attains its maximum. The method applied
to uncorrelated and Gaussian noise models is described in
many standard statistics texts (von Storch and Zwiers, 1999),
and its application to fGns is described in McLeod et al.
(2007). If w(t) is a Gaussian, independent and identically
distributed (i.i.d.) random process, the MLE is equivalent
to the least-square fit. If w(t) is a strongly correlated (e.g.,
LRM) process, and the trend model provides a poor descrip-
tion of the large-scale structures in the data, MLE may as-
sign more weight to the random process (greater σ) than the
least-square method. On the other hand, if the trend model is
chosen such that it can be fitted to yield a good description
of the large-scale structure, the parameters estimated by the
two methods are quite similar, even if w(t) used in the MLE
method is an LRM process. In this case we can use least-
square fit to establish the trend parameters without worrying
about whether the residual noise obtained after subtracting
the estimated trend can be modeled as a Gaussian, i.i.d. ran-
dom process.

In the following, we make some definitions and outline
the methodology we adopt to assess the significance of the
estimated trend. Concepts defined are named with bold-
face fonts. Our methodology is based on standard hypoth-
esis testing, where the trend hypothesis (termed the “alterna-
tive hypothesis”) is accepted (although not verified, which is
stronger) by rejection of a “null hypothesis.” Failure of re-
jection of the null hypothesis implies failure of acceptance of
the alternative hypothesis, and hence the trend will be char-
acterized as insignificant under this null hypothesis. Hence, it
is clear that the outcome of the significance test will depend
on the choice of alternative hypothesis (trend model) as well
as on the null hypothesis (noise model).

Let us take the pragmatic point of view that a trend is a
simple and slowly varying (compared with a predefined time
scale τ ) function T (A; t) of t, parametrized by the trend co-
efficients A= (A1, . . . ,An). It is also required that for the
optimal choice of parameters, A= Âobs the trend T (Âobs; t)
makes a good fit to the large-scale structure of the data
record. In practice, this means that the trend should be close
to a low-pass filtered version of the signal, for instance a
moving average over time-scale τ . The trend is significant
with respect to a particular null model if the fitted T (Âobs; t)
is very unlikely to be realized in an ensemble of fits T (Â; t)
to realizations of the null model.

The alternative hypothesis can be formulated as follows:
The observed record x(t) is a realization of the stochastic
process

T (A; t) +σw(t), (1)

where the trend T (A; t) is a specified function of t depend-
ing on the trend coefficients A= (A1, . . . ,An), and w(t) is a
Gaussian stationary random process of unit variance. These
coefficients are estimated from a least-square fit to x(t) and
have the values Âobs. We assume that the trend model can be

fitted so well to the data that MLE-estimates of A with dif-
ferent noise models (white noise vs. strongly persistent fGn)
give approximately the same Âobs.

The null hypothesis states that the record x(t) is a real-
ization of a stochastic process

ε(θ; t), (2)

with certain properties to be specified (e.g., the process is
AR(1), fGn, or fBm). Like for the alternative hypothesis, the
parameters θ should be restricted to be close to the values
θ̂obs found from estimating it from fitting the null model (2)
to the data record by means of MLE.

The Monte Carlo null ensemble is the collection of real-
izations xi(θ) , i= 1,2, . . . , of the null model process (2).

The best choice of null model would be to utilize all
our possible knowledge about the true parameter set θ. This
implies considering θ as a random variable, and hence a
Bayesian approach (Gelman et al., 2004). We generate the
null ensemble by drawing θ from the conditional distribution
P (θ|θ̂obs), i.e., the probability that the “real” parameters of
the observed process are θ given that the estimated parame-
ters from the observed data are θ̂obs. One way of establishing
this distribution is to generate an ensemble of realizations of
the noise process with θ varied in a range around θ ≈ θ̂obs and
establish the conditional distribution P (θ̂|θ). From Bayes’
theorem one then has P (θ|θ̂) = P (θ̂|θ)P (θ)/P (θ̂). By set-
ting θ̂ = θ̂obs, and assuming a flat prior distribution P (θ) in
the range in the vicinity of θobs corresponding to the width of
the distribution we the find P (θ|θ̂obs) = P (θ̂obs|θ).

As an alternative to the Bayesian ideas described above
one could employ a frequentist approach. This means that we
assume that the null model has a fixed true parameter value θ.
This parameter value is unknown, and the strategy is to create
the Monte Carlo null ensemble xi(θ̂obs) , i= 1,2, . . . , using
the θ-values estimated from the observed data. We must then
take the uncertainty in the θ-estimates into account, since θ̂obs
may deviate from the true θ. This estimation error can be
quantified using the bootstrap method, which assumes that
the error in the parameter estimates in the null model with
parameters θ can be well approximated by the corresponding
errors for the null model with parameters θ̂obs. When estima-
tion errors are quantified one can easily adjust for these in the
hypothesis tests.

Pseudotrend estimates Â(i) are the coefficients obtained
by least-square fit of the trend model T (A; t) to the realiza-
tions xi(θ; t) of the null ensemble.

Pseudotrend distribution is the n-dimensional PDF
P (Â) over the null ensemble.

Null-hypothesis confidence region is the region Ω in n-
dimensional A-space for which P (A)> Pthr, where Pthr is
chosen such that

∫
Ω
P (A)dA= 0.95.

Significance of the trend model is established if the null
hypothesis is rejected, e.g., the full n-dimensional trend is
95% significant if Âobs /∈ Ω.
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If the null hypothesis is rejected by this procedure, we are
rejecting only those aspects of the null model that are rele-
vant to the full trend model, i.e., the trend model (alternative
hypothesis) produces trend coefficients Âobs that give a good
fit to the large-scale structure of the data, while it is very im-
probable that the null model can produce Â in the vicinity of
Âobs.

2.4 The trend model explored in this work

We will apply the method described in the previous subsec-
tion to global temperature record using the following trend
model:

T (A; t) = δ+A1t+A2 sin(2πft+ϕ). (3)

This is a simplified version of the models used in several
works by N. Scafetta (e.g., Scafetta, 2011, 2012) and the os-
cillation is supposed to model the 60-yr cycle observed in
the instrumental record (Schlesinger and Ramankutty, 1994).
The frequency f is not to be considered as a free model pa-
rameter to be estimated from the observed record and from
realizations of the null ensemble. When estimating pseu-
dotrends it has little meaning to let f be a free parameter,
since the synthetic noise records contain no preferred fre-
quencies. We rather treat f as a fixed quantity which is an
inherent part of the alternative hypothesis. In practice we se-
lect f from a least-square fit of the trend model to the ob-
served record varying all five parameters including f , but
this is not essential. We could just as well have hypothesized
a reasonable value of f by inspection of the record or from
other evidence of this oscillation presented in the literature.
The important thing to keep in mind is that the value of f
is part of the hypothesis. Of the estimated pseudotrend co-
efficients (Â1, Â2, δ̂, ϕ̂) only (Â1, Â2) quantify the strength
of the trend, so the relevant pseudotrend distribution to es-
tablish is P (Â1, Â2) irrespective of the values of irrelevant
parameters (δ̂, ϕ̂). Table 1 shows the estimated θ̂obs accord-
ing to the null model in (2) using AR(1), fGn and fBm as the
stochastic process ε(θ; t). Also in this table are the estimated
trend parameters (Â1, Â2) from applying the trend model in
(3) and the period T = 1/f of the oscillatory trend. Since, as
mentioned above, this period has been selected from a fitting
procedure it has slightly different values for the ocean and
land records.

2.5 Results

The results of the analysis are shown in Figure 3. We observe
that the trend parameters (Â1, Â2)obs are outside the null-
hypothesis 95% confidence region for all three noise models
and for ocean as well as land records. But we also observe
that the significance is more evident for land than for ocean,
and is reduced as more strongly persistent noise models are
employed. For the fBm model applied to ocean data the trend
is barely outside the 95% confidence region.
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Fig. 3. In panels (a-e) the red dots represent the estimated trend
coefficients (Â1, Â2)obs and the dashed, closed curve the 95% con-
fidence contour of the distribution P (Â1, Â2). (a): ocean data and
AR(1) null model. (b): land data and AR(1) null model. (c): ocean
data and fGn null model. (d): land data and fGn null model. (e):
ocean data and fBm null model. (f): Black curves: The global ocean
and land temperature records. Red curves: the linear and sinusoidal
trends.

It is the full trend model equation (3) that is accepted by
this test, but something can also be said about the separate
significance of the individual trends represented by the in-
dividual trend coefficients from the pseudotrend distribution
P (Â1, Â2). For the AR(1) and fGn null models it is appar-
ent from Figure 3a-d that the linear trend is highly signifi-
cant since Â1,obs is located far to the right of the confidence
region. On the other hand, except for the AR(1) model ap-
plied to land data in Figure 3b, A2,obs is not totally above the
confidence region. This means that the linear pseudotrends
observed in the null ensemble has negligible chance of get-
ting near the observed trend, while there is some chance to
find oscillatory trends in the null ensemble which are as large
as Â2,obs. The significance of those separate trends against
these null models is determined by forming the separate one-
dimensional PDFs,P (Â1)≡

∫
P (Â1, Â2)dÂ2 andP (Â2)≡∫

P (Â1, Â2)dÂ1 and form the confidence intervals in the
standard way. In Figure 4 we have formed the corresponding
one-dimensional cumulative distribution functions (CDFs)
from the two-dimensional PDFs for ocean data shown in Fig-
ure 3a, c, and e. We observe that the linear trend is significant
for the AR(1) and fGn null models, but barely significant for
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Table 1. Estimated noise parameters θ̂obs from the null hypotheses in (2) and trend parameters Âobs estimated from the trend model (3). The
units for the trend estimation are months for τ̂obs, 10−3 ◦C/yr for Â1,2,obs, and yr for the oscillation period T .

AR(1) fGn fBm Trend
τ̂obs β̂obs σ̂obs β̂obs σ̂obs Â1,obs Â2,obs T

Ocean 21.3 0.994 0.25 1.45 0.086 4.21 0.128 69.7
Land 3.43 0.654 0.49 6.34 0.186 73.4
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Fig. 4. Curved lines are CDFs for trend coeffecients Â1 and Â2

established from the null model ensemble for ocean data. Vertical
dashed line marks the upper 95% confidence limit. Vertical solid
line marks Â1,2,obs. (a) and (b): AR(1) null model. (c) and (d): fGn
null model. (e) and (f): fBm null model.

the fBm model. The oscillatory trend is insignificant for all
models.

The corresponding CDFs for land data are shown in Figure
5. The linear trend is even more significant than for ocean
data, while the oscillatory trend is significant for the AR(1)
model, but barely significant for the fGn model.

One important lesson to learn from this analysis is that the
stronger persistence in the ocean temperature record makes
it harder to detect significant trends as compared to the land
record. This effect outweighs the increased trend significance
from the lower noise levels in the ocean record compared to
the land record. Another is that the land record analysis es-
tablishes beyond doubt that there is a significant global linear
trend throughout the last century, and that the reality of an
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Fig. 5. Curved lines are CDFs for trend coeffecients Â1 and Â2

established from the null model ensemble for land data. Vertical
dashed line marks the upper 95% confidence limit. Vertical solid
lines mark Â1,2,obs. (a) and (b): AR(1) null model. (c) and (d): fGn
null model.

oscillatory trend is probable, but not beyond the 95% confi-
dence limit.

3 Constraining and Evaluating the Null Hypothesis

By estimating the parameters for the null model from the
full observed record (without detrending), and allowing this
model to be an LRM noise, we have selected the fractional
noise model that is most likely to explain the variance of the
full record. Hence it can be considered as the null model for
the climate noise that is least likely to be rejected by the ob-
served trend. If this null model is rejected, i.e., if the trend
is found to be significant under this null, it is very unlikely
that it will be found insignificant under other reasonable null
hypotheses. Since we have found that the linear trend in the
global land record is significant under this null, we should
have very high confidence in this result. The non-significance
of the oscillatory trend, however, deserves a reassessment in
the light of the established significance of the linear trend.
In a Bayesian spirit, it would be appropriate to investigate
the oscillatory trend further by including the linear trend as
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Table 2. Estimated noise parameters θ̂obs from the new null hy-
potheses in (4). The units are same as in Table 1.

AR(1) fGn
τ̂obs β̂obs σ̂obs

Land 2.04 0.584 0.391

an established fact and construct a null model constrained to
accept the existence of the linear trend;

3.1 A constrained null model yields significant oscilla-
tion

δ̂obs + Â1,obst+ ε(θ; t). (4)

We now first estimate a new θ̂obs by fitting the new null
model (4) to the observed land record. The new estimated
noise parameters are shown in Table 2. Then we produce a
new null ensemble of records from the null model by draw-
ing θ from the conditional distribution P (θ|θ̂obs). Finally we
fit the trend model (3) to each realization in the ensemble and
form P (Â1, Â2). The result is shown for land data and ε(θ; t)
modeled as an fGn in Figure 6a. The inclusion of the linear
trend in the null model will imply that we shall fit ε(θ; t) to
the record x̃(t)≡ x(t)− (δ̂obs + Â1,obst) rather than to x(t).
Since we already have established that x(t) contains a sig-
nificant linear trend, the variability of x̃(t) may be consider-
ably less than the variability of x(t) and hence the new esti-
mated noise parameters θ̂obs may correspond to smaller σ̂obs
and β̂obs than we obtained for the original null model. This re-
duction in noise parameters leads to narrowing of P (Â1, Â2),
and a narrower CDF for the oscillation trend parameter Â2,
as shown in Figure 6b. The result is that this constrained test
establishes that the oscillatory trend is also significant.

3.2 Evaluation of the null model

The long-range memory associated with fractional noises
and motions gives rise to larger fluctuations on long time
scales that allows description of such variability as part of
the noise background rather as trends. The implication is that
variability which has to be described as significant trends un-
der white noise or short-memory noise hypotheses may have
to be classified as insignificant trends under an LRM null
hypothesis. The issue of the most proper choice of null hy-
pothesis was touched upon in section 2, but let us re-examine
the issue in the light of the results we have obtained so far.

One way to deal with this issue is to apply an estimator
that characterizes the correlation structure of the observed
record and compare the outcome with those arising from ap-
plying the same estimator to different models for the climate-
noise background. There are several estimators, for instance
wavelet variances and detrended fluctuation analysis, that are
well suited for extracting the scaling properties of a time se-
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Fig. 6. (a): The 95% confidence contour of the distribution
P (Â1, Â2) for land data obtained by the new null model (4) with
ε(θ; t) an fGn process. (b): The CDF derived from P (Â2) for this
null model, with upper 95% confidence limit marked as dotted ver-
tical line.

ries and estimating a β-exponent. For LRM processes such
as fBm and fGn (which are respectively self-similar pro-
cesses and the differences of self-similar processes) the fluc-
tuation level of a time series varies as a power law ver-
sus time scale τ , and one can therefore analyze data using
double-logarithmic plots of the so-called fluctuation func-
tions. For processes with a characteristic time scale τc, such
as the AR(1) processes, the fluctuation functions will not be
power laws, and this can be seen from the estimated fluctu-
ation functions. For an AR(1) process, which has an auto-
correlation function on the form e−t/τc , the time series be-
haves like a Brownian motion (β = 2) for time scales t� τc
and a white noise process (β = 0) for t� τc. If a time series
is sufficiently long, the crossover between these two scaling
regimes is clearly visible in the estimated fluctuation func-
tions, and since we do not observe such crossovers in global
temperature records, we can use fluctuation functions to il-
lustrate that LRM processes are better suited than AR(1) pro-
cesses as models for the global temperature. This idea is pur-
sued in (Rypdal and Rypdal, 2013), where detrended fluc-
tuation analysis is employed to show that a residual signal
(constructed by subtracting the deterministic response to the
external forcing) is inconsistent with an AR(1) process, but
consistent with an LRM process.

The test described above utilizes a method designed to es-
timate the scaling exponent β in LRM processes. As an al-
ternative, we can use a test based on an estimator for the
correlation time τc in an AR(1) process. For this test we
should think of our time series as a discrete-time sampling
of a continuous-time stochastic process. The continuous-time
analog of an AR(1) process is the Ornstein-Uhlenbeck (OU)
process. If a time series Tk is obtained from an OU process
by sampling it at times tk = k∆t, then the one-lag autocor-
relation of Tk is φ(∆t) = e−∆t/τc . We can obtain a standard
sample estimate φ̂(∆t) of the lag-one autocorrelation, and
from this we obtain an estimate of the correlation time:

τ̂c =
∆t

− log φ̂(∆t)
. (5)
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Fig. 7. Panels (a) and (b) show the estimated decorrelation time τc
as a function of sampling time ∆t for the ocean temperature (black
circles) and for ensembles of synthetic realizations of three differ-
ent stochastic processes: An OU process (cyan) in panel (a), and
fGns (red) and fBms (green) in panel (b). The synthetic processes
are generated with parameters estimated from the observed record
by the MLE method, and the colored areas are the 95% confidence
regions for these estimates. The gray area in panel (a) is the con-
fidence region for τc for a white noise process. Panels (c) and (d)
show the decorrelation time of the linearly detrended ocean temper-
ature and for the synthetic realizations of the processes generated
from the new null model; equation (4).

Monte Carlo simulations show that this estimate is indepen-
dent of ∆t, as long as ∆t < τc. However, if the process
is an fGn rather than an OU process, then the autocorrela-
tion function of the time series Tk is approximated well by
(β+ 1)β(k∆t)β−1, and hence the lag-one autocorrelation is

φ(∆t) ≈ (β+ 1)β∆tβ−1 .

If τc is defined via τc = ∆t/(− logφ(∆t)), then

τc =
∆t

− log(β+ 1)β− (β− 1) log∆t
.

This shows that OU processes and fGns can be distinguished
by how an estimator of the correlation length depends on the
sampling rate for the time series: For an OU process the esti-
mate of τc is independent of ∆t as long as ∆t < τc, and for
fGns the estimates of τc grow with ∆t. In Figures 7 and 8
we have plotted the estimates of τc according to equation (5)
for ocean and land temperatures respectively, with and with-
out linear detrending. For the land temperature, full detrend-
ing (removing the trend (3)) is also included. The estimates
are shown as the circular plot markers in the figures. There
is a clear increase in the τc estimate as ∆t varies from 1 to
30 months. We have compared the results with Monte Carlo
simulation of a white noise process, OU processes, fGns and
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Fig. 8. Panels (a) and (b) show the estimated decorrelation time τc
as a function of sampling time ∆t for the land temperature (black
circles) and for ensembles of synthetic realizations of three different
stochastic processes: An OU process (cyan) in panel (a), and fGns
(red) in panel (b). The synthetic processes are generated with pa-
rameters estimated from the observed record by the MLE method,
and the colored areas are the 95% confidence regions for these es-
timates. The gray area in panel (a) is the confidence region for τc
from a white noise process. Panels (c) and (d) show the decorre-
lation time of the linearly detrended land temperature and for the
synthetic realizations of the processes generated from the new null
model; equation (4). Panels (e) and (f) show the decorrelation time
of the land temperature after removing the full trend; equation (3),
and for the synthetic realizations of the processes generated from
the detrended record by the MLE method.

fBms. Here the synthetic temperature series are constructed
using parameters obtained by MLE. For the ocean tempera-
ture without detrending the test shows that the data is most
consistent with a nonstationary fBm, and after linear detrend-
ing it is more consistent with an fGn than with an OU pro-
cess. For the land temperature we observe that neither of the
processes fit the data unless we perform a detrending, and
for the detrended data there are only small differences be-
tween a white noise process, an OU process and the fGn with
β = 0.54. The reason for this is that the ML estimate of τc is
so small (close to the monthly time resolution of the tempera-
ture record) that the model OU process is effectively reduced
to a white noise on all resolved time scales. The white noise
process is a special case of an fGn, so the fGn class of pro-
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cesses is clearly preferred in this case as well, although the
test presented here is not suitable for estimating the β expo-
nent. There are other tests that are better suited for accurate
estimation of β, and if we apply these we will see that a per-
sistent process (β > 0) is a better model for detrended land
temperatures than white noise (β = 0) (Rypdal et al., 2013).

The model selection test we have described here illustrates
the important point that if one decides to model global tem-
perature fluctuations as OU processes, then the choice of op-
timal model depends strongly on the time resolution of the
time series. The same is not true for fGns and fBms, and this
reflects the fact that global temperature data to a good ap-
proximation are scale invariant.

The method presented here can be seen as a generalization
of the method presented by Vyushin et al. (2012), who at-
tempt to distinguish between scale-free processes and AR(1)
processes by considering estimates of φ(∆t) for two different
time resolutions ∆t (monthly and annual). However, our re-
sults show that this test fails if the estimated τc is less than
a year, which turns out to be the case for the land record.
Vyushin et al. (2012) analyze a large number of local and
regional time series and find that some are consistent with
fGns, other with AR(1)s, but most are inconsistent with both.
It is reasonable to expect that many of these records are in the
category for which the test fails.

4 Conclusions

In this paper we have attempted to classify the various pos-
sible ways to understand the notion of a trend in the climate
context, and then we have focused on the detection of a com-
bination of a rising and oscillatory trend in global ocean and
land instrumental data when no information about the climate
forcing is used. It is well known that the statistical signifi-
cance of the trends depends on the degree of autocorrelation
(memory) assumed for the random noise component of the
climate record (Cohn and Lins, 2005; Rybski et al., 2006,
2009). It is also known that the linear trends are easier to de-
tect and appear to be more significant in global than in local
data (Lennartz and Bunde, 2009), although local records ex-
hibit weaker long-term persistence than global records. De-
spite this fact, much effort is spent on establishing trends and
their significance in data from local stations (e.g., Franzke,
2012b) with variable results. The failure of detecting con-
sistent trends in local data records reflects the tendency of
internal spatiotemporal variability to mask the trend that sig-
nals global warming, and we believe therefore that investi-
gation of such trends should be performed on globally aver-
aged data. For global data records our study demonstrates
very clearly that the long-range memory observed in sea-
surface temperature data leads to lower significance of de-
tected trends compared to land data. This does not mean,
of course, that the global warming signal and internal os-
cillations are not present in all of those records. It is just

not possible to establish the statistical significance of these
trends from these records alone, since the large short-range
weather noise in local temperatures and the slower fluctua-
tions in ocean temperature both reduce the possibilities of
trend detection. Hence, one needs to search for the optimal
climate record to analyze for detection of the global warming
signal, and our results suggest that the global land tempera-
ture signal may be the best candidate for such trend studies.

While a linear trend is only marginally significant under
the long-range memory null hypothesis in ocean data, it is
clearly significant in land data. Hence, there should be no
doubt about the significance of a global warming signal over
the last 160 years even under null hypotheses presuming
strong long-range persistence of the climate noise.

Assessment of the statistical significance of a linear trend
is of course not the only way to detect the global warming
signal in temperature records. An alternative hypothesis in
the form of a second- or third-order polynomial trend would
give a more precise, but more technically complex assess-
ment. Other approaches are not based on trend estimates at
all. Some methods compare spatiotemporal observations to
patterns of natural variability obtained from global climate
models. These patterns represent the null model, and the de-
tection is typically performed through “fingerprint methods”
rather than using just single observable such as the global
temperature (Hasselmann, 1993; Hegerl, 1996). The validity
of the method depends, of course, on the assumption that the
climate model correctly describes the relevant aspects of the
pattern of natural variability, e.g., the long-range correlation
structure in space and time. This is not an obvious assump-
tion, since there are significant differences between climate
models in this respect (Govindan et al., 2001; Blender and
Fraedrich, 2003).

Other methods are based on null models like those con-
sidered in the present paper, but rather than estimating trends
one estimates the probability of observing the recent cluster-
ing of record-breaking temperatures at the end of the instru-
mental record (Zorita et al., 2008). The method is concep-
tually and technically simpler than the trend assessment, but
it depends crucially on the assumption that the null model
is strictly true on the shortest inter-annual time scales, since
it assumes that the probability of variation from one year to
the next is determined by this model. In contrast, the trend as-
sessment emphasizes the properties of the null model on time
scales up to a century, so it rather assumes the null model
is strictly true on multi-decadal to century scales. The two
approaches are complementary, but we believe the trend ap-
proach is better designed to detect the smooth, monotonic
global warming signal, since it will be insensitive to particu-
lar interannual to decadal variability such as ENSO, or vari-
ability due to forcing from clusters of volcanic eruptions or
solar-cycle variations. The elimination of these variabilities
may be important for detection of the anthropogenic trend,
as was shown by multiple regression techniques by Foster
and Rahmstorf (2011) and Lean and Rind (2009). Moreover,
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in the approach of Zorita et al. (2008) inclusion of the 70 yr
oscillation in the null model would lead to enhanced proba-
bility of clustering of record-breaking temperatures at the end
of the twentieth century, and hence a reduction of the signifi-
cance of the warming signal. These are examples illustrating
that one may arrive at misleading results without careful se-
lection of the alternative as well as null models based on the
data at hand and existing knowledge. In a Bayesian frame-
work this is obvious.

Our initial analysis leaves some doubt about the signifi-
cance of the 70 yr oscillatory mode in the global signal, as
shown in Figure 4d and 4f and Figure 5d. By means of a
Bayesian iteration, however, utilizing the established signif-
icance of a linear trend to formulate a constrained null hy-
pothesis, we are able to establish statistical significance of
the oscillatory trend in the land data record. We believe this
is an important result, because it means that we cannot dis-
miss this oscillation as a spontaneous random fluctuation in
the climate noise background. By the analysis presented here
we cannot decide whether this oscillation is an internal mode
in the climate system or an oscillation forced by some exter-
nal influence. Such insights can be obtained from a general-
ization of the response model of Rypdal and Rypdal (2013)
by employing information about the climate forcing, and will
be the subject of a forthcoming paper. There are various pub-
lished hypotheses about the nature of this oscillation. The
least controversial is that this is a global manifestation of
the Atlantic Multidecadal Oscillation (AMO) which is essen-
tially an internal climate mode (Schlesinger and Ramankutty,
1994). Some authors go further and suggest that this oscilla-
tion is synchronized and phase locked with some astronomi-
cal influence (Scafetta, 2011, 2012). Although some of these
suggestions seem very speculative, there are some quite well-
documented connections between periodic tidal effects on
the Sun from the motion of the giant planets and radioisotope
paleorecord proxies for solar activity on century and millen-
nium time scales (Abreu et al., 2012). So far there exists no
solid evidence that these, and multidecadal, variations in so-
lar activity have a strong influence on terrestrial climate, but
the issue will probably be in the frontline of research on nat-
ural climate variability in the time to come. The work pre-
sented here cannot shed light on the physical cause of this
oscillation, but it presents evidence that it is a phenomenon
that stands out from the long-memory background of random
temperature fluctuations. Its importance for our assessment
of anthropogenic global warming is obvious from the obser-
vation that the oscillation seems to peak at the turn of the
millennium and hence provides a possible explanation of the
current hiatus in global temperature.
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Abstract. Northern Hemisphere (NH) temperature records
from a reconstruction and a number of millennium-long
climate model experiments are investigated for long-range
memory (LRM). The models are two Earth system mod-
els and two atmospheric-ocean general circulation models.
The periodogram, detrended fluctuation analysis and wavelet
variance analysis are applied to examine scaling proper-
ties and to estimate a scaling exponent of the temperature
records. A simple linear model for the climate response to
external forcing is also applied to the reconstruction and the
forced climate model runs, and then compared to unforced
control runs to extract the LRM generated by internal dy-
namics of the climate system. With one exception the cli-
mate models show strong persistent scaling with power spec-
tral densities of the form S(f)∼ f−β with 0.8< β < 1 on
time scales from years to several centuries. This is some-
what stronger persistence than found in the reconstruction
(β ≈ 0.7). The exception is the HadCM3 model, which ex-
hibits β ≈ 0.6. We find no indication that LRM found in
these model runs are induced by external forcing, which sug-
gests that LRM on sub-decadal to century time scales in NH
mean temperatures is a property of the internal dynamics
of the climate system. Temperature records for a local site,
Reykjanes Ridge, are also studied, showing that strong per-
sistence is found also for local ocean temperature.

1 Introduction

The presence of long-range memory (LRM) in climatic
records is well documented in the geophysics litera-
ture. LRM is characterized by an algebraically decay-
ing autocorrelation function limt→∞C(t)∝ t−γ such that∫∞
0
C(t)dt=∞, i.e., 0< γ ≤ 1. Equivalently, the power

spectral density (PSD) of LRM time series follows a power
law limf→0S(f)∝ f−β , where β = 1− γ and 0< β < 1.
A typical model for an LRM stochastic process is the per-
sistent fractional Gaussian noise (fGn). This is a stationary
process with 0< β < 1. The cumulative integral (or sum) of
such a process has the PSD of the form S(f)∼ f−β , but with
β→ β+2. Such a process with 1< β < 3 is a non-stationary
LRM process called a fractional Brownian motion (fBm).

Because of the noisy nature of PSD estimators like the
periodogram, other methods for estimating β are preferred
(Beran et al., 2013). In this paper we use the periodogram as
the first crude characterization of the data and for detection
of spectral peaks indicating lack of power-law scaling, but
employ Detrended Fluctuation Analysis (DFA) and Wavelet
Variance Analysis (WVA) for parameter estimation.

Most of the LRM studies of climatic time series investigate
local time records (e.g., Pelletier, 1997; Weber and Talkner,
2001; Eichner et al., 2003), but LRM has also been found in
global observed temperature records (Lennartz and Bunde,
2009) and reconstructed temperature records for the North-
ern Hemisphere (Rybski et al., 2006; Mills, 2007). Some
surface temperature records from AOGCM climate models
have been analyzed with the main result that LRM is not re-
produced in agreement with that of observational tempera-
ture (Syroka and Toumi, 2001; Bunde et al., 2001; Govindan
et al., 2001, 2002; Bunde and Havlin, 2002). Some of the
model experiments produce temperature with multiple scal-
ing regimes, and some of them yield smaller scaling expo-
nents than the observational temperature. However, in (Sy-
roka and Toumi, 2001; Bunde et al., 2001; Govindan et al.,
2001) the model experiments all had greenhouse gas forc-
ing as the only dynamic forcing, while remaining external
forcings, such as total solar irradiance and volcanic effects,
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were kept constant. Govindan et al. (2002) and Bunde and
Havlin (2002) used experiments where (i) all forcings were
fixed, (ii) with fixed forcings except greenhouse gas forc-
ing, and (iii) with fixed forcings except greenhouse gas plus
aerosol forcing. Their main conclusion was that the temper-
ature from the model experiments fail to reproduce the scal-
ing behaviour found in observational data, and that the mod-
els display large differences in scaling from different sites.
Of these scenarios, the one with dynamic greenhouse gas
plus aerosol forcing performed better with respect to produc-
ing the scaling observed in instrumental temperature records.
Global fields of observed and simulated surface temperatures
from an AOGCM climate model experiment were studied in
Fraedrich and Blender (2003). The experiment was run with
fixed forcings. The result from observational data was mostly
in agreement with previous studies of temperature in oceanic
and coastal regions, but the authors found white noise scal-
ing (β ≈ 0) at continental interiors. Analysis of a 1000-year
temperature simulation from the model experiment produced
similar scaling exponents to what was found for the observa-
tional data in this study. Blender and Fraedrich (2003) made
a similar analysis of temperature from two different model
experiments with dynamic greenhouse gas forcing, giving re-
sults in agreement with Fraedrich and Blender (2003).

Temperature from model experiments with constant forc-
ings, and time-varying greenhouse gas, sulfate aerosol,
ozone, solar, volcanic forcing and various combinations was
studied in Vyushin et al. (2004). Scaling exponents for tem-
perature at 16 land sites and 16 sites in the Atlantic ocean
were estimated. They found that inclusion of volcanic forc-
ing considerably improved the scaling behavior. Rybski et al.
(2008) used model experiments with all constant forcing and
with dynamic solar, volcanic and greenhouse gas forcing.
They analyzed data from grid cells all over the globe, but did
not investigate global or hemispheric means. They found that
for the forced run experiment the temperature showed a scal-
ing exponent in agreement with observational temperature,
while the temperature from the control run showed generally
lower persistence.

Studies of LRM in temperature records from climate
model experiments mostly use temperature from local sites,
and some also use temperature spatially averaged over larger
regions. Global mean temperature was studied by Syroka and
Toumi (2001), but hemispheric means have not been studied
with regards to LRM. For observational and reconstructed
temperature, global and hemispheric means are also far less
studied than local data.

In the present study we analyze scaling properties of sur-
face temperature for the Northern Hemisphere from paleocli-
mate simulations and compare to those of temperature recon-
struction by Moberg et al. (2005) which spans the last two
millennia. Hemispheric temperature records from four dif-
ferent Earth system climate models are analyzed, and both
forced runs and control runs are investigated. In order to
avoid effects of anthropogenic forcing only data up to the

year 1750 is used. This will give an idea of what role other
natural external forcing like solar, CO2, volcanic and aerosol
forcing play in producing LRM, and indicate if LRM can
arise from internal dynamics alone.

Separation of the LRM arising from internal dynamics
from the LRM induced by external forcing can also be
achieved from reconstructed and simulated temperature data
if the forcing data are known. The method makes use of
a simple linear model for the global temperature response
(Rypdal and Rypdal, 2013). The response to the external
forcing can then be computed and subtracted from the ob-
served or modeled temperature record to yield a residual
which represents the internal variability of the climate sys-
tem. Analysis of this residual and temperature from forced
runs and control runs are compared for those models where
temperatures from both forced runs and control runs are
available.

This paper is organized as follows: Section 2 describes the
DFA and WVA methods and the response model. Informa-
tion about the models and the data used can be found in Sec-
tion 3, and the results from the analysis are presented in sec-
tion 4. Discussion and conclusion follow in section 5.

2 Methods

2.1 Detrended Fluctuation Analysis

The Detrended Fluctuation Analysis (DFA) (Peng et al.,
1994; Kantelhardt et al., 2001) was explicitly designed to
remove polynomial trends in the data. The method can be
summarized in four steps. First, we construct the cumula-
tive sum (the “profile”) of the temperature time series x(t);
Y (i) =

∑i
t=1x(t)−〈x〉, where 〈x〉 denotes the mean. In

the second step the profile is divided into Nτ =N/τ non-
overlapping segments of equal length τ . This is done both
starting at the beginning and at the end of the profile, so 2Nτ
segments are obtained altogether. In the third step, an n’th
order polynomial is fitted to, and then subtracted from, each
segment. Thus, at this stage we have formed the detrended
profile Yτ (i) = Y (i)− pν(i), where pν(i) is the polynomial
fitted to the ν’th segment. In the final step, the variance of
each segment, F 2(ν,τ) = 1

τ

∑τ
i=1Y

2
τ [(ν− 1)τ + i], is com-

puted. The fluctuation function is given by the square root of
the average over all the segments,

F (τ) =

[
1

2Nτ

2Nτ∑

ν=1

F 2(ν,τ)

] 1
2

.

The scaling parameter β is found through the relation

F (τ)∝ τ (β+1)/2.

What we have described is the n’th order detrended fluctua-
tion analysis, denoted DFAn. It has the property of eliminat-
ing the effect of an n− 1’th order polynomial trend. In this
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paper we employ second order DFA, denoted DFA2, which
eliminates linear trends.

2.2 Wavelet Variance Analysis

The continuous wavelet transform is the convolution between
a time series x(t) and the rescaled wavelet Ψ(t/τ);

W (t,τ ;x(t),Ψ(t)) =

∞∫

−∞

x(t′)
1√
τ

Ψ

(
t′− t
τ

)
dt′.

The mother wavelet Ψ(t) and all rescaled versions of it
must fulfill the criteria

∫∞
−∞Ψ(t′)dt′ = 0. For LRM time se-

ries, the variance F (τ) = (1/N)
∑N
t=1W

2(t,τ) scales as a
power-law (Flandrin, 1992; Malamud and Turcotte, 1999),

F (τ)∼ τβ .

The method is therefore known as the wavelet variance anal-
ysis (WVA). In this study we have used the Mexican hat
wavelet, which is capable of eliminating linear trends, and
denote the method WVA2. The properties of the WVA2 anal-
ysis are similar to the DFA2 in that it usually yields similar
values of β. It is, however, much more sensitive to the pres-
ence of additional oscillations in the data, which show up as
wavy structures in the function F (τ). We use it in this paper
mainly as a tool (in addition to the periodogram) to detect
such oscillations.

2.3 The response model residual analysis

For the preindustrial period the most important contributions
to the external radiative forcing F (t) are orbital, solar vari-
ability, and aerosols from volcanic eruptions. Orbital forcing
can be computed with high accuracy, and total solar irradi-
ation has been reconstructed for the last ten millennia. Ex-
isting reliable reconstructions of volcanic forcing cover the
last millenium. The forcing data used here are further de-
scribed in Section 3. The evolution of the global mean sur-
face temperature anomaly T on decadal to millennial time
scales can tentatively be modeled as a linear response to F (t)
in addition to a response to stochastic forcing from unre-
solved spatiotemporal “turbulence” (e.g., forcing of the sea-
surface temperature from atmospheric weather systems). A
simple stochastic-dynamic model (SDM) with an LRM re-
sponse function is (Rypdal and Rypdal, 2013):

T (t) = µ[

t∫

0

(t− s)β/2−1F (s)ds

︸ ︷︷ ︸
deterministic solution

+σ

t∫

0

(t− s)β/2−1dB(s)

︸ ︷︷ ︸
1/fβ noise

].

Here B(s) is the Wiener stochastic process whose incre-
ments dB(s) is a Gaussian white noise process and σdB(s)
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Fig. 1. The different forcings used as input to the response model,
i.e. Crowley forcing used with the Moberg reconstruction (black),
forcing used in the COSMOS experiment (red) and forcing used in
the LOVECLIM experiment (green).

represents the stochastic component of the forcing. T (t) is
the temperature relative to the temperature T0 at time t= 0
(the beginning of the record) and F = F̃ +F0 is perturbed
forcing F̃ relative to that of a radiative equilibrium at sur-
face temperature T0 plus the actual radiative imbalance F0

at t= 0. By definition F̃ (0) = 0. F0 is a model parameter
which is estimated from the data along with the other model
parameters β, µ, and σ. The stochastic part of this solution
(the term to the right) has a power spectral density of the
form S(f)∼ f−β , and is fractional Gaussian noise (a sta-
tionary process) if β < 1 and a fractional Brownian motion
(nonstationary) if 1< β < 3.

Time-series information about global climate forcing and
its various components exists for the instrumental period as
well as for the last millennium. This information can be used
in conjunction with the observed temperature records to per-
form maximum-likelihood estimates (MLE) of the parame-
ters of the model. The details of the MLE method applied
to this response model are explained in Rypdal and Rypdal
(2013). In a short-range memory response model, the power-
law kernel (t− s)β/2−1 in the response model is replaced
with an exponential e−(t−s)/τ , where τ is the time constant.
In this case the parameter µ−1 can be interpreted as the effec-
tive heat capacity of the climate system. In the LRM response
model µ−1 does not have a simple physical interpretation, al-
though it is (in combination with β) a measure of the thermal
inertia of the system. The memory parameter β estimated
from this model should be interpreted as the LRM parameter
for the internal temperature response, and hence the problem
of separating the LRM contribution from the forcing and the
internal LRM has been eliminated. The β estimated in Ryp-
dal and Rypdal (2013) is β ≈ 0.75, which is not much lower
than the value estimated for the full temperature record from
detrending techniques like DFA and WVA. This shows that
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the detrending techniques effectively eliminate the contribu-
tion to β from the anthropogenic trend.

In the present paper the Crowley forcing (Crowley, 2000)
is used for Moberg reconstructed temperature (Moberg et al.,
2005) and for the temperature from the ECHO-G forced run
experiment. The COSMOS experiment was run with a differ-
ent forcing, and this forcing is used as input to our response
model. For the temperature from the LOVECLIM experi-
ment, solar and volcanic forcings were used together with
forcings from CO2 and tropospheric aerosols corresponding
to the Crowley forcing. The full forcing data in these three
cases are shown in Figure 1.

3 Data

3.1 The reconstruction of Moberg et al. (2005)

The reconstructed temperature presented in Moberg et al.
(2005) is a Northern Hemisphere reconstruction covering the
time period 1-1979 AD. The reconstruction is created from
11 low-resolution proxy time series (e.g. ice cores and sedi-
ments, 1-180 year resolution) and 7 tree-ring records (annual
resolution). The 18 local reconstructed temperature time se-
ries were first divided into an Eastern and a Western part.
Linear interpolation was then applied to all time series in or-
der to create annual mean values. The beginning and end of
the time series were padded with surrogate data so that they
all covered the time period 300 BC - 2300 AD to minimize
edge effects of the wavelet transform. The wavelet transform
(WT) with the Mexican hat wavelet basis function was then
applied using the set of 22 scales to generate 22 time series.
For each scale 1-9 (Fourier timescales <80 years), the WT
from the tree-ring proxy series were averaged. For the scales
10-22 (Fourier timescales >80 years), the WT from the low-
resolution proxy series were averaged. Scale 1-22 were then
merged, creating two full WT time series, one for the Eastern
and one for the Western Northern Hemisphere. The two sub-
sets were then averaged, and the inverse WT was calculated,
creating a dimensionless NH temperature reconstruction. Fi-
nally, the mean and variance of the reconstructed temperature
time series were calibrated to correspond to the instrumental
data available for the time period 1856-1978.

3.2 Marine sediment SST reconstruction; Reykjanes
Ridge

The local sea surface temperature (SST) reconstruction ap-
plied in the following study is presented in detail in Mietti-
nen et al. (2012). Past August SST has been reconstructed by
analyzing marine planktonic diatoms from a composite ma-
rine sediment core, recovered at the Reykjanes Ridge in the
western subpolar North Atlantic, (57◦27.09’N, 27◦54.53’W,
at 2630 m water depth). The composite core consist of a 54.3
cm long box core, and a 3.725 m long gravity core. The gen-
eral assumption is that the down-core diatomic microfossil

assemblages are related with past environmental conditions
at the core site. Marine diatoms are unicellular, photosyn-
thetic algae with siliceous frustules. For this particular anal-
ysis, the down-core diatomic assemblages were converted to
August SST estimates by the weighted-average partial least
squares technique (ter Braak and Juggins, 1993). The SST
reconstruction has an average temporal resolution of 2 years
for year 1770-2000 (box core), and 8-10 years for year 1000-
1770 (gravity core).

3.3 SST reconstruction from observations; Reykjanes
Ridge

A reconstruction based on instrumental observations was de-
veloped in Smith and Reynolds (2005). For the ocean, sea
surface temperature (SST) was used, while surface marine
air temperatures where left out due to biases in the day-
time temperatures. The SST analysis and a separate land sur-
face air temperature analysis were merged to form a monthly
merged analysis from 1880 to 1997. The International Com-
prehensive Ocean-Atmosphere Data Set (ICOADS) SST ob-
servations release 2 was the primary SST data, but the com-
bined satellite and in situ SST analysis of Reynolds et al.
(2002) was also included. The reconstruction was separated
into low- and high-frequency components, which were added
for the total reconstruction. The low frequency was recon-
structed using spatial and temporal filtering, with a time fil-
ter of 15 yr. The low-frequency component was subtracted
from the data before reconstrucion of the high-frequency
component using spatial covariance modes. The method for
reconstructing the data is described in detail in Smith and
Reynolds (2004). This reconstruction contains improvements
over many earlier studies: It is globally complete, incorpo-
rates updates in ICOADS, the analysis variance have less
dependence on sampling compared to some earlier analysis,
and uncertainty estimates indicate when and where the anal-
ysis is most reliable.

3.4 LOVECLIM model and experiment

The Earth system model LOVECLIM version 1.2 contains a
quasi-geostrophic model for the atmosphere (ECBilt2), cou-
pled to an ocean GCM (CLIO3) (Goosse et al., 2010). The
two models have 3 and 20 vertical levels, respectively. A ther-
modynamic sea-ice model is incorporated into the OGCM,
and the vegetation model VECODE is used to simulate the
dynamics of trees, grasses and deserts. It includes the evo-
lution of the terrestrial carbon cycle, while a separate model
LOCH simulates the ocean carbon cycle. Both the solubility
and the biological pumps are included in this model. Incor-
porated in LOVECLIM is also the ice-sheet model AGISM,
which consists of 3 modules; ice sheet flow, visco-elastic
bedrock and mass balance at the ice-atmospehere and ice-
ocean interfaces.
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Table 1. Information on temperature from model experiments

Climate model LOVECLIM ESM v.
1.2

COSMOS ESM ECHO-G HadCM3

Complexity Interm. GCM GCM GCM
Time period covered 500-1750 AD 800-1750 AD 1000-1750 AD 850-1750 AD
Temp.res annual monthly monthly monthly
Spat.res 5.63x5.63 degrees 3.75x3.75 degrees 3.75x3.75 degrees 1.25x1.25 degrees

We apply surface temperature data from one experiment
with this model; “LOVECLIM Climate Model Simulation
Constrained by Mann et al. 2009 Reconstruction” (Goosse
et al., 2012). In this experiment, simulations are constrained
by the mean surface temperature reconstruction of Mann
et al. (2009). External forcing includes TSI (total solar irra-
diance), volcanic eruptions, land cover changes, orbital forc-
ing, greenhouse gases and aerosols. When we implement the
response model to these data, only time series for the so-
lar, volcanic and greenhouse gas forcing are applied. The
solar forcing time series is based on the reconstruction by
Muscheler et al. (2007). The volcanic activity time series
originate from Crowley et al. (2003) , while the greenhouse
gas forcing used is obtained from (Crowley, 2000).

3.5 COSMOS ESM model and experiments

The COSMOS ESM model consists of GCMs for the at-
mosphere and the ocean (Jungclaus et al., 2010). The atmo-
spheric model ECHAM5 (Roeckner et al., 2003) has 19 ver-
tical levels, while the ocean model MPIOM (Marsland et al.,
2003) has 40. A thermodynamic sea-ice model is incorpo-
rated into the OGCM. Additional modules include the ocean
biogeochemistry model HAMOCC5 (Wetzel et al., 2006),
and the terrestrial biosphere model JSBACH (Raddatz et al.,
2007).

The surface temperature data applied in our analysis are
extracted from one experiment in a set of experiments re-
ferred to as “Ensemble Simulation of the Last Millenium
using the Comprehensive COSMOS Earth System Model”
(Jungclaus et al., 2010). External forcing used in the forced
simulations include TSI, volcanoes, orbital forcing, green-
house gases and land use change. An unforced control run is
also used here in the comparative LRM study.

For the response model, time series for solar, volcanic and
greenhouse gas forcing are applied. The forcing time series
used are created specifically for this model and experiment
(Jungclaus et al., 2010). The solar forcing time series is based
on a combination of reconstructions; from the Maunder Min-
imum (1647-1715 AD) until today the total solar irradiance
(TSI) is based on historical sunspot records (Krivova and
Solanki, 2007; Balmaceda et al., 2007), and between 800 AD
and the Maunder Minimum the TSI is reconstructed from es-
timates of the solar open magnetic flux based on 14C con-

centrations in tree rings (Solanki et al., 2004; Krivova and
Solanki, 2008; Usoskin et al., 2011). An 11-year solar cycle
has been superposed on this part of the reconstruction.

The relative radiative forcing from volcanic eruptions is
calculated from aerosol optical depth (AOD) and effective ra-
dius Reff. Satellite data from the 1991 Mt. Pinatubo eruption
is the basis for these estimates. The greenhouse gas forcing
includes CO2, where concentrations are computed within the
model, based on historical records of fossil fuel emissions by
Marland et al. (2003).

3.6 ECHO-G model and experiments

The coupled model ECHO-G (Legutke and Voss, 1999) ver-
sion 4 consist of GCMs for the ocean/sea ice and the atmo-
sphere. The atmospheric model ECHAM4 (Roeckner et al.,
1996) includes 19 vertical levels, while the ocean model
HOPE-G (Legutke and Maier-Reime, 1999) includes 20 lev-
els. External forcing includes volcanoes, solar irradiance and
greenhouse gases, all derived from Crowley (2000) and is
used in the response model study. Surface temperature from
two experiments is used for analysis; one forced run and one
control run with forcing values fixed to year 1990 (Zorita
et al., 2003; González-Rouco et al., 2003; von Storch et al.,
2004).

3.7 HadCM3 model and experiment

The Hadley Centre coupled model 3 is an AOGCM (Gordon
et al., 2000), with 19 levels in the atmospheric component
HADAM3 (Pope et al., 2000) and 20 levels on the ocean
HADOM3 component. External forcing is constant for this
experiment (Collins et al., 2000).

The complexity, time period coverered, and temporal
and spatial resolution for each model experiment are given
in Table 1.

4 Results

When applying DFA2 and WVA2 directly to the tempera-
ture reconstruction records, all data up to the year 1750 are
used. Because the Crowley forcing record starts at 1000 AD,
only data from this year and forward were used in the re-
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Table 2. Estimated β from applying DFA2 and WVA2 directly to the full temperature record (all temperatures), from DFA2 and WVA2
applied to the residuals from the deterministic response, and from the response model using MLE (temperature reconstruction and temper-
ature from the forced climate model run experiments). The scaling ranges for DFA2 and WVA2 are also shown in years for Moberg and
LOVECLIM, and in months otherwise. The same scaling range has been used for the full record and the residual, except for WVA2 applied
to the forced ECHO-G experiment, where the upper scale used for the residual is in parenthesis.

Full record Residual Response
model

Scaling range

DFA2 WVA2 DFA2 WVA2 MLE DFA2 WVA2

Moberg 0.69 0.60 0.59 0.42 0.75 16 - 512 16 - 215
LOVECLIM 0.98 0.96 1.0 0.97 0.95 8 - 256 4 - 181
COSMOS forced 0.82 0.79 0.77 0.72 0.61 8 - 4096 4 - 4096
COSMOS ctrl 0.82 0.87 8 - 2048 4 - 512
ECHO-G forced 0.91 0.90 0.72 0.84 0.75 8 - 2048 4 - 1448

(304)
ECHO-G ctrl 0.85 0.87 8 - 2048 4 - 724
HadCM3 (τ < 10 yr) 1.9 2.0 8 - 128 4 - 45
HadCM3 (τ > 10 yr) 0.63 0.65 128 - 8192 45 - 4096

sponse model residual analysis of the Moberg reconstructed
temperature and the temperature from the LOVECLIM ex-
periment. Therefore the scales shown in the plots for DFA2
and WVA2 may differ somewhat between the full record and
the residual from the deterministic response. Table 2 shows
the resulting β from applying DFA2 and WVA2 directly to
the full temperature and to the residuals from the determin-
istic response. The β estimated using the response model is
also given, where the parameters of the response model are
estimated with the MLE method (Rypdal and Rypdal, 2013).
The response model residual analysis is applied to the tem-
perature reconstructions and the temperature from forced cli-
mate model experiments, while the direct analysis also in-
clude temperature from control runs. The scaling ranges used
to find β with DFA2 and WVA2 are also indicated in this
table. Note that the scaling range is given in years for the
Moberg and LOVECLIM temperatures, and in months oth-
erwise. Figures 2-12 show the analysis of the temperature
records. For the full records, the figures show (a) the temper-
ature data, and (b) PSD, (c) DFA2, and (d) WVA2 applied
to the data set. For the response model results, the figures
show (a) the temperature data and deterministic response,
(b) the residual, and (c) PSD and (d) DFA2 applied to the
residual. The residual is the deterministic response interpo-
lated to have the original time resolution subtracted from the
full-resolution temperature data. For DFA2 and WVA2 95%
confidence areas are shown, computed from Monte Carlo en-
sembles of synthetic fGns. For the response model analysis
with DFA2, they are given the β estimated by MLE, other-
wise they are given β corresponding to the one found from
the DFA2 and WVA2 analysis respectively. The values of β
used are indicated in each figure.
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Fig. 2. (a) The Moberg reconstructed temperature. (b) PSD, (c)
DFA2 and (d) WVA2 applied to the reocrd. The blue areas are the
95% confidence for synthetic fGn with β estimated with DFA2 and
WVA2, indicated in the figure.

4.1 Results from paleoreconstruction of Moberg et al.
(2005)

Figure 2 shows the Moberg reconstructed temperature
record, its power spectral density (PSD) and the results of
DFA2 and WVA2 applied to the full record. As discussed
above the scales up to ∼ 10 years are not representative for
the temperature, and this is seen as a cross-over in the slope
of both DFA2 and WVA2 fluctuation functions. The devi-
ation from a straight line at the largest scales (lowest fre-
quencies), which is most prominent in the WVA2 fluctuation
function, is caused by a nonlinear trend associated with the
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Fig. 3. (a) The Moberg reconstructed temperature (black) and the
determinstic response (red). (b) The residual from the deterministic
response. (c) PSD and (d) DFA2 applied to the residual. The red
area is the 95% confidence for synthetic fGn with β estimated with
MLE using the response model, indicated in the figure. Estimating
β from the residual with DFA2 yields β = 0.589.

two well known climatic features of the last 2000 years: Me-
dieval climate anomaly and the Little ice age. The two meth-
ods yield β ≈ 0.69 and β ≈ 0.60, respectively.

In principle the LRM properties due to internal dynamics
can be separated from those induced by the external forcing
by applying the response model method of Rypdal and Ryp-
dal (2013) described in section 2. This method allows esti-
mation of the model parameters β, σ, and µ from the Crow-
ley forcing data and the Moberg reconstruction record. Then
we can compute the deterministic response and the residual
obtained by subtracting this deterministic response from the
Moberg record. The residual represents the response to the
stochastic forcing and hence the internal variability of the
climate system. The scaling properties of this residual can be
assessed with the DFA method which also provides a consis-
tency test on the maximum-likelihood estimate of β.

A caveat here is the low-pass filtered nature of the Moberg
record. The MLE method tends to emphasize the shorter
scales on which the reconstruction record is smooth, and this
will spuriously yield β ≈ 1. A way to avoid this could be to
coarse grain both temperature and forcing time series by av-
eraging over successive time windows of a certain length tA,
such that the temperature series is no longer smooth. This
will give a more reasonable maximum-likelihood estimate of
β, but the coarse-grained data cannot capture the causal con-
nection between the almost instantaneous volcanic forcing
spikes and the temperature response to them. The resulting
blurring of the causal connection on time scales shorter than
a decade has the effect that the MLE method interprets the
variability on these short scales as stochastic, and hence over-
estimates the stochastic forcing strength σ, and also yields
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Fig. 4. (a) The temperature from the LOVECLIM experiment. (b)
PSD, (c) DFA2 and (d) WVA2 applied to the record. The blue areas
are the 95% confidence for synthetic fGn with β estimated with
DFA2 and WVA2, indicated in the figure.

incorrect estimates of µ and β. The lesson to learn from this
is that we cannot expect to obtain a correct separation of de-
terministic and stochastic forcing and correct parameter es-
timates from the low-resolution reconstruction data. Another
approach to circumvent this problem was suggested in Ryp-
dal and Rypdal (2013), where the response model parame-
ters computed from the annual-resolution instrumental data
were applied to the millennium-long annual-resolution forc-
ing record to produce a deterministic-response record with
annual resolution. The Moberg record and this deterministic
response is shown in Figure 3(a). The residual obtained by
subtracting the deterministic response from the reconstructed
record is shown in Figure 3(b), and provides a good represen-
tation of the internal variability on time-scales longer than a
decade. On shorter time-scales the residual is strongly influ-
enced by the forced response due to the smooth character of
the temperature reconstruction, but we do not need to use
those scales to estimate model parameters if we do not insist
on using MLE. The PSD of the residual is shown to exhibit
good scaling in Figure 3(c), and the DFA2 fluctuation func-
tion of this residual on the longer time-scales should provide
good estimates of β for the internal variability, as shown in
Figure 3(d).

4.2 Results from LOVECLIM experiment

The NH temperature record for the period 1000-1750 AD
for the LOVECLIM experiment, its power spectral density
(PSD), and the DFA2 and WVA2 fluctuation functions are
shown in Figure 4. DFA2 and WVA2 show good scaling
with β ≈ 0.97 at least on time scales up to a few hundred
yr. The response model gives similar value of β, which sug-
gests that the persistence observed in the modeled record is
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Fig. 5. (a) Temperature from the LOVECLIM experiment with 1-
year resolution (black) and deterministic response (red). (b) The
residual from the deterministic response. (c) PSD and (d) DFA2
applied to the residual. The red area is the 95% confidence for syn-
thetic fGn with β estimated with MLE using the response model,
indicated in the figure. Estimating β from the residual with DFA2
yields β = 1.01.
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Fig. 6. (a) The temperature from the COSMOS experiment. (b)
PSD, (c) DFA2 and (d) WVA2 applied to the record. The blue ar-
eas are the 95% confidence for synthetic fGn with β estimated with
DFA2 and WVA2, indicated in the figure.

due to LRM in the internal dynamics and not a reflection of
LRM in the forcing. In this model simulation both forcing
input and simulation output are given with annual resolution.
This allows us to handle volcanic forcing and the response to
volcanic eruptions in a realistic manner. The results from the
response model estimates with annual resolution are shown
in Figure 5.
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Fig. 7. (a) The temperature from the COSMOS controlrun. (b) PSD,
(c) DFA2 and (d) WVA2 applied to the record. The blue areas are
the 95% confidence for synthetic fGn with β estimated with DFA2
and WVA2, indicated in the figure.

800 1000 1200 1400 1600
-0.8
-0.6
-0.4
-0.2
0.0
0.2

yr AD

C
os
m
os

800 1000 1200 1400 1600
-1.0

0.0

1.0

yr AD

C
os
m
os
re
sid
ua
l

10-3 10-2 10-1

10-6

10-4

10-2

f Hyr-1L

SHfL

b=0.61

1 10 100 1000 10000
0.1
1
10
100

t Hmonths L

FHt
L

(a) (b)

(c) (d)

Fig. 8. (a) 4-year average of the temperature from the COSMOS
experiment (black) and deterministic response (red). (b) The resid-
ual from the deterministic response. (c) PSD and (d) DFA2 applied
to the residual. The red area is the 95% confidence for synthetic
fGn with β estimated with MLE using the response model, indi-
cated in the figure. Estimating β from the residual with DFA2 yields
β = 0.772.

4.3 Results from COSMOS experiment

The temperature from the COSMOS forced run experiments
exhibits some oscillations. In particular a prominent peak
corresponding to a multiannual mode is seen in the PSD in
Figure 6(b), and in the WVA plot in Figure 6(d). Otherwise
scaling is fairly good with β ≈ 0.8. For the control run (Fig-
ure 7) β is almost the same with DFA2, but slightly higher
with WVA2. The PSD, DFA2, and WVA2 show some signs
of loss of memory on scales longer than a century. The mul-
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Fig. 9. (a) The temperature from the ECHO-G experiment Erik1.
(b) PSD, (c) DFA2 and (d) WVA2 applied to the record. The blue
areas are the 95% confidence for synthetic fGn with β estimated
with DFA2 and WVA2, indicated in the figure.
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Fig. 10. (a) The temperature from the ECHO-G controlrun. (b) PSD,
(c) DFA2 and (d) WVA2 applied to the record. The blue areas are
the 95% confidence for synthetic fGn with β estimated with DFA2
and WVA2, indicated in the figure.

tiannual oscillation influences the maximum-likelihood esti-
mation of model parameters in the response model, so in Fig-
ure 8 these estimates have been performed on a 4-yr coarse-
grained time series, while the residual has been computed
on monthly scale. As discussed above such coarse-graining
creates a misrepresentation of the response to volcanic erup-
tions, which we believe is the main reason for the lower esti-
mate β ≈ 0.6 from the response model.
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Fig. 11. (a) 1-year average of the temperature from the experi-
ment Erik1 (black) and deterministic response (red). (b) The resid-
ual from the deterministic response. (c) PSD and (d) DFA2 applied
to the residual. The red area is the 95% confidence for synthetic
fGn with β estimated with MLE using the response model, indi-
cated in the figure. Estimating β from the residual with DFA2 yields
β = 0.720.

4.4 Results from ECHO-G experiments

The temperature from the forced experiment “Erik1” shows
good scaling with β ≈ 0.9 in Figure 9. The temperature from
the control run (Figure 10) also scales well with a similar
value for β. The response model yields a slightly smaller β
(Figure 11). Here a 1-yr coarse graining has been applied
before the parameters have been estimated, since the forcing
data have 1-yr resolution.

4.5 Results from the HadCM3 experiment

The HadCM3 experiment consists of only a control run, and
the scaling properties of the NH temperature series from this
experiment differs from the other experiments in some im-
portant respects. Figure 12 shows a marked cross-over be-
tween two scaling regimes for τ ∼ 100 months in the DFA2
plot and τ ∼ 45 months in the WVA2 plot. The two regimes
correspond to fBm-scaling with β ≈ 2 (Brownian motion)
for the smaller scales, and fGn-scaling with β ≈ 0.6 for the
larger scales. Rather than being dominated by an ENSO-like
quasi-oscillatory mode up to scales of a few years, as ob-
served in the COSMOS experiments, we observe here a non-
stationary random-walk-like process for those scales. On the
longer time scales this model also exhibits persistent scaling,
but with somewhat lower persistence than observed in data
from control runs and response model estimates in the other
climate model experiments we have investigated.
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Fig. 12. (a) The temperature from the HadCM3 experiment. (b)
PSD, (c) DFA2 and (d) WVA2 applied to the record. Two scaling
regimes are found with β estimated with DFA2 and WVA2, indi-
cated in the figure.

4.6 Scaling in local data; Reykjanes Ridge

Analysis of instrumental local station data from continental
interiors typically yields very low persistence on time scales
up to a few decades. On the other hand, our experience is that
coastal and oceanic observations in the temperate regions of
the Northern Hemisphere present persistent β-values closer
to those found for the hemispheric average. We also believe
that this feature extends beyond the decadal scales, i.e., that
good scaling with strong persistence prevails on scales up
to several centuries in the Northern oceans. As an illustra-
tion we present in Figure 13 analysis of the Reykjanes ridge
reconstruction from marine sediments described in Section
3.2 and the ECHO-G Erik1 experiment for the period 1000-
1750 AD, and of the monthly SST reconstruction for the pe-
riod 1880-1997 as described in Section 3.3. The figure shows
DFA2 plots for the three data sets. ECHO-G shows good
scaling in the range 1-100 yr with β ≈ 0.67, as compared
to β = 0.91 for the NH-average. The marine sediment re-
construction yields β ≈ 0.45, and the instrumentally-based
reconstruction β ≈ 0.56. The greatest uncertainty in the β-
estimate is in the marine sediment reconstruction, for which
a very limited range of scales is available for analysis. The
record has uneven time spacing, but the time step is mostly
almost the same, slightly below 10 years. The data points in-
consistent with this are ignored, and DFA2 applied to the re-
maining record. A maximum-likelihood estimation method
for time series with uneven time spacing yields β close to
what was found with DFA2. In spite of these uncertainties
the analysis demonstrates consistently persistent scaling over
time scales from years to centuries in these local data from
model experiment and reconstruction data.
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Β=0.56
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Fig. 13. DFA2 applied to sea surface or air surface temperature at
Reykjanes Ridge. The upper curve is the result for the air surface
temperature from Erik1 experiment. The lower left curve is based on
the monthly reconstructed data for sea surface temperature, and the
lower right curve on the marine sediment reconstruction of ocean
temperature. The red lines indicate the scales used to estimate β.

5 Conclusions

The temperatures from all model experiments except
HadCM3 a yield higher values of β than the Moberg re-
construction when scales longer than a decade are consid-
ered. The reconstruction is said to represent temperature in
the Northern Hemisphere, but most of the proxies used are
in land and coastal areas. In this sense they may be consid-
ered more like representations of land or coastal temperature.
Studies of observational data show higher persistence in sea
surface temperature than land air temperature, and the value
for β found for the Moberg record is more in agreement with
the one found for the Northern Hemisphere land tempera-
ture than ocean temperature (Eichner et al., 2003; Lennartz
and Bunde, 2009). Our estimate is in agreement with Rybski
et al. (2006). The temperature from the model experiments is
averaged over grid cells from both land and ocean areas, and
the influence of the ocean might be what yields the higher
value of β than found for the Moberg reconstruction.

The temperatures from the COSMOS experiments (both
forced and control run) clearly show an influence of a quasi-
periodic variability with a 2-3 year period, which can be as-
sociated with ENSO. The ECHO-G experiments show less
influence of this oscillation, in HadCM3 it appears more
like a crossover between two scaling regimes, and in LOVE-
CLIM it is not noticeable. For the reconstructed temperature
the ENSO time scales are not resolved, but in instrumental
records the tropical oceans show a spectrum similar to that
found from HadCM3.

The temperatures from the forced ECHO-G experiment
and the LOVECLIM experiment show a more distinct Little
Ice Age anomaly, in agreement with the temperature recon-
struction, than the temperature from the COSMOS forced run
experiment. This anomaly may also influence the estimation
of β.
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All the NH-averaged temperatures from forced experi-
ments show clear persistent scaling with 0.8< β < 1 on most
of the available scales, i.e., from a decade to several cen-
turies. The control runs and the response model estimates
from the forced runs, which reveal the memory properties
of the internal climate dynamics, do not show systemati-
cally less persistence than obtained directly from the simu-
lated forced temperature records. This observation does not
support the notion that the observed long-range memory to
great extent is generated by the forcing. Such a suggestion
was made by Rybski et al. (2008), based on a global map
for the parameter α= (β+ 1)/2 computed from both forced
runs and control runs of the ECHO-G model. We believe that
this discrepancy is caused by the reduction of spatiotemporal
noise implied in performing an NH-average. The differences
in estimated α between forced and unforced runs for local
data may not be in the persistence of the underlying global
signal, but rather in differences related to the amplitudes of
spatiotemporal modes for the two types of runs.

Acknowledgements. For maximium-likelihood parameter estima-
tion in the response model we have employed an R-routine devel-
oped by Ola Løvsletten.
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